

Experimentally investigating effects of defects in UML models

Citation for published version (APA):
Lange, C. F. J., & Chaudron, M. R. V. (2005). Experimentally investigating effects of defects in UML models.
(Computer science reports; Vol. 0507). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bdb09e9a-9571-400d-b8c4-f7e4dee20e4f

Experimentally investigating

Effects of Defects in UML Models

Christian F.J. Lange, Michel R.V. Chaudron
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513

5600 MB Eindhoven, The Netherlands
{C.F.J.Lange, M.R.V.Chaudron}@tue.nl

March 14, 2005

Abstract

The Unified Modeling Language (UML) is the de facto standard for
designing and architecting software systems. With a large variety of dia-
gram types it offers a large degree of freedom. Mainly due to this there is
a potential risk for consistency defects and lack of completeness in UML
models. Previous research has shown that in industrial UML models a
large number of defects occur. The purpose of this study is to investigate
to what extent implementers detect defects and to what extent undetected
defects cause different interpretations by different readers. Therefore we
performed two controlled experiments with a large group of students and
a smaller group of industrial practitioners respectively. The experiment’s
results show that defects often remain undetected and cause misinterpre-
tations. As a result of this study we present a ranking of defect types
according to detection rate and risk for misinterpretation. Additionally
we observed effects of using domain knowledge to compensate defects and
effects of the order in which the diagrams are presented. The results are
generalizable to industrial UML users.

1

Contents

1 Introduction 3

2 Consistency Defects 4
2.1 Prerequisites . 4
2.2 Consistency Defect Types . 5

3 Experiment Design 7
3.1 Design . 7
3.2 Question Design . 8

3.2.1 An Example Question . 9
3.3 Subjects . 10

3.3.1 Students . 10
3.3.2 Professionals . 11

3.4 Preparation . 11
3.5 Operation . 13

3.5.1 Student Experiment . 13
3.5.2 Professionals Experiment 13

3.6 Threats to Validity . 14

4 Results 15
4.1 Data Purification . 16
4.2 Defect Detection . 16
4.3 Variation of Interpretations . 18
4.4 Severity . 19

5 Discussion 20
5.1 Domain Knowledge . 20
5.2 Leading Diagram and other Observations 21
5.3 Order of Diagrams . 23
5.4 Generalizability . 23

6 Conclusions and Future Work 24
6.1 Conclusions . 24
6.2 Future Work . 26
6.3 Acknowledgements . 27

A The Agreement Measure 28

B Raw Result Data 30

2

1 Introduction

This study is performed within the EmpAnADa project [Tec]. The EmpAnADa
project develops techniques to assess and improve the quality of models for the
design and architecture of software systems. Within the empirical component of
the EmpAnADa project the techniques are applied and validated. The Unified
Modeling Language (UML) is the de facto standard for designing and archi-
tecting software systems. Therefore the focus of the project is on the UML.
An integral part of the project is the empirical investigation of problems arising
during the use of the UML.

The UML lacks a formal semantics and allows many degrees of freedom
by offering powerful extension mechanisms like stereotypes and profiles. As a
result, the UML is applied in many different ways by its users. Additionally the
UML offers various diagram types to describe the system from different views.
UML 1.x [Obj03b] offers 9 diagram types and in the new UML 2.0 [Obj03a]
the user can choose from 13 diagram types. Since diagrams from all types in a
model essentially describe the same system there is overlap [BBD+00] between
different diagrams (from the same type as well as from different types). Views
(i.e. diagrams) are not created from a single source, but are independently
constructed and edited. This causes the risk of completeness and consistency
defects in overlapping diagrams. A consistency defect is a mismatch between
overlapping diagrams. There are several approaches that classify these defects.
Additionally there are several methods [KHR+03, MCB05] that aim at finding,
removing and preventing defects in UML models. Despite these methods and
modern UML case tools that assist in preventing defects in UML models the
number of defects in practice is alarmingly large. Empirical studies on industrial
UML models [LC04] have shown a large amount of defects.

UML models are used for finding solutions and analyzing their properties,
to document them and as a means for communication between stakeholders.
It has not yet been addressed whether the presence of defects in UML models
affects these applications.

The goal of this study is to investigate the effects of defects in UML models
in the context of Master’s students and industrial professionals. The following
research questions are addressed:

• Are defects in UML models detected by readers?

• (If defects are not detected) how do they effect the interpretation of the
model?

Additionally the effect of availability of domain knowledge and the order in
which the diagrams are presented to the reader on the interpretation of the
model are addressed by this study. The goal of this study is summarized by the
GQM template [BCR94] (Table 1).

To answer these questions we have designed and performed two controlled
experiments. Section 2 explains the defect types that we have investigated in
the experiment. In Section 3 the experimental design, its execution and the

3

Analyze consistency and completeness defects in UML models
for the purpose of identifying risks

with respect to detection and misinterpretation
from the perspective of the researcher

in the context of graduate students at the TU Eindhoven and professionals

Table 1: Goal according to GQM template

two groups of subjects are described. The results and major findings of the
experiment are presented in Section 4. Observations made are discussed in
Section 5. Concluding remarks and future work are given in Section 6. In the
appendix we present the developed agreement measure and the raw results.

2 Consistency Defects

A UML model consists of several diagrams and these diagrams have a certain
overlap. When a mismatch between overlapping parts of diagrams occurs a
consistency defect is present. A formal definition can be found in [Lan03]. In
this section the defect types that are analyzed in the described experiment are
described.

2.1 Prerequisites

We start with giving some definitions that are needed for the formal specification
of the defects. The formal specifications are based on a relational meta model
which contains the following sets:

U = set of all use cases

S = set of all sequence diagrams

C = set of all classes

O = set of all objects

M = set of all methods

E = set of all messages

N = set of all names

L = U ∪ S ∪ C ∪ O ∪M ∪ E

Based on these sets we consider relations of the following types:

US ⊆ U × S

〈u, s〉 ∈ US means s illustrates u

SE ⊆ S × C × C × E

4

〈s, c1, c2, e〉 ∈ SM means in context of s,

c1 sends e to c2

EM ⊆ E × M

〈e,m〉 ∈ EM means e is a call of m

CM ⊆ C × M

〈c,m〉 ∈ CM means c provides m

OC ⊆ O × C

〈o, c〉 ∈ OC means o instantiates c

OS ⊆ O × S

〈o, s〉 ∈ OS means o is part of s

Functions. Here we list the functions that are used when defining the defect
types. The function name(x) returns the name of the model element x (x ∈ L).
The function class(o) returns the class that is instantiated by object o. The
functions callee(e) and caller(e) return the object that receives message e and
the object that sends message e, respectively.

For this experiment the correspondence between a message and a method is
expressed by equality of names, i.e.

name(e) = name(m) ≡ 〈e,m〉 ∈ EM (1)

2.2 Consistency Defect Types

Now we are ready to give the set of defects that are analyzed in the experi-
ment. The defect types analyzed in this study take into account class diagrams,
sequence diagrams and use case diagrams. Each defect has a name, an abbrevi-
ation (which is used in the sequel), a brief description that informally describes
the defect, and a formal specification. Note that the formal specification is a
boolean expression that is true, when an instance of the defect type is present,
it does not describe the set of defects.

Message without Name (EnN)
Objects are passing messages in sequence diagrams. The arrows representing
the messages should be annotated with a name that describes the message. In
case the message is not described by a name, this defect is present.

(∃e ∈ E : ¬(∃ string s : s = name(e)))

Message without Method (EcM)
A message from one object to another means that the first object calls a method
that is provided by the second object. The name annotating the message ideally
corresponds to name of the called method. In case there is no correspondence
between the message name and a provided method name, this defect is present.

(∃e ∈ E : ¬(∃m ∈ M :
name(m) = name(e)
∧〈class(callee(e)),m〉 ∈ CM))

5

Message in the wrong direction(ED)
This inconsistency occurs when there is a message from an object of class A to
an object of class B but the method corresponding to the message is a member
of class A instead of class B. This is a special instance of “Message name does
not correspond to Method”.

(∃e ∈ E :
¬ (∃m ∈ M : name(m) = name(e)
∧ 〈class(callee(e)),m〉 ∈ CM)
∧ (∃m ∈ M : name(m) = name(e)
∧ 〈class(caller(e)),m〉 ∈ CM))

Class not instantiated in SD (CnSD)
Sequence diagrams describe the interactions between instantiations of classes.
When a class that is defined in a class diagram of the model does not occur as
class instantiation in a sequence diagram, this inconsistency is existent.

(∃c ∈ C : ¬(∃o ∈ O : class(o) = c))

under the assumption

(∀o ∈ O : (∃s ∈ S : (o, s) ∈ OS))

Object has no Class in CD (CnCD)
This inconsistency occurs if there is an object in a sequence diagram and no
corresponding class is defined in any class diagram.

(∃o ∈ O : ¬(∃c ∈ C : class(o) = c))

under the assumption

(∀o ∈ O : (∃s ∈ S : 〈o, s〉 ∈ OS))

Use Case without SD (UCnSD)
Sequence diagrams illustrate scenarios of use cases. Hence, the classes instan-
tiated by a particular sequence diagram contribute to the functionality needed
for the corresponding use case. This incompleteness exists when there is a use
case that is not illustrated by any sequence diagram.

(∃u ∈ U : ¬(∃s ∈ S : 〈u, s〉 ∈ US))

Multiple definitions of classes with equal names (Cm)
This inconsistency occurs when in the same model more than one classes have
the same name. The different classes may be defined in the same diagram or in
different diagrams.

(∃c1, c2 ∈ C : name(c1) = name(c2) ∧ ¬(c1 = c2))

6

Defect Questions Symb.
EnN Q1.1 yes

- no
EcM Q8, R5*, R1.1* yes

Q2, R2* no
ED - yes

Q3 no
CnSD Q9.2 yes

Q5.1 no
CnCD - yes

Q6.1, R4.1* no
UCnSD - yes

Q7.1 no
Cm - yes

Q10 no
MnSD R3 yes

- no
no Q1.2, Q9.1 yes
defect R1.2*, R4.2*, Q5.1 Q6.2, Q7.2 no

Note: Questions marked with an asterisk (*)
are variations of the questions in the
same row with the diagrams reversed.

Table 2: Nested Design with one Factor

Method not called in SD (MnSD)
This incompleteness occurs when there is a method of a class that is not called
as a message in any sequence diagram.

(∃m ∈ M : ¬(∃e ∈ E : name(m) = name(e)))

The presented defects are caused by a mistake of the designer(s) or by im-
proper use of the tooling.

3 Experiment Design

We performed two similar experiments. The subjects of the first experiment
were students and the subjects of the second experiment were professionals. In
this section the experiments are described. Most parts are the same for both
experiments. The differences are explained where applicable.

3.1 Design

For each of the eight selected defect types that are presented in the previous
section we have constructed an UML model fragment containing an instance

7

of the defect type. In the experiment the subjects were given the UML model
fragments and the subjects’ task was to indicate how he interprets the diagrams
from the perspective of someone who must implement a system according to the
given diagrams. Accompanying the diagrams we gave the subjects a question
that focusses on a specific aspect of the model fragment. For each question
there were four possible answer options, since the experiment was set up as a
multiple-choice test. For each question about a model fragment containing an
injected defect we constructed a similar control question that focusses on the
same aspect but that does not contain a defect. Since the goal of the experiment
is to investigate the effects of defects in UML models, the situation with defects
must be compared to the situation without defects. The treatment in this
experiment is the defect injection and the different levels are “no defect” and
the eight defects defined in the previous section.

3.2 Question Design

The four answer options provided with each question were designed according
to the following schema:

• For questions containing a defect : A defect between two or more diagrams
means that there is conflicting information between the diagrams. The
answer options are therefore designed such that for each of the diagrams
there is at least one answer that corresponds to the system as described in
the diagram. If possible, one answer option is a combination of the given
diagrams, and at least one answer option is absolutely wrong according to
all given diagrams. This is illustrated in the example in Section 3.2.1. The
critical call is message open() from object atm to object a. Answer option
A corresponds to the sequence diagram, options B and D correspond to
the class diagram and option C is not according to any of the diagrams.

• For questions not containing a defect : one correct answer option and the
other being wrong answers.

All questions had a fifth answer option that indicated that the subject could
not give one of the other four possible answers because of an error or defect
in the model fragment. Furthermore the subjects were asked to give a brief
(textual) motivation of their answer.

When designing the experiment we felt that for some defects it would make
a difference whether the subject is familiar with a specific problem domain and
hence compensates a defect by applying domain knowledge. To enable us when
analyzing the effect of domain knowledge as compensation for model defects we
designed pairs of model fragments such that one version represents a system
from a domain that every participant is familiar with (ATM machine and train
crossing) and contained meaningful names (e.g. account, customer...) and the
equivalent version contained symbolic (or meaningless) names (e.g. Class A,
method3...).

8

To compensate for the effects of the order in which the diagrams of each
model fragment are presented to the subjects we have asked some questions
in the second run of the (student) experiment with the order of the diagrams
swapped.

We assume that the subjects are not influenced in successor questions by
treatments of previous questions, therefore the experiment is designed as a
nested same-subject design, i.e. all subjects are exposed to all treatment levels.
Hence, the design is by definition balanced. An overview of the experimental
design is given in Table 2. The first column contains the defect types (see Sec-
tion 2), the second column contains the identifiers of the questions questions
marked with an asterisk are variants of previous questions with the order of
diagrams reversed), and the third column indicates whether the questions (in
the same row) are designed using diagrams with or without symbolic names.
Questions whose identifier begins with a Q were asked in the first run of the
experiment, the identifier R indicates that the question stems from the second
run.

3.2.1 An Example Question

To illustrate the design of the questions we give question Q2 as presented in
the experiment as an example. Q2 is a representative question for the whole
questionnaire. In Figure 1 and Figure 2 the diagrams of a model fragments are
shown as they were exposed to the subjects in the experiment. The question
and answer options are as follows:

Question: Suppose you are developer in this banking software project. It is
your task to implement class ATM. Please indicate on the next page how you
would implement the ATM class given these two UML diagrams?

• Answer option A

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.open()}

method acknowledge (){
dosomething;
c.seeMenu()}

}

• Answer option B

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.lock()}

9

method acknowledge (){
dosomething;
c.seeMenu()}

}

• Answer option C

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.acknowledge()}

method acknowledge (){
dosomething;
c.seeMenu()}

}

• Answer option D

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.validate()}

method acknowledge (){
dosomething;
c.seeMenu()}

}

• Answer option E No interpretation possible because of an error in the
model.

3.3 Subjects

3.3.1 Students

In total 111 students participated in the experiment. The experiment was con-
ducted within the course “Software Architecture” [Cha04] at the Eindhoven
University of Technology (TUE). This course is taught in the first year of the
Masters program in computer science, hence all subjects hold a bachelor de-
gree or equivalent. 85% of the subjects have a background in computer science,
10% in electrical engineering and 5% in other disciplines. 52% of the students
received their bachelor from the TU Eindhoven, 31% from other Dutch insti-
tutions, 5% from universities in India and 12% from other countries. In the
self assessment on the scale between 1 (no experience) and 5 (applied in many
industrial projects) the results are shown in Table 3.

10

Figure 1: Example Class Diagram

3.3.2 Professionals

In total 48 professionals participated in the experiment by completing the online
questionnaire. Some of the subjects did not complete all questions, but all ques-
tions were answered by at least 27 subjects. The background questions allowed
us to get insight into the subjects’ experience in relevant fields and, hence, to
remove subjects with not enough experience to be regarded ‘professional’ in the
context of this experiment. We removed subjects who entered ‘student’ as job
description or who had less than two years of work experience. The average
work experience of all remaining subjects is 10.7 years with a maximum of 35
years. The most frequent job descriptions (of all subjects who entered a job
description) were ‘architect’, ‘designer’ and ‘engineer’. In the self assessment on
the scale between 1 (no experience) and 5 (applied in many industrial projects)
the results are shown in Table 3.

3.4 Preparation

Prior to the experiment we conducted a pilot experiment to evaluate the ex-
perimental design and the experiment materials. Some colleagues and students
participated in the pilot experiment, none of them was familiar with the goal
of the experiment. The feedback of the pilot experiment led to improvements
of the instruction sheet and to develop questions such that analysis with re-
spect to compensation by domain knowledge was possible. Minor mistakes in
the diagrams and text were found and corrected. The subjects took between 20

11

Figure 2: Example Sequence Diagram

minutes and 55 minutes to complete all questions.
All subjects of the student experiment were students of the course “Software

Architecture” at the TUE. In this course UML was presented and explained to
the students. In the five weeks before the experiment was conducted the students
had to develop and evaluate a UML model as part of a design assignment and
familiarized themselves with the UML (in case they had not been familiar with
it before).

The professionals’ experiment was conducted as an online questionnaire.
Therefore besides setting up the website and the database to collect the results
no preparation was needed.

Task Stud. Prof.
Designing 2.7 4.5
UML 2.4 4.3
Implementing 3.0 4.0
Code Review 2.5 3.8
Inspections 1.7 3.7
Design Review 2.2 3.4

Table 3: Subject Background according to Self Assessment (Averages)

12

3.5 Operation

3.5.1 Student Experiment

The student experiment was conducted in two runs. The first run contained
questions Q1 to Q10, the second run was conducted five weeks later and con-
tained questions R1 to R5. The procedure of operation was equal for both runs
and is explained in the sequel.

Both runs were held as part of a test of the course. The incentive for the
subjects was to gain bonus points for their grade by participating in the experi-
ment. The subjects’ achievement for the experiment questions had no influence
on the grade. The experiment is according to the ethical issues addressed by
Carver et al. [CJMS03].

The experiment was conducted in a classroom with the subjects spread out.
The subjects were given the experiment material containing instructions, the
diagrams of the model fragments, questions and answers options. For the test
and the experiment the subjects had three hours available, the actual test was
expected to take between 60 and 90 minutes, such that there was enough time
to complete the experiment (which took less than 60 minutes in the pilot ex-
periment) without time pressure. In addition to the written instructions we
gave instructions at the beginning of the run. During the run the subjects were
allowed to ask questions for clarification. The subjects were not familiar with
the goal of the experiment to avoid biased results.

After the first run the subjects had to complete a questionnaire to assess their
background with questions about their academic background, work experience,
experience with UML and other relevant software engineering related topics.

3.5.2 Professionals Experiment

Because of the time constraints of professionals we performed only one exper-
iment run in this group. The run contained questions Q1 to Q10. Since we
intended to allow professionals from all organizations and from all over the
world to participate in the experiment we executed the professionals’ experi-
ment as an online questionnaire. Subjects who prefer pen and paper for the
experiment could download a printable version of the experiment material from
the experiment website and fax or mail it to us. We announced the URL of the
experiment website on several related newsgroups and asked industrial contacts
to participate in the experiment and to forward the request to colleagues in their
organization. The professionals’ experiment contained the same diagrams and
questions as the first run of the student experiment. The professionals’ ques-
tionnaire also contained background questions to gain insight into the subjects’
experience (which enabled us to remove results from subjects that could not be
regarded as “professionals” in the sense of this experiment).

13

3.6 Threats to Validity

The threats to the validity [CC79] of the experiment include learning effects,
fatigue, lack of generalizability of the student experiment and the size of the
model fragments, and bias because of the multiple-choice design. These threats
will be discussed in this section.

In both experiments described in this paper the order of the questions is
the same for all subjects, hence there is a potential for order effects. Order
effects occur when there is interaction between the objects of the study. To
avoid interaction we constructed the objects, i.e. the model fragments, such
that all fragments are in different domains, and the naming of elements (classes,
methods...) is chosen such that each pair of model fragments has no common
names for its elements. As described in Section 3.1 each question has three
types of possible answers. To avoid that the subjects could predict the correct
answer the order of the answers is chosen absolutely random. In all runs, there
were no two questions with the same combination of injected defect and domain
knowledge available, hence, we assume that there were no learning effects. The
second run of the first experiment contained questions that were almost equal
to questions from the first run The results were almost the same, hence there
were no learning effects.

Fatigue during completion of the questionnaire is a possible threat to validity.
The number of obvious wrong answers is almost the same for questions at the end
of the questionnaire as it was for questions at the beginning of the questionnaire.
Therefore there is no decrease in performance present.

The first experiment deploys students as subjects. This could be a threat
for the external validity of the experiment. The subjects in the first experiment
are all masters students with experience in UML. According to Kitchenham
et al. [KPP+02] students can be used as subjects. Additionally we have per-
formed the second experiment with professionals. The experiment is smaller in
the number of subjects, but confirms the results of the larger first experiment
(Section 5.4).

The size of the model fragments ranges between three and nine classes.
In industrial models we have found between fifty and several hundred classes.
Therefore the size can be considered as a threat to validity concerning the gen-
eralizability of the outcomes. For actions on industrial models (e.g. reading,
modification) the designer focusses only on a subset of the model, which de-
creases the size gap for this experiment on cognitive effects. Since the complex-
ity in industrial models is in general larger, the effects of defects in industrial
models will therefore be at least as severe as the effects reported in this paper.
In terms of number of classes industrial models are larger than our fragments
by a factor ranging between ten and hundred. Similar experiments show the
same size factor, e.g. Deligiannis et al.[DSA+04] have source code fragments of
17 and 18 classes and Purchase et al.[PCM+01] has a model fragment of ten
classes. Multiplying the sizes of these experiments by a factor between ten and
100 yields sizes that are common source code sizes in industrial projects.

Since the experiment is designed as a multiple-choice test, four possible

14

Number of wrong answers 0 1 2 3 4 or more
Run A 72 30 8 1 0 subjects

64,9% 27,0% 7,2% 0,9% 0% percentage
Run B 99 7 3 2 0 subjects

89,2% 6,3% 2,7% 1,8% 0% percentage

Table 4: Cumulative number of wrong answers per subject.

interpretations are explicitly stated to the subject. This situation is different
from the situation in a real software development process, where the subject is
not guided by a set of predefined interpretations. In practice, the subject has
to choose from an infinite set of interpretations. Therefore the results in the
experiment might differ from practice. Since the set of possible interpretations
is in practice much larger and the subject is not guided and will most likely
not guess the interpretation (which is possible in the multiple-choice test by a
chance of .25), we expect the values for detection rate and agreement measure
are even worse than in the experiment.

4 Results

The results of this experiment concerning defect detection are shown in table 5.
The first column shows the identifier of the question, the second column shows
the type of the defect (according to Section 2). The following columns give
the results for the student experiment (S) and the professionals experiment
(P). The column N shows the number of subjects participating in the question
(since in both experiments some questions are not answered by all subjects the
number of participants is not the same for all questions). The actual results are
given in the columns d-rate (detection rate) and AgrM (Agreement Measure),
both are explained in the sequel. In the column Type is indicated whether
the question is a control question without defect (c), a symbolic question not
allowing the subject to apply domain knowledge (s) and whether the question is
a repetition of another question with the same defect with the diagram reversed
(r). All questions (except for Q10) are paired with a control question that does
not contain a defect. Note that some control question are used for more than
one question. For a better readability the results of the control questions are
repeated in the table after each question they are compared to.

In the Tables 6, 7 and 9 ten results are listed (the eight defect types plus two
variants with symbolic names). The results of questions with reversed diagrams
are omitted, because of the similarity to the results of questions with the same
defect (see Section 5.3).

15

4.1 Data Purification

The results of this experiment might be biased by subjects with lack of motiva-
tion or with insufficient expertise to answer the questions. Therefore the answers
of such subject should be excluded from the results. We analyzed the subjects’
answer behavior to identify subjects with the mentioned characteristics.

The answers to the questions were designed such that questions concern-
ing a defect have one obviously wrong answer and control questions have three
obviously wrong answers. Hence, by giving a random answer, the probability
to give an obviously wrong answer is .25 for questions concerning a defect and
.75 for control questions. In the first run of the student experiment and in the
professionals’ experiment with 10 defected questions and 8 control questions
subjects who are giving answers randomly would give on average 47% wrong
answers, in the second student run with 7 defect questions and 2 control ques-
tions the average would be 36%. Table 4 shows the number of incorrect answers
per subject for both runs of the student experiment. In both runs the maximum
number of incorrect answers per subject is three, i.e. 16.7% of the 18 questions
in the first run and 33.3% of the nine questions in the second run. Since for the
first run this is below the expected average we conclude none of the completed
questionnaires suffered from lack of motivation or insufficient knowledge. The
same conclusion was drawn for the professionals’ experiment (after subjects with
insufficient experience were removed). In the second student run two subjects
had three wrong ansers (33,3%). Such a high percentage might indicate, that
the subjects were guessing. Therefore we removed the results of those subjects.

4.2 Defect Detection

One of our primary questions was to investigate whether developers detect de-
fects in UML models. The detection rate of a question is the number of subjects
that indicate that they cannot give an implementation due to a defect that is
present divided by the total number of subjects that answered a question.

detection rate =
of option E answers

of subjects

Ideally, if a defect is present, it should be detected and no implementation should
be given. Given the motivations of the subjects’ answers, we regard the case
where multiple answers are given also as defect detection (by giving multiple
answers the subject indicates that the underspecification or ambiguity has been
detected). In the case where no defect is present, all subjects should ideally give
the same implementation.

The data of all defect types from Table 5 is summarized in Figure 3. The
boxplot shows the detection rate for questions containing a defect compared
to control questions. In case of a control question the vast majority of the
subjects gives an implementation and only a small fraction wrongly detects a
(non present) defect. The figure shows that even in case of a model defect, more

16

N d-rate AgrM Type
Quest. Defect S P S P S P s r c
Q1.1 Message without Name 111 48 .69 .60 .47 .44

√

Q1.2 110 48 .08 .16 .97 .89
√ √

Q2 Message without Method 111 40 .39 .38 .84 .90
Q1.2 110 48 .08 .16 .97 .89

√

Q8 Message without Method 111 30 .49 .33 .86 .94
√

Q4 111 34 .05 .13 .95 .91
√ √

R2 Message without Method 109 .36 .89
√

Q4 111 34 .05 .13 .95 .91
√

R5 Message without Method 108 .34 .95
√ √

Q1.2 110 48 .08 .16 .97 .89
√ √

R1.2 Message without Method 110 .49 .69
√

R1.1 110 .06 .92
√ √

Q3 Message in the wrong direction 111 34 .60 .58 .47 .95
√

Q1.2 110 48 .08 .16 .97 .89
√ √

Q6.1 Object has no Class in CD 111 31 .18 .11 .83 .93
Q6.2 111 31 .08 .18 .77 .70

√

R4.1 Object has no Class in CD 108 .21 .86
√

R4.2 108 .14 .77
√ √

Q7.1 Use Case without CD 109 30 .50 .52 .83 .44
Q7.2 Use Case without CD 110 30 .05 .22 .95 .92

√

Q5.2 Class not instantiated in SD 111 34 .47 .68 .49 .64
Q5.1 111 34 .05 .13 .94 .95

√

Q9.2 Class not instantiated in SD 109 30 .95 .96 .54 .14
√

Q9.1 110 30 .04 .07 .99 1.0
√ √

Q10 Multiple Class defs. 107 27 .10 .33 .92 .68
R3 Method not called in SD 109 .14 .67

√

Q1.2 110 48 .08 .16 .97 .89
√ √

Table 5: Complete Detection Rate and AgrM Results

17

Defect S P Quest.
Multiple Class Defs .10 .33 Q10
Method not in SD (s.) .14 n/a R3
Object has no Class in SD .18 .11 Q6.1
Msg. without Method .39 .38 Q2
Class not in SD .47 .48 Q5.2
Msg. without Method (s.) .49 .33 Q8
UC without SD .50 .52 Q7.1
Msg. in the wrong Dir. (s.) .60 .48 Q3
Message without Name (s.) .69 .60 Q1.1
Class not in SD (s.) .95 .96 Q9.2

Table 6: Defects sorted by detection rate

subjects indicate to give a implementation than detect the error. Defect types
marked with an ‘s.’ are based on model fragments with symbolic names.

Table 6 shows the defect types ordered by detection rate (of the student
experiment), defect types at the top of the table remain undetected in most
cases.

4.3 Variation of Interpretations

The effect of an undetected defect is not necessariliy negative, in case every-
body has the same interpretation of the model there is no problem. But since
defects are in most cases mismatches between diagrams, it is possible that con-
flicting information leads to different interpretations. To measure the degree
of spread over the four possible options of the answers we have develeped a so
called agreement measure (AgrM). The agreement measure is 0 if all options
receive the same number of answers (multiple interpretations) and 1 if only one
option receives all answers (one interpretation). AgrM is intuitively explained
in Figure 5 and is explained in more detail in the Appendix.

The data from Table 5 is summarized in Figure 4. In the boxplot the agree-
ment measure of questions containing a defect compared to control questions
is shown. The control questions have a high AgrM value, which indicates that
most subjects have the same interpretation of the model. The AgrM value of de-
fected models are widely spread between .14 and 1.00. The results show that in
general defected models cause a larger variety of misinterpretations and, hence,
contain a higher risk for misinterpretation and miscommunication.

Table 7 shows the defect types ordered by AgrM (of the student experiment),
defect types with the largest spread over different interpretations are at the top
of the table.

18

Figure 3: Defect detection boxplot

4.4 Severity

The overall severity of a defect type depends on the likelihood to which a defect
is detected and the degree of misunderstanding that it possibly causes. Table 8
shows four risk categories:

1. defect types with low detection rate and AgrM cause the highest risk,
because they are unlikely to be detected and they cause a large amount
of misinterpretation,

2. defect types with low detection rate and high AgrM cause medium risk,
because they are unlikely to be detected, but do not cause a lot of misin-
terpretations,

3. defect types with high detection rate and low AgrM cause medium risk,
because they are likely to be detected, but if they are not detected a large
amount of misinterpretation is caused,

4. defect types with high detection rate and high AgrM cause hardly any
risk, because they are likely to be detected and if they remain undetected,
there is agreement upon the interpretation.

The cases where only one measure has a high value cause less risk, since either
the defect is likely to be detected or the defect does not cause misunderstandings.

19

Defect S P Quest.
Class not in SD (s.) .34 .14 Q9.2
Msg. without Name (s.) .47 .44 Q1.1
Msg. in the wrong Dir. (s.) .47 .95 Q3
Class not in SD .49 .64 Q5.2
Method not in SD (s.) .67 n/a R3
Object has no Class in SD .83 .93 Q6.1
UC without SD .83 .44 Q7.1
Msg. without Method .84 .90 Q2
Msg. without Method (s.) .86 .94 Q8
Multiple Class Defs .92 .68 Q10

Table 7: Defects sorted by AgrM

d-rate low d-rate high
AgrM low high risk (1) medium risk (3)
AgrM high medium risk (2) no risk (4)

Table 8: Severity - Risk Matrix

We define the overall severity of a defect as the product of the detection
rate and AgrM. In table 9 the defects are ranked according to their severity
value (of the student experiment). A scatterplot of the severity in the student
experiment is in Figure 6 and of the professionals’ experiment is in Figure 7.

5 Discussion

5.1 Domain Knowledge

When reading a text that contains errors it is often possible to understand the
intended meaning of the text. Understanding the right meaning is sometimes
even possible if the errors introduce ambiguity or change the meaning. This is
based on the fact, that the reader knows the language and he is supported by
the fact, that he is familiar with the context, and, hence, can infer the correct
meaning from the context.

In this study we investigate the effects of defects in UML models. Hence
we are also interested whether context knowledge enables the reader to infer
the right interpretation from the defected model. To be able to analyze the use
of context (or domain) knowledge, we designed pairs of models for the defects
Message name does not correspond to method name (EcM) and Class from SD
not in CD (CnSD) such that one model was taken from a familiar domain (ATM
machine and train crossing) and the other model is essentially equal, but the
elements have symbolic names without a particular meaning (e.g. class A,

20

Figure 4: Agreement boxplot

method3).
For the defect EcM the results of students and professionals are almost the

same in the cases with and without domain knowledge (see Table 5). For the
defect CnSD there is a large difference between the model with and without
context for the detection rate as well as for AgrM in both groups of subjects
(Figure 8). When the reader cannot use domain knowledge to compensate the
defect CnSD the detection rate is higher, i.e. 95% of the students and 96% of
the professionals detect the defect. The subjects that compensate the defect
using their domain knowledge do have different interpretations of the model,
resulting in low scores for AgrM.

The question for this defect (using domain knowledge) was to describe the
behavior of the classes that control the traffic light events based on events from
the gate sensors and the rail sensors. Because the order of events at traincross-
ings might be slightly different in different countries, we analyzed the results to
detect whether subjects from the same country (i.e. having common domain
knowledge) would have the same interpretation, but even this was not the case.

5.2 Leading Diagram and other Observations

The questions about defect types that represent an inconsistency or an incom-
pleteness between a sequence diagram and a class diagram were designed in such

21

Figure 5: Intuition of AgrM measure

a way, that the answer options included at least one option that compensated
the defect by regarding the sequence diagram as correct and at least one option
that compensated the defect by regarding the class diagram as correct. Inter-
estingly for all defect types that allow either way of interpretation, the option
regarding the sequence diagram as correct (i.e. leading) received the largest
amount of answers. These defect types are: ED, MnSD, CnCD and EcM.

The defect types Class not in SD (CnSD) and Message without Name (EnN)
also address sequence diagrams and class diagram, but in these cases there is in-
formation missing in the sequence diagrams (instead of a mismatch). Therefore
they cannot be compensated by using the sequence diagram. CnSD is discussed
in 5.1. The majority of subjects compensates a defect of type EnN using the
most straightforward interpretation of the class diagram (not taking into ac-
count inheritance). But the degree of misinterpretation induced by this defect
type is rather high (i.e. low AgrM values: .47 resp. .44).

The defect type Multiple Class Definitions under the same Name involves
only class diagrams. Most subjects compensate an instance of this defect by
taking the union of all methods and classes of both definitions of the class.

The defect type UC without SD has a very large difference in AgrM between
students and professionals (.83 vs. .44). We could not find a reason for this
large difference.

22

Figure 6: Scatterplot of Severity (Students)

5.3 Order of Diagrams

In the first run of the student experiment all questions addressing a model con-
sisting of a sequence diagram and a class diagram were presented to the subjects
such that the sequence diagram was the first (i.e. leftmost) diagram. To make
sure that this order of presentation was not the cause of the leading-diagram-
effect, we performed a second run with a subset of the questions. In the second
run the order of presentation was changed, such that the class diagram was the
leftmost diagram. The results of the second run confirmed the observation, that
the sequence diagram was regarded as the leading diagram by the majority of
the subjects. The Pearson correlation between the results of the first and sec-
ond run are .913 for the detection rate (p-value .011) and .638 for AgrM (not
significant). The Pearson correlation between the results of the second run and
the professionals experiment are .824 (.044) for the detection rate and for .899
for AgrM (.015).

5.4 Generalizability

The presented results are based on a large group of students (111 subjects) and
a smaller group of professionals (between 27 and 48 subjects, depending on the
question). The larger amount of subjects in the student group results in a higher

23

Figure 7: Scatterplot of Severity (Professionals)

reliability of the results obtained from this group. The drawback of experiments
with students is that the results are possibly not generalizable to professionals
because of the different experience level. Students are less experienced than
professionals and in an experiment their pressure and motivation differs from
those of professionals in their daily work.

To investigate whether the results obtained from the student group can be
generalized to professionals we compared the results of both groups. We use
Pearson’s correlation to investigate to which degree the results of the profes-
sionals are related. The correlations are shown in table 10. There are strong
correlations between detection rate and AgrM of students and practitioners.
The results are statistically significant. Therefore the reliable results of the
student group can be generalized to professionals without lost of validity.

6 Conclusions and Future Work

6.1 Conclusions

In this study we investigated the effects of defects in UML models. The two
major contributions are the investigations into defect detection and misinter-
pretations caused by undetected defects. The results show that some defect
types are detected by almost all subjects (e.g. 96% of the subjects detect Class

24

Defect S P Quest.
Method not in SD (s.) .09 n/a R3
Multiple Class Defs .09 .23 Q10
Object has no Class in SD .15 .10 Q6.1
Class not in SD .23 .44 Q5.2
Msg. in the wrong Dir. (s.) .29 55 Q3
Class not in SD (s.) .32 .14 Q9.2
Msg. without Method .32 34 Q2
Msg. without Name (s.) .33 .26 Q1.1
UC without SD .42 .23 Q7.1
Msg. without Method (s.) .42 .31 Q8

Table 9: Defects sorted by Severity

r p-value
Detection Rate .929 < .001

AgrM .779 < .001

Table 10: Pearson’s Correlation between Student and Professional Results

not in Sequence Diagram) whereas other defect types are hardly detected (e.g.
Multiple Definitions of the same Class is detected by 10% only). Most of the
analyzed defect types are detected by less than 50% of the subjects. For the risk
for misinterpretations results are similarly alarming. Some defect types cause
a distribution over several interpretation amongst readers (e.g. Class not in
Sequence Diagram has an AgrM of 0.14) and other defect types do hardly cause
any misinterpretations (e.g. Message without Method has a AgrM of 0.94). We
have presented a ranking of defect types according to detection rate and risk for
misinterpretations. The results show that most defect types are hardly detected
and that there is no implicit consensus about the interpretation of undetected
defects. Therefore defects are potential risks that can cause misinterpretation
and, hence, miscommunication. The obtained results are generalizable to pro-
fessional UML users. Because of the described problems, that are caused by
defects, it is recommended to identify and remove defects in UML models. De-
fect prevention is an even better approach.

In this study we present a ranking of defects according to detection rate and
risk for causing misinterpretation.

Furthermore we observed that the presence of domain knowledge has effect
on the interpretation of UML models. We found an instance of a defect type
where the presence of domain knowledge strongly decreased the detection rate.
This observation gives rise to the assumption that domain knowledge supports
implicit assumptions that might be wrong and cause misinterpretations. The
validity of this assumption should be investigated in further studies.

We observed the strong tendency that defect types that involve sequence

25

Figure 8: Results for Defect CnSD

diagrams and class diagrams are often compensated by regarding the sequence
diagram as leading. Our results show that the leading diagram does not depend
on the presentation order of the diagrams.

6.2 Future Work

In this study we focus on defects in class diagrams, sequence diagrams and use
case diagrams. In these diagrams there exist more defect types and a large set of
defect types exist when taking other diagram types into account. Therefore, a
larger set of defect types should be analyzed in quasi replications of this study.
In our research we focus on the likeliness of detection and the potential for
misinterpretation. In further studies the impact of misinterpretations should be
investigated. For example questions like “which implementation errors will be
caused by model defects?” and “when will errors caused by model defects be
detected and what is the cost of repairing them?” should be addressed. In this
project the effect of instances of a single defect type in isolation were addressed.
In practice defects do not occur in isolation. Further studies should investigate
which combinations of defects are likely and whether there is interaction between
defects such that the effects might be amplified or even decreased. We invite
other researchers to replicate this experiment using other groups of subjects.

26

6.3 Acknowledgements

We thank the students of the course “Software Architecting” (2004/2005) at the
TU Eindhoven and the anonymous professionals for participating in the exper-
iments. Fruitful discussions with our colleagues Reinder Bril, Johan Muskens
and Teade Punter and their reviews contributed to the improvement of this
paper.

References

[BBD+00] Eerke Boiten, Howard Bowman, John Derrick, Peter Linington, and
Maarten Steen. Viewpoint consistency in ODP. Comput. Networks,
34(3):503–537, 2000.

[BCR94] Victor R. Basili, G. Caldiera, and H. Dieter Rombach. The goal question
metric paradigm. In Encyclopedia of Software Engineering, volume 2, pages
528–523. John Wiley and Sons, Inc., 1994.

[CC79] T. D. Cook and D. T. Campbell. Quasi-Experimentation - Design and
Analysis Issues for Field Settings. Houghton Mifflin Company, 1979.

[Cha04] Michel R. V. Chaudron. Software architecting. http://www.win.tue.nl/~
mchaudro/sa2004/, 2004. TU Eindhoven.

[CJMS03] Jeffrey Carver, Letizia Jaccheri, Sandro Morasca, and Forrest Shull. Issues
in using students in empirical studies in software engineering education.
In Proceedings of The Ninth International Software Metrics Symposium,
pages 239 – 249, September 2003.

[DSA+04] Ignatios Deligiannis, Ioannis Stamels, Lefteris Angelis, Manos Roumeli-
otis, and Martin Shepperd. A controlled experiment investigation of an
object-oriented design heuristic for maintainability. Journal of Systems
and Software, 2(72):129–143, 2004.

[KHR+03] L. Kuzniarz, Z. Huzar, Gianna Reggio, Jean-Louis Sourrouille, and
Miroslav Staron. 2nd Workshop on Consistency Problems in UML-based
Software Development at the UML2003. Blekinge Institute of Technology,
2003.

[KPP+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Pe-
ter W. Jones, Dafic C. Hoaglin, Khaled El Emam, and Janett Rosenberg.
Preliminary guidelines for empirical research in software engineering. IEEE
Transactions of Software Engineering, 28(8):721–734, August 2002.

[Lan03] Christian F. J. Lange. Empirical investigations in software architecture
completeness. Master’s thesis, Technische Universiteit Eindhoven, Den
Dolec 2, 5600MB Eindhoven, The Netherlands, September 2003.

[LC04] Christian F. J. Lange and Michel R. V. Chaudron. An empirical assessment
of completeness in UML designs. In Proceedings of the 8th International
Conference on Empirical Assessment in Software Engineering (EASE‘04),
pages 111–121, 2004.

[MCB05] Johan Muskens, M. R. V. Chaudron, and R. J. Bril. Finding inconsistencies
between views using relation partition algebra. CS Report 05/01, TU
Eindhoven, Dep. of Mathematics and Computing Science, 2005.

27

[Obj03a] Object Management Group. Unified Modeling Language, Adopted Final
Specification, Version 2.0, ptc/03-09-15 edition, December 2003.

[Obj03b] Object Management Group. Unified Modeling Language, Specification,
Version 1.5, formal/03-03-01 edition, March 2003.

[PCM+01] Helen C. Purchase, Linda Colpoys, Matthew McGill, David Carrington,
and Carol Britton. UML class diagram syntax: an empirical study of
comprehension. In Australian symposium on Information visualisation,
volume 9, pages 113–120, September 2001.

[Sha48] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, July 1948.

[Tec] Technische Universiteit Eindhoven, http://www.win.tue.nl/empanada.
The EmpAnADa Project.

A The Agreement Measure

For the analysis of the multiple-choice questions we were interested in the
amount of misinterpretation that was caused by the presence of a model de-
fect. Therefore we needed a measure that captures the degree of agreement in
the distribution of answers to each question. In our experiment each question
has four answer alternatives. Essentially we want to measure a distributions’
magnitude of discrimination.

The measure should have the following properties:

Property 1 It should have its maximum value, when only one alternative re-
ceived answers.

Property 2 It should have its minimum value, when all alternatives received
an equal number of answers.

Property 3 It should have the range [0, 1].

Property 4 It should be larger for distributions where X alternatives received
‘many’ answers than for distributions where X+1 alternatives received ‘many’
answers.

Our agreement measure captures the attribute of a distribution that is the in-
verse of entropy. We also considered to use Shannon’s entropy measure [Sha48].
The main difference between Shannon’s entropy and our agreement measure
is that Shannon’s entropy measure behaves exponential and is not normalized
between 0 and 1. The linear behavior and the range between 0 and 1 of AgrM
is similar to the detection rate. Therefore we have chosen to develop a new
measure as described below.

First we define some abbreviations that we need for the explanation of the
measure (see Table 11).

28

Name Description
K the number of alternatives for a question
ki the number of times alternative i was selected, where 0 ≤ i < K

and (∀i : 0 ≤ i < K − 1 : ki ≥ ki+1)
N the sum of answers over all alternatives: N =

∑
0≤i<K ki

Table 11: Definitions for the Agreement Measure

For simplicity’s sake we begin by developing a function that behaves opposed
to the desired function, i.e. it has its maximum value when all alternatives
receive an equal number of answers (opposed to Property 1).

The function must be such that it is larger, the broader the distribution of
alternatives is. This means the value must increase, if the number of alternatives
that received answers increases and if difference in number of answers between
the alternative with the most answers and the other alternatives decreases. We
accomplish this by multiplying the number of answers per alternative by a factor
and adding the products. The factors are chosen such that alternatives with
fewer answers receive a larger factor. This leads to the following equation for
the weighted sum S, where we choose 0, 1. . . K-1 as factors:

S =
∑

0≤i<K

kii (2)

In the optimal case only one alternative receives answers (k0 > 0) and all
other alternatives receive no answers (for i > 0 is ki = 0)), hence the sum S = 0.

In the worst case, the answers are equally distributed over all alternatives
ki. In this case the sum reaches its maximum Smax which can be calculated as
follows:

Smax =
N

K

∑
0≤i<K

i =
N

K

K(K − 1)
2

=
N(K − 1)

2
(3)

We normalize the range of our measure such that it satisfies Property 3 by
dividing S through Smax. This yields:

F =
S

Smax
(4)

Now we have F which has Property 4 and Properties 1 and 2 opposed.
We simply have to subtract F from 1 to obtain our measure which also has
Properties 1 and 2.

Hence, our agreement measure (called AgrM) for K > 1 alternatives is:

AgrM(k0, ..., kK−1) = 1− 2

∑
0≤i<K kii

N(K − 1)
(5)

29

Question Defect Type A B C D detected
Q1.1 Message without Name 2 38 31 63 77
Q1.2 Control 2 100 1 0 9
Q2 Message without Method 71 6 0 9 43
Q3 Message in the wrong Direction 34 7 8 8 67
Q4 Control 2 106 2 1 6
Q5.1 Control 1 103 3 2 5
Q5.2 Class not instantiated in SD 18 53 4 39 52
Q6.1 Class not in CD 3 96 1 23 20
Q6.2 Control 0 78 42 0 9
Q7.1 UC not in SD 1 1 43 9 55
Q7.2 Control 0 100 1 6 5
Q8 Message without Method (s.) 58 2 7 1 54
Q9.1 Control 1 105 0 0 4
Q9.2 Class not instantiated in SD (s.) 30 33 1 31 104
Q10 Multiple class defs. 4 6 100 0 11

Table 12: Raw Results of the Student Experiment (First Run)

B Raw Result Data

The raw results of the student experiment can be found in Tables 12 (first run)
and Table 14 (second run). Table 13 shows the raw results of the professionals’
experiment.

30

Question Defect Type A B C D detected
Q1.1 Message without Name 2 7 7 16 27
Q1.2 Control 1 32 1 1 7
Q2 Message without Method 25 1 0 2 14
Q3 Message in the wrong Direction 13 9 1 0 18
Q4 Control 2 28 1 0 4
Q5.1 Control 0 25 2 0 4
Q5.2 Class not instantiated in SD 1 9 1 4 21
Q6.1 Class not in CD 1 26 0 1 3
Q6.2 Control 0 17 4 0 5
Q7.1 UC not in SD 0 5 5 3 14
Q7.2 Control 0 23 1 1 6
Q8 Message without Method (s.) 21 0 2 0 9
Q9.1 Control 0 25 0 0 2
Q9.2 Class not instantiated in SD (s.) 2 2 1 2 26
Q10 Multiple class defs. 2 7 14 0 6

Table 13: Raw Results of the Professionals’ Experiment

Question Defect Type A B C D detected
R1.1 Control 102 4 3 1 7
R1.2 Message without Method (s.) 22 2 22 61 54
R2 Message without Method 71 2 1 6 36
R3 Method not instantiated in SD 41 68 6 3 15
R4.1 Class not in CD 5 93 0 14 23
R4.2 Control 0 76 39 0 15
R5 Message without Method (s.) 1 0 5 81 33

Table 14: Raw Results of the Student Experiment (Second Run)

31

	Contents
	1. Introduction
	2. Consistency defects
	3. Experiment design
	4. Results
	5. Discussion
	6. Conclusions and future work
	References
	A. The agreement measure
	B. Raw result data

