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j.t.m. van bon — a.m. cohen

PROSPECTIVE CLASSIFICATION OF
DISTANCE-TRANSITIVE GRAPHS

The present state of the art in the classification of distance-$ransitive graphs
is surveyed. A detailed treatment is given of the graphs on which a group
with simple socle PSL{n,q)(n > 8) acts distance-transitively.

1 !ntroduétion

In this section we outline the programme of classifying all distance-transitive
graphs. We mention some classification results, mainly concerning the case
where the graph has an automorphism group with nonabelian simple socle.
Section 2 provides some necessary conditions for a permutation group to
act as a distance-transitive group of automorphisms on a graph and surveys
recent general theory. Finally, in Section 3 a detailed treatment is given
of a specific case where the simple socle is isomorphic to PSL{n,q) with
n > 8. We understand that this result (v1z Theorem (3.2)) has also been
established by INGLIS [14].

Drrinrrion (1.1) ~ Let G be a group acting on a graph I' = (VT',ET)
(ie., we are given a morphism G — autT). We say that G acts distance-
transitively on I' if its induced action on each of the sets

{{v, 6}, 6 € VT,d(y,6) =1}

is transitive. Here, d(vy, 6} denotes the usual distance in I' between its
vertices v and 6, and ¢ runs through {0,-.-,diamT}. A graph T is said to
be distance-transitive if antI' acts distance-transitively on i.

Suppose G acts distance-transitively on the graph I'. Then @ is transitive
on VI' and, for each ¢, (1 £ 7 < diamT =:d), the stabilizer G, of y € VT
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acts transitively on the set T';(7) of all vertices at distance ¢ to . The most
famous set of invariants of a distance-transitive graph is its intersection
array

{bO;bls"'>bd~1;cl:' ' '7cd}

where, for v € VT and § € Iy(v), b = [T1(6) N Diga(7)] and ¢; =
D1 (6)NTi~1(7)]- (In fact, co = 1, so there are only 2d— 1 relevant numbers
involved.)

The notion of distance-regularity for a graph comes down to the existence
of an intersection array for it. We shall not comment on the many different
ways of looking at distance-regular graphs; we use the standard terminol-
ogy and facts concerning this concept, as given in BANNAI & ITO (3], and
BROUWER, COHEN & NEUMAIER (8].

In reconstructing I' from G, two data are crucial: for some v € VT,
the subgroup H:= G4 of G of all elements fixing v, and an element g of
G such that {gv,~} € ET. For then, as a G-set, VT can be identified
with G/H, and, via this identification, we have {g1 H,g2H} € ET if and
only if g;7*g> € HgH. In particular, for every distance-transitive graph T
there is a group G, a subgroup H of G and an element g € G with g ¢ H
and g~ € HgH such that T 2 T(G, H,g), where T'(G, H, g) stands for the
graph A with VA = G/H and EA = {{g: H,919H}|g: € G}.

Suppose we are given G, H, g such that G acts distance-transitively on I' =
T(G, H,g). Usually, it is not easy to find b;,¢; from G and H, but the
numbers k;:= |T;{7)] can be found as H-orbit sizes: since H is transitive
on [i(y), and there is t € G with ty € Ty(7), we have k; = |H/Hy,| =
|H/(H ntHt™')|, whence k; = |HtH/H|. There are a few problems left:

supposing we have found the set of numbers [HtH/H|, how should it be
ordered to give the k;7 (Lemma (2.7) below gives an indication.) Supposing
the ordering of the k; has been found. Although the b; and ¢; are related via
k:b; = kiy1cit1 the intersection array cannot yet be fully completed. Below

we shall see why the question of determining T from G, H is of relevance.

ExAMPLE (1.2) — (i). Set VT = (‘;(), where X = {1,...,n} for some n and

ET = {{z,y} |zNy| = d—1}. ThenT'= (VT,ET) is the so-called Johnsor graph
J(n,d). It has diameter d if 2d < n and it is isomorphic to J(n,n — d). The
symmetric group Sym, on n letters acts distance-transitively on J{n,d).

. |4 . .
(i), SetVI=| 4 |; the set of all d-dimensional linear subspaces of a vector

space V of dimension n over ¥y, and ET = {{z,y}|dimz Ny = d — 1}. Then
T = (VT, ET') is the so-called Grassmann graph G(n,d,q). Its diameter is d if
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2d < n, and it is isomorphic to G(n,n —d,q). The projective special linear group
PSL{n,q) acts distance-transitively on G(n,d,q).

Imprimitivity of the action of G on VI can be described completely in terms
of the graph. For any j, denote by I'; the graph with vertex set VI' whose edges
are the unordered pairs of vertices at distance j in I'. Thus I'; is disconnected if
and only if ' is bipartite. We say that I' is antipodal if T'y, where d = diam T, is
disconnected. Clearly, G is imprimitive on VT if " is bipartite or antipodal. The
following converse of this observation is due to SMITH [27].

THEOREM (1.3) — An imprimitive distance-transitive graph is bipartite, an-
tipodal, or of valency 2. -

In fact (cf. [8]) the theorem also holds if distance-transitivity is replaced by
the weaker {combinatorial) condition of distance-regularity.

The theorem turns the classification of distance-transitive graphs into
a two-stage problem. The first stage is to find all graphs whose auto-
morphism groups act primitively on the vertex sets (i.e., the primitive
distance-transitive graphs). The second stage is to find, for every primi-
tive distance-transitive graph I, all related imprimitive distance-transitive
graphs I' (more precisely, assuming the valency is at least 3, all bipartite
and all antipodal distance-transitive graphs I' for which a natural quotient
exists that is isomorphic to I'). The number of such imprimitive distance-
transitive graphs can be bounded in terms of |G| (provided the valency of
I' is at least 3). Two techniques of finding imprimitive distance-transitive
graphs related to a given primitive distance-transitive graph have proved to
be of use: for finding bipartite graphs, a study of maximal cliques {cf. HEM-
METER [12]), and for finding antipodal, a study of geodesics of the underlying
primitive graph (cf. BROUWER & VAN Bow [6]). By the two papers just
cited, almost all imprimitive distance-transitive graphs related to a large
class of primitive ones are determined.

The following result by PRAEGER, SAXL & YOKOYAMA [25] sheds light
on the structure of aut I' in the primitive case. The proof of this theorem
depends on the classification of finite simple groups. Below, a group G
is called almost simple if there is a nonabelian simple group X such that
X £ G < aut X. (Then X = soc @, the socle of G, i.e., the product of all
minimal normal subgroups of G.)

TueoreM (1.4) — Let T be a primitive distance-regular graph with a distan-
ce-transitive group G of automorphisms of T'. Then one of
(i) T is a Hamming graph or, in case diam T = 2, its complement, and
G is a wreath product;
(ii) G is almost simple;
(iii) G has an elementary abelian normal subgroup which is regular on T'.
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Tug sTATE OF THE ART (L.5) — In case (i) of Theorem (1.4), the graph is
completely determined (although the group is not).

In case (ii), the classification of finite simple groups may be invoked
<o as to obtain an exhaustive list of possibilities for soc G. The following
cases have already been treated: soc G = Alty,, the alternating group on
n letters (n > 5), by Saxt [26] (for n > 18), IvaNoV [18] (who also treats
the imprimitive case), and LIEBECK, PRAEGER & SAXL [23]. For socG =
PSL(n,q),n > 8, see Section 3. The case n < 7 will be dealt with in a
forth-coming paper. We understand that work on case (1) for the classical
groups of dimension at least 13 has been done in INGLIS [14]. At any rate,
the distance-transitive groups of Lie type with a parabolic vertex stabilizer
are all determined (cf. [8]). This leaves the exceptional groups of Lie type,
where a clagsification is imminent (e.g., Eg(g) has no distance-transitive
permutation representation), and the sporadic groups., Some interesting
examples of primitive distance-transitive graphs come from the sporadic
groups Miz, Mas, J1, J2, and Suz. On the other hand, the Held group
does not occur as soc G in case (ii) of the theorem (cf. VAN BON, COBEN
& CuypERs {7} '

Case (iii) is somewhat harder. Here, the first step is to use ASCHBACHER
[2] to reduce to the case of an almost simple vertex stabilizer and the second
to reduce the size of the regular normal subgroup, so that the study of an
almost simple group on a relatively small module remains as the third step.

We end this section by mentioning two kinds of results that do not fit
the partitioning induced by Theorem (1.4): ¥diamT = 1, then G is doubly
transitive on. VT, and the pair G, T is known (see, e.g., LIEBECK [22] for
further references). If diam I' = 2, then G and I are determined by KANTOR
& LIEBLER [20], LieBECK [21,22], and LIEBECK & SAXL [24]. It seems that
the methods employed can be extended to diamI' < 4 without too much
difficulty. Finally, the case of small valency has been given some attention
during the last few years, cf. A.A. IvaNov & A.V. IvANOV [19]. As a
consequence, every distance-transitive graph (not necessarily primitive) of
valency at most 13 is known. See [8] for details and further references.

2 General theory

It may be transparent from the Praeger-Saxl-Yokoyama Theorem that the
main problem in the classification of all distance-transitive graphs is: given a
group G find all possible graphs I' on which G acts primitively and distance-
transitively. Thus, criteria are needed to determine the structure of such
a graph T from knowledge of G. The lemma below is an example. It
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states that the stabilizer in G of a vertex in T is fairly large. The proof
(cf. [8]) uses the fact that every orbit is self-paired and that hence every
irreducible constituent of the permutation character of G on VT occurs with
multiplicity 1 and is real.

Norarion — We shall, for any graph T, unless ambiguity arises, respectively
denote by v, k, and d its number of vertices, its valency and its diameter.

Lemma (2.1) — If G is a distance-transitive group of automorphisms of a
graph I of diameter d on v vertices, then _
(i) v < 3>, x(1), where the sum runs over all irreducible real characters
x of G; ,
(i) v < min(\/(d+1)|G|,1 +t++/5|G|) and d < r— 1, where r (resp.
s) stands for the number of irreducible real (resp. symplectic) char-
acters of G, and t is the number of involutions in G. »

The following, trivial observation is quite useful: if
.
X
is a permutation character of G, then

G
{W,IH)SZGX,
x

where lg. denotes the perinutation character of G on VI' 2 G/H (here

H is the stabilizer in G of a vertex). This observation is usually applied
with 7 a well-known permutation character. For instance, if G is a group

of Lie type with Tits system (B, N,W,R) and 7 = 1";, where B is a Borel
subgroup of G, then

(W’l_g) SZX(]-) =7+1,
X

where x runs over the irreducible characters of W and r denotes the num-
ber of involutions in W. (Since, in any group, the number of irreducible
symplectic character degrees plus the number of elements of order at most
2 equals the number of irreducible real character degrees, cf. IsAAcs [16)
51, the above equality follows from the fact that all irreducible characters
of W are real.) In particular, H has at most 7 + 1 orbits on G/B. INGLI,
LIEBECK & SAXL determined the multiplicity-free permutation representa-
tions of L(n,q),n > 8, (cf. Theorem (3.1) below) by making heavy use of
this observation.

A useful diameter bound is given by TERWILLIGER (cf. [29]).
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THEOREM (2.2) — Let I be a distance-regular graph with intersection array
{bo,by, -y by—y;cy, - +,ca}. IfT contains a quadrangle, then, for all< (i =
1,-+~,diamT}, i

e;—b; 2 ¢y~ by tar +25

in particular, diamT < (k + ¢q) /(a1 + 2).

The criterium below, due to VAN BoN [5], restricts the behavior of normal
subgroups of a vertex stabilizer.

ProposiTION (2.3) — Let I be a graph of diameter d on which the group G
acts distance-transitively as a group of automorphisms. For v € VT, denote
by Gi; the kernel of the action of G on T';{(v). If, for somei > 1, we have
G‘%, # 1, then

i i1 1 i i+1 d
G,cG Cc...cG oG cGc..cq.

Thus, the normal subgroups of G, whose actions vanish come in chains.
The following corollary shows how the proposition can be used to derive
information on T'. We set G,?i for the kernel of the action of Gy on the

union of all T;{v) for 0 < 5 < 1, and, likewise G’qz" for the kernel on the
union of all Tj(v) forz < 7 < d.

COROLLARY (2.4) — Let T', G and «y be as in the above proposition. Assume,
in addition, that G acts primitively on VT.

(i) If G5* # 1 then |GFF| > |GZ47F),

(ii} Lei w be a permutation of {1,...,d} such that K; is the kernel of the
action of G:(i) on Tr)(v), and |K;| 2 |Kiya| (£ =0,...,d), where
Kagy1 = 1. If | K1} > |Ko| = {Ks| # 1, then n(1) = 1.

Another application {by VAN Bon [5]) of this proposition concerns graphs
defined on involutions. We recall that a class of p-transpositions in a group
is a union of conjugacy classes of involutions with the property that the
product of any two has order 1,2, or p.

ProposiTION (2.5)— Let T be a distance-transitive graph with distance-
transitive group G. Suppose that the vertex set VI of I is a conjugacy
class of involutions in G, that G acts on T' by conjugation and that there
are elements in VT which commute in G. Let z,y € T be such that z is
adjacent to y. Then at least one of the following statements holds.
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(i) T is a polygon or an antipodal 2-cover of a complete graph.

(i} G is a 2-group.

(iii) The order of zy is an odd prime, and, if a,b € VI' with ab of order
2, then a and b have maximal distance in I'; moreover |wz| # 4 for
allw,ze VT.

(iv) The elements z and y commute, and if z € 'y (z), then the order of
2z is 4 or a prime. In particular, O2(Cg(z)} #< z > or there is an
odd prime p such that Cg(z) contains a normal subgroup generated
by a class of p-transpositions.

When starting with a group G having simple socle X, the situation where
H = Cg(0), the centralizer in G of ¢ € aut X, can often be reduced to the
case where o € G. The result is again due to VAN BoN [5].

LemMa (2.6) — Let T be a graph on which G acts primitively distance-
transitively, and denote by H the stabilizer in G of a vertex in VI'. Suppose

o is an automorphism of G.
(i} If o centralizes H and diamT > 8, then o € autT.
(i) If o normalizes H and diamT 2> 5, the same conclusion holds.

The following result is one of the few tools that can be frequently employed.
It goes back to TAYLOR & LEVINGSTON |28], except for the final statement,
which follows from work of A.A. Ivavov [17], <f. (8].

LeMMa (2.7) — Let T be a primitive distance-transitive graph with diamI' >
3, and, for v € VT, set ki = [Is(7)].
(i) There aret,j with 1< ¢ <7 < d such that

l<kh<..<k=..=k>...>ka

(i) Ifi < j and i +7 < d, then ki < kj.

(iii) If k; = k; for 1,7 withi < j and i + 5 < d, then kit1 = kj—1.
(iv) If k; = kg1, then ky > k; for all 5.

(v) If kj—y = k for some § with 3 < j < d, then k=2.

(vi) IFk > 2 and kiyy < ki, then d < 34,
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3  Finite linear groups

The following theorem is due to N.F.J. INcLIs, M.W. LEBECK & J. SAXL
[15].

TueorREM (3.1) — Let G, H be a pair consisting of a group G with PSL(n, q)
< @G <€ aut PSL{n,q),n = 8, and 2 maximal subgroup H of G such that
the permutation representation of G on the collection of cosets with respect
to H is multiplicity free. Then one of the following statements holds {here,
V =F? and ¢ is the canonical projection TL(V)— PTL(V):
(i) G < PTL(V) and H is the stabilizer of a proper subspace U of V;
(ii) G contains a graph automorphism and H is the stabilizer of a pair
{U, W} of subspaces of V with dimU =1, and dimW =n—1;
(iii) G contains a graph automorphism, n = 2m, and H is the stabilizer
of an m-dimensional subspace of V;
(iv) G contains a graph automorphism, n = 2m+1, and H is the stabilizer
of a pair {U,W} of subspaces of V, with U C W, dimU = m, and
dimW =m+ 1;
(v) n = 2m and H = Ng(¢K), where K is a subgroup of SL{n,q)
isomorphic to SL{m, ¢*);
(vi) n = 2m and H = Ng(¢K), where K is a subgroup of SL(n,q)
isomorphic to Sp(2m, q);
(vii} g is a square and H = Ng($K), where K is a subgroup of §L(n,q)
isomorphic to S L{n, ¢*/?); )
(viii) q is a square and H contains $ K, where K is a subgroup of SL(n,q)
isomorphic to SU(n, ¢*/?).

We use the above theorem to establish that all graphs on which G as above
acts distance-transitively are known:

TuroREM (3.2) — Let G be a group with PSL(n,q) £ G < aut PSL{(n,q),
n > 8. IfT is a graph on which G acts primitively and distance-transitively,
then I is a Grassmann graph (possibly a clique).

Proor — As discussed in §1, we may put I' = I'(G, H, g) where H is a
subgroup and g is an element of G. Since the permutation representation
of G on H is multiplicity free, we have one of the cases listed in Theorem
(3.1). We shall treat them separately.

Case {i) — Let n > 8. Letting two cosets of H be adjacent if the unique
subspaces of dimensions d = dim U they stabilize meet in a d—1-dimensional
subspace, we find the Grassmann graphs G(n,d,¢). It is well known that

32



PROSPECTIVE CLASSIFICATION OF DISTANCE-TRANSITIVE GRAPHS

this is the only graph structure on VT turning it into a distance-transitive
graph, Hence the theorem holds in this case.

Case (i) — Let n > 4. We have a dichotomy according as U and W are
incident or not. In the former case, the graph is of Lie type (rank 5),
and is well known to be of rank 5 and not to possess a distance-transitive
permutation action (cf. [8]).

Therefore, suppose H is the stabilizer of a pair Up, Wy of subspaces of V
of dimension 1, n — 1, respectively, with Up € Wy. This situation has been
analyzed by DARAFSHEH [9]. A pair U, W can be in one of 5 positions relative
to the pair Uy, Wy:

T'o = {{Us, Wo}};

Ty = {UW}U = Uyor W =Wy} \To;

Tp = {{UW}U C Wyand Up C W} \Tq;

T, ={{UW}}UcCcWyand Uy € WorUs CW and U € W };
T ={{UWHUZ Wyand Uy ZW}.

The sets T'n, I'g, and T, are H-orbits of respective sizes 2(g""! — 1),
g™ 2(¢" 1 —1)/{g—1), and 2¢™"2(¢""! —1). There is a single H-orbit in I’
of size (¢"~1—1)(¢" 2 —1) consisting of all U,W & T's with (U+Up)NW, C
W. The remainder of T's is partitioned into g — 2 H-orbits, each of size
" 2(g" 1 — 1), with (U +Up) NWoN'W = §. (Since H is transitive on
the set of all points U distinct from Uy and not in Wy, we can fix U and
parametrize these orbits by (U~ Up) NWo, ranging over the points on U+ Uy
distinet from U, Ug, and (U + Up) N Wo.)
First, observe that if ['y ({U, Wy }) = I'y, then I'y({Up, Wy }) would contain
all of I's and T, a contradiction. Thus, using that [[4| is the minimal
nontrivial H-orbit size, we must have I'q({Uo,Wo}) = Ta. (Recall that
n > 4.) However, if ¢ > 2, it is readily seen that I'y < I'z({Uo, Wo}),
by checking the various possibilities for I'y ({Up, Wo}) among the H-orbits
described above. This leads to the contradiction 4 < d = 2.
Finally, suppose g = 2. Then [T's| < |I'g] < ||, and so I’y ({Up, Wo}) = Ts,
and, taking Wy on (U~+Up)NW with Wy not on any of U+Up, Wy, W, we find
{U,W} ~ {Uo,Wo} ~ {U, W1}, whence I'x C I'2({U,W})}, a contradiction
as before. .
Case (iii) — gives again rise to the Grassmann graphs, and can be dealt
- with as in (i}.
Case (iv) — Let n > 3. The vertex set VI can be described as follows.
Let A be the doubled Grassmann graph on Fy. (Thus, the vertices of A
are the subspaces of dimension m or m -+ 1 and adjacency is incidence.)} .
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Then H is the stabilizer of an edge in A, so VI is the set of edges in
A. Distance-transitive graphs which are line graphs have been determined,
cf. Bicas [4). A direct check shows that if T is t_:he line graph of'A, it
is distance-transitive if and only if n = 3 (in which case we obtain the
generalized hexagon of order (g, 1) associated with the projective plane of
order g, on which G NPT L(3,q) acts). Let n > 4, and assume that T is not
the line graph of A. Fix 4 = {Uo,Wo} € VT, and put H = G.,. Standard
computations yield that the H-orbit containing {U,W} € VT has size as
indicated in the table below.

CASE orbit invariant

I dimUoﬂW=dimWonU=aand

dimW, nW —dimU, NU € {0,2}
1 dimUs nW —dimWo NV € {1, -1} and
dimUpsnU =a
I dimUpy NW = dimWo NU = a and
dimWenW —dimU,nU =1

CASE orbit size .

I P G e

I ZQ(’"+1-‘*)('"—¢-)[T:][ m’i a}[m; g

TII q(m+=—a)(m—s)[’:][m’i R
CASE restriction

1 1<asm

I 0<as<m-—1

I 0<asm

Thus, the non-trivial H-orbit of minimal length is the one containing
{U,W} € VT with U = Uy, ie., such that {{U,W}, {Us,Wo}} is an edge
in the line graph of A. Consequently, our assumption and Lemma (2.7) {ii)
give that this orbit coincides with T'4(y). By Lemma (2.7) (ii) and (iv), T'()
coincides with the unique nontrivial H-orbit of second smallest size. By the
above table, this implies ¢ > 2 and that I'(y) is the H-orbit containing
(U, W} € VT with dim Uy W —dimWonU = 1 and dimUpN U = m — 1.
A direct check shows that representatives from the smallest orbit occur in
['2(v), whence d = 2, a contradiction.

Case {v) — Let L be the unique subgroup of order g+ 1 in SL(n, g) central-
izing K. The G-set of $~*G-conjugates of I may be identified with VT, and
we may write H = Ng(L). In K, the elements of L have diagonal shape;
a fixed generator ! has diagonal (g,¢,...,¢), where ¢ is a primitive g + 1-st
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root of 1in Fys. Fors=1,...,m, let I; denote the element of K having
diagonal shape, with its first 7 diagonal entries equal to ¢, and the remaining
m — 1 equal to £~ 1. Then, each ; with ¢ 5 0, m generates a subgroup L;
which is G-conjugate but not H-conjugate to L. Since L; = Lpy—z, we may
assume without loss of generality, ¢ < m/2. The H-orbit of L; has size

qz"(m‘i)[?]qn if 1 #m/2 and q2i(m“i)[T]qn/2 otherwise.

We claim that, for ¢ = 1,...,m/2, the kernel C; = Cy (LE) of the action of
H on the H-conjugacy class of L; coincides with Scaly, the ¢-image of the
group of all scalar matrices in ¢~ *(H) N GL(m,¢*). For, C; stabilizes each
subspace of dimension ¢ as they are eigenspaces of certain L} for he H (if
i = m/2, a little extra care is needed to exclude a possible interchange of
the two eigenspaces, this is done by considering a second H-conjugate of L;
having exactly one eigenspace in common with the first), and so must be
in the center of GL(m,¢?). By Proposition (2.3), m < 5, since otherwise
there 'vould be more than 2 H-orbits with the same kernel.

Let n > 8. Then m =4 or 5, and L{{ and L are 2 orbits with the same
kernel. Since Scaly is the biggest normal subgroup in H that can occur
as the kernel of an orbit (note that K is never in a kernel) we must have
Ty (L) = LE, and Ty(L) = L;‘.f for {1,75} = {1,2}.

Ifi=1,then L ~ Ly ~ Lg,s0d =2, a contradiction. Suppose 1 = 2.
Then there are ny,ng € [F such that the two eigenspaces of ny both have
trivial intersection with those of I, and those of na both meet those of Iz in
a 1-dimensional subspace. Thus, < ny >, <ng >€T'1(L) C T'<2(Ls), and,
as < ny >, < ng >Z Cu(Lz), we get < n3 >,< nz >€ T2(L2). On the
other hand, due to the above eigenspace intersections, {< n, >, <l >}, for
s = 1,2, represent two distinct G-orbitals in I'p, contradicting the distance
transitivity assumption on G.

CasE (vi), (vii), and (viii) — These cases are described by means of involu-
tions, 50 {2.5) and (2.6) apply. Let = be an involution such that H = Ca(=).
Then VT is the PGL(n, g)-conjugacy class of z. We claim that, in all three
cases, an involution y € VT can be found with zy of order 4. Write o for
the Frobenius map & — & where r = ¢*/2, and 7 for transpose inverse.

If K 2 Sp(2m,q)(m > 3), set
0 I R 0
a_[_I 0] and b—[o 1]

and let z = ar, and y = bzb~ !, where R maps to an element of order 4 in
PSL(m,q).
If K= SL(n,r)(n>3), take z =g and y = aca™ !, where a is given by the
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following matrix in which o € F,\ F,

1 a O
01 af,
0 0 1
respectively,
1—a(l—(e"—a)Y) (a"—a)"t-1 0
1o 1 0
0 0 1

(extended by the identity matrix of dimension n—3 to a matrix of dimension
n) if g is even, respectively, ¢ is odd.

If K = SU(n,r)(n > 3), take z =07, and y = aza~!, where a is given by
the matrix

1 0 0
" 1 0
« 0 1

(extended by the identity matrix of dimension n—3 to a matrix of dimension
n), where aa” = —1. : '
Proposition {2.5) then yields that T'y(x) is contained in Cg (z) and Ca(z) N
2% is a class of p-transpositions for some p. Now, let n > 5. Then, by As-
CHBACHER [1] and FIscHER [10], case {vii) does not occur, while in case {(vi)
g = 2 and T'(z) is the graph of transvections, ie., T'(#) is the collinearity
graph of the symplectic geometry of Sp(2m,g); in particular, it contains
a quadrangle, so Theorem (2.2) applies, showing that diamT < 4, a con-
tradiction. (The relevant numbers k and a; follow from knowledge of the
intersection array of the distance-transitive graph I'(z), see, for instance,
HusAuT [13]). In case {viii) for n > 5, we get r = 2 and I'(z) is the graph
of isotropic points of the hermitean variety, and again contains a quadran-
gle. Theorem (2.2) now gives diamT < 8, contradicting that the number of
H-orbits equals the number of G-classes in PSL(n,r) (cf. Gow [11]), the
o

final contradiction.
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