

Resource management in in-home digital networks using
Dantzig-Wolfe decomposition
Citation for published version (APA):
Boef, den, E. (2005). Resource management in in-home digital networks using Dantzig-Wolfe decomposition.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR587975

DOI:
10.6100/IR587975

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR587975
https://doi.org/10.6100/IR587975
https://research.tue.nl/en/publications/142a248c-d203-4dd6-ba1a-c13f5035b19e

Resource Management in

In-Home Digital Networks

using Dantzig-Wolfe Decomposition

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Boef, Edgar den

Resource management in in-home digital networks using Dantzig-Wolfe de-
composition / by Edgar den Boef. - Eindhoven : Technische Universiteit
Eindhoven, 2005
Proefschrift. - ISBN 90-386-0524-2
NUR 919
Subject headings : resource management / linear programming / digital communi-
cation systems
CR Subject Classification (1998) : G.1.6, C.2.3

Copyright  2005 by Edgar den Boef.
All rights are reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording or otherwise, without prior permission from the
copyright owner.

Cover design by Jan-Willem Luiten

Resource Management in

In-Home Digital Networks

using Dantzig-Wolfe Decomposition

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

donderdag 28 april 2005 om 16.00 uur

door

Edgar den Boef

geboren te Tilburg

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. E.H.L. Aarts
en
prof.dr.ir. D. den Hertog

Copromotor:
dr.ir. W.F.J. Verhaegh

Preface

Five years ago, when I was finishing my Master’s Thesis, I was wondering what
the next step in my career would be. Until that time I was hesitant about pursuing
a Ph.D., but a discussion with Dick den Hertog, professor at Tilburg University,
changed my mind. The search for an interesting topic to spend the next four years
on, led me to Emile Aarts, who gave me the opportunity to perform the research
for this thesis at Philips Research Laboratories. Although these years as a Ph.D.
student have not always been easy, I have never regretted the choice I made. The
final result, that you are now holding, has been made possible thanks to the support
of many people.

First of all, I would like to thank Wim Verhaegh and Jan Korst, my daily su-
pervisors at Philips Research. The pleasant discussions I had with them, gave
me enough ideas to continue my research. Furthermore, their comments on my
manuscripts and this thesis really helped me with improving them. Next, I would
like to thank Emile Aarts for giving me this opportunity and for his helpful ad-
vice on both thesis and non-thesis related issues during the past years. I would
like to thank Dick den Hertog for convincing me to work towards a Ph.D., and for
our fruitful co-operation on line-searching for convex functions, that resulted in a
joint paper. I also owe thanks to Clemens Wüst for his help on deriving the video
traces that I required for the experiments in this thesis, and for his help on several
implementation issues that I encountered.

A pleasant working environment is an important ingredient for a good thesis.
This was provided to me at both the (Eindhoven) Embedded Systems Institute at
the Technische Universiteit Eindhoven and the Media Interaction group of Philips
Research Laboratories. For this, I would like to thank all my colleagues from
both places and especially Ingrid for her interest and support on our Tuesdays at
the university, and Marc, Stieneke, Johan, Evelien, Zharko, Gijs, and all other
roommates I had during these years at Philips for their interest and the pleasant
distractions away from work. Furthermore, I would like to thank everyone from the
‘Mafia-gang’ at the MAPSP-workshops for the enjoyable evenings I had playing
this wonderful game after a day full of presentations.

Finally, I would like to thank my family and friends for their continuous interest
and support. I owe special thanks to Frank and Arno for their friendship over the

v

vi Preface

years and for assisting me during the defense of my thesis. But above all, I thank
my parents for their support and for providing me with a warm home to return to
after a day’s work.

Eindhoven, February 2005 Edgar den Boef

Contents

1 Introduction 1
1.1 In-home digital network . 1
1.2 Video streams . 2
1.3 Informal problem statement . 4
1.4 Solution approach . 5
1.5 Related work . 6
1.6 Thesis overview . 9

2 Fully-specified streams 11
2.1 Problem . 12

2.1.1 Model assumptions . 12
2.1.2 Notation . 13
2.1.3 Multiple Streams Smoothing Problem 14
2.1.4 LP model . 16
2.1.5 Dantzig-Wolfe decomposition 16

2.2 Single-stream methods . 20
2.2.1 Bandwidth minimization 21
2.2.2 Buffer minimization . 23
2.2.3 Two-buffer minimization 25
2.2.4 Trade-off with one buffer 27
2.2.5 Trade-off with two buffers 40

2.3 Results . 49
2.3.1 Experiment setting . 49
2.3.2 Experimental results . 51

3 Leaky-bucket-controlled streams 57
3.1 Leaky-bucket controllers . 57
3.2 Problem . 59

3.2.1 Model assumptions and notation 60
3.2.2 Multiple Leaky-Bucket Streams Smoothing Problem . . . 61
3.2.3 Problem reduction . 62

3.3 Single-stream methods . 65

vii

viii Contents

3.3.1 Necessary and sufficient constraints 66
3.3.2 Single resource minimization 71
3.3.3 Two-buffer minimization 72
3.3.4 Bandwidth-buffer trade-off 73

3.4 Results . 76
3.4.1 Experiment setting . 77
3.4.2 Experimental results . 80

4 On-line problem 85
4.1 LP model . 86

4.1.1 Notation . 86
4.1.2 On-line problem and solution approach 86
4.1.3 LP objectives . 88

4.2 Single-stream methods revisited 90
4.2.1 Fully-specified stream sub-problem 91
4.2.2 Leaky-bucket-controlled stream sub-problem 92
4.2.3 Transmission strategy 109

4.3 Results . 114
4.3.1 Experiment setting . 114
4.3.2 Experimental results . 116

5 Conclusion 125

Bibliography 129

Symbol Index 133

Author Index 136

Samenvatting 138

Curriculum Vitae 141

1
Introduction

1.1 In-home digital network
About twenty years ago digital devices such as the personal computer (PC) and the
compact disk (CD) player started to make their appearance in the home. Nowa-
days, most people have several PCs and CD players in their homes together with
new digital devices such as a DVD player and in the near future a high-definition
television (HDTV) set. Some of these devices have similar functionality, e.g., a
DVD can be played with a stand-alone DVD player, but also with a DVD player
built in a PC. If all digital devices in the home are interconnected by a so-called
in-home digital network (IHDN), functionality can be shared and new and exciting
features and applications will become possible. For example, you could watch a
video program on any (TV) screen in the home without the need to know the exact
place where the program is stored, or you could surf the Internet in any desired
room, or you could listen to your favorite music that moves along with you when
you walk through your home. The communication between the devices could take
place using existing wiring, e.g. power or phone lines, or new wired and wireless
connections could be installed.

The new applications using the IHDN give rise to a number of resource man-
agement problems. Resources such as processors and storage devices may be used
by more than one application, A suitable allocation of these resources needs to
be determined such that the involved applications possess the quality level that

1

2 Introduction

is required or that is the best possible. Furthermore, the communication of each
application using the IHDN needs to be handled efficiently. When several peo-
ple at the same time watch a video program or surf the Internet, then multiple
data streams have to be transmitted simultaneously over the network, and con-
sequently the bandwidth on one or more connections has to be shared. To pre-
vent data congestion and resulting data loss, data can be prefetched and buffered,
thereby smoothing the data supply to the communication links during times with
peak traffic in the network.

An issue related to resource management is admission control, i.e., whether an
application can be allowed on the network and use the network’s resources. Once
a stream is admitted to the network, it should be guaranteed that it can use the re-
sources that have been assigned to it. This decision can be made by trying to make
suitable resource reservations for a new application, and allowing the application
on the network only if a reservation of the required resources is possible. The feasi-
bility of such a reservation depends on how much of each resource the application
requires and also on the resource reservations made by previous applications still
using them.

In this thesis we consider a problem concerning the transmission of data for
applications using the network. The solution approach that we describe, deter-
mines resource reservations for the data transmission, which can be used to decide
whether or not the data stream of an application can be allowed on the network, as
mentioned above. We will mainly focus on video streams as these generally have
a high bit rate and thus require substantial resource reservations. Audio and other
data streams mostly can be handled in the margin of the network capacity.

1.2 Video streams
Video streams are usually compressed before they are transmitted over a network,
otherwise they would require too much bandwidth. An example of video com-
pression is MPEG-2 encoding; for an extensive description of MPEG encoding
we refer to Mitchell et al. [1997] and more specifically for MPEG-2 encoding to
Haskell et al. [1997]. Generally, when compressing a video stream there are two
possibilities concerning its bit rate and quality. A video stream can be variable-bit-
rate (VBR) encoded with a constant perceived quality or it can be encoded with a
constant bit rate (CBR), leading to a variable quality. To obtain a constant quality,
more bits are spent on relatively difficult scenes and fewer bits on relatively easy
ones. However, this may lead to significant variability in bit rate; the peak rate can
be up to five or ten times the average rate. A clear advantage of a CBR stream is the
constant requirement it imposes on the bandwidth. However, in order to deliver the
same perceived video quality to the user, CBR encoding of a video stream leads to

1.2 Video streams 3

peak

data
rate

time

(a)

available

peak

data
rate

time

transmission
schedule

(b)

Figure 1.1. (a) Example of a VBR stream. If bandwidth is reserved at peak
rate then a large part of the bandwidth will remain unused. (b) However, suppose
the available rate for transmission is set much lower than the peak rate. Data
that exceeds the available rate (given by the dark gray areas) then needs to be
transmitted early (given by the light gray areas) and buffered until it is required.
This results in a smoother transmission schedule.

a significantly higher bit rate than the average rate of the corresponding VBR en-
coding [Dalgic & Tobagi, 1996]. As a reservation of bandwidth for a stream does
not necessarily have to be at the stream’s peak rate as we will show later, VBR
encoding generally enables more streams to use a communication link than CBR
encoding. Even when using CBR reservations, VBR encoding is more efficient.
Therefore, we only consider VBR streams in this thesis.

MPEG-encoded streams also exhibit small-time-scale variability due to their
encoding in three different types of frames. These are I-frames, P-frames, and
B-frames. Generally I-frames are larger than P-frames and P-frames are larger
than B-frames. The I-, P-, and B-frames are grouped into so-called Groups-Of-
Pictures (GOPs). A GOP starts with an I-frame and contains after this I-frame a
number of P- and B-frames. A sequence of frames in a GOP could be given by
IBBPBBPBBPBB or IBPBBBPBBPBPBB.

Thus, the rate at which a VBR stream transmits data varies heavily over time. If
everything is transmitted just-in-time, a bandwidth reservation based on a stream’s
peak rate should be made. However, this leads to an unnecessarily high reservation
and low utilization of the bandwidth. By buffering data before and after trans-
mission, the bandwidth reservation can be decreased and a smoother transmission
schedule is obtained for a VBR stream; see Figure 1.1. Algorithms that determine
such transmission schedules are often referred to as bandwidth smoothing algo-
rithms.

4 Introduction

disktuner TV TV
node

buffer

bus

Figure 1.2. An example network with four nodes and three streams running.

1.3 Informal problem statement
In this thesis we concentrate on the following problem. Let an IHDN consist of
a single bus with finite capacity, i.e., the bandwidth of the bus, to which several
nodes are connected. These nodes may represent, e.g. a set-top box, a storage
device, a multimedia PC, or a TV set. Between each node and the bus there is a
finite buffer. Furthermore, there is a set of data streams, with each stream running
from one node to another node. Figure 1.2 shows an example network. The streams
have a variable bit rate. Furthermore, we distinguish two types of streams, namely
prerecorded streams and live streams. For a prerecorded stream the exact supply
and demand of data is given, while for a live stream only an upper bound on the
supply and demand is given. More specifically we consider for a live stream the
case in which a stream is controlled by one or more so-called leaky buckets [Turner,
1986] which shape the stream before it enters the network. In the remainder of this
thesis we refer to prerecorded streams as fully-specified streams and to live streams
as leaky-bucket-controlled streams.

The problem that we consider is to determine for each stream its reserved share
of the bus capacity (bandwidth) and its reserved share of the corresponding buffers,
as well as a transmission strategy indicating how the data should be transmitted
over time, such that the total bus and buffer capacities are not exceeded and buffers
neither underflow nor overflow. One of the advantages of allocating fixed shares
to the streams is the possibility to treat the streams almost independently. Further-
more, with fixed shares of the bandwidth for all streams it requires less administra-
tive work to give each stream a guaranteed part of the bandwidth to use than with
continuously changing shares. Finally, bandwidth that is not used by a stream is
not necessarily lost. It can be used by best-effort streams in the network, e.g., data
that is copied from one location in the network to another location. The solution of
the above described resource management problem can be used to decide whether
for a given set of streams all streams can be admitted to the network. The required
calculations can be done by a central control node, having enough computational

1.4 Solution approach 5

power, but also may be performed in a more distributed manner.
We consider both an off-line and an on-line setting of the above problem. In the

off-line setting we assume that all streams are known before their transmission is
to be scheduled. In the on-line setting the starting time of a stream is unknown. For
the off-line setting we assume the reserved shares are fixed for the whole runtime
of a stream. However, for the on-line setting we allow that each time a stream
starts, the shares of the already running streams can be adjusted when determining
bandwidth and buffer shares for the new stream.

1.4 Solution approach
In this thesis we will describe a method to tackle the above described problem for
both the off-line and the on-line setting. As mentioned, we consider two different
types of streams, namely fully-specified streams for which data supply and de-
mand is exactly known in advance, and leaky-bucket-controlled streams. Ideally,
the approach that is used is able to handle both types of streams. For both types
it has to be determined how large the shares of the bandwidth and relevant buffers
should be for a stream. A suitable approach divides the bandwidth and buffer ca-
pacities over the streams in the same way for both types, making it easy to solve
problem instances in which both types occur. The required sizes of the bandwidth
and buffer shares as well as the transmission strategy of a stream can then be deter-
mined independently for each stream. In this way, the total problem is decomposed
into two stages: the allocation of the resources over the different streams and the
determination of a transmission strategy for each stream.

The solution method that we propose and that meets the above requirement, is
based on the Dantzig-Wolfe decomposition for linear programming (LP) models.
It is specifically suitable for LP models in which a large number of constraints only
involve limited sets of variables. It exploits this structure by decomposing the LP
problem into a master problem and a number of sub-problems. In this way the run
time can be decreased considerably. Furthermore, it allows for the use of efficient
algorithms specific for the sub-problems, as we will show in this thesis.

Besides being able to handle both types of streams, the solution approach can
use an existing solution for current streams on the network, when a new stream
requests to be allocated bandwidth and buffer shares. This saves time calculating
solutions for current streams, that simultaneously can more easily maintain their
solutions. Finally, the solution approach is suitable to be used as a diagnostic, i.e.,
when no solution exists for the given set of streams and capacities, it can indicate
for which additional resource requirement a feasible solution does exist. This can
be used to easily identify bottlenecks and to give a cost to the infeasible solution.

6 Introduction

1.5 Related work
The area of in-home digital networks is fairly new with publications in this field
just emerging in recent years. One of the oldest publications on in-home dig-
ital networking is by Chen [1997] who identified emerging needs for a digital
home network, such as home automation, home computers, digital video and audio
equipment, and digital access systems, and proposed a distributed home network
architecture.

More recently, some journals came with special issues dedicated to in-home
networks. IEEE Communications Magazine reserved parts of its April issues in
2002 and 2003 for in-home networking. Topics of discussion in these issues
are among other things the perspective of the end-user on home networking, a
service delivery solution, and service gateway architectures for the home. The
July/August 2003 issue of Telecommunication Systems was devoted to multime-
dia home telecommunication systems. Besides a paper comprising a part of Chap-
ter 2 of this thesis, it contains papers concerning a management scheme to provide
differentiated services, a wireless LAN protocol which aims to provide QoS over
in-home wireless networks, and residential gateway architectures.

Some other publications concerning IHDNs are by Scholten et al. [2002], Gio-
vanelli et al. [2003], and Salazar [2003]. Scholten et al. describe an in-home digital
network architecture that deploys a distributed token mechanism for communica-
tion. The architecture supports both real-time and non-real-time communication
and guaranteed QoS is offered. Giovanelli et al. describe a bandwidth reservation
scheme for UPnP-based in-home digital networks. The main difference between
their and our approach is that they assume that all devices in the IHDN support
the UPnP protocol, while we describe an approach independent of the used proto-
cols. Finally, Salazar presents a mathematical model for an IHDN, which is used
together with queuing analysis to evaluate network performance in terms of mean
response time. Unlike the probabilistic approach that is used in this paper, we only
focus on deterministic methods and results in this thesis.

Publications concerning the transmission of VBR video are more abundant. On
the topic of bandwidth smoothing algorithms for VBR video several publications
have appeared. Most of them present an algorithm that smoothes a single stream
that has to be transmitted from a server to a client with limited buffer size. Salehi
et al. [1998] present a smoothing algorithm that minimizes the peak rate and the
variance of the transmission schedule for a given buffer size. Sanjay & Ragha-
van [1999] show how this schedule can be determined quickly for different buffer
sizes. Feng [1997] presents an algorithm that minimizes the buffer requirements
for a given bandwidth. Feng et al. [1997] and Zhang & Hui [1998] both present an
algorithm that leads to a transmission schedule with the smallest number of band-

1.5 Related work 7

width increases, the smallest peak bandwidth, and the largest minimum bandwidth
requirement. Furthermore, Feng et al. [1997] also give an algorithm to obtain a
schedule without bandwidth increases, assuming there is no buffer size restriction.
Chang et al. [1997], Kang & Yeom [1999], and Zhang & Hui [1997] all present
algorithms to obtain so-called on-off schedules. These schedules alternate between
transmitting at peak rate (on) and not transmitting at all (off). Chang et al. [2002]
also distinguish so-called lazy and aggressive on-off-transmission schemes which
they use to derive ready times and deadlines for the transmission of data packets.
McManus & Ross [1998] present a dynamic programming method to determine a
transmission schedule. They give several possible objectives for which this method
can be used. Jiang & Kleinrock [1998] present an optimal smoothing algorithm as-
suming there is a small number of possible transmission rates for each time unit.
Zhang & Fu [2000] consider the transmission of a VBR stream which is divided
into a number of segments. They show how to determine the required bandwidth
and buffer size for each of the segments. Finally, Feng & Rexford [1999] give an
overview of various smoothing algorithms and compare them using several criteria.

Rexford & Towsley [1999] consider the transmission of VBR video in an in-
ternetworking environment, where a service provider does not control the whole
transmission path of the video. They present efficient algorithms for transmitting
VBR video across a portion of the route, from an incoming node to an outgoing
node. They show how to minimize both the total buffer allocation at these nodes
and the start-up delay. They also describe how to compute a transmission schedule
that minimizes buffer allocation for a sequence of nodes. Kang & Yeom [2000]
consider the transmission of multiple streams to a single client with a buffer. They
show how the network bandwidth utilization can be optimized by first exploit-
ing the statistical multiplexing gain through aggregation of the streams, and then
smoothing the aggregate.

Chang et al. [1998] consider the transmission of a prerecorded VBR stream
for which both the bandwidth and the receiving buffer size need to be minimized.
This problem is considered more extensively in Section 2.2.4 as one of the sub-
problems for a fully-specified stream. To determine the set of solutions that mini-
mize both the bandwidth and the receiving buffer size, they construct a bandwidth-
buffer trade-off curve. Using this algorithm they also show how to make an optimal
trade-off between bandwidth and buffer size if a VBR stream needs to be transmit-
ted over multiple relay-servers [Chang et al., 1999b]. Zhao et al. [1998] show
how to perform an optimal trade-off between the bandwidth and the initial delay
between the start of transmission and the start of video playback.

Besides smoothing video streams by sending data in advance as is done by the
above approaches, it also possible to smooth streams by adjusting their video qual-
ity, using the fact that small quality differences are hardly noticeable to the user.

8 Introduction

Duffield et al. [1998] give an algorithm that crops the frame sizes during encoding
when the available bandwidth is not enough to transmit the ideal size of the frame.
Ng [1999] presents an algorithm that deletes B-frames to obtain a smooth schedule.
Another way to decrease the bandwidth requirements of a VBR stream at the cost
of quality loss involves so-called scalable video encoding. Van der Schaar-Mitrea
[2001] describes a simple video-coding structure that consists of a non-scalable
base-layer and a scalable enhancement layer.

The previous-mentioned works concerning bandwidth smoothing, all consid-
ered VBR streams of which the amount of data to be transmitted is known in ad-
vance. However, in an on-line setting only limited knowledge of the data sup-
ply of a stream is available, which requires a different approach. Rexford et al.
[1997] developed the first models and algorithms for on-line smoothing. These
algorithms are based on time windows of limited size, containing a number of con-
secutive frames. At the beginning of each window an off-line smoothing method
is used to determine the required bandwidth for the stream during that window.
They consider two types of algorithms using these windows, viz. hopping-window
algorithms, which operate on consecutive, non-overlapping windows, and sliding-
window algorithms, which execute the smoothing on overlapping windows. Chang
[2000b] extends on the sliding-window algorithms by describing a scheme that dy-
namically adjusts the sliding distance of the window. He shows that this approach
results in a peak bandwidth of at most that of the sliding-window algorithm with
sliding distance one, while the computation cost is the same as that of the fastest
sliding-window algorithm, namely the algorithm with sliding distance equal to the
window size. Chang et al. [1999a] compare these two sliding-window algorithms
to the new dynamic approach using some experimental results. Finally, Cao et al.
[2003] formulate an on-line smoothing model and propose a benchmark on-line
smoothing algorithm based on this model. They also describe some new on-line
smoothing heuristics, which are evaluated using their benchmark algorithm.

Whereas in most of the above-mentioned literature data transmission to just
one receiver with a buffer is considered, we consider multiple streams. Each stream
may originate at one of several possible senders and needs to be transmitted to one
of several possible receivers, where each sender and receiver has its own buffer.
Furthermore, we show how single-stream smoothing algorithms can be used to de-
termine bandwidth and buffer shares for each stream such that a maximum number
of streams can be serviced.

We conclude this section with some references concerning leaky-bucket-
controlled streams. For leaky-bucket-controlled streams described by the

�
σ � ρ � -

characterization an extensive calculus has been developed, originally by Cruz
[1991a, 1991b], which was later extended by several other authors. For a clear
description and overview of this calculus we refer to the book by Chang [2000a].

1.6 Thesis overview 9

Chapter 2 Chapter 3
Streams Fully-specified Leaky-bucket-controlled
Input Given supply and demand Upper bound on supply

schemes or controllable and demand
supply or demand

Multiple streams 2.1 3.2
Sub-problems 2.2 3.3
Bandwidth min. 2.2.1 3.3.2
Buffer min. 2.2.2 3.3.2
Two-buffer min. 2.2.3 3.3.3
Trade-off 2.2.4 & 2.2.5 3.3.4

Results 2.3 3.4
On-line settings Chapter 4
Input Supply and demand schemes Upper bound unknown

unknown until stream starts until stream starts
Multiple streams 4.1
Sub-problems 4.2.1 4.2.2
Transmission strategy 4.2.3
Results 4.3

Figure 1.3. Structure of the thesis.

The developed calculus can be used to determine resource allocations for streams
that are controlled by

�
σ � ρ � -leaky buckets. However, we could not use it to model

the situation in which data needs to be buffered at the receiving side, if it arrives
before it is demanded.

1.6 Thesis overview
The structure of this thesis is as follows; see also Figure 1.3 for an overview. First,
we formally define the problem for fully-specified streams in Chapter 2. We also
present an LP formulation for the problem and we describe how the Dantzig-Wolfe
decomposition can be applied. This decomposition leads to a sub-problem per
stream in which a weighted sum of the bandwidth and buffer shares needs to be
minimized. Depending on the sign of the cost coefficients, different methods are
applied to solve the sub-problems. We describe for a fully-specified stream how to
minimize the bandwidth share, a single buffer share, and two buffer shares jointly.
Furthermore, we describe a specific method to perform a trade-off between the
bandwidth and one buffer. For a trade-off between the bandwidth and both buffers
we show how to reformulate the problem into finding the minimum of a piecewise-
linear, convex function. We show how this minimum can be found efficiently using
new line-search methods that exploit the convexity and piecewise linearity of the
function. We conclude the chapter with experimental results.

10 Introduction

In Chapter 3 we concentrate on leaky-bucket-controlled streams. First, we
describe a

�
σ � ρ � -leaky-bucket controller. Then, we define the problem for leaky-

bucket-controlled streams and show how it can be reduced to the problem for fully-
specified streams. We continue with describing how to efficiently solve the sub-
problem for a leaky-bucket-controlled stream. For this, we derive new constraints
for the sub-problem and show that they are sufficient. The methods that we describe
to solve the different cases of the sub-problem all use these new constraints. We
also conclude this chapter with experimental results.

In Chapter 4 we introduce the on-line settings of the problems for fully-
specified and leaky-bucket-controlled streams. We describe how to solve the on-
line settings using the Dantzig-Wolfe decomposition approach for the off-line set-
tings. Furthermore, we introduce some objectives that can be used for the LP
model. Next, we show how to adapt the methods for the sub-problems of the off-
line settings to the on-line settings. We also discuss a strategy concerning trans-
mission and buffer usage to obtain better results in an on-line setting. We conclude
again with experimental results.

Finally, we summarize our results and state the conclusions of this thesis in
Chapter 5.

2
Fully-specified streams

In this chapter we focus on the problem with fully-specified streams, i.e., we con-
sider the problem of determining a fixed share of the bandwidth and fixed shares
of the relevant buffers for streams for which exact supply and demand is given in
advance. Besides given supply and demand we also consider the possibility that
either supply or demand is not given but can be chosen freely while only con-
strained by a maximum rate, e.g., when a stream is read from or written to a disk.
When watching a video stream, a user may at one time undertake an action such
as pausing, rewinding or fast forwarding the playback. Of these actions our model
can cover pausing a video stream as it effectively leads to a demand of zero during
a certain time period. However, we leave actions as rewinding and fast forward-
ing for future considerations. The solution methods for the fully-specified-stream
problem that we present in this chapter, can serve as a basis for solution methods
for a model including actions as rewinding and fast-forwarding as well as for other
related problems such as the problem with leaky-bucket-controlled streams and
on-line variants of the problem. Furthermore, the problem can also be considered
in the context of analyzing the effectiveness of algorithms that address an on-line
setting.

The structure of this chapter is as follows. We start with a formal description
of the problem concerning fully-specified streams in Section 2.1. This section
also contains an LP model for the problem and a description of the Dantzig-Wolfe

11

12 Fully-specified streams

decomposition that we apply. In Section 2.2 we describe the solution methods
for the single-stream problems that result from the Dantzig-Wolfe decomposition.
Finally, we present experimental results in Section 2.3.

2.1 Problem
Before we formally define the problem, we first give our assumptions in Sec-
tion 2.1.1. Next, we introduce the notation used in this thesis for the fully-specified-
streams problem in Section 2.1.2. In Section 2.1.3 we define the problem which
concerns fully-specified streams as the Multiple Streams Smoothing Problem and
give the constraints which have to be satisfied. Then we show in Section 2.1.4 how
it can be modelled as a linear program. Finally, in Section 2.1.5 we show how to
apply the Dantzig-Wolfe decomposition to the resulting LP.

2.1.1 Model assumptions
The first assumption is that we split up the time axis into a finite set of identical
time units. A time unit can be chosen long, e.g. a minute, or short, e.g. 1/25s,
depending on the application of the model. We assume that during a time unit, data
of more than one stream can be transmitted over the bus, and that the switching
time between transmissions for different streams is either negligible or beforehand
subtracted from the available bandwidth. Furthermore, we assume that there is no
loss of data during transmission.

We next assume that an application supplies data of a stream at the sending
node. For a fully-specified stream, the supply is mostly given by a supply scheme,
e.g. a video stream that comes from a tuner and is pushed into the network. How-
ever, sometimes the supply is controllable, e.g. a stream that is read from a hard
disk, for which the amount of data submitted into the network can be controlled.
In this case, the data can bypass the buffer, so it is transferred immediately from
the node to the bus. The only constraint is a maximum rate at which the sending
node can supply data to the bus. The demand of data takes place at the receiving
node by an application. Just as supply, demand of a fully-specified stream can be
either given by a demand scheme, or controllable with a maximum demand rate.
We assume that for each fully-specified stream either supply or demand or both are
given.

With respect to buffering, we take worst-case assumptions, i.e., we assume that
data is supplied at the beginning of a time unit, and then buffered at the sending
node before it is transmitted. After transmission somewhere within the time unit, it
is buffered at the receiving node before it is demanded at the end of the time unit;
cf. Figure 2.1. However, other buffering assumptions can be used as well with
the solution method we present in this thesis; they will only lead to marginally

2.1 Problem 13

sending
buffer

receiving
buffer

1 2 3 4 5

1 2 3 4 5

p(1) p(2) p(3) p(4) p(5)

c(1) c(2) c(3) c(4) c(5)

x(1) x(2) x(3) x(4) x(5)

time

time

supply

transmission

demand

Figure 2.1. The impact of data arrival and departure on the buffer fillings. We
assume supply takes place at the beginning of a time unit, demand at the end, and
transmission over the bus somewhere in-between.

different constraints for the transmission schedule of a stream. We only take into
consideration the total amount of data that is stored in a buffer for each stream; we
do not consider how data is exactly stored into memory locations.

2.1.2 Notation
Let ����� 1 � 2 ������� � T � denote the set of time units. The moments in time between
two consecutive time units are referred to as time points. We denote the set of time
points by �	�
��� 0 � 1 � 2 ������� � T � . Then, a time unit t �
� is equivalent to the interval
bounded by the time points t � 1 and t, i.e.,

�
t � 1 � t � . Let B represent the maximum

amount of data that can be transmitted over the bus during a time unit. Furthermore,
let � denote the set of nodes that are connected to the bus. The capacity of the
buffer between node n ��� and the bus is given by Mn. We denote the set of data
streams by � where each stream d ��� transmits data from a sending node sd ���
to a receiving node rd ��� .

The sets � sup � � and � dem � � consist of the fully-specified streams with
given supply and demand schemes, respectively. As assumed, � sup � � dem ��� ,
however in general � sup � � dem �� Ø. For each stream d ��� sup the supply scheme
is for all t ��� given by the amount pd

�
t � of data that is supplied at the start of time

unit t; see also Figure 2.1. For each stream d �
� dem the demand scheme is for all
t ��� given by the amount cd

�
t � of data that is demanded at the end of time unit t.

The maximum supply rate of a stream d ������� sup with controllable supply is given
by Pmax

d ; the maximum demand rate of a stream d ���
��� dem with controllable

14 Fully-specified streams

demand is given by Cmax
d . A possible delay between supply and demand of a fully-

specified stream is implicit in pd
�
t � and cd

�
t � , e.g. if demand equals supply with

delay δ, then cd
�
t � � pd

�
t � δ � .

For each stream d � � the decision variables are given by the reserved bus
bandwidth bd , the reserved buffer sizes msd � d and mrd � d at the sending node and at
the receiving node, respectively, and the transmission schedule xd

�
t � � t ��� .

For the remainder of this thesis we define for each d ��� and for all t ���
Cd

�
t � �

t

∑
k � 1

cd
�
k � �

Pd
�
t � �

t

∑
k � 1

pd
�
k � �

Xd
�
t � �

t

∑
k � 1

xd
�
k � �

as the cumulative demand, supply, and transmission schedules, respectively. For
convenience we define Pd

�
0 � � Cd

�
0 � � Xd

�
0 � � 0.

2.1.3 Multiple Streams Smoothing Problem
We can now define the following problem for a set of fully-specified streams.

Definition 2.1. Multiple Streams Smoothing Problem (MSSP). Given are a set
� of nodes, with for each node n � � a buffer capacity Mn, a set � of time
units, and a bandwidth B. Furthermore, a set � of streams is given with for each
stream d ��� a sending node sd �	� with either a supply scheme pd

�
t � � t � � or

a maximum supply rate Pmax
d , and a receiving node rd ��� with either a demand

scheme cd
�
t � � t ��� or a maximum demand rate Cmax

d .
Determine for all streams d � � values for the bandwidth share bd

�
0 and

buffer shares msd � d � mrd � d
�

0, and a transmission schedule xd
�
t � for all t ��� , such

that the bandwidth B and buffer capacities Mn are not exceeded and buffer shares
neither overflow nor underflow. �

Next, we describe the constraints which the decision variables of MSSP must
satisfy. As MSSP is a feasibility problem, i.e., the question is whether a solution
exists for the given input, we initially give only the constraints that describe the
feasible area.

MSSP concerns allocating fixed shares of the bus and buffer capacities to the
different streams, such that feasible transmission schedules for all the streams ex-
ist. For this, the following constraints have to be met. First of all, the available
bandwidth and buffer capacities may not be exceeded. So, for the bandwidth share

2.1 Problem 15

reservations

∑
d ���

bd
�

B (2.1)

must hold, and for each buffer, i.e.,

∑
d ����� sd � n

mn � d � ∑
d ����� rd � n

mn � d
�

Mn , � n ��� , (2.2)

must hold.
The next constraints concern the amount of data transmitted during each time

unit. The transmission schedule of a stream should obey the reserved bandwidth
and buffer shares, and it should meet the supply and demand schemes. Thus, the
amount of data transmitted for stream d during time unit t may not exceed the
reserved bandwidth share of stream d, i.e.,

xd
�
t � � bd , � d �
� � t ��� . (2.3)

The following constraints regard buffer overflow and underflow; cf. Figure 2.1.
The reserved buffer space at the sending node may not underflow, i.e.,

Pd
�
t � � Xd

�
t � �

0 , � d ��� sup � t ��� . (2.4)

The reserved buffer space at the sending node may not be exceeded, i.e.,

Pd
�
t � � Xd

�
t � 1 � � msd � d , � d �
� sup � t ��� . (2.5)

The reserved buffer space at the receiving node may not underflow, i.e.,

Xd
�
t � � Cd

�
t � �

0 , � d ��� dem � t ��� . (2.6)

The reserved buffer space at the receiving node may not be exceeded, i.e.,

Xd
�
t � � Cd

�
t � 1 � � mrd � d , � d �
� dem � t ��� . (2.7)

If the supply of a fully-specified stream is controllable, then each xd
�
t � may

not exceed the amount of data that can be supplied during a time unit. This can
be accomplished in combination with (2.3) by demanding that the reserved band-
width does not exceed the amount of data that can be supplied during a time unit.
Furthermore, the reserved buffer size at the sending node can be set to 0, i.e.,

bd
�

Pmax
d 	 msd � d � 0 , � d �
�
��� sup . (2.8)

If the demand is controllable, then analogously,

bd
�

Cmax
d 	 mrd � d � 0 , � d �
�
��� dem . (2.9)

This concludes the description of MSSP. In Section 2.1.4 we show how to
model this problem as an LP problem. In Section 2.1.5 we describe a solution
method by applying the Dantzig-Wolfe decomposition to the LP problem.

16 Fully-specified streams

2.1.4 LP model
Although fractional values are not allowed for the decision variables in MSSP,
it can nevertheless be formulated as an LP, and solved using LP methods. Any
fractional values that are obtained for the variables can be rounded off without
really affecting the solution. The reason for this is that everything is expressed in
bytes, giving very large values for the constants and decision variables (in the order
of 10,000 or more), so rounding off a variable has a negligible effect.

We want to know whether there is a feasible solution to (2.1), (2.2), and (2.3)–
(2.9) for all d �	� . We translate this set of constraints into an optimization program
which always has a feasible solution, by adding slack and penalty variables to (2.1)
and (2.2), resulting in revised constraints. This gives for the reserved bandwidth
shares

∑
d ���

bd � s � B � p � (2.10)

with slack variable s
�

0 and penalty variable p
�

0. Furthermore, we have for the
reserved buffer shares

∑
d ��� � sd � n

mn � d � ∑
d � ��� rd � n

mn � d � sn � Mn � pn � � n � � � (2.11)

with slack variables sn
�

0 and penalty variables pn
�

0. The objective becomes to
minimize

p � ∑
n � �

pn �
This objective, together with (2.10), (2.11), and (2.3)–(2.9) for all d ��� forms
an LP that determines whether a feasible solution for MSSP exists. If a solution
is found with an objective value that equals zero, it is also a feasible solution for
MSSP. Otherwise, the values of the penalty variables indicate how much the band-
width and buffer capacities should be increased before the solution is feasible for
MSSP.

2.1.5 Dantzig-Wolfe decomposition
To solve the above LP problem efficiently, we use the fact that (2.3)–(2.9) can be
considered per individual stream. This makes this LP problem suitable to apply
a Dantzig-Wolfe decomposition. We assume that the reader has some familiarity
with LP models and the simplex algorithm. For the linear programming theory we
refer to Papadimitriou & Steiglitz [1982]. For a general description of the Dantzig-
Wolfe decomposition we refer to Dantzig & Wolfe [1960, 1961], and again to
Papadimitriou & Steiglitz [1982]. Ho & Loute [1981] describe a manner for the
implementation of the Dantzig-Wolfe decomposition algorithm.

First, we divide the constraints of the LP problem into the following two sets.

2.1 Problem 17

� The central constraints consisting of (2.10) and (2.11).� The stream constraints, one set per stream d � � , consisting of (2.3)–(2.9)
for all d � � , and the following constraints (2.12), (2.13), and (2.14) to
ensure that each set of stream constraints describes a bounded polyhedron:

bd
�

B � (2.12)

msd � d
�

Msd � (2.13)

mrd � d
�

Mrd � (2.14)

Although Dantzig-Wolfe decomposition can also be applied when the stream
constraints describe a polyhedral cone, we avoid unnecessary complexity
with the use of (2.12)–(2.14).

Next, we define for each stream d a stream solution set
�

d containing so-
lutions

�
bd � msd � d � mrd � d � xd

�
0 � ������� � xd

�
T � 1 � � that meet the corresponding stream

constraints. As all these constraints are linear, we can express each solution in a
stream solution set as a convex combination of the extreme points of the set, i.e.,
if the stream solution set

�
d has kd extreme points yd � 1 ��� � � � yd � kd , then we can write

any solution as
�
bd � msd � d � mrd � d � xd

�
0 � ������� � xd

�
T � 1 � � � λd � 1yd � 1 � � � � � λd � kd yd � kd �

with
kd

∑
q � 1

λd � q � 1 �

λd � q
�

0 �
We denote the elements of an extreme point yd � q by

yd � q �
�
bq

d � mq
sd � d � mq

rd � d � xq
d

�
0 � ������� � xq

d

�
T � 1 ��� �

By replacing the variables in the central constraints using the above expression, we
get the following restricted master LP.

minimize p � ∑n � � pn

subject to ∑d ��� ∑kd
q � 1 λd � qbq

d � s � B � p �
∑d ��� � sd � n � rd � n ∑kd

q � 1 λd � qmq
n � d � sn � Mn � pn � � n ��� �

∑kd
q � 1 λd � q � 1 � � d �
� �

λd � q � p � pn � s � sn
�

0 �
Since the solution sets

�
d may contain many extreme points, and since it is

generally not easy to determine all these points, we do not calculate all extreme
points of each stream solution set. Instead, we use column generation [Gilmore &
Gomory], [1961, 1963] to generate the column in the restricted master LP that

18 Fully-specified streams

s s1 s2 s3 s4 p p1 p2 p3 p4 λ1 � 1 λ2 � 1 λ3 � 1
1 1 1 1 1

B 1 � 1 b1
1 b1

2 b1
3

M1 1 � 1 m1
1 � 1 m1

1 � 2
M2 1 � 1 m1

2 � 1 m1
2 � 3

M3 1 � 1 m1
3 � 2

M4 1 � 1 m1
4 � 3

1 1
1 1
1 1

Figure 2.2. Starting LP tableau of the master LP for the example of Figure 1.2.
On top are the coefficients for each decision variable in the objective function, fol-
lowed by the rows corresponding to the constraints concerning the total bandwidth
reserved, the total buffer size reserved at each node, and the sum of the values of
the λ’s. The bandwidth and buffer shares of a solution yd � q are denoted as bq

d and
mq

n � d, respectively.

corresponds to a specific λd � q when it is needed. Thus, we can start with any
solution for each stream solution set, and then iteratively generate new solutions.
Figure 2.2 shows an example of the starting LP tableau.

More formally, the initial tableau of the master problem contains for each
stream d only one column corresponding to a solution yd � �

d . An initial so-
lution yd does not need to be an extreme point of

�
d ; any feasible solution will

suffice. In other words, only
� � �

solutions yd are considered, corresponding to
� � �

variables λd � 1. After optimizing this restricted master problem, the following step
is to determine whether there is a not-yet-considered variable λd � q with negative
reduced cost, i.e., a λd � q which can improve the solution of the master LP if it is
considered. The reduced cost of a variable can be found in the objective row of
the optimized restricted LP tableau. For a non-basic variable the reduced cost is
given by ĉ � ĉBB̂ � 1a, with ĉB the coefficients of the basic variables in the objec-
tive function, B̂ � 1 the inverse of the matrix consisting of the columns belonging to
the current basic variables, a the column belonging to the non-basic variable un-
der consideration, and ĉ the coefficient in the objective function belonging to this
non-basic variable. For the columns to be generated, belonging to some λd � q, we
have ĉ � 0 and a consists of components bd , msd � d , mrd � d , and a 1. This leads to the
following minimization problem in which to determine for each stream solution set
the element y � �

d with the most negative reduced costs, i.e., we have to solve for
each stream d the following LP sub-problem1 :

1When supply or demand is controllable, the appropriate buffer size is set to 0 and consequently

2.1 Problem 19

master problem

sub-problems for
each stream d

cb,csd
,crd

bd,msd,d,mrd,d

Figure 2.3. A visualization of the decomposition of the multiple-stream problem,
where the master problem gives the cost coefficients to the single-stream prob-
lems, which return bandwidth and buffer shares for one single stream d, if there
is one that improves the solution of the master problem. Otherwise, an optimal
solution has been found.

minimize cbbd � csd msd � d � crd mrd � d � ce
subject to

�
2 � 3 � � �

2 � 9 � and
�
2 � 12 � � �

2 � 14 � for stream d � (2.15)

In this LP sub-problem, the coefficients cb, csd , crd , and ce, which are given by the
current dual solution � ĉBB̂ � 1, may take on any real value.

When a non-basic variable with the minimum reduced cost is determined and
this reduced cost is negative, then it is entered into the basis of the master LP. After
the master LP is re-optimized, we again search for a non-basic variable λd � q with
negative reduced cost. If for none of the streams d the sub-problem (2.15) gives
a negative reduced cost, then an optimal solution of MSSP has been found. See
Figure 2.3 for a picture of the approach.

Although an LP problem can be solved with polynomial-time algorithms,
we use the simplex algorithm, which is generally very efficient, but not guaran-
teed to run in polynomial time. Therefore, the number of sub-problems that are
solved, need not be polynomially bounded. However, for real-life instances of data
streams, the number of solutions for a stream that may be generated for the master
LP is generally low, e.g., we observed that about five solutions per stream were
generated in an experiment with four streams. More experimental results concern-
ing different column generation strategies are presented in Section 2.3. Gondzio
et al. [1997] address some of the issues that arise when the master LP in a de-
composition approach such as Dantzig-Wolfe decomposition, is solved using an
interior point method.

does not appear in the LP sub-problem.

20 Fully-specified streams

sending
node

receiving
node

busbuffer buffer

cs crcb

Figure 2.4. The sub-problem for one stream: the stream needs to be transmitted
from its sending node to its receiving node for which it uses the buffer between
the sending node and the bus, the bandwidth of the bus, and the buffer between the
bus and the receiving node. Problem is to reserve shares of the bandwidth and the
buffers such that the total costs associated with these reservations are minimized.

2.2 Single-stream methods
Now that we have applied the Dantzig-Wolfe decomposition, we can solve the
master problem easily using the simplex algorithm and we only need to determine
how to solve sub-problem (2.15). Although (2.15) is an LP problem in itself, the
number of variables and constraints concerning the transmission schedule may be
very large, e.g., each of the Lord of the Rings movies consist of more than 250 � 000
frames, which gives more than 250 � 000 variables and 1 � 250 � 000 constraints, if
time units are chosen to be equal to the inter-frame times. Thus, we want to use
specific algorithms to solve (2.15) more efficiently than standard LP algorithms do.
For ease of notation we omit the subscript d in this section as only one stream is
considered when solving a sub-problem.

The problem is to minimize cbb � csms � crmr subject to the stream constraints
(2.3)–(2.9) and (2.12)–(2.14). Thus, for a single stream we need to determine
shares of its sending buffer, bandwidth, and its receiving buffer such that its supply
and demand schemes are met; see also Figure 2.4. Notice that ce can be left out
from (2.15), as it is constant. We assume that for b � B, ms � Ms, and mr � Mr a
feasible transmission schedule exists, otherwise MSSP cannot be solved. If b � B,
ms � Ms, and mr � Mr is infeasible, then each of the methods that we describe in
this section, can detect the infeasibility. The values of cb, cs, and cr can be either
positive or non-positive, depending on the current solution of the master problem.
For each of the seven possible combinations of the signs of the cost coefficients
with at least one positive cost coefficient, we present an efficient algorithm. Notice
that if a cost coefficient is non-positive, its corresponding resource share can be
set to its maximum, since a maximum share only increases the solution space for
the transmission of a stream. Thus, if all cost coefficients are non-positive, then an
optimal solution is given by b � B, ms � Ms, and mr � Mr. We initially describe all
algorithms assuming both supply and demand are given. If either supply or demand
is controllable, only one buffer will be present in the sub-problem. We will indicate

2.2 Single-stream methods 21

for the relevant algorithms how they can be adapted to correctly handle this.
In Section 2.2.1 we consider the case for which only the bandwidth needs to be

minimized, i.e., only cb � 0. In Section 2.2.2 we consider the cases for which only
either the sending buffer share or the receiving buffer share needs to be minimized,
i.e., either cs � 0 or cr � 0. In Section 2.2.3 we consider the case for which both
the sending buffer share and the receiving buffer share need to be minimized, i.e.,
cs � cr � 0. In Section 2.2.4 we show how to solve the case for which an optimal
trade-off has to be made between the bandwidth and one buffer, i.e., cb � 0 and
either cs � 0 or cr � 0. Finally, in Section 2.2.5 we consider the case for which
a trade-off between the bandwidth and both buffer shares has to be made, i.e.,
cb � cs � cr � 0.

2.2.1 Bandwidth minimization
When only cb is positive, the sub-problem is solved by minimizing the bandwidth
share; the values of the buffer shares are given by their maximum, i.e., ms � Ms

and mr � Mr. To minimize bandwidth for given values of the sending and receiving
buffer shares, we use an adaptation of the minimum variability bandwidth alloca-
tion (MVBA) algorithm described by Salehi et al. [1998]. It works as follows. It
takes as input a set of constraints

�
L

�
t � � U �

t � � , which denote a lower bound L
�
t � for

the cumulative transmission schedule X
�
t � , and an upper bound U

�
t � . Output con-

sists of the minimum amount of bandwidth needed and a transmission schedule.
Constraints (2.3)–(2.7) give the following upper and lower bounds that a feasible
cumulative transmission schedule X

�
t � has to satisfy to avoid buffer underflow and

overflow. For all t ��� ,

L
�
t � � max � C �

t � � P �
t � 1 � � ms � � X

�
t � � min � P �

t � � C �
t � 1 � � mr � � U

�
t � �

Notice that for controllable supply, no supply scheme is given, and the lower and
upper bound thus reduce to L

�
t � � C

�
t � and U

�
t � � C

�
t � 1 � � mr, respectively.

Similarly, for controllable demand we have L
�
t � � P

�
t � 1 � � ms and U

�
t � � P

�
t � .

The cumulative transmission schedule that meets these requirements and also
has the lowest peak rate and minimum variance in rate is given by the shortest
path from the starting point at time point 0 to the end point at time point T , which
remains between L

�
t � and U

�
t � ; see Figure 2.5. It is a piecewise, constant bit-rate

schedule, with rate changes whenever we have a full or empty buffer, i.e., when
X

�
t � touches either L

�
t � or U

�
t � . The time points t � ��� where the rate in the

schedule changes are referred to as critical points.

Definition 2.2. Let
�
x

�
1 � ������� � x �

T � � be an MVBA transmission schedule. A time
point t � �	� � � 0 � T � is said to be a critical point if for its adjacent time units t and
t � 1, x

�
t � �� x

�
t � 1 � holds. A critical point t is said to be convex when x

�
t ���

x
�
t � 1 � , and concave when x

�
t � � x

�
t � 1 � . The time points 0 and T are defined as

22 Fully-specified streams

P(t)

C(t)

C(t−1)+mr

P(t+1)−ms

1 2 T time

cu
m

ul
at

iv
e

am
ou

nt
 o

f d
at

a

k

P(k)

X(k)

C(k)

Figure 2.5. Example of an MVBA cumulative transmission schedule. P � k � , X � k � ,
and C � k � denote the value of P � t � , X � t � , and C � t � at the end of time unit k, respec-
tively. The lower bound L � t � and upper bound U � t � are indicated by the gray areas
in the figure.

2.2 Single-stream methods 23

concave critical points. �

We denote the resulting minimum bandwidth by MVBA
�
L � U � . The time com-

plexity of the algorithm presented by Salehi et al. is �
�
T 2 � , but they also mention

an �
�
T � implementation.

2.2.2 Buffer minimization
When either only cs or cr is positive, the sub-problem is solved by minimizing the
corresponding buffer share; the values of the bandwidth share and of the buffer
share with non-positive cost coefficient are given by their maximum, i.e., b � B,
ms � Ms if cs

�
0, and mr � Mr if cr

�
0. For minimization of either the send-

ing buffer share or the receiving buffer share we use an adaptation of the rate-
constrained bandwidth smoothing (RCBS) algorithm by Feng [1997]. We distin-
guish two variants of RCBS: ‘backward RCBS’ minimizes the receiving buffer size
given a demand scheme as described by Feng, and ‘forward RCBS’ minimizes the
sending buffer size given a supply scheme. We describe backward RCBS denoted
by RCBSback; forward RCBS, denoted by RCBSfor works analogously. We first de-
scribe the algorithm with given demand and controllable supply. Then we show
how to adjust the algorithm to take a supply scheme and a limited buffer size at the
sending side into account.

RCBSback uses as input a demand scheme c
�
t � , t � � , and a bandwidth b. It

determines a transmission schedule from the sending side to the receiving side
that does not exceed the bandwidth and minimizes the buffer at the receiving side
without underflowing or overflowing it. Let x

�
t � denote the transmission schedule,

and let m
�
t � denote the amount of data that is buffered at the end of time unit t

after demand c
�
t � has been removed from the buffer, with m

�
T � � 0. Then m

�
t � �

m
�
t � 1 � � x

�
t � � c

�
t � . Hence, m

�
t � 1 � � c

�
t � � m

�
t � � x

�
t � , and so the required

buffer size for time unit t � 1 is minimized if the required buffer size of time unit t
is minimized and the transmission in time unit t is maximized. Working backwards
from t � T to t � 1 the algorithm iteratively checks whether c

�
t � � m

�
t � data can

be transmitted in one time unit, i.e., whether c
�
t � � m

�
t � � b. If so, this amount is

transmitted, otherwise, b is transmitted. The part that cannot be transmitted gives
m

�
t � 1 � . The transmission schedule and amount of data to be buffered between

time units are thus determined as follows. For t � T � T � 1 ������� � 1,

x
�
t � � min � c �

t � � m
�
t � � b � �

m
�
t � 1 � � c

�
t � � m

�
t � � x

�
t � �

Figure 2.6 gives an example of an RCBS transmission schedule. As m
�
t � denotes

the amount of data in the buffer after c
�
t � is consumed, the actual required buffer

size is given by maxt ��� m
�
t � � c

�
t � . Obviously, if m

�
0 � � 0, then a feasible trans-

24 Fully-specified streams

time

b

demand scheme

transmission schedule

am
ou

nt
 o

f d
at

a
pe

r t
im

e
un

it

time

m
(t

)

maxt m(t)

maxt m(t)

Figure 2.6. Example of an RCBS transmission schedule. The gray areas above
the line b depict the amount of data that has to be transmitted earlier than the time
unit in which it is demanded. In this case, the largest of these areas is equal to the
maximum amount buffered between two time units, i.e., maxt m � t � .

mission schedule does not exist.
Now consider the case in which a supply scheme p

�
t � and a buffer size ms at

the sending side are given as well. Then X
�
t � �

P
�
t � 1 � � ms is an extra constraint

for the cumulative transmission schedule; cf. constraint (2.5). The lower bound for
X

�
t � is then given by L

�
t � � max � C �

t � � P �
t � 1 � � ms � . To ensure that the cumula-

tive transmission schedule satisfies this lower bound as constraint, we introduce an
alternative demand scheme given by c � �

t � � L
�
t � � L

�
t � 1 � with L

�
0 � � 0. Apply-

ing the method as described above, results in a transmission schedule x
�
t � , and an

alternative buffered amount m � �
t � with m � �

T � � 0. To determine the amount that is
actually buffered between time units, the original demand scheme has to be used.

2.2 Single-stream methods 25

Algorithm 1 Optimal buffer allocation for any given b and cr
�

cs � 0

1. L � t ��� max
�
C � t ��� P � t � 1 � � Ms � � t �	�

c
 � t ��� L � t � � L � t � 1 ��� t �	�
2. mr � RCBSback � b � c � c
 �
3. U � t ��� min

�
P � t ��� C � t � 1 �
� mr � � t �	�

p
 � t ��� U � t � � U � t � 1 ��� t ���
4. ms � RCBSfor � b � p � p
 �

So, for t � T � T � 1 ������� � 1,

x
�
t � � min � c � �

t � � m � �
t � � b � �

m � �
t � 1 � � c � �

t � � m � �
t � � x

�
t � �

m
�
t � 1 � � c

�
t � � m

�
t � � x

�
t � �

Again, the minimum buffer size needed is given by maxt � � m
�
t � � c

�
t � . For later

use, we denote this resulting minimum buffer size by RCBSback �
b � c � c � � . The time

complexity of RCBS is �
�
T � .

2.2.3 Two-buffer minimization
When both cs and cr are positive, the sub-problem is solved by minimizing the two
buffers jointly; the value of the bandwidth share b is given its maximum B. Notice
that this case cannot occur when either supply or demand is controllable as then
only one buffer share appears in the LP sub-problem. We assume that cr

�
cs. If

cs
�

cr holds, an analogous solution method can be used.
Algorithm 1 gives for a given value of b the optimal values of ms and mr. It

first uses RCBSback to minimize the ‘expensive’ buffer mr, and then uses RCBSfor

to minimize the ‘cheap’ buffer ms. A similar algorithm was also presented by
Rexford & Towsley [1999] for the joint minimization of the start-up delay and the
total buffer allocation.

Theorem 2.1. The solution
�
ms � mr � that is obtained by execution of Algorithm 1

minimizes total costs z � csms � crmr if cr
�

cs � 0.
Proof. Assume cr

�
cs � 0. Suppose a solution

�
m �s � m �r � with a feasible trans-

mission schedule exists that results in costs z � � csm �s � crm �r with z � � z. As step
2 of Algorithm 1 implies that mr is the smallest feasible value for the buffer at the
receiving node, it follows that m �r

�
mr. If m �r � mr, then m �s � ms since z � � z;

however this contradicts step 4 which minimizes ms for a given mr. So we know
that m �r � mr, and as z � � z, ms � m �s must hold. Now we can make the following

26 Fully-specified streams

derivation:

ms � mr � 1
cs

cs � ms � m �s � � m �s �
1
cr

cr � mr � m �r � � m �r
� 1

cr
� csms � csm �s � crmr � crm �r � � m �s � m �r

� 1
cr

� z � z � � � m �s � m �r
� m �s � m �r �

where the first inequality follows from the fact that cr
�

cs � 0. So the total buffer
amount of

�
m �s � m �r � is smaller than the total buffer amount of

�
ms � mr � . We next

show that this is impossible.
Consider the greedy transmission schedule X

�
t � , given by x

�
t � � min � b � P

�
t � �

X
�
t � 1 � � C �

t � 1 � � mr � X
�
t � 1 � � , for the solution

�
ms � mr � , and a feasible trans-

mission schedule X � �
t � for the solution

�
m �s � m �r � . Let � s � � be the set of all

time units t for which X
�
t � � P

�
t � 1 � � ms holds. As ms is minimal given

mr, we know that � s
�� Ø. Now we consider two cases. Either there exists

a ts � � s for which X
�
ts � is also restricted by the upper bound, i.e., X

�
ts � �

min � P �
ts � � C �

ts � 1 � � mr � , or not.
Suppose such a ts � � s exists. Then either X

�
ts � � C

�
ts � 1 � � mr or X

�
ts � �

P
�
ts � . In the first case, we have P

�
ts � 1 � � ms � X

�
ts � � C

�
ts � 1 � � mr, and there-

fore ms � mr � P
�
ts � 1 � � C

�
ts � 1 � . As P

�
ts � 1 � � m �s

�
X � �

ts � � C
�
ts � 1 � � m �r

must also hold, we have m �s � m �r
�

P
�
ts � 1 � � C

�
ts � 1 � � ms � mr which contra-

dicts ms � mr � m �s � m �r.
In the second case, we have P

�
ts � 1 � � ms � X

�
ts � � P

�
ts � , and therefore ms �

P
�
ts � 1 � � P

�
ts � . As P

�
ts � �

X � �
ts � �

P
�
ts � 1 � � m �s, we have m �s

�
P

�
ts � 1 � �

P
�
ts � � ms which contradicts m �s � ms.
Now suppose there does not exist a ts ��� s which is restricted by the upper

bound. As X
�
t � is the greedy transmission schedule, it follows that for all ts � � s

we have x
�
ts � � b. Consider one ts � � s. Let te be the last time unit before ts

for which X
�
te � is restricted by the upper bound, i.e., te � max � t � � � � 0 � �

t �
ts 	 X

�
t � � min � P �

t � � C �
t � 1 � � mr � � . Again, as X

�
t � is the greedy transmission

schedule, it follows that for all t with te � t
�

ts, x
�
t � � b holds.

Now, we first consider X
�
te � � P

�
te � . As m �s � ms, we would like to decrease

ms by a small amount ε � 0. Then the total amount of data transmitted between
te and ts, i.e., ∑ts

t � te � 1 x
�
t � has to be increased by ε; see Figure 2.7(a). However, as

for each te � t
�

ts, x
�
t � � b, this is impossible, and there cannot exist a solution�

m �s � m �r � with m �s � ms in this case.
Next we consider X

�
te � � C

�
te � 1 � � mr. Again we would like to decrease ms

by a small amount ε � 0 as m �s � ms; see Figure 2.7(b). Then X
�
ts � has to increase

2.2 Single-stream methods 27

P(t+1)−ms

P(t)

tste time...

b

ε
X(ts)

X(te)

(a)

P(t+1)−ms

C(t−1)+mr

tste ... time

b

ε

ε
X(ts)

X(te)

(b)

Figure 2.7. Example of possible situations in a schedule when X � ts � is only
restricted by its lower bound. (a) The situation in which X � te � is restricted by
P � te � . (b) The situation in which X � te � is restricted by C � te � 1 ��� mr.

by ε. However, since data is transmitted at maximum bandwidth b during
�
te � ts � ,

i.e., ∑ts
t � te � 1 x

�
t � � �

ts � te � b, X
�
te � also has to increase by ε. This means mr has

to be increased by at least ε. So, a solution
�
m �s � m �r � with m �s � ms � ε must have

m �r
�

mr � ε in this case, giving m �s � m �r
�

ms � mr. This contradicts the fact that the
total buffer amount of

�
m �s � m �r � is smaller than the total buffer amount of

�
ms � mr � .

Therefore, there does not exist a solution
�
m �s � m �r � with costs z � � z, and hence the

obtained solution
�
ms � mr � is optimal. �

2.2.4 Trade-off with one buffer
When cb is positive together with either cs or cr, the sub-problem is solved by mak-
ing a trade-off between the bandwidth and the relevant buffer share; the value of the
remaining buffer share is again given by its maximum. In this section we present an
algorithm for this trade-off between the bandwidth and one buffer share, called the
bandwidth-buffer trade-off algorithm. It determines an optimal balance between
bandwidth b and buffer size at the receiving side mr, given their cost coefficients cb
and cr. The trade-off between b and ms can be performed analogously. We begin
with presenting the algorithm and how it works. Then we show its correctness and
finally we discuss the time complexity of the algorithm. When the supply is con-
trollable, the same algorithm as we present here can be used. The only difference
lies in the upper and lower bounds used for the transmission schedule, which then
do not involve the supply scheme and sending buffer.

Another algorithm that determines the bandwidth-buffer trade-off curve is de-

28 Fully-specified streams

Algorithm 2 Global overview of the bandwidth-buffer trade-off algorithm.
Determine initial solution:

1. L � t ��� max
�
C � t � � P � t � 1 � � Ms �

c
 � t ��� L � t � � L � t � 1 �
2. mr � RCBSback � B � c � c
 �
3. U � t ��� min

�
P � t � � C � t � 1 � � mr �

4. b � MVBA � L � U �
Initialize trade-off:

5. Execute Algorithm 3.

Perform trade-off:

6. Execute Algorithm 4.

scribed by Chang et al. [1998]. Den Boef et al. [2004] give a comparison of the
method by Chang et al. and the bandwidth-buffer trade-off algorithm. They show
that the run times of both algorithms are more or less equal. However, the memory
requirements of the bandwidth-buffer trade-off algorithm are only half the memory
requirements of the method by Chang et al.

The bandwidth-buffer trade-off algorithm.
Algorithm 2 gives a global overview of how the problem is solved. The algorithm
begins with determining an initial solution using RCBS to minimize mr for which
b is set to the maximum bandwidth B (steps 1 and 2). After this, the algorithm
uses MVBA to minimize b for the obtained mr and to determine an initial MVBA
transmission schedule (steps 3 and 4). Then, it performs a trade-off between the
reserved bandwidth b and the buffer size mr in which it iteratively tries to increase
the buffer size mr and determines what effect it has on the smallest possible choice
of b, i.e., on maxt x

�
t � (steps 5 and 6).

Algorithm 3 initializes the trade-off. It partitions the time horizon into sev-
eral distinct intervals Vi, where the intervals are separated from each other by the
concave critical points, as is shown in Figure 2.8. Interval Vi lies between critical
points vi and vi � 1.

Next, Algorithm 3 determines the following parameters for each interval Vi;
see Figure 2.8. The maximum transmission rate during Vi is denoted by bmax

i and
occurs at the end of interval Vi. The minimum transmission rate during Vi is de-
noted by bmin

i and occurs at the beginning of the interval. If bmax
i � bmin

i , then the
algorithm also determines the best achievable maximum transmission rate, bhigh

i ,
considering only the interval Vi and assuming there is a buffer of maximum size
Mr at the receiving side. In other words, bhigh

i is the maximum transmission rate
during the interval Vi of the MVBA schedule that starts at vi and finishes at vi � 1 with

2.2 Single-stream methods 29

Algorithm 3 Initialization for the trade-off between bandwidth and buffer size
Determine the set of concave critical points � � �

v1 � v2 ������� � vk ��� �
 .
Vi � � vi � vi � 1 � � i �	� � �

1 ������� � k � 1 � ;
For all i �	� determine

bmax
i � maxt
 Vix � t ��� x � vi � 1 � ; bmin

i � mint
 Vix � t ��� x � vi � 1 � ;

If bmax
i � bmin

i then determine

L � t ��� max
�
C � t � � P � t � 1 � � Ms � ; U � t ��� min

�
P � t � � C � t � 1 � � Mr � ;

� bhigh
i � blow

i ��� MVBAint
i � L � U �

If bmax
i � bhigh

i then determine

bmax � 1
i � maxt
 Vi � x
 t ���� bmax

i
x � t � ; bmin � 1

i � mint
 Vi � x
 t ���� bmin
i

x � t � ;

ymax
i ��� � t � ��� t � Vi � x � t � � bmax

i � � ; ymin
i ��� � t � ��� t � Vi � x � t � � bmin

i � � ;
rmax

i � 1 � ymax
i ; rmin

i � 1 � ymin
i ;�

immax �
�

ymax
i � bmax

i � bmax � 1
i � if bmax � 1

i � bhigh
i

ymax
i � bmax

i � bhigh
i � otherwise � ;

�
immin ��� ymin

i � bmin � 1
i � bmin

i � if bmin � 1
i � blow

i
ymin

i � blow
i � bmin

i � otherwise � ;

endif
endif
If bmax

i � bhigh
i then

rmax
i � 0;

�
immax � Mr � mr;

endif
If bmin

i � blow
i then

rmin
i � 0;

�
immin � Mr � mr;

endif
endfor� 1 � �

i �	��� bmax
i � bmax

j �! j �"� �� 2 � �
i �	� 1 � rmax

i � rmax
j �# j �	� 1 �� 3 � �

i �	� 2 � � immax � � jmmax �# j �	� 2 �
Pick i $ �	� 3

For all Vi do
if rmax

i %&� rmax
i then

γi � bmax
i % � bmax

i
rmax
i % � rmax

i
;

else γi � Mr � mr;
if rmax

i � rmin
i � 1 � 0 then

εi � bmax
i � bmin

i ' 1
rmax
i � rmin

i ' 1
;

else εi � Mr � mr;
od

30 Fully-specified streams

P(t)

C(t)

c2
T1 T2 T3

convex critical points

concave critical points

concave critical
points

bmin
2

ymin
2 ymax

2

c1 c3 c4

bmin+1
2

bmax−1
2

bmax
2

C(t)+mr

P(t)−Ms

cu
m

ul
at

iv
e

am
ou

nt
 o

f d
at

a

Figure 2.8. Parameters of an MVBA-schedule for the trade-off algorithm.

2.2 Single-stream methods 31

lower bound max � C �
t � � P �

t � 1 � � Ms � and upper bound min � P �
t � � C �

t � 1 � � Mr �
for all time units t ��� with t � Vi. The algorithm also determines the lowest trans-
mission rate, blow

i , that occurs in this MVBA schedule. To determine bhigh
i and blow

i
the algorithm uses a special interval version of MVBA defined as follows. For an
example, see Figure 2.9.

Definition 2.3. MVBAint
i

�
L � U � returns the maximum and minimum transmission

rate of an MVBA schedule for an interval Vi assuming Vi is the total time period
and given a lower bound function L and an upper bound function U . It starts and
ends at the concave critical points vi and vi � 1. �

If bmax
i � bhigh

i , then Algorithm 3 determines the second highest transmission
rate, denoted by bmax � 1

i , and the second lowest transmission rate, denoted by
bmin � 1

i . Finally, it determines how many time units during Vi have bmax
i and bmin

i as
transmission rate, which is denoted by ymax

i and ymin
i , respectively; see Figure 2.8.

When the buffer mr is increased, this affects the transmission rates at the in-
tervals for which bmax

i � bhigh
i . The maximum transmission rate decreases for

each unit of buffer increase by a rate rmax
i � 1 � ymax

i . This rate is valid for only
a limited amount of buffer increase, � immax, which gives the buffer increase
until either bmax

i � bmax � 1
i or bmax

i � bhigh
i , whichever holds first. Analogously,

the rate by which bmin
i increases for each unit of buffer increase is given by

rmin
i � 1 � ymin

i , and the maximum amount that mr may increase for rmin
i to re-

main valid is given by � immin. Notice that either rmax
i � immax � bmax

i � bmax � 1
i

or rmax
i � immax � bmax

i � bhigh
i . For each interval Vi for which bmax

i � bhigh
i , the

algorithm sets rmax
i � 0, and � immax � Mr � mr since bmax

i in this case does
not change. Analogously, if bmin

i � blow
i , then the algorithm sets rmin

i � 0 and
� immin � Mr � mr. This also holds for intervals with bmax

i � bmin
i , since then

bmax
i � bhigh

i � blow
i � bmin

i .
Now, we know for each interval Vi that when we increase mr by a small amount

� m its maximum transmission rate bmax
i decreases by rmax

i � m. As b � maxi bmax
i ,

the algorithm next selects the interval that has the highest transmission rate, the
lowest rmax

i , and the lowest � immax, i.e., it chooses i � that lexicographically max-
imizes

�
bmax

i ��� rmax
i ����� immax � . Then, Vi % is the interval with the highest trans-

mission rate bmax
i , also after a small increase � m of mr. Furthermore, if there

is more than one such interval, Vi % is the interval for which rmax
i is valid for the

smallest buffer increase � immax. So b decreases with rmax
i % � m, and thus the total

costs change by an amount cr � m � cbrmax
i % � m � �

cr � cbrmax
i % ��� m. Therefore, if

cr � cbrmax
i % then the total costs decrease when mr is increased by a small amount

� m.
Before the trade-off can start we first determine the values of parameters γ i and

εi as indicated in the algorithm. These parameters give the amount by which the

32 Fully-specified streams

blow
2

bhigh
2

c2
T1 T2 T3

c1 c3 c4

P(t)

C(t)

C(t)+Mr

P(t)−Ms

cu
m

ul
at

iv
e

am
ou

nt
 o

f d
at

a

Figure 2.9. Example of an MVBA-schedule for an interval in the trade-off algo-
rithm which leads to bhigh

i and blow
i .

2.2 Single-stream methods 33

buffer size mr can be increased before an event takes place that directly or indirectly
influences the rate at which the highest transmission rate decreases. Below, we
describe all these events, and how large the increase � m is for them to happen.� The highest transmission rate b can shift from Vi % to another interval Vi. This

can happen for Vi with rmax
i � rmax

i % as then bmax
i decreases slower than b �

bmax
i % . We define γi as the amount by which mr has to be increased such

that bmax
i becomes equal to bmax

i % . For this, bmax
i % � rmax

i % γi � bmax
i � rmax

i γi, so
γi � bmax

i % � bmax
i

rmax
i % � rmax

i
. For i with rmax

i
�

rmax
i % , we set γi � Mr � mr.� A convex critical point may no longer be a critical point or a new convex

critical point can emerge, which may affect rmax
i or rmin

i . This happens when
the buffer is increased by � immax or � immin.� A concave critical point may no longer be a critical point, which means that
two intervals merge into one. This happens when the buffer is increased by
εi, which is the amount by which mr has to be increased such that bmax

i be-

comes equal to bmin
i � 1. For this, bmax

i � bmin
i � 1εi � bmin

i � 1 � rmin
i � 1εi, so εi � bmax

i � bmin
i ' 1

rmax
i � rmin

i ' 1
.

For i with rmax
i � rmin

i � 0, we set εi � Mr � mr.

Now, Algorithm 4 iteratively increases the buffer mr as long as the rate by
which the bandwidth decreases per unit of buffer increase is high enough for an
increase in the buffer to be cost efficient, i.e., while cr � cbrmax

i % � 0. The algorithm
chooses the increase in mr equal to � m � mini � γi � � immax � � immin � εi � . This leads
to one of the described events, after which the actions shown in Algorithm 4 are
taken to adjust all the parameters for the newly obtained transmission schedule.
These actions are merely book-keeping of all the parameter values. Of course, all
parameters of each interval have to be adjusted for the increase in buffer size. If
b shifts to another interval, then also all γi values have to be redetermined, since
they signal when this may happen. If the number of convex critical points changes,
there are four possibilities. If either bhigh

i or blow
i has been reached on an interval,

then rmax
i and rmin

i are set to 0, respectively, and the event-detecting parameters
γi and εi in case bhigh

i has been reached, and εi � 1 in case blow
i has been reached,

have to be redetermined. If bmax
i � bmax � 1

i then ymax
i , the length of the part of

the interval with this maximum transmission rate, has to be redetermined, together
with rmax

i and � immax. Also, all event-detecting parameters of this interval then
have to be redetermined. Furthermore, if it concerns interval Vi % , then all γi have
to be redetermined. If bmin

i � bmin � 1
i we have to take similar adjusting actions.

Finally, if two intervals merge, then all parameters after the merge are renumbered
by decreasing their index by one, since there is one interval fewer. For the new
interval, bhigh

i and blow
i have to be redetermined, and thus also � immax.

34 Fully-specified streams

Algorithm 4 The trade-off execution
while cr � cbrmax

i % � 0 do�
m � mini

�
γi � � immax � � immin � εi �

Actions to adjust parameters of transmission schedule after an event

For all j � � do
γ j � γ j �

�
m; ε j � ε j �

�
m;�

jmmax � � jmmax �
�

m;
�

jmmin � � jmmin �
�

m;
bmax

j � bmax
j � rmax

j
�

m; bmin
j � bmin

j � rmin
j
�

m;
endfor
If b shifts to interval Vi then

i $ � i;
For all j �� i $ do

If rmax
j

�
rmax

i % then Redetermine γ j;
else γ j � Mr � mr;

endfor
endif
If the number of convex critical points in interval Vi changes then

If bmax
i � bhigh

i then
rmax

i � 0;
�

immax � Mr � mr;
Redetermine γi and εi;

else if bmax
i � bmax � 1

i then
Redetermine ymax

i � rmax
i � � immax, and bmax � 1

i ;
Redetermine γi and εi;
If i � i $ then for all j �� i $ Redetermine γ j;

endif
If bmin

i � blow
i then

rmin
i � 0;

�
immin � Mr � mr;

Redetermine εi � 1;
else if bmin

i � bmin � 1
i then

Redetermine ymin
i � rmin

i � � immin, and bmin � 1
i ;

Redetermine εi � 1;
endif

endif
If the number of concave critical points decreases, i.e., Vi merges with Vi � 1 then

Let Vi � � vk � vl � and Vi � 1 � � vl � vm � then Vi � � vk � vm � ;
ymax

i � ymax
i � 1 ; rmax

i � rmax
i � 1 ;

� bhigh
i � blow

i ��� MVBAint
i � L � U �

Adjust
�

immax;
γi � γi � 1; εi � εi � 1;
For all j � i do Reassign parameters j : � parameters j � 1;

endif
endwhile

2.2 Single-stream methods 35

X(t)

P(t)

P(t)−Ms

C(t)
C(t)+mr

P(t)-critical

mr-critical

time

cu
m

ul
at

iv
e

am
ou

nt
 o

f d
at

a

Figure 2.10. P � t � - and mr-critical points.

The algorithm continues with increasing the receiving buffer while cr �
cbrmax

i % � 0. When cr � cbrmax
i % �

0, the optimal value for b equals the maximum
transmission rate in the transmission schedule found.

Correctness proof.
We next prove the correctness of the algorithm. For this, we distinguish two types
of convex critical points. First, at a P

�
t � -critical point t0 � � � , X

�
t � touches P

�
t � ,

i.e., X
�
t0 � � P

�
t0 � with t0 here the corresponding time unit in � . Secondly, at

an mr-critical point t0 � � � , X
�
t � touches C

�
t � � mr but it does not touch P

�
t � ,

i.e., X
�
t0 � � C

�
t0 � � mr � P

�
t0 � ; see Figure 2.10 for an example. Notice that for

controllable supply only mr-critical points exist.
Furthermore, we give the refinement theorem and domination theorem of San-

jay & Raghavan [1999]. We use them to show some results concerning the critical
points when the buffer mr is increased. Then, we show that the algorithm correctly
transforms the minimum and maximum transmission rates during the intervals of
the transmission schedule into the minimum and maximum transmission rates dur-
ing the intervals of a new MVBA transmission schedule. We continue the proof by
showing that all possible events that may influence the maximum transmission rate
are correctly detected. Finally, we show the correctness of the stopping criterion of
the algorithm.

First, we give the refinement theorem of which the proof is given by Sanjay &
Raghavan [1999].

Theorem 2.2. Let X1 and X2 be two MVBA transmission schedules with constraint
sets

�
L1 � U1 � and

�
L2 � U2 � , respectively. Furthermore, let L1

�
t � � L2

�
t � and U1

�
t � �

U2
�
t � � for all t ��� . Then the following properties hold.

36 Fully-specified streams

(a) The concave critical points of X1 are a superset of the concave critical points
of X2.

(b) If U2
�
t � � U1

�
t � � k � for all t ��� , then X2

�
t � � X1

�
t � � k � for all t ��� .

(c) If during an interval
�
q1 � q2 � � U2

�
t � � U1

�
t � � k � for all t � � q1 � q2 � , then the

convex critical points of X1 in
�
q1 � q2 � are a superset of the convex critical

points of X2 in
�
q1 � q2 � .

�

The refinement theorem leads to the following corollary.

Corollary 2.1. An increase in the buffer size mr may have the effect that an mr-
critical point disappears, but no mr-critical point will emerge.
Proof. It is trivial that an mr-critical point may disappear, so we only show that an
mr-critical point cannot emerge. Let X be an MVBA transmission schedule and let
t0 � � . If an mr-critical point has to emerge at the end of time unit t0, so at time
point t0 ��� � , then the supply scheme must lie above the receiving buffer constraint
and t0 is not yet an mr-critical point, i.e., we must have

C
�
t0 � 1 � � mr � P

�
t0 � 	 X

�
t0 � � C

�
t0 � 1 � � mr �

So U
�
t0 � � min � P �

t0 � � C �
t0 � 1 � � mr � � C

�
t0 � 1 � � mr. If we denote the increase

in mr by � m, which is chosen such that C
�
t0 � 1 � � mr � � m

�
P

�
t0 � , then for the

new MVBA schedule X � for the buffer size mr � � m,

U � �
t0 � � min � P �

t0 � � C �
t0 � 1 � � mr � � m � � C

�
t0 � 1 � � mr � � m � U

�
t0 � � � m

holds. Then, part (c) of Theorem 2.2 states that the convex critical points of X
in
�
t0 � t0 � are a superset of the convex critical points of X � in

�
t0 � t0 � . Since t0 is

not a convex critical point in X , it cannot be a convex critical point in X � either.
Therefore, no mr-critical point will emerge when the buffer size mr is increased. �

A consequence of the above corollary is that an mr-critical point that has dis-
appeared during the execution of the algorithm will not emerge again.

Another theorem given by Sanjay & Raghavan [1999] is the domination theo-
rem.

Theorem 2.3. Let X1 and X2 be two MVBA transmission schedules with constraint
sets

�
L1 � U1 � and

�
L2 � U2 � , respectively. Furthermore, let L2

�
t � �

L1
�
t � and U2

�
t � �

U1
�
t � , for all t � � q1 � q2 � . If X2

�
q1 � �

X1
�
q1 � and X2

�
q2 � �

X1
�
q2 � , then X2

�
t � �

X1
�
t � , for all t � � q1 � q2 � . �

With the domination theorem, we can prove the following corollary.

Corollary 2.2. An increase in the buffer size mr will not cause a P
�
t � -critical point

to disappear and can only cause a P
�
t � -critical point to emerge if it is present in

2.2 Single-stream methods 37

the MVBA schedule X ∞ with U∞ �
t � � P

�
t � and L∞ � L.

Proof. Let X be an MVBA transmission schedule with constraint set
�
L � U � .

Suppose t0 � �	� is a P
�
t � -critical point of X , i.e., X

�
t0 � � P

�
t0 � . Now let � m

denote the increase of buffer size mr, and X � the resulting MVBA transmission
schedule. Then X � has constraint set

�
L � � U � � with L � � L and U � �

t � �
U

�
t � , for

all t � � . According to Theorem 2.3, X � �
t � �

X
�
t � , for all t � � . Since X � �

t0 � �
P

�
t0 � � X

�
t0 � , this implies X � �

t0 � � X
�
t0 � � P

�
t0 � , so the P

�
t � -critical point t0 will

not disappear.
Now suppose t0 is not a P

�
t � -critical point in X ∞. Then X∞ �

t0 � � P
�
t0 � �

X
�
t0 � . But U∞ �

t � �
U

�
t � , for all t � � , therefore, X ∞ �

t0 � �
X

�
t0 � , which gives

a contradiction. Thus, t0 has to be a P
�
t � -critical point in X ∞, and therefore, a

P
�
t � -critical point can only emerge if it is present in X ∞. �

For the concave critical points we can prove the following lemma.

Lemma 2.1. An increase in the buffer size mr may have the effect that several
consecutive intervals merge, but none of the intervals will split into more intervals.

Proof. Let X be an MVBA transmission schedule with constraint set
�
L � U � . Let

� m denote the increase of buffer size mr, and X � the resulting MVBA transmission
schedule. Then X � has constraint set

�
L � � U � � with L � � L and U � �

t � �
U

�
t � , for all

t �
� . Then Theorem 2.2 part (a) states that the concave critical points of X
�
t � are

a superset of the concave critical points of X � �
t � . Therefore, several consecutive

intervals may merge, but none of the intervals will split. �

We continue by showing that the maximum and minimum transmission rates
during each interval of the MVBA transmission schedule, i.e., bmax

i and bmin
i , are

correctly transformed into their respective values during the intervals of a new
MVBA transmission schedule, as long as critical points do not emerge or disap-
pear. Let X be an MVBA transmission schedule with constraint set

�
L � U � . Now

let the increase of mr be denoted by � m. Then, only at mr-critical points the upper
bound shifts upwards with � m, whereas at P

�
t � -critical points the upper bound and

at concave critical points the lower bound do not change in value. As an MVBA
transmission schedule has a constant transmission rate between two successive crit-
ical points, the transmission rate between two critical points only changes when the
upper bound at one of them shifts upwards, so at an mr-critical point, and when the
upper or lower bound does not change at the other one, so at a P

�
t � -critical point

or a concave critical point, respectively.
Let t0 be an mr-critical point and t1 � t0 a concave critical point adjacent to

t0, i.e., there are no other critical points between t0 and t1. Let
�
t0 � t1 � � Vi. Then,

obviously, bmax
i is the transmission rate during

�
t0 � t1 � . The amount by which bmax

i

38 Fully-specified streams

changes with each unit of buffer size increase is given by the change in the slope
of the cumulative transmission schedule. This is equal to � 1 � �

t1 � t0 � , i.e., minus
the increase in buffer size, or the decrease in amount of data transmitted during�
t0 � t1 � , divided by the length of the interval, which is equal to the number of time

units in the interval with the maximum transmission rate, i.e., ymax
i . The change in

slope is then given by rmax
i � 1 � ymax

i . If t0 is a concave critical point and t1 � t0
an mr-critical point adjacent to t0, an analogous reasoning can be held for bmin

i and
rmin

i .
Now suppose t0 is a P

�
t � -critical point and t1 � t0 is again a concave critical

point adjacent to t0. Then the upper bound at t0 will not change and t0 will not dis-
appear; cf. Corollary 2.2. Thus, an increase of mr will not change the transmission
rate in

�
t0 � t1 � , and hence rmax

i � 0 in that case. This corresponds to bmax
i � bhigh

i .
A similar reasoning holds for rmin

i with t0 a concave critical point and t1 � t0 a
P

�
t � -critical point adjacent to t0.

So, as long as critical points do not emerge or disappear, not considering the
’interior’ of the intervals, the maximum and minimum transmission rates are cor-
rectly updated by the algorithm. The algorithm distinguishes three possible events,
when the buffer size mr is increased, which may directly or indirectly influence the
maximum transmission rate of the transmission schedule. Obviously, the algorithm
has to know what the maximum transmission rate is so it can determine whether an
increase is interesting. Therefore, it has to keep track of the interval with the maxi-
mum transmission rate, and thus it has to know when this shifts to another interval.
Furthermore, the disappearance or emergence of a critical point may affect the
transmission rates in the intervals, and therefore have to be detected. Lemma 2.1
and Corollaries 2.1 and 2.2 state that concave critical points and mr-critical points
can only disappear, whereas P

�
t � -critical points can only emerge.

For the maximum transmission rate to shift to another interval, the buffer size
mr has to be increased by an amount that causes the maximum transmission rate
on an interval Vi to be equal to the maximum transmission rate on the interval Vi % .
This can only happen if rmax

i � rmax
i % . Let γi denote the required increase in buffer

size for the maximum transmission rate to shift to interval Vi. Then as mentioned
previously bmax

i % � γirmax
i % � bmax

i � γirmax
i holds, and we have γi � bmax

i % � bmax
i

rmax
i % � rmax

i
.

For a concave critical point t �� � 0 � T � , x
�
t � � x

�
t � 1 � holds. So, a concave

critical point vi disappears as soon as x
�
vi � � x

�
vi � 1 � . Let εi denote the required

increase in buffer size for concave critical point vi � 1 between Vi and Vi � 1 to dis-
appear. Then as mentioned previously bmax

i � εirmax
i � bmin

i � 1 � εirmin
i � 1 holds, and we

have εi � bmax
i � bmin

i ' 1
rmax

i � rmin
i ' 1

.

Now we show that � immax and � immin correctly signal the disappearance and
emergence of a convex critical point when it may influence the rate at which bmax

i

2.2 Single-stream methods 39

decreases. The rate rmax
i with which bmax

i decreases, changes when either the last
convex critical point of Vi disappears or a P

�
t � -critical point emerges after the last

convex critical point of Vi. In the latter case, bmax
i has become equal to bhigh

i , since
the P

�
t � -critical point will not disappear; cf. Corollary 2.2.

In the former case, i.e., the last convex critical point has disappeared, there are
two possibilities. Either it was the only convex critical point of Vi, in which case
bmax

i has become equal to bhigh
i , or there is another convex critical point in Vi. If the

new last convex critical point is a P
�
t � -critical point then bmax

i has become equal
to bhigh

i . If it is an mr-critical point, then bmax � 1
i did not change with the buffer

increase, since the upper bound shifted upwards at both its surrounding critical
points. Therefore, bmax

i then has become equal to bmax � 1
i .

Suppose a P
�
t � -critical point emerges before the last convex critical point.

Then it has to be a P
�
t � -critical point in X int

i , the MVBAint schedule for Vi. There-
fore, if it influences bmax � 1

i , bhigh
i � bmax � 1

i must hold, and bmax
i will become equal

to bhigh
i when the last convex critical point disappears. If it does not influence

bmax � 1
i , then bmax

i � bmax � 1
i will hold when the last convex critical point disap-

pears2 .
Now we have to determine what increase in buffer size leads to bmax

i � bmax � 1
i ,

or bmax
i � bhigh

i if bhigh
i � bmax � 1

i . Let � immax denote this increase, then we have

bmax
i � rmax

i � im
max �

�
bmax � 1

i if bmax � 1
i

�
bhigh

i

bhigh
i otherwise �

Rewriting gives

� im
max �

�
ymax

i

�
bmax

i � bmax � 1
i � if bmax � 1

i
�

bhigh
i

ymax
i

�
bmax

i � bhigh
i � otherwise �

In a similar manner we can prove that

� im
min ��� ymin

i

�
bmin � 1

i � bmin
i � if bmin � 1

i
�

blow
i

ymin
i

�
blow

i � bmin
i � otherwise

gives the increase in buffer size that leads to bmin
i � bmin � 1

i , or bmin
i � blow

i if blow
i �

bmin � 1
i .

We now prove that it is optimal to stop whenever cr � cbrmax
i % �

0, or equiv-
alently when rmax

i % � cr
cb

. First, notice that � bmax � ��� mrmax
i % , for all � m

�

mini � γi � � immax � � immin � εi � . So the change in the objective function equals
� cb � mrmax

i % � cr � m. A small increase in mr is only interesting if this change
is negative, so if � m

� � cbrmax
i % � cr � � 0, or, as � m � 0, if cr � cbrmax

i % � 0. Thus,
2Under the assumption that no other P � t � -critical point emerges.

40 Fully-specified streams

if cr � cbrmax
i % �

0 then a small increase in mr does not lead to an improvement of
the solution.

Now we show that rmax
i % never increases during the execution of the algorithm,

thereby proving that it is optimal to stop as soon as cr � cbrmax
i % �

0. The algorithm
starts with the interval Vi with the maximum transmission rate bmax and which has
the lowest rmax

i (of all intervals with bmax). Now bmax can only shift to another
interval if that interval has a lower rmax

i . Furthermore, during the execution of the
algorithm each ymax

i does not decrease, therefore each rmax
i does not increase. This

means that rmax
i % does not increase during the execution of the algorithm. This ends

our proof of the correctness of the algorithm.

Time complexity
We finish by discussing the time complexity of the presented algorithm. The ini-
tialization consists of one call to RCBS and one to MVBA, and thus has time
complexity �

�
T � . Also, the initialization of the trade-off has time complexity

�
�
T � since each time unit has to be considered when determining the intervals

and several of their parameters such as bmax
i and bhigh

i . The time complexity of
the trade-off loop depends on the amount of events that take place. bmax can only
shift to another interval with a lower rmax

i , and it can only shift back to an interval
when its rmax

i has changed, which can happen only when a convex critical point
disappears or emerges. Denoting the initial number of intervals with K, this means
the former event can take place at most K � T times. The actions to adjust the
parameters after this event have time complexity �

�
K � . At each time unit at most

one convex critical point may emerge or disappear, thus the second event can hap-
pen at most T times. Also for this event, the time complexity of the actions to
adjust the parameters is �

�
K � . Finally, since there are K intervals, at most K � 1

times two intervals may merge. Adjusting the parameters after this event, how-
ever, has time complexity �

�
T � since for the new interval an MVBA schedule

has to be determined. The total time complexity of the trade-off loop thus becomes
�

�
K � T ��� � �

K � � T � �
�
K � � K � �

�
T � � �

�
KT � . Therefore, the time complexity

of the total algorithm is �
�
KT � .

2.2.5 Trade-off with two buffers
When all cost coefficients are positive, the sub-problem is solved by making a
trade-off between the bandwidth and both buffer shares. In this section we describe
how we solve this trade-off. We assume that cr

�
cs; the case with cs � cr can be

solved analogously. Notice again that this case cannot occur when either supply or
demand is controllable.

Recall that for any given bandwidth b, we can determine optimal values of
ms and mr by means of Algorithm 1 on page 25. This algorithm typically takes

2.2 Single-stream methods 41

only a fraction of a second to compute ms and mr. We use it to reformulate the
sub-problem with only positive cost coefficients as follows.

Let h be a function on bandwidth b with function values that represent the
minimum total costs. Now, let ms

�
b � and mr

�
b � be the optimal values of ms and mr,

respectively, for a given b and cost coefficients cs and cr. Then h returns the total
costs cbb � csms

�
b � � crmr

�
b � . The sub-problem for this case is then equivalent to

finding the minimum of h. To obtain the results as fast as possible, we also want to
minimize the number of function evaluations needed to find the minimum of h.

Since for a given b the problem can be formulated as an LP problem with b
appearing in the right-hand-sides of the constraints, we know that h is a convex,
piecewise-linear function [Roos et al., 1997]. To search the minimum of a one-
dimensional function which has exactly one stationary value (a so-called unimodal
function), the golden section method [Gill et al., 1988] has the best guaranteed
performance. Basically, it reduces the interval of uncertainty in which the point
with the minimum can be, by a constant factor κ � ���

5 � 1 ��� 2 after each function
evaluation. However, it does not exploit the convexity property when choosing a
point for function evaluation. Therefore, we next show how convexity can be used
to decrease the interval of uncertainty even further.

Figure 2.11(a) gives an example of a convex function h for which six function
evaluations are known. As h is convex, αh

�
x � �

�
1 � α � h

�
y � �

h
�
αx �

�
1 � α � y �

for all α � � 0 � 1 � , and x and y in the domain of h. Using this property we obtain the
piecewise-linear upper bound of h given in Figure 2.11(b). Now, we consider the
line segments BC and DE and extend them until they intersect at point K as shown
in Figure 2.11(c). Then, the line segments CK and KD give a lower bound for the
function h between C and D, again because of the convexity of h. This can be done
for any four consecutive points, resulting in the lower bound on h given in Fig-
ure 2.11(c) by the dashed lines. Finally, combining these upper and lower bounds
with the lowest function value found so far gives the area in which the minimum
of h must be located. This is given in an enlarged view in Figure 2.11(d) by the
gray areas. The interval of uncertainty that remains after applying the convexity
property is given by

�
L � U � .

Using the above approach, Den Boef & Den Hertog [2004] describe two meth-
ods to determine the minimum of a univariate convex black-box function, viz. the
improved golden section method and the triangle section method. We describe both
methods in this thesis, beginning with the improved golden section method.

Improved golden section method.
The improved golden section method is basically the golden section method im-
proved with the reduction that follows from the convexity property, as described
above. The golden section method chooses new points for function evaluation in

42 Fully-specified streams

B

C D

E

A
F

(a)

B

C D

E

A
F

(b)

B

C
K

D

E

(c)

L U

B

C D

E

(d)

Figure 2.11. (a) Example of a convex function h with six function evaluations. (b)
A piecewise-linear upper bound based on the convexity property. (c) A piecewise-
linear lower bound based on the convexity property. (d) (Zoomed in compared
to (a)–(c)) The optimum lies somewhere in the gray areas. The interval of uncer-
tainty obtained using the convexity property is given by � L � U � , whereas the golden
section method gives the interval between B and D.

2.2 Single-stream methods 43

L0 U0x0
1 x0

2
τ(U0−L0)

τ(U0−L0)

x

h(x)

(a)

L1 U0x1
2=x0

1 U1=x0
2x1

1

interval of uncertainty

x

h(x)

(b)

L1=x0
1L0 x1

2 U1x1
1=x0

2

interval of uncertainty

x

h(x)

(c)

Figure 2.12. Starting the golden section method. (a) First two points, x0
1 and x0

2,
are chosen in the interior of the starting interval of uncertainty, � L0 � U0 � . Next,
these are evaluated, and depending on which has the minimum, the interval of
uncertainty is adjusted; see (b) and (c).

such a way that the interval of uncertainty can be decreased by a constant fac-
tor κ � � �

5 � 1 ��� 2 in each iteration. Let
�
L0 � U0 � be the initial interval of un-

certainty. Then golden section chooses the following two interior points x0
1 and

x0
2 for evaluation: x0

1 � U0 � κ
�
U0 � L0 � and x0

2 � L0 � κ
�
U0 � L0 � . Now, sup-

pose x0
1 has the lowest function evaluation. Then the new interval of uncertainty�

L1 � U1 � is equal to
�
L0 � x0

2 � . Furthermore, the new interior points to be evaluated
are x1

1 � U1 � κ
�
U1 � L1 � and x1

2 � L1 � κ
�
U1 � L1 � . As x1

2 is the same point as x0
1,

only x1
1 has to be evaluated for the next step. Similarly, if x0

2 has the lowest function
evaluation, then L1 � x0

1 and x1
1 � x0

2. Figure 2.12 shows an example.
The improved golden section method now works as follows. Let

�
L � U � be the

interval of uncertainty with two interior points x1 and x2 such that x2 � L � U � x1 �
κ

�
U � L � . We assume that h

�
x1 � � h

�
x2 � ; if h

�
x2 � � h

�
x1 � a strategy analogous to

what we describe here can be followed. The new interval of uncertainty using the

44 Fully-specified streams

golden section method is now given by
�
L � x2 � . Using the convexity property we

can obtain a smaller interval of uncertainty
�
L � � U � � for which L � �

L and U � � x2
holds.

Golden section would choose a new point x3 � x2 � κ
�
x2 � L � so that x2 � x3 �

x1 � L. However, if we replace
�
L � x2 � by

�
L � � U � � , and then choose x3 � U � � κ

�
U � �

L � � , U ��� x3 is generally not equal to x1 � L � . This means the golden section property
does not hold for

�
L � � U � � with interior points x1 and x3. Thus, we cannot guarantee

that with new point x3 the interval is again reduced by at least a factor κ. Therefore,
we stretch the interval

�
L � � U � � to a new interval

�
L̃ � Ũ � such that the golden section

property can be maintained for the new point to evaluate. We distinguish four
possibilities for this:

(a) x1
�

U � � κ
�
U � � L � � ,

(b) U � � κ
�
U � � L � � � x1 �

�
U � � L � ��� 2,

(c)
�
U � � L � ��� 2 � x1 � L � � κ

�
U � � L � � ,

(d) x1
�

L � � κ
�
U � � L � � .

The corresponding stretched intervals are the following:

(a) L̃ � U � � �
U � � x1 ��� κ � Ũ � U � ,

(b) L̃ � L � � Ũ � �
x1 � κL � ��� �

1 � κ � ,

(c) L̃ � �
x1 � κU � ��� �

1 � κ � � Ũ � U � ,
(d) L̃ � L � � Ũ � L � �

�
x1 � L � ��� κ.

Figure 2.13 shows an example of these four possibilities. Den Boef & Den Her-
tog [2004] show that the obtained stretched interval is not larger than the interval
of uncertainty according to the regular golden section method.

This leads to the following strategy for choosing a new point for evaluation.
Improved golden section strategy, h

�
x1 � � h

�
x2 � . Determine the stretched

interval
�
L̃ � Ũ � as described above. Choose the new point x3 for function evaluation

as follows for the four previously distinguished possibilities.

(a) x1
�

U � � κ
�
U � � L � � x3 � L̃ � κ

�
Ũ � L̃ � � U � � κ

�
U � � x1 � .

(b) U � � κ
�
U � � L � � � x1 � 1

2
�
L � � U � � x3 � L̃ � κ

�
Ũ � L̃ � � 1

κ x1 � κL � .
(c) 1

2
�
L � � U � � � x1 � L � � κ

�
U � � L � � x3 � Ũ � κ

�
Ũ � L̃ � � 1

κ x1 � κU � .
(d) x1

�
L � � κ

�
U � � L � � x3 � Ũ � κ

�
Ũ � L̃ � � L � � κ

�
x1 � L � � .

In case h
�
x2 � � h

�
x1 � we have the following strategy.

Improved golden section strategy, h
�
x2 ��� h

�
x1 � . Determine the stretched

interval
�
L̃ � Ũ � . Choose the new point x3 for function evaluation as follows.

(a) x2
�

L � � κ
�
U � � L � � x3 � L � � κ

�
x2 � L � � .

(b) 1
2

�
L � � U � � � x2 � L � � κ

�
U � � L � � x3 � 1

κ x2 � κU � .

2.2 Single-stream methods 45

L x2L L′ x1 U′~

τ(U−L)

τ(U′−L)
~

x3 x3

(a)

L x2L′ U′x1 U
~

τ(U−L)

τ(U−L′)~

x3 x3

(b)

L x2L′ U′x1L
~

τ(U−L)

τ(U′−L)
~

x3 x3

(c)

L x2L′ U′x1 U
~

τ(U−L)

τ(U−L′)~

x3 x3

(d)

Figure 2.13. Stretching the interval of uncertainty obtained with the convexity
property such that the golden section property is maintained for the new function
evaluation. The four figures correspond to the four different possibilities.

(c) U � � κ
�
U � � L � � � x2 � 1

2
�
L � � U � � x3 � 1

κ x2 � κL � .
(d) x2

�
U � � κ

�
U � � L � � x3 � U � � κ

�
U � � x2 � .

When both x1 and x2 are not interior points of the new interval of uncertainty
given by

�
L � � U � � , two new points can be chosen inside

�
L � � U � � that comply with the

golden section property. Den Boef & Den Hertog prove that the improved golden
section strategy performs at least as good as the normal golden section method, i.e.,
the improved golden section method requires at most the same number of function
evaluations as the normal golden section method to reduce the interval of uncer-
tainty to a given size. Furthermore, they show that the improved golden section
method ensures that the new point chosen for function evaluation lies in the inter-
val of uncertainty. Den Boef & Den Hertog also compare the actual performance
of the improved golden section method to the performance of the normal golden
section method; see also Figure 2.14. Using 16 different video streams and for each
video stream a varying set of cost coefficients, both methods were tested on a total
of 283 instances. The observed relative decrease in number of function evaluations
required when improved golden section is used instead of normal golden section
ranges from approximately 10% to as high as 80%.

Triangle section method.
The second method that can be used to find the minimum of a univariate convex
black-box function is the triangle section method. In contrast to the improved
golden section method its objective is to give a guaranteed reduction of the range

46 Fully-specified streams

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 50 100 150 200 250 300
instance

re
la

tiv
e

de
cr

ea
se

Figure 2.14. In this graph the number of function evaluations that the improved
golden section method and the normal golden section method require are com-
pared. Both methods were stopped when the interval of uncertainty was less than
1. The graph gives for 283 instances composed out of 16 different video traces,
each with a number of different cost coefficients, the relative decrease in the num-
ber of function evaluations required by improved golden section compared to nor-
mal golden section, i.e., for each instance � igs � gs ��� gs is given, with igs and
gs the number of function evaluations required for improved golden section and
normal golden section, respectively.

of uncertainty, i.e., the interval of possible values of the minimum function value.
Figure 2.15 depicts the area in which the optimum can be, together with the points
corresponding to the function evaluations and the interval of uncertainty.

Let M be the point with the lowest function evaluation so far, f
�
M � . Then

L � � M
�

U � . Now we define ∆hk
1 as the height of the triangle in the area of

uncertainty between L � and M after k function evaluations, and ∆hk
2 as the height of

the triangle between M and U � . The size of the range of uncertainty is now given by
the maximum height of the area of uncertainty, i.e., max � ∆hk

1 � ∆hk
2 � . The range of

uncertainty itself is given by
�
h

�
M � � max � ∆hk

1 � ∆hk
2 � � h �

M � � . The triangle section
method now chooses for function evaluation the point x that lies in the middle of
the area with the largest height, i.e.,

x �
�

1
2

�
L � � M � if ∆hk

1
� ∆hk

2 �
1
2

�
M � U � � if ∆hk

1 � ∆hk
2 �

(2.16)

Den Boef & Den Hertog [2004] prove that using the triangle section method
the size of the range of uncertainty at least halves after every two new function
evaluations.

2.2 Single-stream methods 47

L L′ U′ UM

h(M)

h(L)

h(U)

x

∆hk
1

∆hk
2

range of
uncertainty

Figure 2.15. The areas of uncertainty. The three points with their function evalua-
tions are given by L, M, and U . The interval of uncertainty in the function domain
begins at L
 and ends at U
 . The height of the two areas after k function evaluations
is given by ∆hk

1 and ∆hk
2. The new point for function evaluation using the triangle

section method is x.

Finite termination.
A final characteristic that we exploit is the fact that for the presented problem the
function h is piecewise linear. This property can be used as follows to terminate the
improved golden section method or the triangle section method in a finite number
of steps with the exact minimum as result. For a piecewise-linear function the slope
of a line segment will be identified as soon as three function evaluations are made
of points on the segment. Furthermore, the optimum lies at the intersection of two
segments. When these two line segments have been identified, the exact minimum
can be obtained by determining the intersection of the two line segments.

We use this fact as follows. When a line segment containing the point with
the lowest function evaluation so far has been identified, i.e., when three adjacent
points lie on one line segment where the lowest function evaluation is either the
first or the last point, then we evaluate the point xk with the lowest lower bound
value, i.e., xk � arg minhl �

x � , with hl the lower bound on the function values; see
Figure 2.16 for an example. Both the improved golden section method and the tri-
angle section method can be adjusted to incorporate this strategy. For the improved
golden section method it is then required to check before each new function evalu-
ation whether the point with the lowest function evaluation lies on one line segment
with either the two points immediately before or the two points immediately after
itself. For the triangle section method either ∆hk

1 � 0 or ∆hk
2 � 0 holds in this case.

Although ∆hk
1 � 0 or ∆hk

2 � 0 also holds when there are two points with the low-

48 Fully-specified streams

xk

h l

Figure 2.16. A line segment containing the point with the lowest function eval-
uation so far has been identified by three adjacent function evaluations. The next
point xk that is chosen for function evaluation is the point with the lowest lower
bound value.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300
instance

re
la

tiv
e

de
cr

ea
se

Figure 2.17. In this graph the number of function evaluations that the improved
golden section method and the triangle section method require are compared. Both
use the procedure that uses piecewise linearity to determine the exact optimum.
The graph gives for 283 instances composed out of 16 different video traces, each
with a number of different cost coefficients, the relative decrease in the number
of function evaluations required by triangle section compared to improved golden
section, i.e., for each instance � ts � igs ��� igs is given, with ts and igs the number
of function evaluations required for triangle section and improved golden section,
respectively.

est function evaluation, we use it to determine when to deviate from (2.16) and to
evaluate xk � argminhl �

x � instead. If h
�
xk � � hl �

xk � , then xk is the point with the
minimum and we are done. Otherwise, we continue with new function evaluations,
also using the latest function evaluation h

�
xk � .

2.3 Results 49

Den Boef & Den Hertog [2004] compare the improved golden section method
to the triangle section method, both using the above-described procedure for find-
ing the exact minimum of a piecewise-linear convex function; see also Figure 2.17.
Using 16 different video streams and for each video stream a varying set of cost
coefficients, both methods were tested on a total of 283 instances. It follows that
for approximately 50% of the instances the triangle section method needed fewer
function evaluations than the improved golden section method, and that for an-
other 30% of the instances, both methods required the same number of function
evaluations. As the triangle section method for most instances performed better
than the improved golden section method, we use it in the experimental results of
Section 2.3.

The time complexity of the presented algorithms is �
�
T � for each call to

Algorithm 1. Searching the optimum costs �
�
logB � ε � calls for the improved

golden section method and �
�
log

�
cbB � csMs � crMr � ε � calls for the triangle sec-

tion method, where ε denotes the minimum size of the interval or range in which
the optimum can be, when the algorithm stops. As the final resulting bandwidth
and buffer shares should be rounded upwards to integer values for the final solu-
tion of MSSP, we can choose ε equal to 1 for the improved golden section method,
leading to a time complexity �

�
T logB � . For the triangle section method, we can

choose the size of ε to be linearly dependent on cb, cs, and cr, giving a time com-
plexity �

�
T log

�
B � Ms � Mr � � .

2.3 Results
In the previous sections we described a method to solve MSSP. It determines
whether a feasible solution exists, consisting of bandwidth and buffer shares and
transmission schedules, for a given set of streams. When it is used for admission
control of one or more streams, the run time of the method is an important param-
eter. Since the method is exact, i.e., it finds a solution if and only if one exists,
effectiveness of the method is not an issue to be tested. We have performed ex-
periments to study the run time and the behavior of the method, e.g., how often
each sub-problem is solved. We also considered three strategies for determining
an order in which the sub-problems of the different streams are solved. Finally,
we present some results concerning the utilization of the resulting bandwidth and
buffer shares. We first describe the setting and data used in Section 2.3.1. Then, in
Section 2.3.2, we present and discuss results.

2.3.1 Experiment setting
For the experiments we considered a bus with six nodes and buffers connected to
it. For the streams we have taken some MPEG-2-encoded movies, documentaries

50 Fully-specified streams

type T send. rec. avg. frame largest frame
1 fantasy 256 � 599 1 2 22 � 859 � 6 138 � 476
2 comedy 161 � 082 3 4 23 � 359 � 7 126 � 579
3 documentary 76 � 750 4 1 32 � 613 � 6 143 � 482
4 scifi 196 � 160 5 6 23 � 359 � 2 120 � 377
5 pop concert 99 � 785 2 3 27 � 352 � 6 111 � 372
6 thriller 141 � 800 4 5 24 � 851 � 0 129 � 617
7 comedy 74 � 931 6 1 32 � 752 � 3 154 � 283
8 action 151 � 132 6 2 31 � 114 � 1 131 � 713
9 documentary 36 � 875 1 3 26 � 829 � 5 114 � 601

10 action 184 � 371 5 3 22 � 112 � 5 111 � 101
11 pop concert 166 � 765 2 4 24 � 631 � 5 143 � 871
12 comedy 164 � 199 4 6 21 � 318 � 4 122 � 383
13 comedy 38 � 215 1 5 33 � 946 � 5 145 � 693
14 action 165 � 141 3 6 26 � 418 � 6 139 � 284
15 documentary 75 � 100 5 2 24 � 717 � 6 140 � 321

Table 2.1. The 15 streams used in the experiment. The length of each stream is
given, as well as its sending (send.) and receiving (rec.) node in the experiment
setting. Furthermore, the average frame size (bytes) and largest frame size (bytes)
of each stream are given.

buffer sizes (M)
512 � 000 1 � 024 � 000 4 � 096 � 000 8 � 192 � 000 16 � 384 � 000

delay 10, B � 125 � 000 1 - - - -
delay 10, B � 500 � 000 2 3 4 - -
delay 100, B � 125 � 000 - - 5 - -
delay 100, B � 500 � 000 - - 6 7 8

Table 2.2. Combinations of values of the delay (in time units), the bandwidth (in
bytes/time unit), and the buffer sizes (in bytes) for which experiments have been
performed, leading to a total of eight settings, denoted by the numbers ‘1’–‘8’.

and concerts, and derived the traces with the frame sizes. Table 2.1 shows for
each trace used for the experiments, its length, its sending node, and its receiving
node, and its average and largest frame size. The length of a time unit is given
by the inter-frame time, i.e., 1/25s. Furthermore, the supply and demand schemes
correspond to the frame sizes of each trace. The delay of a stream, i.e., the time
between the start of the supply scheme and the start of the demand scheme, was set
at a fixed value for each experiment. For an experiment with x streams, we used
the first x streams shown in Table 2.1, i.e., if x � 10, then streams 1–10 are used.

Several different settings have been used for the experiments as follows. We
took different values for the bus and buffer capacities and for the stream delays,
given in Table 2.2. Furthermore, we increased the number of streams on the net-
work starting with one stream, until no feasible solution existed for the chosen
experiment setting.

Finally, the Dantzig-Wolfe decomposition allows several strategies for deter-

2.3 Results 51

mining an order in which sub-problems for different streams are solved in each
iteration, i.e., for each new set of cost coefficients given by the master problem.
We have considered the following three in particular.

Strategy 1. We start with the latest stream for which a sub-problem was solved
in the previous iteration. If no solution exists for this stream that improves the
master problem, we continue with the next stream, wrapping around to the first
stream again after the last stream.

Strategy 2. The sub-problems for all streams are solved, and all solutions that
improve the master problem are returned.

Strategy 3. We start with the least recently considered stream. If no solution
exists for this stream that improves the master problem, we continue with the next
stream, wrapping around to the first stream again after the last stream.

Using strategy 1, the algorithm first searches exhaustively for a good solution
for one stream before continuing with the next stream. However, this may lead to
an unnecessarily high number of sub-problems solved and thus to an unnecessarily
long run time of the algorithm, as it tries to improve the solution for a stream to
a very detailed level that may not be necessary to find a feasible solution for the
overall problem. Using strategy 2, detailed improvements for the solution of a
stream are only searched when no feasible solution for the overall problem has
been found yet. However, the optimal solution for a stream may be affected by
a solution that is used for another stream as they both share the bandwidth and
possibly one or two buffers. Therefore, solutions generated for a stream using this
strategy may become obsolete immediately during the optimization of the master
problem when a generated solution for another stream is used. Strategy 3 takes into
account that an other stream’s solution may affect the optimal solution of a stream,
as it obtains a solution for all streams as soon as possible.

The algorithm terminates when no stream gives an improving solution any-
more. For strategies 1 and 3 this means that in the last iteration the algorithm
solves a sub-problem for each stream.

2.3.2 Experimental results
The experiments have been executed on a PC equipped with an AMD XP 1800+
processor and 512MB RAM, running Windows XP. We first discuss some feasi-
bility results and the corresponding run times of the solution method. Figure 2.18
shows the run time in seconds and the total number of sub-problem instances that
were solved for setting 3 which has delay 10, bandwidth 500 � 000, and buffer sizes
1 � 024 � 000, as a function of the number of streams. The largest number of streams
for which results are shown in the figure, i.e., 11 streams, is the first number of
streams for which no feasible solution exists for this setting.

Table 2.3 shows for all settings the maximum number of streams for which a

52 Fully-specified streams

max. # strategy 1 run time strategy 2 run time strategy 3 run time
setting streams avg. feas. 1st inf. avg. feas. 1st inf. avg. feas. 1st inf.

1 3 0.875 3.672 0.943 3.813 0.958 3.469
2 4 0.926 1.672 0.934 1.719 0.758 1.937
3 10 1.703 7.079 1.955 6.079 1.731 6.484
4 13 2.581 10.516 2.378 12.156 2.064 9.594
5 3 0.839 6.141 0.859 3.407 0.917 4.172
6 4 0.961 2.281 1.039 3.047 0.801 3.344
7 12 3.116 9.532 2.685 6.422 2.624 6.812
8 14 3.547 13.500 2.482 12.015 2.637 13.687

Table 2.3. For all eight settings this table gives the maximum number of streams
(max.) for which a feasible solution exists. Furthermore, it gives for each strategy
the run time to determine a feasible solution averaged over all numbers of streams
for which a feasible solution exists (avg. feas.). It also gives the run time for the
first number of streams which is infeasible (1st inf.), i.e., the maximum number of
streams plus one.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

strategy 1
strategy 2
strategy 3

ru
n

tim
e

(s
ec

.)

number of streams

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

strategy 1
strategy 2
strategy 3

number of streams

nu
m

be
r o

f s
ub

-p
ro

bl
em

s

Figure 2.18. Results for setting 3, which has delay 10, bandwidth 500 � 000, and
buffer sizes 1 � 024 � 000. The left graph shows the run times in seconds for the
three strategies, and the right graph the number of sub-problems that have been
solved. The results are shown up to the first number of streams for which no
feasible solution exists, in this case eleven streams.

feasible solution exists. Furthermore, it shows for each strategy the average run
time to compute a feasible solution, where the average is taken over all numbers of
streams for which a feasible solution exists for the setting. It also shows for each
strategy the run time for the lowest number of streams for which a feasible solution
does not exist.

As we can see in Figure 2.18, the increase in run time is more than linear in the
number of streams for setting 3, which we also observed for the other settings. This
is mainly caused by the fact that the number of sub-problems solved also increases
more than linearly in the number of streams, i.e., more instances per stream are
solved. Furthermore, Figure 2.18 shows that the strategy with the shortest run time

2.3 Results 53

strategy 1 strategy 2 strategy 3
sub-problem # times run time # times run time # times run time
cb � cr � cs

�
0 5 0 4 0 1 0

cb � 0 4 0.063 3 0.157 4 0.094
cr � 0 0 0 0 0 0 0
cs � 0 0 0 0 0 0 0

cr � cs � 0 0 0 0 0 0 0
cb � cr � 0 5 0.282 6 0.093 8 0.312
cb � cs � 0 6 0.688 17 0.641 8 0.344

cb � cr � cs � 0 25 5.108 14 2.516 18 3.422
total 45 6.141 44 3.407 39 4.172

Table 2.4. For setting 5, which has delay 100, bandwidth 125 � 000, and buffer
sizes 4 � 096 � 000, and with streams 1–4, this table gives the number of times each
case of the sub-problems has been solved, and the total run time for solving each
case.

depends on the number of streams involved, e.g., in this figure for some numbers
of streams strategy 3 has the shortest run time, while for some other numbers of
streams strategy 1 has the shortest run time. Likewise, Table 2.3 shows that the
strategy with the lowest average run time, or the shortest run time for the first
infeasible number of streams, depends on the setting. None of the three strategies
consistently outperformed one of the other strategies for all settings. Therefore,
none of them is the best regarding the run times. However, the differences between
the strategies are very small so it does not really matter which strategy is used.

We now continue with results concerning the behavior of the solution method.
Table 2.4 shows for one setting how many times a call has been made to each
sub-problem and the time spent solving each sub-problem. Table 2.5 shows the
same results but now accumulated over all settings and numbers of streams. For all
settings, the time used for optimizing the master problem is almost zero.

Table 2.4 shows that for setting 5 with four streams, none of the buffer mini-
mizing sub-problems needed to be solved, i.e., the sub-problems with cb

�
0, and

cs � 0 or cr � 0 or both. As for setting 5 the buffer sizes are not a bottleneck but the
bandwidth is, only the sub-problems with cb � 0 have been solved to find a feasi-
ble solution. When all settings are considered, the buffer minimizing sub-problems
have been solved several times as is shown in Table 2.5. However, it is remarkable
that for strategy 3 the sub-problems with either only cr � 0 or only cs � 0 are barely
solved, only four times in total.

Table 2.5 also shows that for all strategies the case with cb � cr � cs � 0 required
a large fraction of the total run time. Furthermore, overall strategy 3 has solved
the fewest sub-problems and has the lowest total run time, while strategy 1 has
solved the most sub-problems and has the highest total run time. However, where
the differences in number of sub-problems solved are large, the differences in run

54 Fully-specified streams

strategy 1 strategy 2 strategy 3
sub-problem # times run time # times run time # times run time
cb � cr � cs

�
0 702 0 474 0 81 0

cb � 0 134 2.796 156 5.203 178 5.814
cr � 0 44 0.434 35 0.489 4 0.047
cs � 0 42 0.205 24 0.246 0 0

cr � cs � 0 77 1.000 36 0.593 58 1.597
cb � cr � 0 134 15.373 94 8.468 116 10.556
cb � cs � 0 198 18.557 112 9.639 73 7.923

cb � cr � cs � 0 916 166.158 787 154.666 707 147.923
total 2 � 247 204.523 1 � 718 179.304 1 � 217 173.860

Table 2.5. The total number of instances of each sub-problem that has been solved
for each strategy and the total run time involved, accumulated over all settings and
all numbers of streams that were considered.

Total utilization Min. utilization Max. utilization
setting streams UB UM Umin

B Umin
M Umax

B Umax
M

1 3 62.12 44.43 57.17 40.54 68.10 53.78
2 4 55.79 40.95 45.29 35.68 71.33 55.80
3 10 58.81 47.28 43.10 36.55 77.69 58.24
4 13 68.13 37.55 58.08 30.26 84.42 53.85
5 3 63.80 49.87 57.15 39.67 73.66 60.73
6 4 59.80 52.10 47.14 39.30 78.60 68.80
7 12 62.71 62.46 48.15 51.24 82.12 79.33
8 14 74.88 42.34 65.54 34.33 87.76 63.49

Table 2.6. The utilization of the reserved bandwidth (bus) and buffer shares in
percentages. For each setting (first column) we considered the results for the
maximum number of admitted streams (second column), all using strategy 3 for
considering the sub-problems. The third and fourth column give the total utiliza-
tion over all streams for the reserved bandwidth and buffer shares, UB and UM,
respectively. The fifth and sixth column give the minimum utilization, U min

B and
Umin

M , as achieved by a single stream in the setting. The seventh and eighth column
give the maximum utilization, U max

B and Umax
M , as achieved by a single stream in

the setting.

time are relatively small, i.e., strategy 3 has solved over 40% fewer sub-problems
than strategy 1, but the total run time of strategy 3 is less than 20% below the total
run time of strategy 1. This is caused by the fact that the difference in number
of sub-problems solved is mostly a result of the difference in the number of times
the sub-problem cb � cr � cs

�
0 is solved. The difference in the number of times the

sub-problem cb � cr � cs � 0 is solved is much lower, while this sub-problem takes at
least 80% of the total run time for each strategy.

Finally, in Table 2.6 we consider the utilization of the obtained bandwidth and
buffer shares. We used the results for the maximum number of streams for each
setting with strategy 3 for selecting sub-problems. The utilization percentages are
determined as follows. The total utilization of the bandwidth is defined as the

2.3 Results 55

percentage of the total reserved bandwidth that is actually required for transmission
by all streams, i.e., the total bandwidth utilization UB is given by

UB � ∑d ��� ∑t ��� Pd
�
t �

∑d ���
�
Td � δ � bd

� (2.17)

where Td is the length of a stream as given in Table 2.1 and δ the delay. The total
utilization of the buffer shares is defined as the percentage of the buffer shares that
is actually used for buffering data by all streams, i.e., the total buffer utilization UM

is given by

UM � ∑d ��� ∑t ��� Pd
�
t � �

δ � 1 �
∑d ���

�
Td � δ � �

msd � d � mrd � d � � (2.18)

The total data supply of a stream is multiplied by δ � 1 since all data remain in the
network for δ time units and during the time unit in which data is transmitted it
needs to be buffered in both the sending and the receiving buffer. Furthermore, we
use the fact that in our experiments the demand of data equals the supply of data
with a difference of δ time units, i.e., Cd

�
t � � Pd

�
t � δ � .

The utilization of the bandwidth for a single stream is defined as the percentage
of the reserved bandwidth share that is required for transmission, i.e., for each
d ��� , the bandwidth utilization UB

�
d � is given by

UB
�
d � � ∑t ��� Pd

�
t ��

Td � δ � bd
� (2.19)

The minimum and maximum utilization of the bandwidth U min
B and Umax

B give
the minimum and maximum of the bandwidth utilization, respectively, over all
streams, i.e.,

Umin
B � min

d ��� UB
�
d � � (2.20)

and
Umax

B � max
d ��� UB

�
d � � (2.21)

Similarly, the utilization of the buffers for a single stream is defined as the percent-
age of the reserved buffer shares that is actually used for buffering data, i.e., for
each d �
� , the buffer utilization UM

�
d � is given by

UM
�
d � � ∑t ��� Pd

�
t � �

δ � 1 ��
Td � δ � �

msd � d � mrd � d � � (2.22)

The minimum and maximum utilization of the buffers U min
M and Umax

M give the
minimum and maximum of the buffer utilization, respectively, over all streams,
i.e.,

Umin
M � min

d ��� UM
�
d � � (2.23)

56 Fully-specified streams

and
Umax

M � max
d ��� UM

�
d � � (2.24)

The total bandwidth utilization varies between 55% and 75% for the different
settings, thus giving a relatively high amount of unused bandwidth. The minimum
and maximum bandwidth utilization show that for the different streams the band-
width utilization also varies heavily for each setting, with some streams having a
utilization below 50% and other streams having a utilization above 80%. Higher
bandwidth utilizations might be obtained when bandwidth reservations may be al-
tered during the run time of a stream.

If we compare the different settings, we notice that settings 4 and 8 have the
highest total bandwidth utilization percentages. This can be explained by the fact
that both settings also have for their given values of B and the delay the largest
available buffers compared to other settings; see Table 2.2. With more buffer space
available, transmission can be made smoother for more streams, thus leading to
lower bandwidth reservations and higher bandwidth utilizations. At the same time
it would also lead to higher buffer reservations and thus lower buffer utilizations.
However, if we compare setting 2 to setting 3 and setting 6 to setting 7 we notice
that the bandwidth utilization as well as the buffer utilization increase. An expla-
nation for this observation lies in the fact that the number of streams used for the
results of settings 3 and 7 are more than twice the number of streams used for the
results of settings 2 and 6. Since every video stream is different, with some be-
having more efficiently regarding bandwidth and buffer utilization than others, an
increase in the number of streams can lead to a higher total bandwidth utilization
as well as a higher total buffer utilization.

3
Leaky-bucket-controlled streams

In this chapter we consider the problem in which leaky-bucket-controlled streams
need to be given shares of the bandwidth and buffers. As mentioned in Chapter 1, a
leaky-bucket-controlled stream does not have a supply and demand scheme given
as can be the case for a fully-specified stream in Chapter 2, but only an upper bound
on the actual supply. Furthermore, unlike a fully-specified stream with controllable
supply or demand, the supply and demand of a leaky-bucket-controlled stream
cannot be chosen in accordance with its upper bound; the actual realization of the
supply is only known when the data is supplied, but we know that it satisfies the
given upper bound.

We first describe a leaky-bucket controller and its data output in Section 3.1.
Then, we describe the problem for leaky-bucket-controlled streams in Section 3.2
and we show how it can be solved using the solution method for fully-specified
streams. In Section 3.3 we show how the sub-problems can be efficiently solved for
leaky-bucket-controlled streams. Finally, in Section 3.4 we present experimental
results.

3.1 Leaky-bucket controllers
While normally the supply and demand schemes are known for pre-recorded
streams, they are generally not known for live video streams. In order to give

57

58 Leaky-bucket-controlled streams

σ

ρ

A P~(σ,ρ)

Figure 3.1. A � σ � ρ � -leaky bucket controller.

guaranteed resource reservations to live video streams we need to use traffic char-
acterizations of the streams. These characterizations can be deterministic such as
the

�
σ � ρ � -model [Cruz, 1991a] and the D-BIND model [Knightly & Zhang, 1995],

or probabilistic such as the model by Krunz & Tripathi [1997]. As in an IHDN
typically only a few streams, e.g. 5–10 streams, use the network simultaneously,
we may not hope that peaks in the amount of supplied data are cancelled out over
the total set of streams. Therefore, a deterministic approach of admission test for
live video streams is required.

Deterministic traffic characterizations give a worst-case bound on the amount
of data that is supplied during any time window. More specifically, let ξ be the size
of a time window, and let P

�
t � denote the cumulative supply of data up to time unit

t. Then a traffic characterization described by a function f bounds the supply of
data by

P
�
t � ξ � � P

�
t � � f

�
ξ � � (3.1)

for all t. When f is a piecewise-linear, concave function, the traffic characterization
corresponds to a stream controlled by one or more leaky buckets [Turner, 1986].

Figure 3.1 gives an example of a
�
σ � ρ � -leaky-bucket controller. It consists of

a bucket of size σ in which tokens are generated at rate ρ. If this bucket is full,
then newly generated tokens are lost. Data arrives at the controller according to an
arrival process A. Each data packet requires a token from the bucket before it may
pass the controller. If a token is not available for a packet, it waits in a buffer at
the controller until it can get a token from the bucket. We assume that this buffer
is large enough to store all data packets that need to wait for a token. The resulting
data output P of the controller is characterized by

�
σ � ρ � , also denoted as P �

�
σ � ρ � ,

i.e., f
�
t � � σ � ρt. Here, ρ can be seen as the maximum sustainable rate of data,

while σ gives the maximum burst size of data. The function f
�
t � � σ � ρt gives

an upper bound on the amount of data that can leave the leaky-bucket controller

3.2 Problem 59

time window

maximum
total data
output

σ

ρ

Figure 3.2. The maximum data
output of a � σ � ρ � -leaky-bucket con-
troller for all time windows larger
than 0.

time window

maximum
total data
output

σ1

σ2

σ3

Figure 3.3. The maximum data
output of a sequence of three leaky-
bucket controllers, each with their
own characteristics. The white area
gives the possible data output for
each time window.

during a time window of size t; see Figure 3.2.
Besides a single leaky-bucket controller, multiple leaky-bucket controllers

placed in a sequence can also be used to control the data. Each leaky-bucket con-
troller limits the amount of data that can pass during a certain time window. For a
given time window, the controller with the lowest limit determines the amount of
data that can result as output. However, the controller with the lowest limit is gen-
erally not always the same for all possible time windows. A controller with a small
token buffer σ but a high token rate ρ will be more limiting for small time windows,
while a controller with a large token buffer and a low token rate will be more lim-
iting for large time windows. The upper bound on the resulting data output during
a time window t is thus given by f

�
t � � mini � �

1 � � � � � k � � σi � ρit � for a sequence of k
leaky-bucket controllers; see Figure 3.3 for an example. The resulting upper bound
is piecewise linear and concave.

3.2 Problem
In this section we describe the bandwidth and buffer allocation problem with
streams controlled by one or more leaky buckets. We start with the assumptions and
notation specific for the leaky-bucket-controlled streams in Section 3.2.1. Then,
we give a formal description for the problem concerning leaky-bucket-controlled
streams in Section 3.2.2. In Section 3.2.3 we show that the problem concerning
leaky-bucket-controlled streams can be reduced to the problem concerning fully-
specified stream.

60 Leaky-bucket-controlled streams

3.2.1 Model assumptions and notation
The assumptions we make for leaky-bucket-controlled streams are generally the
same as the assumptions for fully-specified streams; see Section 2.1.1. The only
difference lies in the supply and demand of data. We assume that for a leaky-
bucket-controlled stream, the data that is supplied to the network at the sending
node, is shaped by one or more leaky buckets. The supply can then be bounded by
a piecewise-linear, concave function. Next, we assume that the demand of data of a
leaky-bucket-controlled stream is a displaced copy of the supply function, i.e., the
amount of data that is supplied during a time unit at the sending node, is the exact
amount of data that is demanded at the receiving node after a given delay.

The notation we use for a leaky-bucket-controlled stream is similar to the no-
tation used for fully-specified streams, introduced in Section 2.1.2. For ease of use
we again denote the set of streams by � . Whenever a stream d ��� is considered in
this thesis, it should be clear from the context whether it is a fully-specified stream,
a leaky-bucket-controlled stream, or whether the exact type of stream is not rele-
vant. The new notation which we introduce here concerns the upper bound on data
supply. For each leaky-bucket-controlled stream d � � the supply of data during
a time window of t time units, t � 1 ������� � T , is bounded by fd

�
t � with fd positive,

piecewise-linear, and concave on
�
0 � T � , and fd

�
0 � � 0. The delay is given by δd for

each stream d ��� . As buffer underflow and overflow depend on the actual supply
and demand, we use for the leaky-bucket-controlled streams d ��� , analogously to
fully-specified streams, pd

�
t � as the actual supply scheme and cd

�
t � as the actual

demand scheme for all t � � . Since demand equals the supply with delay δd , it
follows that for all t ��� ,

cd
�
t � � pd

�
t � δd � � (3.2)

The decision variables for each leaky-bucket-controlled stream d �
� are sim-
ilar to the decision variables of fully specified streams, i.e., the reserved bus band-
width bd and the reserved buffer sizes msd � d and mrd � d at the sending node and
at the receiving node, respectively. As the actual supply and demand are not
known beforehand, we cannot give a transmission schedule xd

�
t � � t ��� . How-

ever, we can give a strategy that describes xd
�
t � � t � � for which we will use

the same symbol. Thus the transmission schedule of a leaky-bucket-controlled
stream is given implicitly by xd

�
t � � t ��� , which we therefore call the transmission

strategy. An example of a transmission strategy is given by the greedy strategy
x

�
t � � min � b � P �

t � � X
�
t � 1 � � mr � C

�
t � 1 � � X

�
t � 1 � � , which tries to transmit

data as soon as possible.
In this chapter, Pd

�
t � , Cd

�
t � , and Xd

�
t � are also defined as the cumulative sup-

ply scheme, cumulative demand scheme, and cumulative transmission strategy, re-
spectively. To avoid tedious formulations concerning function values at the bound-

3.2 Problem 61

aries of their domains, we assume that for all functions h on � used in this chapter,
h

�
t � � 0 if t

�
0, and h

�
t � � h

�
T � if t

�
T .

3.2.2 Multiple Leaky-Bucket Streams Smoothing Problem
We can now define the following problem for a set of leaky-bucket-controlled
streams.

Definition 3.1. Multiple Leaky-Bucket Streams Smoothing Problem (MLB-
SSP). Given are a set � of nodes, with for each node n ��� a buffer capacity
Mn, a set � of time units, and a bandwidth B. Furthermore, a set � of streams is
given with for each stream d � � a sending node sd � � with a concave, piecewise-
linear function fd

�
t � that bounds the supply of data during time windows of size

t � 1 � 2 ������� � T , and a receiving node rd ��� with a delay δd that indicates the num-
ber of time units between supply of data and demand of the same data.

Determine for all streams d � � values for the bandwidth share bd
�

0 and
buffer shares msd � d � mrd � d

�
0, and a transmission strategy xd

�
t � for all t � � , such

that the bandwidth B and buffer capacities Mn will not be exceeded and buffer
shares will neither overflow nor underflow. �

Any solution to MLBSSP must satisfy the following constraints for all actual
supply schemes pd

�
t � that satisfy (3.1), i.e., that are bounded by fd

�
t � for stream d,

and for all actual demand schemes c
�
t � that satisfy (3.2), i.e., that are equal to the

supply shifted by δd . These constraints are similar to (2.1)–(2.7) for MSSP.
The total bandwidth and total buffer sizes reserved may not exceed the band-

width and buffer capacities, i.e.,

∑
d ���

bd
�

B , (3.3)

and,

∑
d ����� sd � n

mn � d � ∑
d ����� rd � n

mn � d
�

Mn , � n ��� . (3.4)

The amount of data transmitted for stream d during time unit t may not exceed
the reserved bandwidth share of stream d, i.e.,

xd
�
t � � bd , � d �
� � t ��� . (3.5)

Furthermore, the reserved buffer shares at the sending and receiving node of
each stream may not underflow nor overflow, i.e., we must have

Pd
�
t � � Xd

�
t � �

0 , � d ��� � t ��� , (3.6)

Pd
�
t � � Xd

�
t � 1 � � msd � d , � d �
� � t ��� , (3.7)

Xd
�
t � � Cd

�
t � �

0 , � d ��� � t ��� , (3.8)

62 Leaky-bucket-controlled streams

Xd
�
t � � Cd

�
t � 1 � � mrd � d , � d �
� � t ��� . (3.9)

In the next section we show that instead of considering all such supply and de-
mand schemes, we may use the functions fd as supply schemes when determining
an optimal solution.

3.2.3 Problem reduction
In this section we show that MLBSSP reduces to MSSP. This means that we can
use the same solution method for MLBSSP as for MSSP. To show that MLBSSP
reduces to MSSP, we show that we may use fd

�
t � as actual cumulative supply

scheme Pd
�
t � and fd

�
t � δd � as actual cumulative demand scheme Cd

�
t � .

First, we consider the constraints involving the actual supply and demand
schemes for the leaky-bucket-controlled streams, i.e., constraints (3.6)–(3.9) for
all d � � . For ease of notation we omit the subscript d in this section as each of
these constraints involve only one stream. We call a solution b, ms, and mr for
a single leaky-bucket-controlled stream feasible w.r.t. (3.5)–(3.9), if for all p and
c that satisfy (3.1) and (3.2), there exists a transmission strategy for which (3.5)–
(3.9) are satisfied. Instead of considering all p that satisfy (3.1) and c that satisfy
(3.2), we now show that it is sufficient to consider only a worst-case supply which
is given by f directly, i.e., let for all t �
� ,

P
�
t � � f

�
t � � (3.10)

C
�
t � � f

�
t � δ � � (3.11)

It can be easily verified that this function P satisfies (3.1) by the concavity of f .
The feasible solutions of one stream are then described by the following con-

straints.

x
�
t � �

b , � t �
� � (3.12)

f
�
t � � X

�
t � �

0 , � t �
� � (3.13)

f
�
t � � X

�
t � 1 � �

ms , � t �
� � (3.14)

X
�
t � � f

�
t � δ � �

0 , � t �
� � (3.15)

X
�
t � � f

�
t � δ � 1 � �

mr , � t �
� � (3.16)

Note that (3.12) is the same as (3.5). We call a solution b, ms, and mr feasible
w.r.t. (3.12)–(3.16), if there exists a transmission strategy for which (3.12)–(3.16)
are satisfied. Next, we show that a solution b, ms, and mr is feasible w.r.t. (3.12)–
(3.16), if and only if it is feasible w.r.t. (3.5)–(3.9).

Theorem 3.1. A solution b, ms, and mr is feasible w.r.t. (3.12)–(3.16), if and only
if it is feasible w.r.t. (3.5)–(3.9).
Proof. “ � ” Let b, ms, and mr be a feasible solution w.r.t. (3.5)–(3.9). As P � f

3.2 Problem 63

is a possible actual supply function, it follows immediately that b, ms, and mr is a
feasible solution w.r.t. (3.12)–(3.16).

“ � ” Let b, ms, and mr be a feasible solution w.r.t. (3.12)–(3.16) with a trans-
mission strategy given by x � �

t � . Now consider the greedy transmission strategy
x

�
t � � min � b � P �

t � � X
�
t � 1 � � mr � C

�
t � 1 � � X

�
t � 1 � � for any actual supply P

satisfying (3.1) and for any actual demand C satisfying (3.2). It follows immedi-
ately from the definition of x

�
t � that (3.5), (3.6), and (3.9) are satisfied. So we only

need to show that (3.7) and (3.8) are also satisfied.
Let t � � . We now choose

k̃ � max � k � � 1 ������� � t � 1 �
���� x

�
k � � P

�
k � � X

�
k � 1 � �

x
�
k � � mr � C

�
k � 1 � � X

�
k � 1 �

�
� (3.17)

so for all k with k̃ � k � t, x
�
k � � b holds. We first show that (3.7) is satisfied,

i.e., P
�
t � � X

�
t � 1 � � ms. We distinguish three cases, viz. (i) k̃ � � ∞, i.e., k̃ is

undefined, (ii) x
�
k̃ � � P

�
k̃ � � X

�
k̃ � 1 � , and (iii) x

�
k̃ � � mr � C

�
k̃ � 1 � � X

�
k̃ � 1 � .

(i) If k̃ � � ∞, then X
�
t � 1 � � �

t � 1 � b. We derive

P
�
t � � X

�
t � 1 � � P

�
t � � �

t � 1 � b

� use (3.1)) and (3.12) for x � �
t � � �

f
�
t � � X � �

t � 1 �
� use (3.14) � �

ms �
(ii) If x

�
k̃ � � P

�
k̃ � � X

�
k̃ � 1 � , then X

�
k̃ � � P

�
k̃ � . We derive

P
�
t � � X

�
t � 1 � � P

�
t � � X

�
k̃ � �

t � 1

∑
k � k̃ � 1

x
�
k �

� x
�
k � � b for k � k̃ � � P

�
t � � P

�
k̃ � � �

t � 1 � k̃ � b

� use (3.1) � �
f

�
t � k̃ � � �

t � 1 � k̃ � b

� (3.12) for x � �
t � � �

f
�
t � k̃ � � X � �

t � k̃ � 1 �
� use (3.14) � �

ms �
(iii) If x

�
k̃ � � mr � C

�
k̃ � 1 � � X

�
k̃ � 1 � , then X

�
k̃ � � mr � C

�
k̃ � 1 � . We derive

P
�
t � � X

�
t � 1 � � P

�
t � � X

�
k̃ � �

t � 1

∑
k � k̃ � 1

x
�
k �

� x
�
k � � b for k � k̃ � � P

�
t � � mr � C

�
k̃ � 1 � � �

t � 1 � k̃ � b

� use (3.2) � � P
�
t � � mr � P

�
k̃ � δ � 1 � � �

t � 1 � k̃ � b

64 Leaky-bucket-controlled streams

� use (3.1) � � f
�
t � �

k̃ � δ � 1 � � � mr �
�
t � 1 � k̃ � b �

� (3.16) for X � �
δ � 1 �

and f
�
0 � � 0

�
�

f
�
t � k̃ � δ � 1 � � X � �

δ � 1 � � �
t � 1 � k̃ � b

� (3.12) for x � �
t � � �

f
�
t � k̃ � δ � 1 � � X � �

δ � 1 � �
t � k̃ � δ

∑
k � δ � 2

x � �
k �

� f
�
t � k̃ � δ � 1 � � X � �

t � k̃ � δ �
� use (3.14) � �

ms �
To show that (3.8) is satisfied we make a similar derivation, where instead of k̃,

we use k̂, which also includes time unit t, i.e.,

k̂ � max � k � � 1 ������� � t �
���� x

�
k � � P

�
k � � X

�
k � 1 � �

x
�
k � � mr � C

�
k � 1 � � X

�
k � 1 �

�
� (3.18)

so for all k with k̂ � k
�

t, x
�
k � � b holds. Again, we distinguish three cases, viz.

(i) k̂ � � ∞, (ii) x
�
k̂ � � P

�
k̂ � � X

�
k̂ � 1 � , and (iii) x

�
k̂ � � mr � C

�
k̂ � 1 � � X

�
k̂ � 1 � .

(i) If k̂ � � ∞, then X
�
t � � tb. We derive

X
�
t � � C

�
t � � tb � P

�
t � δ �

� use (3.1) and (3.12) for x � �
t � � �

X � �
t � � f

�
t � δ �

� use (3.15) � �
0 �

(ii) If x
�
k̂ � � P

�
k̂ � � X

�
k̂ � 1 � , then X

�
k̂ � � P

�
k̂ � . We derive

X
�
t � � C

�
t � � X

�
k̂ � �

t

∑
k � k̂ � 1

x
�
k � � P

�
t � δ �

� P
�
k̂ � �

�
t � k̂ � b � P

�
t � δ � �

If k̂
�

t � δ, then it follows immediately that X
�
t � � C

�
t � �

0. If k̂ � t � δ,
we derive

X
�
t � � C

�
t � � �

t � k̂ � b �
t � δ

∑
k � k̂ � 1

p
�
k �

� use (3.1) � � �
t � k̂ � b � f

�
t � δ � k̂ �

� (3.12) for x � �
t � � �

X � �
t � k̂ � � f

�
t � δ � k̂ �

� use (3.15) � �
0 �

(iii) If x
�
k̂ � � mr � C

�
k̂ � 1 � � X

�
k̂ � 1 � , then X

�
k̂ � � mr � C

�
k̂ � 1 � . We derive

3.3 Single-stream methods 65

X
�
t � � C

�
t � � X

�
k̂ � �

t

∑
k � k̂ � 1

x
�
k � � C

�
t �

� mr � C
�
k̂ � 1 � �

�
t � k̂ � b � C

�
t �

� use (3.2) � � mr �
�
t � k̂ � b � P

�
k̂ � δ � 1 � � P

�
t � δ �

� mr �
�
t � k̂ � b �

t � δ

∑
k � k̂ � δ

p
�
k �

� use (3.1) � �
mr �

�
t � k̂ � b � f

�
t � k̂ � 1 �

� (3.16) for X � �
δ � 1 �

and f
�
0 � � 0

�
�

X � �
δ � 1 � �

�
t � k̂ � b � f

�
t � k̂ � 1 �

� (3.12) for x � �
t � � �

X � �
δ � 1 � �

t � k̂ � δ � 1

∑
k � δ � 2

x � �
k � � f

�
t � k̂ � 1 �

� X � �
t � k̂ � 1 � δ � � f

�
t � k̂ � 1 �

� use (3.15) � �
0 �

�

Both sets of constraints thus describe the same solutions b, ms, and mr. Fur-
thermore, the greedy transmission strategy given by x

�
t � � min � b � P �

t � � X
�
t �

1 � � mr � C
�
t � 1 � � X

�
t � 1 � � is feasible. Therefore, we may use f as the actual

supply and we can use (3.12)–(3.16) instead of (3.5)–(3.9) for the leaky-bucket-
controlled streams. As a corollary of this theorem we have that MLBSSP reduces
to MSSP.

Corollary 3.1. MLBSSP reduces to MSSP.
Proof. Consider an instance of MLBSSP. Take the sets � , � , and � as direct
input for MSSP as well as the capacities B and Mn for all n ��� . Now take as
supply scheme for each d � � , pd

�
t � � fd

�
t � � fd

�
t � 1 � , and as demand scheme

for each d � � , cd
�
t � � fd

�
t � δd � � fd

�
t � δd � 1 � . As any solution bd , msd � d ,

and mrd � d to this instance of MSSP satisfies (2.1)–(2.7) for the greedy transmission
strategy, it follows that it also satisfies (3.3), (3.4), and (3.12)–(3.16). Furthermore,
from Theorem 3.1 is follows that any feasible solution w.r.t. (3.12)–(3.16) is also
feasible w.r.t. (3.5)–(3.9). �

3.3 Single-stream methods
In this section we show how to efficiently solve the LP sub-problem 2.15 on
page 19 for leaky-bucket-controlled streams. First, we derive in Section 3.3.1 four
new stream constraints that we use to determine the solution of all cases of the
sub-problems for leaky-bucket-controlled streams. In Section 3.3.2 we consider

66 Leaky-bucket-controlled streams

the cases for which only either the bus share or the sending buffer share or the re-
ceiving buffer share needs to be minimized. In Section 3.3.3 we consider the case
for which both the sending buffer share and the receiving buffer share need to be
minimized. In Section 3.3.4 we show how the cases can be solved for which an op-
timal trade-off has to be made between the bus share and one or two buffer shares.
A feasible transmission strategy is for all cases given by the greedy transmission
strategy.

The methods that we present in this section all use the piecewise linearity of
the function f . For methods solving these sub-problems in which f only needs to
be concave we refer to Den Boef et al. [2004].

3.3.1 Necessary and sufficient constraints
In the previous section we have shown that the solution approach for MSSP can
also be used to obtain an optimal solution for MLBSSP. However, the cumulative
supply and demand schemes that are used in the instance of MSSP constructed
from a given instance of MLBSSP to solve the latter, have some specific properties,
namely they are piecewise-linear and concave. These properties can be exploited
to solve the sub-problems even more efficiently. In this section we derive four new
constraints for sub-problems in which the cumulative supply scheme is given by
a concave function f , and the cumulative demand scheme by the same function
f shifted in time by a delay δ, i.e., by f

�
t � δ � . We also show that these new

constraints are sufficient. In Sections 3.3.2–3.3.4 we show how these constraints
can be used to solve the sub-problems for a leaky-bucket-controlled stream, i.e.,
for a piecewise-linear, concave function f .

Constraints (3.12)–(3.16) include transmission strategy x
�
t � , with which no

costs are associated in the objective function of sub-problem (2.15). Therefore,
we first derive four necessary constraints on b, ms, and mr, that do not involve the
transmission strategy. Then we show that they are sufficient, i.e., any solution that
satisfies these constraints, is also feasible w.r.t. (3.12)–(3.16), so that we do not
need to use (3.12)–(3.16).

We derive four necessary constraints using the fact that the allocated bandwidth
share b should be large enough to avoid buffer underflow at the receiving buffer and
buffer overflow at the sending buffer. To avoid buffer underflow at the receiving
buffer, the bandwidth share should be large enough such that for each time unit the
cumulative amount of data demanded could have been transmitted, i.e., such that,

f
�
t � � �

t � δ � b � � t � � � (3.19)

Figure 3.4 gives a graphical representation of this constraint.
Now to avoid buffer overflow at the sending buffer, the bandwidth share should

be large enough such that for each time unit the difference between the cumulative

3.3 Single-stream methods 67

f(t)

b

δ time

data

f(t − δ)

Figure 3.4. The bandwidth share b should be large enough such that all data can
be transmitted in time before it is demanded. The minimum value of b is thus
given by the slope of the line starting in � 0 � 0 � that touches f � t � δ � .

amount of data supplied and the cumulative amount of data that maximally could
have been transmitted, is not larger than the sending buffer share, i.e., such that,

f
�
t � � �

t � 1 � b
�

ms � � t ����� (3.20)

See also Figure 3.5.
Constraints (3.19) and (3.20) are derived with the assumption that data can be

transmitted using the full bandwidth share. However, all data that is transmitted
needs to be buffered at the receiving side. When the buffer share at the receiving
side is completely filled, no more data can be transmitted until data is demanded
from the receiving buffer. A larger bandwidth share may then be needed to trans-
mit data at a later time such that buffer underflow at the receiving side and buffer
overflow at the sending side are avoided.

There are δ � 1 time units in which data can be transmitted before data is de-
manded from the receiving buffer. The amount of data that can be transmitted
during these δ � 1 time units is thus bounded by the receiving buffer share mr. The
bandwidth share b should be large enough such that after the first δ � 1 time units
enough data can be transmitted to avoid buffer underflow at the receiving side.
Constraint (3.19) states that for time units t � � δ � 1, to avoid buffer underflow,
we need f

�
t � � δ � � t � b. As during the first δ � 1 time units only mr data can be

transmitted, we now have for t � � δ � 1, that f
�
t � � δ � � mr

� �
t � � �

δ � 1 � � b. If we
take t � t � � δ, we get,

f
�
t � � mr

� �
t � 1 � b � � t �
� � (3.21)

Figure 3.6 shows an example of this.
Furthermore, the bandwidth share should be large enough such that after the

68 Leaky-bucket-controlled streams

f(t)

b

time

data

ms

Figure 3.5. The bandwidth share should be large enough such that all data can
be transmitted in time before then sending buffer share is full. The lower bound
in this figure concerning the sending buffer is obtained by shifting the supply
function f downwards with the size of the sending buffer share and by shifting it
one time unit leftwards. This latter shift is required as data is supplied at the begin
of a time unit and is buffered completely before it is transmitted.

f(t)

b

δ time

data

f(t − δ)

mr

δ+1

Figure 3.6. The receiving buffer share can limit the amount of data that can be
transmitted during a period of time. As data is supplied at the begin of a time
unit and demanded at the end of a time unit, there are δ � 1 time units to transmit
data before the demand starts. This means that the upper bound in this figure
concerning the receiving buffer share is obtained by shifting the demand function
upwards with the size of the receiving buffer share and by shifting it one time unit
to the right.

3.3 Single-stream methods 69

first δ � 1 time units enough data can be transmitted to avoid buffer overflow at
the sending side. Constraint (3.20) states that for time units t � δ � 1, we need
f

�
t � � ms

� �
t � 1 � b. As during the first δ � 1 time units only mr data can be

transmitted, we now have for t � δ � 1, f
�
t � � ms � mr

� �
t � 1 � �

δ � 1 � � b. It now
follows that,

f
�
t � � mr �

�
t � δ � 2 � b

�
ms � � t � δ � 1 � (3.22)

Notice that (3.21) and (3.22) follow from (3.19) and (3.20), respectively, by de-
creasing the amount of data to be transmitted, given by f

�
t � , with mr, and by

decreasing the number of time units during which data can be transmitted, given
directly in front of b, with δ � 1.

We continue with showing that (3.19)–(3.22) are not only necessary but also
sufficient for any solution that is feasible w.r.t. (3.12)–(3.16).

Theorem 3.2. Any feasible solution b, ms, and mr w.r.t. (3.19)–(3.22) is also a fea-
sible solution w.r.t. (3.12)–(3.16).
Proof. Let b, ms, and mr satisfy (3.19)–(3.22). Again, we take the greedy transmis-
sion strategy x

�
t � � min � b � f

�
t � � X

�
t � 1 � � mr � f

�
t � δ � 1 � � X

�
t � 1 � � . It follows

immediately from the transmission strategy that (3.12), (3.13), and (3.16) are satis-
fied. Let t ��� . We choose k̃ analogous to (3.17) with P

�
t � � f

�
t � , i.e., k̃ � max � k �

� 1 ������� � t � 1 � �
x

�
k � � f

�
k � � X

�
k � 1 � � x

�
k � � mr � f

�
k � δ � 1 � � X

�
k � 1 � � .

Thus, for all k with k̃ � k � t, x
�
k � � b holds. First, we consider (3.14). We

again distinguish three cases, viz. (i) k̃ � � ∞, (ii) x
�
k̃ � � f

�
k̃ � � X

�
k̃ � 1 � , and (iii)

x
�
k̃ � � mr � f

�
k̃ � δ � 1 � � X

�
k̃ � 1 � .

(i) If k̃ � � ∞, then X
�
t � 1 � � �

t � 1 � b. We derive

f
�
t � � X

�
t � 1 � � f

�
t � � �

t � 1 � b

� use (3.20) � �
ms �

(ii) If x
�
k̃ � � f

�
k̃ � � X

�
k̃ � 1 � , then X

�
k̃ � � f

�
k̃ � . We derive

f
�
t � � X

�
t � 1 � � f

�
t � � X

�
k̃ � �

t � 1

∑
k � k̃ � 1

x
�
k �

� f
�
t � � f

�
k̃ � � �

t � k̃ � 1 � b

� concavity of f � �
f

�
t � k̃ � � �

t � k̃ � 1 � b

� use (3.20) � �
ms �

(iii) If x
�
k̃ � � mr � f

�
k̃ � δ � 1 � � X

�
k̃ � 1 � , then X

�
k̃ � � mr � f

�
k̃ � δ � 1 � . We

70 Leaky-bucket-controlled streams

derive

f
�
t � � X

�
t � 1 � � f

�
t � � X

�
k̃ � �

t � 1

∑
k � k̃ � 1

x
�
k �

� x
�
k � � b for k � k̃ � � f

�
t � � mr � f

�
k̃ � δ � 1 � � �

t � k̃ � 1 � b

� concavity of f � �
f

�
t � k̃ � δ � 1 � � mr �

�
t � k̃ � 1 � b

� use (3.22) � �
ms �

To show that (3.15) is satisfied, we make a similar derivation, where again we
use k̂ analogous to (3.18) with P

�
t � � f

�
t � , i.e., k̂ � max � k � � 1 ������� � t � �

x
�
k � �

f
�
k � � X

�
k � 1 � � x

�
k � � mr � f

�
k � δ � 1 � � X

�
k � 1 � � . Again, we distinguish

three cases, viz. (i) k̂ � � ∞, (ii) x
�
k̂ � � f

�
k̂ � � X

�
k̂ � 1 � , and (iii) x

�
k̂ � � mr �

f
�
k̂ � δ � 1 � � X

�
k̂ � 1 � .

(i) If k̃ � � ∞, then X
�
t � � tb. We derive

X
�
t � � f

�
t � δ � � tb � f

�
t � δ �

� use (3.19) � �
0 �

(ii) If x
�
k̃ � � f

�
k̃ � � X

�
k̃ � 1 � , then X

�
k̃ � � f

�
k̃ � . We derive

X
�
t � � f

�
t � δ � � X

�
k̃ � �

t

∑
k � k̃ � 1

x
�
k � � f

�
t � δ �

� f
�
k̃ � �

�
t � k̃ � b � f

�
t � δ � �

If k̃
�

t � δ, it immediately follows that X
�
t � � f

�
t � δ � �

0. If k̃ � t � δ, we
derive using the concavity of f

X
�
t � � f

�
t � δ � � �

t � k̃ � b � f
�
t � k̃ � δ �

� use (3.19) � �
0 �

(iii) If x
�
k̃ � � mr � f

�
k̃ � δ � 1 � � X

�
k̃ � 1 � , then X

�
k̃ � � mr � f

�
k̃ � δ � 1 � . We

derive

X
�
t � � f

�
t � δ � � X

�
k̃ � �

t

∑
k � k̃ � 1

x
�
k � � f

�
t � δ �

� mr � f
�
k̃ � δ � 1 � �

�
t � k̃ � b � f

�
t � δ �

� concavity of f � �
mr �

�
t � k̃ � b � f

�
t � k̃ � 1 �

� use (3.21) � �
0 �

�

By rewriting (3.19)–(3.22) we can obtain the following constraints on b given

3.3 Single-stream methods 71

values of ms and mr.

b
�

f
�
t � δ ��� t , � t ��� � (3.23)

b
� �

f
�
t � 1 � � ms ��� t , � t ��� � (3.24)

b
� �

f
�
t � 1 � � mr ��� t , � t ��� � (3.25)

b
� �

f
�
t � δ � 2 � � mr � ms ��� t , � t ����� (3.26)

Notice that only one of (3.24) and (3.25) need to be considered, depending on
which buffer is the largest.

Likewise, we can obtain the following constraints on ms given values of b and
mr, and on mr given values of b and ms.

ms
�

f
�
t � � �

t � 1 � b , � t ��� � (3.27)

ms
�

f
�
t � δ � 1 � � mr �

�
t � 1 � b , � t � � � (3.28)

mr
�

f
�
t � � �

t � 1 � b , � t ��� � (3.29)

mr
�

f
�
t � δ � 1 � � ms �

�
t � 1 � b , � t � ��� (3.30)

Constraints (3.28) and (3.30) are equivalent, however, this gives a clear presenta-
tion of the constraints on ms and mr separately. This constraint can also be rewritten
into the following constraint on the total buffer space required given a value of b.

ms � mr
�

f
�
t � δ � 1 � � �

t � 1 � b , � t ��� � (3.31)

In the following sections we show how to use (3.23)–(3.31) to solve the sub-
problems for a leaky-bucket-controlled stream. When a stream is controlled by k
leaky buckets with parameters

�
σi � ρi � for i � 1 ������� � k, the corresponding function f

is piecewise-linear and concave, and it is given by f
�
t � � mini � σi � ρit � . W.l.o.g.

we assume that σi
� σi � 1 and ρi

� ρi � 1 for i � 1 ������� � k � 1.

3.3.2 Single resource minimization
When only one resource needs to be minimized, i.e., either the bandwidth share or
the sending or receiving buffer share, we can determine its optimal value directly
from the appropriate constraints, given by (3.23)–(3.30). An optimal value for the
bandwidth share can be obtained by determining the minimum value that satisfies
(3.23)–(3.26) for all time units t ��� . The right-hand-sides of these constraints all
have the form f

�
t � y ��� t, where the value of y is independent of t when determining

the maximum. When f is a piecewise-linear, concave function, the maximum is
attained at one of the bending points of f . So, instead of determining the values of
the right-hand-side for all t ��� , only the bending points of f need to be considered.

To obtain an optimal value for either the sending or the receiving buffer share,
we need to determine the minimum value that satisfies (3.27) and (3.28), or (3.29)
and (3.30), respectively, for all time units t � � . The right-hand-sides of these

72 Leaky-bucket-controlled streams

f

h=(t−1)b

t
b

max{f(t)−h(t)}

>b

≤b

t1(b)

Figure 3.7. The maximum difference between a piecewise-linear, concave func-
tion f and a linear function h is attained at the bending point of f where the
gradient of f changes from being larger than the gradient of h to being smaller.

constraints all have the form f
�
t � � bt � y, where the value of y is independent of t

when determining the maximum. When f is a piecewise-linear, concave function,
the maximum is again attained at a bending point. Obviously, it is attained at the
bending point between ρi and ρi � 1 with ρi � b and ρi � 1

�
b; see also Figure 3.7.

3.3.3 Two-buffer minimization
When both the sending and the receiving buffer share of a single stream need to be
minimized, we take the following approach. The buffer shares ms and mr have to
satisfy (3.27)–(3.31). For a given value of b, let m1

�
b � be the maximum value of

the right-hand sides of (3.27) and (3.29), and let m2
�
b � be the maximum value of

the right-hand side of (3.31), i.e.,

m1
�
b � � max � f

�
t � � �

t � 1 � b
�
t

�
1 � �

m2
�
b � � max � f

�
t � δ � 1 � � �

t � 1 � b
�
t

�
1 � �

If 2m1
�
b � �

m2
�
b � holds, then ms � m1

�
b � and mr � m1

�
b � are the optimal val-

ues as then (3.27) and (3.29) are tight and (3.31) has slack. Otherwise, their sum
ms � mr � 2m1 � m2 does not satisfy (3.31). Hence, at least one of them must be
increased: first the buffer with the lowest cost coefficient and then, if necessary, the
buffer with the highest cost coefficient. Formally, if cs

�
cr, then optimal values

are given by ms � min � m2
�
b � � m1

�
b � � Ms � and mr � m2

�
b � � ms. Notice that mr

�

m1
�
b � . If cs � cr, then optimal values are given by mr � min � m2

�
b � � m1

�
b � � Mr �

and ms � m2
�
b � � mr. With the above approach we can solve the sub-problem

3.3 Single-stream methods 73

case with cs � cr � 0 and cb
�

0, taking the bandwidth share b equal to B. Notice
that this approach is similar to Algorithm 1 for fully-specified streams, which first
minimizes the expensive buffer and then the cheap buffer.

3.3.4 Bandwidth-buffer trade-off
When the cost coefficient of the bandwidth and of at least one buffer is positive, a
trade-off has to be made between bandwidth and buffer space. First, we show how
the trade-off can be performed between the bandwidth and one buffer. Then, we
consider the trade-off between the bandwidth and both buffers. For all trade-offs
we initially start with a solution with minimum bandwidth share b and correspond-
ing values of ms and mr, by first minimizing b for ms � Ms and mr � Mr and then
minimizing ms and mr for the obtained value of b. Starting from the initial solution,
we increase b and determine the effect on ms and mr.

Trade-off between b and ms, and between b and mr.

For the trade-off between b and ms, the buffer share ms needs to satisfy (3.27) and
(3.28) with mr � Mr, for a given value of b. Furthermore, for the trade-off between
b and mr, the buffer share mr needs to satisfy (3.29) and (3.30) with ms � Ms, for a
given value of b. We describe the trade-off between b and ms; the trade-off between
b and mr can be performed analogously.

First, we define the following lower bounds on the buffer share ms as functions
of b, which correspond to the right-hand-sides of each of the mentioned constraints.

m1
�
b � � max � f

�
t � � �

t � 1 � b
�
t

�
1 � �

ms
2

�
b � � max � f

�
t � δ � 1 � � Mr �

�
t � 1 � b

�
t

�
1 � �

where the ‘s’ in ms
2

�
b � indicates that it is a lower bound specifically for use in

the trade-off between the bandwidth and the sending buffer. Notice that m1 is the
same lower bound as defined for the joint minimization of two buffers. As f is a
piecewise-linear function, each of these lower bound functions forms a piecewise-
linear, convex curve in the

�
b � ms � -plane. The trade-off curve between b and ms

is given by the maximum of these lower bound curves; see Figure 3.8. Instead of
constructing each of the lower bound curves before determining their maximum,
we construct them iteratively while increasing b. Furthermore, we determine the
trade-off curve efficiently by using the expressions of the lower bounds as we show
hereafter.

First, we denote the values of t at which the above-defined lower bounds attain

74 Leaky-bucket-controlled streams

m1(b)

m2(b)

b

Figure 3.8. The trade-off curve be-
tween b and ms is given by the max-
imum of the lower bounds m1 and
ms

2.

b

t

Figure 3.9. Example of a
piecewise-constant function such as
t1 � b � , that jumps at specific values
of b.

their maximum by t1
�
b � and ts

2
�
b � , respectively. So we have for a given b,

m1
�
b � � f

�
t1

�
b � � � �

t1
�
b � � 1 � b �

ms
2

�
b � � f

�
ts
2

�
b � � δ � 1 � � Mr �

�
ts
2

�
b � � 1 � b �

The function f is piecewise linear and concave, thus the maximum values are at-
tained at the bending point of f between ρi and ρi � 1 with ρi � b and ρi � 1

�
b.

When b is increased and becomes equal to ρi, the corresponding lower bound val-
ues shift along the line segment to the bending point at the beginning of the seg-
ment. Therefore, t1

�
b � and ts

2
�
b � are piecewise-constant functions of b, that jump

in value when b equals one of the ρi; see Figure 3.9 for an example. If for a certain
lower bound the value of t corresponding to the bending point at which the maxi-
mum is attained, is less than 1 and, therefore, is infeasible, then this lower bound
attains its value at t � 1 and remains constant for any further increase of b.

Next, we denote the gradients of the lower bounds m1 and ms
2 by ∆1 and ∆s

2,
respectively. It follows from above definitions that ∆1

�
b � � � �

t1
�
b � � 1 � and

∆s
2

�
b � � � �

ts
2

�
b � � 1 � . Notice that ∆1

�
b � and ∆s

2
�
b � are also piecewise-constant

functions. If b is now increased by an amount ε for which the gradient of a lower
bound remains constant, then the value of this lower bound changes by ε times the
gradient.

Now we describe how to determine the maximum of the lower bounds effi-
ciently. As both m1 and ms

2 involve function f , their values are for a given b at-

3.3 Single-stream methods 75

tained at the same bending point of f . More precisely, if t s
2

�
b � � 1, then we have

t1
�
b � � ts

2
�
b � � δ � 1. So, ∆s

2
�
b � � ∆1

�
b � holds, i.e., the decrease of m1

�
b � is larger

than the decrease of ms
2

�
b � when b is increased. Thus, if for a given value of b we

have ms
2

�
b � �

m1
�
b � , this also holds for larger values of b. We have ms

2
�
b � � m1

�
b �

if f
�
ts
2

�
b � � δ � 1 � � Mr �

�
ts
2

�
b � � 1 � b � f

�
t1

�
b � � � �

t1
�
b � � 1 � b holds, which

is equivalent to b � Mr �
�
δ � 1 � if ts

2
�
Mr �

�
δ � 1 � � � 1. It now follows that if

ts
2

�
Mr �

�
δ � 1 � � � 1, ms

2
�
b � �

m1
�
b � holds if and only if b

�
Mr �

�
δ � 1 � . If ts

2
�
b � � 1

for some b with b � Mr �
�
δ � 1 � , then ms

2
�
b � � m1

�
b � when f

�
δ � 2 � � Mr �

f
�
t1

�
b � � � �

t1
�
b � � 1 � b holds. As ms

2
�
b � remains equal to f

�
δ � 2 � � Mr when

ts
2

�
b � � 1, this ends the trade-off curve.
We now have shown how to determine max � m1

�
b � � ms

2
�
b � � for all b, which

gives the trade-off curve. The optimal solution is found at one of the bending points
of the trade-off curve including the begin and end point. When the trade-off curve
is constructed iteratively starting with a solution with minimum bandwidth, the
optimal solution is obtained as soon as increasing b by an amount ε would not lead
to a reduction in costs, i.e., when cbε � cs∆ms

�
b � ε � 0 or ∆ms

�
b � � � cb

cs
holds, with

∆ms

�
b � the gradient of the trade-off curve, i.e., ∆ms

�
b � � ∆1

�
b � or ∆ms

�
b � � ∆s

2
�
b �

when max � m1
�
b � � ms

2
�
b � � is given by m1

�
b � or ms

2
�
b � , respectively.

Trade-off between b, ms, and mr.

We assume that cs
�

cr. If cs � cr the optimal solution can be obtained in an anal-
ogous manner. The trade-off is again performed by first determining the solution
with minimum bandwidth and corresponding optimal buffer sizes as described for
the previous trade-off, and then increasing the bandwidth, while determining the
effect on the buffer sizes.

For the trade-off between b, ms, and mr we use lower bound curves on ms, mr,
and the total buffer size ms � mr. The lower bound curves on ms and mr are both
given by the lower bound m1

�
b � as defined for the trade-off between the bandwidth

and one buffer. Lower bound ms
2

�
b � as defined for that trade-off is excluded from

these lower bound curves as it involves one of the buffers. Instead we use m2
�
b � as

defined for the joint minimization of both buffers, i.e.,

m2
�
b � � max � f

�
t � δ � 1 � � �

t � 1 � b
�
t

�
1 � �

Here, m2
�
b � gives a lower bound on the total buffer size ms � mr as given in (3.31).

Furthermore, we again define t2
�
b � as the function that returns for each b the time

unit in which the maximum of m2
�
b � is attained, i.e.,

m2
�
b � � f

�
t2

�
b � � δ � 1 � � �

t2
�
b � � 1 � b �

Finally, we define ∆2
�
b � again as the gradient of m2

�
b � . It follows that ∆2

�
b � �

� �
t2

�
b � � 1 � .

So, we have m1
�
b � as a lower bound curve on ms and mr, and m2

�
b � as a lower

76 Leaky-bucket-controlled streams

bound curve on ms � mr. These lower bound curves can be constructed iteratively
as described for the trade-off between the bandwidth and one buffer. During the
trade-off we distinguish two cases, viz. 2m1

�
b � �

m2
�
b � and 2m1

�
b � � m2

�
b � .

As we have shown for the trade-off with one buffer, ∆2
�
b � � ∆1

�
b � for the

relevant values of b and, therefore, if 2m1
�
b � � m2

�
b � holds for a certain value

of b, it also holds for any larger value of b. We have 2m1
�
b � � m2

�
b � if

2
�
f

�
t1

�
b � � � �

t1
�
b � � 1 � b � � f

�
t2

�
b � � δ � 1 � � �

t2
�
b � � 1 � b holds. Opposite to

m1
�
b � � m2

�
b � for the trade-off with one buffer, this does not lead to an expression

for b independent of t1
�
b � . Hence, for each value change of t1

�
b � and t2

�
b � , i.e.,

when b � ρi with ρi the slope of a line segment of f , we have to determine the new
value of b for which 2m1

�
b � � m2

�
b � holds, until we have 2m1

�
b � � m2

�
b � .

If 2m1
�
b � �

m2
�
b � holds, the required values for the buffer shares separately

are enough to meet the required value of the total buffer size. In this case, for a
given b, ms � mr � m1

�
b � . If now b is increased by an amount ε, the solution costs

change by
�
cb �

�
cs � cr � ∆1

�
b � � ε. Thus, if ∆1

�
b � � � cb

cs � cr
, then a better solution

is obtained by increasing b.
If 2m1

�
b � � m2

�
b � holds, the lower bound on the total buffer size determines

the total buffer allocation, as described in Section 3.3.3. For cs
�

cr we get for
a given b that ms � min � m2

�
b � � m1

�
b � � Ms � and mr � m2

�
b � � ms. If now b is

increased by an amount ε, the solution costs change by
�
cb � cs

�
∆2

�
b � � ∆1

�
b � � �

cr∆1
�
b � � ε if m2

�
b � � m1

�
b � � Ms, and by

�
cb � cr∆2

�
b � � ε if m2

�
b � � m1

�
b � � Ms.

From the definitions it follows that m2
�
b � � m1

�
b � � Ms if f

�
t2

�
b � � δ � 1 � ��

t2
�
b � � 1 � b � f

�
t1

�
b � � �

�
t1

�
b � � 1 � b � Ms, which is equivalent to b � Ms �

�
δ � 1 �

if t2
�
Ms �

�
δ � 1 � � � 1.

Finally, we remark that the time complexity of the algorithms for all cases
depends only linearly on the number of bending points of the function f . As the
number of bending points is generally very small, the algorithms are very efficient
when dealing with leaky-bucket-controlled streams.

3.4 Results
In the previous sections we have described a method to solve MLBSSP. As we
already mentioned for fully-specified streams, the run time is an important param-
eter when the method is used for admission control. Since the algorithms for the
sub-problems only linearly depend on the number of bending points of f , the ex-
pected run time to solve an instance of MLBSSP is very small. The experiments
that we have performed, confirmed this expectation. Even when using streams
which are described by a maximum number of leaky buckets, see the next sec-
tion for a description, instances of 10–15 streams are solved within a fraction of
a second. Therefore, we exclude results concerning the run time in this section.

3.4 Results 77

Instead, we mainly focus on results concerning the utilization of the bandwidth
and buffer shares, and compare them to the utilization results for fully-specified
streams which were given in Section 2.3.2. We begin with describing the setting
and data used in Section 3.4.1. Next, we discuss the results in Section 3.4.2.

3.4.1 Experiment setting
For the experiments we used the same setting as for fully-specified streams. Thus,
we considered a bus with six nodes and buffers connected to it. Furthermore, we
considered eight different settings concerning the values of the bandwidth, buffer
sizes, and stream delays, as given in Table 2.2 on page 50. We also used the same
streams in the same sequence as given in Table 2.1 on page 50; see also Table 3.1.
Finally, to determine the order in which we consider the streams for solving the
sub-problems we use strategy 3 as described in Section 2.3.1. We next describe
how we obtain leaky-bucket descriptions for the used streams.

First, we determine the empirical envelope E
�
t � of a stream, which gives for all

t the maximum amount of data that is supplied for a stream during t consecutive
time windows. Thus, E

�
t � is given by

E
�
t � � max � P �

ξ � t � � P
�
ξ � �

ξ �
0 � � (3.32)

Note that E
�
t � already satisfies (3.1). However, E

�
t � is generally not a concave

function and, thus, does not give a leaky-bucket description. Therefore, we next
determine the concave hull of E

�
t � , given by Ê

�
t � . Notice that Ê

�
t � is the tightest

piecewise-linear, concave function that bounds the supply of a stream. Therefore,
we use Ê

�
t � as the supply-bounding function that corresponds to the maximum

number of leaky buckets of a stream. Table 3.1 gives all the used streams and
the number of leaky buckets in their maximum-leaky-bucket descriptions. As Ê

�
t �

is the convex hull of the empirical envelope of a stream, the upper bounds at the
bending points of Ê

�
t � are tight. Therefore, we suspect that using the maximum-

leaky-bucket description will give the same results as using the exact supply and
demand scheme. In Section 3.4.2 we will see if the experimental results confirm
this supposition.

We have now obtained for each stream a leaky-bucket description consisting of
the maximum number of leaky buckets that is required to describe a stream. How-
ever, this number of leaky buckets is much higher than the amount of leaky buckets
that realistically can be expected in a network. The number of leaky buckets that
is available in an actual network to control streams, may be limited to only two or
three. Therefore, besides the maximum-leaky-bucket description of a stream, we
also consider descriptions consisting of a lower number of leaky buckets.

These descriptions can be obtained in a numerous amount of methods. How-
ever, not every description is suitable for testing our solution method. Especially

78 Leaky-bucket-controlled streams

type T send. rec. avg. frame largest frame max. # lb
1 fantasy 256 � 599 1 2 22 � 859 � 6 138 � 476 60
2 comedy 161 � 082 3 4 23 � 359 � 7 126 � 579 26
3 documentary 76 � 750 4 1 32 � 613 � 6 143 � 482 42
4 scifi 196 � 160 5 6 23 � 359 � 2 120 � 377 50
5 pop concert 99 � 785 2 3 27 � 352 � 6 111 � 372 54
6 thriller 141 � 800 4 5 24 � 851 � 0 129 � 617 48
7 comedy 74 � 931 6 1 32 � 752 � 3 154 � 283 44
8 action 151 � 132 6 2 31 � 114 � 1 131 � 713 61
9 documentary 36 � 875 1 3 26 � 829 � 5 114 � 601 41

10 action 184 � 371 5 3 22 � 112 � 5 111 � 101 68
11 pop concert 166 � 765 2 4 24 � 631 � 5 143 � 871 52
12 comedy 164 � 199 4 6 21 � 318 � 4 122 � 383 52
13 comedy 38 � 215 1 5 33 � 946 � 5 145 � 693 33
14 action 165 � 141 3 6 26 � 418 � 6 139 � 284 63
15 documentary 75 � 100 5 2 24 � 717 � 6 140 � 321 34

Table 3.1. The 15 streams used in the experiment, now also with the number of
leaky buckets in their maximum-leaky-bucket description.

Algorithm 5 Obtaining k leaky-bucket parameters from the concave hull Ê
�
t �

which corresponds to m leaky-bucket parameters with m � k.

Input: A set of m leaky-bucket parameters
� � σ̂ j � ρ̂ j � � j � 1 ������� � m � , that define Ê � t � , a

number of leaky buckets k, a cost function C � f � t � � Ê � t � � , and a sensitivity parameter ε.
Output: A set of k leaky-bucket parameters � σi � ρi � that define the supply-bounding func-
tion f � t � .
Initialize � σi � ρi � , i � 1 ������� � k.
For i � 1 to k

σi � σ̂ � im
k � ;

ρi � ρ̂ � im
k � ;

Endfor
Greedy modifications
Do

Cost � C � f � t � � Ê � t � � ;
For i � k down to 1

Select � σi � ρi � to minimize C � f � t � � Ê � t � � ;
Endfor

While � Cost � C � f � t � � Ê � t � � � ε �
f � t ��� min1 � i � k

�
σi � ρit �

3.4 Results 79

descriptions which have a relatively large value of σ1, i.e., the smallest and thus
first σi, are not suitable, as they would lead to extremely high bandwidth shares.
For example, if we consider (3.23) for t � δ � 1, the bandwidth share b needs to
satisfy b

�
f

�
1 ��� �

δ � 1 � . The higher σ1 is, the larger the value of f
�
1 � will be, and

thus the larger the bandwidth share b will be. Note that as generally σ1 � ρ1t gives
the value of f not only for t � 1, but also for larger values of t, a larger value of σ1
cannot be offset by an equally lower value of ρ1.

Thus, a suitable description contains a relatively low value of σ1. To obtain
these descriptions we use two different methods. The first method involves Algo-
rithm 5, originally described by Wrege & Liebeherr [1996]. It takes as input the
maximum-leaky-bucket function Ê

�
t � , which consists of n leaky buckets, and the

desired number of leaky-bucket parameters, m. To determine these parameters it
also requires a cost function which assigns costs to a set of leaky-bucket parame-
ters. Wrege & Liebeherr propose the following cost function to be used with the
algorithm.

C
�
f

�
t � � Ê �

t � � �
� T

0

�
f

�
t � � Ê

�
t � �

Ê
�
t � d t � (3.33)

This cost function minimizes the total relative deviation of the resulting leaky-
bucket description from the maximum-leaky-bucket description. Other cost func-
tions that we have considered, minimize the maximum difference between f

�
t �

and Ê
�
t � , i.e., C

�
f

�
t � � Ê

�
t � � � max0

�
t

�
T

�
f

�
t � � Ê

�
t � � , or minimize the total area

bounded by f
�
t � , i.e., C

�
f

�
t � � Ê

�
t � � ��� T

0 f
�
t � dt. However, both cost functions

result in only large values of σ1, especially for a small number of leaky buck-
ets, and therefore, these latter two cost functions are not suitable to obtain good
leaky-bucket descriptions of streams to test our method. The cost function given
by (3.33) also results for some streams in a value of σ1 that is still too large when a
small number of leaky buckets is considered. Therefore, we use this method only
to obtain leaky-bucket descriptions of at least five leaky buckets.

For leaky-bucket descriptions consisting of fewer than five leaky buckets we
instead use the following method. We consider the leaky-bucket parameters of
the maximum-leaky-bucket description Ê

�
t � that give the lowest upper bound on

supply for time windows up to 10 � 000 time units. From these parameters we uni-
formly select five as follows. Let m � denote the number of leaky-bucket parame-
ters that we consider, and let these parameters be ordered decreasingly on ρ, i.e.,
ρ1 � ρ2 � ����� � ρm � . The five selected parameters then are given by the indices�

i
�
m � � 5 ��� 6 � � i � (3.34)

where i � 1 ������� � 5. For example, m ��� 20 gives 4, 7, 11, 14, and 18. The unselected
parameters then form six subsequent groups of approximately equal size. If fewer

80 Leaky-bucket-controlled streams

Setting Streams UB UM Umin
B Umin

M Umax
B Umax

M
1 3 62.50 44.45 57.17 40.54 70.38 53.66
2 4 59.68 41.04 47.16 35.68 71.33 53.67
3 10 64.06 46.53 50.71 35.68 83.35 56.02
4 13 67.78 38.98 57.17 32.46 84.42 55.33
5 3 63.80 48.81 57.91 37.05 70.63 68.26
6 4 61.17 51.93 47.14 39.30 78.60 68.26
7 12 66.10 63.82 54.49 54.71 83.07 79.28
8 14 74.54 43.48 62.77 33.28 84.98 73.48

Table 3.2. The utilization of the reserved bandwidth and buffer shares in percent-
ages for the leaky-bucket descriptions using the maximum number of leaky buck-
ets for each stream. For each setting (first column) we considered the results for
the maximum number of admitted streams (second column). The third and fourth
column give the total utilization over all streams for the reserved bandwidth and
buffer shares, respectively. The fifth and sixth column give the minimum utiliza-
tion as achieved by a single stream in the setting. The seventh and eighth column
give the maximum utilization as achieved by a single stream in the setting.

than five leaky-bucket parameters are needed, then we stop with selecting param-
eters as soon as the required number of parameters has been obtained. For this,
we consider the values of i in the order 1, 3, 5, 2, 4, e.g., if three parameters are
required, then we use (3.34) with i � 1 � 3 � 5; for m � � 20 this gives 4, 11, and 18.
This strategy for obtaining leaky-bucket parameters is mainly based on intuition.
It has the advantage that σ1 of the obtained description will be relatively small.
Furthermore, when the number of leaky buckets is increased from one to three, this
strategy will give a better description for larger windows, and when the number
of leaky buckets is increased even further to five, it will refine the leaky-bucket
description.

Besides the maximum-leaky-bucket description we use in total twelve different
leaky-bucket descriptions, namely descriptions consisting of 1, 2, 3, 4, and 5 leaky-
bucket parameters using (3.34), and descriptions consisting of 5, 6, 7, 8, 9, 10,
and 20 leaky-bucket parameters using (3.33). We remark that as we assumed that
f

�
0 � � 0, each of the obtained leaky-bucket descriptions start at t � 1. Thus, the

first bending point of each description occurs at t � 1; for the description consisting
of one leaky bucket it is the only bending point.

3.4.2 Experimental results
Table 3.2 gives results concerning the maximum number of admitted streams for
each setting and the utilization of the bandwidth and buffer shares, using the maxi-
mum number of leaky buckets for all streams. The total, minimum, and maximum
utilization of the bandwidth and buffer shares over all streams are again given by
(2.17)–(2.22) on page 55, in which the actual realizations of P

�
t � and C

�
t � are used.

3.4 Results 81

Setting 1 Setting 2 Setting 3 Setting 4
UB UM # UB UM # UB UM # UB UM

F.S. 3 62.12 44.43 4 55.79 40.95 10 58.81 47.28 13 68.13 37.55
Max. LB 3 62.50 44.45 4 59.68 41.04 10 64.06 46.53 13 67.78 38.98
ULB 1 2 51.53 35.52 2 51.53 29.52 10 64.10 46.49 12 62.75 42.33
ULB 3 2 55.01 29.52 2 55.15 27.58 10 64.10 46.38 12 64.01 40.60
ULB 5 3 62.31 44.44 4 64.26 41.40 10 66.86 46.83 13 67.39 33.71
CLB 5 3 62.53 44.46 4 64.68 41.66 10 68.56 46.10 11 61.98 33.52
CLB 10 3 62.55 43.93 4 64.72 41.65 10 68.19 47.15 13 67.76 39.82

Setting 5 Setting 6 Setting 7 Setting 8
UB UM # UB UM # UB UM # UB UM

F.S. 3 63.80 49.87 4 59.80 52.10 12 62.71 62.46 14 74.88 42.34
Max. LB 3 63.80 48.81 4 61.17 51.93 12 66.10 63.82 14 74.54 43.48
ULB 1 2 51.52 35.75 4 57.66 42.82 11 62.81 59.23 12 62.72 49.07
ULB 3 3 62.94 55.91 4 66.27 45.49 11 63.61 59.30 14 73.88 41.18
ULB 5 3 63.09 50.36 4 66.00 51.67 12 67.04 62.63 14 74.74 40.65
CLB 5 3 63.38 48.86 4 65.61 51.09 11 68.58 59.82 13 68.71 55.39
CLB 10 3 63.40 48.86 4 66.20 51.84 12 63.36 62.34 14 74.30 43.22

Table 3.3. The number of admitted streams (#) and the total utilization of the re-
served bandwidth and buffer shares in percentages for the fully-specified streams
(F.S.), the maximum-leaky-bucket description (Max. LB), the leaky-bucket de-
scriptions using (3.34) consisting of 1, 3, and 5 leaky buckets (ULB 1, ULB 3,
ULB 5), and the leaky-bucket descriptions using (3.33) consisting of 5 and 10
leaky buckets (CLB 5, CLB 10), using settings 1–8. For each setting (top row)
we present the results for the maximum number of admitted streams (first col-
umn/setting), and the total utilization over all streams for the reserved bandwidth
and buffer shares, respectively (second and third column/setting).

The second column of Table 3.2 gives the maximum number of streams that
could be admitted for each setting. As we suspected, for all settings, this maximum
is equal to the maximum number of admitted streams for fully-specified streams.
Furthermore, if we compare these utilization results to the results for fully-specified
streams given in Table 2.6 on page 54, we notice that they are more or less the
same. For settings 2 and 7 even a total bandwidth utilization of almost 4% higher is
obtained while also having a slightly higher total buffer utilization. An explanation
for this lies in the fact that the sub-problems are not solved in an identical manner.
The sub-problems for which a trade-off between bandwidth and buffer size has
to be made, can have a whole line segment of optimal solutions. With different
approaches, different solutions can be found. As the final solution for a stream is a
convex combination of the found solutions, this may result in differences between
the solutions.

Table 3.3 compares, using all eight settings, the maximum number of admitted
streams and total utilization of the bandwidth and buffers for the fully-specified
streams, the maximum-leaky-bucket description, and several other leaky-bucket
descriptions. If we first compare the number of streams admitted, we notice that

82 Leaky-bucket-controlled streams

for settings 3 and 6 the leaky-bucket description consisting of just one leaky bucket
(ULB 1) admits the same number of streams as is maximally possible according to
the results of the fully specified streams. For the other settings at most 2 streams
fewer are admitted using the ULB-1-description. When the number of leaky buck-
ets in the description increases, we see that for these settings also the number of
streams admitted increases up to the maximum possible. However, where the de-
scription consisting of five leaky buckets using (3.34) (ULB 5) admits for all set-
tings the maximum number of streams possible, the description using (3.33) with
five leaky buckets (CLB 5) admits fewer streams for settings 4, 7, and 8. This
shows that not only the number of leaky buckets used is important, but also the
parameters of the leaky buckets.

A closer look at the leaky-bucket description CLB 5 for each stream revealed
that for six of the streams the description for the first 10 � 000 time units based on
CLB 5 consisted of only two leaky-bucket parameters, while for the other nine
streams it consisted of just three leaky-bucket parameters. As the leaky-bucket
parameters of ULB 5 are taken from the parameters of the maximum-leaky-bucket
description for the first 10 � 000 time units, we conclude that for these experiments
a good leaky-bucket description for the short or medium term of a stream is far
more important than a good leaky-bucket description for the long term. In other
words, it is better to have a good approximation of the amount of data that needs to
be transmitted in a short period of time than to have a good approximation of the
amount of data that needs to be transmitted in total.

Next, if we compare the results concerning the bandwidth and buffer utiliza-
tion we notice that especially when the number of streams admitted is equal to the
maximum possible, the utilization is also comparable to the utilization obtained
for fully-specified and maximum-leaky-bucket streams, and in some cases it is
even better. An explanation for the latter again lies in the fact that a lot of different
solutions exist as MSSP and MLBSSP are feasibility problems. Using different de-
scriptions and different approaches can lead to different solutions where some may
give far better utilization results. For example, using fully-specified streams, results
may be found where for one stream bandwidth was minimized leading to relatively
very high buffer shares, while for another stream the buffer shares were minimized
leading to a relatively very high bandwidth share. These streams’ bandwidth and
buffer shares combined can then lead to a relatively low utilization, while average
bandwidth and buffer shares are found using leaky-bucket descriptions leading to
a relatively high utilization.

Table 3.4 compares the fully-specified description to all leaky-bucket descrip-
tions by minimization of the bandwidth or a single buffer for all streams. Here, we
see that when the bandwidth is minimized, on average the difference between the
optimal solutions and the solutions for the leaky-bucket descriptions is relatively

3.4 Results 83

Min. B with Min. B with Min. Mr with
M � 512 � 000, δ � 10 M � 4 � 096 � 000, δ � 100 B � 125 � 000, δ � 100,

Ms � 16 � 384 � 000
Max. Min. Max. Min. Max. Min.

Avg. % diff. % diff. Avg. % diff. % diff. Avg. % diff. % diff.
F.S. 37502 34345 131544
Max. LB 37502 34345 131544
ULB 1 40387 52.86 0.329 40355 57.93 4.890 170302 73.34 0
ULB 2 39340 32.69 0.011 35661 13.33 0.229 170302 73.34 0
ULB 3 39340 32.69 0.011 35040 7.43 0.152 170302 73.34 0
ULB 4 37938 9.83 0.006 34889 7.43 0.152 170302 73.34 0
ULB 5 37938 9.83 0.006 34678 3.05 0.006 170302 73.34 0
CLB 5 44939 196.17 0.174 35577 15.02 0.025 311482 808.61 12.505
CLB 6 42204 196.17 0.068 35247 15.02 0.026 268329 808.60 8.432
CLB 7 37759 2.28 0.028 34873 7.00 0.009 196852 183.80 8.432
CLB 8 37911 7.68 0.027 34697 5.93 0.008 185372 105.28 8.432
CLB 9 37723 2.28 0.011 34693 5.93 0.009 168745 75.20 0
CLB 10 37624 1.30 0.011 34428 1.79 0 163424 55.10 0
CLB 20 37521 0.27 0 34349 0.09 0 131544 0 0

Table 3.4. Comparison of the fully-specified description to all leaky-bucket de-
scriptions using bandwidth and buffer minimization. The first column gives the
description, with fully specified (F.S.), maximum-leaky-bucket (Max. LB), leaky-
bucket descriptions using (3.34) consisting of 1–5 leaky buckets (ULB 1–5), and
leaky-bucket descriptions using (3.33) consisting of 5–10 and 20 leaky buckets
(CLB 5–10, 20). The top row gives the three different settings (minimizing band-
width or one buffer given the values of the other resources and delay). The first
column for each setting gives the average value obtained using each description
over all 15 streams given in Table 2.1 on page 50. The second column gives for
each description the maximum difference in percentages compared to the F.S. and
Max. LB result, that was observed for a single stream. The third column gives the
minimum difference in percentages, that was observed for a single stream.

84 Leaky-bucket-controlled streams

small, especially for the ULB descriptions with two or more leaky buckets and the
CLB descriptions using seven or more leaky buckets. However, for some streams
the minimum bandwidth can be 50% (ULB 1) to almost 200% (CLB 5 & 6) larger
than the optimum while for other streams the difference with the optimum is less
than 1%. The differences are larger when a buffer is minimized, especially for
the CLB 5 and CLB 6 descriptions, for which one stream needs an 800% higher
buffer than the optimal size. Overall, we see again that the results for the leaky-
bucket descriptions using (3.34) (ULB) are generally better than the results for the
leaky-bucket descriptions using (3.33) (CLB).

Finally, in line with our supposition of Section 3.4.1, Table 3.4 also shows
that again the results for the maximum-leaky-bucket descriptions are equal to the
results for the fully-specified streams. However, it is not trivial to show that a
solution to an instance of MSSP is also a solution to a corresponding instance of
MLBSSP with maximum-leaky-bucket descriptions. Therefore, we conclude this
chapter with the following conjecture.

Conjecture 3.1. Let � be an instance of MSSP where the demand for each stream
is a shifted copy of the supply, i.e., for each d �
� , we have Cd

�
t � � Pd

�
t � δd � for

a certain δd
�

0. Now, let � � be the corresponding instance of MLBSSP. So, � , � ,
� , B, Mn for all n ��� , and sd , rd , and δd for all d � � are equal for � and � � .
Furthermore, for each stream d � � , the supply-bounding function fd

�
t � is given

by the maximum-leaky-bucket description of the supply Pd
�
t � , i.e., fd

�
t � � Êd

�
t � .

If a solution consisting of bandwidth shares bd and buffer shares msd � d and
mrd � d for each stream d ��� is a feasible solution to � , then it is a feasible solution
to � � . �

Notice that any feasible solution to � � is also a feasible solution to � , as for each
stream d � � , the supply Pd

�
t � satisfies (3.1) for function fd

�
t � and the demand

Cd
�
t � satisfies (3.2).

4
On-line problem

In this chapter we consider on-line settings of MSSP and MLBSSP. In an on-line
setting of a problem, generally at any time there is only partial knowledge of a
problem instance, unlike an off-line setting, in which everything is known in ad-
vance. For one problem different on-line settings can exist, for which different
parts of the problem are unknown and given on-line. For scheduling problems,
Sgall [1998] gives several paradigms for classification of on-line problems. The
on-line settings of MSSP and MLBSSP that we consider, are based on the on-line
paradigm ‘jobs arrive over time’. More appropriately, we call it here streams ar-
rive over time. In this setting there is no knowledge about future streams, i.e., it is
unknown if and when a new stream starts. However, the properties of a stream are
known as soon as it starts. The solution of the on-line setting can be used to decide
if a new stream can be admitted service given a set of already admitted streams.

For a scheduling problem, an on-line setting is called clairvoyant if the running
time of a job is known as soon as it arrives, while it is called non-clairvoyant if the
running time remains unknown until it has finished. Thus, the on-line setting of
MSSP is clairvoyant, as the exact supply and demand schemes are known when a
stream starts. However, in MLBSSP only an upper bound function f on the supply
and demand of a stream during any time window is given. Thus the on-line setting
of MLBSSP is clairvoyant w.r.t. the upper bound f , but non-clairvoyant w.r.t. the
exact supply and demand schemes. In this respect, MLBSSP itself can be seen as

85

86 On-line problem

an on-line setting of MSSP that is non-clairvoyant. It corresponds to the on-line
paradigm ‘unknown running times’ for scheduling problems.

In Section 4.1 we describe how the LP-method for the off-line setting can be
used for the on-line setting of MSSP and MLBSSP. In Section 4.2 we show how
to adapt the off-line solution methods for the single-stream problems to obtain
single-stream solutions for the on-line setting. Finally, in Section 4.3 we present
experimental results.

4.1 LP model
In the off-line settings of MSSP and MLBSSP all streams and their description
are given in advance and the streams are assumed to run simultaneously. The on-
line settings of these problems follow the paradigm ‘streams arrive over time’, as
described before. We introduce some notation for these on-line settings in Sec-
tion 4.1.1. Then we describe the problem and solution approach in Section 4.1.2.
Finally, in Section 4.1.3 we give some objectives that can be used with the LP
solution method.

4.1.1 Notation
For consistency we again define the set of time units by � � � 1 � 2 ������� � T � ; how-
ever, T is unknown until the last stream has stopped. Each fully-specified or leaky-
bucket-controlled stream d � � has a start or release time denoted by τd � � .
The release time τd of a stream d is unknown at any time unit t � τd . At τd ,
the sending and receiving nodes sd and rd are given. Furthermore, at τd a sup-
ply scheme pd

�
t � and demand scheme cd

�
t � are given for a fully-specified stream,

and a supply-bounding function fd
�
t � and delay δd are given for a leaky-bucket-

controlled stream. The end time of a stream, i.e., the time unit in which the final
demand of a stream takes place, is denoted by ed . For a fully-specified stream
ed � � is implicitly given by its supply and demand schemes; for a leaky-bucket-
controlled stream ed � � is unknown at any time unit t � ed .

4.1.2 On-line problem and solution approach
When a new stream d � starts and requests admission to the network, a solution b,
ms, and mr has to be determined for it. The solution method has to take into account
the streams that have already been admitted to the network, i.e., all streams d �
�
for which τd � τd � � ed . In the remainder of this chapter we will refer to the already
admitted streams as current streams. As the characteristics concerning supply and
demand of the streams using the network at τd � are known, a slightly adjusted form
of the solution approach for the off-line setting can be used at τd to determine a
new solution.

4.1 LP model 87

We now consider two variants of the on-line problems. In the first variant the
shares of the current streams on the network cannot be changed. Then we have
to determine bandwidth and buffer shares only for the new stream, which can be
done by generating columns in the master LP tableau for the new stream, i.e., by
solving the corresponding single-stream sub-problem. For each current stream d
the master LP tableau contains one column for a variable λd � q that corresponds
to the current bandwidth and buffer shares of stream d. As no new columns are
generated for the current streams, these initial variables λd � q will still have value 1
after optimization of the master LP. Thus, the solutions of the current streams re-
main preserved. However, this may result in an infeasible solution, while a feasible
solution may exist if changing the shares of the current streams is allowed. Espe-
cially for fully-specified streams, the required bandwidth and buffer shares may be
decreased when the peak of such a stream has already passed the network.

Hence, the second variant that we consider, allows to change the reserved band-
width and buffer shares of the current streams. However, when new bandwidth and
buffer shares are determined for these streams, their transmission states must be
taken into account as these pose extra constraints to the sending and receiving
buffer shares. For ease of notation we use τ in the remainder of this chapter to de-
note the start time of a new stream. So Xd

�
τ � 1 � , Pd

�
τ � 1 � , and Cd

�
τ � 1 � denote

the total amount of data transmitted, the total amount of data supplied, and the total
amount of data demanded, respectively, for a stream d when a new stream starts.
Then,

Pd
�
τ � � Xd

�
τ � 1 � � msd � d � � d �
� � τd � τ � ed � (4.1)

and
Xd

�
τ � � Cd

�
τ � 1 � � mrd � d � � d �
� � τd � τ � ed � (4.2)

must hold for the new buffer reservations msd � d and mrd � d for the current streams.
As these constraints concern only one stream, they are added as extra constraints
to the single-stream problems.

When a new stream d � starts, the off-line method can be used as follows. Anal-
ogously to the first variant, we begin with a master LP tableau that contains the
current reserved bandwidth and buffer shares, i.e., for each current stream d we
have one variable λd � q that corresponds to a column with the current bandwidth and
buffer shares of stream d. Notice that bandwidth and buffer shares of previously
generated columns may not satisfy (4.1) and (4.2), only the current bandwidth and
buffer reservations of a current stream are definitely feasible. For the new stream,
we generate an initial column by solving its sub-problem. This column can be
added to the master LP tableau, which subsequently can be optimized. Notice that
for the new stream only one variable is added to the bandwidth and relevant buffer
constraints of the master LP. Furthermore, one constraint is added for the solutions

88 On-line problem

of the new stream. If a feasible solution cannot be found for the new stream by
only solving its own sub-problem, we also determine new solutions for the sub-
problems of the current streams. In Section 4.2 we show how the solution methods
for the sub-problems can be adjusted to incorporate (4.1) and (4.2) for the current
streams.

4.1.3 LP objectives
In the on-line setting of MSSP and MLBSSP we do not know in advance if new
streams will arrive in the future and what their characteristics are. However, we
do know that new streams can arrive in the future, which we would like to give
guaranteed shares of the bandwidth and buffers. However, if we do not take into
account that new streams might arrive, we may end up with a solution that gives e.g.
the total bandwidth capacity to current streams while these streams also could have
been serviced with much lower bandwidth reservations. Thus, when we determine
a new solution we need to keep in mind that in the future we might want to allocate
some of the resources to another stream. If a resource is currently already used by
relatively many streams, then a possible way of taking future streams into account
is minimizing the total reservation of the heavily-used resource. For this we can
add an appropriate objective function to the LP model.

The LP approach described in Chapters 2 and 3 searches for a feasible solution
for a given set of streams, and thus initially does not contain an objective function.
By adding slack and penalty variables to some constraints we obtained an objec-
tive for the feasibility problem such that determining a feasible start solution for
the LP was trivial. We will now show how objectives that minimize the total re-
served bandwidth or buffer size at a certain node can be used with the presented LP
models. Using these objectives in an on-line setting can help to avoid bottlenecks.

We first show how the total bandwidth reservation can be minimized. Obvi-
ously, the objective should include ∑d ��� bd . Furthermore, the buffer capacities
should not be exceeded. Hence, the penalty variables for the buffers, i.e., ∑n � � pn,
should also be included in the objective. Notice that the penalty variable for the
bandwidth, p, does not need to be included in the objective as it is already mini-
mized by minimizing the sum of the bandwidth reservations. When we now want
to find a feasible solution, we need to be sure that none of the buffer capacities is
exceeded, i.e., that ∑n � � pn � 0 if a feasible solution exists. For this, we add a
coefficient larger than one to each pn. If a penalty variable is positive, i.e., pn � 0,
while a feasible solution exists, then we can decrease the buffer share of a stream
at node n by an amount ∆, which will increase the stream’s bandwidth share by at
most ∆, and thus will lower the objective value. So, if a feasible solution exists,
we will get pn � 0 for all n, and next to that, ∑d ��� bd will be minimized. So, to

4.1 LP model 89

minimize the total reserved bandwidth, we need to minimize

∑
d ���

bd � 2 ∑
n � �

pn �

instead of p � ∑n � � pn. Notice that a feasible solution does not exist if either
∑d ��� bd � B or ∑n � � pn � 0 holds in the optimal solution.

Next, we show how to minimize the total reserved buffer share at a single node.
Let ñ be the node at which the total reserved buffer share needs to be minimized.
Then the objective should include ∑d ��� � sd � ñ mñ � d � ∑d ����� rd � ñ mñ � d . Furthermore,
the available bandwidth should not be exceeded, so the bandwidth penalty variable
p needs to be included in the objective. Finally, the reservations of the other buffers
may not be exceeded, thus we also need to include ∑n � � pn. Notice that in the latter
term we may exclude pñ. If a feasible solution exists, we need to be sure that p � 0
and pn � 0 for all n ��� � � ñ � in the final solution. As the other buffer share of a
stream d will not be increased by more than ∆ when mñ � d is decreased by ∆, it is
sufficient to add a coefficient larger than one to each pn for all n �� ñ. Furthermore,
in the worst-case situation an increase of the bandwidth share for a certain stream
by ∆ cannot lead to a decrease of one of its buffer shares by more than T∆, with T
the length of the time horizon. For a leaky-bucket-controlled stream T is unknown.
However, in that case we can take for T the time unit at the last bending point of
the supply-bounding function f . To minimize the total reserved buffer size at a
single node, we thus need to minimize

∑
d � ��� sd � ñ

mñ � d � ∑
d ��� � rd � ñ

mñ � d �
�
T � 1 � p � 2 ∑

n � ��� �
ñ �

pn �

instead of p � ∑n � � pn. This ensures that first p � 0, and pn � 0 for n �� ñ, before
the buffer reservation at ñ is minimized.

The above objectives can be used with the Dantzig-Wolfe decomposition as
described in Section 2.1.5. The bandwidth share bd or buffer shares mn � d in the
objectives in above equations of the new master LP then need to be replaced by
their expressions in the sum of the generated solutions, i.e., if we want to minimize
the total reserved bandwidth, we get

min ∑
d ���

kd

∑
q � 1

λd � qbq
d � 2 ∑

n � �
pn

as objective, and if we want to minimize the total reserved buffer size at a given
node ñ, we get

min ∑
d ��� � sd � ñ

kd

∑
q � 1

λd � qmq
ñ � d � ∑

d ����� rd � ñ

kd

∑
q � 1

λd � qmq
ñ � d �

�
T � 1 � p � 2 ∑

n � ��� �
ñ �

pn

as objective.

90 On-line problem

Finally, we consider the minimization of the maximum relative resource reser-
vation as objective. More specifically, we want to minimize

max � ∑d bd

B
� max

n � �

∑d ����� sd � n mn � d � ∑d ��� � rd � n mn � d
Mn

� �
With this objective we try to balance the load of the resource reservations over
the bandwidth and buffers with their total capacities in mind. To incorporate this
objective in the LP, we add a variable z which represents the maximum relative
resource reservation. Thus z must be at least as large as each relative resource
reservation, i.e.,

z
� ∑d bd

B
� (4.3)

and,

z
� ∑d ��� � sd � n mn � d � ∑d ��� � rd � n mn � d

Mn
� � n � � � (4.4)

To minimize the maximum relative resource reservation we now have the objective

min z �
Notice that for a feasible solution to MSSP or MLBSSP exists if and only if z

�
1

in the optimal solution. Thus for this objective we can leave out (2.1) and (2.2) for
MSSP, and (3.3) and (3.4) for MLBSSP. Instead, we include (4.3) and (4.4). We
can now add slack variables s and sn to these constraints and rewrite them into

∑d bd

B
� z � s � 0 � (4.5)

and,
∑d ����� sd � n mn � d � ∑d ��� � rd � n mn � d

Mn
� z � sn � 0 � � n ��� � (4.6)

An example of the corresponding master LP tableau is given in Figure 4.1.

4.2 Single-stream methods revisited
In this section we show how the single-stream methods for fully-specified streams
and for leaky-bucket-controlled streams as described in Chapters 2 and 3 can be
adjusted to handle a stream that already has been admitted to the network and for
which the bandwidth and buffer shares may be altered. Such a stream already has
transmitted data, which occupies the buffers. This has to be taken into account
when determining new bandwidth and buffer shares for this stream. Notice that
for a new stream, the methods as described for the off-line setting can be used,
since it does not have any data in the buffers. In Section 4.2.1 we show how to
adapt the single-stream methods for fully-specified streams to the on-line setting.

4.2 Single-stream methods revisited 91

s s1 s2 s3 s4 z λ1 � 1 λ2 � 1 λ3 � 1
1

0 1 � 1 b1
1 � B b1

2 � B b1
3 � B

0 1 � 1 m1
1 � 1 � M1 m1

1 � 2 � M1

0 1 � 1 m1
2 � 1 � M2 m1

2 � 3 � M2

0 1 � 1 m1
3 � 2 � M3

0 1 � 1 m1
4 � 3 � M4

1 1
1 1
1 1

Figure 4.1. Starting LP tableau of the master LP for the example of Figure 1.2,
when the maximum relative resource reservation is minimized. On top are the co-
efficients for each decision variable in the objective function, followed by the rows
corresponding to the constraints concerning the total relative bandwidth reserva-
tion, the total relative buffer reservation at each node, and the sum of the values of
the λ’s.

In Section 4.2.2 we revisit the single-stream methods for leaky-bucket-controlled
streams.

4.2.1 Fully-specified stream sub-problem
The single-stream problem for a current fully-specified stream in the on-line set-
ting can be solved using the same methods as in the off-line setting. The extra
constraints concerning the initial transmission state X

�
τ � 1 � , which determines

the amount of data in each of the stream’s buffers, can be taken into account as
follows.

Obviously, when all cost coefficients are non-positive, the optimal solution re-
mains b � B, ms � Ms, and mr � Mr. When the bandwidth needs to be minimized,
the MVBA-algorithm as described in Section 2.2.1 can be executed with one dif-
ference, viz. transmission starts at X

�
τ � 1 � . When one of the buffers needs to be

minimized, the algorithm as described in Section 2.2.2 can also be executed. If the
resulting buffer size does not satisfy (4.1) for the sending buffer or (4.2) for the
receiving buffer, then the minimum buffer size is given by the smallest value that
satisfies the appropriate constraint.

In Section 2.2.3 we showed that a joint minimization of two buffers can be
obtained by first minimizing the buffer with the highest cost coefficient and then
the buffer with the lowest cost coefficient. For the on-line setting, this procedure
can be used again taking (4.1) and (4.2) into account. For this, a single buffer is
minimized as described above.

For the bandwidth-buffer trade-off algorithm described in Section 2.2.4 trans-

92 On-line problem

f(t)

b

time

data

f(t - δ)

mr

mr′

b′
τ

Figure 4.2. Suppose an existing stream supplies according to its upper bound f ,
and has a bandwidth share b and receiving buffer share mr. Now a new stream
starts at time τ, and the bandwidth and receiving buffer shares of the existing
stream are changed to b
 and m
r which satisfies (3.19)–(3.22), (4.1), and (4.2).
However, for the initial solution only mr data could be transmitted up to time τ
and the bandwidth share b was required to transmit everything on time after τ.
With the new solution b
 there will be data arriving too late at the receiving buffer.

mission again is fixed to start at X
�
τ � 1 � . Constraints (4.1) and (4.2) form a lower

bound on the sending and receiving buffer, respectively. After the initial solution
with minimum buffer size has been determined, the trade-off algorithm can be ex-
ecuted as described. Finally, when all cost coefficients are positive, the off-line
approach described in 2.2.5 can be used in combination with the joint buffer mini-
mization for the on-line setting.

4.2.2 Leaky-bucket-controlled stream sub-problem
For a leaky-bucket-controlled stream it is not sufficient to use the methods for the
off-line setting together with (4.1) and (4.2) as lower bounds on the buffer shares.
As the reserved bandwidth share depends on the size of the buffer shares, this
may lead to an infeasible solution if the solution is changed; see Figure 4.2 for
an example. For a fully-specified stream this problem is circumvented by directly
using the initial transmission state X

�
τ � 1 � in the single-stream methods. For a

leaky-bucket-controlled stream X
�
τ � 1 � needs to be used together with an upper

bound on the supply and demand of data that may occur immediately after a new
stream starts.

4.2 Single-stream methods revisited 93

time

data

τδ τ+δ

P(t)

C(t)=P(t−δ)

Figure 4.3. Since demand equals
supply shifted by a delay δ, the de-
mand up to time unit τ � δ is known
at time unit τ.

time

data

τ

P(t)

f(t)

Figure 4.4. For each time unit it
holds that the amount of data that
can be supplied during the next t
time units is bounded by f � t � .

Thus, we need to take into account all information we have about possible data
supply and demand in the time units after a new stream starts. For a current stream,
the supply that has taken place before a new stream starts, is already known. As
the demand of a leaky-bucket-controlled stream is shifted with a delay δ compared
to the supply, the demand of the first δ time units after τ � 1 is also known, see
Figure 4.3. So, for a solution it must be possible to transmit data in time for the
known demand C

�
t � , i.e., for τ � t

� τ � δ � 1,

C
�
t � � X

�
τ � 1 � � �

t � τ � 1 � b (4.7)

must hold. Furthermore, the buffer share mr may limit the amount of data that can
be transmitted during a time unit. If the receiving buffer share is full at the end of a
time unit q, then C

�
q � 1 � � mr data has been transmitted in total and any amount of

data above this amount that is required for later time units, needs to be transmitted
after time unit q. So, for τ � q

� τ � δ � 1 and q
�

t
� τ � δ � 1,

C
�
t � � C

�
q � 1 � � mr

� �
t � q � b (4.8)

must hold. Notice that for t � q this constraint just requires that the buffer share
mr is large enough to hold the demand for time unit q.

The supply at time units t
� τ and the demand at time units t

� τ � δ is un-
known. We derive an upper bound for this using the realized supply up to time
unit τ. For each time unit it holds that the total supply and demand during the
next t time units is bounded by f

�
t � ; see Figure 4.4. So, if a stream starts at

94 On-line problem

data

time

f(t)

τ

g(t)

Figure 4.5. An upper bound on the data supply composed by taking the minimum
of all upper bounds consisting of the function f starting at cumulative supply
amounts.

time unit 1, the data supply at a time unit t
� τ has τ upper bounds, viz. f

�
t � ,

P
�
1 � � f

�
t � 1 � , P

�
2 � � f

�
t � 2 � , ����� , and P

�
τ � 1 � � f

�
t � τ � 1 � . If we take the

minimum of these τ upper bounds for all t
� τ, we get a new upper bound g, i.e.,

g
�
t � � min � P �

t � � � f
�
t � t � � �

t � � 0 ������� � τ � 1 � ; see Figure 4.5. As g is the mini-
mum of τ piecewise-linear, concave functions, g is also a piecewise-linear, concave
function. Furthermore, since g is the minimum of τ shifted functions f , the gra-
dient of a line segment of g must be equal to the gradient of a line segment of f .
Therefore, the number of bending points of g is at most the number of bending
points of f . Function g can be determined at once at time unit τ, which requires
taking the minimum of τ functions, or it can be constructed on-line by adjusting it
each time unit t � for the new upper bound P

�
t � � � f

�
t � t � � for t � t � , which requires

taking the minimum of two functions during each time unit.
Using upper bound g we can derive the following constraints for a solution

of an existing stream, analogously to (3.19)–(3.22), (4.7), and (4.8). The band-
width share should be large enough such that data can be transmitted before it is
demanded and before the sending buffer share overflows. So, for t

�
1

g
�
t � τ � 1 � � X

�
τ � 1 � � �

t � δ � b (4.9)

4.2 Single-stream methods revisited 95

and
g

�
t � τ � 1 � � X

�
τ � 1 � � �

t � 1 � b
�

ms (4.10)
must hold, cf. (3.19) and (3.20). Furthermore, as the receiving buffer share can
be full at the end of a time unit q, this may limit the amount of data transmitted
up to and including q to C

�
q � 1 � � mr. Then, C

�
q � 1 � � mr � X

�
τ � 1 � data is

transmitted in the first q � �
τ � 1 � time units after the new stream starts. Thus,

similar to the derivation of (3.21) and (3.22) from (3.19) and (3.20), respectively,
we derive the following constraints from (4.9) and (4.10). If the receiving buffer
share is full at the end of a time unit q, then, in order to transmit data before it is
demanded, we have for t

�
1,

g
�
t � τ � 1 � � X

�
τ � 1 � � �

C
�
q � 1 � � mr � X

�
τ � 1 � � � �

t � δ � �
q � �

τ � 1 � � � b �
As q can be any time unit from τ to τ � δ, we get that for τ � q

� τ � δ and t
�

1,

g
�
t � τ � 1 � � C

�
q � 1 � � mr

� �
t � δ � q � τ � 1 � b (4.11)

must hold. Note that this constraint is correctly defined for all t
�

1.
Next, if the receiving buffer share is full at the end of a time unit q, then, in

order to transmit data before the sending buffer overflows, we have for t
�

1 �
�
q ��

τ � 1 � � ,

g
�
t � τ � 1 � � X

�
τ � 1 � � �

C
�
q � 1 � � mr � X

�
τ � 1 � � � �

t � 1 � �
q � �

τ � 1 � � � b
�

ms �
As q again can be any time unit from τ to τ � δ, we get that for τ � q

� τ � δ and
t

�
q � τ � 2,

g
�
t � τ � 1 � � C

�
q � 1 � � mr �

�
t � q � τ � 2 � b

�
ms (4.12)

must hold. Note that for this constraint we require t
�

q � τ � 2 instead of t
�

1.
Furthermore, notice that (4.11) and (4.12) follow from (4.9) and (4.10), respec-
tively, by adjusting the amount of data in the constraints from g

�
t � τ � 1 � � X

�
τ �

1 � to g
�
t � τ � 1 � � C

�
q � 1 � � mr and subtracting q � �

τ � 1 � from the number
of time units during which data can be transmitted, which is given in the equa-
tions directly in front of b. Also notice that for t � q � 1 � �

τ � 1 � , (4.12) reduces
to g

�
q � 1 � � ms

�
C

�
q � 1 � � mr, i.e., the upper bound induced by the receiving

buffer share must lie above the lower bound induced by the sending buffer share.
The constraints (4.9)–(4.12) describe the worst-case situation for supply and

demand of a current stream as observed at the beginning of time unit τ. However,
generally the actual supply and demand of data will be less than the amount given
by g, and the worst-case situation for the supply and demand as described by f
may take place at the beginning of a time unit t � � τ. Therefore, to take all possible
realizations of the supply after time unit τ into account, a new solution for a current
stream still has to satisfy (3.19)–(3.22).

96 On-line problem

Finally, we consider (4.1) and (4.2) for current leaky-bucket-controlled
streams. A new solution should also satisfy these constraints. However, for (4.1)
the value of P

�
τ � is unknown and only an upper bound value g

�
τ � is given. If we

replace P
�
τ � by g

�
τ � in (4.1) we get (4.10) with t � 1. For (4.2) the value of X

�
τ � is

unknown but we know that X
�
τ � �

X
�
τ � 1 � must hold. Combining this with (4.2)

we have instead the following lower bound for the new receiving buffer share, viz.

mr
�

X
�
τ � 1 � � C

�
τ � 1 � � (4.13)

So, a solution for a current leaky-bucket-controlled stream has to satisfy
(3.19)–(3.22) and (4.7)–(4.13). We next show that a solution that satisfies these
constraints is also a solution to (3.5)–(3.9) with given values of X

�
t � , P

�
t � , and

C
�
t � for all t

� τ � 1, and for all actual supply schemes p
�
t � that satisfy (3.1) and

all actual demand schemes c
�
t � that satisfy (3.2). Notice that (3.2) fixes the values

of C
�
t � for τ � t

� τ � δ � 1.

Theorem 4.1. If a solution b, ms, and mr is feasible w.r.t. (3.19)–(3.22) and (4.7)–
(4.13), it is also feasible w.r.t. (3.5)–(3.9) with given values of X

�
t � and P

�
t � for all

t
� τ � 1, and of C

�
t � for all t

� τ � δ � 1.
Proof. The proof of this theorem is similar to the proofs of Theorems 3.1 and
3.2 on pages 62 and 69, respectively. Therefore, when almost identical derivations
are made, we refer to the proofs of these theorems and indicate any important
differences.

Let b, ms, and mr be a feasible solution w.r.t. (3.19)–(3.22) and (4.7)–(4.13).
First we show that this solution satisfies constraints similar to (3.12)–(3.16). We
consider the following transformations f � f � of the function f in (3.12)–(3.16),
viz. f � �

t � � f
�
t � �

τ � 1 � � � X
�
τ � 1 � and f � �

t � � g
�
t � . So, we have for f

�
t � �

τ �
1 � � � X

�
τ � 1 � with t

� τ,

x
�
t � �

b � (4.14)

f
�
t � �

τ � 1 � � � X
�
τ � 1 � � X

�
t � �

0 � (4.15)

f
�
t � �

τ � 1 � � � X
�
τ � 1 � � X

�
t � 1 � �

ms � (4.16)

X
�
t � δ � � f

�
t � �

τ � 1 � � � X
�
τ � 1 � �

0 � (4.17)

X
�
t � δ � 1 � � f

�
t � �

τ � 1 � � � X
�
τ � 1 � �

mr � (4.18)

and for g
�
t � with t

� τ,

x
�
t � �

b � (4.19)

g
�
t � � X

�
t � �

0 � (4.20)

g
�
t � � X

�
t � 1 � �

ms � (4.21)

X
�
t � δ � � g

�
t � �

0 � (4.22)

X
�
t � δ � 1 � � g

�
t � �

mr � (4.23)

4.2 Single-stream methods revisited 97

Now we first show that any solution to (3.19)–(3.22) is also a solution to (4.14)–
(4.18). Analogously to the proof of Theorem 3.2 we consider the greedy trans-
mission strategy x f

�
t � � min � b � f

�
t � �

τ � 1 � � � X
�
τ � 1 � � X f

�
t � 1 � � mr � f

�
t ��

τ � 1 � � δ � 1 � � X
�
τ � 1 � � X f

�
t � 1 � � . It then immediately follows that (4.14),

(4.15), and (4.18) are satisfied. Let t
� τ. To show that (4.16) is satisfied we

choose k̃ � max � k ��� τ ������� � t � 1 � �
x f

�
k � � f

�
k � �

τ � 1 � � � X
�
τ � 1 � � X f

�
k � 1 � �

x f
�
k � � mr � f

�
k � �

τ � 1 � � δ � 1 � � X
�
τ � 1 � � X f

�
k � 1 � � . By considering three

cases, namely k̃ is undefined, x f
�
k̃ � � f

�
k̃ � �

τ � 1 � � � X
�
τ � 1 � � X f

�
k̃ � 1 � , and

x f
�
k̃ � � mr � f

�
k̃ � �

τ � 1 � � δ � 1 � � X
�
τ � 1 � � X f

�
k̃ � 1 � , we can make similar

derivations as in the proof of Theorem 3.2. In these derivations we use the fact that
we can write X f

�
t � 1 � � X f

�
τ � 1 � � ∑t � 1

k � τ x f
�
k � for t

� τ.
To show that (4.17) is satisfied we choose k̂ � max � k � � τ ������� � t � �

x f
�
k � �

f
�
k � �

τ � 1 � � � X
�
τ � 1 � � X f

�
k � 1 � � x f

�
k � � mr � f

�
k � �

τ � 1 � � δ � 1 � � X
�
τ �

1 � � X f
�
k � 1 � � . Again, we consider three cases for which we make derivations

analogous to the proof of Theorem 3.2.
Next, we show that any solution to (4.7)–(4.13) is also a solution to (4.19)–

(4.23). We consider the greedy transmission strategy xg
�
t � � min � b � g �

t � � Xg
�
t �

1 � � mr � g
�
t � δ � 1 � � Xg

�
t � 1 � � . Again, it immediately follows that (4.19), (4.20),

and (4.23) are satisfied. For (4.21) we choose k̃ � max � k � � τ ������� � t � 1 � �
xg

�
k � �

g
�
k � � Xg

�
k � 1 � � xg

�
k � � mr � g

�
k � δ � 1 � � Xg

�
k � 1 � � . The derivation for this

constraint is similar to the proof of Theorem 3.2, but not trivial. Therefore, we
show how it can be exactly made. We again consider three cases, viz. (i) k̃ � � ∞,
(ii) xg

�
k̃ � � g

�
k̃ � � Xg

�
k̃ � 1 � , and (iii) xg

�
k̃ � � mr � g

�
k̃ � δ � 1 � � Xg

�
k̃ � 1 � .

(i) If k̃ � � ∞, then Xg
�
t � 1 � � X

�
τ � 1 � �

�
t � τ � b. We derive

g
�
t � � Xg

�
t � 1 � � g

�
t � � X

�
τ � 1 � � �

t � τ � b

� t � t � � τ � 1 � � g
�
t � � τ � 1 � � X

�
τ � 1 � � �

t � � τ � 1 � τ � b

� use (4.10) � �
ms �

(ii) If xg
�
k̃ � � g

�
k̃ � � Xg

�
k̃ � 1 � , then Xg

�
k̃ � � g

�
k̃ � . We derive

g
�
t � � Xg

�
t � 1 � � g

�
t � � Xg

�
k̃ � �

t � 1

∑
k � k̃ � 1

xg
�
k �

� g
�
t � � g

�
k̃ � � X

�
τ � 1 � � X

�
τ � 1 � � �

t � k̃ � 1 � b

� X
�
τ � 1 � � g

�
τ � 1 � � �

g
�
t � � g

�
k̃ � � g

�
τ � 1 � � X

�
τ � 1 � � �

t � k̃ � 1 � b

� concavity of g � �
g

�
t � τ � 1 � k̃ � � X

�
τ � 1 � � �

t � k̃ � 1 � b

� use (4.10) � �
ms �

98 On-line problem

(iii) If xg
�
k̃ � � mr � g

�
k̃ � δ � 1 � � Xg

�
k̃ � 1 � , then Xg

�
k̃ � � mr � g

�
k̃ � δ � 1 � . We

derive

g
�
t � � Xg

�
t � 1 �

� g
�
t � � X

�
k̃ � �

t � 1

∑
k � k̃ � 1

x
�
k �

� x
�
k � � b for k � k̃ �

� g
�
t � � mr � g

�
k̃ � δ � 1 � � �

t � k̃ � 1 � b

� g
�
t � � C

�
τ � δ � 1 � � C

�
τ � δ � 1 � � mr � g

�
k̃ � δ � 1 � � �

t � k̃ � 1 � b

� C �
τ � δ � 1 � � P

�
τ � 1 � � g

�
τ � 1 � �

�
g

�
t � � g

�
τ � 1 � � g

�
k̃ � δ � 1 � � C

�
τ � δ � 1 � � mr �

�
t � k̃ � 1 � b

� concavity of g �
�

g
�
t � τ � 1 � k̃ � δ � 1 � � C

�
τ � δ � 1 � � mr �

�
t � k̃ � 1 � b

� t � � t � k̃ � δ � 1 �
� g

�
t � � τ � 1 � � C

�
τ � δ � 1 � � mr �

�
t � � k̃ � δ � 1 � k̃ � 1 � b

�
g

�
t � � τ � 1 � � C

�
τ � δ � 1 � � mr �

�
t � � δ � 2 � b

� (4.12) for q � τ � δ �
�

ms �
For (4.22) we choose k̂ � max � k ��� τ ������� � t � �

xg
�
k � � g

�
k � � Xg

�
k � 1 � �

xg
�
k � � mr � g

�
k � δ � 1 � � Xg

�
k � 1 � � . Again, for we consider three cases and

make derivations analogous to the proof of Theorem 3.2 and to the derivations
above.

Now we need to show that if b, ms, and mr satisfy (4.14)–(4.23), then they
are feasible w.r.t. (3.5)–(3.9) with given values of X

�
t � and P

�
t � for all t

� τ � 1,
and of C

�
t � for all t

� τ � δ � 1. For this we take a similar approach as in the
proof of Theorem 3.1 on page 62. We consider the greedy transmission strategy
x

�
t � � min � b � P �

t � � X
�
t � 1 � � mr � C

�
t � 1 � � X

�
t � 1 � � for any actual supply P

satisfying (3.1) and for any actual demand C satisfying (3.2). It then immediately
follows that (3.5), (3.6), and (3.9) are satisfied. For (3.7) and (3.8) we can make
similar derivations as in the proof of Theorem 3.1.

Let t
� τ. We now choose k̃ � max � k ��� τ ������� � t � 1 � �

x
�
k � � P

�
k � � X

�
k � 1 � �

x
�
k � � mr � C

�
k � 1 � � X

�
k � 1 � � , so for all k with k̃ � k � t, x

�
k � � b holds. We

first show that (3.7) is satisfied, i.e., P
�
t � � X

�
t � 1 � � ms. For this we distinguish

the same three possibilities as for Theorem 3.1. If k̃ � � ∞, then X
�
t � 1 � � X

�
τ �

1 � �
�
t � τ � b, and the same derivation can be made using (4.19)–(4.23) involving

function g. This is needed as g
�
t � gives an upper bound on P

�
t � but f

�
t � �

τ � 1 � � �

4.2 Single-stream methods revisited 99

X
�
τ � 1 � does not. Analogously, if x

�
k̃ � � P

�
k̃ � � X

�
k̃ � 1 � , or x

�
k̃ � � mr � C

�
k̃ �

1 � � X
�
k̃ � 1 � , the same derivations for these cases can be made as in the proof of

Theorem 3.1, here using (4.14)–(4.18) involving function f
�
t � �

τ � 1 � � � X
�
τ � 1 � .

Similarly, for (3.8) we take k̂ � max � k ��� τ ������� � t � �
x

�
k � � P

�
k � � X

�
k � 1 � �

x
�
k � � mr � C

�
k � 1 � � X

�
k � 1 � � , so for all k with k̂ � k

�
t, x

�
k � � b holds. When

k̂ � � ∞, and thus X
�
t � 1 � � X

�
τ � 1 � �

�
t � τ � b, we make the same derivation as in

the proof of Theorem 3.1, but now using (4.19)–(4.23). For x
�
k̂ � � P

�
k̂ � � X

�
k̂ � 1 �

and x
�
k̂ � � mr � C

�
k̂ � 1 � � X

�
k̂ � 1 � the same derivations are made again using

(4.14)–(4.18). �

Next, we distinguish the different possibilities of the single-stream problems
and describe how they can be solved. For these solution methods we first rewrite
(4.9)–(4.12) into constraints on a single resource given values of the other two
resources. For the bandwidth share b this leads to the following constraints. From
(4.9) it follows that for t̃

� δ � 1 with t̃ � t � δ,

b
� �

g
�
t̃ � τ � 1 � δ � � X

�
τ � 1 � ��� t̃ � (4.24)

From (4.10) it follows that for t̃
�

1 with t̃ � t � 1,

b
� �

g
�
t̃ � τ � � X

�
τ � 1 � � ms ��� t̃ � (4.25)

Notice that t � 1 in (4.10) leads to a constraint that does not involve b; therefore,
t̃ � 0 is not included in this constraint. We transform (4.11) into two constraints
on b depending on the value of q. For τ � q

� τ � δ � 1 and t̃
� τ � δ � q with

t̃ � t � δ � q � τ � 1, it follows that,

b
� �

g
�
t̃ � δ � q � � C

�
q � 1 � � mr ��� t̃ � (4.26)

and for q � τ � δ and t̃
�

1 with t̃ � t � 1, it follows that,

b
� �

g
�
t̃ � τ � � C

�
τ � δ � 1 � � mr ��� t̃ � (4.27)

Again, notice that t � 1 and q � τ � δ in (4.11) leads to a constraint that does
not involve b, thus excluding t̃ � 0 from (4.27). From (4.12) it follows that for
τ � q

� τ � δ and t̃
�

1 with t̃ � t � q � τ � 2,

b
� �

g
�
t̃ � q � 1 � � C

�
q � 1 � � ms � mr ��� t̃ � (4.28)

For the sending buffer share ms we can rewrite (4.9)–(4.12) into the following
constraints. Constraint (4.10) already states that for t̃

�
1 with t̃ � t,

ms
�

g
�
t̃ � τ � 1 � � X

�
τ � 1 � � �

t̃ � 1 � b � (4.29)

From (4.12) it follows that for τ � q
� τ � δ and t̃

�
1 with t̃ � t � 1 � q � τ,

ms
�

g
�
t̃ � q � � C

�
q � 1 � � mr �

�
t̃ � 1 � b � (4.30)

For the receiving buffer share mr we obtain the following constraints. From

100 On-line problem

(4.11) it follows that for τ � q
� τ � δ and t̃

� τ � δ � q � 1 with t̃ � t � δ � q � τ,

mr
�

g
�
t̃ � δ � q � 1 � � C

�
q � 1 � � �

t̃ � 1 � b � (4.31)

From (4.12) it follows that for τ � q
� τ � δ and t̃

�
1 with t̃ � t � 1 � q � τ,

mr
�

g
�
t̃ � q � � C

�
q � 1 � � ms �

�
t̃ � 1 � b � (4.32)

Finally, we can rewrite (4.12) into a constraint for the total buffer share ms � mr,
which gives for τ � q

� τ � δ and t̃
�

1 with t̃ � t � 1 � q � τ,

ms � mr
�

g
�
t̃ � q � � C

�
q � 1 � � �

t̃ � 1 � b � (4.33)

In the rest of this chapter we will use variable t instead of t̃ when we refer to
(4.24)–(4.33); t̃ is only used above to clarify the rewriting of (4.9)–(4.12).

Bandwidth minimization.
When the bandwidth needs to be minimized, the minimum value of b that satisfies
(3.23)–(3.26), (4.7), (4.8), and (4.24)–(4.28), with ms � Ms and mr � Mr needs to
be determined. For time units t � τ ������� � τ � δ � 1 the exact demand scheme C

�
t � is

known. If we take the worst-case supply g
�
t � as actual supply scheme for these time

units, we get an upper bound U
�
t � � min � g �

t � � C �
t � 1 � � Mr � and a lower bound

L
�
t � � � C �

t � � g �
t � 1 � � Ms � X �

τ � 1 � � . The minimum required bandwidth during
time units t � τ ������� � τ � δ � 1 can now be determined using the MVBA-algorithm
as described in Section 2.2.1 with start point X

�
τ � 1 � and end point L

�
τ � δ � 1 � .

This bandwidth share satisfies (4.7) and (4.8) as well as (4.25) for 1
�

t
� δ and

(4.28) for τ � q
� τ � δ � 2 and 1

�
t
� τ � δ � q � 1.

For (3.23)–(3.26), (4.24), and (4.25) the minimum required value of b can be
determined by taking the maximum over all time units t. As both f and g are
piecewise-linear, concave functions in case of leaky-bucket-controlled streams, the
minimum of a constraint is found at a bending point.

Constraints (4.26)–(4.28) involve time units q � τ ������� � τ � δ. However, gener-
ally not all time units τ ������� � τ � δ need to be considered to determine the minimum
value of b that satisfies these constraints. Instead we first consider the MVBA-
schedule X

�
t � with U and L as defined above, that starts at X

�
τ � 1 � and ends at

C
�
τ � δ � 1 � � Mr. Notice that this schedule is equal to the MVBA-schedule that

ends at L
�
τ � δ � 1 � up to the last convex critical point of the latter schedule.

Let t � be the last concave critical point of the MVBA-schedule X
�
t � ending in

time unit τ � δ at C
�
τ � δ � 1 � � Mr, i.e., t � � max � t �

τ � 1
�

t
� τ � δ � 1 	 x

�
t � �

x
�
t � 1 � � ; notice that X

�
t � � � L

�
t � � . Then it is sufficient to consider only time

units q � t � which end at a convex mr-critical point of the MVBA-schedule, i.e.,
� q �

t � � q
� τ � δ 	 X

�
q � � C

�
q � 1 � � Mr 	

�
x

�
q � � x

�
q � 1 � � q � τ � δ � � . For

example, in Figure 4.6 we only need to consider the time units q1 and τ � δ. For
each of these values of q, the minimum value of b that satisfies (4.26)–(4.28) can

4.2 Single-stream methods revisited 101

τ t′

C(t)

C(t)+mr

τ+δ time

data

q1

Figure 4.6. MVBA-schedule that starts at X � τ � 1 � and ends at C � τ � δ � 1 �
� mr.
t
 is the last concave critical point. Then only the time units after t
 that end with
a convex critical point need to be considered for (4.26)–(4.28), in this case q � q1
and q � τ � δ.

be determined by considering the bending points of g. To see why other time units
do not need to be considered as value of q in (4.26)–(4.28) we note the following.

First, we consider a convex critical point q � before the last concave critical
point t � . Notice that then C � τ � δ � 1 � � Mr � � C � q � � 1 � � Mr �

τ � δ � q � � L � t � � � � C � q � � 1 � � Mr �
t � � q � holds. Now

let transmission start at C
�
q � � 1 � � Mr and let bandwidth b � be large enough to

satisfy (4.26)–(4.28) for q � q � . If b � � C � τ � δ � 1 � � Mr � � C � q � � 1 � � Mr �
τ � δ � q � , i.e., the re-

ceiving buffer size is more constraining at q � than at τ � δ, then we also have
b � � L � t � � � � C � q � � 1 � � Mr �

t � � q � , which means that the bandwidth share resulting from ei-
ther (4.8) with q � q � and t � t � or (4.28) with q � q � and t � t �
� q � , is larger
than b � . If b � � C � τ � δ � 1 � � Mr � � C � q � � 1 � � Mr �

τ � δ � q � , then the bandwidth share resulting from
(4.26)–(4.28) for q � τ � δ is larger than b � . Thus, we do not need to consider q � .

Next, we consider a point q � � t � that is not a convex critical point. Again,
let transmission start at C

�
q � � 1 � � Mr and let bandwidth b � be large enough to

satisfy (4.26)–(4.28) for q � q � . Furthermore, let q̂ be a succeeding convex crit-
ical point. Note that such a q̂ always exists, since q̂ � τ � δ is defined as a con-
vex critical point. Now, let b̂ be large enough to satisfy (4.26)–(4.28) for q � q̂.
If b � � b̂ then constraints (4.26)–(4.28) are more constraining for q � q̂ than for
q � q � . Now suppose b � �

b̂. Note that then b � � C � q̂ � 1 � � Mr � � C � q � � 1 � � Mr �
q̂ � q � . We con-

sider the preceding critical point of q � , say t̂. If t̂ is a convex critical point, then
C � q̂ � 1 � � Mr � � C � q � � 1 � � Mr �

q̂ � q � � C � q � � 1 � � Mr � � C � t̂ � 1 � � Mr �
q � � t̂ holds. This means that (4.26)–

102 On-line problem

(4.28) for q � t̂ leads to a higher bandwidth than b � . If t̂ is a concave critical point,
i.e., t̂ � t � , then the bandwidth required immediately before t � , which results from
(4.7), (4.8) with t � t � , or (4.28) with t � t � � q, is larger than C � q̂ � 1 � � Mr � L � t � �

q̂ � t � , i.e.,

the gradient of the segment between q̂ and t � . As b � � C � q̂ � 1 � � Mr � L � t � �
q̂ � t � must hold,

this means we do not need to consider q � .
Now we have shown how for each constraint the minimum bandwidth b can be

determined such that the constraint is satisfied. The minimum required bandwidth
is naturally given by the maximum of these obtained bandwidth shares.

Buffer minimization.
First we consider the minimization of the sending buffer share. For this, we need
to determine the minimum value of ms that satisfies (3.27), (3.28), (4.29), and
(4.30), with b � B and mr � Mr. The first three of these constraints only require
determining the maximum over all time units t. With f and g piecewise-linear,
concave functions, this can be found again at a bending point. Constraint (4.30)
actually consists of δ � 1 constraints for which the maximum over all time units t
needs to be taken. However, as the maximum occurs at a bending point of g which
for a given value of b will always be the same, the maximum for each of these δ � 1
constraints can immediately be determined after the concerned bending point has
been found. The resulting sending buffer share is found by taking the maximum
over all obtained sending buffer share values.

Next we consider the minimization of the receiving buffer share. For this,
we need to determine the minimum value of mr that satisfies (3.29), (3.30), (4.8),
(4.13), (4.31), and (4.32), with b � B and ms � Ms. For (3.29) and (3.30) we need
to determine the maximum over all time units t, which can be found at a bending
point of f . For (4.8) we can use backward RCBS as described in Section 2.2.2.
For (4.13) the minimum value of mr immediately follows. Constraints (4.31) and
(4.32) again consist of δ � 1 constraints, for which the maximum over all time units
t can be easily found by determining the bending point of g where the maximum is
attained for the given b. The resulting receiving buffer share is the maximum over
all found minimum receiving buffer shares.

Two-buffer minimization.
When both buffers need to be minimized, we apply the same approach as for the
off-line setting of MSSP and MLBSSP. First, we minimize the buffer with the high-
est cost coefficient, then we minimize the buffer with the lowest cost coefficient.
For the minimization of each buffer we can use the procedures described above.

4.2 Single-stream methods revisited 103

Bandwidth-buffer trade-off.
We start with discussing how to handle the trade-off between the bandwidth and the
sending buffer share. Then we show how the trade-off between the bandwidth and
the receiving buffer share can be performed, and between the bandwidth and both
buffers. For all trade-offs we start with a solution with minimum bandwidth share
b and corresponding values of ms and mr, which we obtain by first minimizing b
for ms � Ms and mr � Mr and then minimizing ms and mr for the found value of b.
Then we increase b and determine the effect on ms and mr.

Trade-off between b and ms.

For a given value of b, ms needs to satisfy (3.27), (3.28), (4.29), and (4.30) with
mr � Mr. For this, we define analogously to the trade-off described in Chapter 3
the following lower bounds on ms as functions of b, which correspond to the right-
hand-sides of each of the mentioned constraints.

m1
�
b � � max � f

�
t � � �

t � 1 � b
�
t

�
1 � �

m2
�
b � � max � f

�
t � δ � 1 � � Mr �

�
t � 1 � b

�
t

�
1 � �

m3
�
b � � max � g �

t � τ � 1 � � X
�
τ � 1 � � �

t � 1 � b
�
t

�
1 � �

mq
4

�
b � � max � g �

t � q � � C
�
q � 1 � � Mr �

�
t � 1 � b

�
t

�
1 � �

with q � τ ������� � τ � δ for mq
4

�
b � . Each of these δ � 4 lower bound functions forms a

piecewise-linear, convex curve in the
�
b � ms � -plane. The trade-off curve for b and

ms is given by the maximum of these lower bound curves; see Figure 4.7. Again,
we construct the lower bound curves iteratively while increasing b. Furthermore,
we determine the trade-off curve efficiently by using the expressions of the lower
bounds as we show hereafter.

For all values of b the corresponding value of t at which the above-defined
lower bounds attain their maximum, are given by t1

�
b � , t2

�
b � , t3

�
b � , and tq

4
�
b � ,

respectively. So we have for a given b,

m1
�
b � � f

�
t1

�
b � � � �

t1
�
b � � 1 � b �

m2
�
b � � f

�
t2

�
b � � δ � 1 � � Mr �

�
t2

�
b � � 1 � b �

m3
�
b � � g

�
t3

�
b � � τ � 1 � � X

�
τ � 1 � � �

t3
�
b � � 1 � b �

mq
4

�
b � � g

�
tq
4

�
b � � q � � C

�
q � 1 � � Mr �

�
tq
4

�
b � � 1 � b �

As the functions f and g are piecewise linear and concave, the maximum values for
a given b are attained at the bending points of f and g that connect the line segment
with the lowest gradient larger than b to the line segment with the highest gradient
smaller than or equal to b. When b is increased and becomes equal to the gradient

104 On-line problem

b

ms

Figure 4.7. The solid trade-off curve between b and ms is given by the maximum
of the dashed lower bounds m1, m2, m3, and mq

4.

of the line segment preceding such a bending point, the corresponding lower bound
values shift along the line segment to the bending point at the beginning of the
segment. Therefore, t1

�
b � , t2

�
b � , t3

�
b � , and tq

4
�
b � are piecewise-constant functions

of b, that jump in value when b is equal to the gradient of a line segment of f and
g. If for a certain lower bound the value of t corresponding to the bending point at
which the maximum is attained, is less than 1 and, therefore, is infeasible, then this
lower bound attains its value at t � 1 and remains constant for any further increase
of b.

Next, we denote the gradients of the lower bounds m1, m2, m3, and mq
4 by

∆1, ∆2, ∆3, and ∆q
4, respectively. It follows from the above definitions that

∆1
�
b � ��� �

t1
�
b � � 1 � , ∆2

�
b � � � �

t2
�
b � � 1 � , ∆3

�
b � ��� �

t3
�
b � � 1 � , and ∆q

4
�
b � �

� �
tq
4

�
b � � 1 � . Notice that ∆1

�
b � , ∆2

�
b � , ∆3

�
b � , and ∆q

4
�
b � are also piecewise-

constant functions. If b is now increased by an amount ε for which the gradient
of a lower bound remains constant, then the value of this lower bound changes by
ε times the gradient.

We continue with describing how we can determine the maximum of the lower
bounds efficiently, when the gradients of the lower bounds remain non-zero during
the relevant increase of b. The maximum of the lower bounds m1 and m2 can be
determined as described in Section 3.3.4. There, we show that if t2

�
Mr �

�
δ � 1 � � �

1, then m2
�
b � �

m1
�
b � holds if and only if b

�
Mr �

�
δ � 1 � . If t2

�
b � � 1 for a certain

b � Mr �
�
δ � 1 � , then lower bound m2

�
b � is constant for this and any larger values

of b and given by f
�
δ � 2 � � Mr.

Next, we consider lower bounds m3 and mq
4. Their values are attained at the

same bending point of function g, if feasible, so tq
4

�
b � � t3

�
b � � τ � 1 � q holds for

4.2 Single-stream methods revisited 105

data

time

C(t−1)+Mr

τ
X(τ−1)

τ+δ

El

(a)

data

time

C(t−1)+Mr

q
X(τ−1)

τ+δq′

(b)

data

time

C(t−1)+Mr

τ
X(τ−1)

τ+δ

El

(c)

Figure 4.8. (a) Convex lower envelope El of C � t � 1 ��� Mr, starting at X � τ � 1 � ,
which is used to determine for which value of b which of m3 � b � and mq

4 � b � has the
maximum value. (b) Convex lower envelope between q and q
 � 1. (c) All convex
lower envelopes between τ and every other time unit.

q � τ ������� � τ � δ. Furthermore, for q � q � , it follows that tq
4

�
b � � q � tq �

4
�
b � � q � . So,

∆3
�
b � � ∆q

4
�
b � � ∆q �

4
�
b � holds. Thus, if for a given value of b we have m3

�
b � �

mq
4

�
b � for a certain q, then it also holds for larger values of b. Also, if for certain q

and q � with q � q � and for a given b we have mq
4

�
b � � mq �

4
�
b � , then the same holds

for larger values of b.
For a given q and q � we have that mq

4
�
b � � mq �

4
�
b � if g

�
tq
4

�
b � � q � � C

�
q � 1 � �

Mr �
�
tq
4

�
b � � 1 � b � g

�
tq �
4

�
b � � q � � � C

�
q � � 1 � � Mr �

�
tq �
4

�
b � � 1 � b holds. With

q � q � , we get

b � C
�
q � � 1 � � C

�
q � 1 �

tq
4

�
b � � tq �

4
�
b �

� C
�
q � � 1 � � C

�
q � 1 �

q � � q
� (4.34)

So, the lower bound values of mq
4

�
b � and mq �

4
�
b � are equal when the bandwidth is

equal to the average demand from time unit q until time unit q � . Similarly, we have
m3

�
b � � mq

4
�
b � if g

�
t3

�
b � � τ � 1 � � X

�
τ � 1 � � �

t3
�
b � � 1 � b � g

�
tq
4

�
b � � q � � C

�
q �

1 � � Mr �
�
tq
4

�
b � � 1 � b holds, which is equivalent to

b � C
�
q � 1 � � Mr � X

�
τ � 1 �

t3
�
b � � tq

4
�
b � � C

�
q � 1 � � Mr � X

�
τ � 1 �

q � �
τ � 1 � � (4.35)

We now can determine the maximum of lower bounds m3
�
b � and mq

4
�
b � when b

increases as follows. First, we take the upper bound on transmission C
�
t � 1 � � Mr

for the time units t � τ ������� � τ � δ. Then, we determine the convex lower envelope of
this upper bound, denoted by El, starting at the beginning of time unit τ at X

�
τ � 1 � ;

106 On-line problem

see Figure 4.8(a) for an example. The gradients of the line segments of E l give the
values of b for which the maximum of m3

�
b � and mq

4
�
b � is attained at a different

lower bound, i.e., at a different value of q or at a mq
4

�
b � instead of m3

�
b � . Initially,

for a small value of b the maximum of m3
�
b � and mq

4
�
b � will be given by m3

�
b � .

Now, let b � be the gradient of a line segment of El and let q � be the last time unit
of the line segment. If b � b � , then the maximum of the lower bounds m3

�
b � and

mq
4

�
b � is attained at mq �

4
�
b � . Note that ∆q �

4 � 0 must hold, i.e., tq �
4

�
b � � 1.

If ∆q �
4

�
b � is equal to zero, then mq �

4
�
b � remains constant for any increase of

b. Furthermore, for q � q � for which ∆q
4

�
b � � 0, it generally does not hold that

tq
4

�
b � � tq �

4
�
b � � q � � q as we used in the derivations above. Instead we have t q

4
�
b � �

tq �
4

�
b � � q � � q as tq �

4
�
b � � 1, which means the maximum over all q of lower bounds

mq
4 may only move to q � at a higher value of b. Now suppose q � is the smallest

value of q for which tq
4

�
b � � tq �

4
�
b � � q � � q. Then, for all time units y, with q �

y � q � , we have tq
4

�
b � � ty

4
�
b � � y � q. The maximum of mq

4 over all q now can
move to y instead of q � . To determine for which value of b we have my

4
�
b � �

mq
4

�
b � , we determine the convex lower envelope between time units q and q � � 1;

see Figure 4.8(b). For all time units y � �
q � , which have a constant lower bound

my �
4

�
b � , we determine the maximum of all these constant lower bounds. The value

of b for which mq
4

�
b � is then equal to this maximum, can straightforwardly be

determined. Finally, instead of determining the convex lower envelope between
time units q and q � � 1 when ∆q �

4
�
b � � 0, we can also determine in advance all

convex lower envelopes between time unit τ and every other time unit up to τ � δ,
when we determine El; see Figure 4.8(c).

We now have shown how to determine max � m1
�
b � � m2

�
b � � and

max � m3
�
b � � mq

4
�
b � � for all b. The trade-off curve is given by the maximum

of these two curves. The optimal solution is found at one of the bending points of
the trade-off curve including the begin and end point. When the trade-off curve
is constructed iteratively starting with a solution with minimum bandwidth, the
optimal solution is obtained as soon as increasing b by an amount ε would not lead
to a reduction in costs, i.e., when cbε � cs∆ms ε � 0 or ∆ms � � cb

cs
holds, with ∆ms

the gradient of the trade-off curve.

Trade-off between b and mr.

The trade-off between b and mr can be performed in a similar way as the trade-off
between b and ms. For a given value of b, mr needs to satisfy (3.29), (3.30), (4.8),
(4.13), (4.31), and (4.32) with ms � Ms. Constraint (4.13) just gives a constant
lower bound for the receiving buffer share. Constraint (4.8) involves the known de-
mand scheme during the first δ time units after τ and can be taken into account by
using the trade-off algorithm for fully-specified streams described in Section 2.2.4.

4.2 Single-stream methods revisited 107

With this algorithm a bandwidth-buffer trade-off curve can be constructed that sat-
isfies (4.8).

For (3.29), (3.30), (4.31), and (4.32) we define analogously to the trade-off for
ms, the following lower bounds on mr as a function of b,

m5
�
b � � max � f

�
t � � �

t � 1 � b
�
t

�
1 � �

m6
�
b � � max � f

�
t � δ � 1 � � Ms �

�
t � 1 � b

�
t

�
1 � �

mq
7

�
b � � max � g �

t � δ � q � 1 � � C
�
q � 1 � � �

t � 1 � b
�
t

� τ � δ � q � 1 � �
mq

8
�
b � � max � g �

t � q � � C
�
q � 1 � � Ms �

�
t � 1 � b

�
t

�
1 � �

with q � τ ������� � τ � δ for mq
7

�
b � and mq

8
�
b � . These lower bounds each form a

piecewise-linear, convex curve in the
�
b � mr � -plane. The trade-off curve for b and

mr is given by the maximum of these lower bound curves, the lower bound given
by (4.13), and the trade-off curve based on (4.8).

Now we define t5
�
b � , t6

�
b � , tq

7
�
b � , and tq

8
�
b � as the values of t where the

lower bound values of m5
�
b � , m6

�
b � , mq

7
�
b � , and mq

8
�
b � are attained, respectively.

Then, for a given value of b, the gradients of m5
�
b � , m6

�
b � , mq

7
�
b � , and mq

8
�
b � are

given by ∆5
�
b � � � �

t5
�
b � � 1 � , ∆6

�
b � � � �

t6
�
b � � 1 � , ∆q

7
�
b � � � �

tq
7

�
b � � 1 � , and

∆q
8

�
b � � � �

tq
8

�
b � � 1 � , respectively. Analogously to the trade-off between b and ms,

the values of t5
�
b � , t6

�
b � , tq

7
�
b � , and tq

8
�
b � decrease when, during the increase of b,

the maximum of the corresponding lower bound equation is attained at a different
bending point. When one of them is equal to its minimum value 1, the correspond-
ing gradient equals zero and the corresponding lower bound value thus remains
constant for any further increase of b.

Next, we discuss how to efficiently determine the maximum of lower bounds
m5, m6, mq

7, and mq
8 when their gradients remain non-zero during the relevant in-

crease of b. First, we consider m5
�
b � and m6

�
b � . As m5

�
b � � m1

�
b � and m6

�
b � �

m2
�
b � � Mr � Ms, we can derive in a similar manner that if t6

�
Ms �

�
δ � 1 � � � 1,

then m5
�
b � � m6

�
b � if and only if b

�
Ms �

�
δ � 1 � holds. Furthermore, if t6

�
b � � 1

for a certain b � Ms �
�
δ � 1 � , then lower bound m6

�
b � is constant for this and any

larger values of b and given by f
�
δ � 2 � � Ms.

Next, we consider mq
7 and mq

8. We remark that for a given q, tq
8

�
b � � tq

7
�
b � �

δ � 1 holds, so for a given q, ∆q
7

�
b � � ∆q

8
�
b � . First, we determine the value of q for

which mq
7

�
b � and mq

8
�
b � are maximal. Similar to lower bound mq

4
�
b � in the trade-off

between b and ms, we have for a given q and q � with q � q � , that mq
7

�
b � � mq �

7
�
b �

and mq
8

�
b � � mq �

8
�
b � when b � C � q � � 1 � � C � q � 1 �

q � � q . Thus, the value of q for which mq
7

�
b �

and mq
8

�
b � are maximal, can be determined with the convex lower envelope El of

C
�
t � for the time units τ ������� � τ � δ starting at C

�
τ � 1 � . Whenever b is equal to the

108 On-line problem

gradient of a line segment of El, the maxima over all q of mq
7

�
b � and mq

8
�
b � shift to

the value of q corresponding to the time unit at the end of the line segment.
Next, we consider for which value of b we get mq

8
�
b � �

mq
7

�
b � . As ∆q

8
�
b � �

∆q
7

�
b � holds, the maximum of mq

7
�
b � and mq

8
�
b � is attained at mq

8
�
b � for any increase

of b as soon as mq
8

�
b � �

mq
7

�
b � holds. Using the definitions we get that mq

8
�
b � �

mq
7

�
b � if and only if b

�
Ms �

�
δ � 1 � .

The trade-off is now performed similarly to the trade-off between b and ms.
Starting with a solution with minimum bandwidth share b̃, b is increased iteratively
until the gradient of mr is too small for an increase of b to give a better solution.

Trade-off between b, ms, and mr.

For the trade-off between b, ms, and mr we use lower bound curves on ms, mr,
and the total buffer size ms � mr. The lower bound curves on ms and mr are con-
structed similarly to the trade-off curves between b and ms, and between b and mr,
described above. However, for these lower bound curves, we do not use (3.28),
(3.30), (4.30), and (4.32), which correspond to lower bounds m2, m6, mq

4, and mq
8,

respectively, as these constraints involve both buffers. Instead we use (3.31) and
(4.33) as constraints on the total buffer size to construct a lower bound curve on
ms � mr. For this, we define analogously to the above described trade-offs the lower
bound functions

m9
�
b � � max � f

�
t � δ � 1 � � �

t � 1 � b
�
t

�
1 � �

mq
10

�
b � � max � g �

t � q � � C
�
q � 1 � � �

t � 1 � b
�
t

�
1 � �

with q � τ ������� � τ � δ for mq
10

�
b � . Note that lower bound m9

�
b � corresponds to the

lower bounds m2
�
b � and m6

�
b � and that lower bound mq

10
�
b � corresponds to lower

bounds mq
4

�
b � and mq

8
�
b � . Furthermore, we define t9

�
b � and tq

10
�
b � as the values of t

for which m9
�
b � and mq

10
�
b � attain their value, respectively. Then, the gradients of

m9
�
b � and mq

10
�
b � are given by ∆9

�
b � � � �

t9
�
b � � 1 � and ∆q

10
�
b � � � �

tq
10

�
b � � 1 � .

The lower bound curve on ms � mr is given by the maximum of m9
�
b � and

mq
10

�
b � . To determine the maximum of mq

10
�
b � over all q, we use, analogously to

the trade-off between b and mr, the convex lower envelope El of C
�
t � for the time

units t � τ ������� � τ � δ starting at C
�
τ � 1 � . Whenever b is equal to the gradient of a

line segment of El, the maximum of all mq
10

�
b � shifts along the line segment to the

value of q matching the time unit at the end of the segment. The final lower bound
curve on ms � mr can now easily be determined by taking the maximum of m9

�
b �

and maxq mq
10

�
b � .

The trade-off is now performed as follows. Let m �s
�
b � , m �r

�
b � , and m �s � r

�
b � de-

note the lower bound curves on ms, mr, and ms � mr, respectively. Furthermore,
let ∆m �s

�
b � , ∆m �r

�
b � , and ∆m �s � r

�
b � denote their gradients. During the trade-off we

4.2 Single-stream methods revisited 109

distinguish two cases, viz. m �s
�
b � � m �r

�
b � �

m �s � r
�
b � and m �s

�
b � � m �r

�
b � � m �s � r

�
b � .

If m �s
�
b � � m �r

�
b � �

m �s � r
�
b � holds, the required values for the buffer shares sep-

arately are enough to meet the required value of the total buffer size. In this case,
for a given b, ms � m �s

�
b � and mr � m �r

�
b � . If now b is increased by an amount ε,

the solution costs change by
�
cb � cs∆m �s � cr∆m �r � ε.

If m �s
�
b � � m �r

�
b � � m �s � r

�
b � holds, the lower bound on the total buffer size

determines the total buffer allocation, as described in Section 3.3.3. If we as-
sume that cs

�
cr, then for a given b, ms � min � m �s � r

�
b � � m �r

�
b � � Ms � and mr �

m �s � r
�
b � � ms. If now b is increased by an amount ε, the solution costs change by�

cb � cs
�
∆m �s � r

� ∆m �r � � cr∆m �r � ε if m �s � r
�
b � � m �r

�
b � � Ms, and by

�
cb � cr∆m �s � r

� ε if
m �s � r

�
b � � m �r

�
b � � Ms.

4.2.3 Transmission strategy
Finally, we consider the transmission strategy X

�
t � for determining an efficient

solution for the on-line settings of MSSP and MLBSSP. When a new stream starts,
the current transmission states of the current streams impose constraints on their
sending and receiving buffer shares, given by (4.1) and (4.2). These transmission
states can be influenced by the transmission strategy chosen for each stream. A
greedy strategy transmits data as early as possible and leads to an often largely
filled receiving buffer share, while a lazy strategy transmits data as late as possible,
thus leading to an often largely filled sending buffer share. Consequently, with the
greedy strategy, (4.2) is likely to restrict a new solution for a current stream to a
large receiving buffer share, and with the lazy strategy, (4.1) is likely to restrict a
new solution to a large sending buffer share. If a new stream needs to use one of
these buffers, it may find itself denied admission because of a lack of unreserved
buffer space, while a feasible solution would have existed if an existing stream had
used a different transmission strategy.

Other, intermediate strategies, such as the MVBA transmission schedule pre-
sented in Section 2.2.1, are also possible, as long as they satisfy the stream con-
straints (2.3)–(2.7) for the fully-specified streams, and (3.5)–(3.9) for the leaky-
bucket-controlled streams; see Figure 4.9 for an example. Each feasible transmis-
sion strategy may lead to a different transmission state X

�
τ � 1 � for a current stream

at the start time of a new stream. The problem is which strategy to choose for a
stream such that a future stream is not unnecessarily denied admission to the net-
work. Generally, it is possible to create for each feasible transmission strategy a
new stream with a start time such that it is unnecessarily denied admission. There-
fore, we propose an approach involving the buffering of data that covers all feasible
transmission schedules and gives maximum freedom when a new solution has to
be chosen.

For a given bandwidth share b, sending buffer share ms, and receiving buffer

110 On-line problem

P(t)

C(t)

P(t+1)−ms

C(t−1)−mr

data

time

Xgreedy
Xlazy

Figure 4.9. Feasible area for cumulative transmission schedules given ms and mr.
For a given b the greedy and lazy schedule give extra bounds to the feasible area.

share mr our approach is to transmit data according to a greedy schedule, i.e.,
x

�
t � � min � b � P �

t � � X
�
t � 1 � � mr � C

�
t � 1 � � X

�
t � 1 � � . Normally, data would be

removed from the sending buffer after it has been transmitted. However, in our
approach we keep data in the sending buffer until it has to be removed to create
space for newly supplied data. In this way, it is available to be transmitted again
later on, if it is necessary to create buffering space for a new stream at the receiving
node. More formally, when a new stream starts, each current stream has a lower
bound Xlow

�
τ � 1 � and an upper bound Xup

�
τ � 1 � on its current transmission state

X
�
τ � 1 � . The lower bound is determined by the amount of data that cannot be

retransmitted again as it is no longer available at the sending buffer and by the
amount of data that is already consumed at the receiving node, i.e.,

Xlow
�
τ � 1 � � max � P �

τ � � ms � C �
τ � 1 � � � (4.36)

The upper bound is determined by the greedy transmission strategy as the maxi-
mum amount of data that already has been transmitted, i.e.,

Xup
�
τ � 1 � � Xgreedy

�
τ � 1 � � (4.37)

with Xgreedy
�
τ � 1 � the transmission state using the greedy transmission strategy.

The transmission state X
�
τ � 1 � of a current stream can then be chosen such that it

satisfies its lower and upper bound, i.e.,

Xlow
�
τ � 1 � � X

�
τ � 1 � � Xup

�
τ � 1 � � (4.38)

Next, we show how to incorporate the freedom to choose the new transmission
state X

�
τ � 1 � into the solution methods for the single-stream problems.

4.2 Single-stream methods revisited 111

Fully-specified streams.
When the bandwidth share of a fully-specified stream needs to be minimized, obvi-
ously the initial transmission state X

�
τ � 1 � is maximized as then the amount of data

that still needs to be transmitted, is minimized. It is also obvious that the sending
buffer share can be minimized by maximizing X

�
τ � 1 � , while the receiving buffer

share can be minimized by minimizing X
�
τ � 1 � . When both buffer shares need

to be minimized simultaneously, we first minimize the buffer with the highest cost
coefficient and then the buffer with the lowest cost coefficient, analogously to Al-
gorithm 1 on page 25. The buffers are minimized according to the single buffer
minimization described above where the value of the minimized ‘expensive’ buffer
is taken into account when the ‘cheap’ buffer is minimized. Notice that the mini-
mized expensive buffer may affect the upper and lower bound of X

�
τ � 1 � for the

minimization of the cheap buffer.
For the trade-off between b and ms we only need to maximize X

�
τ � 1 � as this

minimizes both, after which we can apply the trade-off algorithm. We perform
the trade-off between b and mr as follows. We determine the initial solution by
first minimizing mr and thus also minimizing X

�
τ � 1 � , and then minimizing b for

which we maximize X
�
τ � 1 � given the obtained value of mr. We then apply the

trade-off algorithm as described in Section 2.2.4 with one difference. Instead of a
fixed starting point, the transmission schedule starts at X

�
τ � 1 � which we consider

to be a convex critical point during the trade-off. If X
�
τ � 1 � � C

�
τ � 2 � � mr

and X
�
τ � 1 � � Xgreedy

�
τ � 1 � holds, then X

�
τ � 1 � can be increased when mr is

increased, and thus it is an mr-critical point. When X
�
τ � 1 � � Xgreedy

�
τ � 1 � holds,

X
�
τ � 1 � cannot be increased when mr is increased, and thus has become fixed

analogously to a P
�
t � -critical point.

Finally, the trade-off between b and both ms and mr is performed analogously to
the method described in Section 2.2.5. Here, we use the above described procedure
for minimizing both buffers given a value of b.

Leaky-bucket-controlled streams.
Similarly to fully-specified streams, we maximize X

�
τ � 1 � when b, ms, or both

need to be minimized, and we minimize X
�
τ � 1 � when mr needs to be minimized.

Note that this follows from the constraints which involve X
�
τ � 1 � and b, ms, or

mr, viz. (4.24) and (4.25) for b, (4.29) for ms, and (4.13) for mr. When both ms

and mr need to be minimized, we again first minimize the buffer with the high-
est cost coefficient and use this result to minimize the buffer with the lowest cost
coefficient. Note that X

�
τ � 1 � for the minimization of the ‘cheap’ buffer may be

constrained by the minimized size of the ‘expensive’ buffer instead of its initial
lower and upper bound.

112 On-line problem

Trade-offs between b and ms, and between b and mr.

For the trade-offs between b and ms or mr we apply the methods described in
Section 4.2.2 as follows. For the trade-off between b and ms we just maximize
X

�
τ � 1 � after which we perform the trade-off as if X

�
τ � 1 � were given. For the

trade-off between b and mr we determine the initial solution by first minimizing b
for which we maximize X

�
τ � 1 � and then we minimize mr for which we minimize

X
�
τ � 1 � given the already obtained minimum value of b. For the trade-off we want

to increase b and determine the effect on mr as described in Section 4.2.2. However,
as X

�
τ � 1 � now also is a variable, we first consider constraints that involve X

�
τ �

1 � , so we can determine how to deal with X
�
τ � 1 � . This concerns constraints (4.7),

(4.9), (4.10), (4.13), and (4.38). Note that (4.9) and (4.10) correspond to (4.24) and
(4.25), respectively.

Constraint (4.13) gives a lower bound on mr given X
�
τ � 1 � while (4.7), (4.9),

(4.10), and (4.38) give a lower bound on X
�
τ � 1 � . During the trade-off b is in-

creased and mr needs to be minimized for the given values of b. Thus, we want
to minimize X

�
τ � 1 � for each value of b. As the minimum value of X

�
τ � 1 � is

equal to the maximum value of its lower bounds (4.7), (4.9), (4.10), and (4.38), we
can use these lower bounds together with (4.13) to form lower bounds on mr. This
gives using (4.7) with (4.13) for t � τ ������� � τ � δ � 1,

mr
�

C
�
t � � �

t � τ � 1 � b � C
�
τ � 1 � � (4.39)

Furthermore, using (4.9) with (4.13) we get for t
�

1,

mr
�

g
�
t � τ � 1 � � �

t � δ � b � C
�
τ � 1 � � (4.40)

and using (4.10) with (4.13) we get for t
�

1,

mr
�

g
�
t � τ � 1 � � Ms �

�
t � 1 � b � C

�
τ � 1 � � (4.41)

Finally, using (4.38) with (4.13) leads to

mr
�

Xlow
�
τ � 1 � � C

�
τ � 1 � � (4.42)

These lower bounds should hold for mr in addition to the lower bounds m5
�
b � ,

m6
�
b � , mq

7
�
b � , mq

8
�
b � , and the lower bound curve based on (4.8), as described in

Section 4.2.2 for the trade-off between b and mr with a given X
�
τ � 1 � .

Now we consider (4.8) and lower bounds mτ
7

�
b � and mτ

8
�
b � . It can be easily

shown that mr satisfies (4.39), (4.40), and (4.41), if it satisfies (4.8), mr
�

mτ
7

�
b � ,

and mr
�

mτ
8

�
b � , respectively. Thus, we can use the trade-off curve as described in

Section 4.2.2 with only the lower bound given by (4.13) replaced by the constant
lower bound given by (4.42).

Trade-off between b, ms, and mr.

The trade-off between b, ms, and mr can be handled in a similar manner as de-

4.2 Single-stream methods revisited 113

scribed in Section 4.2.2 for a given X
�
τ � 1 � . The initial solution is obtained by

first minimizing b and thus maximizing X
�
τ � 1 � after which an optimal buffer

allocation is determined for the minimum value of b. Then, we construct lower
bound curves on ms, mr, and ms � mr. With these lower bound curves the trade-off
can be performed as described in Section 4.2.2. Next, we show how to construct
these lower bound curves.

For the lower bound curve on ms we need to consider (3.27) and (4.29). For
these constraints we have previously defined lower bounds m1

�
b � and m3

�
b � , re-

spectively. However, lower bound m3
�
b � depends on X

�
τ � 1 � . As ms is minimized

by maximizing X
�
τ � 1 � , we need to use the upper bounds on X

�
τ � 1 � for given b

and mr to replace X
�
τ � 1 � in m3

�
b � . The upper bounds on X

�
τ � 1 � are given by

(4.13) and (4.38). Together with m3
�
b � they give the following lower bounds on

ms.

m11
�
b � � max � g �

t � τ � 1 � � C
�
τ � 1 � � mr �

�
t � 1 � b

�
t

�
1 � �

m12
�
b � � max � g �

t � τ � 1 � � Xup
�
τ � 1 � � �

t � 1 � b
�
t

�
1 � �

As m11
�
b � involves mr, this lower bound will be used for the construction of the

lower bound on the total buffer size ms � mr. The lower bound curve on ms is thus
given by the maximum of m1

�
b � and m12

�
b � .

For the lower bound curve on mr we need to consider (3.29), (4.8), (4.13), and
(4.31). For (3.29) and (4.31) we have previously defined lower bounds m5

�
b � and

mq
7

�
b � which can be used. Furthermore, for (4.8) we can construct a lower bound

curve using the trade-off algorithm for fully specified streams. Constraint (4.13)
involves X

�
τ � 1 � and can be transformed into four lower bounds on mr using the

lower bounds (4.7), (4.9), (4.10), and (4.38) on X
�
τ � 1 � , as described for the trade-

off between b and mr. These lower bounds are given by (4.39), (4.40), (4.42), and
for t

�
1,

mr
�

g
�
t � τ � 1 � � ms �

�
t � 1 � b � C

�
τ � 1 � � (4.43)

As we previously mentioned, the lower bounds given by (4.39) and (4.40) are sat-
isfied if mr satisfies (4.8) and mr

�
mτ

7
�
b � . Furthermore, (4.43) involves both ms

and mr and therefore will be used for the lower bound curve on ms � mr. The lower
bound curve on mr is thus given by the maximum of m5

�
b � , m7

�
b � , the curve based

on (4.8), and the lower bound given by (4.42).
Finally, for the lower bound curve on ms � mr we need to consider (3.31) and

(4.33) for which we previously defined lower bounds m9
�
b � and mq

10
�
b � . Further-

more, for ms we derived lower bound m11
�
b � which also involves mr, and for mr we

derived a lower bound given by (4.43) which also involves ms. Both lower bounds

114 On-line problem

lead to the following lower bound on ms � mr:

m13
�
b � � max � g �

t � τ � 1 � � C
�
τ � 1 � � �

t � 1 � b
�
t

�
1 � �

However, as g
�
t � τ � �

g
�
t � τ � 1 � for all t

�
1, it can be easily shown that mτ

10
�
b � �

m13
�
b � . The lower bound curve on ms � mr is thus given by the maximum of m9

�
b �

and mq
10

�
b � with q � τ ������� � τ � δ.

4.3 Results
In this section we present experimental results that we obtained applying the on-
line variants of the algorithm as described in this chapter. We first describe the
settings of the performed experiments in Section 4.3.1. Then we describe the re-
sults in Section 4.3.2.

4.3.1 Experiment setting
For the experiments with the on-line solution methods we again used the streams
and settings as presented in Tables 2.1 and 2.2 on page 50 in Chapter 2. Further-
more, we used the fully-specified streams as well as the leaky-bucket-controlled
streams which are described in Section 3.4. However, the streams that we used in
one experiment, all are of the same type, i.e., different leaky-bucket-controlled and
fully-specified streams are not mixed.

In the experiments, we varied the following settings to obtain results.� Fixed or variable bandwidth and buffer shares. In Section 4.1.2 we described
two variants of the on-line problem, viz. a variant in which bandwidth and
buffer shares of current streams cannot be changed, i.e., fixed shares, and a
variant in which those shares can be changed when a new stream starts, i.e.,
variable shares. If we use fixed shares, then the size of the shares determined
for a stream is very important, as any reserved bandwidth and buffer share
cannot be returned during the run time of the stream. If more bandwidth
or buffer size is reserved for a stream than it actually requires, results on
the number of admitted streams can be negatively affected. Especially for
the LP model that only checks feasibility, i.e., the model in which the sum
of the penalty variables is minimized, too large bandwidth and buffer shares
may be reserved, as only a feasible solution is required. If the bandwidth and
buffer shares resulting from the algorithm for this model are used, then in the
worst-case situation only the first stream will be admitted; any other stream
will be denied admission as then a feasible solution for the first stream may
consist of the maximum bandwidth and buffer capacities.� Use of a final adjustment procedure. To avoid bandwidth and buffer shares
that are actually too large for the streams, we can make final adjustments to

4.3 Results 115

the obtained shares in the following way.

1. First, we minimize the bandwidth share of the stream for the sending
and receiving buffer shares obtained from the original solution.

2. Next, we minimize the sending buffer share for the bandwidth share
that we just obtained and the receiving buffer share that we obtained
from the original solution method.

3. Finally, we minimize the receiving buffer share for the bandwidth and
sending buffer share that we obtained with these final adjustments.

We remark that we used the same procedure for the results of the off-line
settings for the determination of the bandwidth and buffer utilizations. For
both fixed and variable shares we have performed the experiments with and
without the use of this final adjustment procedure.� Objectives for the LP. For both fixed and variable shares we tested the ef-
fect on the results for the feasibility problem, if either the bandwidth or the
maximum relative resource reservation is minimized. Note that if the total
bandwidth reservation is minimized, then we do not need to make any ad-
justments to the bandwidth shares of the streams and thus can skip the first
step in the above described final adjustment procedure.� Transmission approach. We also used the maximum freedom transmission
approach (MFT) as described in Section 4.2.3 to determine if it affects the
obtained solutions. In the experiments in which we did not use MFT, we
transmitted data for all streams using the greedy transmission strategy (GT),
i.e., xd

�
t � � min � bd � Pd

�
t � � Xd

�
t � 1 � � Cd

�
t � 1 � � mrd � d � Xd

�
t � 1 � � for each

stream d. Note that for fixed shares, MFT does not have any impact and thus
is not used.� Stream inter-arrival time. In each experiment the inter-arrival time between
the start of two successive streams was constant. However, we used three
different values for this constant inter-arrival time, viz. for all settings an
inter-arrival time equal to 1 and 1000, for settings 3, 4, 7, and 8 also an inter-
arrival time equal to 2000, and for settings 1, 2, 5, and 6 also an inter-arrival
time equal to 10000. The inter-arrival time of 1 corresponds to an almost
simultaneous start of all streams, and thus gives a good set-up to compare to
the off-line setting. The maximum inter-arrival times of 2000 and 10000 are
chosen to have a relatively long time between the start of two streams while
we are also assured that all streams start while any previously started stream
has not finished yet.

116 On-line problem

4.3.2 Experimental results
Fully-specified streams.
The first results that we present, involve results for the fully-specified streams for
all settings. Table 4.1 gives for all settings, using the final adjustment procedure as
described in the previous section, and for an inter-arrival time equal to 1000, the
number of admitted streams, the total bandwidth and buffer utilization as defined in
Section 2.3.2, and the average and maximum run time of the solution method, when
a new stream starts. The average run time is taken over all run times of the solution
method to determine new bandwidth and buffer shares when a new stream starts.
Note that in each experiment, the number of times new bandwidth and buffer shares
are determined is equal to the number of admitted streams plus one. Only after the
last time the new shares are not used as either the total bandwidth or the total buffer
size at a node is exceeded by them, and the new stream is denied admission. For
each setting the results are first given for fixed shares with greedy transmission,
then for variable shares with greedy transmission, and finally for variable shares
with maximum freedom transmission. For all these variants, the results are given
for the feasibility problem (feas.), for the problem in which the total bandwidth
reservation is minimized (min ∑b), and for the problem in which the maximum
relative resource reservation is minimized (min z).

First, we consider the number of admitted streams. We see that for almost every
setting, the number of admitted streams in the on-line variant with variable shares,
is equal to the number of admitted streams in the off-line variant. Only for setting
1 we see that for all objectives only two streams are admitted if MFT is not used.
If MFT is used, again three streams are admitted as in the off-line variant. Only for
setting 7 where the bandwidth is minimized, there is a similar result. If we look
at the results for the on-line variant with fixed shares, then we see some bigger
differences. Only for settings 4 and 8, the number of admitted streams is equal
to the number of admitted streams for the off-line variant, with the exception for
setting 8 with the min z-objective. For the other settings we see that fewer streams
are admitted, with the best results for the minz-objective for settings 3 and 7.

Next, we consider the total bandwidth and buffer utilization. We observe that
only for settings 1, 2, 5, and 6 the utilization results are comparable to the utiliza-
tion results of the off-line variant, especially for the on-line variant with variable
shares. For the other settings we see that both the bandwidth and buffer utilizations
are lower than for the off-line variant. As can be expected, the minimization of the
bandwidth shares leads to a higher bandwidth utilization and consequently, a lower
buffer utilization for most variants, compared to the other objectives.

Finally, we consider the run times of the different variants in Tables 4.1 and 4.2.
These run times are obtained by running the experiments on an AMD XP 2600+.

4.3 Results 117

Setting 1 Setting 2
Run time Run time

Variant Obj. # UB UM Avg. Max. # UB UM Avg. Max.
Off-line 3 62.12 44.43 4 55.79 40.95

Fixed feas. 2 61.04 31.55 0.136 0.265 2 61.15 30.58 0.099 0.140
share min ∑b 2 61.15 30.58 0.755 1.562 2 61.15 30.58 0.755 1.562

with GT min z 2 60.22 40.78 0.521 0.984 2 60.22 40.78 0.240 0.406
Variable feas. 2 61.04 31.55 0.370 0.750 4 54.17 39.76 0.566 1.391

share min ∑b 2 61.15 30.58 1.135 1.672 4 60.29 40.07 1.463 2.157
with GT min z 2 60.22 40.78 1.109 1.734 4 53.21 40.33 0.809 1.062
Variable feas. 3 60.34 43.40 0.824 1.656 4 55.30 39.84 0.556 1.422

share min ∑b 3 61.31 43.67 1.406 1.672 4 62.84 40.58 1.444 1.875
with MFT min z 3 60.67 44.40 1.172 1.782 4 50.94 41.55 0.747 1.047

Setting 3 Setting 4
Off-line 10 58.81 47.28 13 68.13 37.55

Fixed feas. 6 63.40 32.61 0.254 0.484 13 53.94 27.17 0.369 0.610
share min ∑b 6 61.76 33.08 0.670 1.297 13 53.96 26.99 0.592 1.328

with GT min z 8 53.20 41.37 0.417 0.656 13 53.83 28.13 0.703 1.375
Variable feas. 10 54.55 39.36 1.183 3.532 13 52.98 29.93 1.241 4.297

share min ∑b 10 58.92 38.84 2.284 5.469 13 53.96 26.99 2.833 5.109
with GT min z 10 50.09 41.94 1.92 3.891 13 53.96 26.99 1.712 2.828
Variable feas. 10 50.30 39.28 1.094 3.547 13 53.05 30.24 1.381 5.375

share min ∑b 10 58.93 38.68 2.543 5.750 13 53.96 26.99 1.981 3.468
with MFT min z 10 49.65 42.07 1.987 3.203 13 53.96 26.99 2.002 3.516

Setting 5 Setting 6
Off-line 3 63.80 49.87 4 59.80 52.10

Fixed feas. 2 67.31 35.23 0.182 0.313 2 67.39 33.71 0.156 0.328
share min ∑b 2 67.39 33.71 0.818 1.563 2 67.39 33.71 0.818 1.562

with GT min z 2 60.07 51.47 0.479 0.703 2 59.63 56.56 0.370 0.640
Variable feas. 3 63.97 46.96 0.941 1.859 4 60.25 45.58 0.512 1.093

share min ∑b 3 63.21 49.03 1.653 2.141 4 65.83 45.33 1.734 2.406
with GT min z 3 62.59 50.39 1.086 1.422 4 62.26 47.07 1.019 1.390
Variable feas. 3 63.21 46.11 0.938 2.187 4 60.44 47.20 0.500 1.015

share min ∑b 3 62.56 52.97 1.754 2.765 4 66.73 46.22 1.797 2.578
with MFT min∑z 3 64.28 50.71 1.082 1.641 4 61.09 51.27 0.922 1.234

Setting 7 Setting 8
Off-line 12 62.71 62.46 14 74.88 42.34

Fixed feas. 6 68.32 37.15 0.275 0.407 14 57.30 30.78 0.452 0.969
share min ∑b 7 67.62 37.17 0.740 1.656 14 57.95 29.87 0.786 1.532

with GT min z 9 54.53 51.12 0.581 1.032 13 55.61 34.65 0.737 1.110
Variable feas. 12 51.31 49.83 1.340 3.765 14 55.71 33.10 1.578 6.672

share min ∑b 11 59.51 47.14 2.948 6.062 14 58.11 29.92 2.407 6.016
with GT min z 12 51.27 51.79 2.343 3.813 14 57.96 30.61 3.103 5.360
Variable feas. 12 52.52 49.39 1.219 3.375 14 55.68 35.88 1.531 5.266

share min ∑b 12 56.46 48.84 3.591 7.813 14 58.11 29.92 2.730 6.109
with MFT min z 12 51.62 52.75 2.464 3.891 14 57.97 30.61 3.711 6.328

Table 4.1. Results using fully-specified streams with final adjustments to the
obtained shares and inter-arrival time 1000. The number of admitted streams, the
bandwidth and buffer utilization, and the run time are given for all settings and
for both fixed and variable shares. For variable shares results using MFT are also
given.

118 On-line problem

The results show that the run times for the on-line variant with fixed shares are
lower than the run times for the on-line variant with variable shares. This can be
expected, with fixed shares only sub-problems for the new stream are solved while
with variable shares sub-problems for all streams may have to be solved. Using
MFT can increase the runtime for some settings and objectives slightly further,
which is mainly noticeable for settings 3, 7, and 8 when the bandwidth is mini-
mized. If we compare the run times between the different objectives, then we see
that in general the feasibility problem has the lowest runtime, while the bandwidth
minimization problem has the highest runtime.

Table 4.2 gives the same results as Table 4.1, but now without the use of the
final adjustment procedure. As in our implementation without this procedure the
total capacity of a resource is reserved for the first stream, if reservation of the
resource is not minimized in some way, i.e., the bandwidth and buffers for the fea-
sibility problem, and the buffers for the bandwidth minimization problem, we omit
the results of these latter two problems for the on-line variant with fixed shares. The
results show that the final adjustment procedure does not appear to have any effect
on the number of admitted streams for variable shares. However, for fixed shares
we see a lower number of admitted streams for the min z-objective for settings 3, 4,
7, and 8, the settings with the highest number of admitted streams, compared to the
results with the final adjustment procedure. With regards to the utilization, we see
that for settings 2, 4, and 6 the bandwidth or the buffer utilization or both, is signif-
icantly lower than in the results with the final adjustment. This can be expected, as
unused parts of the bandwidth and buffer shares now are not released. Finally, the
run times of the results without the final adjustment procedure seem comparable
to the run times of the results with the procedure for settings 1, 2, 5, and 6, and
somewhat higher for the other settings.

Leaky-bucket-controlled streams.
Table 4.3 shows the number of admitted streams for experiments with leaky-
bucket-controlled streams for settings 1 and 2. Similarly, Tables 4.4, 4.5, and
4.6 show the number of admitted streams for setting 7. The number of admit-
ted streams for settings 4, 5, 6, and 8, for the on-line variant with variable shares,
are equal to the number of admitted streams in the off-line variant, for all tested ob-
jectives and inter-arrival times, with and without use of MFT, and with and without
use of the final adjustment procedure. Therefore, we omit tables with the specific
results for these settings. The results for setting 3 very much resemble the results
for setting 7.

For a description how the different leaky-bucket-descriptions are obtained, we
refer to Section 3.4.1. For settings 1 and 2 we only give the results for leaky-bucket
descriptions ULB 1 and ULB 5. The results for description ULB 3 are equal to the

4.3 Results 119

Setting 1 Setting 2
Run time Run time

Variant Obj. # UB UM Avg. Max. # UB UM Avg. Max.
Off-line 3 62.12 44.43 4 55.79 40.95

Fixed min z 2 56.49 40.04 0.531 0.953 2 13.00 40.77 0.286 0.375
Variable feas. 2 39.82 27.30 0.281 0.671 4 29.35 40.10 0.600 1.500

share min ∑b 2 61.15 24.53 0.896 1.703 4 60.29 33.26 1.222 1.844
with GT min z 2 59.69 40.71 1.005 1.437 4 17.15 41.30 0.662 0.890
Variable feas. 3 59.92 38.35 0.570 1.313 4 22.26 37.67 0.422 1.110

share min ∑b 3 61.31 38.54 1.223 1.688 4 62.84 33.17 1.234 1.703
with MFT min z 3 60.67 40.16 1.043 1.453 4 30.78 37.20 1.003 1.594

Setting 3 Setting 4
Off-line 10 58.81 47.28 13 68.13 37.55

Fixed min z 6 28.57 31.04 0.324 0.578 12 55.21 14.36 0.529 1.453
Variable feas. 10 40.58 37.16 1.170 3.906 13 49.18 10.45 1.065 3.907

share min ∑b 10 58.91 37.84 2.673 5.844 13 53.96 11.62 2.338 4.078
with GT min z 10 48.52 41.83 1.892 3.328 13 53.96 18.61 1.942 3.578
Variable feas. 10 41.89 37.42 1.038 3.625 13 50.00 10.81 1.372 6.562

share min ∑b 10 58.93 37.66 2.936 6.000 13 53.96 11.21 2.808 4.984
with MFT min z 10 48.52 42.04 1.933 3.125 13 53.96 15.49 2.212 4.031

Setting 5 Setting 6
Off-line 3 63.80 49.87 4 59.80 52.10

Fixed min z 2 57.46 50.85 0.427 0.640 2 21.06 56.56 0.307 0.563
Variable feas. 3 60.90 44.38 0.528 0.985 4 21.90 45.86 0.409 1.094

share min ∑b 3 63.21 46.14 1.047 1.656 4 65.83 39.11 1.375 2.219
with GT min z 3 62.51 48.70 1.043 1.406 4 16.67 44.29 1.012 1.578
Variable feas. 3 62.05 42.19 0.547 1.344 4 28.94 51.85 0.622 1.859

share min ∑b 3 64.36 47.32 1.301 1.797 4 66.73 39.70 1.472 2.016
with MFT min z 3 63.11 49.75 1.039 1.406 4 25.83 50.34 1.065 1.546

Setting 7 Setting 8
Off-line 12 62.71 62.46 14 74.88 42.34

Fixed min z 7 40.11 42.17 0.447 1.000 12 51.53 30.89 0.542 1.125
Variable feas. 12 46.58 47.54 1.358 3.828 14 52.40 23.71 1.518 7.094

share min ∑b 11 59.51 45.90 3.218 6.375 14 58.11 26.62 2.945 6.609
with GT min z 12 50.66 51.77 2.081 3.344 14 57.94 29.44 2.876 4.391
Variable feas. 12 46.68 46.76 1.348 4.937 14 52.66 25.93 1.603 7.656

share min ∑b 12 56.46 47.64 3.623 7.782 14 58.11 26.38 3.686 6.688
with MFT min z 12 51.38 52.68 2.397 4.281 14 57.89 29.48 3.234 5.938

Table 4.2. Results using fully-specified streams without final adjustments, for
inter-arrival time 1000. Again, the number of admitted streams, the bandwidth
and buffer utilization, and the run time are given for all settings and for both fixed
and variable shares. For variable shares results using MFT are also given.

120 On-line problem

Setting 1
Inter-arr. 1 Inter-arr. 1000 Inter-arr. 10000

Variant Obj. ULB 1 ULB 5 F.S. ULB 1 ULB 5 F.S. ULB 1 ULB 5 F.S.
Off-line 2 3 3 2 3 3 2 3 3

With final adjustment
Fixed feas. 2 2 2 2 2 2 2 2 2
share min ∑b 2 2 2 2 2 2 2 2 2

with GT min z 2 2 2 2 2 2 2 2 2
Variable feas. 2 3 3 2 2 2 2 2 2

share min ∑b 2 3 3 2 2 2 2 2 2
with GT min z 2 3 3 2 2 2 2 2 2
Variable feas. 2 3 3 2 3 3 2 3 3

share min ∑b 2 3 3 2 3 3 2 3 3
with MFT min z 2 3 3 2 3 3 2 3 3

Without final adjustment
Fixed min z 1 2 2 1 2 2 1 2 2

Variable feas. 2 3 3 2 2 2 2 2 2
share min ∑b 2 3 3 2 2 2 2 2 2

with GT min z 2 3 3 2 2 2 2 2 2
Variable feas. 2 3 3 2 3 3 2 3 3

share min ∑b 2 3 3 2 3 3 2 3 3
with MFT min z 2 3 3 2 3 3 2 3 3

Setting 2
Inter-arr. 1 Inter-arr. 1000 Inter-arr. 10000

Variant Obj. ULB 1 ULB 5 F.S. ULB 1 ULB 5 F.S. ULB 1 ULB 5 F.S.
Off-line 2 4 4 2 4 4 2 4 4

With final adjustment
Fixed feas. 2 2 2 2 2 2 2 2 2
share min ∑b 2 2 2 2 2 2 2 2 2

with GT min z 2 2 2 2 2 2 2 2 2
Variable feas. 2 4 4 2 2 4 2 2 2

share min ∑b 2 4 4 2 2 4 2 2 2
with GT min z 2 4 4 2 2 4 2 2 2
Variable feas. 2 4 4 2 4 4 2 4 4

share min ∑b 2 4 4 2 4 4 2 4 4
with MFT min z 2 4 4 2 4 4 2 4 4

Without final adjustment
Fixed min z 2 2 2 2 2 2 2 2 2

Variable feas. 2 4 4 2 2 4 2 2 2
share min ∑b 2 4 4 2 2 4 2 2 2

with GT min z 2 4 4 2 2 4 2 2 2
Variable feas. 2 4 4 2 4 4 2 4 4

share min ∑b 2 4 4 2 4 4 2 4 4
with MFT min z 2 4 4 2 4 4 2 4 4

Table 4.3. Results for settings 1 and 2 concerning the number of admitted streams
using leaky-bucket-controlled streams and fully-specified streams. The results are
given for three different inter-arrival times, fixed and variable shares, and also
using MFT with variable shares.

4.3 Results 121

Setting 7 Inter-arrival time 1
Variant Obj. ULB 1 ULB 3 ULB 5 CLB 5 CLB 10 Max. LB F.S.
Off-line 11 11 12 11 12 12 12

With final adjustment
Fixed feas. 6 6 6 6 6 6 6
share min ∑b 5 7 7 7 7 7 7

with GT min z 9 9 9 9 9 9 9
Variable feas. 11 11 12 11 12 12 12

share min ∑b 11 11 12 11 12 12 12
with GT min z 11 11 12 11 12 12 12
Variable feas. 11 11 12 11 12 12 12

share min ∑b 11 11 12 11 12 12 12
with MFT min z 11 11 12 11 12 12 12

Without final adjustment
Fixed min z 7 7 7 7 7 7 7

Variable feas. 11 11 12 11 12 12 12
share min ∑b 11 11 12 11 12 12 12

with GT min z 11 11 12 11 12 12 12
Variable feas. 11 11 12 11 12 12 12

share min ∑b 11 11 12 11 12 12 12
with MFT min z 11 11 12 11 12 12 12

Table 4.4. Results for setting 7 concerning the number of admitted streams using
leaky-bucket-controlled streams and fully-specified streams. The results are given
for inter-arrival time 1, fixed and variable shares, and also using MFT with variable
shares.

Setting 7 Inter-arrival time 1000
Variant Objective ULB 1 ULB 3 ULB 5 CLB 5 CLB 10 Max. LB F.S.

With final adjustment
Fixed feas. 6 6 6 6 6 6 6
share min ∑b 5 7 7 7 7 7 7

with GT min z 9 9 9 9 9 9 9
Variable feas. 10 10 11 11 11 11 12

share min ∑b 10 11 11 11 11 11 11
with GT min z 10 11 11 11 12 12 12
Variable feas. 11 11 12 11 12 12 12

share min ∑b 11 11 11 11 12 12 12
with MFT min z 11 11 12 11 12 12 12

Without final adjustment
Fixed min z 7 7 7 7 7 7 7

Variable feas. 10 10 10 11 11 11 12
share min ∑b 10 11 11 11 11 11 11

with GT min z 10 11 11 11 12 12 12
Variable feas. 11 11 11 11 12 12 12

share min ∑b 11 11 11 11 12 12 12
with MFT min z 11 11 12 11 12 12 12

Table 4.5. Results for setting 7 concerning the number of admitted streams using
leaky-bucket-controlled streams and fully-specified streams. The results are given
for inter-arrival time 1000, fixed and variable shares, and also using MFT with
variable shares.

122 On-line problem

Setting 7 Inter-arrival time 2000
Variant Objective ULB 1 ULB 3 ULB 5 CLB 5 CLB 10 Max. LB F.S.

With final adjustment
Fixed feas. 6 6 6 6 6 6 6
share min ∑b 5 7 7 7 7 7 7

with GT min z 9 9 9 9 9 9 9
Variable feas. 10 10 10 11 10 10 12

share min ∑b 10 11 11 11 11 12 12
with GT min z 10 11 11 11 12 12 12
Variable feas. 11 11 12 11 12 12 12

share min ∑b 11 11 11 11 12 12 12
with MFT min z 11 11 12 11 12 12 12

Without final adjustment
Fixed min z 7 7 7 7 7 7 7

Variable feas. 10 10 10 10 12 11 10
share min ∑b 10 11 11 11 11 12 12

with GT min z 10 11 11 11 12 12 12
Variable feas. 11 11 12 11 12 12 12

share min ∑b 11 11 11 11 12 12 12
with MFT min z 11 11 12 11 12 12 12

Table 4.6. Results for setting 7 concerning the number of admitted streams using
leaky-bucket-controlled streams and fully-specified streams. The results are given
for inter-arrival time 10000, fixed and variable shares, and also using MFT with
variable shares.

results of ULB 1, while the results of CLB 5, CLB 10, and the maximum-leaky-
bucket description are equal to the results for ULB 5. We notice that if the inter-
arrival time is equal to 1, the number of admitted streams for the on-line variant
with variable shares equals the number of admitted streams for the off-line variant.
For the larger inter-arrival times, we see that the on-line variant with variable shares
requires MFT to admit the same number of streams for ULB 5 described streams,
just as for fully-specified streams. For setting 2 this means that using MFT, two
more streams can be admitted, which is an increase of 100% to using the plain
greedy transmission strategy.

For setting 7 we also observe that the number of admitted streams for the vari-
ant with variable shares is equal to the number of admitted streams in the off-line
setting when the inter-arrival time is equal to 1. Again, for the larger inter-arrival
times, the number of admitted streams can be lower and using MFT improves this
number again for some objectives. For the inter-arrival time equal to 2000, we
notice some remarkable results for the CLB 10 and maximum-leaky-bucket de-
scriptions. For variable shares without MFT and without the final adjustment pro-
cedure, the results for these descriptions show a higher number of admitted streams
than for fully-specified streams. An explanation for this lies in the fact that we are
dealing with an on-line problem and different solutions can evolve when different
decisions are made during time. For the leaky-bucket descriptions we solve the

4.3 Results 123

sub-problems for the current streams in a different manner and with different in-
put than we do for fully-specified streams. This can lead to different intermediate
solutions. As the intermediate solutions determine the amount of data that can be
transmitted for the current streams, this affects the transmission state of the current
streams when a new stream starts, i.e., the value of Xd

�
τ � 1 � for a current stream

d. In the end, this can affect the decision whether a new stream can be admitted
or not, as we see here. This characteristic of on-line problems can also explain
other differences, such as the number of admitted streams for the ULB 5 descrip-
tion, when the on-line variant with variable shares and MFT is used. There we
see twelve admitted streams for the feasibility problem and the minz-problem, but
only eleven for the problem in which the bandwidth is minimized.

We conclude this section with the following general observations from the re-
sults of the experiments. First of all, the on-line variant with variable shares leads
to better results than the variant with fixed shares, as can be expected. Furthermore,
using the maximum freedom transmission approach also leads to better results than
using the plain greedy transmission strategy. When we consider the used LP objec-
tives, we see that the minimization of the maximum relative resource reservation
leads to on average better results than the feasibility problem and the minimization
of the bandwidth. However, compared to the feasibility problem this comes at a
cost of increased run time, which is significant if fully-specified streams are used.
Using the final adjustment procedure also leads to on average better results than
not using the procedure, especially when fixed shares are involved. Finally, when
variable shares are used together with MFT and the minimization of the maximum
relative resource reservation, the number of admitted streams was in all experi-
ments equal to the number of admitted streams in the off-line variant.

5
Conclusion

In this thesis we have considered one of a number of resource management prob-
lems situated in an IHDN to efficiently and effectively allocate the resources to the
applications. These play a role when digital devices in the home are interconnected
by an in-home digital network (IHDN), and new and exciting applications will be-
come possible. More specifically, we considered the problem in which multiple
video streams have to share the bandwidth of a single bus in an IHDN. Several
nodes are connected to the bus, with a buffer of finite size between each node and
the bus. Each stream runs from one node over the bus to another node and requires
a fixed share from the bandwidth and the relevant buffer sizes to use.

We considered two types of streams for this problem, namely, fully-specified
streams and leaky-bucket-controlled streams. In Chapter 2 we defined for the
fully-specified streams the Multiple Streams Smoothing Problem (MSSP). It con-
cerns the determination of bandwidth and buffer shares for a given set of fully-
specified streams, such that for each stream a feasible transmission schedule ex-
ists. We modelled MSSP as a linear program (LP) and we showed how to apply
the Dantzig-Wolfe decomposition for LPs to it. The Dantzig-Wolfe decomposition
decomposed the original LP into a master LP and a sub-problem per stream. These
sub-problems consisted of minimizing the total costs of the bandwidth and buffer
shares of a single stream, where the cost coefficients for the bandwidth share, send-
ing buffer share, and receiving buffer share, resulted from the master LP. For these

125

126 Conclusion

sub-problems we have described several dedicated solution methods, one for each
combination of positive cost coefficients.

For the minimization of the bandwidth share of a single stream we have adapted
the minimum variability bandwidth allocation method by Salehi et al. [1998]. For
the minimization of a single buffer share, we have adapted the rate-constrained
bandwidth smoothing method by Feng [1997]. For the sub-problem in which the
cost coefficients of both buffers are positive, we have shown that an optimal so-
lution is obtained by first minimizing the buffer with the highest cost coefficient
and then the buffer with the lowest cost coefficient. When the cost coefficients of
the bandwidth share and at least one buffer share are positive, a trade-off between
bandwidth and buffer size is performed. For the case only one buffer is involved
in this trade-off, we have described a trade-off algorithm to construct the trade-off
curve by first minimizing the buffer share and then iteratively increasing the buffer
share while determining the effect on the bandwidth share. This algorithm can be
terminated as soon as an increase of the buffer share does not lead to a decrease
in the solution costs. Finally, for the trade-off with both buffers, we have reformu-
lated the problem into the minimization of a convex, univariate function. For this,
we used the method to determine optimal buffer sizes for a given bandwidth, to ob-
tain a function on the bandwidth that returns the total bandwidth and buffer costs.
To find the minimum of this function we have described the so-called improved
golden section method and triangle section method, which both use the convexity
property of the function. Experimental results on several video traces have shown
that on average the triangle section method requires less function evaluations than
the improved golden section method.

Experimental results for the complete solution method for MSSP have shown
that a solution consisting of bandwidth and buffer shares for all streams, can be
determined within several seconds for instances up to 10–15 streams. The run time
of the solution method for MSSP is mostly determined by the number of times a
trade-off problem between bandwidth and buffer size has to be solved for a single
stream, and the run time of the solution method for this trade-off problem.

In Chapter 3 we considered the leaky-bucket-controlled streams. A leaky-
bucket controller controls the amount of data of a stream that can enter the network.
Using the parameters of a leaky-bucket controller, we gave a linear upper bound
on the supply of data for the stream during a time window. We used this upper
bound for the description of the supply and demand of a stream in the definition
of the Multiple Leaky-Bucket Streams Smoothing Problem (MLBSSP). In MLB-
SSP we need to determine bandwidth and buffer shares for a set of streams, where
each stream is controlled by one or more leaky buckets, such that for each stream a
feasible transmission strategy exists. Analogous to MSSP we modelled MLBSSP
as an LP. We showed that by using the upper bound on the data supply as actual

Conclusion 127

data supply, MLBSSP reduces to MSSP. This allows for fully-specified and leaky-
bucket-controlled streams to be combined, with the use of one master LP for the
bandwidth and buffer shares of both types of streams. To solve the sub-problems
per stream efficiently for leaky-bucket-controlled streams, we derived four neces-
sary and sufficient constraints on the bandwidth and buffer shares. We showed how
to solve each sub-problem using these constraints. With this solution method, each
sub-problem can be solved in time linear to the number of leaky buckets that con-
trol the stream, instead of in time linearly dependent on the length of a stream as is
the case for a fully-specified stream. This resulted in a run time of a fraction of a
second to solve MLBSSP for instances up to 15 streams.

For experiments with the described solution method for MLBSSP, we have
derived several different leaky-bucket descriptions for each fully-specified stream
used in the experiments of Chapter 2. Among these descriptions is the maximum-
leaky-bucket description of a stream, which we obtained from the convex hull of
the empirical envelope of a stream. The results showed that using a leaky-bucket
description for a stream that gives a good upper bound on data supply for small time
windows, is more important for the number of streams that can be admitted, than
a description that gives a good upper bound for medium to large time windows.
Furthermore, using the maximum-leaky-bucket descriptions of the streams, results
concerning the number of admitted streams as well as results for bandwidth and
buffer minimization of a single stream were equal to corresponding results for the
fully-specified streams.

In Chapter 4 we presented on-line variants of MSSP and MLBSSP in which the
start time of a stream and its characteristics are unknown until it begins. We have
showed that the on-line problem can be solved by solving the off-line problem at
each time a new stream starts. When previously reserved shares of current streams
are fixed and thus cannot be changed at that time, only the sub-problem for the new
stream needs to be solved. Otherwise, if the shares are variable, the sub-problem
also needs to be solved for the current streams for which we need to take into
account their amount of data transmitted up to the start time of the new stream.
For this, we showed how to adapt the solution methods for the sub-problems as
presented in Chapters 2 and 3.

The described solution methods for the off-line variants of MSSP and MLBSSP
only determined whether a feasible solution exists for a set of streams and for a
given bandwidth and buffer capacities. For the on-line variants we showed how
objectives such as the minimization of the total reserved bandwidth, of the total
reserved buffer size at a node, and of the maximum relative resource reservation,
can be incorporated into the (master) LP. Furthermore, we described an approach
for the transmission of each stream, which increased the freedom of selecting new
buffer shares, by sending data as early as possible but removing it from the buffers

128 Conclusion

as late as possible.
Experimental results showed that for some settings the above transmission ap-

proach increased the number of streams that can be admitted. Furthermore, allow-
ing shares to be changed when a new stream starts also lead to better results than
keeping shares fixed. The minimization of the maximum relative resource reser-
vation generally gave better results than the minimization of the bandwidth and
the feasibility problem. However, compared to the latter these better results are at
the cost of an increased run time, especially for fully-specified streams. Finally, to
obtain the best results we recommend that the on-line variant with variable shares
is used, together with the described transmission approach and the minimization of
the maximum relative resource reservation, as this combination admitted the same
number of streams as the off-line setting in our experiments.

Bibliography

BOEF, E. DEN, E.H.L. AARTS, J. KORST, AND W.F.J. VERHAEGH [2004],
Methods to optimally trade bandwidth against buffer usage for a VBR
stream, in: W.F.J. Verhaegh, E.H.L. Aarts, and J. Korst (eds.), Algorithms in
Ambient Intelligence, Kluwer, Chapter 13, 221–240.

BOEF, E. DEN, AND D. DEN HERTOG [2004], Efficient Line Searching for Convex
Functions, Technical Report CentER Discussion Paper 2004-52, Tilburg
University.

BOEF, E. DEN, J. KORST, AND W.F.J. VERHAEGH [2004], Optimal bus and
buffer allocation for a set of leaky-bucket-controlled streams, Proceedings
11th International Conference on Telecommunications, ICT 2004, LNCS
3124, 1337–1346.

BOEF, E. DEN, W.F.J. VERHAEGH, AND J. KORST [2003], Smoothing streams in
an in-home digital network: Optimization of bus and buffer usage, Telecom-
munication Systems 23, 273–295.

BOEF, E. DEN, W.F.J. VERHAEGH, AND J. KORST [2004], Bus and buffer usage
in in-home digital networks: Applying the Dantzig-Wolfe decomposition,
Journal of Scheduling 7, 119–131.

CAO, G., W. FENG, AND M. SINGHAL [2003], Online variable-bit-rate video
traffic smoothing, Computer Communications 26, 639–651.

CHANG, C.-S. [2000a], Performance Guarantees in Communication Networks,
Springer-Verlag.

CHANG, R.-I [2000b], Dynamic window-based traffic smoothing for optimal de-
livery of online VBR media streams, Proceedings Seventh International
Conference on Parallel and Distributed Systems, 127–134.

CHANG, R.-I, M.C. CHEN, J.-M. HO, AND M.-T. KO [1997], Designing the
ON-OFF CBR transmission schedule for jitter-free VBR media playback in
real-time networks, Proceedings IEEE RTCSA, 2–9.

CHANG, R.-I, M.C. CHEN, J.-M. HO, AND M.-T. KO [1998], Characterize the
minimum required resources for admission control of pre-recorded VBR
video transmission by an O

�
n log n � algorithm, Proceedings IEEE 7th In-

ternational Conference on Computer Communications and Networks, 674–
681.

129

130 Bibliography

CHANG, R.-I, M.C. CHEN, J.-M. HO, AND M.-T. KO [1999a], An effective
and efficient traffic smoothing scheme for delivery of online VBR media
streams, Proceedings IEEE INFOCOM’99, 447–454.

CHANG, R.-I, M.C. CHEN, J.-M. HO, AND M.-T. KO [1999b], Optimal
bandwidth-buffer trade-off for VBR media transmission over multiple relay-
servers, Proceedings IEEE Multimedia Systems (ICMCS), vol. 2, 31–35.

CHANG, R.-I, M.C. CHEN, J.-M. HO, AND M.-T. KO [2002], Schedulable re-
gion for VBR media transmission with optimal resource allocation and uti-
lization, Information Sciences 141, 61–79.

CHEN, W.Y. [1997], Emerging home digital networking needs, Fourth Interna-
tional Workshop on Community Networking Proceedings, 7–12.

CRUZ, R.L. [1991a], A calculus for network delay, part I: Network elements in
isolation, IEEE Transactions on Information Theory 37, 114–131.

CRUZ, R.L. [1991b], A calculus for network delay, part II: Network analysis,
IEEE Transactions on Information Theory 37, 132–141.

DALGIC, I., AND F.A. TOBAGI [1996], Characterization of Quality and Traffic
for Various Video Encoding Schemes and Various Encoder Control Schemes,
Technical Report CSL-TR-96-701, Stanford University, Departments of
Electrical Engineering and Computer Science.

DANTZIG, G.B., AND P. WOLFE [1960], Decomposition principle for linear pro-
grams, Operations Research 8, 101–111.

DANTZIG, G.B., AND P. WOLFE [1961], The decomposition algorithm for linear
programming, Econometrica 29, 767–778.

DUFFIELD, N.G., K.K. RAMAKRISHNAN, AND A.R. REIBMAN [1998], SAVE:
An algorithm for smoothed adaptive video over explicit rate networks,
IEEE/ACM Transactions on Networking 6, 717–728.

FENG, W. [1997], Rate-constrained bandwidth smoothing for the delivery of
stored video, Proceedings SPIE Multimedia Networking and Computing,
316–327.

FENG, W., F. JAHANIAN, AND S. SECHREST [1997], An optimal bandwidth al-
location strategy for the delivery of compressed prerecorded video, ACM
Multimedia Systems Journal 5, 297–309.

FENG, W., AND J. REXFORD [1999], Performance evaluation of smoothing algo-
rithms for transmitting prerecorded variable-bit-rate video, IEEE Transac-
tions on Multimedia 1, 302–313.

GILL, P.E., W. MURRAY, AND M.H. WRIGHT [1988], Practical Optimization
(Seventh ed.), Academic Press, San Diego, California.

GILMORE, P., AND R. GOMORY [1961], A linear programming approach to the
cutting stock problem, Operations Research 9, 849–859.

GILMORE, P., AND R. GOMORY [1963], A linear programming approach to the

Bibliography 131

cutting stock problem: Part II, Operations Research 11, 863–888.
GIOVANELLI, F., G. BIGINI, M. SOLIGHETTO, AND P. MAGGI [2003], A UPnP-

based bandwidth reservation scheme for in-home digital networks, Tenth
International Conference on Telecommunications (ICT2003), vol. 2, 1059–
1064.

GONDZIO, J., R. SARKISSIAN, AND J.-P. VIAL [1997], Using an interior point
method for the master problem in a decomposition approach, European
Journal of Operational Research 101, 577–587.

HASKELL, B.G., A. PURI, AND A.N. NETRAVALI [1997], Digital Video: An
Introduction to MPEG-2, Chapman & Hall.

HO, J.K., AND E. LOUTE [1981], An advanced implementation of the Dantzig-
Wolfe decomposition algorithm for linear programming, Mathematical Pro-
gramming 20, 303–326.

JIANG, Z., AND L. KLEINROCK [1998], A general optimal video smoothing al-
gorithm, Proceedings, IEEE INFOCOM’98, 676–684.

KANG, S., AND H.Y. YEOM [1999], Transmission of video streams with constant
bandwidth allocation, Computer Communications 22, 173–180.

KANG, S., AND H.Y. YEOM [2000], Aggregated smoothing of VBR video
streams, Proceedings 14th International Conference on Information Net-
working (ICOIN-14).

KNIGHTLY, E.W., AND H. ZHANG [1995], Traffic characterization and switch
utilization using deterministic bounding interval dependant traffic models,
Proceedings IEEE INFOCOM’95, 1137–1145.

KRUNZ, M., AND S.K. TRIPATHI [1997], On the characterization of VBR MPEG
streams, Proceedings of the 1997 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, 192–202.

MCMANUS, J.M., AND K.W. ROSS [1998], A dynamic programming method-
ology for managing prerecorded VBR sources in packet-switched networks,
Telecommunication Systems 9, 223–247.

MITCHELL, J.L., W.B. PENNEBAKER, C.E. FOGG, AND D.J. LEGALL [1997],
MPEG Video Compression Standard, Chapman & Hall.

NG, J.K.-Y. [1999], A reserved bandwidth video smoothing algorithm for MPEG
transmission, The journal of systems and software 48, 233–245.

PAPADIMITRIOU, C.H., AND K. STEIGLITZ [1982], Combinatorial Optimiza-
tion: Algorithms and Complexity, Prentice Hall, Englewood Cliffs.

REXFORD, J., S. SEN, J. DEY, W. FENG, J. KUROSE, J. STANKOVIC, AND

D. TOWSLEY [1997], Online smoothing of live, variable-bit-rate video, Pro-
ceedings International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV’97), 249–257.

REXFORD, J., AND D. TOWSLEY [1999], Smoothing variable-bit-rate video in an

132 Bibliography

internetwork, IEEE/ACM Transactions on Networking 7, 202–215.
ROOS, C., T. TERLAKY, AND J.-P. VIAL [1997], Theory and Algorithms for

Linear Optimization: An Interior Point Approach, Chapter 19, John Wiley
& Sons, Chichester.

SALAZAR, A.E.S. [2003], Performance analysis of in-home digital networks,
IEEE Transactions on Consumer Electronics 49, 312–320.

SALEHI, J.D., Z.-L. ZHANG, J. KUROSE, AND D. TOWSLEY [1998], Support-
ing stored video: Reducing rate variability and end-to-end resource require-
ments through optimal smoothing, IEEE/ACM Transactions on Network-
ing 6, 397–410.

SANJAY, G., AND S.V. RAGHAVAN [1999], Fast techniques for the optimal
smoothing of stored video, Multimedia Systems 7, 222–233.

SCHAAR-MITREA, M. VAN DER [2001], System and Network Constrained Scal-
able Video Compression, Ph.D. thesis, Technische Universiteit Eindhoven,
The Netherlands.

SCHOLTEN, H., P.G. JANSEN, F. HANSSEN, AND T. HATTINK [2002], An in-
home digital network architecture for real-time and non-real-time commu-
nication, Proceedings IEEE Region 10 Conference on Computers, Commu-
nications, Control and Power Engineering (TENCON’02), vol. 2, 728–731.

SGALL, J. [1998], On-line scheduling, in: A. Fiat and G.J. Woeginger (eds.),
Online Algorithms: The State of the Art, Lecture Notes in Computer Science
1442, Springer-Verlag, 196–231.

TURNER, J.S. [1986, October], New directions in communications (or which way
to the information age?), IEEE Communications Magazine 24, 8–15.

WREGE, D.E., AND J. LIEBEHERR [1996], Video traffic characterization for mul-
timedia networks with a deterministic service, Proceedings IEEE INFO-
COM’96, 537–544.

ZHANG, J., AND J. HUI [1997], Traffic characteristics and smoothness criteria in
VBR video traffic smoothing, Proceedings IEEE International Conference
on Multimedia Computing and Systems’97, 3–11.

ZHANG, J., AND J. HUI [1998], Applying traffic smoothing techniques for qual-
ity of service control in VBR video transmissions, Computer Communica-
tions 21, 375–389.

ZHANG, L., AND H. FU [2000], Dynamic bandwidth allocation and buffer dimen-
sioning for supporting video-on-demand services in virtual private networks,
Computer Communications 23, 1410–1424.

ZHAO, W., T. SETH, M. KIM, AND M. WILLEBEEK-LEMAIR [1998], Opti-
mal bandwidth/delay tradeoff for feasible-region-based scalable multimedia
scheduling, Proceedings IEEE INFOCOM’98, 1131–1138.

Symbol Index

This index only lists notation that occur in multiple parts of this thesis. The num-
bers refer to the pages of first occurrence.

Problems general
� Set of time units. 13
��� Set of time points where time points t � 1 and t mark the

beginning and end of time unit t. 13
T Time horizon. 13
� Set of nodes. 13
n A node from � . 13
B Total available bandwidth of the bus during one time unit. 13
Mn Total available buffer capacity at node n. 13
� Set of streams. 13
d A single stream from � . 13
sd Sending node of stream d. 13
rd Receiving node of stream d. 13
pd

�
t � Supply of stream d during time unit t. 13

Pd
�
t � Cumulative supply of stream d up to time unit t. 14

cd
�
t � Demand of stream d during time unit t. 13

Cd
�
t � Cumulative demand of stream d up to time unit t. 14

xd
�
t � Amount of data to be transmitted for stream d during time unit t. 14

Xd
�
t � Cumulative amount of data to be transmitted for stream d

up to time unit t. 14
δ Delay between supply and demand of a stream. 14
bd Bandwidth share of stream d. 14
msd � d Buffer share of stream d at its sending node. 14
mrd � d Buffer share of stream d at its receiving node. 14

Fully-specified streams (MSSP)
� sup Set of streams that have a given supply scheme. 13
� dem Set of streams that have a given demand scheme. 13
Pmax

d Maximum supply rate of a stream d with controllable supply. 13

133

134 Symbol Index

Cmax
d Maximum demand rate of a stream d with controllable demand. 14

LP Model
s Slack variable in bandwidth constraint. 16
p Penalty variable in bandwidth constraint. 16
sn Slack variable in buffer constraint for node n. 16
pn Penalty variable in buffer constraint for node n. 16
λd � q Weight of solution q for stream d in the master LP. 17
bq

d Bandwidth share of solution q for stream d. 17
mq

n � d Buffer share at node n of solution q for stream d. 17

Sub-problems
cb Cost coefficient of the bandwidth share. 18
cs Cost coefficient of the sending buffer share. 20
cr Cost coefficient of the receiving buffer share. 20
b Bandwidth share. 20
ms Sending buffer share. 20
mr Receiving buffer share. 20
Ms Total buffer capacity at the sending node. 20
Mr Total buffer capacity at the receiving node. 20
P

�
t � Cumulative supply up to time unit t. 21

C
�
t � Cumulative demand up to time unit t. 21

X
�
t � Cumulative amount of data transmitted up to time unit t. 21

L
�
t � Lower bound for X

�
t � . 21

U
�
t � Upper bound for X

�
t � . 21

Results
UB Total bandwidth utilization. 55
UM Total buffer utilization. 55
Umin

B Minimum bandwidth utilization as observed for a single stream
in an experiment with multiple streams. 55

Umax
B Maximum bandwidth utilization as observed for a single stream

in an experiment with multiple streams. 55
Umin

M Minimum buffer utilization as observed for a single stream
in an experiment with multiple streams. 55

Umax
M Maximum buffer utilization as observed for a single stream

in an experiment with multiple streams. 55

Symbol Index 135

Leaky-bucket-controlled streams (MLBSSP)
f

�
t � Upper bound on the supply of data during a time window

of size t. 58
fd

�
t � Upper bound f

�
t � for a stream d. 60

δd Delay between the supply and demand of a stream d. 60
σ Token bucket size of a leaky-bucket controller. 58
ρ Arrival rate of tokens at the bucket of a leaky-bucket controller. 58
σi Token bucket size of leaky-bucket controller i for a sequence

of controllers. 71
ρi Arrival rate of tokens at the bucket of leaky-bucket controller i

for a sequence of controllers. 71

On-line setting
τd Release date of stream d. 86
ed End time of stream d. 86
τ Start time of a new stream. 87
z Maximum relative resource reservation. 90
g

�
t � Upper bound on the cumulative supply for a leaky-bucket-

controlled stream up to a time unit t
� τ, based on the actual

supply before τ. 94

Author Index

A
Aarts, E.H.L., 28

B
Bigini, G., 6
Boef, E. den, 28, 41, 44–46, 49, 66

C
Cao, G., 8
Chang, C.-S., 8
Chang, R.-I, 7, 8, 28
Chen, M.C., 7, 8, 28
Chen, W.Y., 6
Cruz, R.L., 8, 58

D
Dalgic, I., 3
Dantzig, G.B., 16
Dey, J., 8
Duffield, N.G., 8

F
Feng, W., 6–8, 23, 126
Fogg, C.E., 2
Fu, H., 7

G
Gill, P.E., 41
Gilmore, P., 17
Giovanelli, F., 6
Gomory, R., 17
Gondzio, J., 19

H
Hanssen, F., 6

Haskell, B.G., 2
Hattink, T., 6
Hertog, D. den, 41, 44–46, 49
Ho, J.-M., 7, 8, 28
Ho, J.K., 16
Hui, J., 6, 7

J
Jahanian, F., 6, 7
Jansen, P.G., 6
Jiang, Z., 7

K
Kang, S., 7
Kim, M., 7
Kleinrock, L., 7
Knightly, E.W., 58
Ko, M.-T., 7, 8, 28
Korst, J., 28, 66
Krunz, M., 58
Kurose, J., 6, 8, 21, 23, 126

L
LeGall, D.J., 2
Liebeherr, J., 79
Loute, E., 16

M
Maggi, P., 6
McManus, J.M., 7
Mitchell, J.L., 2
Murray, W., 41

N
Netravali, A.N., 2

136

Author Index 137

Ng, J.K.-Y., 8

P
Papadimitriou, C.H., 16
Pennebaker, W.B., 2
Puri, A., 2

R
Raghavan, S.V., 6, 35, 36
Ramakrishnan, K.K., 8
Reibman, A.R., 8
Rexford, J., 7, 8, 25
Roos, C., 41
Ross, K.W., 7

S
Salazar, A.E.S., 6
Salehi, J.D., 6, 21, 23, 126
Sanjay, G., 6, 35, 36
Sarkissian, R., 19
Schaar-Mitrea, M. van der, 8
Scholten, H., 6
Sechrest, S., 6, 7
Sen, S., 8
Seth, T., 7
Sgall, J., 85
Singhal, M., 8
Solighetto, M., 6
Stankovic, J., 8
Steiglitz, K., 16

T
Terlaky, T., 41
Tobagi, F.A., 3
Towsley, D., 6–8, 21, 23, 25, 126
Tripathi, S.K., 58
Turner, J.S., 4, 58

V
Verhaegh, W.F.J., 28, 66
Vial, J.-P., 19, 41

W
Willebeek-LeMair, M., 7
Wolfe, P., 16
Wrege, D.E., 79
Wright, M.H., 41

Y
Yeom, H.Y., 7

Z
Zhang, H., 58
Zhang, J., 6, 7
Zhang, L., 7
Zhang, Z.-L., 6, 21, 23, 126
Zhao, W., 7

Samenvatting

In een digitaal huisnetwerk zijn in het huis de verschillende digitale consumenten
elektronica apparaten met elkaar verbonden, zoals een set-top-box, tv-scherm of
harde schijf. Dit maakt nieuwe applicaties mogelijk, zoals het kunnen bekijken
van een film op elke mogelijke plek in huis op elk gewenst moment zonder dat
men precies weet waar deze film is opgeslagen. Deze nieuwe applicaties leiden
echter tot nieuwe ‘resource management’ problemen met als doel de ‘resources’,
zoals processoren, opslagapparatuur en communicatieverbindingen, zo efficiënt en
effectief mogelijk te gebruiken.

In dit proefschrift beschouwen we een enkele bus (communicatieverbinding)
met beperkte bandbreedte, waarmee meerdere apparaten zijn verbonden. Tussen
elk apparaat en de bus bevindt zich een buffer met beperkte capaciteit. Verder is er
een verzameling video stromen gegeven waarbij elke stroom over de bus van het
verzendend apparaat naar het ontvangend apparaat verzonden moet worden. Hier-
bij willen we voor iedere stroom een vast deel van de bandbreedte en betreffende
buffers reserveren. We maken onderscheid tussen twee type stromen, te weten
volledig gespecificeerde stromen en ‘leaky bucket’ gereguleerde stromen. Van een
volledig gespecificeerde stroom weten we exact hoeveel data er wanneer wordt
aangeboden en gevraagd bij de buffers van zijn verzendend respectievelijk ontvan-
gend apparaat. Van een ‘leaky bucket’ gereguleerde stroom kennen we alleen de
parameters van de ‘leaky buckets’ die de data-aanvoer van de stroom reguleren.
Met deze parameters kunnen we een bovengrens voor de data-aanvoer gedurende
elk mogelijk tijdsinterval geven.

Allereerst definiëren wij het Multiple Streams Smoothing Problem (MSSP).
In een instantie van MSSP is een verzameling volledig gespecificeerde stromen
gegeven, de bandbreedte van de bus en de groottes van de verschillende buffers.
Voor elke stroom moet een vast deel van de bandbreedte en de buffergroottes wor-
den bepaald alsmede een verzendschema waarmee alle data voor de stroom op tijd
kan worden verzonden. We modelleren MSSP als een lineair programmeringspro-
bleem en laten zien hoe Dantzig-Wolfe decompositie hierop kan worden toegepast.
Dit leidt tot een hoofdprobleem en voor iedere stroom een subprobleem. Het sub-
probleem voor een stroom bestaat uit het minimaliseren van de kosten van de gere-
serveerde bandbreedte en buffergroottes, waarbij de kostencoëfficiënten volgen uit

138

Samenvatting 139

het geoptimaliseerde hoofdprobleem. Voor elke mogelijke combinatie van posi-
tieve kostencoëfficiënten beschrijven we voor dit subprobleem een efficiënte me-
thode om een optimale oplossing te bepalen. Voor het minimaliseren van enkel de
bandbreedte of enkel de buffergrootte van één van beide buffers passen wij hier-
voor bestaande methoden aan. Voor het minimaliseren van beide buffergroottes
laten we zien dat een optimale oplossing wordt verkregen door eerst de duurste
buffer te minimaliseren en daarna de goedkoopste. Voor het afwegen van de band-
breedte tegen één buffergrootte beschrijven we een specifieke inruilmethode. Voor
het afwegen van de bandbreedte tegen beide buffergroottes herleiden we het sub-
probleem eerst tot het vinden van het minimum van een stuksgewijs lineaire, con-
vexe functie op de bandbreedte. Vervolgens beschrijven we twee efficiënte zoek-
methoden om het minimum van deze functie met bijbehorende bandbreedte en
buffergroottes te bepalen. Met behulp van experimentele resultaten geven we voor
problemen van realistische grootte een indicatie van de rekentijd en van de benut-
tingsgraad van de bepaalde bandbreedte- en bufferreserveringen.

Voor de ‘leaky bucket’ gereguleerde stromen definiëren wij het Multiple
Leaky-Bucket Streams Smoothing Problem (MLBSSP). In een instantie van MLB-
SSP is een verzameling ‘leaky bucket’ gereguleerde stromen gegeven, waarvoor
een vast deel van de bandbreedte en buffergroottes moet worden bepaald alsmede
verzendstrategieën waarmee alle data op tijd kan worden verstuurd. Ook MLB-
SSP modelleren we als een lineair programmeringsprobleem. Verder tonen we aan
dat MLBSSP te reduceren is tot MSSP door de bovengrens op de data-aanvoer als
daadwerkelijke data-aanvoer te gebruiken voor iedere stroom. Deze bovengrens
heeft een paar specifieke kenmerken, nl. concaviteit en stuksgewijs lineariteit, die
we gebruiken om voor ‘leaky bucket’ gereguleerde stromen de subproblemen nog
efficiënter op te lossen. Hiervoor leiden we vier nieuwe, noodzakelijke en vol-
doende voorwaarden voor de bandbreedte- en bufferreserveringen van een stroom
af. Met behulp van deze voorwaarden is de tijd om een subprobleem op te lossen
lineair afhankelijk van het aantal ‘leaky buckets’ i.p.v. de lengte van een stroom,
zoals voor volledig gespecificeerde stromen. Een oplossing kan nu binnen een
fractie van een seconde bepaald worden. Om experimenten uit te voeren voor deze
methode voor MLBSSP, genereren we verschillende ‘leaky bucket’ beschrijvingen
voor iedere volledig gespecificeerde stroom die gebruikt was in de resultaten voor
MSSP. De resultaten van deze experimenten zijn voor stromen die zijn beschreven
door hun maximale aantal benodigde ‘leaky buckets’, gelijk aan de resultaten voor
de volledig gespecificeerde stromen.

Behalve de bovengenoemde ‘off-line’ varianten van MSSP en MLBSSP
beschouwen we ook ‘on-line’ varianten van deze problemen. In de ‘on-line’ vari-
anten zijn de starttijden van stromen onbekend en zijn de kenmerken van een
stroom pas bekend op het moment dat deze wil starten. Een oplossing voor een

140 Samenvatting

‘on-line’ variant kan worden bepaald door elke keer dat een nieuwe stroom start,
de methode voor het ‘off-line’ probleem te gebruiken om nieuwe bandbreedte- en
bufferreserveringen te bepalen. Indien de reserveringen van bestaande stromen dan
mogen worden aangepast, dient er bij het oplossen van de subproblemen voor deze
stromen rekening gehouden te worden met de hoeveelheid data die er in totaal al
verzonden is. Verdere toevoegingen aan de ‘off-line’ methode die we beschouwen
en die kunnen leiden tot een hoger aantal toegelaten stromen, zijn doelfuncties
zoals het minimaliseren van de totale gereserveerde bandbreedte of buffergrootte
van een specifieke buffer. Ook laten we zien hoe de maximale relatieve ‘resource’
reservering geminimaliseerd kan worden. Tenslotte beschrijven we een aanpak
voor de verzending van data van een stroom, waarbij data pas uit de buffers ver-
wijderd wordt als dat nodig is om ruimte te maken voor nieuw aangeleverde data.
Numerieke experimenten laten zien dat verschillende van deze aanpassingen in-
derdaad tot betere resultaten kunnen leiden. Het aantal toegelaten stromen in deze
experimenten is voor een ‘on-line’ variant met bepaalde toevoegingen net zo hoog
als voor de ‘off-line’ variant.

Curriculum Vitae

Edgar den Boef was born on June 16, 1977 in Tilburg, The Netherlands. In 1995,
he obtained his ‘gymnasium’ (V.W.O.) diploma at the Lorentz Lyceum in Eind-
hoven. In the same year he started studying Econometrics at Tilburg University.
In April 2000, he graduated with honors for this study, with specialization Opera-
tions Research. His Master’s Thesis, for which the work was carried out at CQM
in Eindhoven, described a branch-and-bound approach to the multiple container
loading problem. For this thesis, he received an honorable mention from the jury
of the ‘VVS-scriptieprijs 2001’.

In July 2000, he started as a Ph.D. student at the Eindhoven Embedded Systems
Institute of the Eindhoven University of Technology. The research, that resulted
in this thesis and several papers, was performed at Philips Research Laboratories
under supervision of Emile Aarts, Wim Verhaegh, and Jan Korst. As of April
2005, Edgar works as consultant on advanced planning and scheduling at Quintiq
Applications B.V. in ’s-Hertogenbosch.

141

	Preface
	Contents
	1. Introduction
	2. Fully-specified streams
	3. Leaky-bucket-controlled streams
	4. On-line problem
	5. Conclusion
	Bibliography
	Symbol index
	Author index
	Samenvatting
	Curriculum vitae

