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1 

Chapter 1 

Introduetion 

This thesis deals with the development of the Elegant tooi set. By means of this set of 
tools, an implementation for a eertaio class of software systems, among which compilers, 
can be generated from a specification written in the Elegantprogramming language. The 
Elegant project started with a simple compiler generator based on attribute grammars 
and bas developed into a (compiler fora) very high level programming language. During 
this development, many evolutions in computer science have influenced the design deci
sions that were taken. The development itself can be characterized as an experiment in 
language design. Once Elegant had been boot-strapped (its very first application was its 
self-generation), it bas been used to generate several hundreds of new versions of itself. 
Numerous new features have been added and five complete re-designs have taken place. 
For each new feature that was proposed for incorporation into Elegant, it was required 
that the feature was simultaneously a proper language construction, orthogonal to the ex
isting ones, and efficiently implementable. As a result, Elegant is now a programming 
language that combines a high level of abstraction with an efficient implementation. 
In this thesis we describe the sourees of inspiration for the abstractions that are incorporated 
in Elegant. The most important of these sourees is the field of functional programming, 
that offers very interesting abstraction mechanisms, however combined with a lack of 
efficiency due to the absence of side-effects. We show how many of these abstraction 
mechanisms can be incorporated into an imperalive language and form an enrichment of 
imperative programming. An important aspect of the lack of side-effects in functional pro
gramming is that functional programs can he transformed by means of algebrak identities 
into new programs, much like one rewrites a(b + c) into ab + ac in algebra by applying 
the law of distributivity of multiplication over addition. We will make ample use of such 
transformations tbrooghout this thesis; they are the most important technica! instrument that 
we will be using. 
Both the field of compiler construction and that of functional programming, which is based 
on the À-calculus, belong to the most extensively studied areas of computer science. Never
theless, they have been related weakly, at least until recently. Compilers were implemenled 
in imperative formalisms rather than in functional ones and compiler generators generate 
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imperative code. In this thesis we show how the two fields can be related much more 
strongly and how their interaction is of mutual benefit The theory of compilers, especially 
of parsers can be cleanly formulated in a functional formalism. The techniques developed 
in compiler construction in their turn positively inftuence functional languages and their 
implementation. Using standard compiler construction techniques, functionallanguages can 
be implemented much more efficiently than by basing them on the À-calculus. The type 
systems of functional languages can take advantage of notions developed for imperalive 
languages and their implementation. 
The contributions of this thesis to compiler construction and functional programming lan
guages are the following: 

• We show that not only top-down, but also bottorn-up parsers can be derived as a 
set of mutually recursive functions. This way of expressing them frees the theory of 
parsing from the use of stack automata. 

• We show how non-deterministic parsers can be expressed as functional programs and 
how deterministic versions are special cases of the non-deterministic ones. 

• We show that many different bottorn-up parsers can be derived from a single top
down parser by means of algebraic program transformations. 

• We show how the technique of memoization can be applied to parsers. The com
plicated Earley and Tomita parsers become trivia! results of the application of this 
technique. 

• We show how a simple, yet effective, error recovery mechanism for functional 
bottorn-up parsers can be designed. 

• We show that attribute grammars can be modeled much more lucidly than is usually 
done by faunding them on a functional formalism. 

• We show how the notion of attribute grammars can be generalized from functions 
over an input string to functions over an arbitrary data structure, without losing their 
expressiveness and efficiency. 

• We show how the very general class of attribute grammars that is supported by a 
functional implementation allows the specification of a general attribution scheme that 
prescribes the construction of a standardized attribute grammar for a given language. 

• We show how scanners can be expressed in a functional language and how this 
formulation makes the use of finite state automata in the theory of scanning obsolete. 

• We compare type systems in functional and imperative languages and show how 
their features can be merged to form a new type system that combines sub-typing, 
parameterized types, higher order functions and polymorphism. In this type system, 
pattem matching becomes equivalent to type analysis. 
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• We show that the notion of empty types is useful, especially in the construction of 
code generators. 

• We show how laziness can be incorporated in an imperalive language. 

• We show how these results have been incorporated into the design of E 

Throughout this thesis, the reader should be a ware that the name E 1 eg an t is overloaded: 
it is simultaneously: 

• A compiler generator system, consisting of several cooperating tools. 

• One of these tools, namely a compiler for attribute grammars. 

• A very high level programming language. 

• The compiler for this programming language, which is the same tool as the compiler 
for attribute grammars. 

We trust that the reader will be able to judge from the context which of these meanings 
is appropriate in the different parts of this thesis. Most of the times when we refer to 
Elegant, we mean the programming language however. 

1.1 Historica) background of compiler construction 

A compiler can be defined as a function from a structured input string onto an output string. 
As most input strings are structured in one way or another, weneed a more narrow defini
tion than this one. We obtain this definition by requiring that the compiler function can be 
written as a composite function compiler= code-generation o optimize o make-data
structure o parse o scan. When applied to a string, i.e. a sequence of characters, the com
piler first performs a scan of the input string, by which it maps sub-sequences of characters 
onto words, so-called terminal symbols. The resulting sequence of terminal symbols is 
subsequently operated on by the parser which parses the terminal sequence into a so-called 
syntax tree. This syntax tree describes the structure of the terminal sequence in terms of 
a (context-free) grammar. Subsequently, the syntax tree is mapped onto a data structure 
that represents the input-string in a more abstract way than the syntax tree. For properly 
designed languages, this mapping is compositional to a high degree. This data structure is 
a graph that can be transformed into another graph, a process which we call optimization, 
since the latter graph represents the input string as well, but usually in a more efficient way. 
Finally, the graph can be mapped onto the output string that is a sequence of characters by 
the code-generator. The sub-function (make- data- structure o parse o scan) is called 
afront-end, while the sub-function (code generation o optimize) is called a back-end. 
For computer science, the construction of compilers bas a long history. In the fifties, 
compilers were written in machine code in an ad-hoc fashion. The development of the 
theory of context-free grammars in the early sixties allowed the formal definition of a 
syntax for a programming language. Several ways to derive parsers directly from such 
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context-free grammars were persued, culminating in the formulation of so-called LR(k) 
parsers by Knuth [Knu65, ASU86]. The theory of stack automata made it possible to 
derive automatically a parser from a context free grammar. Especially the LALR(l) variant 
of these parsers that was incorporated in the yacc (for yet another compiler compiler 
[Joh75]) parser generator tooi in the early seventies became the state of the art for the last 
two decades. 
Lexical scanners were described by so-called regular expressions, a limited form of context
free grammars, also in the sixties. Again by means of automata theory, a lexical scanner 
could automatically be derived from a specification in the form of regular expressions. The 
state of the art in this respect is the lex tooi that originated in the early seventies and is 
still widely in uze. 
The lex and yacc approach to compiler construction bas developed into almast a de 
facto standard. Many textbooks on compiler construction concentrate on these tools and 
many new versions of these tools, differing more in efficiency than in functionality, have 
been constructed since. However, these tools cover only the analysing part of a compiler. 
The construction of the data structures and the subsequent operations are not supported at 
all and the programmer has to fall back on programming in C for these other compiler 
constituents. 
As context free grammars formalize only the syntactical part of a language, different at
tempts were ondertaken to extend them in order to cover also the semantics of a language, 
or less ambitiously, the context sensitive partsof a language. From the different formalisros 
that have been developed for this purpose, we mention two level grammars and attribute 
grammars. 
Two-level grammars were designed by van Wijngaarden for the definition of the pro
gramming language Algol 68 [vWMP+76]. ] They allowed the precise definition of the 
syntactical and context sensitive part of a language. The dynamic semantics, however, were 
not covered, although in theory two-level grammars have the expressive power to model 
also these semantics. The definition of Algol 68 remained the most prominent application 
of two-level grammars and nowadays, this formalism is hardly used. 
The formalism of attribute grammars has been developed by Knuth [Knu68, Knu71]. An 
attribute grammar describes simultaneously the structure of an input string in the form of a 
context-free grammar and properties of that input string by means of so~called attributes and 
attribution rules. These attributes are objects of domains defined auxiliary to the attribute 
grammar, and usually they form the data structure to be constructed. From an attribute 
grammar, the second and third sub-function of a compiler can be generated. An attribute 
grammar is a declarative formalism, that specifies the relations between attributes without 
specifying the order of computation. Thus, an implementation of attribute grammars should 
construct such an order (if it exists at all). Many different scheduling techniques for attribute 
evaluation can be distinguished; see [Eng84] for an overview. Between these techniques, 
ioclusion relations exist, i.e. one technique can be more general than another. Thus, tools 
based on attribute grammars can be ordered with respect to the class of attribute grammars 
that they support (i.e. for which they can generate an attribute evaluator). In [DJL84] an 
overview of many systems based on attribute grammars tagether with their position in the 
hierarchy can be found. 



1.2. HlSTORICAL BACKGROUND OF FUNCTJONAL PROGRAMMING 5 

Unlike the lex-yacc approach, the use of attribute grammars has been less successfuL 
This is partly caused by the free availability of lex and yacc that are distributed as 
parts of the Unix system. Until recently, systems based on attribute grammars were also 
relatively inefficient in space and time behavior, at least for the more general classes of 
attribute grammars. This changed with the GAG tooi [KHZ81], basedon so-called ordered 
attribute grammars [Kas80], a rather general class. GAG, however, generaled Pascal, in 
contrast to lex and yacc which generate C and GAG initially otiered a rather spartanic 
approach to attribute evaluation, namely by means of the special, purely functional but 
limited, programming language Aladin. It was only later later that an interface to Pascal 
was added. More recently, the GMD tooi-set [GE90] offered a set of tools based on both 
Modula-2 and C, also supporting ordered attribute grammars. 
For the construction of compiler back-ends, i.e. optimization and code-generation, work 
has concentraled on the generation of target code from formal machine architecture spec
ifications. The mapping between the souree data structure and the target code is usually 
specified by tree-based pattem matching. The GMD tools offer the ability to use a kind of 
attribute grammars to operate on the data structure, using pattem matching [Gro92]. 
Where can be placed in this scheme? Elegant offers a tooi for the generation 
of lexical scanners. It uses attribute grammars for the specification of the remaioder of 
the front-end, supporting a class of attribute grammars located higher in the hierarchy than 
the most general class distinguished in [Eng84] and [DJL84]. lt offers tooi support for 
the specification of data structures and operations on them, using pattem matching and a 
generalization of attribute grammars. Since our primary interest is not in the generation of 
target code for processors, but on generating high level code, e.g. in C, no specific support 
for machine code generation is present. Elegant generales ANSI-C and is available on 
many platforms. It is efficient, in the sense that generated compilers can rival 
with hand written or lex-yacc based ones. Moreover, as the proof of the pudding is in 
the eating: Elegant is made by means of Elegant. 
In this thesis, we discuss the sourees of inspiration that led to the current version of Ele
gant. These soureescan be found toa large extent in the field of functional programming, 
a field in which the author was employed before he devoted bimself to compiler generation. 
We show how the ditierent compiler constituents can be specified by functional programs 
and use these specifications to obtain more insight in their structure. Although inspired by 
functional programming, Elegant does not particularly encourage this style of program
ming. Although functions are first class citizens, Elegant is an imperalive programming 
language: that is where its efficiency comes from. 

1.2 Ristorical background of functional programming 

In this section we discuss briefly the history of functional programming. Functional pro
gramming has its roots in the À-calculus, a formalism that was designed in the thirties 
[Chu41] and has been extremely well studied [Bar85]. It is a very simple, yet very pow
erlul formalism, that has universa! computational power. The À-calculus offers two major 
notions as its building block: that of function definition (À-abstraction) and of function ap-
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plication. Thus the À-calculus deals with functions. In the pure À-calculus, three different 
forms of expressions exist, a variable, e.g f', function application, denoted by juxtaposition 
of the function and its argument, e.g. f x and À-abstraction, denoted ÀX.e, which denotes 
the function with format argument x and body e. The semantics of the À-calculus is given 
by the simple rule that the expression (ÀX.e1) e2 can be rewritten into e1 with every (free) 
occurrence of x replaced by e2, i.e. application of a function to an argument is defined by 
substitution of that argument into the body of the function. Expressions ÀX.e1 and Ày.e2 are 
equivalent when e 2 can be obtained from e 1 by replacing every (free) occurrence of x by y. 
A pleasant property of the À-calculus is that the order of the rewriting of sub-expressions 
does not matter: every order results in the same result, provided the rewriting process 
terminates. This property is called the Church-Rosser property and the unique result of an 
expression is called the normal form of that expression. 
The À-calculus was used as the basis for one of the first computer languages LISP by 
McCarthy [McC62]. Although very general and powerful, due to the fact that functions 
were first class citizens (in fact, everything in the À-calculus is a function), pure LISP 
was hindered by a lack of expressiveness and efficiency. Thus, many predefined constants 
(including standard functions) were added and side-effects were introduced. Nowadays, 
LISP is not considered a pure functionallanguage, due to the presence of these side-effects, 
while nobody writes pure LISP, due to its inefficiency. 
lt took airoost two decades before the À-calculus was rediscovered as a basis for another 
functional programming language, namely SASL [Tur79]. While LISP offers a syntax that 
is a direct reftection of the À-calculus, SASL offers a much more user-friendly syntax, 
resulting in very concise and readable programs. The SASL implementation is based on 
so-called combinators. Combinaters are constant functions that can be added to the À
calculus [Sch24]. These combinaters can be used to rewrite an expression in the À-calculus 
in such a way that all À-abstractions, and thus the corresponding variables, are removed. 
In theory, three combinators1 suffice to express an expressionwithout À-abstraction. These 
three combinaters are S, K and I. They are defined by: 

S f g X = (f X) (Q X) 
K x y =x 
I x = x 

i.e. S doubles an expression, K destroys one and I preserves it. By means of the following 
rewrite rules, every expression in the À-calculus can be rewritten into an SKI expression: 

Àx.(e1 e2) = S (Àx.e1) (Àx.e2) 
ÀX.X = I 
ÀX.y = K y, provided x :;t; y 

By applying these rules to an expression, all À-abstractions and consequently, all variables 
bound by it can be removed. The resulting expression can then be reduced to its normal 
form by a process called graph reduction. In this reduction process, the expression is 
represented by a graph that is rewritten by applying the transformation rules of tigure 1.1 
to it. If it is no longer reducible, we say that it is in normal form. 

1Even two, since I S K K, or even one, see [Fok92a] fora denvation and overview. 
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S f g x = f x (g x) x ... 
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Figure l.l: Graph reduction rules 

The order in which the graph reduction takes place is a matter of choice. When rewriting the 
outermost expression first, the so-called normal order reduction is obtained. This means that 
arguments are passed unevaluated to a function. In terms of the represented expressions this 
bas advantages, since some functions do not evaluate all their arguments. This evaluation 
technique is also denoted by the term lazy evaluation and it is the technique employed by 
SASL and many modern functional languages. LISP and ML use the opposite technique, 
evaluating the innermost terms, resulting in a call by value mechanism where arguments are 
evaluated before a function is applied. Although potentially more efficient, this technique 
results in a less expressive formalism, due to the stronger tern1ination requirements. 
Combinators and graph reduction became rapidly popular in the eighties and many new 
functionallanguages were basedon it, of which we mention KRC [Tur82], Miranda [Tur86], 
ML and Lazy ML [GMW79, Aug84) and Haskell [HWA +92). They all offer syntactic sugar 
to the À-calculus and in that sense they can be seen as merely syntactic variants of the À
calculus. Yet, the amount and the form of the sugar is such that programming in a modem 
functional language is a radically different experience to programming in the À-calculus. A 
functional language offers a compact and clear notation and the expressiveness of such is a 
language is considarably enhanced by the use of pattem matching (which allows the speci
fication of different cases for a function without specifying the case analysis process itself), 
special notational support for lists, of which the so-called list-comprehensions [Tur82) are 
very convenient, and other forms of syntactic sugar. With respect to imperative languages, 
functional languages have the additional advantage that a programmer needs not to deal 
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with the concept of a modifiable state and hence neects not to worry about the order of 
execution. Moreover, functional languages offer automatic storage management by means 
of a garbage collector. 
Early functionallanguages like SASL and KRC suffer from two important draw-backs: lack 
of efficiency and lack of some form of modularity and type checking. The first is caused by 
the very small steps that SKI reduction performs, the second by the lack of a proper type 
system. Both problems have been tackled. SKI combinatars were first generalized to a 
richer set of fixed combinatars and later to so-called super-combinatars [Joh84], which were 
no longer predefined but generated by the compiler. Further optimizations [BPR88] in this 
field brought to light that this implementation is equivalent to the traditional compilation 
technique for imperative languages, the only difference being that invocation frames are 
stored on the heap instead of on the stack, an idea that dates back to Landin [Lan64] and 
already used in Simula-67 [DN66]. This traditional compilation technique was used by 
Cardelli [Car84] for the compilation of a non-lazy functional language and in [Pey87], 
page 379, it is stated that the super-combinator translation would be necessary topreserve 
full laziness. The invocation frame-based approach can support full laziness quite easily, 
namely by storingargumentsas unevaluated objects (closures) in an invocation frame. One 
could say that the semantic foundation on the À-calculus, and to an even larger extent the 
associated syntactic foundation, has impeded the development of this obvious translation 
scheme for more than 10 years. 
The lack of proteetion was overcome by the development of actvaneed type systems. This 
was not an easy job, since a type system works like a filter on the set of accepted programs. 
A functional programming language tencts to allow very general and abstract formulations 
by an abundant use of higher order functions, and a good type system should not limit this 
expressiveness. Actvaneed type systems, including polymorphic functions and parameter
ized types, have been developed. Small untyped functional programs are very concise and 
readable, and in order to retain this property, so-called implicit type systems were devel
oped [Hin69, Mil78] that could deduce the types from an untyped program. Although this 
gives good support for small educational programs, we believe that large pieces of soft
ware should be documented more extensively and that type information forms an essential 
ingredient of this documentation. However, we do not know of any modem functional 
language supporting an explicit polymorphic type system, although most languages support 
the optional specification of types. 
For a good overview of the implementation techniques currently used for functional pro
gramming languages, see [Pey87]. 

1.3 Distorical background of Elegant 

Esprit project 415, 'Parallel architectures and languages for Actvaneed Information Process
ing- A VLSI-directed approach', ran from November 1984 until November 1989. In this 
project, different sub-contractors have developed different parallel architectures for different 
programming styles, object-oriented, functional and logical. From these sub-projects, sub
project A was contracted by Philips Research Laboratories, Eindhoven (PRLE). Within this 
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sub-project, a new Parallel Object-Oriented Language, called POOL was developed. Simul
taneously, a distributed computer, initially called DOOM (for Distributed Object-Oriented 
Machine) was developed. This acronym was later on replaced by POOMA (Parallel Object
Oriented MAchine). 
In the beginning of the project, when one of the fust variants of the POOL language family, 
called POOL-T [ Ame87], had been designed and the completion of the parallel machine was 
still far away, it was decided to implcment POOL-T on a sequentia! machine and simulate its 
parallel behaviour. This language was compiled to Modula-2, using the co-routine facility 
of Modula as a basis for the concurrent execution. A compiler for POOL-T was designed 
and specified carefully by means of an attribute grammar. This grammar was written 
in the form of a OO'~document [dH087], which was hard to maintain. The compiler 
was appropriately called SODOM, which is an acronym for Sequentia! Object-Oriented 
Development On Modula. After its design, it was implemented by means of lex- and 
yacc-like tools, which were developed by the Twente University of Technology [SK84]. 
The newly constructed compiler was embraced by the POOL community and soon demands 
for bug-fixes and more efficient execution were expressed and satisfied. In this process of 
compiler maintenance, a deliberate attempt was made to keep both the specification (the 
attribute grammar [dH087]) and the implementation consistent. These efforts were in vain, 
however. Especially the fact that eertaio optimizations were straightforwardly encoded 
by means of side-effects, but hard to specify in a declarative formalism like an attribute 
grammar, caused this deviation. From this experience we learned the lesson that whenever 
possible, one should generate an implementation from a specification, which meant in this 
case that a compiler generator based on attribute grammars was needed and that the attribute 
grammar formalism that would be employed should allow side-effects. 
At that time, in the beginning of 1987, we had the GAG-system [KHZ81] at our disposal, 
and this seemed the most natura! tooi to use. Just at that time the author of this thesis had 
developed a new technique for the implementation of lazy ( demand-driven) evaluation and it 
looked ideal as an implementation technique for attribute grammars. Not only was it simple, 
but it would allow the use of any non-eireular attribute grammar [Eng84], which is a wider 
class of attribute grammars than the class of ordered attribute grammars [Kas80] which 
where accepted by GAG. The technique looked so good that it was almost immediately 
decided to exploit it further. To this end, we decided to boot-strap the new compiler 
generator by means of the GAG system. This version could then be used to generate itself, 
and the GAG- and self-generated versions could be compared. But first a new acronym had 
to be found and after a good deal of discussion the new generator was called Elegant, for 
Exploiting Lazy Evaluation for the Grammar Attributes of Non-Terminals, a rather accurate 
name. 
In three weeks time Elegant was boot-strapped and made self-generating. The steps in 
this process are depicted in the diagram of tigure 1.2. 
In this diagram rectangular boxes indicate input or output of a program, while an executable 
program is represented by an oval box. In the case of a compiler that generates executable 
code, the output is also executable and we represent it by an ova1 box. Two versions of 
Elegant appear in this diagram, one GAG-generated (Elegant-I) and one self-generated 
(Elegant-2). These versions are functionally equivalent, but behaved very differently in 
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Figure 1.2: The boot"strapping process 
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terms of performance. The self-generated version consumed 12 times less time and 20 
times less memory than the GAG-generated one. This was mainly caused by the fact that 
the GAG programming language (Aladin) was by that time strictly applicative and did 
not allow side-effects, which forced us to eneode the code-generation by the construction 
of a single string, which could be written to a file at the end of the compilation process 
by a special facility. Of course, these results encouraged us and GAG was swiftly put 
aside, while was extended with a scanner generator, context checks and many 
more facilities to turn it into a professional tooi. Elegant bas been used subsequently 
for the construction of the compilers for two other POOL languages, POOL2 and POOL
X [Ame88, Ame89], and for numerous other compilers within Philips. bas 
survived its source; DOOM and POOMA are no Jonger operational at PRLE, the POOL 
implementations are no Jonger supported, but Elegant bas developed from a compiler 
generator developed to ease the implementation of POOL, initially just capable of compiling 
attribute grammars, into a professional compiler generator tooi-set. lt now impiemeuts a 
modem programming language (also-called Elegant), offering attribute grammars as a 
sub-formalism, and features like polymorphism, parameterized types, sub-typing, pattem 
matching and laziness. Several other tools were added and nowadays is not 
only a programming language, but also a system consisting of various tools, each of them 
being a compiler and each of them generated by These tools are, of course, 
Elegant itself [Aug92b], a scanner generator [Aug92f], a compiler from EBNF rules to 
attribute grammars [AM92] and a compiler from EBNF rules to syntax diagrams [Aug92c]. 
Several libraries implementing simpte and complex polymorphic functions are available 
[Aug92e]. An overview of the system can be found in [Aug90a, Aug92d] and in this 
thesis. A tutorial, which serves as a gentle introduetion to [Jan93]. 
The structure of a compiler created with is depicted in tigure 1.3. 
We concentrate on the part of this picture contained in the dasbed box on the left-hand side 
first. Assuming one wishes to imptement a formallanguage X, starting with a context-free 
grammar, one first specifies this grammar in an EBNF form, which is compiled by the Bnf 
tooi into a scanner specification which must be completed by the user and into an grammar in 
the Elegant formalism. These specifications are compiled by ScanGen and Elegant, 
respectively and implement a context-free parser for the language x. This parser can be 
extended by adding attributes to the file X • and implementing auxiliary operations 
in the Elegant programming language in specification/implementation module pairs, as 
indicated by the modules outside of the dasbed box. In this way, a complete compiler can 
be constructed. Fora good pictorial representation, the Diagramstool can be used, which 
accepts a superset of EBNF rules and compiles them into syntax diagramsin PostScript™. 
The syntax diagrams in the appendix to this thesis have been generated by this tooi. 

1.4 Compiler construction 

The structure of an generated compiler corresponds to the forementioned decom
position of a compiler into sub-functions, namely compiler = code-generation o optimize 
o make-data-structure o parse o scan. This is depicted in figure 1.4. 
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~-------------------------------------------------------------------------,------·------------· i . : Syntax diagramsi 
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Figure 1.3: The structure of Elegant compilers 
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The scanner is generated by ScanGen. lts use is to partition the input string into a se
quence of words, the so-called terminal symbols. The parser and attribute evaluator (which 
creates the data structure) are generated by Elegant from an attribute grammar. A parser 
parses the sequence of terminal symbols into a so-called syntax tree. It groups sequences 
of terminals into composite notions, the so-called non-terminal symbols, according to a 
grammar. lt produces error messages for a syntactically incorrect input string. Subse
quently, properties of these non-terminal symbols are computed in the form of so-called 
attributes. The attribute grammar describes how to compute these properties for each of the 
non-terminal symbols. These properties should obey certain consistency relations, speci
fied in the attribute grammar in the form of so-called context conditions. When a context 
condition is not fulfilled, a suitable error message is produced. 
The scanner, parser and attribute grammar map an input string onto a data structure which 
is an abstract model of the input string. Since this data structure is a graph, we call it the 
abstract syntax graph for the input string. To this graph, eertaio transformations can be 
applied which preserve its meaning. The intent of such transformations is to obtain a more 
efficient representation for the input string and this transformation process is hence called 
optimization. It is best specified by means of pattem matching techniques which allow the 
matching on a sub-graph of the data structure. The matching can specify an optimizable 
structure, which can be transformed into a more efficient one. 
Code generation is a process similar to optimization. Again pattem matching is used to 
recognize certain sub-graphs for which a partienlar kind of code is generated. Elegant 
offers a general pattem matching mechanism for the construction of optimizers and code
generators. For the latter, a special mechanism, the so-called relations, is available. These 
relations allow the specification of a pattem for graph matching together with the specifica
tion of multiple pieces of code which can be generated independently for a single sub-graph. 
Thus, a single match can be used to generate different pieces of code and in this way, the 
consistency of these pieces can be guaranteed easily. 
In the next sections of this introduetion we will discuss these compiler components and the 
techniques underlying them in more detail. 

1.4.1 Scanning 

Conventionally, lexical scanners are expressed by means of regu/ar expressions over a set of 
characters [ASU86]. These regular expressions are implemented by means of different kinds 
of finite automata, starting with a non-deterministic one, transforming it into a deterministic 
one and finally miniruizing the deterministic automaton. In chapter 5 of this thesis, we 
concentrale on the expression of scanners in a different way, namely by means of functional 
programs. Functional programs can be rewritten by algebrak transformations in such a way 
that the transformations on the scanner functions are similar to the ones on automata. Where 
automata need at least two formalisms, one to express an autornaton (possibly in different 
formalisrus for different classes of automata) and one for the algorithm implementing the 
execution of the automata, only a single formalism, a functional programming language, 
is needed by our approach. In this way, automata theory is no Jonger necessary, which 
simplifies the treatment of scanning algorithms. 
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1.4.2 Parsing 

Although LALR(l) parsers are dominant in compiler generators, many more different pars
ing techniques have been developed. These parsers are applicable for different classes of 
context-free grammars, e.g. a set of recursive functions can be used for parsing LL(l) 
grammars, stack automala for LR grammars and table-driven parsers for ambiguons gram
mars. However, until recently, these different techniques were only related weakly. They 
could be related by means of automata, but this was not the most natura} way of repcesent
ing each of them. With Kruseman Aretz' [Kru88] and Roberts' [Rob88] recursive aseent 
parsers this state of affairs changed. They were the first to recognize that LR grammars 
could be parsed by a set of recursive functions as well. Before that, a recursive aseent 
parser had already been described by Penello [Pen86] as an efficient way to imptement 
an LR automaton, but without recognizing its recursive structure. Similar recent recursive 
aseent parserscan be found in [HW90] and [Hor93]. implements the Kruseman 
Aretz parser of [Kru88]. In [LAK92], the recursive aseent technique is extended to parsers 
for non-deterministic languages. 
In this thesis, in chapter 3, we go a step further. We start with a functional program 
for a non-deterministic top-down parser and apply reenrsion elimination to it. We use 
different recursion elimination techniques which are algebraic program transformations that 
can be applied to a wide class of recursive programs. In a functional language, reenrsion 
elimination means the transformation of one of the recursive calls into a tail-recursive 
call, leaving any other recursive calls unchanged. The result of the application of these 
transformations to a top-down parser is a number of bottorn-up (LR) parsers, among which 
parsers that are equivalent to conventional automata-based LR(l) and LALR(l) parsers. The 
conclusion of these transformations is that LR parsers are nothing but the iterative versions 
of recursive descent parsers and that the application of automata theory has obscured this 
simple fact for more than twenty years. 
The history of tabulating parsers for non-deterministic languages, like the ones of Cocke, 
Younger and Kasami [You67, Kas65], Earley [Ear70] and Tomita [Tom86], is a simHar story. 
Such parsers use a table to store already accomplished parses in order to avoid performing 
the same parse twice. In this way, parsing in cubic or even sub-cubic (see [Val75]) time 
is possible. It took about 20 years before the Earley parser was recognized as a memoized 
bottorn-up parser, e.g. by Norvig [Nor91] and Augusteijn [Aug90c]. Memoization is 
the technique of constructing so-called memo-functions, functions that store the results of 
previous invocations together with their corresponding arguments in a table and that deliver 
such a previous result when supplied with the same arguments as before by retrieving it 
from the table rather than by recomputing it. By simply postulating that a non-deterministic 
recursive aseent parser is memoized, variants of the Earley and Tomita parsers are obtained. 
Where the management of the memo-tabie is the major complication in the Earley and 
Tomita algorithms, it becomes an implementation detail once the memoization has been 
recognized as such. 
Less well known than the Earley parser is the Marcus parser [Mar80], a non-deterministic 
bottorn-up parser with non-terminal instead of terminal look-ahead, designed for natura! 
language parsing. For a comprehensîble presentation see [Lee92]. 
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Parsing of non-deterministic languages can be performed without tabulation as well. lt then 
requires the use of back-tracking. Of course, this can only be done reasonably when the 
search space is relatively small, i.e. when the amount of non-determinism of the grammar 
is limited, which excludes natural language parsing. An example of such a parser is the 
recursive back-up parser of Koster [Kos74]. In this thesis we show that back-tracking 
parsers can be obtained from recursive descent and aseent parsers by means of (again) 
algebraic program transformations. The use of so-called continuations is indispensable 
bere. 
Another interesting approach to parsing can be found in [Hut92], where a parser is presenled 
by means of higher order functions. The idea is to pair each operation in a context free 
grammar, such as choice, sequencing, or repetition (in the case of extended BNF), that 
combines grammar constructions, with a higher higher order function that combines partial 
parsers corresponding to the grammar constructions. In this way, a morphism between 
grammars and parsers is constructed. As in the approach in this thesis, non-deterministic 
parsers appear to be more naturally expressible than deterministic ones by Huttons approach. 
Huttons shows that his approach is extendable to lexical scanners and attribute computation 
as well. Where Hutton aims at implementing a grammar directly in a functional language, 
in a human readable form, we are more interested in compiling a grammar. The compilation 
may transform the grammar or the functional algorithm to be generated if this happens to 
be advantageous. It can e.g. increase determinism by using bottorn-up parsing and actding 
look-ahead and need not use higher order functions at all in order to obtain readability of 
the implementation. Our attitude is that generaled code need not be comprehensible, but 
that the generator should be! 

1.4.3 Error recovery 

A good parser (generator) should not only provide a general parsing technique and an 
efficient implementation for it, but also a proper error recovery strategy. The research 
field of error recovery in parsers suffers from a fundamental problem: on the one hand, 
error recovery is a sort of non-topic: syntax errors should be repaired by the user and 
in that respect, just presenting the first error would do the job. The user fixes it and 
reruns the compiler. On the other hand, users expect error messages to be clear and to 
the point and appreciate compilers that are capable of presenting the minimum number of 
error messages for a given program, yet without skipping any syntax errors. Thus, error 
recovery is an unrewarding topic: one can always do better, yet it is of relative importance 
since programroers are interested in correct programs, rather than erroneous ones. 
Error recovery can be described as the technique to bring the state of a parser and the 
remaioder of the input string into phase, after a syntax error bas been detected. Two major 
techniques are used here: deletion of terminal symbols from the input string, or insertion 
of terminal or non-terminal symbols that are expected but not present. 
A parser generator should thus provide a decent, not necessarily optimal, preferably auto
matic, error recovery strategy. In recursive descent parsers, such a strategy is relatively 
simple, see e.g. [KvdSGS80]. One simply passes so-called follower sets as additional 
parameters to the recursive procedures. Such a set contains the terminal symbols that the 
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deletion processis not allowed to skip during error recovery. 
Until recently, because of the lack of recursive procedures, such a technique was not avail
able for bottorn-up parsers. Much more complicated techniques have thus been invented 
for this case. See e.g. [GR75] as a classical example. With the advent of recursive aseent 
parsers, this has changed, fortunately. Follower sets can be added to the recursive pro
cedures of such parsers as well and this is the way the Elegant recursive aseent parser 
implements it. In this thesis, we show that the most simple way to do this is to use a 
recursive aseent parser based on continuations. 

1.4.4 Attribute grammars 

A compiler needs more than a parser to do its job: syntax analysis is the first step, but 
after that, the input string bas to be translated into a data structure representing that input 
string for further processing. The formalism of attribute grammars has been designed for 
the mapping of a string onto a data structure [Knu68, Knu71]. This formalism specifies 
both the context-free grammar (from which a parser can be derived) as well as properties 
of language constructions, the so-called attributes, simultaneously. Hence, an attribute 
grammar can specify a complete compiler front-end. Although attribute grammars have 
a long history, very few compiler generators have been constructed that exploit their full 
power. The popular Unix tooi called yacc only offers minimal support. The GAG tooi 
[KHZ81] supports a traditional attribute grammar formalism, but limits the class of attribute 
grammars to ordered attribute grammars [Kas80]. For a good overview of a large number 
of systems based on attribute grammars see [DJL88]. A problem with attribute grammars 
is that they are a deelaralive formalism: no ordering on the evaluation of the attributes is 
specified and herree the generator should make up such an ordering. In [Eng84], a thorough 
overview of such evaluation techniques is given. 
Elegant avoids the problem by not computing an ordering on the attributes, but us
ing demand-driven evaluation fortheir values. In [Aug90a] and this thesis we show how 
demand-driven evaluation can be implemenred efficiently, even so efficiently that the over
head of attribute evaluation is neglectable when compared to the rest of the compilation 
process. Elegant does test, however, the existence of an evaluation order, i.e. the absence 
of cyclic dependencies. This cyclicity test is intrinsically exponential as shown in [JOR75], 
but for practical grammars its behavior is usually much more benign and optimizations 
techniques as in [RS82] and [DJL84] are of great use. 
Attribute grammars can be given a formal semantics, as is done in [Knu68], [DJL88] and 
[Eng84, EF89]. These modelings are unsatisfactory however, due totheir complexity. They 
contain many different notions, among which at least the notions of attribute names, attribute 
values, inherited and synthesized attributes, semantic rules and semantic conditions. Even 
in these models, attribute grammars remain an open formalism, using external domains and 
functions in the definition of their semantics. In this thesis we show that the semantics 
of attribute grammars can be presented in a substantially simpler way. We do so by 
using a functional language for the modeling of the external domains and functions. By 
virtue of the expressiveness of functional Ianguages, we do not need to model attributes 
at all. Instead of associating all the forementioned different notions with a production 
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rule, we associate a single so-called rule-function with a production rule. The semantics 
of an input string with respect to an attribute grammar is defined by composing these 
rule-functions into composite functions. The composition of these functions requires the 
ability to use higher order functions and partial parameterization, which make functional 
languages the formalism of choice for implementing them. The attributes are arguments of 
the rule-functions, but they do not appear in thesemantic model: we only need to compose 
functions without applying them to actual attributes in defining the semantics. This approach 
resembles that of Johnsson [Joh87], who also uses a functional language to implement an 
attribute grammar. The techniques used are very similar to ours, the main difference being 
that Johnsson implements an attributed parser in a functional language, while we start by 
defining the semantics, allowing any kind of parser to be used to implement it. 
Another approach using functions to implement attributes is found in [Kat84]. There, 
an individual function is constructed for each attribute that computes the value for that 
attribute. Here, we construct functions for production rules, not for individual attributes. In 
the Elegant implementation however, attributes are evaluated lazily. This is implemented 
by constructing a function for each attribute, computing the value for that attribute, just 
like in [Kat84]. But we regard it as a general technique for the implementation of lazy 
evaluation, not just for implementing attribute grammars. As a result, our approach is much 
more general than Katayama's, supporting any non-eireular attribute grammar and using 
result caching for the values of the attributes in order to avoid double evaluation (which is 
just lazy evaluation of course). 

1.4.5 Generalizations of attribute grammars 

The success of attribute grammars as an abstraction mechanism in compiler construction 
has led to different generalizations of attribute grammars. 
One such generalization consists of attempts to make attribute grammars more modular. 
Conventionally, a single attribute grammar describes a complete context-free grammar with 
all its properties in the form of attributes. This solid description can be modularized in two 
different ways. The first way decomposes it into modules which contain different sets of 
production rules, e.g. one module containing the rules for the expressions and the other for 
the statements of a programming language. This form of modularization disables the static 
cyclicity check however, unless a second pass is added to the attribute grammar compilation. 
The second way of decomposing attribute grammars allows one to decompose the set of 
attributes per production rule into subsets, each of which is defined in a separate module. 
In this way, conceptually different classes of attributes (such as attributes for implementing 
scope rule or symbol-table handling) can be implemented in different modules. See e.g. 
[FMY92] and [RT88] for this approach. Also in this case, the static cyclicity check needs 
access to the complete grammar and requires the modules to be combined in some way 
before it can be run. 
Another generalization are higher order attribute grammars [VSK89], a formalism which 
allows the definition of a sequence of cascaded attribute grammars. An attribute in one 
sub-grammar can then serve as an attributable non-terminal in the next sub-grammar. Such 
grammars can be used to construct a complete compiler by connecting an attribute grammar 
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for the front-end to an attribute grammar for the back-end (which describes code generation), 
with possibly attribute grammars in between. A notion that is similar to higher order 
attribute grammars is the notion of attribute coupled grammars [Gie88]. 
Associated with higher order attribute grammars is another generalization of attribute gram
mars, which we call data structure attribution. Where higher order attribute grammars are 
basedon the identification of non-terminals in one grammar and attribute types in a previ
ous grammar, data structure attribution consists of defining production rules that traverse 
a data structure in a recursive way, usually selecting the production rules by more general 
pattem matching rather than by matching on the type of a node in a (syntax) tree. The 
attributes of the production rules can then form another data structure or be integrated 
in the traversed data structure. Examples of this form of generalization can be found in 
[Far92], [Fro92a], [Fro92b] and [Gro92]. offers an abstraction of this form too, 
the so-called relations. These are treated in chapter 7. 
Attribute grammars and all their generalizations can be considered as a restricted form of 
lazy functional programs. See e.g. [Bir84b] for an example of theencoding of an attribute 
grammar as a functional program and [Joh87] for a discussion on this topic. One might 
wonder what the use of attribute grammars is in this respect and whether they could be 
simply replaced by lazy functional programming. The answer lies in the availability of 
the static cyclicity check for attribute grammars and the ability to compote an evaluation 
order for the attributes, sarnething which is not possible in an arbitrary functional program. 
This offers the prospect of a more efficient implementation of attribute grammars. In an 
attribute grammar, the data structure to be traversed, be it a syntax tree or a more general 
data structure, is separated from its properties that are computed in the form of attributes. 
This separation is conceptually simpte and allows for an optimized implementation. 
This separation has another advantage that is exploited by the next generalization, called 
incremental attribute evaluation. lt allows for the interactive modification of the syntax tree 
(or other data structure) and the subsequent recomputation of the affected attributes. This 
technique is particularly useful for the construction of syntax directed editors and (more 
generally) structure editors. See e.g. [KS87], [BvZ89] and [RT88] for this generalization. 

1.5 Functional programming 

The abstraction mechanisms of Elegant, although an imperative language, have been 
influenced to a large extent by functional programming languages. These languages offer 
powerfut abstraction mechanisms, such as polymorphic and higher order functions, pattem 
matching and Iist-comprehensions. In actdition to these abstraction mechanisms, they are 
clean, in the sense that due to the absence of side-effects, they allow the definition of 
algebrak identities over the set of their expressions. These identities can be used to rewrite 
expressions just as in algebra, e.g. by applying distributive laws or exploiting associativity. 
In this thesis, we make extensive use of these so-called algebraic program transformations. 
For a good introduetion to functional programming see Bird and Wadier [BW88). Hughes 
in [Hug89] shows the power of the different abstraction mechanisms. 
A major draw-back of functional languages is their relatively inefficient implementation. 
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See [PMN88] for a number of problems that are not (easily) expressible in functional 
languages with the same order of complexity as in imperative languages. 

1.5.1 Algebraic program transformations 

Due to both the absence of side-effects and totheir orthogonal design (especially reflected 
in the fact that functions are first-class citizens), functional programs lend themselves to 
algebraic program transformations, i.e. the re-writing of one program into another by the 
application of algebraic rewrite rules. Some simple examples of such rewrite rules are the 
rule that states that function composition is associative: 

f 0 (g 0 h) = (f 0 g) 0 h 

and the rule that states that the map function (that applies its function-valued first argument 
to all the elements of its list-valued second argument) distributes over function composition: 

map (f o g) map f o map g 

In this thesis we use such rules very frequently in the derivation of algorithms from their 
specification and of complicated algorithms from more simple ones. In chapter 2 we present 
the algebrak identities that we use tbrooghout this thesis. 
These transformations were introduced by Backus [Bac78], Borstall and Dadington [BD77] 
and ex plored more sytematically by Bird [Bir80, Bir84a, BH87] and Meerteos [Mee83] 
and are sometimes called the Bird-Meertens formalism. In [Bac88], a good introduetion 
to this 'formalism' can be found. In [SS90], a very clear treatment of the limits of these 
transformations in the presence of non-determinism can be found. 

1.5.2 The category theoretical approach 

After the introduetion of algebra ie program transformations, they soon became the subject of 
mathematica! investigation, see e.g. [Spi89, Mal89, Fok92b]. The mathematica! treatment 
of the program transformations is founded in category theory [BW90]. This approach has 
yielded a large number of very generallaws (as category theory always does). On the one 
hand, these laws give a lot of insight in the structure of programming languages and data 
types, on the other hand, they can not be treated as a practical substitute to the earlier 
Bird-Meertens approach. The category theoretica! approach first abstracts away from a 
concrete program, then applies some general laws and then transforms back to a concrete 
program. The original Bird-Meertens approach rewrites programs in the programming 
language domain, thus yielding valid programs along the way of a derivation, which are all 
executable. Although this approach is less general, it is applicable by a programmer that 
is not trained in category theory, that is, the 'average' programmer. 
The category theoretica! approach bas another draw-back, which is that it is limited by its 
own tendency to abstract. This abstraction tries to get rid of concrete variables as much 
as possible, dealing with functions only, which are composed, mapped, Iifted, transformed 
by morphisms into other functions, etc. But where one can get rid of a single variabie 
easily (namely by À-abstraction), the multiple occurrence of the same variabie in a formula 
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gives more problems. To overcome this, different kinds of combinators are introduced, i.e. 
functions that have the purpose of duplicating values and shifting them around. We believe 
that variabie duplication arises frequently in real algorithms and programs, and thus that 
the more practical approach is not to abstract from concrete variables. 
For these reasons, we regret that the original approach seems to be abandoned by its 
originators and that the major line of research currently lies in the category theoretica! 
field. In this thesis, we explicitly limit ourselves to the earlier approach, and rewrite valid 
programs into new valid ones until we reach the required result, maintaining a moderate 
level of abstraction in order not to scare away the average programmer. 

1.5.3 Pattern matching 

One of the powerfut and very practical abstraction mechanisms of functional languages is 
the pattem matching paradigm. It is very elegant, especially in combination with function 
declaration. It allows the specification of a function by defining a sequence of partial func
tions, which each have a limited domain which is defined by a pattem over the arguments 
of the function. Take for example the definition of the already mentioned map function 
over lists. It is defined separately for empty lists and non-empty lists and thus together for 
all lists. 

map f [] [] 
map f (head : tail) f head : map f tail 

Pattem matching can be compiled in an efficient way, see e.g. [Aug85], [BGJ89], [Oph89], 
[Lav88] and especially [Wad87] for a treatment of the techniques that can be employed. 
In chapter 6, we show that a pattem can be defined as a sub-type, given a suitable type 
system. This allows us to formalize a rule as a partial function, and the corresponding 
total function as the union of the corresponding partial functions. This definition can be 
rewritten by means of algebraic program transformations into an improved implementation 
for pattem matching. This implementation is the one that is used in where it is 
compiled into C-code that inspects each value at most once (and only when necessary) in 
the selection of the proper rule for a function. 

1.6 Reenrsion elimination 

One of the major applications of algebraic program transformations in this thesis is the 
transformation of recursion into iteration, also known as recursion elimination. A good 
overview of this area can be found in [Boi92]. Other contributions to this subject can be 
found in [AK82], [Gor65], [HK92] and [PP76]. 
In chapter 3 we derive (again by means of algebraic program transformations) a family 
of very general rules for recursion elimination, that are applicable to so-called recursive 
descent functions, a certain class of recursive functions. Recursive descent parsers are 
among the functions in this class. By means of the different recursion elimination rules 
(which areexpressedas higher order functions), a recursive descent parser is rewritten into 
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a recursive aseent one. One of the resulting parsing functions is an LR parser, expressed as 
a recursive function. The parse stack has disappeared (it bas become the recursive stack) 
and the parse function is a function of grammar rules, rather than of a parse-tabie that is 
constructed by auxiliary means. Once farniliar with recursive aseent parsers, one sees that 
an LR autornaton is nothing but a low level implementation of recursion. 
In [Aug92a], we presented another application of the same reenrsion eliminating program 
transformations, narnely the denvation of a binary heap traversal function. In this thesis 
we show it again as an example. 

1.7 Typing 

Chapter 6 is devoted to typing in both functional and imperative languages. When campar
ing modem functional and imperative type systems, several important differences become 
apparent. 
The first is that functionallanguages have a tendency to make the type system implicit and 
use a type inference algorithm to let a compiler deduce the typing from a program that 
possibly does not contain any typing of variables or functions at all, see [Hin69], [Mil78]. 
This has the advantage that simple educational programs become very readable, but the 
disadvantage that large scale programs become less readable due to lack of type information 
(which may optionally be added by the user however) and that compilation becomes slow 
due to the type inference performed by the compiler. 
However, explicit strong typing seems the way the imperalive world has chosen. These 
explicit type systems usually supply so-called type extensions as introduced by Wirth in 
its Oberon language [Wir88b, Wir88c, Wir88a] and taken over by the Modula-3 designers 
[CDG+88, CDJ+89]. Type extensions provide a form of linear inheritance without the usual 
object-oriented methods and can beseen as a generalization of Pascal's variant records. A 
type is a record, defining a number of named fields and a sub-type may add a number of 
fields to those of its super-type. 
This brings us to the second important difference between functional and imperative type 
systems. Although functional type systems contain record types, they offer a very limited 
form of inheritance. They only allow variants of a type up to one level of sub-typing, 
Iike the Pascal variant types, calling such types 'sum-of-product types'. In such a type the 
fields are unnamed, which requires them to be bound to narnes in pattem matching and 
which binders the treatment of patterns as sub-types and bas several other disadvantages 
that we discuss in chapter 6. Nevertheless, attempts have been made to integrate sub-typing 
with functional programming [FP91], [MMM91], [Wan9l] and in algebraic specification 
languages, [FGJM85]. 
Object-oriented languages offer a more extended form of type extensions, namely inheri
tance. Inheritance is a mixture of sub-typing and code reuse. These two concepts are not 
easily merged into a single mechanism, which is reflected by the fact that the object-oriented 
community has difficulty with sub-typing as well, confusing inheritance and sub-typing. See 
e.g. [Coo89] and [CHC90] for an illustration of this. In this thesis, we do notexploit the 
object-oriented approach, especially for the reason that it can not be combined easily with 
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pattem matching. Pattem matching causes the selecting of a partial function by matching 
all the actual arguments, while object-oriented message selection is perforrned on the type 
of the first argument (the destination) only. Both mechanisms have advantages: matching 
multiple arguments is more general, but can not easily be combined with sub-typing over 
module boundaries, a feature that is essential to the object-oriented programming style. 
In chapter 6, we show that sub-typing in the forrn of type extensions can be smoothly 
integrated with functional programming and that it gives a clear semantics to pattems as 
sub-types as a reward. Elegant implements such a type system for the reasoos that it is 
both very expressive due to the sub-typing ability and pattem-based function definition and 
efficient due to the implementation techniques for sub-typing and pattem matching. 
A third important distinction between modem functional and imperalive type systems is the 
presence of polymorphism in functional languages, which is the ability to deelare a single 
function for many different types by a single definition (in contrast to overloading, which 
is the ability to deelare many functions with the samename for many different types). For 
a good treatment of polymorphism, see [CW85] and [Car87]. Fora proposal to integrale 
overloading with polymorphism in functionallanguages, see [WB89]. 
It is very unclear why this powerful abstraction mechanism has not (yet) become popular in 
imperalive programming. A simpte forrn of polymorphism can be found in object-oriented 
programming and some imperative languages that allow parameterized types or modules, 
where generic operations on such types or in such modules can be defined. Usually, it is 
not possible, however, to even define e.g. a simple polymorphic function like the tunetion 
composition operator. Fora way to integrale type interenee with sub-typing see [FM90]. 
For combining polymorphism with object-oriented programming, see [GB89]. 
In chapter 6, we explain how Elegant combines sub-typing with general polymorphism 
and overloading. 

1.8 Level of abstraction 

Given the fact that memo functions date from 1968 [Mic68] and that recursion is even 
older, one may wonder why fairly simple abstractions, like memo functions and recursive 
aseent functions, have been recognized so late in parsing theory, one of the oldest and 
most thoroughly investigated fields of computer science. It seems likely that a strong pre
accupation with imperative programming using data structures like arrays, stacks and finite 
automata has hindered the recognition of abstractions like memo functions and recursive 
implementations. 
Memoization has been rediscovered many times and several interesting papers about it 
have been published, of which we mention Richard Birds [Bir80] and [Bir84a], the papers 
[Aug90c], [Lee92] and [Nor91] that describe memoized Earley parsers, the more general 
papers on memoization [Hil76], [Hug85] and [War92] and, of course, the original paper of 
Miebie [Mic68]. 
Once one has seen imperative algorithms explicitly manipulating stacks or tables instead 
of using recursion or memoization, one becomes suspicious when encountering a stack or 
a table. Examples other than the automaton-based LR parsers or the Earley and Tomita 
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parsers are then soon found. The Tarjan algorithm [Tar72] which computes the strongly 
connected components of a graph in linear time and which is conventionally described by 
means of a stack of sets of nodescan bedescribed much more clearly in a recursive way. 
A very simpte example is the Warshall algorithm [War62] that computes the shortest paths 
in a graph (or equivalently: the transitive ciosure of a relation). This algorithm maintains 
an array of distances between nodes, which appears to be an implementation of the memo
tabie of a memoized function. Let the number of nodes be n, and let them be numbered 
1 ... n. Let the direct distances along the edges be given by the function D, such that Dj k 
is the direct distance from j to k (which equals = when no edge between j and k exists). 
Then the length of the shortest path can be inductively defined as follows. Let d i j k be the 
distance between j and k along paths containing only intermediale nodes m s i 1 . Then 
the length of the shortest path with intermediate nodes m s i is either the length of the path 
not including i, or a path via i. Thus the following recursive definition can be given: 

d 0 j k 
dijk 

Djk 
min (d (i- 1) j k) (d (i 1) j i+ d (i -1) i k), i > 0 

Now assume that the function d is memoized. Then the maximum number of invocations 
for this function equals the total amount of possible different arguments, which equals n3• 

Each invocation takes CXl) time, yielding as a total complexity CXn 3
), which equals that of 

the Warshal algorithm. The space complexity of the memoized function is CXn 3), which is 
larger than the O(n2) of the Warshall algorithm. This is caused by the fact that the (i 1 )-th 
row in the memo-tabie can be overlaid by the i-tb row in an imperalive version. 
Another abstraction mechanism that is affered by functional and some imperative languages 
(like and that is often explicitly implemented over and over again is that of 
pattem matching. As mentioned, this allows the definition of a function as the union of 
several partial functions. This bas the great advantage that a programroer only needs to 
specify the different cases and not the case analysis. Especially in a compiler back-end, 
this bas the advantage that one can specify a general rule and later on add more specific 
ones to describe optimized code generation, with pattem matching on the special properties 
of the construction that can be translated in an optimized way. No modification of the 
existing code need take place, only actdition of the new rules. Moreover, pattem matching 
can be translated into case analysis by a compiler much more efficiently than it can be 
hand-coded. 

1.9 Contents of this thesis 

We conclude this introduetion by summarizing the contents of the different chapters. 

• Chapter I is this introduction. 

• Chapter 2 is a brief introduetion to functional programming and algebraic program 
transformations. lt lists a number of algebrak identities that will be used in the 
transformations throughout this thesis. 
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• Chapter 3 describes a family of reenrsion removal transformations and shows how 
these transformations cantransforma recursive descent parserintoa recursive aseent 
one. A family of such parsers is derived in this way and it is explained how they are 
related. We show how the Earley and Tomita parsers can be obtained by memoization. 

• Chapter 4 models attribute grammars by associating higher order functions with the 
production rules of a context-free grammar. lt explains how these higher order 
functions can be implemenled efficiently in combination with an LL(l) recursive 
descent parser. We present a new class of attribute grammars, the so-called pseudo 
circular attribute grammars (PC-AG), that form a generalization of the well known 
class of non-eireular attribute grammars (NC-AG) and give a general scheme for the 
construction of an attribute grammar for a wide class of programming languages. 

• Chapter 5 expresses lexical scanners as functional programs and presents algebraic 
program transformations as an alternative to finite automata in the derivation of such 
scanning functions. As a reward, attribution of lexica! scanners is trivial. 

• Chapter 6 discusses both functional and imperalive type systems and shows how 
they are combined in Elegant. It derives an efficient implementation of pattem 
matching by means of algebraic program transformations. 

• Chapter 7 presents a generalization of attribute grammars, the so-called attribute 
functions and explains how pattem matching can replace a parser in the selection of 
attributed rules. This generalization is particularly useful in the specification of code 
generation and extensively used by Elegant itself. 

• Chapter 8 concludes with an evaluation of Elegant as a formalism and of its 
efficiency: the imperative programming language Elegant aims to combine many 
abstraction mechanisms from functional Janguages with the efficiency of imperalive 
languages. Moreover, it offers support for the implementation of compilers, itself 
being one of these. 
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Chapter 2 

Notations 

2.1 Introduetion 

In this chapter we introduce the notations that we will use in this thesis. These notations 
form a simple functional programming language. Functional languages allow the transfor
mation of programs by means of algebraic identities, due to the referential transparency 
that these languages exhibit. We present a large number of such identities that we will be 
using in this thesis. 
We denote a sequence of transformation steps by successive expressions, separated by 
signs, which are labeled by the identity being applied, as in the following example: 

(a+ b).(a b) 
= (distributivity of. over-) 

(a+ b).a- (a+ b).b 
(distributivity of . over +) 

a.a + a.b (a.b + b.b) 
= (distributivity of over+) 

a.a+a.b a.b b.b 
= ( definition of 

a.a-b.b 
= (definition of x2 x.x) 

a2-b2 

Our transformations will exhibit this same structure, but instead of transforming algebraic 
expressions over numbers, we will transfarm functional programs. 
Section 2.6 contains a brief introduetion to functional programming that can be skipped by 
those readers that are familiar with it. 
We will be frequently using set-valued functions in this thesis. These functions can be 
seen as a way to implement relations. The technique of using set-valued functions and 
alternative ways to represent relations is discussed in section 2.7. 
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2.2 Notations and definitions 

The notation we use in this thesis for functional programs resembles that of Haskell 
[HWA +92] and other modem functional languages. Function application is denoted by 
juxtaposition of the function and its argument, e.g. 'f a' meaning f applied to a. It bas a 
higher priority than any operator and it is left associative. We use parentheses whenever 
appropriate. Pattem matching is used in defining functions. See section 6.3 for a formal 
semantics of pattem matching. 
Our basic data types are (possibly infinite) trees, lists, bags and sets. Of these, lists and 
sets are the most important ones. As observed in [Boo79], these data types are strongly 
related, as the following definition shows. 
Definition 2.1 (boom-hierarchy) 

0 

Let A* denote the set of trees, lists, bags or sets over A. Then A* is defined as the 
smallest set satisfying: 

{} E A* 
aeA =>{a}eA* 
xeA*AyeA* =?X*yeA* 

with 

In general this definition defines the set of binary trees over A, denoted by Tree(A). If * 
is associative however, A* is the set of lists over A, denoted by List(A). Moreover, if * 
is also commutative, then A* is the set of bags over A, denoted by Bag(A). If in actdition 
* is also idempotent, then A* is the set of sets over A, denoted by Set(A). When * is 
associative, we abbreviate {x1}* ... *{Xn} by {x1, ... ,x0 }. Thus, this expression can 
denote a list, a bag as well as a set of elements. It will be clear from the context which of 
these types is actually meant. 
Tuples are denoted by (X, y, ... ). Sometimes we distinguish between the one element tuple 
(a) and a itself. 
If ® is an operator of type A x A HA, then we define the operator 'I' of type (A xA HA) x 
A* HA by: 

®/{a} a 
®/(x* y) (®/x)® (®/y) 

If ® bas left and right neutral elements e1 and en such that e1 en then we define: 

®/{} e 

When ® is a binary operator, we use the following partial parameterizations (also called 
the section notation): 
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((®) X y) = (X ® y) 
(® y) x (X ® Y) 
(X ®) y = (X ® y) 

We define the following basic functions: 

I x = x 

(f o Q) X f (Q X) 

a: x = {a} *X 

hd (a: x) = a 
t1 (a: x) = x 

single a = {a} 

map f {} = {} 
map f {a} = { f a} 
map f (X*Y) = map f x*map f y 

concat = *I 

# {} = 0 
#{a} = 1 
# (X* y) = #X+# y 

f 0 g 
(f 0 ) on-1 g, n ~ 2 

The last definition (2.15) can be stated more comprehensibly as 

(f 0 n Q) X1 ... Xn = f (g X1 ... Xn) 

2.3 Comprehensions 

29 

(op-0) (2.2) 
(op-r) (2.3) 
(op-I) (2.4) 

(I) (2.5) 

(compose) (2.6) 

(f-power) (2.7) 

(cons) (2.8) 

(hd) (2.9) 
(ti) (2.10) 

(single) (2.11) 

(map) (2.12) 

(concat) (2.13) 

(size) (2.14) 

(compose-n) (2.15) 

A well known mathematica! notation is the set comprehension notation, e.g. 

triples = {(a, b, c) I :Ja, b, c E N, a 2 + b2 = c2 } 
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This notation was introduced as a programming language construction in [Tur82] and has 
later on been incorporated in language like Miranda [Tur86] and Haskell [HWA +92]. Since 
there is no reason to limit the use of this notation to functional programming languages, 
Elegant also contains a comprehension notation. 
For the notation to be useful for a programming language, it must be given a precise seman
tics and modified into a form that is computable. Particularly, the existential and universa! 
quantifications must be removed. In this thesis, we will often start with a specification, 
using comprehensions which contain existential quantification and transfarm this specifica
tion into a form free of such quantifiers which is effectively computable. This approach has 
two disadvantages. On the one hand, it is less clear which are the dummy variables, bound 
by the quantifiers. We solve this problem by postulating that every variabie introduced in 
a pattem (see below) which is not yet defined in the environment is a variabie that iterates 
over a given set. On the other hand, it is less clear which of our expressions should be 
interpreled mathematically and which one as programs. In effect, all should be treated as 
programs, but some are not effectively computable due to the quantifiers they contain. The 
reader is wamed here not to read these expressions as mathematically expressions in the 
traditional sense. They are programs, but ones that can be manipulated algebraically, like 
mathematica! expressions. 
An advantage of the comprehension notation for programming is that it can be generalized 
from a set-notation onto a bag or list-notation. Definition (2.1) gives the basis for this 
generalization. In programming languages, comprehensions are usually restricted to lists 
for efficiency reasons, but there is no teehuical reason for this. The comprehension notation 
in Elegantgoes further and can be used to range over arbitrary types that can be destructed 
into elements (like sets, lists or files) and to deliver elements arbitrary types that can be 
constructed (like sets, lists, files, or side-effects). In section 8.2.2 we present this general 
form of comprehensions. 
So what are these comprehensions? List, bag and set comprehensions provide a concise 
notation for list, bag and set-valued expressions. We define its syntax by the following 
EBNF rules: 

(comprehension) 
(qualifiers) 

(qualifier} 

.. - { (expression) [ I (qualifiers) ] } 

.. - (qualifier) 
(qualifiers) , (qualifiers) 

.. - (boolean-expression) 
(pattern) E (expression) 
(pattern) f- (expression) 

The Pythagorean triples example above becomes: 

triples = {(a, b, c) 1 a e 1.., b e 1..(a 1 ), c e (a- b) .. (a + b), c;2 = a2 + b2} 

The definitions of the .. operator are given below, but we believe that the user can guess 
them here. 
The semantics of the comprehensions is as follows. 

• The expression {e}, where eis of type A, denotes the singleton instanee {e} of A*. 
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• A qualifier that is a boolean expression acts like a filter that removes the elements 
not obeying the boolean expression. 

{eI b} if b then { e} else {} fi (bool-set) (2.16) 

An example of this qualifier is the following expression that selects the even elements 
of a set (list or bag): 

{a 1 a e x, even a} 

• A qualifier of the form pattern e expression can be regarded as a generalization of 
the boolean form of a qualifier. 

A pattem is a restricted expression that may contain fresh variables, which are bound 
by matching the pattem to a value. Variables bound by a pattem in a qualifier extend 
their scope to the expression as well as the subsequent qualifiers. 

When the pattem does not contain fresh variables, i.e. when it is a constant, it is 
equivalent to the boolean expression performing an element test. 

The semantics of this form is defined by: 

{elpe {}} {} 
{elpEX*Y} = {elpex}*{elpey} 
{e 1 p E {a} {e where p = a}, when p matches a 
{ e I p e {a} {}, otherwise 

(map-set-a) (2.17a) 
(map-set-b) (2.17b) 
(map-set-c) (2.17c) 

(map-set-d) (2.17d) 

In this definition, matching means that a substitution for the fresh variables in p can 
be found, and the where-part binds these variables to the values of this substitution. 

When p is a single fresh variable, say x, it always matches and we have the identity: 

(map-set) (2.18) 

An example of this qualifier is the following expression that maps a set (list or bag) 
x onto the set (list or bag) containing the squares of the elements of x: 

{a2 1a x} 

Another example is the definition of triples above. 

An example of a filtering pattem is the following, filters selects the first elements of 
those pairs x which second element equals true. 

{a 1 (a,true) ex} 

• A qualifier of the form pattern f- expression can be regarded as a shorthand for the 
qualifier pattern E { expression}. Hence, it may introduce fresh variables and bind 
these. It has the semantics: 
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(arrow-set) (2.19) 

An example of this qualifier is, which combines all three forms of qualifiers is: 

triples = {(a,b,c)laE 1 .. , bE 1 .. (a-1), cf--v'a2 +b2, entierc} 

• Finally, the semantics of the combination of two qualifiers q 1 and q2 is given by: 

The definition (2.20) is meaningfu1 because it can be proven that: 

{eI q1,q2,q3} 
= concat {{eI q3} I q1,q2} 
= concat {{eI q2,q3} I q1} 

which is basedon identity (2.48) be1ow and proven in section 2.7. 

(double-set) (2.20) 

(set-assoc) (2.21) 

Another examp1e of the comprehension notation is the function prod that computes the 
cartesion product of the sets x and y: 

prodxy = {(a,b)laE x, bEy} 

Another example is the function that computes the list of all prime numbers: 

primes = sieve (2 .. ) 
sieve (a: x) = a : sieve {b 1 b E x, b mod a"# 0} 

An example of this use of pattems as filters is the definition of set intersection below, 
where the first qualifier a E x binds a to the elements of x, while the second qualifier 
a E y checks whether a is an element y, by virtue of the fact that a is already defined in 
the context of this qualifier. 

x n y = {a 1 a E x, a E y} 

lt is equivalent to the definition: 

x n y = {a 1 a E x, b E y, a= b} 

The comprehension notation can be seen as a shorthand notation for the application of 
functions like map, concat and single. This notation can be extended for other such 
triples satisfying suitable laws. Such a triple of functions (together with a domain) is 
called a monad. Monads have a surprisingly wide area of application, as they appear to be 
useful as abstractions from iteration, state changing, exception handling, non-deterministic 
choice, continuations, parsing, call-by-value vs. call-by-name semantics and others. In 
this thesis, we do not use them since we favor a more explicit treatment of these subjects. 
Currently, they are popularized by Wadier [Wad90, Wad92], where this notations is called 
monad-comprehensions and which forms a good introduetion to them. 
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2.4 More useful functions 

Some more useful functions are defined: 

filter f x = {a 1 a e x, f a} 

split f s = (filter f s, filter (--, o f) s) 

first (a, b) a 
second(a, b) b 
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(filter) (2.22) 

(split) (2.23) 

(first) (2.24) 
(second) (2.25) 

In the following definition we make use of overlapping pattems. In such a case we assume 
that the textually first matching rule is applied. We are aware of the fact that this makes 
our formalism non-algebraic, when identities are not treated with care. I.e. one may not 
simply substitute a matching rule, but should use a semantics that subtracts the textually 
preceding cases from a rule. Such a semantics is given in section 6.3 for the Elegant 
pattem matching mechanism. See e.g. [Ken90] for piûalls in this fields. 

zip (a : x, b : y) 
zip (x, y) = {} 

a.b zip(a,b) 

(a, b) :zip (x, y) 

firsts = map first 
seconds = map second 

iterate f x = x: map f (iterate f x) 

torever iterate I 

a .. b = if a> b then {} else a: ((a+ 1) .. b) fi 
a.. iterate (+1) a 

arîb {xjxea,xeb} 
a-b {xlxea,x~b} 
a ç b = (a rî b a) 
a I b = c, such that a = c * b 
b\a = c, such that a= b*c 

(zip) (2.26) 

(bullet) (2.27) 

(firsts) (2.28) 
(seconds) (2.29) 

(itcrate) (2.30) 

(forever) (2.31) 

(upto) (2.32) 
(from) (2.33) 

(list-intersect) (2.34) 
(list-minus) (2.35) 
(list-subset) (2.36) 

(list-right-div) (2.37) 
(Iist-Ieft -div) (2.38) 

Some of these operations are well-defined on e.g. both lists and sets, like (2.34) to (2.36). 
They are even well-defined when one argument is a set and the other is a list. Program 
transformations involving these identities are valid as long as the expressions are well
defined, regardless of the exact typing of the arguments. Thus, we will write I ç s where I 
is a list and s is a set, meaning that all elements of I are also elements of s. 
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2.5 ldentities 

With respect to the functions defined above, several useful identities can be observed. We 
list some of them, without proving them explicitly. Some identities are given both in plain 
and list-comprehension notation. As usual, we assume that no name clashes are introduced 
when we apply these identities in transforming programs. 

map (f o g) map t o map g 
mapf{elq} = {felq} 
{f (ga) 1 a E x} {f bIb E {ga I a E x}} 

first o split f = filter f 
second o split f filter (...., o f) 

{falaEx,ca} (map f o filter c) x 

iterate f x = x : iterate f (f x) 
map g o iterate (f o g) = iterate (g o f) o g 
iterate (f o g) x x :(map f o iterate (g o f) o g) x 

t x*f y ===> f o concat = concat o map f 

(map-map) (2.40) 
(map-set-2) (2.40a) 

(map-map-list) (2.40b) 

(first-split) (2.41) 
(second-split) (2.42) 

(map-filter) (2.43) 

(iterate-alt) (2.44) 
(map-iterate-compose) (2.45) 

(iterate-compose) (2.46) 

(f-concat) (2.47) 

If both f and g distribute over *, then so does f o g. Identity (2.47) implies: 

concat2 concat o map concat 
map f o concat = concat o map (map f) 
{ t a 1 a E concat x} { t a 1 b E x, a E b} 
{fa 1 a E concat x} concat {map fa 1 a E x} 

filter f o concat concat o map (filter f) 
{a 1 a E concat x, t a} {a 1 b E x, a E b, f a} 

concat o map (map f o g) 
= map f o concat o map g 
{ f b 1 a E x, b E g a} 
= { f b 1 b E concat { g a 1 a E x}} 

2.6 Functional programming 

(concat-concat) (2.48) 
(map-concat) (2.49a) 

(map-concat-list) (2.49b) 
(map-concat-list-2) (2.49c) 

(filter-concat) (2.50a) 
(filter-concat-list) (2.50b) 

(concat-map-map) (2.51a) 

(concat-map-map-list) (2.51 b) 

In this section we present some programming styles which occur frequently in functional 
programming, but are not common in imperative settings. Readers that are familiar with 
functional programming can skip this section. The functional programming styles differ in 
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abstraction level, from explicit recursion to the use of higher order functions. We illustrate 
the styles by a number of examples in order to give the reader some idea of it. 

2.6.1 Explicit recursion 

A function that computes the factorial of a natural number can be expressed by explicit 
recursion: 

fac n = if n = o then 1 else n * fac (n 1) fi 

2.6.2 Comprehensions 

List, bag or set valued expressions are often more conveniently denoted by means of 
comprehensions than by explicit recursion. The quicksort function is easily defined in this 
way: 

sort {} = {} 
sort ( {a} * I) = sort {x 1 x e I, x < a} * {a} * sort {x 1 x e I, x 2 a} 

Also the set of all Pythagorian triples can be expressed smoothly in this way as a one-liner, 
as we have seen above: 

triples = {(a,b,c) 1 ae 1 .. , be 1..(a 1), CE a-b .. a+b, c2 =a2 +b2 } 

2.6.3 Higher order functions 

A higher order function is a function that takes another function as one of its arguments. 
The factorial function can be expressed smoothly by means of a higher order function: 

fac n = (*)/(1 .. n) 
The function I takes the multiplication function as its left argument. Functional program
ming makes abundant use of higher order functions. The functions map, /, filter, split and 
iterate that we encountered before are all higher order functions. 
Another good example of the use of higher order functions is the following variant of 
quicksort. 

sort = {} 
sort ( {a} * I) sort small * {a} * sort large 

where (small, large) split(< a) I 

2.6.4 Lazy evaluation 

The Pythagorian triples function makes use of lazy evaluation. The list (1..) is computed 
lazily, that is, it is expanded as more and moreelementsof it are needed in the computation. 
Also the result, i.e. the list triples, is computed lazily. If only its first argument is evaluated, 
i.e. the triple (4, 3, 5), the list 1 .. is computed upto its fourth element. 
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2.6.5 Local definitions 

The use of local definitions in where-parts is also sarnething specitic to the functional 
programming world. The n-queens problem below demonstrales its use, although it leans 
even more heavily on comprehensions. An n x n chess board must be tilled with n queens 
such that no two queens attack each other. The queens are placed on the first, second, 
etc. column. Each column is represented by the number of the row on which the queen 
is placed. (Of course, it is no use placing two queens on one column.) A partial solution, 
consisting of the first m queens being placed, is represented by the sequence of the row 
numbers of these m queens and is computed by the function q m. 

queens n = q n 
where q 0 {{}} 

q m = {board* {r} 1 board e q (m -1), re 1 .. n, safer board} 
where safer board = Al{r :;t: s 1 se board}" 

Al{m i:;t:lr-sll (s,i)e board·(1 .. (m-1))} 

Staying with chess, the knight's tour, where a knight must traverse the whole chess board, 
visiting each square exactly once, is also conveniently expressed using comprehensions: 

knight n (x, y) = tour {(x, y)} 
where tour t = if #t = n2 then {t} 

el se concat {tour ((x', y') : t) 1 (x, y) +--- hd t, 

fi 

(dx, dy) e moves, 
(x', y') +---(x+ dx, y + dy), 
x' > 0, y' > 0, x' ::;; n, y' ::;; n, 
(x', y') 12: t} 

moves {(1' 2), (2, 1), (-1 '2), (2, -1 ), (1 '-2), (-2, 1 ), (-1 '-2), (-2, -1)} 

2.6.6 Example of different styles 

We summarize the different styles by giving a number of different definitions for the list 
of all powers of x. 

powers x :;:: {X0 Ine0 .. } (pl) (2.52) 
powers x f 0 where t n = x0 

: f (n + 1) (p2) (2.53) 
powers x {1} *map (X*) (powers x) (p3) (2.54) 
powers x p where p = { 1 } * map (X*) p (p4) (2.55) 
powers x = p where p = { 1 } * {x * y 1 y e p} (p5) (2.56) 
powers x = iterate (X*) 1 (p6) (2.57) 

Observe the use of the higher order functions map and iterate and the partial parameteri
zation in the expression (X*). 
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The first version (2.52) can be seen as a specification. The second one (2.53) makes use 
of explicit recursion and is less obvious. The third (2.54) uses a higher order function, 
partial parameterization and explicit recursion. The next (2.55) is a simple variant of 
(2.54), but more efficient on most implementations. The fifth (2.56) uses both laziness and 
comprehensions, while the last (2.57) uses a single higher order function. It is the most 
abstract of them, if we define that expression e1 is more abstract than e2 when either e1 
contains no less higher order functions than e2 or less symbols. 
We can use these examples to demonstrate the techniques of program transformation by 
deriving these definitions from (2.52). The definitions and identities above can be used to 
rewrite an algorithm algebraically: 

Derivation 2.58 

powers x 

0 

= (definition (2.52)) 
{x0 In e 0 .. } 

= (definition (2.33) and (2.30)) 
{ xn I n E { 0} * 1 .. } 

= (identity (2.49c)) 
{ x0 } * { xn I n e 1..} 

= (mathematics) 
{ 1 } * {x * xn I n E 0 .. } 

= (definition (2.12) and (2.52)) 
{ 1 } *map (X*) (powers x) 

= (introduce p powers x) 
p where p {1} *map (X*) p 

= (definition (2.12)) 
p where p { 1 } * {x * y 1 y e p} 

(2.52) 

(2.54) 

(2.55) 

(2.56) 

Furthermore, (2.54) is easily rewritten into (2.57) by the definition of iterate (2.30), which 
leaves us with the derivation of (2.53). 

Derivation 2.59 

powers x 

0 

= (definition (2.52)) 
{xn In e 0 .. } 

= (introduce the more general function f) 
f 0 where t n { xï 1 i e n .. } 

= ( definition (2.33) and identity (2.49c)) 
f 0 where f n = {x0 }*{xi 1 ie (n+ 1) .. } 

= ( definition of f) 
f 0 where f n {xn}*f (n+ 1) 

(2.52) 

(2.53) 
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These derivations show the power of the program transformations which allow the algebraic 
manipulation of functional programs, giving rise to simple and elegant program derivations 
and correctness preserving transformations. If e.g. version (2.52) is taken as a specification, 
the few lines above constitute the proof of correctness of all the other forms. The concise
ness of this proof shows the power of the algebraic approach. Other notations and proof 
methods, e.g. imperative programs with while loops in stead of comprehensions combined 
with weakest precondition reasoning, require much more lengthy proofs. 

2.7 Relations and back-tracking 

The following expression 

(2.60) 

can be interpreted as a set comprehension notation computing solutions Xn for a given 
'problem' a. When we treat this expressionmore operationally, assuming lazy evaluation, 
this sarne expression can be interpreled as a notation for solving the problem a by means 
of back-tracking. Assuming lazy evaluation, each time a new result Xn is required, more 
intermediale elements Xi are computed and larger parts of each fi Xi-1 are computed. 
Thus, the problem is solved by computing sub-solutions x, with f1 and for each of these 
sub-solutions deriving more refined solutions X2 with f2, etc., until finally the problem a is 
solved with solutions Xn. When fi Xi-1 happens to yield {}, another Xi-l must be attempted, 
and hence the whole processcan beseen as a back-tracking process. An excellent treatment 
of this notation for back-tracking can be found in [Wad85]. 
Here we present a more abstract notation for the same expression. We make use of the 
continuation operator (functor) ' ; ' with type: 

(;) :: (T HU*)x(U HV*) H(T HV*) 

that is defined by: 

f ; g = concat o map g o f (continue) (2.61) 

The operational interpretation of this operator is as follows: when the function f ; g is 
applied to a an argument x, first f is applied to x, delivering a set (bag, list, tree) of values. 
To each of these values, g is applied and the results of these applications of g are flattened 
with the function concat. Hence the operator applies first f and then g to the results of f. 

2.7.1 Properties of ; 

1t is easily proved that the operator is associative: 

Derivation 2.62 
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0 

(f ; g) ; h 
= ( definition of ; ) 

concat o map h o concat o map g o f 
= (by (2.49a)) 

concat o concat o map (map h) o map g of 

(by (2.48)) 
concat o map concat o map (map h) o map g o f 

= (by (2.40) twice) 
concat o map (concat o map h o g) of 

= (definition of ; ) 
concat o map (g ; h) o f 

(definition of ; ) 
f; (g ; h) 

The function single is the neutral element of 

single ; f f 
f; single = f 
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(single-left) (2.63) 
(single-right) (2.64) 

The operator ; can be used in expressing back-tracking. This is based on the following 
identity: 

Derivation 2.65 

0 

{y 1 x e f a, y e g x} 
(by (2.20)) 

concat { g x 1 x e f a} 
= (by (2.18)) 

(concat o map g) {x 1 x e fa} 
(by (2.18), f I) 

(concat o map g o f) a 
(definition of ; ) 

(f ; g) a 

Using this identity, we can prove by induction that 

{Xn I X1 E f1 a, x2 E f2 Xj, ... , Xn E fn Xn-1} 
= (f1 ; f2 ; ... ; fn) a 

2. 7.2 Relations 

(set-continue) (2.66) 

The expression (2.60) can also be interpreted as a way of solving eertaio relations. Let R 
be a relation, then we cao associate a set-valued function .'FR with R which is defined by: 
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!TR x = {y 13y : x R y} (2.67) 
We can define the composition of two relations by: 

x (R o S) y = 3z : x R z 1\ z S y (2.68) 
Expression (2.60) can then be considered as the set of solutions to the expression: 

Derivation 2.69 

a R1 X1 1\ X1 R2 x2 1\ ••• 1\ Xn-1 Rn Xn 

= (relation composition (2.68)) 
a (R1 ° R2 ° ... 0 Rn) Xn 

= (identity (2.67)) 
Xn E !JR1 o R2 o ... o Rn a 

(proven below) 
Xn E (!JR1 ; !JR2 ; ... ; !JRn) a 

0 

The last equivalence is proven as follows: 

Denvation 2. 70 

!TRos X 

D 

((2.67) and (2.68)) 
{z 1 3y : x R y, y S z} 

= ((2.20)) 
concat { { z 1 y S z} 1 3y : x R y} 

= ((2.67)) 
concat {!Ts y 1 3y : x R y} 

((2.67)) 
concat {!Ts y 1 y E !TR x} 

= ((2.18)) 
(concat o map !Ts o !TR) x 

= ((2.61)) 
(:FR ; :Fs) x 

Summarizing: 

!JR o S = :fR ; !Js (2.71) 
We will be frequently using set valued functions when presenting parsing algorithms in 
chapter 3. These algorithms could have been presented by means of relations instead and 
calculations performed on these relations in the same fashion as [BvdW92]. Since we are 
interested in parsing algorithms as functions, as we want to actually implement them ,and 
since we want to investigate for which classes of grammars these functions become single
valued, we will not be using the relational approach in this thesis. The ; operator allows 
us to compose set-valued functions in the same way as their corresponding relations. As a 
consequence, the algorithms expressed by means of the continuation operator ; turn out 
to be the most concise and abstract ones appearing in this thesis. 
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2.7.3 Bunches 

There is another alternative to the use of relations, namely bunch-valued functions [SH92]. 
A bunch is a set with the additional property that function application distributes over bunch 
construction, that is (using the already overloaded notation for sets for bunches as well): 

f{} {} 
f {a} fa 
f (X* y) = f X* f y 

Bunch valued functions can be interpreted as non-deterministic functions. They have one 
major draw-back, which is illustrated by the following example. Let square x = x * x be 
a squaring function. Then, we can apply this function to a bunch: 

square {2,3} 
square 2 * square3 
{4,9} 

Thus, the unfoldability principle, which states that function application is defined by sub
stituting the actual arguments for the forma! argumentsin the function body, is violated by 
bunches, as it would yield for our example: 

square {2,3} 
{2, 3} * {2, 3} 

= 2*2*2*3*3*2*3*3 
= {4,6,9} 

In [SS90] a!l excellent treatment of this and similar problems can be found. In [Lee93] 
a presentation of parsing by means of bunch valued functions can be found. Many of 
the expressions in our chapter 3 can be found in bunch fonn in Leennakers' book. They 
are more concise in bunch notation, but since we are calculating by means of program 
transfonnations on parsing functions, we do not want to lose the unfoldability principle and 
hence we will not be using bunches. 
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. 
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Chapter 3 

Functional parsers 

3.1 Introduetion 

In this chapter we present a spectrum of different parsers, expressed as functional programs. 
We start with a derivation of a simple top-down deterministic parser and derive several other 
parsers from it by exploiting algebraic program transformation. Deterministic parsers are 
identified later on as special cases of non-deterministic ones. lt may come as a surprise that 
we start with non-deterministic parsers, but recent developments in parsing theory [LAK92] 
indicate that non-deterministic parsers are easily described as functional programs. 
We investigate the denvation of several non-deterministic and deterministic functional pars
ing algorithms by means of algebraic program transformations [Bir89, Mee83, Bac88]. We 
identify a class of recursive functions which we eaU recursive descent functions. For a 
recursive descent function a transformation into a so-called recursive aseent tunetion can 
be defined. This transformation RA 1 only influences the termination conditions for the 
function, teaving the rest of the semantics unchanged. It is a transformation that transforms 
reenrsion into iteration, starting from a sub-problem that has a simpte solution (meaning that 
its computation does not need the recursive function under consideration) and constructing 
solutions for larger and larger problems out of it until the final problem bas been solved. 
We present a simpte non-deterministic top-down (recursive descent) parser and show how 
it can be transformed into a bottorn-up (recursive ascent) parser. Subsequently, four more 
transformations from descent to aseent are presented: RA2, SRA 1, DRA 1 and DRA2. 
The latter two are defined on doubly recursive descent functions, a class of functions that 
contains the parsing algorithms under consideration. With the use of these transformations, 
several parsing algorithms are derived, among which the Leermakers parser [LAK92]. 
A further program transformation is presented, which transforms a back-tracking function 
into a function that realizes this back-tracking by means of continuations. This transforma
tion can also be applied to a top-down parser, resulting in a variant of Koster's recursive 
back-up parsers [Kos74]. 
The non-deterministic parsing algorithms behave deterministically for certain classes of 
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context-free grammars. The descent and aseent parsers can be modified in these cases to 
deterministic LL(l), LR( I) or LALR(l) equivalents by the addition of look-ahead informa
tion. The resulting deterministic parsers can be extended with error recovery facilities. 
In general, the non-deterministic parsers show exponential complexity, which can be re
duced to cubic complexity with the aid of a technique called memoization [Hug85, Mic68, 
Nor91, War92]. This technique consistsof the caching of function results, such that when 
a tunetion is called multiple times with identical elements, the corresponding result need 
be computed only once. In this way, variants of the Earley and Tomita parsers are obtained 
[Ear70, Tom86]. 
At the end of this chapter we give an overview in a diagram of the different parsers that we 
have presenled and show the relationships between these parsing functions. Sirree each of 
the different parsing functions is recursive, it is possible to make a new choice between the 
different parsing techniques at each recursive call. Thus, combinations of LL(l), LALR(l), 
back-tracking, memoized and other parsing algorithms can be achieved. 
From all the parsers presented, three have been implemented in the Elegant system: a 
recursive descent LL(l) parser, a recursive aseent LALR(l) parser and a recursive backup 
parser based on continuations. 

3.2 Preliminaries 

In this section wedefine the notionsof a context-tree grammar and derivation and present 
and prove the correctness of a simple functional top-down parser. 
Definition 3.1 (def:CFG) 

A context-free grammarGis a tuple (Vr, VN,P,S), where 

• Vr is a set of terminal symbols 

• VN is a set of non-terminal symbols, 
Vr n VN {} 

• V = V T u V N is the set of all syrnbols 

• V* is the set of sequences of syrnbols 

• P c VN x V is the set of production rules 

• S e V N is the start syrnbol 

[] 

We use the following notation for typical elements of each of the following sets. 
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set typical element 
VT x,y,z 
VN A,B, ... 
V X,Y,Z 
V* a,~, ... 
v; ro, i,j, k, I 
V 0 e, the empty sequence 

'-········ 

Warning: We are sloppy with the notation for singleton elements of V*. We write X instead 
of {X}. We wiJl also write a~ insteadof o: * ~· 

Definition 3.2 . (def:derives) 

D 

We de fine the relation ~ (directly derives) on V* by o:A~ ~ o:yf3 = (A, y) E P. 

The transitive and reftexive ciosure of ~ is denoted by ~. as usual. When o: ~ ~ 
we say that o: derives ~. 

Note that A ~ o: (A, o:) E P. We often use this notation to state that a production rule 
is an element of P. 

Warning: We wil! also use the notation A ~ 0: for the qualifier (A, 0:) E P, as in the 
following function rhs that maps a non-terminal onto the set of right-hand sides of its 
production ru/es: 

rhsA = {o:IA~o:} (3.3) 

The following notations will prove useful in this chapter: 

Definition 3.4 ( def:derives-div) 

0: ~ ~/y 3ö : ~ = öy 1\ 0: ~ 0 
D 

Definition 3.5 (def:left-derives) 

D 

We define the relation ~L (directly left derives) on V* by A~ ~L yf3 =(A, y) E P. 
We say that A~ directly left derives yf3 when (A, y) E P. We use the notation o: ~L ~ 
when o: directly left derives ~· 

When o: ~L ~ we say that o: left derives ~· 
Observe that the o: ~L ~ requires that o: Ay. We will be using this relation in the 
denvation of bottorn-up parsers, especially in the definition of a so-called state. 

The meaning of a context-free grammar is given by the language that it generates: 
Definition 3.6 ( def:CFG-lang) 
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The language La generated by a context-free grammar G (VT, VN,P,S) is defined 
as 

La { ro I 3ro : S ~ ro} 

0 
A recognizer is an algorithm that determines, given a context-free grammar G and an input 
string ro e V;, whether ro e La. 
A parser does not only determine whether a given input string belongs to the language, 
but also why, i.e. it constrocts the structure of the denvation in the form of a so-called 
derivation tree and thus provides a constructive proof for the fact that the input string 
belongs to the Ianguage. 
It might come as a surprise that we are not interested in these derivation trees at all. In 
this chapter we restriet ourselves to the recognition problem. In chapter 4 we extend the 
recognizers presented here to parsers for attribute grammars, again without consictering 
denvation trees explicitly. We are rather sloppy with the word parser. We often use it 
where actually a recognizer is meant, hoping no confusion will arise. 
We specify the following simple parser function: 

Specification 3.7 

parse :: V* x v; H Set<vn 
* parse a i = {j 1 3j : a ~ itj} 

0 

We can rewrite the recognition problem in the following way: 

roe La 
( definition of Lc) 

* s~ro 

= (specification (3.7)) 
E parse S ro 

(spec:TD-nd) 

In the implementation of our parsers, we will distinguish four different cases for the argu
ment a. 

• a x 

• a=A 

• a f3y, assuming f3 t= e, y t= e 

The parser is implemented recursively as follows: 
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• parse Ei 
= (specification (3.7)) 

{j I 3j : E ~ i!j} 
= (definition (3.4)) 

{i} 

• parse {x} i 
= (specification (3.7)) 

{j l::lj: {x}~ i/i} 
= (definition (3.4)) 

{j I x :i f-- i} 

• parse {A} i 
= (specification (3.7) and i,j E V~) 

* {j I ::Jj : A ~ i/i} 
= (definition (3.2)) 

* {i I A ~ a, a. ~ i/i} 
= (specification of parse ) 

{i I A ~ a, j E parse a i} 

• parse (a~) i 
= (specification (3.7)) 

{k 13k: a~~ i!k} 
* = ( definition of ~) 

* * {k I 3j, k : a ~ i/j, ~ ~ j/k} 
= (specification (3.7)) 

{k 1 jE parse a i, k E parse ~i} 

Summarizing the algorithm gives, abbreviating {X} by X: 

lmplementation 3.8 (of specification (3.7)) 

parse E i = {i} 
parse x i = {j 1 x : j f-- i} 
parse A i = {i 1 A ~ a., j E parse a i} 
parse (a~) i = {k 1 jE parse a i, k E parse ~i} 

D 

3.3 Non-deterministic parsers 

3.3.1 Introduetion 

47 

(TD-nd) 

In this section, a simple program transformation that transforms a so-called recursive descent 
function into a recursive aseent function is defined. This transformation can transform a 
recursive descent parser into a recursive aseent parser. Moreover, several variauts of the 



48 CHAPTER 3. FUNCTJONAL PARSERS 

transformation scheme can be derived, each resulting in a different recursive aseent parser. 
Also, different recursive descent parsers can be used as a starting point, giving rise to even 
more aseent parsers, among which the Leennakers parser [LAK92]. 

3.3.2 Recursive descent algorithms 

We de fine two domains S and T. The set T is a finite set of so-called problems with typical 
elements a,~· The set S is a finite set of solutions with typical elements x, y. We assume 
that T = T, u T2. T, denotes the set of so-called trivia! problems, where T2 is the set of 
non-trivia! problems. These sets are not necessarily disjoint. 
A trivial problem a can be solved by a function t, which returns the set of solutions for 
a problem. For a problem which is not trivial, it returns the empty set. A non-trivial 
problem a can be reduced by a function sub to a set of direct sub-problems with elements 
denoted by p. This set of sub-problems is the set of possible sub-problems of a. Each 
sub-problem can be solved separately, yielding a set of solutions. Out of each of these 
solutions for p, solutions for a can be constructed. Thus, the set of sub-problems does not 
fonn an 'and' -wise splitting of a, but an 'or' -wise one, and should be interpreted as the set 
of possible sub-problems of a. The function sub delivers this set of all direct sub-problems 
~ for a given problem a. 
Thus, these functions obey the following properties: 

t 
sub 

·· T H Set(S) 
·· T H Set(T) 

t a = {}, a e T\T1 

sub a = {}, a e T \T2 

Let the function h be a function that combines a problem a, a direct sub-problem ~ of a 
and a solution x for p into a set of salution for a . It bas type: 

h :: T2 xT xS H Set(S) 

Observe that this function h is partial: it is only defined for arguments a,~' x with p e 
sub a and x e p ~· In the sequel we will apply h only to arguments obeying these 
restrictions, and define it only for such arguments. 
Given these functions t, sub and h, we can de fine a function p that computes the set of 
solutions for a given problem a: 
Let p be a function that, when applied to a problem a, delivers the set of solutions of a. 

p :: T H Set(S) 

pa = t a*concat {haP x 1 P e sub a, x e p P} 
A function written in this fonn is called a recursive descent function. 
This fonn is the general recursive descent fonn that we will use in the seque1. The first 
part t a solves a trivia! problem a, the second part reduces a to direct sub-problems p, 
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recursively solves each of the sub-probieros f) and solves a by applying h. In order to 
rernain more genera!, we have assurned that h produces sets of solutions. This anticipates 
specifically the situation where no solution exists for a, given a solution for f), in which 
case h produces the ernpty set. The function pis actually nota real function, but ajunetion 
scheme since it contains the free variables t, sub and h. We can transform this scherne into 
a real tunetion RD, which is the following higher order function: 

Definition 3.9 (RD) 

RD :: (T HSet(S))x(T HSet(T))x(T2 xTxS HSet(S)) H(T HSet(S)) 

RD t sub h p 
wherepa = ta*concat{haf)xlf}E suba, x E pf)} 

D 

Example 3.10: Recursive descent factorials 

D 

A simpte recursive descent problern is the cornputation of factorials. The straightfor
ward definition 

fac 0 = 1 
fac n = n * fac (n 1) 

can be rewritten into the recursive descent form, now delivering a singleton set of 
result values: 

fac n = { 1 1 n 0} * 
concat{n*fln'E {n-11n>O}, fEfacn'} 

Here, the functions t, sub and h are expressed as: 

t n 
sub n 
h n n' f 

{1 1 n 0} 
{n 11n>O} 

= {n * f} 

Example 3.11: Construction of a binary heap 
In [Sch92] a derivation of a binary heap construction algorithrn is presented, rnakjng 
use of program inversion techniques. In this exarnple, we present an alternative deriva
tion, resulting in a recursive descent version, using algebraic program transformation 
techniques in a purely functional setting. In section 3.22 we transform this recursive 
descent solution into a version that is cornparable with the solution of [Sch92]. 

Problem specification 

We define a binary heap by: 
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() is a heap, 
(1, m, r) is a heap when m is an integer, I, r are heaps and I ;:::: m and r 2: m, 

with the relation 2: defined on heap x integer: 
();:::: m = true 
(I', n, r') :::: m = n :::: m 

The in-order traversal of a heap is defined by the following function in from heaps to 
sequences of integers: 

in() e 
in (l,m,r} = in l*{m}*in r 

For notational convenience, we define the following relation over N* x N. 

e::;; m = true 
{n}*s::;;m:::n::;;m 

The problem is to find an efficient implementation of the function heaps (from N* 
onto a set of heaps), defined by: 

heaps s in-1 s = {h 1 3h : s in h} 

We will transfarm this specification of heaps into recursive descent form. 

Problem generalization 

Instead of rewriting the function heaps, we rewrite a more general version f of this 
function. We chose for a left-to-right traversal of the input string. This means that 
when we areconstructinga right heap r, we have already encountered the top-element 
m above r. As r is bounded by that top element, it can be advantageous to pass that 
top-element to f, since it willlimit the size of r. Since r is bounded, only part of the 
input string can be converted into r. Hence, the function f will consume part of the 
input string and return a heap and the remaioder of the input string. 

fms { (h, t) I 3(h, t) : s 

We can express the function heaps in terms of f in the following way: 

Derivation 3.12 
heaps s 

(definition of heaps and f) 
{h I (h,t) E f (-oo) s, t e} 

= (definition of$) 
{h I (h,t) E f (-oo) S, t $ -=} 

0 
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A recursive descent definition 

We can rewrite the definition of f into a recursive form by algebraic program transfor
mations: 

Derivation 3.13 
f m s 

(definition of f) 
{ (h, t) 1 3(h, t) : s = in h * t, h ~ m} 

(h is either empty or not) 
{((),t)l3t:s = in()*t, ()~m}* 
{((I, a, r), w) 1 31, a, r, w : s =in (1, a, r) * w, I ~ a, r ~a, (I, a, r) ~ m} 

( definition of in, heap and ~) 
{((),s)} * 
{((l,a,r),w)l31,a,r,w:s=in(l,a,r)*w, l~a. r~a. a~m} 

(definition of in) 
{((),s)} * 
{((l,a,r),w) 131,a,r,t,u,w: s t*{a}*u*w, t in I, u= in r, I~ a, r ~ 
a, a~ m} 

( definition of f) 
{ ((), s)} * 
{((l,a,r),w) 131,a,t,u,w: s = t*{a}*U*W, t =in I, I~ a, a~ m, (r,w) E 
fa(U*W)} 

(definition of f again, substitute v = u* w) 
{((),s)} * 
{((l,a,r),w)j(l,{a}*v)E fms, l~a. a~m. (r,w)E fav} 

D 

Observe that an application of f as defined by the last equation is non-computable 
(although it is quantifier free), as f m s calls f m s again. Nevertheless, it is an 
equation that defines f and which we will transfarm further into a form that is a 
computable implementation for f. 

The definition that we have obtained for f can be brought into the recursive descent 
form by choosing: 

Definition 3.14 (RD-heap) 

t (m,s) {((),s)} 
sub (m,s) {(m,s)} 
h(m,s)(m,s)(l,u) = {C(I,a,r),w)la:vf-U, l~a. a~m. (r,w)E f(a,v)} 

D 

We leave the proof as an exercise to the reader. Observe that h is only partially 
defined, namely for problem, sub-problem, salution triples, as explained above. 
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0 

Observe that in this example t, sub anf h do not characterize f, since h still contains a 
recursive call to f. Nevertheless, we will be able to apply some very interesting program 
transformations to recursive descent functions, as our next section illustrates. 

3.3.3 Recursive aseent scheme RAl 

The recursive descent scheme can lead to non-terminalion when a problem a is a direct 
or indirect sub-problem of itself. This non-terminalion can in eertaio cases be avoided by 
transforming a recursive descent algorithm into a so-called recursive aseent algorithm. This 
transformation replaces the recursive call to p by iteration. 
The idea is to compute the transitive and reflexive ciosure of the sub-problem relation for 
given a. The set of all sub-problems of a is denoted by a:. From this set we can select 
the set of trivial problems. These trivial problems are solved first. Then for each solution 
x and solved problem ~. which has a direct ancestor y in the sub-problem relation, the 
problem y can be solved. In this way, solutions for smaller problems, starting with trivial 
ones, can be used to construct solutions for larger problems until finally a has been solved 
iteratively. 
It is important to understand that we replace only one recursive call to p by iteration. Since 
we have assumed nothing about h, it is perfectly possible that h calls p, as in our binary 
heap example. This is the case for functions that do contain more than one recursive call: 
only one of these can be replaced by iteration (at least without explicit manipulation of a 
recursion stack). 
We de fine a:, thesetof all sub-problems of a, which is an element of Set(T), as the smallest 
set satisfying: 

Definition 3.15 

a::: Set(T) 
a: == a : { r 1 3~, r : ~ e a:, r e sub ~} 

0 

The set a: is finite, since T is. 

(all-sub) 

Another useful notion is the set of super-problems of a problem ~ with respect to a problem 
a, which is defined as: 

sup a ~ = { y 1 y e a:, ~ e sub y} (sup) (3.16) 

We can now expresspin another way, making use of a function q, defined localto p with 
typing 

q :: a:xs ~Set(S) 
The recursive aseent version of p, which we denote by RAl, is defined as follows: 
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Definition 3.17 

D 

RA1 t sub h = p 
where 
p a = concat { q ~ x 1 ~ E a, x E t ~} 
where 
q~x {xl~=a}* 

concat { q y y 1 y E sup a ~. y E h y ~ x} 
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(RAl) 

Observe tbat q bas been defined locally to p. As a consequence, tbe argument a of p 
appears as a free variabie in tbe definition of q. When we manipulate q in tbe sequel, tbe 
reader sbould keep in mind tbat a is a constant witbin q. 

3.3.4 Correctness proof of the aseent algorithm (RD = RA 1) 

In tbis section we prove tbe equivalence of tbe descent and aseent versions of p, tbat is, 
we proof RD t sub h = RA 1 t sub h and tbus RD = RA 1 . We make use of a relation => 
over (T x S) x (T x S) tbat is defined by: 

(a, y) => (~, X) :: (X E p ~ 1\ ~ E SUb a 1\ y E h a ~ X) 

Observe tbat (a, y) => (~, x) implies tbat y E p a. This relation is very useful in specifying 
q: 

Specification 3.18 (spec:RAl-q) 

y E q ~ X = (a, y) "; (~, X) 

D 

This definition states tbat if ~ is a (direct or indirect) sub-problem of a and x is a solution 
for ~. tben q ~ x computes all solutions y for a tbat are consistent witb ~ and x. 
Tbe relation => is also useful for an alternative definition of p. Define tbe sets P and 'I as 
follows: 

(a, y) E P = y E pa 
(a, y) E 'I = y E t a 

Wben =>is an arbitrary relation over U x U and S ç U, wedefine => oS by: 

=> o S = {x 1 ::Jx E u, y E S : x => y} 

Using tbis notation we can rewrite tbe recursive descent definition of P (3.9) into tbe 
equation: 

p = 'TU=> op 

This equation bas as a least fixed point (see [BvdW92]): 



54 CHAPTER 3. FUNCTIONAL PARSERS 

* P=~o'T 

This step bas transformed a recursive definition for Pinto an iterative one, which approxi
mates P from below, starting from 'T. SinceS and T are finite, this approximation process 
terminates. 
Using the relation ~ and the sets Pand 'T, we can rewrite the recursive descent definition 
of p a into an iterative one: 

Derivation 3.19 

0 

pa 
= (definition of P) 

{y I (a,y) E P} 
(least salution for P) 

{YI(a,y)e~ o'1} 
= (definition of~ o '1) 

{y I 3(rl, x) e 'T : (a, y) ~(~,x)} 
= (definition of '1) 

* {y I rl e 0:, x et a, (a,y) ~(~,x)} 
= (specification (3.18)) 

{YI~e xeta, yeq~x} 
(identity (2.20)) 

concat { q ~ x 1 ~ e 0:, x e t 13} 

where we rewrite q, assuming that ~ E 0:, x E p 13: 

Derivation 3.20 

q~x 
= (definition of q) 

{y I (a,y),; (l3,x)} 
* = (definition of~) 

{x I (a,y) (~,x)}* 

{y I z: (a,y) ~ (y,z) ~(~,x)} 
(definition of~ and the assumption 13 E 0:, x E p rl) 

{xla 13}* 
* {y 13y: 13 e sub y, ze h y 13 x, (a,y) ~ (y,z)} 

* ((a, y) ~ (y, z) implies y e 0:) 
{xla 13}* 

* {Y I y e 13 sub y, z e h y 13 x, (a, y) ~ (y, z)} 
(definition of q and sup) 

{xla 13}* 
{ y I y E sup a 13, z e h y 13 x, y e q y z} 
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0 

(identity (2.20)) 
{xla ~}* 
concat { q y z 1 y E sup a ~. z E h y ~ x} 

Example 3.21: Recursive aseent factorials 

0 

The factorials example can be rewritten from recursive descent to recursive aseent by 
applying the scheme. We recapitulate the recursive descent algoritbm: 

fac n = {1 1 n = 0} * 
concat { n * f 1 m E { n - 1 1 n > 0}, f E fac m} 

tn {11 n=O} 
sub n { n - 1 1 n > 0} 
sup n m { m + 1 1 m < n} 
h n m f = {n * f} 

Substituting these into the general recursive aseent algorithm yields: 

fac n concat {q 0 1} 
where 
qmf {flm=n}*concat{q(m+1)glm<n, QE {(m+1)*f}} 

Of course, this function can be simplified by delivering single results instead of a set 
of results: 

fac n = q 0 1 
where 
q m f = if m = n then f else q (m + 1) ((m + 1) * f) fi 

The function q is tail-recursive and can be written as a loop in an imperative language. 
Hence the whole process bas transformed reenrsion into iteration. 

Example 3.22: A recursive aseent binary heap construction 
We reeall the recursive descent version of the binary heap algoritbm (3.14): 

t (m,s) = {((),s)} 
sub (m,s) = {(m,s)} 
h (m, s) (m, s) (1, u) = { ((1, a, r), w) 1 a : v f- u, I <:: a, a<:: m, 

(r, W) E f (a, V)} 

We can now bring f in the recursive aseent form: 

Derivation 3.23 



56 

0 

f 
= (recursive descent forrn) 

RD t sub h 
= (RD = RA1) 

RA1 t sub h 

CHAPTER 3. FUNCTIONAL PARSERS 

(substitute and rewrite using (3.14)) 
p where 
p (m,s) = concat {q (m,s) ((),s)} 
where q (m, s) (1, u) 

= {(l,u)}* 
concat {q (m,s) ((I, a, r), w) 1 a: v ~u, I;::: a, a;;-::: m, 

(r, w) E p (a, v)} 

The last forrn can be simplified by observing that all invocations of q have the same 
first argument (m, s), which can thus be left out. Moreover we can apply Currying, 
i.e. replacing tuple-valued arguments by separate ones. 

pms= q()s 
where q I u = {(I, u)}* 

concat { q (1, a, r) w 1 a : v ~ u, I ;;-::: a, a ;;-::: m, 
(r,w)E pa v} 

By the transformation from descent to ascent, one ofthe two recursive eaUstof (i.e. p) 
has been removed. This was the recursive eaU that delivered the left-most sub-tree of a 
heap and we are left with a recursive call that delivers the right-most sub-tree. We can 
exploit this fact in strengthening the definition of p in such a way that maximal right
most sub-trees are delivered. By this we mean that a longest prefix of the remaioder 
of the input string is consumed. Consuming a smaller prefix makes no sense, since it 
cao never be transforrned into a valid heap. The corresponding function p' is defined 
as follows, teaving the definition of q unchanged: 

Derivation 3.24 

p' m s 
(definition of p') 

{ (h, v) I (h, v) E p m s, v 5: m} 
(definition of p) 

{ (h, v) 1 (h, v) E q () s, v 5: m} 
= ( definition of q') 

q' () s 
where q' I u = { (h, v) 1 (h, v) E q I u, v 5: m} 

0 

We can rewrite this definition of q' by substituting the definition of q into it. 
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D 

q'lu {(l,u)lu::;;m}* 
concat { q' (1, a, r) w 1 a : v t- u, I ~ a, a ~ m, (r, w) e p a v} 

We can add the guard w ::;; a to the last form of q, since it can be proven that 
-,(w::;; a)=> q' (1, a, r) w {}. 

Derivation 3.25 
q' I u 

= ( .(w ~ a) => q' (I, a, r) w = {}) 
{(I, u) I u~ m}* 
concat { q' (I, a, r) w 1 a : v t- u, I ~ a, a:::: m, (r, w) e p a v, w::;; a} 

= (definition of p1
) 

{(I, u) 1 u ::;; m} * 
concat { q' (1, a, r) w 1 a : v t- u, I :::: a, a ~ m, (r, w) e p' a v} 

D 

Summarizing this algorithm gives: 

Simplification 3.26 
p' m s = q' () s 

D 

where 
q' I u {(l,u) 1 u~ m}* 

concat{q'(l,a,r)wla:vt-u, l~a, a::::m, {r,w)e p'av} 

This recursive aseent version can be tumed into a deterministic one which returns a 
single heap, which is an arbitrary element from the set of all possible heaps. This 
deterministic version can be proved to consume linear time and only constant extra 
space (over the space required for the heap), as in [Sch92]. See [Aug92a] for more 
details. 

3.3.5 Transforming recursive descent into recursive aseent parsing 

In this section we show how a very simple non-deterministic recursive descent parsing 
algorithm can be transformed into a recursive aseent parser. 

A simple recursive descent parser 

The simple functional parser can be written in the recursive descent form. We repeat its 
definition (3.8): 

parse (e, i) = {i} 
parse (x, i) = {j I x : i t- i} 
parse (A, i) = {j 1 A ---7 a, j e parse (a, i)} 
parse (a.~, i) = {k 1 i e parse (a., i), k e parse (~, j)} 
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This implementation can be rewritten into the general recursive descent form. 
The domains become: 

T V* x v; 
s = VT 
p parse 

Thus, problems are of the form (a., i), a pair of a sequence of symbols and a remaioder of 
the input string. The functions are given (as the reader can verify by substituting the four 
different forms of parse) by: 

Theorem 3.27 (RD-nd) 

0 

parse (a., i)= t (a., i) +rconcat {h (a., i) (y, k) j 1 (y, k) E sub (a., i), jE parse (y, k)} 

sub (e, i) 
sub (x, i) 
sub (A, i) 
sub (a.~, i) 

{} 
{} 
{(a., i) I A -7 a.} 

{(a., i)} 

Note that (~, k) E sub (a., i) implies k i. 

t (ê,i) {i} 
t (x, i) {j I x: i~ i} 
t (a., i) = {} 

h (A, i) (a., i) j = {j} 
h (a.~, i) (a., i) i parse (~,j) 

sup (a., i) ({3, i) = {(A, i) 1 (A, i) E (a., i), A -7 ~} * 
{ (f3y, i) I (~y, i) E (a., 

This parser is called on the start symbol S by parse (S, ro). 

The corresponding recursive aseent parser 

Given the recursive descent parser, the recursive aseent parser is easily obtained by applying 

the scheme. First we give the definitions of the relation ,; and q. 
* The relation ::::} can be expressed as: 

((a., i), k),; (({3, i),j) 
• • 

= 3y, k : (l -7L {3y A f3 -7 i/j A y -7 j/k 
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which yields as a specification for q: 

q (~,i) j = {k 1 3y, k : a ~L ~y 1\ (3 ~ i/j 1\ y ~ j/k} 

Substituting the functions t, sub and h in the general recursive aseent algorithm gives the 
following recursive aseent parser: 

Denvation 3.28 

p (a, i) 

D 

(recursive aseent definition) 
concat { q ~ j 1 (3 E (a, i), j E t ~} 

(definition of t) 
concat { q (x, i) i 1 (x, x : j) E (a, i)} * 
concat {q (E,i) i 1 (E,i) E (a, i)} 
where 
q (~,i) j 

(recursive aseent definition) 
{j I (IJ, i) (a, i)}* 
concat { q (y, i) k 1 (y, i) E (a, i), (~,i) E sub (y, i), k E h (y, i) (IJ, i) i} 

(definition of sub) 
{jiiJ a}* 
concat {q (y, i) k 1 (y, i) E (a, i), y A, A~~. k E h (A, i} (IJ, i) j} * 
concat {q (y, i) k 1 (y, i) E (a, i), ~ö ~ y, k E h (!Jo, i) (IJ, i) j} 

( definition of h) 
{j I (3 a}* 
concat {q (A, i) j 1 (A, i) E (a, i), A~ IJ}* 
concat { q (!Jo, i) k 1 (~ö, i) E (a, i), k E p (ö, j)} 

This algorithm can be simplified by eliminating the string i from sub-problems, and thus 
from the elements of (a, i): 

Definition 3.29 

D 

pa i concat {q x j 1 x: j ~i, x E a}* 
concat { q ~:: i 1 E E a} 

where q P i {j I ~ = a} * 
concat { q A j 1 A E A ~ (3} * 
concat {q (!Jy) k 1 (jJy) E a, k E p y j} 

3.3.6 Another parser transformation 

(RAl-nd) 

In this section we discuss the transformation of a parserbasedon items (dotted rules). The 
reason for doing so is that the set of problems T in the previous recursive descent parser 
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is not uniform: it is V x V*. As a consequence of this, the sub-problem relation must 
distinguish between the two cases V and V*. The following parser does nat have this 
problem. 

An item-based recursive descent parser 

Fora given context-free grammar G = (VT, VN ,P, S) wedefine thesetof items Items, with 
typical elements J, K by: 

Items= {A~a.~IA~a~}*{x~.XIXE VT}*{S'~y.S} 

where S' is a new symbol not in V and y an arbitrary element of V+. We will write 
A ~ a.~ for elements of Items. Note that this is in conflict with our notational convention, 
which assumes that the symbol A is an element of VN, but we hope that no confusion 
will arise. We use this set Items in the definition of the following recursive descent parser 
parse. This function is different to the one introduced above, sirree it operates on items. 
We will be using this farm of overloading more frequently in the sequel. The function 
parse obeys the specification: 

Specification 3.30 (spec:ITD-nd) 

T = Itemsxv; 
s = v; 
parse :: Items x v; H Set(vn 

parse (A ~ a.~) i = {j 1 3j : ~ ~ i/j} 
D 

and which is implemented by: 

Implementation 3.31 (of specification (3.30)) (ITD-nd) 

D 

parse ((A~ a.), i) = {i} 
parse ((x~ .x), i) = {j 1 x: j ~i} 
parse ((A ~ a.X~). i) 
= {k 1 (X~ .y) E Items, jE parse ((X~ .y), i), k E parse ((A~ aX.~),j)} 

We can rewrite this definition in the following recursive descent form, which can be proved 
by substituting the three cases. 

Theorem 3.32 

parse (J, i) = 
t (J, i)* concat {h (J, i) (K, k) j 1 (K, k) E sub (J, i), j E parse (K, k)} 

t ((A ~ a.), i) {i} 
t ((X ~ .X), i) {j I x : j ~ i} 
t ((A ~ a.X~), i) = {} 

(IRD-nd) 
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D 

sub (A -+ a., i) 
sub (x -+ .x, i) 

{} 
{} 

sub (A -+ a.Xp, i) {(X -+ .y, i) 1 (X -+ .y) e Items} 

h (A-+ a.Xp, i) (X-+ .y, i) j parse ((A-+ aX.p),j) 

This parser is called on the start symbol S and input string wby parse (S' -+ .S, ro). 

The corresponding recursive aseent parser 
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We can transform this new item-based parser into a recursive aseent version. First we give 
the relation => and the specification for q. 

((A-t a.p,i),k) ~((X -t .y,i),j) 

* * * 3o : p -+L Xo A 1 -+ ilj A o -+ jlk 

Given the problem (A -+ a.p, i), the local function q is specified by: 

* * * q ex -+ y.o, i) i {k I 3!-!, k: p -+LX!-!, o -t i/j, !-!-+ j/k} 

Substituting the functions t, sub and h in the item-based recursive descent algorithm gives 
the following reeursive aseent parser: 

Derivation 3.33 

D 

p (J,i) 
= (recursive aseent definition) 

concat { q (K, i) j 1 (K, i) e (J, i), j e t (K, i)} 
= (definition of t (K, i)) 

concat {q (A-+ a., i) i 1 (A-+ a., i) e (J, i)}* 
concat { q (x -+ .x, i) j 1 x : j +--- i, (x -+ .x, i) e (J, i)} 
where 

q (K, i) j 
= (reeursive aseent definition) 

{j I (K, i) = (J, i)}* 
concat { q (L, i) k 1 (l, i) e (K, i) e sub (l, i), k e h (l, i) (K, i) j} 

= (definition of sub and h) 
{j IK= J} * 
concat { q (A -+ a.Xp, i) k 1 (A -+ a.xp, i) e 

(X-+ .y) (,--- K, k E p (A-+ ax.p,j)} 

Here we have made use of the faet that if (K, i) E sub (L, i), then K must be of the form 
X -+ .y due to the definition of sub. 
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The result can again be simplified by eliminating redundant occurrences of i. We must 
modify our definition of (J, i) to a definition of J and adjust some other definitions, but 
since this amounts only to leaving out occurrences of i, we do not define J here. We 
apply Currying in our simplification in order to leave out redundant parentheses. The 
simplification of the result of denvation (3.33) thus becomes: 

Simplification 3.34 

p J i = concat {q (A---"? a.) i 1 (A---"? a.) e J} * 
concat { q (x ---"? .x) i 1 x : i f- i, (x ---"? .x) e J} 

where 
q (X ---"? y.ö) i 

{i I (X---"? y.ö) = J} * 
concat { q (A ---"? a. X~) k 1 (A ---"? a.X~) e J, y e, k e p (A ---"? aX.~) j} 

D 

The set J can be interpreted as the ciosure of the item set {J} in the classical bottorn-up 
parsing theory. 

3.3. 7 Another recursive aseent scheme: RA2 

In our last example, the item-based recursive aseent parser, we can observe that the second 
part of q does not make use of all the information stored in the item X ---"? y.ö. It only 
uses the symbol X and the emptiness of y and not the whole item. We can exploit this by 
modifying the algorithm in such a way that X is passed to q instead of the whole item. 
This is more generally described by another way of recursive ascending which we present 
with its derivation. It is based on considering the transitive, but not reftexive ciosure of the 
sub-problem relation. We denote this ciosure with regard to a problem a by . Instead 
of passing problems from a to q, we pass problems of a+ to q only. 

Definition 3.35 

concat {sub ~ 1 ~ e a} 
D 

From this definition we can derive the property: 

Derivation 3.36 

y e sup a [3 

D 

= (definition (3.16)) 
~ e sub y /\ y e a; 

~ (definition (3.35)) 
~ E a;+ 

The RA2 definition is given by: 

(all-sub-plus) 
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Definition 3.37 (RA2) 

RA2 t sub h p where p a "" t a* concat { q ~ x 1 ~ u+, x E t ~} 
where 
q ~x = {y I (a,y) E next}* 

concat { q y y 1 (y, y) E next, y e u+} 
where next = {(y,y) 1 'YE sup a 13, y e h y ~x} 

0 

The RA2 algorithm can be derived from the RAl algorithm, thus proving the identity 
RD = RA1 RA2. We use q to denote the q from RAl and q' for the RA2 version. We 
define: 

q' 13 x concat { q y y I y e sup a 13, y E h y 13 x} 

From this follows by the definition of q in the RA1 scheme (3.17) and denvation (3.36) 

q 13 x = {x I 13 a} * concat { q' 13 x I 13 E u+} (ral-ra2) (3.38) 

Using this identity, we can rewrite the RAl definition of p into the RA2 form: 

Derivation 3.39 

pa 

0 

= (RAl definition) 
t a* concat { q 13 x 1 13 e a, x e t 13} 

= (identity (3.38)) 

ta* 
{x 1 a e a, x E t a}* 
concat {q' 13 x 113 E u+, x e t 13} 

= (set calculus) 
t a*concat {q' 13 x 113 e u+, x e t 13} 

In the same way, we can rewrite the definition of q': 

Derivation 3.40 

q' 13 x 
= (definition of q') 

concat { q y y 1 y e sup a 13, y e h y 13 x} 
= (introduce next) 

concat { q y y 1 (y, y) e next} 
where next {(y,y) I ye sup a 13, y E h y 13 x} 

= (apply (3.38)) 
{y I (a,y) E next}* 
concat { q' y y 1 (y, y) e next, y E 

where next {(y, y) 1 y e sup a 13, y e h y 13 x} 
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D 

This RA2 scheme can be applied to our item-based parser. In this case, we have to 
-o-+ 

determine whether an item is a member of the set { J} or J , given the item is an element 
of J. This can easily be determined, given that A -'7 a.f3 E J: 

A -'7 a.f3 J =a-:;:. E 
-o-+ 

A -'7 a. 13 E J a E 

The resulting recursive aseent parser can thus be expressed as: 

p J i {i I (A -'7 a.) +-- J} * 

where 

{j I x : j +-- i, J = (x -'7 .x)} * 
concat {q A i 1 (A -'7 .) E J}* 
concat {q x j 1 x: j +--i, (x -'7 .x) E J} 

q X j {k 1 (A -'7 a.Xf3, k) E next, a -:;:. E} * 
{I 1 (A -'7 .XJ3, k) E next, I E q A k} 
where next = {(A -'7 a. X~, k) 1 (A -'7 a. X~) E J, k E p (A -'7 aX.f3) j} 

Observing that p is never called with fust argument (x -'7 .x), we can simplify this to 

Definition 3.41 

p J i {i I (A -'7 a.) +- J} * 

where 

concat {q A i 1 (A -'7 .) E J}* 
concat {q x j 1 x: j +-i, (x -'7 .x) E J} 

q X j {k 1 (A -'7 a.Xf3, k) E next, a-:;:. e} * 
{I 1 (A -'7 .Xf3, k) e next, Ie q A k} 

(IRA2-nd) 

where next = {(A -'7 a.Xf3, k) I (A -'7 a.XIJ) E J, k E p (A -'7 aX.f3) n 
D 

This parser is called on the start symbol S by p (S' -'7 y.S) ro. 

3.3.8 Solving sets of problems 

In this section we present recursive descent and aseent algorithms for solving sets of 
problems, instead of a single problem. We define a function P that takes a set of problems 
Jl instead of a single problem a. lt can not deliver just a set of result~, but it has to indicate 
which result corresponds to which problem in Jl. Hence it returns a set of (a, x) pairs, 
where a is an element of Jl and the x is a solution to the problem a. We eaU the resulting 
scheme set recursive descent, SRD. 

Definition 3.42 (SRD) 
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SAD::T HSet(S)xT HSet(T)xT2 xTxS HSet(S)xSet(T) HSet(TxS) 

SADtsubh = PwherePJl = {(a,X)IaEJl,XEpa} 
where p AD t sub h 

D 

Using this definition we can transform the SAD algorithm into a set recursive aseent 
algorithm SAA 1 . 
We first define some domains: 

Jl, ji :: Set(T) 
P :: Set(T) H Set(T x S) 
Q :: TxS HSet(TxS) 

and the set: 

Definition 3.43 

ïi = concat {a 1 a E Jl} 
D 

and the function 

sup Jl ~ = {y I y E ji, ~ E sub y} 

The recursive aseent functions for SAA 1 are given by: 

Definition 3.44 

SAA1 t sub h = P where 
P Jl concat { Q a x 1 a E ji, x E t a} 
where 
Q ~ x {(fl, X) I ~ E Jl} * 

concat { Q y y 1 y E sup Jl ~. y E h y ~ x} 
D 

(sub-mu-all) 

(SRAl) 

Of course, we are obliged to present the SAD to SRA 1 transformation, proving SRD = 
SRA 1. To this end, we make use of the identity RD = RA 1 in the definition of p. First 
we give a specification for Q in terms of the AA 1 version of q. In order to do this, we 
must raise q from a local to the global level, adding the argument a. 

Q Jl ~ x = { (a, y) 1 a E Jl, ~ E a, y E q a fl x} (SRAl-Q) (3.45) 

Rewriting the definition of P gives: 

Derivation 3.46 
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D 

Pfl 
(definition (3.42)) 

{(a:,x)laefl, xepa} 
= (RAl definition of p) 

{(a, y) I a e fl, ~ e a, x e t ~. y e q a ~ x} 
= (definition (3.45), (3.43) and (3.15)) 

concat { Q fl ~ x I 13 e JI, x e t ~} 

CHAPTER 3. FUNCT/ONAL PARSERS 

The definition of Q can also be rewritten into the required form: 

Derivation 3.47 

Ofli3X 

D 

= (definition) 
{ (a, y) I a e fl, 13 e a, y e q a 13 x} 

= (RAl definition of q) 
{(a,y) I a:e fl, l3e a, 13 a, y~x}* 
{ (a:, z) 1 a: e fl, y e sup a 13, y e h y 13 x, z e q a y y} 

(definition of 0) 

{(IJ, X) I 13 E fl} * 
concat { Q fl y y 1 y e sup fl 13, y e h y 13 x} 

We do not present a SRA2 algorithm here but instead go on to the class of doubly recursive 
programs, very interesting for parsers, which can be derived from the SRA 1 and SRA2 
algorithms. 

3.3.9 Transforming doubly recursive programs 

In this section we deal with a special case of recursive descent algorithms, namely the case 
where h invokes p again in a certain way. We eaU such an algorithm doubly recursive 
descent. In this section we present a scheme for the transformation of a special class of 
doubly recursive descent algorithms into recursive aseent algorithms. For this class we 
assume that h is of the form 

h a ~ x = (91 a (3 ; p ; 92 a: ~ x) x 

where 91 and 92 are assumed to be simpte functions, at least with regard to p with typing: 

91 :: T x T x S ~ Set(T) 
92 :: T x T x S x S ~ Set(S) 

Just as h, these functions are partial functions. 
Both the RA 1 and RA2 transformation schemes can be expressed in a special way for such 
doubly recursive descent algorithms, exploiting the doubly recursive nature. 
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Scheme 1 

In this section we adopt the first transformation scheme RAl for doubly recursive descent 
problems. 
The RD definition of p can be rewritten into a doubly recursive descent fonn DRD: 

Definition 3.48 

D 

DRD :: (T H Set(S))x 
(T H Set(T))x 
(T x T x S H Set(()T))x 
(T xT xS xS H Set(S))x 
Set(T) H Set(T x S) 

DRD t sub 91 92 = p where 
pa t a*concat {y 1 ~ E sub a, x E p ~. y E (91 a~ ; p; 92 a ~x) x} 

We clearly have the identity 

DRD t sub 91 92 = RD t sub h 
where h a ~ x (91 a ~ ; p ; 92 a j}x) x 

(DRD) 

As we will see, doubly recursive aseent algorithms can take advantage of the set-version 
SRA 1 for general recursive aseent algorithms. We make use of two new functions with 
typing: 

90to :: Set(T) 
combine :: T x T H Set(T) 

The doubly recursive aseent functions for the new scheme DRA 1 are given by: 

Definition 3.49 (DRAl) 

DRA 1 t sub 91 92 P where 
P J.! concat { Q a x 1 a E p:, x E t a} 
where 
Q ~x {(~,X) I~ E !l} * 

concat {Q y z 1 (o, y) E P 90to, y E combine ~ o, zE 92 y 13 x y} 
where 90to concat {91 y 13 x 1 y E p:, ~ E sub y} 

combine a 13 = { y I y E sup 11 a, f3 E 91 y a x} 
D 

This recursive aseent algorithm can be interpreted in the following way. lnstead of recur
sively calling p for each salution o separately, it is more efficient to call P on the whole 
set of new probieros o which are consistent with ~ by means of 91 . Of course, P must 
now return the problem o that it solved with each solution y for that problem. The func
tion combine 13 ö constrocts the super-probieros y which can be split into consistent (j}, Ö) 
problems. Since both 13 and ö have been solved with solutions x and y respectively, y has 
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been solved with salution z, where z is computed with 92· The result is more deterministic 
than the previous version, since it groups all new problems ö E 91 y ~ x for an already 
solved problem ~ into one set 90to, rather than solving them one by one. 
Of course we are obliged to present the SRA 1 to DRA 1 transformation. Observe that P 
does not have to be rewritten, since the DRA 1 farm is equal to the SRA 1 farm. The 
definition of Q can be rewritten into the required form, adding j..t to Q for clarity: 

Derivation 3.50 

Q I..L ~x 

0 

(SRAl definition) 
{(~,X) I ~ E j..L} * 
concat { Q I..L y y 1 y e sup !! ~. y e h y ~ x} 

= (definition of h) 
{(~. X) I ~ E j..L} * 
concat { Q !! y y 1 y e sup !! ~. y e (9 1 y ~ ; p ; 92 y ~) x} 

( definition of ; ) 
{(~,X) I ~ E !l} * 
concat { Q !l y z 1 y e sup !l ~. ö e 91 y ~ x, y e p ö, z e 92 y ~ y} 

= (definition of P) 
{(~,X) I~ E !!}* 
concat {Q !! y z I (ö, y) e P (concat {91 y ~ x I y e sup I..L ~} ), y e sup !l ~. 

Ö E 91 "{ ~ X, ZE 92 "{ ~ X Y} 
(definition of 90to) 

{(~,X) I~ E !l} * 
concat {Q !! y z 1 (ö, y) e P 90to, y e sup !! ~. ö e 91 y ~x, ze 92 y ~ x y} 

= (definition of combine) 
{(~,X) I ~ E j..L} * 
concat {Q !l y z 1 (ö, y) e P 90to, y e combine 13 ö, ze 92 y ~x y} 

Scheme 2 

Altematively, the second scheme RA2 for recursive ascending can also be applied to doubly 
recursive problems. This yields the following recursive aseent scheme DRA2 which we 
present without proof. It can, however, be derived from DRAl in a fashion similar to the 
denvation of RA2 from RAL 

li" = {~ I a p:, ~ e sub a} 

Definition 3.51 (DRA2) 

DRA2 t sub 91 92 = P where 
P !! = { (a, x) I a e !!, x e t a}* 

concat { Q a x 1 a E p:+, x e t a} 
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where 
Q 13 x == { (y, y) I (y, y) E next, y E Jl} * 

concat {Q y y 1 (y, y) E next, y e jr'"} 
where 90to concat {91 y 13 x 1 y E ji, 13 E sub y} 
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next {(y,z) 1 (o,y) e P 90to,ye combine 13 ö,z e 92 y 13 x y} 
combine a 13 == { y I y e sup 11 a, 13 E 91 y a x} 

D 

Denvation of the Leermakers recursive aseent parser 

When we apply this last scheme DRA2 to our item-based parser, we obtain the Leermakers 
recursive aseent parser [LAK92]. We use Jl for elements of Set(ltems) and have omitted 
redundant occurrences of i. All sub-problems of (A -+ a.l3, i) share the same string i, which 
can thus be removed from Jl and passed as a separate parameter. 
Reeall that: 

h (A-+ a.XI3) (X-+ .y) j == p (A-+ aX.I3,j) 

which yields for 9 1 and 92: 

91 (A-+ a.XI3) (X-+ .y) j 
92 (A -+ a.XI3) (X -+ .y) j k 

{(A-+ aX.j3,j)} 
{k} 

The specification of the Leermakers parser is given by: 

Specification 3.52 (spec:Leermakers) 

* P11i {(A-+a.j3,j)l3j (A-+a.j})e Jl, 13-+i/j} 
where 

* * * 
Q X j == {(A-+ a.j3, k) I 3y, k : (A -+ a.j3) E Jl, 13 -+L Xy, X -+ i/j, y-+ j/k} 

D 

The implementation of the parser becomes (by applying scheme DRA2): 

lmplementation 3.53 (of specification (3.52)) (Leermakers) 

P Jl i {(A-+ a., i) 1 (A-+ a.) e J.l}* 
{(x-+ .x,j) 1 x: j ~i, (x-+ .x) E Jl} * 
concat {Q A i 1 (A-+.) e jr'"} * 
concat {Q x j 1 x : j ~i, (x-+ .x) E jr'"} 

where Q X j == {(A -+ a.Xj3, k) 1 (A -+ a.Xj3, k) e next, a * e} * 
concat { Q A k 1 (A -+ .Xj3, k) e next} 
where next == {(A -+ a.Xj3, k) 1 (A -+ aX.j3, k) e P (9oto Jl X) j} 

D 

Where 90to is defined by: 

Definition 3.54 (goto) 
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goto J.l X = {A -:t aX.~ 1 (A -:t a.X~) e ji} 
0 

Since the function starts with item S 1 -7 a.S, a e V+ and because only items reaebabie 
from this one by applying the goto definition iteratively can be elements of J.l, we can 
observe that items (X -7 .x) and (A -7 .) can never be elements of J.l. This allows us to 
simplify the definition of P. Moreover, the definition of next can be simplified toP goto j, 
leaving the 'shifting of the dot' to the users of next. 

Definition 3.55 (IDRA2-nd) 

0 

P J.l i {(A -:t a., i) 1 (A -7 a.) e J.l}* 
concat {0 A i 1 (A -:t .) e ji} * 
concat { Q x j 1 x : j f- i, (x -:t .x) e JI} 
where Q X j = {(A -:t a.Xj3, k) 1 (A -:t aX.j3, k) e next, a ::;: e} * 

concat {Q A k 1 (A -:t X.~. k) e next} 
where next P (goto J.l X) j 

Which is the Leermakers non-deterministic recursive aseent parser presented in [LAK92]. 
lt is deterministic for exactly the class of LR(O) grammars and thus can be called a non
deterministic LR(O) parser. 

3.3.10 Recursive descent parsing using continuations 

Using the continuations transformation (2.66), we can derive a continuation-based parser 
from a plain recursive descent parser. We recapitulate the latter (3.8): 

parse ei {i} 
parse x i = {j 1 x : j f- i} 
parse A i = {j 1 A -:t a, j e parse a i} 
parse aj3 i = {k 1 j e parse a i, k e parse 13 j} 

The last of these definitions can be expressed by: 

parse aj3 i (parse a ; parse j3) i 

The continuation-based parser is defined by using: 

cont a c parse a; c 

and thus by the definition of' ; ' (2.61): 

cont a c i concat {c j 1 je parse a i} 

Taking the four forms of a and substituting them in the definition of cont gives: 
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• cont e c i 
= ( definition of cont and parse E) 

concat {c i} 
( definition of concat ) 

ei 
• cont x c i 

= ( definition of cont and parse x) 
concat {c j 1 je {j 1 x: j f- i}} 

= (discriminate two cases) 
c j, if hd i = x then c (tl i) else {} fi 

• cont Ac i 
= (definition of cont and parse A) 

concat { c j 1 A -t a., j e parse a. i} 
= (definition of set construction) 

concat2 { {c j 1 je parse a. i} I A-t a.} 
(identity (2.48)) 

concat {concat {c j 1 je parse a. i} 1 A-t a.} 
= (definition of cont ) 

concat {cont a. c i 1 A-t a.} 

• cont a.~ c i 
(definition of contand parse a.~) 

concat { c k 1 j e parse a. i, k e parse ~ j} 
(definition of set construction) 

concat2 { {c k 1 k e parse ~ j} 1 je parse a. i} 
= (identity (2.48) and definition of cont ) 

concat {cont ~ c j 1 je parse a. i} 
= ( definition of cont ) 

cont a. (cont ~ c) i 
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Summarizing this gives a recursive definition of cont that is no longer based on parse : 

Theorem 3.56 

cont e c = c 

D 

cont x c i = if hd i = x then c (tl i) else {} fi 
cont Ac i = concat {cont a. c i 1 A-t a.} 
cont a.~ cont a. o cont ~ 

This parser is called on the start symbol S with: 

parse S ro 
= (single is the right neutral element of ; ) 

(parse S ; single ) ro 
= (definition of cont) 

cont S single ro 

(CTD-nd) 
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Because of its high abstraction level and consequently simple and elegant definition, we 
regard this parser as the most beautiful of all. In a much less abstract fashion it is presented 
in [Kos74] where it is called a recursive back-up parser. 

3.3.11 Recursive aseent parsing using continuations 

Among other things, the Leermakers recursive aseent parser can be transformed into a form 
using continuations. We define: 

Definition 3.57 

S = Itemsxv; 
C = S H Set(S) 
c :: c 
P' ·· Set(Items) x C x V; H Set(S) 
a' :: V x v; H Set(S) 

P' !! c = P !! ; c 
a' (X,j) = (a ; c) (X,j) 

0 

Substituting the definition of P and a from (3.55) gives: 

Derivation 3.58 

P'!! c i 
= (definition of P' and ; ) 

(concat o map c) (P !! i) 
= (substitute P) 

(concat o map c) ({(A~ a., i) 1 (A~ a.) E !!} * 
concat {a (A, i) 1 (A~.) E ii} * 
concat {a (x,j1) 1 x: j f- i, (x~ .x) E P:}) 

(map distributes over *) 

concat { c (A ~ a., i) 1 (A ~ a.) E !! } * 
(concat o map co concat) {a (A, i) 1 (A~.) E ïi} * 
(concat o map co concat) {a (x,j) 1 x: j f- i, (x~ .x) E ii} 

= (apply (2.47), f = concat o map c) 
concat {c (A~ a., i) 1 (A~ a.) E !!} * 

( der-Leermakers-cant -P) 

(concat o map (concat o map c)) {a (A, i) 1 (A~ .) E ïi} * 
(concat o map (concat o map c)) {a (x,j) 1 x: j f- i, (x~ .x) E ïi} 

= (identity (2.40a)) 
concat {c (A~ a., i) 1 (A~ a.) E !!} * 
concat { (concat o map c) a (A, i) 1 (A~.) E ïi} * 
concat {(concat o map c) a (x,j) 1 x: j f- i, (x~ .x) E ïi} 
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= (definition of 0' and ' ; ') 
concat { c (A -Hx., i) 1 (A -Hl.) e ~} * 
concat {0' (A, i) I (A--t .) e ïi} * 
concat { 0' (x, j) 1 x : j f-- i, (x --t .x) e ïi} 

D 

Similarly, we workout 0': 

Derivation 3.59 

where 

D 

o~ (X,j) 
= (definition of 0' and 0) 

(concat o map c) ( {(A--t a.. XI), k) 1 (A--t a.X.j), k) e P (goto ~ X) j, a. =F-e}* 
concat {0 A k 1 (A--t X.l3, k) e P (goto ll X) j}) 

(As above) 
concat { c (A --t a..Xj), k) 1 (A --t a.X.j), k) e P (goto ll X) j, a. =F- E} * 
concat { 0' (A, k) 1 (A --t X.l3, k) e P (goto ~ X) j} 

= (lntroduce d) 
concat { d (A --t aX.I3, k) 1 (A --t a.x.p, k) e P (goto !! X) i} 
where d (A --t a.X.j), k) if a. =F- e then c (A --t a.. XI), k) else 0' (A, k) fi 

(identity (2.40a)) 
(concat o map d) (P (goto !! X) j) 
where d (A --t a.X.j), k) if a. =F- e then c (A --t a..Xp, k) else 0' (A, k) fi 

= (definition of P') 
P' (goto !! X) d j 
where d (A --t aX.j), k) = if a =F- e then c (A --t a..Xj), k) else 0' (A, k) fi 

Summarizing the result of these transformations gives: 
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Definition 3.60 (CIDRA2-nd) 

D 

P' J.t c i = concat { c (A --t a., i) 
concat {0' (A, i) 
concat {0' (x,j) 

where 
0' (X, j) = P' (goto ll X) d j 

I {A--ta..)e !l}* 
I (A --t .) E ïi} * 
I x : j f-- i, (X --t .X) E ïi} 

where d (A --t a.X.j), k) == if a =F-E then c (A --t a.Xj), k) else 0' (A, k) fi 

The parser is called on the start symbol by: 

P {S' --t a..S} <0 

== (P { s 1 --t a..s} ; single) ro 
= P' { s 1 --t a..S} single ro 

The result is an algorithm exhibiting the elegance of continuations in presenting and im
plementing back-tracking. 
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3.4 Termination of non-deterministic parsers 

A functional program can be non-terminating only when it contains a recursive function 
that can call itself (possibly indirectly) with either the same arguments or with an infinite 
number of different arguments. In our case, assuming finite domains, only the first can 
be the case. In this section, we investigate the conditions for non-terminalion for the 
simple and doubly recursive descent as well as for the RA2 algorithms. Having derived 
these conditions, they are applied to the simple recursive descent and Leermakers parser 
respectively. 

3.4.1 Termination of recursive descent algorithms 

We reeall the definition of a recursive descent algorithm: 

pa = t a*concat {ha 13 x I 13 e sub a, x e p 13} 

Assuming that h always terminates, this algorithm is non-terminating if p a directly or 
indirectly calls p a again, that is, if a is a direct or indirect sub-problem of itself. Let the 
relation ::::} over T denote this sub-problem relation, that is: 

a 13 13 e sub a 
+ 

Then the algorithm is cyclic if 3a : a ::::} a. 

3.4.2 Termination of doubly recursive descent algorithms 

We reeall the definition of a doubly recursive descent algorithm: 

p a t a* concat { 92 a ~ x y I ~ e sub a, x e p ~. y e (91 a ~ ; p) x} 

Again, this algorithm is non-terminating if a is a direct or indirect sub-problem of itself, 
assuming that both 91 and 92 are both terminating. The sub-problem relation is a bit more 
complicated than in the single recursive case: 

a ~ = 3y, x : y e sub a, x e p y, 13 e 91 a y x 
+ 

Then the algorithm is cyclic if 3a : a ::::} a. 

Termination of a doubly recursive descent parser 

The simple doubly recursive descent parser was defined by (definition (3.8), choosing 
#a= 1 in the last rule): 

parse ei 
parsex i 
parse A i 
parse Xl3 i 

{i} 
={i I x: j ~i} 
= {j 1 A ---? a, j e parse a i} 
= {k I je parseX i, k e parse 13 j}, where 13 1= e 
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Strictly speaking, this parser is not a doubly recursive descent algorithm, but can easily be 
adjusted by adding a parse e j qualifier to the third rule. In this case, the sub-problem 
re lation ==> is defined as the smallest relation over V* satisfying: 

if A-t a 
if 13 :;t: E 

+ + 
Cyclicity is obtained if 3A : A ==> A, that is, if A -t Aa, thus for left recursive grammars. 

+ * * * 
This is easily proved since A ==> A implies A ==> 131 8l32 ==> 8 ==> Y1 Cy2 ==> ... ==> A. In this 

* * case, a derivation A -t 131 8l32 -t 813 -t Y1 Cy2l3 -t ... -t Aa also exists. 

3.4.3 Termination of the D RA2 algorithm 

We recapitulate the DRA2 recursive aseent algorithm. 

DRA2 t sub 91 92 P 
where 
P ll { (a, x) I a e ll· x e t a}* 

concat {Q a x 1 a e p:+, x e t a} 
where 
Q 13 x= {(y,y) I (y,y) e next, ye l..l}* 

concat {Q y y 1 (y, y) e next, y e P:} 
where 90to = concat {91 y 13 x 1 y e ;:r, 13 e sub y} 

next { (y, z) I (S, y) e P 90to, y e combine 13 S, z e 92 y 13 x y} 
combine a 13 = { y I y e sup ll a, 13 91 y a x} 

The DRA2 algorithm becomes left recursive if either Q or P is cyclic. 
We define the relations ==>a and ==>p by: 

<13. x) ==>o (y, y) = 13 e sub y A Y e (91 y 13 ; P ; 92 a 13) x 
ll==>P11 =3aep:+,xepa:n = concat{91yax1yesuplla} 

Q is left recursive if: 

313, Y : (13, y) <13. Y) 

P is left recursive if: 

Termination of the Leermakers parser 

Using the general cyclicity conditions for the DRA2 scheme, the cyclicity conditions for 
the Leermakers parser can be determined. 
The parser becomes cyclic with regard to Q if there exists a chain 
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((8 ~ .c~. i),j) =?a <<C ~.Dy, i),j) =?a .•• =?a ((8 ~ .c~. i),j) 

In this relation, all items share the same i because the sub-problem definitîon implies this, 
and share the same j, since by cyclicity no progress is made. From this follows (since no 

• * 
progress is made by · Q) that J3 ~ ê, y ~ ë, ..• , and hence 8 ~ C ~ D ~ ... ~ 8, thus 

8 ~ 8. That is, it is cyclic for cyclic grammars only, and thus this form of cyclicity will 
not give many problems in practice. 
The other form of cyclicity, P being left recursive, is more problematic. The =?p relation 
becomes: 

(11, i) =?p (11, j) = 
11 = {A~ a:X.J) I A~ a:.X~ E ji, x~ i/j} 

Cyclicity can only occur when i = j and thus when X ~ ë. The corresponding relation =?e 

is defined by: 

* 11 {A~ a:X.J) I A~ a:.X~ E ji, x~ ë} 
+ 

Cyclicity is obtained if 11 =?t J.l for some 11 reachable from the start state. In this case, the 
+ 

grammar contains a symbol A such that A a:AJ) and a: ~ ë. The reverse holds too, that 

is if A ~ a:A~ and a: ~ E then the cycle via P occurs. This is the case since A ~ a:0 AJ)n, 
which implies that an arbitrary number of reductions deriving a:n can occur before any 
progress is made. An example grammar in which such cyclicity arises is a grammar with 
the following production rules: 

s~8 

8~A8 
8~a 

A~t: 

The state 11 {8 ~ A.8} gives rise to a cycle since P 11 i will call itself again after 
reducing A ~ E:. 

3.5 Parsers with look-ahead 

In this section we add look-ahead to the simple recursive descent and Leermakers parser. 
We investigate the conditions under which the resulting parser is deterministic. To guarantee 
that we always have a head of the input string to inspect, we add the end-of-file marker .l 
to the input string. We will never consume .l. 

3.5.1 LL(l) recursive descent 

We define the set of first symbols with regard to an element a: of V* as the smallest set 
satisfying: 
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Definition 3.61 

first E = {} 
first x~ = {x} 
first A~ concat {first a. 1 A ~ a.}* 

. 0 

concat {first ~ 1 A~ e} 
D 
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( first -symbols) 

We define the set of follower symbols with regard to an element a. of V* and a set of 
terminal symbols as: 

Definition 3.62 (foll) 

* foll a. f = first a.* concat { f 1 a. ~ E} 
D 

We define the set of follower symbols of a non-terminal as the smallest set satisfying: 

B ~ a.A~ => foll ~ (foll B) ç; foll A 

If A is a non-terminal such that A E, we assume that A ~ a.1, ... , A ~ a.k are the 
* production rules for A. If A ~ E, we assume that A ~ a.1, .•. , A ~ a.k, A ~ <Xe are 

the production rules for A, such that only the last of them derives E. If more than one 
production rule for A derives E, then the grammar is ambiguous. 
A recursive descent parser with look-ahead can bedefinedas follows, assuming that a case 
expression makes a non-deterministic choice among the open guards: 

Definition 3.63 (LL I) 

parse Ei i 
parse x i = if hd i x then (tl i) else error "x expected" i fi 

If A A E then: 

parse A i = case x e first a.1 

e first a.2 

~ parse a.1 i 
~ parse a.2 i 
~ ... 

e first a.k ~ parse a.k i 

esac 
where x : j +- i 

If A~ E then: 

otherwise ~ error "A expected" i 
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parse A i = case x E first a 1 
E first a2 

--? parse a1 i 
--? parse a2 i 

esac 
wherex:jf-i 

Finally: 

--? ... 
first ak --? parse ak i 

E foll A* first ae --? parse <Xe i 
otherwise --? error "A expected" 

parse Aa 

0 

parse a o parse A 

(Observe that restricting the result of parse to single elements insteadof sets gives a simple 
definition of parse A a.) 
When first ai and first <Xj, i :t j are disjoint and first <Xï and first a~: are disjoint and moreover 

* first ai and foll A are disjoint whenever A --? E, this parser is deterministic, since the guards 
exclude each other and the case expression becomes deterministic. 

+ 
When, moreover, A -h Aa for each nonterminal A, the parser is also terminating. These 
restrictions are exactly the LL(l) restrictions and thus the parser is deterministic for LL(l) 
grammars. 

3.5.2 LALR(l) recursive aseent 

Look-ahead can easily be added to the Leermakers parser by restricting the choices for 
P J.l i by adding conditions on x. To this end, we first de fine the LALR(l) follower set of 
an item J with regard to a state J.l, assuming J E ji, as the smallest set satisfying: 

Definition 3.64 (foll-item) 

foll J.l (A --? a.Xji) ç;; foll (goto J.l X) (A --? aX.ji) 
A--? a.Xji E ji, X--? y ~ foll ~ (foll J.l (A--? a.X~)) foll J.1 (X--? .y) 

0 

When J ~ ji, we de fine foll J.l J = {}. 
The notion of the set of first symbols of a state J.l is defined by: 

Definition 3.65 

first J.l = {x 1 x --? .x E ïi} 
0 

The non-deterministic parser with LALR(l) look-ahead is defined by: 

Definition 3.66 

(first-state) 

(LALRl-nd) 
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D 

P J.l i {(A -Hl., i) 1 (A -Ht.) e IJ.., x e foll J.l (A -Hl.)}* 
concat {Q A i 1 (A -7 .) e ji,x e foll J.l (A -7 .)} * 
concat {Q x j 1 (x -7 .x) e ji} 

where 
x :j ~i 
Q X j = {(A -7 a. X~, k) 1 (A -7 aX.~, k) e next, a * e} * 

concat {Q A k 1 (A -7 X.[:l, k) e next} 
where next = P (goto f.1 X) j 
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Assuming that the parser is made deterministic in this way, the number of results of P 
and Q amounts to at most one. Adding a very simple error recovery yields a version that 
delivers exactly one result: 

Definition 3.67 

P f.1 i= case x e foll 11 (A -7 aX.) 
e foll 11 (A -7 .) 

esac 
where 
x: j = 
Q Xj 

i 
if a :;tE 

e first f.1 
otherwise 

then (A -7 a. X[), k) 
else Q A k 
fi 

-7 (A -7 aX., i} 
-70Ai 
-7 Q x j 
-7 error "[:} expected" (A -7 a.~, i) 

, with A -7 a.[) e J.l 

where (A -7 aX.[:l, k) P (goto J.l X) j 
0 

(LALRl) 

The last definition in the where-part simultaneously defines A, a, [:l and k. This form of 
definition may be surprising for readers with no experience in the use of modem functional 
languages. 
The error recovery by the insertion of ~ in the case of an error may lead to problems 
which are discussed in section 3.6.2. The parser is deterministic if the test sets in the case 
expression for P are mutually disjoint, that is, for LALR(l) grammars. Notice that the 
LALR(l) parser is obtained by adding look-ahead after the DRA2 transformation. 

3.5.3 LR(l) recursive aseent 

The Leermakers parser can be extended to a non-deterministic LR( l) parser by adding 
follower sets to the item-based top-down parser before transformation to recursive aseent 
The recursive descent algorithm is: 

Definition 3.68 (ITDF-nd) 
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= {i I x : j +- i, x E f} 
= {i I x :i +- i} 

parse (A ~ a.) f i 
parse (x ~ .x) f i 
parse (A ~ a.X~) f i = {k 1 (X ~ :y) E Items, j E parse (X ~ :y) (foll ~ f) i, 

k E parse (A ~ aX.~) f j} 
0 

It is called for the start symbol S by: 

parse (S 1 ~ a.S) { .l} ( ro.l) 

where a ::#. E and S 1 is a new non-terminal symbol. We can rewrite this definition into the 
recursive descent form: 

t (A ~ a., f, i) 
t (X ~ .X, f, i) 
t (A ~ a.X~. f, i) 

sub (A~ a.) f i 
sub (x ~ .x) f i 
sub (A ~ a.X~) f i 

{i I x : j +- i, x E f} 
= {i I x : j +- i} 

{} 

={} 
{} 
{(X ~ .y, foll ~ f, i) 1 (X ~ .y) E Items} 

h (A ~ a.X~. f, i) (X ~ .y, i) j parse (A ~ aX.~) f j 
Applying scheme DRA 1 gives a version of the Leermakers parser with look-ahead: 

Definition 3.69 

0 

P J.l i = concat {Q (A~ a.) i 1 (A~ a., f) E p:, x E f} * 
concat {Q (x~ .x) j 1 (x~ .x, f) E P:} 

where 
x: i = i 
Q (X ~ y.o) j {(X ~ y.o, j) I y '*- e} * 

concat { Q (A ~ a.X~) k 1 (A ~ aX.~, k) E next, y E} 
where next = P (goto 1.1 X) j 

With goto defined by: 

Definition 3. 70 

goto J.l x = {(A~ aX.~, f) 1 (A~ a.X~, f) E ll} 
0 

(LRI-nd) 

(goto-2) 

Depending on the definition of state p:, this is either a LR(l) parser or not. When we define 
p: in the straightforward way it is not, since equal items may be equipped with different 
follower sets in the same state. In a LR(l) parsereach item appears only once in a state 
and the follower sets are unified for each item. This is allowed since it can be proven 
(by induction over Items) that parse J f i* parse J g i = parse J (f * g) i and since all 
problems in p: share the same string i, and i can hence be separated from the state. The 
resulting p: is the minimal set obeying: 
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ji fl * concat {(X ~ .y, f) I (A~ a. X~, f') E ji, X ~ .y E Items, 
f = concat {foll W f" I (A'~ a'.XW, f") E ji}} 

Whenever the resulting parser is deterministic we eaU the grammar LR(l). In this case, a 
single result can be obtained instead of a set of results. We assume that the set of completed 
items in ji is { (A1 ~ a1., f1 ), ... , (An ~ a 0 ., fn)} and define first as {x I (X ~ .x, f) E ji}. 
A deterministic version of the Leermakers parser thus becomes: 

Definition 3. 71 

Pfli = 
case x E f1 

E fn 

~ Q (A1 ~ at.) i 
~ ... 
~ Q (An ~ an.) i 
~ Q (X~ .X) j 

(LRl) 

e first 
otherwise ~ error "~ expected" (A ~ a. IJ, i), where (A ~ a.~, f) E fl 

0 

esac 
where 
x: j f- i 
Q (X~ y.ö) j := if 'Y:;è E 

then (X~ y.ö,j) 
else Q (A ~ a.XIJ) k 
fi 
where (A ~ aX.~, k) P (goto ll X) j 

3.5.4 The Kruseman recursive aseent parser 

The deterministic LR(l) parser that was derived in the previous section can easily be 
expressed in an imperative language as well. Both P and Q can be merged into a single 
function since the tail-recursiveness of Q can be transformed into a loop. The string i can 
become a global variabie that is modified (shortened) in the case of shift and can hence 
be removed as an argument as well as from the result. The remaining result is an item 
A ~ a.IJ. From this item, only A and the emptiness of a are used (by Q). Thus we can 
modify the result by retuming A and #a only, again in two global variables Symbol and 
pop respectively. The resulting function for a state ll then becomes: 

Definition 3. 72 

PIL 
case x e ft 

esac 

E fn 
E first 
otherwise 

~ symbol := A1 ; pop :=#at; Q 

--+ ... 
~ symbol := An: pop #an; Q 
~ symbol := x; pop := 0; i := j; Q 
--+ print "13 expected"; symbol := A; pop := #a; Q 

, where A~ a.IJ E ll 

(LRl-imp) 
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where x : j f- i 
Q = if pop :;: 0 then return fi 

case symbol of 81 ~ P goto f.l B1 

Bn ~ Pgoto 11 Bn 
esac 
pop:= pop-1;0; 

D 

When the tail-recursive local function Q is transfonned into a while-loop within the body 
of P, this is exactly the recursive aseent parser of Kruseman [Kru88]. 

3.6 Error recovery in deterministic parsers 

In this section we extend the error recovery already introduced in the previous section 
and show that this error recovery does not introduce non-tennination. The purpose of an 
error recovery strategy is to find as many syntax errors in the input text as possible. Two 
basic mechanisms are available: deletion of unexpected terminal symbols and insertion of 
symbols that are expected but not encountered. It is the art of a good error recovery strategy 
to apply these two mechanisms in such a way that deletion of symbols does not extend 
beyond a point where the parse may be continued. We make use of an extra parameter, a 
set of terminal symbols, that represents the set of 'useful' symbols, i.e. symbols for which 
a correct parse may be resumed. 

3.6.1 LL(l) recursive descent 

We can add deletion and synchronization to the deterministic LL(l) recursive descent parser. 
We must synchronize before making a choice between production rules and before recog
nizing a terminal symbol. A follower set is passed as an extra parameter to prevent the 
deletion of symbols that can be recognized by the continuation of earlier calls. 

Definition 3. 73 (LLl-E) 

parse e f i i 
parse x f i = if hd i' = x then tl i' else error "x expected" i' fi 

where i' = delete (f* {x}) i 
parse A f i = case x E first a.1 ~ parse a.1 f i' 

~ ... 
E fîrst a.k ~ parse llk f i' 

* A~e ~ parse Ut f i' 
otherwise ~ error "A expected" i' 

esac 
where i' = delete (f * first A) i 

X= hd i' 
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parse (Aa.) f i parse a. f (parse A f' i) 
where f' = f*concat {first X 1 Xe a.} 

D 

With delete defined by: 

Definition 3.74 

delete f E = E 

(delete) 

delete f x : j if x e f then x : j else delete f j fi 
D 

The parser is entered by a call parse S {1.} (rol.), where l. is an end-of-file marker added 
to the end of the input string. 
The insertion of symbols does not introduce non-termination. 
Proof 

Assume that the following production rules are given 

S' ~ Sl. 
S ~ a.1A1f31 
Ai-1 ~ a.iAif3i 

These rules may give rise to a sequence of recursive calls of parse with subsequent 
arguments: 

CJ.nAnf3n 
Assume without loss of generality that symbol An is inserted by a call parse An f i, 
which means that the latter bas retumed with an error "An expected" i expression. 
We show that necessarily progress is made. 

De fine 

13o={l.} 
i' = dele te (f * first An) i 

By induction to n we have 

f = concat {first X 1 0 s; j s; n, Xe l3i} 

Since An was inserted, we have x~ first An, An À E and hence 
3k: 0 s; k s; n :x e concat {first X 1 Xe 13k}. 

Choose this k maximaL Then x~ concat {first X 1 k < j s; n, Xe [3j}- By induction 
(to k) it follows that f3n ... IJk-1 is inserted and that subsequently parse 13k i' is called. 
Since x e concat {first X I XE 13k}, it follows (induction to #f3k) that x is recognized 
and hence progress is made. 
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D 

3.6.2 LR(l) and LALR(l) recursive aseent 

In this section we show how a solution that is to a certain extent similar to the LL(l) 
case with error recovery can be designed for LR (I) and LALR(l ). In this design we face 
a complication. In the LL( 1) case, when a symbol is inserted, control is returned to a 
previous call, thereby synchronizing on the follower set f. The choice of where parsing is 
resumed is left completely to this previous call. 
The problem with bottorn-up parsing is that the callee, upon return, chooses an item that 
is subsequently used by the caller in deciding which state to enter next. But in the case 
of an error, the callee might not have enough information to decide which item to choose. 
In this case, it does not even know which is the best callee to return to, a decision that is 
normally prescribed by the length of a in the return item. 
The solution to the problem lies in preventing a return to a callee at all, which can be 
achieved by using a continuation-based parser. In such a parser, an item that bas been 
recognized is not retumed, but passed as an argument to a continuation function. In the 
case of an error, when no item is recognized, a special error continuation is called. Such an 
error continuation is capable of continuing parsing with a next terminal symbol in a given 
follower set, just as in the LL(l) case. We only need to design the (error-continuation, 
follower-set) pair in a consistent way. We use the Leermakers parser with continuations 
from section 3.3.11 as our starting point. We assume that the grammar is such that no 
cycles occur in the case without error recovery and we prove that our error recovery is also 
cycle free, with this assumption. 
We define the directors of a state as the following set: 

Definition 3.75 ( def:dir-state) 

dir!! = concat {first 13 1 A -7 a.l3 e ïi} 
D 

This is the set of symbols that are 'of use' for P J!. Observe that we did not include the 
followers of completed items (A -7 a.) in this set. This is because, in the LR(l) case, 
it can be proven that this set is contained in the follower set F that is passed as an extra 
argument to P, uniled with the directors. In the LALR(l) case, withits more clumsy error 
detection than in the LR(l) case, the set F can be used to restriet dynamically the follower 
sets, which are too large, to those symbols that are of real use to the caller to which a 
reduction is made. 
By using the proper definition of foll we can distinguish between the LR(l) and the LALR(l) 
case. The LALR(l) definition of foll has been given above. In the LR(l) case, elements 
of!! are tuples (A -7 a.XI3, f). By defining foll~-t J concat {f 1 (J, f) E ji} we can define 
ji' = {J I (J, f) E ïi} and use the simplified !!' instead of J!. The expression foll !!' J can 
still be used to denote the LR( 1) follower set of J in I!· Observe that we can do this since 
an LR(l) parser groups all follower sets for the same item together. The advatage of this 
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modiikation is that the LR(l) and LALR(l) parsing algorithms become identical. The only 
difference lies in the definition of foll. 

We now present the LR(l) or LALR(l) parser with error recovery by subsequently present
ing and discussing different parts of it. After that, we recapitulate the complete function. 
The function P operates on a state Jl, a set of synchronization symbols F, a normal and 
an error continuation c and e and a string i. First it deletes symbols until a suffix string 
i' x : i" is obtained such that either x E F or x E dir J.i. In the latter case, Q can be 
called and in the former case, x is either a symbol for which a rednetion can take place, 
i.e. 3A--:) a.. E ji: x E foll Jl (A--:) a..), or x is a symbol for which the error continuation 
can make progress. 

P Jl c e F i = case x e foll Jl (A--:) a.X.) --:) c (A--:) a.X.) i' 
e foll Jl (A --:) .) --:) Q A i' 
e first Jl --:) Q x i" 
otherwise --:) e i' 

esac 
where 
i' = delete (F -t+dir Jl) i 
x : i" = i' 

We now turn to the question of how the follower set F should be extended with a set F' 
in the case of a recursive call. Given a call Q X j, the parsing can he resumed with any 
terminal symbol that can follow X in Jl, i.e. 

F' = concat {first ö 1 33' : A--:) a..yo e ji, y ~L Xö'} 
In the case of an error, the sequence ö' is inserted and parsing is resumed in state a with 
item A --:) a:y.ö. 
This state is defined by goto Jl y with: 

goto Jl e = Jl 
goto Jl (Xa.) = goto (goto Jl X) a 

The easiest way to incorporate this generalization of goto in our algorithm is by generalizing 
Q as well. lts fust argument is changed from a symbol onto a sequence of symbols. 

Q ~ j = P (goto Jl ~) c' e' (F * F') j 
The continuation c' is the straightforward generalization of the one in section 3.3.11. 

c' (A --:) a.~.y) k = if a:;: e then c (A --:) a..~y) k else Q A k fi 
The error continuation e' should be consistent with F'. For each element of F' it should 
be possible to resume parsing. We use the notation a I q for denoting hd {a 1 q}. 

e' (y: I) = * if y E F' --:) insart o' (0 y yl) I A --:) a..yö E ji, 'Y =>L ~01 ' y E first ö 
otherwise --:) e (y : I) 

fi 

insart ö a = if ö ~ e then a else error "o expected" a fi 
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It simply finds a proper item in ji for which it can continue. Such an item exists when 
y E F'. 
When we put the pieces of our algorithm together, we obtain the following result. 

Definition 3.76 (CIDRA2-E) 

D 

P ll c e F i = case x E foll !l (A ~ aX.) ~ c (A~ aX.) i' 
E foll !l (A ~ .) ~ 0 A i' 
E first ll ~ 0 x i" 
otherwise ~ei' 

esac 
where 
i' delete (F -H-dir l.l) i 
xi" i' 
Q ~ j P (goto ll f)) c' e' (F * F') j 

* where F' concat {first S 1 3S': A~ a:yS E ji, y ~L f)S'} 
c' (A ~ a~.y) k if a -:;: E then c (A ~ a.f)y) k else Q A k fi 
e' (y : I) = if y E F' ~ insert 3' (0 y yl) 

fi 

I A~ a.yo E ji, Y~L f)o', y E first 0 
otherwise ~ e (y : I) 

With the functions insert and goto defined by: 

Definition 3. 77 (insert) 

insert ö x = if o ~ E then x else error "o expected" x fi 
D 

Definition 3. 78 

goto ll E = !l 

(goto-3) 

goto ll (Xa) = goto (goto ll X) a 
D 

We now prove the termination of this algorithm. 
Proof 

Assume that the version without error recovery terminates. Since deletion does not 
introduce cycles, non-termination can only be caused by insertion. 

When an insertion takes place, parsing continnes in a state 11 with the next input 
symbol y E TJ. This state could also be reached for a correct input, with the same 
arguments. In that case, no error recovery takes place, and hence the algorithm makes 
progress by consuming y in the correct case. Since only the first symbol of the input is 
inspected, this symbol y is also consumed in the case with error recovery and progress 
is made. 
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0 

3.6.3 Re-entering the parser 

The synchronization mechanism implemented by the function delete in the error recovery 
mechanisms of the deterministic parsers is rather crude: it skips symbols until a proper 
follower symbol is encountered. This may imply that e.g. in a Pascal parser, upon encoun
tering an error in a statement sequence in a procedure, all statements are skipped until the 
end symbol of the procedure is encountered. This is probiernatie for two reasons. First, 
it is a pity that the remaining statements of the procedure are not analyzed. Second, the 
deletion might hit upon an end symbol not corresponding to the end of the procedure, but 
e.g. to a local compound statement. Parsing resumes with the attempted recognition of 
more procedure and function declarations, at a point within the procedure body. 
Both probierus are solved by allowing the deletion mechanism to call the parser recursively 
whenever possible. E.g. upon encountering an i f symbol, the deletion function can call 
the parser recursively for the parsing of an if-statement, or even a statement sequence. 
The condition for re-entering the parser upon encountering a symbol x is that there exists a 
'unique state' of the parser that handles the symbol x. The conditions for the uniqueness of a 
state are rather subtle, however, as the example concerning the if-statement versus statement 
sequence indicates. The former choice is not the best one, since the latter (statement 
sequence) encloses the former (if-statement). 
We derive conditions for the LL(l) and LALR(l) deterministic parsers that define the 
recursive relation between deletion and parsing. 

LL(l) 

We start with the definition of the set of states (elements of V*) that accept a given terminal 
symbol x: 

states x = {~ 1 A~ a~, x e first ~} 

Next we define an ordering relation upon the elements of this set: 

a2~ = 3ye V*:a~~î' 
The unique maxima of states x, if existent, are now the states of interest: 

max_states x = {a 1 a e states x, ~ e states x, ~ #= a, a 2 ~. ~ d! a} 
unique a x = max_states x {a} 

The de letion function for the LL( 1) parser can now be modilied as follows: 

delete f xi = if x e f ~ xi 
3a e V* : unique a x ~ delete f (parse a f xi) 
otherwise ~ delete f i 

fi 
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LALR(l) 

The technique used for the LALR(l) is similar to that for the LL(l) parser, but now states 
are elements of Set(ltems). We have two options for the states for x: either states 11 with 
x E first 11 or the states 11 with 3)1 : 11 = goto 11 x. We assume that only states reachable 
from the start states are taken into account in these and the following definitions. When 
the farmer definition gives a unique state fora certain symbol x, so does the latter, but not 
vice versa, so we prefer the latter. 

states x = {goto 11 x 1 11 E reachable, x E first 11} 

The corresponding ordering relation is the following: 

)lo ~ lln = 3X1 ... Xn E V*, )11, ... , lln-1 : 

lli = goto lli-1 Xi, 1 :S: i :S: n,X1 ... Xn ~ E 

This gives as the set of maximal states: 

max_states x = {ll 1 11 E states x, 11 E states x, ll* TJ, 11 ~ TJ, 11 ~ 11} 
unique 11 x = max_states x = {ll} 

The deletion function for the LALR( 1) parser can now be modified. It passes the contin
uation c as both a normal and error continuation to P. This continuation returns a j such 

* that 3(A ~<X.~) E )l : ~ ~ (xi)/j. The fact that x E dir 11 guarantees that j -::f:. xi and hence 
that the deletion function terminates. 

delete f xi = if x E f ~ xi 

fi 
where c J j = j 

3)1 : unique 11 x ~ delete f (P 11 c c (f * dir )l) i) 
~ delete f i 

Observe that the deterministic bottorn-up parser guarantees that x E f, so no recursive call 
of delete is necessary in this case. 
In a Pascal recursive descent parser, the following terminal symbols correspond to unique 
states and allow resumption of parsing when encountered during deletion: 
program, const, type, file, array, record, set, for, to, downto, goto, label, if, then, else, 
repeat, until, while, with, not and a relational operator. 

3.7 Memoization of non-deterministic parsers 

Non-deterministic parsers are ideal algorithms for memoization. They run in exponential 
time, but the total number of sub-problems is cubic in the length of the input string. 
Cubic parsing algorithms have been well known for a long time [Ear70, You67, Kas65, 
Tom86] and they all rely on memoization. The traditional presentations of these algorithms 
do not separate the memoization from the function that is memoized: they present an 
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algorithm where implementation details of the memo table manipulation are intertwined 
with operations betonging to the algorithm that is used to solved the problem. E.g. a 
considerable part of [Tom86] is devoted in the design of a memo table structure, called a 
graph-structured stack, without observing that memoization takes place. In [Nor91], the 
Earley parser is presented as a memoized bottorn-up parser. 
In this section, we show that our parsers can be memoized as well, resulting in variants of 
the Earley and Tomita algorithm, with cubic time behavior. 

3.7.1 Recursive descent memoization 

We start with a simple recursive descent parser obeying the specification: 

Specification 3. 79 . . 
parse a i = a ~ 1 

D 

Observe that parse is just another notation for the ~ relation. 
We will make use of the function splittîngs obeying the specification: 

splittings i = { (j, k) 1 3j, k: j * k = i} 

We can now trivially implcment parse as (leaving the proof to the reader): 

lmplementation 3.80 (of specification (3.79)) 

i =€ 

i x 
= v/{parseaiiA~a} 

(spec:MTD-nd) 

(MTD-nd) 

parse e 
parsex 
parse A 
parse a~ v/{parse a jA parse ~ k 1 (j, k) E splittings i}, a,~-:;:. e 

D 

Assuming that this function is memoized, there are at most O(n2 ) different eaUs. The first 
three rules take constant time, the last one at most O(n) time, giving as a total O(n3) time for 
the whole parser. It is as simpte as that. Of course, the implementation of the memoization 
is something that has to be designed as well, but that problem should be separated from 
the algorithm. 
This simple parser does not terminate for left-recursive grammars, as our previous top-down 
parsers do, so we have a look at memoized bottorn-up parsers. First, we start with a variant 
of our item-based recursive descent parser: 

Definition 3.81 

parse (A ~ a.) 
parse (x ~ .x) 
parse (A ~ a.X~) 

D 

= i=e 
= Î=X 

= v/ {parse (X ~ .y) j A parse (A ~ aX.~) k 
1 X ~ .y E Items, (j, k) splittings i} 

(MITD-nd) 
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3.7.2 Single recursive aseent memoization 

We can apply the recursive aseent scheme RA 1 to the parser of the previous section ( actually 
we can not, since the function does not return a set, but by representing the empty set by 
false and an arbitrary non-empty set by true the scheme is applicable again). 

t (A --Ht.) = i e 
t (X ---7 .X) = i = X 
t (A ---7 a..X~) false 
sub (A ---7 a..) {} 
sub (x ---7 .x) {} 
sub (A ---7 a.. X~) i {(X ---7 :y, j) 1 X ---7 :y E Items, d, k) E splittings i} 
h (A ---7 a..X~, i) (X ---7 .y,j) b = b 1\ parse (A ---7 a.X.~) kwhere k = j\i 

This gives the following recursive aseent (RAl) algorithm, where we have not declared q 
localto p. 

Definition 3.82 

0 

p J i = v/ { q J (A ---7 a..) i I A ---7 a.. E J} v 

v/{q J (X ---7 .X) i I X: j ~i, x ---7 .XE J} 
q J (X ---7 y.ö) i (X ---7 y.ö = J 1\ j = e)v 

v/ {p (A ---7 a.X.~) k 1\ q J (A ---7 a..X~) m 
1 y E 1\ A ---7 a..X~ E J 1\ (k, m) e splittings j} 

(MIRAI-nd) 

There are at most O(n2) different invocations of p, each taking unit time and at most O(n2) 

different invocations of q. Each callof q takes at most O(n) time, resulling in a total time 
complexity of O(n3 ) again. When we would have declared q localto p, a time complexity 
of O(n4) would have been obtained. This is caused by the fact that q does not depend on 
i, but each local q would have its own memo table, for each i separately. Here we see 
that it can be advantageous to apply so-called 'À-lifting' to a memo function, raising it to 

a global level and increasing the size of its memo table, thereby allowing for more sharing 
of results of this function. 
Of course, we can apply scheme RA2 as well to our item-based parser. The result of this 
scheme is: 

Definition 3.83 

pJi=J=A---70../\Î €V 

v/{q JA i I A ---7. E T}v 

v/{qJxj lx:j~i, X--7.xeT} 

q J X j v/{p (A ---7 a.X.~) j I A ---7 a..X~ E J, a.*- e}v 

(MIRA2-nd) 

v!{p (A ---7 X.~) k 1\ q JAm 1 A ---7 .X~ e J 1\ (k, m) e splittings j} 
0 

Again, this parser has cubic time complexity. 



3.7. MEMO/ZATION OF NON-DETERMINISTIC PARSERS 91 

3.7.3 Doubly recursive aseent memoization 

Doubly recursive aseent memoization is more complex than recursive descent and single 
recursive aseent memoization. We have two options for the specification: 

Specification 3.84 

p J.l i = {A ---Hl.~ I A ---Hl.~ E J.l, ~~i} 
D 

and 

Specification 3.85 

P J.l (A~ a.~) i 
D 

(spec:MIDRA2-nd) 

(spec:MIDRA2-nd-2) 

It is found that the second version degrades to a one item parser again, like the RAl and 
RA2 parsers, insteadof a parser that operates on a set J.l of items, like the DRAl and DRA2 
parsers, so we explore the first specification. A straightforward implementation, based on 
the Leermakers parser, yields: 

Implementation 3.86 (of specification (3.84)) (MIDRA2-nd) 

P J.l i = {A ~ a. 1 A ~ a. E J.l, i = e} * 
concat { Q J.l A i 1 A ~ . E JI} * 
concat {Q J.l x j 1 x: j f- i, x~ .x E JI} 

Q J.l X i {A ~ a. X~ 1 A ~ aX.~ E P (goto J.l X) i, a * e} * 
concat {Q J.l A k 1 d, k) E splittings i, A~ X.~ E P (goto J.l X) j} 

D 

This parser can be improved further by passing the requirement on the length of a as an 
argument to P, which then obeys the specification: 

Specification 3.87 (spec:MIDRA-nd) 

P J.l m i = {A ~ a.~ 1 A ~ a.~ E J.l, #a= m, ~ ~ i} 
D 

and which is implemented by: 

Implementation 3.88 (of specification (3.87)) (MIDRA-nd) 

P J.l m i = {A ~ a. 1 A ~ a. E J.l, i = e, #a = m} * 
concat { Q J.l A m i 1 A ~ . E JI} * 
concat {Q J.l x m j 1 x: j f- i, x~ .x E JI} 

Q J.l X m i {A ~ a. X~ 1 A ~ aX.~ E P (goto J.l X) (m + 1) i}* 
concat {Q J.l Am k 1 d, k) E splittings i, A~ X.~ E P (goto J.l X) 1 j} 
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0 

The complexity of this algorithm is dominated by the complexity of the second term of Q. 
It has O(n2 ) invocations, takes O(n) recursive calls, each taking linear time by memoization, 
and each delivering a set of a size dependent only on the size of the grammar. The union 
of the first and second term takes thus 0(1) time, resulting in (again of course) a O(n3) 

time complexity. 

3.8 A hierarchy of parsing algorithms 

In this chapter we have derived a large number of parsing algorithms, but the techniques 
applied in doing so allow for the denvation of far more parsers. The parsers we have derived 
are depicted in the following diagram. The top-down parser (3.8) and the item-based one 
(3.31) form the basis of all these algorithms. 

The main techniques applied to these parsers are recursive descent to aseent transformation 
(in the four versions (D)RA(l-2)), continuations for back-tracking, actding look-ahead, 
actding error recovery and removing non-determinism. These techniques can be applied to 
many more parsers than we have shown here. The use of continuations can be applied 
to all non-deterministic parsers, not all versions of aseent parsing have been investigated 
and the use of look-ahead and error recovery has been investigated for the top-down and 
Leermakers parsers only. Most transformations we applied contain intermediale expressions 
which represent also valid parsers, thus giving rise to even more versions. 
The parsing algorithm is doubly recursive in its nature and the descent-ascent transfor
mations remove only one of the recursive calls, while the other remains explicit in the 
algorithm. Since many of the algorithms we presented have the same specification, but 
a different implementation, this remaining call can invoke any of the different versions, 
provided that it obeys the correct implementation. Since this new call cao in turn make 
a similar choice, the total amount of possible parsers does not only depend on the gram
mar, but also on the size of the input string. For example, a eertaio parser might call a 
descent version for all its even invocations and an aseent version for all odd invocations. 
Of course, it is more sensible to let this choice depend on properties of the grammar, e.g. 
apply top-down parsing to LL(l) states, bottorn-up parsing for non-LL(l), but LALR(l) 
and continuation-based for all other states. 
Also parsers for single items and states (set of items) can be combined by observing that 
a set of items can be attacked by unifying the results for the individual items. 

P !l i = concal {(A --? a.~, j) 1 (A --? a.~) E 11, j E parse (A --? a.~) i} 
parse (A--? a.f3) i = P {A--? a.~} i 

Even item-based and production-based parsers can be combined, by using the identities: 

parse (A--? a.f3) i = parse f3 i 
parse A i = concal {parse (A --? .a) i 1 A --? a} 
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Production-based and continuation-based parsing can be combined by using: 

parse a i 
cant a c i 

cant a single i 
cancat {è j 1 je parse a i} 

Thus, virtually all combinations are possible. lt would be interesting to investigate what 
combination yields the best practical parser for a given grammar, e.g. in the sense that 
the parser is as deterministic as possible (e.g. for a maximum number of states) or is 
as simpte as possible (e.g. has a minimal number of states, or as many LL(l) states as 
possible). This field has notbeen explored in this thesis however, but the thesis presents 
ample opportunity to do so with all the identities it presents. lt illuslrates the power of 
functional programming in general and program transformations in particular. 

3.9 The Elegant parsers 

Of the many parsers presenled in this seclion, three have been implemenled in the Ele
gant syslem; all are implemenled as imperalive algorithms, which are generaled in the C 
programming language. In all cases, the first symbol of the remainder of lhe input string is 
available in a global variabie sym and the nexl symbol is obtained by calling the function 
nextsym. 

3.9.1 LL(l) recursive descent 

The default Elegant parser is an LL(l) recursive descent parser, derived from (3.73). 
For each nonterminal A with production rules nfp1 •• ·Pn• a function Parse.A is generated 
which eaUs one of the function parse_pi, depending on the first symbol of the input string. 
The function parsep. which is generated for a production rule p Xo ~ X1 ... Xn, has the 
following structure: 

proc parse_p (f : fallset); 
begin parse_)(1 (f u fall (X1 ... Xn) t:); 

parse_)(n(f); 
end; 

The follower sets are computed statically and are represented by a number of bitsets, as 
large as the number of non-terminals in the grammar. For each terminal symbol x a function 
parse__x is generated: 

proc parse__x (f : follset); 
begin delete(f); 

end; 

if sym ==x 
then nextsym(); 
else error("x expected"); 
fi 
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3.9.2 LALR(l) recursive aseent 

On demand, by using a switch, an Elegant user can generate an LALR(l) recursive 
aseent parser. This parser is derived from (3.72), but is an LALR(l) instead of an LR(l) 
parser. For each state Jl a function parse_J..L is generated. Since an LALR(l) parser can 
have a large number of states, the simpte ones are omitted and their eaUs have been replaced 
by in-line code. 
The error recovery is similar to the error recovery for LL(l) parsers: follower sets are added 
as parameters to the parse functions and are used for synchronization. This technique has 
one complication, which is the reason why we have presented error recovery with recursive 
aseent continuation parsing. This complication is that, upon encounterlog an error and 
performing an insertion, a parsing function can not decide which item to return, and hence 
how far to return. Simply returning until a state is reached which can handle the current 
symbol is not a solution either, since this state does not know which item to insert. Solving 
this problem would require a non-trivia! administration, whose maintenance would mean a 
considerable overhead, even in the case when no errors occur at alL 
In the Elegant LALR(l) parser an item is inserted by the state encountering an error. 
This item is an arbitrary item from that state. Since this insertion can be considered as 
the actdition of an E-rule to the grammar, it might introduce non-termination of the parser. 
Indeed, for left-recursive rules, like A --? Aa, the insertion of a leads to a reduction from 
state A --? A.a to state A --? .Aa, which calls the state A --? A.a again, without making 
any progress. Such potential cycles are detected by the parser generatorand extra code for 
detecting these cycles is inserted in the functions for such states. 

3.9.3 Back-tracking recursive descent 

The third and most powerful, and hence the most expensive, parser is a continuations back
tracking parser. The back-tracking is not used for non-deterministic parsing but for the 
deterministic parsing of non LL(l) and LALR(l) grammars. For production rules which 
are LL(l), the normal LL(l) parser is used, but when a non-LL(l) production rule is 
encountered, the back-tracking parser is called. This parser returns the parse-function for 
the selected production rule and the LL(l) parser continues by calling this parse-function. 
No error recovery is performed by the back-tracking parser. When no production rule 
is applicable, this might be caused by a wrong choice earlier in the parse, which should 
be corrected by back-tracking. But it might equally well be an error, which should be 
detected. This problem is solved by selecting the production rule which is able to parse 
the maximum amount of terminal symbols, when no correct one is available. Thus a best 
parse is constructed, which is either correct or, if no correct one exists, maximaL The 
corresponding parse-function is returned to the LL(l) parser which takes care of the error 
recovery. The other choices made by the back-tracking parser, are stored in a list. When 
the LL(l) parser encounters another non-LL(l) procedure, the back-tracking parser first 
consults this list in order to detect whether this choice has already been made by a previous 
invocation. If so, it returns the parse-function, if not, it starts back-tracking. 
The interface to the scanner becomes more complicated, since terminal symbols must be 
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preserved. Hence a list of terminal symbols is maintained and the function nextsym either 
picks one from this list or, when the list is empty, constrocts a new one by calling the 
scanner. 
The implementation of back-tracking is taken from Koster [Kos74]. A continuation is 
represented by a pair (p, C) where p is a parsing function from the continuations parser 
and c is the continuation of p. These pairs can be allocated on the recursion stack, rather 
than on the heap, since their life-time corresponds to the life-time of the corresponding 
stack-frames. The parsing function for the production rule p X0 ~ X1 ... Xn is thus 
implemented by ( omitting the details concemed with finding the maximum parse in the 
case of errors): 

proc parse_p (cn+1 : Acont); 
var c2, ... Cn : cont; 
begin c2 .p := parse_)(2; 

c2.c := address(c3); 

Cn·P parse_Xn; 
Cn.C := Cn+1; 
parse_X1 (address(c2)); 

end; 
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Chapter 4 

Attribute grammars as functional 
programs 

4.1 Introduetion 

Traditionally, the formalization of attribute grammars has not been trivial. Especially 
the distinction between attributes and attribute values, or the absence of that distinction 
whre it should have been made, has resulted in involved formalizations, like the ones in 
[Knu68, Knu71, DJL88, Kas80, Eng84, RS82]. 
In this chapter we show how attributes can be added to a context free grammar in a simple 
way. The idea is not to associate all kinds of attributes, semantic rules, semantic conditions 
and semantic functions with a production rule. Instead, we can associate just a single 
function with a production rule. We call such a function a rule function. This rule function 
is a higher order function. When supplied with appropriate function valued arguments, it 
delivers a new function that maps inherited attributes onto synthesized attributes. This new 
function is called an attribute function. The functions that are given as arguments to the 
rule function are just the attribute functions that correspond to the symbols of the right-hand 
side of the production rule. 
In the previous chapter, we have defined a parser as a function on an input string which 
is dependent on a context-free grammar. In this chapter, we define an attributing parser 
as a function on an attribute grammar and an input string. For context-free parsers, the 
explicit construction of a syntax tree was shown to be unnecessary. This happens to be the 
case for attributing parsers as well. An attributing parser can be described elegantly as a 
function that composes rule functions to form attribute functions. Such a description does 
not need to manipulate attributes at all: it merely composes functions over attributes. We 
nevertheless keep the name 'attribute grammars', in order to link up with a long-standing 
nomendature and tradition. 
A similar approach to the use of attribute grammars as functional programs can be found in 
[Joh87]. Johnsson presents a way to implement attributed parsers in a functionallanguage, 
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using a single function-valued synthesized attribute which is equivalent to our attribute 
functions. Where Johnsson describes a way to imptement an attribute in this way, rewriting 
an arbitrary attribute grammar into a one with function-valued synthesized attributes, we 
defzne and attribute in this way. This has the advantage that an arbitrary parser can be used 
to parse the input string and manipulate the rule and attribute function, where the functions 
in [Joh87] are (slightly) different for each different parser. 
After defining attributing parsers and having given an example, we restriet the class of 
functions that we allow as rule functions. This restrietion allows us to perform the static 
cyclicity check of [Knu68, Knu71] on an attribute grammar. Moreover, when combined 
with recursive descent LL(l) parsing, it allows for an efficient implementation of attribute 
grammars using lazy evaluation. 
In [Joh87] the possibility to use laziness to enlarge the class of non-eireular attribute gram
mars, which is the most general class described so far, is discussed. Here we show that 
the class of attribute grammars that is implementable with the technique of rule and at
tribute functions is indeed more general than the non-eireular attribute grammars. This 
more general class is obtained by taking the non-strictness of functions used in defining 
attributes into account. We call our more general class pseudo circular attribute grammars. 
Elegant supports this more general class. 
For our more general class of attribute grammars, a standard attribution scheme can be de
veloped that is to a large extent independent of the programming language modeled by the 
attribute grammar. The scheme prescribes how to create a data structure that is an abstract 
representation of the input text and how to relate applied occurrences of symbols (identi
fiers, operators, etc.) to their defining occurrences. Due to this, attribute-grammar writers 
can follow this standard scheme instead of applying ad-hoc techniques in circumventing 
cyclicities caused by a too restricted attribute evaluation mechanism. 
The standard attribution scheme, in its turn, allows for an efficient implementation of a 
symbol-table which is based on side-effects. The scheme guarantees that these sicte-effects 
are semantically transparent, so that one need not be concerned about them when writing 
an attribute grammar in a declarative style, where the order of attribute evaluation is not 
under the control of the programmer. 

4.2 Attribute grammars 

In this section we define the notions of an attribute grammar and the semantics of an 
input string with respect to an attribute grammar. The definition we give bere is a non
standard one. Traditionally, attribute grammars are defined by associating sets of inherited 
and synthesized attributes with production rules and by actding so-called semantic rules to 
define attributes in terms of each other. As an example of such a style, see e.g. [Knu68, 
Knu7l, DJL88]. Here we will not be concemed with individual attributes. We associate a 
function with a production rule that maps inherited onto synthesized attributes. Attributes 
are just parameters and results of such functions, but we need not consicter them at all. It 
suffices to compose functions into new ones. 
Thus, an attribute grammar can be defined as an extension of a context-free grammar, by 
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adding so-called rule functions to each of the production rul es. A rule function is a higher 
order function, that takes as its arguments a number of attribute functions (corresponding to 
the symbols of the right-hand side of the production rule) and returns a function, which is 
the attribute function for the left-hand si de. An attribute function is related to a denvation 
for a grammar symbol (terminal or non-terminal). lt maps its argument, called an in
attribute onto a pair consisting of a boolean value, the context condition and a value called 
the out-attribute. 
A parser for a context-free grammar can be extended to an attributing parser by letting it 
compose attribute functions out of rule functions. 
Definition 4.1 (def:ag) 

0 

An attribute grammar AG is an extension of a context-free grammar. It is defined as 
a tuple (VT, VN,P,S,D,FT), where 

• VT is a set of terminal symbols. 

• VN is a set of non-terminal symbols, VT n VN {}. 

• V = V7 u VN is thesetof all symbols. 

• D is the domain (set) of attribute values. D usually is a many sorted set, 
containing basic attribute values, as well as tuples of attribute values in order to 
group them. In particular, the empty tuple () is an element of D. 

• F ç;;, D H Bool x D is the set of attribute functions. 
The argument value of an element of F is called the in-attribute. The boolean 
result value is called the context condition. The other result value is called the 
out-attribute. 

• FT :: V T H ( { ()} H { true} x D) is the terminal function. 
It maps a terminal symbol onto an attribute function, called the terminal attribute 
function. For terminal symbol x, we denote fx = FT(X). Observe that fx E F. 

• FR ç;;, F* HF is the set of rule-functions. 

• P ç;;, V N x V* x FR is the set of production rules. 
If p =(A, a, fp) E P, then fp E (F#a HF). 
If (A, a, f1) E P and (A, a, f2) E P then f1 f2. 
When (A, a, fp) E P, we often write fA~a for fp and write A -+ a to state that 
3f : (A, a, f) E P. 

• S E V N is the start symbol. 

With each attribute grammar AG an underlying CFG G can be associated by teaving out 
the details about attributes, rule functions and attribute functions. 
For an attribute grammar the concept of a derivation is defined as follows: 
Definition 4.2 (def:ag-derives) 

With respect to an attribute grammar AG = (V r, V N, P, S, D, Fr), we de fine the re lation 
~ (derives) on (V* xF*) x (V* xF*) by: 
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(a.A~, fHg) ~ (a.î13. fhg) =(A, y, fA--.y) E P, (H = fA--.y h)A(Ity= #h)A(#a. = #f)A(#~ = 
• 

#g). The relation ~ denotes the reflexive and transitive ciosure of~ over (V* xF*). 
We restriet ourselves to only those pairs (a., f) with #a= #f. 

D 

Let E i= {fx I x E i}, i.e. the sequence of terminal attribute functions corresponding to i, 
* * then we abbreviate (a, f) ~(i, Ei) by (a, f) ~i, with iE v;. 

Definition 4.3 (def:ag-lang) 

(Vr, VN,P,S,D,Fr) is defined as: 

D 

The language L 51q of an attribute grammar AG 

LAc = { m I 3f E F, cr E D : (S, f) _..:, m, (true, cr) = f 0} 

The semantics of an input string m E V; is defined by: 

Sro = { cr I 3f E F, cr E D : (S, f) _..:, m, (true, cr) = f 0} 

An attributing parser is an algorithm that determines, when given an attribute grammar 
AG and an input string m, the semantics of m. 

4.2.1 Example 

We illustrate our definition of an attribute grammar by a simple example, which is a classical 
one for attribute grammars, see e.g [Knu68]. This example describes a grammar that maps a 
string representing a binary fractional number onto the value of that fractional number. For 
example, the string ".1 011" is mapped onto the number 0.6875 (in decimal representation). 
The attribute grammar for this example passes a position i down to each digit d, such that 
d contributes to the final value by d.2-i 
The attribute grammar is given by the following definitions: 

VT {'.', '0', '1'} 
VN {number, frac, digit} 
S = number 
D Ru{()} 
P {(number, {'.', frac}, f1) 

(frac, { digit }, f2) 

(frac, { digit, frac }, f3) 

(digit, {'0' }, f4) 
(digit, {'1'}, f5)} 

f," () = (true, ()) 
f,o, () = (true, 0) 
f,1, 0 (true, 1) 
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t, 91 92 () = (c, A c2, v2) 
where (c1, v,) 91 0 

(C2,v2) 92 1 
f2 91 i = (c1, v,) 

where (c,, v,) 91 i 
f3 91 92 i (c, A c2, v, + v2) 

where (c1, v1) 91 i 
(c2, v2) 92 (i+ 1) 

f4 91 i (c1, v1.2-i) 
where (c1, v,) 91 () 

fs 91 i (c1, v1.2-i) 
where (c1, v1) = 91 () 

This simpte example can be extended by adding the context condition that the number of 
digits may be at most 10, which requires modiikation of f4 and fs: 

f4 91 i = (c1 Ai:::; 10, v1.2-i) 
where(c1,v1) 91 0 

4.3 Attributing parsers 

4.3.1 A recursive descent attributing parser 

In this section we present a simple functional attributed recursive descent parser. It obeys 
the specification: 

Specification 4.4 

parse :: v· x v; H Set(F* x V i) 

* parse a i = {(f,j) 1 3f,j : (a, f) ~ i/j} 
0 

lt is implemented recursively as follows: 

• parse ei 
= (specification) 

* {(f,j) 1 3f,j : (e, f) ~ ilj} 
• ( definition of ~) 

* { (f,j) 1 3f,j : i jA (e, f) ~ (ilj, {})} 

= ( definition of ~ and substitute i for j and {} for f) 
{({},i)} 

(spec:RD-ag) 
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• parsex i 
= (specification, observe that we abbreviate {x} by x) 

* { (f, j) I 3f, j : (X, f) -7 i/j} 
* (definition of 

{(fx.D I x: i~ i} 
• parse A i 

= (specification) 
* { (f, j) I 3f, j : (A, f) -7 i/i} 

* ( definition of 

{ (f, j) I 3f, fa, j : (A, f) -7 (a, fa), (a, fa) ~ i/j} 
( specificatien of parse and definition of 

{ (f A-Hx fa, j) I A -7 a, (fa, j) e parse a i} 
• parse (aj3) i 

= (specification) 
* { (f, j) 1 3f, j : (aj3, f) -7 i/j} 
* = (definition of -7) 

{(fa* f13, k) I 3j, k, fa, t~ : (a, t(l) ~ ilj, <13. t~) ~ j!k} 
= (specification of parse ) 

{(fa* fp, k) I (fa, j) e parse a i, (fp, k) e parse 13 j} 
Summarizing the algorithm gives: 

Implementation 

parse ei 

parsex i 
parse A i 
parse (aj3) i 

0 

4.5 (of specificatien (4.4)) 

= {({},i)} 

{(fx.D I x: i~} 
{ (f A-7a fa, j) I A -7 a, (fa, j) e parse a i} 
{(fa* fp, k) I (fa, j) e parse a i, (fll, k) e parse 13 j} 

The semantîcs of an input string are given by the expression: 

• { cr 1 3f e F, cr e D : (S, f) -7 ro, (true, cr) = f ()} 
(specification of parse ) 

{ cr I (f, e) e parse S ro, (true, cr) ()} 

(RD-ag) 

This definition of an attribute grammar and the semantics of an input string is remark
ably simple when compared to traditional presentations like [Eng84, DJL88] which do not 
formally define the semantics of an input string or the language generated by an attribute 
grammar. These traditional presentations rely on the notions of decorated syntax trees and 
dependency graphs, concepts that are not needed in the functional approach. In section 
( 4.4) we present a normal form for rule functions that can easily be mapped onto the more 
traditional approaches and where inherited and synthesized attributes appear as arguments 
and results of attribute functions. 
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4.3.2 Attributed Leermakers parser 

Not only recursive descent parsers can be generalized to attributing parsers, but recursive 
aseent parsers as well. An attributed version of the Leennakers parser obeys the specifica
tion: 

Specification 4.6 

P 11 i = {(A~ o:.~, f,j) I A ~ 0:.~ E J.L, (~. f) ~ i/j} 
0 

and is implemented as: 

Implementation 4.7 (of specification (4.6)) 

D 

PJ.Li {(A~o:.,{},i)IA~o:.e !1}* 
concat {Q A fA~e i I A~. e ii}* 
concat {Q x fx j 1 x: j ~i, x~ .x e ji} 

Here, Q is defined local to P and it obeys the specification: 

(spec:Leermakers-ag-P) 

(Leermakers-ag-P) 

Specification 4.8 (spec:Leermakers-ag-Q) 

Q X fx j = {(A ~ o:.~. f~, k) I 3f~, j, k A ~ o:.l3 e J.L, (X, fx) ~ i/j, (j3, f~) ~ j/k} 
D 

while it is implemented by: 

lmplementation 4.9 (of specification (4.8)) (Leermakers-ag-Q) 

D 

Q X fx j {(A~ o:.XI3, fx~, k) I (A~ o:X.I3, f~, k) e next, o: * E} * 
concat {Q A (fA~x~ fx~) k 1 (A~ X.i3, fll, k) e next 

where fxfl = {fx} *f13} 
where goto {A ~ o:X.I3 1 A ~ o:.XI3 e ji} 

next P goto j 

4.3.3 Attributed continuation parser 

An attributed continuation parser can be designed as well. Again, it is a fine example of 
abstraction. lt is specified by: 

Specification 4.10 (spec:cont-ag) 

cont e UkzO Vk X (Fk X Vr H Set(D)) x Vr H Set(D) 

* cont o: c i concat {V I fa : ( o:, fa) ~ i/j 
D 
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lts implementation is given by: 

lmplementation 4.11 (of specification ( 4.10)) 

D 

cant e c i 
cant x c i 
cant Ac i 
cant a~ c i 

ei 
= if hd i = xthen c fx (tl i) else {} fi 

cancat {cant a (co 1a~fA_,o) i I A----? a} 
(cant a o cant ~ o c) i 

(cont-ag) 

where the operator o k is defined by definition (2.15) and can be defined in another way 
by: 

This parser is called on the start symbol in the following way: 

cant S d 0 where d fs j = {cr 1 j = r,, (true,cr) f- fs 0} 

4.4 Normal form rule functions 

In this section we restriet the form of the rule functions. As already mentioned, a rule 
function fx

0
_,x

1 
... Xn maps a list L of n attribute functions onto a new attribute function. This 

Jatter, when supplied with an in-attribute a, yields a pair (Co, e5 ). Here, Co is a boolean 
value, called the context condition and es is called the out-attribute. The restrietion in 
form dictates a special way to compute the elements of this pair. They are obtained by 
applying the elements of L to arguments (derived from a and some intermediate values). 
Co is required to be the conjunction of the n context conditions that are obtained in this way 
and some additional rule condition ec. es is an expression over a and some intermediate 
results, among others the n out-attributes yielded by the elements of L. More formally 
expressed, the resulting restricted form of a rule function bas type 
fx

0
_,x

1 
.. .xn :: Fn xD 1--7 (Baal xD) and is implemented as follows: 

fx
0
_,x

1 
... Xn f1 ... fn a (Co, es) 

where Co = ec A C1 A ••• A Cn 
(C;,S;) f; e; 

(Cn, Sn) fn en 

Here the e's stand for arbitrary expressions over a, S1. ... Sn. We silently assume that 
all expressions are well-formed, e.g. the type of e; corresponds to the argument type of 
f1 • This restrietion in form allows for the static cyclicity check on attribute grammars 
[Knu68, Knu71]. The example of section 4.2.1 is in normal form. 
We can compare this fonn of a rule function with the more traditional definition of an 
attributed production rule. The variabie a can be viewed as the inherited attribute of the 
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left-hand side1• The synthesized attributes of the right-hand side are represented by the 
variables Si. The other attributes are less clearly present. The left-synthesized and right
inherited attributes are not distinguishable as variables. Instead, their defining expressions 
ei and e5 are directly passed as arguments (results) of the corresponding attribute and rule 
functions. Thus this form is more general than the traditional forms of attribute grammars 
[Knu68, Knu7l, Eng84, DJL88]. lt is easy however torestriet the normal form even further 
to obtain a one-to-one correspondence between variables and traditional attributes. Since it 
does not gain us anything, we do not impose this additional restrietion here. The notation of 
the Elegant attribute grammars closely corresponds to the normal form of rule functions. 
See section 4.8 and [Aug92b] for more details. 

4.5 LL(l) parsing and normal form rule functions 

We can combine the normal form of a rule function and the corresponding function for the 
parsing of a production rule iofn an LL(l) recursive descent parser into a single function. 
First we present a form of the recursive descent parse parse (4.5) for the deterministic 
case. This deterministic parser delivers exactly one result. We extend its domain from 
symbols to the uni on of symbols and production rules (V N x V*) for convenience. 

parse :: (V u WN x V*) x v; HF x v; 

parse x i if hd i = tl i t- i then (fx, j) else error "x expected" (fx, i) fi 

parse A i = case x e foll a 1 (foll A) ~ parse (A ~ a 1) i 

esac 
where x. j 

otherwise 

parse (Xo --t X1 ... Xn) io = 
where (f;, i;) parse X; io 

(fn, În) = parse Xn Ïn-1 

~ ... 
~ error "A expected" (1., i) 

This deterministic parser still composes attribute functions. We can modify it however, 
by explicitly passing an inherited attribute to the parse function as an additional argument. 
The corresponding synthesized attribute is, together with the context condition, delivered 
as an additional result. We denote this new attributed parser by parse_attr and define it by 
(using <1> to denote an element from (VN x V*) u V): 

parse_attr :: ((VN x V*) u V) xD x v; H v; x Bool xD 

1 In practice, an attribute function will operate on more than one attribute. In that case, the parameter a can 
be a tuple and the result es can be a tuple-valued expression. Also the variables Si may be replaced by tuples of 
variables in this case. 
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parse_attr <j) a i (j, c, b) 
where (f, j) parse <j) i 

(c, b) fa 

Substituting the different rules for parse in this definition yields: 

parse_attr x a i if hd i = x +--- i 
then (tl i, true, v) 
else error "x expected" (i, false, v) 
fi 
where (true, v) = fx a 

parse_attr A a i = case x E foll a.1 (foll A) ~ parse (A ~ a.1) a i 
~ ... 

otherwise ~error "A expected" (i, false,..l) 
esac 

where x: j 

parse_attr (Xo ~ X, ... Xn) a io = <in, Co, s) 
where (g, in) parse (Xo ~ X1 ... Xn) io 

(Co,s) ga 
(definition of parse) 

parse_attr (Xo ~ X, ... Xn) a io <in. Co, s) 
where (f1, i1) = parse x, i0 

(fn, in)= parse Xn În-1 
(Co, S) fx

0
_.x

1 
... xn f1 ... fn a 

(Normal form for fx
0
_.x

1 
..• xn) 

parse_attr (Xo ~ X1 ... Xn) a io = (În, Co, es) 
where (f1, i1) = parse x, i0 

(c1, s1) = f1 e1 

parse Xn in-1 
fn en 

Co Sc A C1 A ••. A Cn 
(Definition of parse_attr) 

parse_attr (Xo ~X, ... Xn) a io = <in, Co, es) 
where Co ec A c, A •.. A Cn 

(i1, c1 , s1) parse_attr X1 e1 i0 

<in, Cn, Sn)= parse_attr Xn en in-1 

The function parse_attr has now been defined independently of parse and the use of the 
definitîon of normal form rule functions has enabled us to get rid of function composition 
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(actually: partial parameterization) for attribute functions. The resulting function parse..attr 
can be implemented efficiently in an imperative language. When attributes are mutually 
dependent in the where-part, they can be implemented with the use of lazy (demand-driven) 
implementation. In section 4.9 we present such an implementation. 

4.6 Pseudo circular attribute grammars 

The normal form of rule grammars corresponds to the attribute grammars of [Knu68, 
Knu71]. Each production rule is associated with one rule function. Such a rule function 
can deliver an attribute function that usually operates on a tuple a, the inherited attributes 
and produces a result es, which usually is a tuple of synthesized attributes. Observe that 
we do not require synthesized attributes to have a name. They can be declared as local 
attributes, but this is by no means mandatory. Moreover, the rule specifies a rule condition 
ec· Each derivation of a symbol of the right-hand side of a production rule corresponds to 
an attribute function fi. Such a function operates on e;, its inherited attributes, which again 
need not be named, and produces its synthesized attributes s; and its context condition c;. 
The latter is only propagated. 
Our treatment of attributes as tuple elements implies that these elements must be indepen
dently computable in order to obtain the power of traditional attribute grammars. Fortu
nately, lazy functional languages allow such a treatment of attributes and in the sequel we 
assume such an implementation. 
The restricted normal form of rule functions allows us to take over the static cyclicity check 
of [Knu68, Knu71], since a production rule with its attribute function can be transformed 
into a traditional attributed production rule. Without the restrietion to the normal form, e.g. 
by allowing the attribute function arguments to be mixed with attributes, such a static check 
would not be possible. Lazy functionallanguages offer an extra dimeosion of computability 
to attribute grammars. Where in [Knu68, Knu71], defining expressions for attributes are 
assumed to be strict in the attributes they contain as free variables, lazy functionallanguages 
do not impose such a restriction. If the amount of strictness of these expressions ( or an 
approximation to that) is known, the cyclicity check can be transformed in order to take 
this into account. When b occurs in a defining expression fora, but such that the value 
of b is not needed for the computation of the value of a, the dependency of a onto b can 
be removed from the dependency relation. Johnsson [Joh87] exploits laziness in the same 
way when imptementing attribute grammars in a functional language. 
An example of such a non-strict dependency is the declaration of an identifier. A declamtion 
can be modeled as an (ident, scope, meaning) triple, which models the binding of an 
identifier to a meaning in a eertaio scope. We describe this formally in section 4.7. A 
declaration is stored in a symbol-table, thereby extending this symbol-table with this new 
declaration. The actual value of meaning is irrelevant for the storing of the declaration. 
When this storing is denoted as new._table = store old_table (ident, scope, meaning), 
then the function store need not evaluate meaning in order to construct a new symbol
table: it can store the meaning unevaluated in the new table. The actual evaluation of 
meaning is performed when an applied occurrence of the identifier requires the retrieval 
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of this meaning from the symbol-table. Thus a non-strict dependency is introduced here, 
which can be discarded in the cyclicity check. 
Of course, any attribute grammar for a programming language is full of declarations of 
identifiers and the dependency relation can be reduced drastically by the knowledge of 
non-strictness. It is exactly this property that allows us to present a standard attribution 
scheme for programming languages in section 4.7. This scheme prescribes the attribution 
of production rules for programming languages with nested scopes in a simple and elegant 
way. Without the availability of laziness, the scheme would introduce many cycles and 
each cycle should be removed in a way that is specific to the programming language under 
consideration. This is what frequently happens when using compiler generators based 
on ordered attribute grammars [KHZ8l]. There, the programmermust program 'around' 
cycles, thereby introducing extra attributes, corrupting the structure of his attribute grammar 
and paying a performance price for the allocation and evaluation of these extra attributes. 
In [Eng84] and [DJL88], hierarcbies of attribute grammar evaluators are presented, based 
on the class of grammars for which the evaluator can compute the values of the attributes. 
Some evaluators compute attribute values at parse time and are thus very restricted in the 
attribute dependendes that can be allowed (e.g. L-attributed grammars). Others compute 
statically an evaluation order (e.g. ordered AGs), but this is too restricted as well, since 
the order on the attribute dependendes is a partial order and turning this partial order 
into a total one may introduce artificial cycles. The most powerfut class described is the 
class of non-eireular attribute grammars, which simply requires that the partial order is 
acyclic. But even this most powerful class of attribute grammars that is distinguished in 
e.g. [Eng84, DJL88] does not exploit laziness. 
The confinement to statically computable evaluation orders is, however, overly restrictive. 
The evaluation order can also be determined dynamically and, by means of lazy evaluation, 
even in such a way that it is never determined explicitly, but just occurs as aresult of the 
demand driven nature of lazy evaluation. Nevertheless, it remains possible to guarantee 
statically that every possible evaluation order is a-cyclic. 
Therefore we introduce a new class of attribute grammars, for which we propose the 
name pseudo circular attribute grammars (PC-AG), which is the most powerful class one 
can obtain using an attribute evaluator that computes the attributes in an effective way. 
We do not give a formal definition here. Such a definition is a simple modification of 
the definition of non-eireular attribute grammars, obtained by taking the non-strictness 
of semantic functions into account and thus removing certain dependencies. Johnsson in 
[Joh87] bas observed that laziness increases the class of attribute evaluators. 
Of course, one can make even more powerfut evaluators by resorting to back-tracking, 
unification or approximation of fixed points, but each of these techniques bas a considerable 
performance price. 
As the reader might have guessed, allows non-strict attribute dependencies and 
its evaluator falls into the PC-AG class. We describe the attribute grammar 
formalism in section 4.8. 
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4. 7 Standard attribution scheme 

4.7.1 Introduetion 

Pseudo circular attribute grammars allow the definition of a gencric and simple scheme 
for the construction of an attribute grammar for a programming language. The application 
of this scheme results in the construction of an attribute grammar that maps the input 
text onto a data structure representing the static semantics of the input text. If this static 
semantics does not exist, the scheme describes the detection of certain semantic errors and 
the generation of corresponding error messages. 
The scheme has three major advantages. First, an attribute grammar writer does not have 
to reinvent the wheel over and over again. Second, attribute grammars written according 
to the scheme can be understood by someone who knows the scheme, but has no specific 
knowledge about the grammar or even the programming language under consideration. 
Thirdly, the scheme allows fora gencric and highly efficient implementation of the symbol
table in a compiler. 
The symbol-table manipulation forms an important part of the scheme forms. A symbol
table is a data-stmeture that is used to store defining occurrences of identifiers as declarations 
and to retrieve them in the case of applied occurrences of identifiers. We present a scheme 
for this which is very genera), in the sense that the majority of the programming languages 
can be covered by it. To obtain this generality we will not defme eertaio of the functions 
that we introduce below, but merely categorize them by giving eertaio relations that they 
must obey. These relations leave freedom in the choice of the actual functions, a freedom 
which is filled in in different ways by different programming languages. Examples of these 
ditterences are found e.g. in different scope rules. 
[Aug90b] describes the ways in which the scheme fails for an attribute grammar for ISO 
Pascal. In all these cases, design fiaws in the Pascal language definition appeared the cause 
of these failures. This experiment suggests that a failure of the scheme is an indication for 
an ill-defined language construct. 

4.7.2 Symbol-table handling 

In this section we define the notions of scope, binding and symbol-table. We do this in a 
general way, in order to be able to model the majority of programming languages. Some 
operations wiJl not be defined exactly, but their behavior is characterized by inequalities, 
thereby defining properties of these, since the precise definition would be programming 
language dependent Throughout this section we use the following Pascal program as an 
example: 

program pascal; 

var x 
x 

boolean; 
char; 
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procedure p; 
var x integer; 
begin x : 3; 
end; 

begin 
end. 

For a given programming language, we define the following domains. 

• C a finite set of language constructs. 
A language construct is something that we do not define formally. We can not, since 
it is dependent on the souree language and we need not, since we are only interested 
in the fact that C is a finite set. A language construct corresponds to an abstraction 
modeled by a programming language and it usually corresponds to a non-terminal in a 
context-free grammar for the language. Examples are Pascal statements, expressions, 
an if-statement, a procedure, etc. We are not always able to identify a language 
construct with a non-terminal, since a language may be described by many different 
context-free grammars. One might say however, that in the 'most natural' context
tree grammar for a language, the set of language constrocts is identical to the set of 
non-terminals. A construct is usually composed of a number of sub-constructs. 
In our example, let X1, X2, X3 denote the constrocts representing the three variabie 
declarations respectively, P1 the procedure declaration, main the main program and 
bleek the procedure block. The construct X1 represents the properties of the first 
global variabie x, like its type. 

• Id the set of identifiers. 
An identifier is an object that can be bound to a language construct in a declaration. 
Within a certain region of a program, it can then be used to denote this construct. 
In this sense, an identifier is a syntactical pointer, with an allocation operation (the 
declaration, also-called the defining occurrence) and de-referencing operations, the 
usage (also-called the applied occurrence). 

• Ns is the set of name-spaces. 
The set of declarations occurring in a program text can be partitioned into independent 
sub-sets, called name-spaces. Although Pascal has only two name-spaces (for regular 
identifiers and labels), the fust name-space could be partitioned further into a name
space for types and a name-space for other objects (variables, procedures, etc.). We 
denote the two name-spaces of Pascal by nlab and nid. 

• S is the set of scopes. 
A scope is an (abstract) region of a program text that limits the visibility of decla
rations contained in it. Examples are a block and a record type definition. Usually 
a scope corresponds to some language construct. As we will be dealing with nested 
scopes only, where a scope is included within another scope (called the surrounding 
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scope) we can model a scope as a list of constructs, the head being the deepest, 
i.e. most narrow, one. Thus, the last element of this list always corresponds to the 
complete program text. We model S by defining S List(C). 
In our example, we can identify three different scopes, which we denote by sO = 
{ main}, s 1 = {p1, main}. s2 {bleek, P1, main}. 

• B is the set of bindings. 
A binding is an object representing a declaration. We model it by defining B = 
Id x Ns x S x C. An object (i, n, s, C) represents a declaration for identifier i within 
name-space n, appearing in scope s and binding construct c. The bindings in the 
example are denoted by: 

b1 ('x',nid,so,X1) 

b2 ('x', nid· so, X2) 

b3 = ('p', nid• 5o, P1) 
b4 =('x', nid· 82, X3) 

• T is the set of symbol-tables. 
A symbol-table is an object that contains a sequence of bindings. Hence we model 
it by defining T List(B). Observe that T can not be Set(B), since the order of 
declarations matters. 
A symbol-table representing all bindings of our example is A = {b1, b2, b3, b4}. 

For the domains introduced above, we define some useful operations, that we characterize 
by a number of equalities and in-equalities and which model the interplay between the 
domains. These characterizations are designed in such a way that additional propertiescan 
be added, depending on the properties of the programming language under consideration. 
Here we present only those properties that are common to the vast majority of programming 
languages. 
On scopes, we define the partial order relations <, s; and the (in)comparability relations 
-, -1. 
Definition 4.12 (def:ag-scope-rel) 

0 

The relations <, 5;, -, -1 on S x S are defined by: 

s1 <82 =3s3E S,83:t{},81 83-1+82 

S1 5; 82 =: 81 < 82 V 81 S2 

81 - S2 = S1 5; S2 V S2 5; 81 

81 -1 S2 = -,(51 - S2) 

In our example, we have the relations S2 < 81 < So and e.g. 82 - So. 

Furthermore, we assume the definition of a visibility relation Ç on scopes, that defines 
when the declarations in one scope are visible in another scope. This means that 81 Ç s = 
'a declamtion (i, n, 8, c) is visible in 8 1

• This re lation is programming language dependent, 
but we require that it lies in between the relations and 5;, which we can denote, maybe 
slightly cryptically by: 
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=ç;Çç;;;::; 

That is, declarations in a scope are always visible in that same scope ç; and deelara
tions are at most visible in a sub-scope ç; :::;), In Pascal, the relations :::; and ç; are the 
same. 
Furthermore, wedefine the notion of a projection of a symbol-table. 
Definition 4.13 (def:ag-symtab-project) 

D 

The projection of a symbol-table ton an (identifier, name-space, scope) triple (i, n, s), 
denoted by t\(i, n, S), is defined by: 

\ :: Tx(ldxNsxS) HT 
t\(i,n,s) = {(i,n,s',c) 1 (i,n,s',c) e t,s' -s} 

In our example, we have e.g. A \('x', nid· S2) = {b;, b2, b4}. 
The fact that we assume that this operation induces a partition on symbol-tables is reftected 
by the definition of the following equivalence relation on symbol-tables. 
Definition 4.14 (def:ag-symtab-eq) 

The equivalence of two symbol-tables t; and t2, denoted by t; - t2, is defined by: 

-ç;;;TxT 
t1 - t2 = Vi e Id, n e Ns,s;,s2 e S,s1 - s2 : t; \(i, n,s1) t2 \(i,n,s2) 

D 

Below we also use this projection operation on a set of bindings, rather than on a list. lt 
obeys the same definition as the list version above. 
Having defined all these relations, we are ready to introduce the two functions retrieve and 
doubles. The latter maps a symbol-table onto a set of bindings, the ones that are double 
declarations in that symbol-table. When A is the symbol-table containing all bindings of a 
program, doubles A ::t. {} implies that the program is erroneous due to double declarations. 
The function retrieve retrieves a set of bindings from a symbol-table for a given identifier, 
name-space and scope. 
These functions obey the following properties, which are not definitions of these functions, 
but relations which they should satisfy to let our scheme work. These relations leave space 
for different scope rules to be implemented by our scheme. 

retrieve : T x (ld xNs x S) H Set(B) 
doubles : T H Set(B) 

retrieve t (i,n,s) ç; {(i,n,s',c) 1 ,c (i,n,s',c) et, s ç; s'} 
doubles {} = {} 
doubles {b} = {} 
doubles t1 *doubles h ç; doubles (t; *t2) ç; t; *t2 
(doubles t)\(i, n, s) = doubles (t\(i, n, s)) 
retrieve t (i, n, s) n doubles t = {} 
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The last property states that double declarations are not retrievable and vice versa. The 
subset relation in the characterization of retrieve is used to model the fact that not all 
bindings obeying the Ç relation are retrievable, e.g. by hiding due to local redeclarations. 
With regard to our Pascal example, the following identities are consistent with the above 
mentioned properties: 

doubles A {b2} 
retrieve A ('x', nid,s2) = {b4} 
retrieve A ('x', nid· so) = {b1} 

The following additional properties can easily be proved: 

retrieve t (i, n, s) ç t\(i, n, s) 
retrieve t (i, n, s) = retrieve (t\(i, n, s)) (i, n, s) 
retrieve t = retrieve (t- doubles t) 
doubles t t 
t1 - t2 ::} retrieve t1 = retrieve t2 
t 1 - t2 ::} doubles t 1 = doubles t2 

The last property implies that retrieve and doubles respect the equivalence relation - on 
name-spaces. As we will see later, this property allows us to implement a symbol-table 
by its partitioning with regard to to the \ operation, e.g. one symbol-table per (identifier, 
name-space) pair. 
We suppose some more properties of these functions which should hold for a programming 
language. The first property states that when two declarations for the same identifier, 
name-space and scope are added, the latter of these declarations will certainly be a double 
declaration. 

{(i, n, s, c) 1 (i, n, s, c') E t1, (i, n, s, c) t2} ç doubles (t1 * t2) 

When a declaration (i, n, s, c) is retrievable from symbol-table t while it is no Jonger re
trievable when another declamtion (i, n, s', c') is added to t, that is the first is removed from 
the set of valid declarations in favor of the latter, we require that the latter is declared 
for a larger scope than the former. This means that a Iocal declaration can never make 
a global one invalid (although it may hide it in the local scope). This can be illustrated 
by an example assuming a Pascal-like language, where variables can be used before their 
declaration and where variables may not be redeciared in a more local scope. 

p (); 
var x : boolean; 

end; 

var x 

Here it is debatable which of the two declarations, the local, textually first one, or the 
global, textually later one, should be marked as a double declaration. Our scheme chooses 
the local one, which we formalize by: 
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(i, n, s, c) E retrieve t (i, n, s") A (i, n, s, c) E doubles (t * {(i, n, s', c')}) => s < s' 

A global declaration for a scope s can only be invisible in a local scope s', when it is 
hidden by a more local declaration for a scope s" in between s and s'. Formalized: 

(i, n, s, c) E retrieve t (i, n, s) As'< sA (i, n, s, c) ~t retrieve t (i, n, s') 
=> 3(i, n, s", c') E retrieve t (i, n, s') As' :::; s" < s 

For a particular programming language, additional properties over these general ones may 
be formulated in the same vein. The fact that these properties are formalized so easily when 
a symbol-table is treated as a list of declarations shows the power of this approach. We 
need not, however, implement a symbol-table in this way. a set of listsof declarations 
for different (identifier,name-space) pairs would also suffice. In order to be able to do so 
we define three more functions to abstract from a particular symbol-table implementation. 

store (i, n, s, c) = {(i, n, s, c)} 
double t b b E doubles t 
push s c = { c} * s 

4.8 Elegant attribute grammars 

The notation of the Elegant attribute grammars closely corresponds to the normal form 
of rule functions. We briefly introduce this notation here and the interested reader is 
referred to [Aug92b, Jan93] for more details. In appendix A syntax diagrams descrihing 
the full Elegant syntax are listed. An attributed production rule defines the 
underlying context free production rule, the in-attributes (assuming a to be a tuple), the 
out-attributes (assuming es to be a tuple as well), local attributes and some rule conditions 
that are conjuncted to form ec. Each rule condition also lists an appropriate error message 
or waming. All attributes are typed. An EBNF syntax for the Elegant production rules 
is the following: 
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(root-rule) .. - ROOT (production-rule) [ (global-section) ] 

(production-rule) .. - (nonterminal-identifier) 
( [ IN (attributes) ] [ OUT (expression-list) ] ) 
- > { (right-element) } 
[ (context-conditions) ] 
[ (local-section) ) 
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(right-element) .. - (symbol) ( [ IN (expression-list) ] [ OUT (attributes) ] ) 

(attributes) .. - (attribute-list) : (type-identifier) 
{ , (attribute-list) (type-identifier) } 

(attribute-list) .. - (attribute-identifier) { (attribute-identifier) } 

(context-checks) .. - CHECKS { IF (check) { ELSIF (check) } } 

(check) .. - (boolean-expression) 
THEN [ WARNING ] (message-expression) 

(global-section) .. - GLOBAL { (local-attribute) } 

(local-section) .. - LOCAL { (local-attribute) } 

(local-attribute) .. - (attribute-identifier) (type-identifier) (expression) 

(symbol) .. - (terminal-identifier) I (nonterminal-ident(fier) 

As an extension to traditional attribute grammars, global attributes have been added, which 
must be defined in the (unique) production rule for the start symbol. Attributes are eval
uated lazily and may be passed unevaluated as an argument to a non-strict function, thus 
supporting the PC-AG class. Aftera successful parse, the context conditions are evaluated 
in textual order. When no syntax or context errors occur, the out-attributes of the start 
production rule are evaluated from left to right. Then the compiler terminates. 
A simple example, taken from a Pascal attribute grammar, is the following production rule 
that defines an if-statement. 
Example 4.15: Pascal conditionat statement 

IfStat (IN s Scope OUT ifstat) 

0 

-> IFsym () 
Condition 
THENsym 

(IN s OUT cond Expr) 
() 

Statement (IN s OUT then Stat) 
OPTElsePart (IN s OUT else Stat) 

LOCAL 
ifstat : Stat = CreateifStat (cond, then, else) 

As a more complicated example , we list the attribute grammar of section 4.2.1 in 
format. 
Example 4.16: Fractions attribute grammar 

number (OUT f) -> dotsym () frac (IN l OUT f Float) 
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frac (IN i Int OUT f) -> digit (IN i OUT f : Float) ; 
frac (IN i Int OUT d+f) -> digit (IN i OUT d : Float) 

frac (IN i+l OUT f : Float) ; 

digit (IN i : Int OUT v I 2-(i)) 
CHECKS IF i > 10 THEN "Too many digits" 
-> zero (OUT v : Int) ; 

digit (IN i : Int OUT v I 2-(i)) 
CHECKS IF i > 10 THEN "Too many digits" 
-> one (OUT v : Int) ; 

4.8.1 The attribution scheme 

We can now present a gencric scheme that describes how to write an attribute grammar for 
a given programming Ianguage. All examples are given in the formalism. Ele
gant allows the start symbol of an attribute grammar to define so called global variables. 
These are in scope in every production rule, as if they had been passed as in-attributes 
to each production rule. The scheme consists of two parts. The first part, which is a 
trivial one, introduces attributes which model the construction of the language constructs, 
the 'abstract syntax tree', which in our case is a (potentially cyclic) graph. The other part 
introduces attributes which implcment the scope rules and symbol-table construction. 

• The symbol-table that contains all bindings is represented by a global attributc called 
AIIBindings of type SymboiTable. lt is defined by lhe start symbol. It plays a prime 
röle in the attribution scheme. It holds all bindings, both valid and invalid ones. The 
scheme we present is such that all applications of the retrieve and double functions 
are applied to AIIBindings. This means lhat we never have to worry about whether 
a binding has already been added to a symbol-table or not. Moreover, determining 
the set of double bindings is most generally done on the set of all bindings, rather 
than on some intermediate symbol-table, storing only part of the bindings occurring 
in a program. 
Example 4.17: Pascal start production rule 

Start () 

0 

-> Program (OUT t : SymbolTable, p Program) 
GLOBAL AllBindings : SymbolTable = t 

• Each language construct T is mapped onto an type T. As for proper 
context-free grammars, T E V N, this defines a mapping between non-terminals in 
the context-free grammars and types in the abstract syntax graph. Elegant offers 
sub-typing which is used in modeling different variants of language constructs. E.g. 
both an assignment and if-statement are statements, which is modeled by defining 
an type Stat with sub-types Ass and IfStat. The sub
constructs of a language construct T are modeled by fields of the type T which refer 
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to the sub-constructs. 
• For each construct T0 with sub-constrocts T1 ... Tn, corresponding to type T0 with 

fields of types T1 .•• Tn, a function Creater0 :: T1 x ... x Tn ~ To is declared. 
See, for example, the CreateifStat in the local-part below. 

• Each production rule covering a language construct of type T has an out-attribute 
of type T representing that construct. Usually the sub-constrocts are covered by the 
right-hand side of the production. If this is not the case, the corresponding sub
constrocts must be passed as in-attributes to the production rule (this case can arise 
when the grammar is corrupted, in order to adjust it to the needs of the compiler 
generator (make it LL(l), LALR(l) or whatever). 
If the construct is of a type T as mentioned above, it is defined by 
construct = CreateT (sub1 ... subn). Here sub1 ... subn are the attributes 
representing the (semantics of) sub-constructs. 
Example 4.18: Pascal conditional statement 

0 

IfStat (OUT ifstat) 
-> IFsym {) Condition {OUT cond : Expr) 

THENsym () Statement (OOT then : Stat) 
OPTElsePart (OUT else : Stat) 

LOCAL ifstat : Stat = CreateifStat {cond, then, else) 

• Each production rule covering a language construct that can contain the applied 
occurrence of an identifier must have access to the scope in which it appears in 
order to be able to determine the construct bound to the identifier. Hence it has an 
in-attribute s of type Scope representing this scope. 
Example 4.19: Pascal conditional statement again 

0 

IfStat (IN s : Scope OUT ifstat) 
-> IFsym {) Condition (IN s OUT cond : Expr) 

THENsym () Statement (IN s OUT then : Stat) 
OPTElsePart {IN s OUT else : Stat) 

LOCAL ifstat : Stat = CreateifStat (cond, then, else) 

• A production rule representing the applied occurrence of an identifier i d for name
space N has an out-attribute construct, representing the construct bound to that 
identifier. This attribute is defined by 

LOCAL 
binding Binding = RetrieveN (AllBindings, id, s) 
construct : C = GetC (binding) 

Here id represents the identifier and C the type of the construct. Moreover, two 
context checks must be applied to check whether the identifier was bound at all 
(binding =I- NIL), and to check whether the construct has the required properties 
for this applied occurrence (construct ::1- NIL). 

Example 4.20: Pascal left hand side of assignment 
Variable (IN s : Scope OUT var) -> Identsym (OUT id Ident) 



118 

D 

CHAPTER 4. ATTRIBUTE GRAMMARS AS FUNCTIONAL PROGRAMS 

CHECKS 
IF binding = NIL THEN "Identifier not declared" 
ELSIF var = NIL THEN "Variable expected" 

LOCAL 
binding IdentBindi.ng = Retrieveident (AllBindings, id, s) 
var Variable = GetVariable (binding) 

• Each production rule representing a declamtion which binds a construct construct 
of type C must create a binding and the symbol-table for it. Hence it has an out
attribute t that is defined by: 

LOCAL 
binding : Binding = CBinding (id, s, construct) 
t : SymbolTable = Store (binding) 

Since this can create a double declaration, a context check must also be added. 
Example 4.21: Pascal constant declaration 

D 

ConstDeclaration (IN s : Scope OUT t, binding) 
-> Identsym (OUT id : Ident) 

equalssym () 
Constant (IN s OUT expr : Expr) 

CHECKS 
IF Double (AllBindings, binding) 
THEN "Identifier already declared" 

LOCAL 
binding IdentBinding = CreateConstBinding (id, s, expr) 
t SymbolTable = Store (binding) 

• Each production rule corresponding to a construct that can contain (possibly in its sub
constructs) declarations must add the symbol-tables representing these declarations 
(with *) and passtheresult as an out-attribute. This is illustrated in the next example 
below. 

• Each production rule corresponding to a construct that opens a new scope must push 
that construct onto its scope. 
Example 4.22: Pascal procedure declaration 

ProcDeclaration (IN s : Scope OUT t, binding) 
-> PROCEDUREsym () Identsym (OUT id : Ident) 

OPTFormalParameters 
(IN sl OUT tl 

semicolonsym () 
Block (IN sl OUT t2 
semicolonsym () 

CHECKS 

SymbolTable, formals : List(Binding)) 

SymbolTable, block : Block) 

IF Double (AllBindings, binding) 
THEN "Identifier already declared" 
ELSIF formals # NIL AND 

HasBeenDeclaredForward (AllBindings, binding) 
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D 

THEN "Forma~ parameters not a~~owed" 
LOCAL 

proc 
binding 
s~ 

t 

Proc = CreateProc (id, forma~s, b~ock) 

IdentBinding = CreateProcBinding (id, s, proc) 
Scope = Push (s, proc) 
Symbo~Tab~e = Store (binding) ++ tl ++ t2 
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The scope s describes the scope in which the procedure appears. The scope s 1 
describes the scope within the procedure, s 1 is passed to the formal parameters and 
blockof the procedure. These sub-constructions pass out the symbol-tables t1 and 
t2 that contain their respective declarations. The symbol t contains all declarations 
of the procedure, including that of the procedure itself. 

• A scope may be extracted from a construct rather than be obtained as an attribute. 
This may only be done for the retrieval of identifiers visible in that scope, not for 
the storing of bindings. An example is the field selection in Pascal, presented below, 
where the scope of the record type is used to retrieve the field. 
Example 4.23: Pascal field selection 

D 

Variab~e (IN s : Scope OUT var) 
-> Variab~e (IN s OUT record : Variab~e) dotsym () 

Identsym (OUT id : Ident) 
CHECKS 
IF -IsRecord (type) THEN "Non-record type in fie~d se~ection" 
ELSIF fie~d = NIL THEN "Field not declared" 
LOCAL 

type : Type = TypeOf (record) 
binding : IdentBinding 

field 
var 

= Retrieveident (AllBindings, id, ScopeOf (type)) 
Field = GetField (binding) 

: Variab~e = CreateFie~dVariable (record, field) 

4.8.2 Pseudo circular grammars and lazy evaluation 

The scheme above usually results in a grammar whose attributes are circularly defined, 
thus, in an ill-defined grammar. The 'cycles' introduced by the attribution scheme are all 
of the same form and can be illustrated by the example for the Pascal procedure decla
ration. AllBindings depends on t, which depends on binding, which depends on 
proc, which depends on farmals and block. The block is likely to contain applied 
occurrences of identifiers, and hence depends on AllBindings via Retrieve. 
We can observe, however, that although binding takes proc as one of its arguments 
of its creating function, the value of binding (that is a reference to the data-structure 
representing that binding) does notdepend on the value of proc. We say that the function 
CreateProcBinding is non-strict in that argument. With a suitable implementation 
(like Elegant supplies), the non-strictargumentsof a function can be passed unevaluated 
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(lazy) to it. In this way, CreateProeBinding can create a PraeBinding containing 
a reference to an unevaluated P roe, thereby cutting the cycle. 
The cycle can be cut at other places as well. The function CreateProc is also non-strict in 
its arguments. Cutting the dependencîes for those arguments that depend on declarations, 
in this case farmals and bloek, also removes the cycle. The latter place for cutting 
the cycle is more favorable to overtoading in a language and therefore we adopt it as a 
standard in our scheme. 
The example is thus modified by explicitly indicating lazy evaluation: 
Example 4.24: Pascal procedure declaration 

ProcDeclaration (IN s : Scope OUT t, binding) 
-> PROCEDUREsym () Identsym (OUT id : Ident) 

OPTFormalParameters 

0 

(IN sl OUT tl : SYmbolTable, formals List(Binding)) 
semicolonsym () 
Block (IN sl OUT t2 : SymbolTable, block : Block) 
semicolonsym () 

CHECKS 
IF Double (AllBindinqs,binding) 
THEN "Identifier already declared" 
ELSIF (formals # NIL) AND 

HasBeenDeclaredForward (binding, AllBindinqs) 
TBEN "l!'ormal parameters not allowed" 
LOCAL 

proc 
binding 
sl 
t 

Proc = CreateProc (id, LAZY(formals), LAZY(block)) 
IdentBindinq = CreateProcBinding (id, s, proc) 
Scope = Push (s, proc) 
SymbolTable = Store (binding) ++ tl ++ t2 

Since this cycle-cutting results in the creation of data structures containing unevaluated 
attributes, the typing of these data structures must reftect this. To this end, the type of the 
fields farmals and bloek in a Prae are so-called lazy types, repcesenting this non
evaluatedness. The prelude defines the parameterized type La z y ( T) for this 
purpose. 
For the class of attribute grammars supporting using our scheme and cycle-cutting technique, 
we did propose the term pseudo circular attribute grammar (PC-AG), which means that 
the circularity disappears when the non-strictness of the defining functions for the attributes 
is taken into account. lt can be shown that NC-AG c PC-AG. NC-AG stands for non
eireular AG [DJL88], the most general class of attribute grammars described so far. An 
important distinction between these two classes is that a pseudo circular attribute grammar, 
using a non-lazy functionallanguage for its attribute definitions, is capable of constructing 
a cyclic abstract syntax graph, in contrast to a non-eireular attribute grammar, which can 
at best create a DAG. 
Elegant will report the 'real' cycles, so a user can design its attribute grammar in two 
steps: first use the scheme presented in this section and then cut the reported cycles in the 
way explained here. 
Although lazy evaluation poses some overhead on the evaluation of each attribute when 
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compared to ordered attribute evaluation, it has two advantages concerning its efficiency: 

• When an attribute value is computed, its defining expression must be evaluated. 
Since a single synthesized attribute of a non-terminal symbol is defined by different 
expressions in the different production rules for the non-terminal, the proper defining 
expression must be selected first. Lazy evaluation offers the ability to bind the 
expression to the attribute at parse time, that is, when the proper production rule 
is selected. Systems which do not exploit lazy evaluation often need to interpret 
a data structure in order to decide which expression to evaluate for the attribute. 
This interpretation can impose a considerable overhead on attribute evaluation when 
occurring frequently. 

• Far less attributes need to be evaluated, since the attribution scheme leads to such 
concise attribute grammars. In fact, we believe these grammars to be minimal, since 
the attribution scheme only introduces attributes which are necessary to map the 
syntactical representation of the program onto an abstract syntax graph and does not 
introduce attributes whose sole function is to avoid 'cyclic' dependencies. 

Since no separate attributes are needed to avoid the occurrence of cycles, pseudo circular 
attribute grammars are not just more concise than ordered ones, but also much more clear, 
since the cycle avoiding attributes obscure the attribute grammar and add unnecessary 
'noise' to the AG, deleriorating its readability. 

4.8.3 Overloading 

In the case of overtoading (e.g. of functions) the scheme has to be generalized. In order 
to see this, assume that procedure overloading has to be supported. In this case, the well
formedness of a procedure declaration (e.g. the fact whether it is a double declaration 
or not, and hence its storing in the symbol-table) depends on the types of the procedure 
arguments, and hence on the corresponding type declarations. Consequently it depends on 
AIIBindings, thereby creating a cycle. This is caused by the fact that the Store operation 
is no Jonger non-strict in the meaning of the declaration to be stored. It evaluates certain 
componentsof the meaning (e.g. the type of the meaning) in order to store the declaration. 
This cycle can be avoided by introducing more than one symbol-table to retrieve from. 
If in this way an ordering on symbol-tables can be obtained, such that bindings in the 
i -th symbol-table can only be overloaded by using information from the j -th symbol-table, 
j < i, no cycle occurs. 
In the example of procedure overloading, an additional symbol-table AIITypeBindings can 
be created to remove the cycle. Thus, AIITypeBindings is located before AIIBindings in 
the ordering relation. Although this may seem cumbersome, one should keep in mind that 
all cycles are detected statically and can be removed after the completion of the attribute 
grammar, when they are reported by Elegant. 
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4.8.4 Semantic cycles 

To complete our discussion of various forms of cycles we present a third form of cycles in 
this section that can not be cut. We call these cycles semantic cycles because they either 
correspond to semantic errors in the program text or to some semantic value that needs 
to be computed by the compiler, but which is defined by some fixed point giving rise to 
a cyclic attribution. These cases can be illustrated by the example of a cyclic constant 
declaration, say CONST x =x+ 1; in a Pascal-like language. If the compiler needs the 
value of the constant (e.g. to perform constant folding), it is in trouble, since this value 
is undefined. Such undefined semantic constructs correspond to a cycle in the grammar. 
Such a cycle can not be cut, since the error can not be removed: it is simply there. 
Instead of cutting it, we can detect it and in the mean time prevent the occurrence of cyclic 
attribute evaluation. The technique used here depends on side-effects. Each construct that 
may be ill-defined in this way, is encapsulated in a special type, called Cautious that is 
able to detect the cycle. This type is predefined in the Elegant prelude as follows: 

SPEC UNIT CautiousPrelude 

TYPE CautiousState = (UnEval I UnderEval I Evaluated I Cyclic) 

Cautious(X) =ROOT, value Lazy (X) , 
state CautiousState = UnEval 

RU LES 

Cautious: [x : Lazy(?T)] : Cautious(T) 
IsCyclic: [x : Cautious(?T)] : Bool 
Value: [x : Cautious(?T), error : ?T] : T 

The production rule for a constant definition may be modified as follows: 

ConstDeclaration (IN s : Scope OUT t, binding) 
-> Identsym (OUT id : Ident) equalssym () Constant (IN s OUT expr : Expr) 
CHECKS 

IF Double (AllBindings, binding) THEN "Identifier already declared" 
ELSIF IsCyclic (cautious) THEN "Cyclic constant definition" 

LOCAL 
cautious : Cautious(Expr) = Cautious (LAZY(expr)) 
binding IdentBinding = CreateConstBinding (id, s, cautious) 
t : SymbolTable = Store (binding) 

The idea is to create a cautious object, storing the unevaluated attribute representing the 
ill-defined construct and to bind the corresponding declaration not to the construct but to 
the encapsulated construct. 
When evaluating the attribute representing the ill-defined construct, the cycle will retrieve 
the cautious object and obtain the ill-defined value from it. This evaluation will transform 
the state of the cautious object from UnEval to UnderEval and the value field is 
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evaluated. In the case of a cycle, the cautious object will be re-evaluated in a state Un

derEval. In this case the state becomes Cyclic and no further evaluation of the value 
field takes place. 
lf the evaluation of the val ue field terminates in a state that is not c, the state 
becomes Evaluated and no error has occurred. 
Hence, the possible state transitions are: 

Figure 4.1: Cautious state transitions 

4.8.5 lmplementing the symbol-table by side-effects 

Apart from the properties already explained, the attribution scheme that we presented has 
another advantage that we explain in this section. 
There are four operations defined on a symbol-table, namely store that creates one, * 
that combines them, retrieve that retrieves declarations and double that detects double 
declarations. The latter two operations operate on AIIBindings, that is, on the complete 
symbol-table that holds all declarations in the entire program. Furthermore, all * opera
tions are connected in a tree-like fashion, in such a way that each intermediate symbol-table 
is used exactly once, namely as an argument of *. Since there is no other reference to such 
an intermediate symbol-table, we are free to implcment these symbol-tables by means of 
side-effects upon a single global symbol-table, since this is semantically transparent. Thus 
the * operator becomes nothing but the combination of two side-effects into one. And the 
store operation can be implemenled as the side-effect that extends the global symbol-table 
with a single binding. 
This implementation of a single global symbol-table enables the implementation of a very 
efficient, yet semantically clean symbol-table. 
In Elegant, so-called empty types are supported, that can be used to represent side-effects. 
Thus the symbol-table type is simply defined as follows, where the SymTab type is ex
plained below. 

TYPE EMPTY 

A retrieval operation has AIIBindings as a strict argument, hence forcing the evaluation 
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of this symbol-table, which depends on all declarations, thereby evaluating all symbol
table updates before the first retrieval. Furthermore, laziness guarantees that AIIBindings is 
evaluated at most once, namely upon the first retrieval (or double test), thus guaranteeing 
that each declaration is stored exactly once before the first retrieval. In this 
is however only true if AIIBindings is of a non-empty type, say of type SymTab, since 
attributes of an empty type can be re-evaluated many times, that is, they are implemented 
by demand-driven evaluation rather than by lazy evaluation. See section 6.2.10 and 6.5 for 
a discussion about the different forms of evaluation in 
The start symbol can thus define AIIBindings by: 

GLOBAL AllBindings : SymTab EvalDeclarations: [LAZY! (t)] 

where t is the symbol-table attribute that represents the side-effeet of declaring all bindings, 
and which is available in the start symbol production rule, as guaranteed by the attribution 
scheme. The exclamation mark is a hint for the attribute grammar cyclicity 
checker that although AllBindings does only use the unevaluated t, nevertheless, a 
dependency between them should be taken into account. 
Although the operational semantics of this game may seem complicated and far from 
straightforward, the scheme guarantees that it is semantically completely equivalent to a 
side-effect free implementation. In practice however, it is hard to make users not worry 
about the operational behavior and let them just apply the scheme. Most programmers need 
an operational model to comfort them! 

4.8.6 lmplementation scheme fora symbol-table 

We now present an implementation technique for a global symbol-table that is updated by 
sicte-effects. 
Reeall that the symbol-table is a mapping from an identifier, name-space and scope onto a 
set of bindings. Thus, the retrieve operation must project the symbol-table on the identifier, 
name-space and scope respectively. 
The implementation that we present bere is perhaps counter-intuitive. The reader might 
expect to store a list of declarations per scope, thus first projecting on the scope when 
retrieving a binding. A more efficient implementation is obtained by projecting first on the 
identifier and name-space and only then on the scope. 
A suitable implementation for this is depicted below. 
The built-in type ldent is a hashed string, which means that two textually identical identifiers 
are mapped onto the same pointer, which is an element of the type ldent. 
An ldent points to a record, containing the sîze and the representation of the identifier. 
Moreover, it contains a field called info, which is capable of storing an arbitrary pointer. Our 
symbol-table implementation scheme now prescribes that this pointer refers to all bindings 
for that identifier in the whole program. Thus, within constant time, the projection on 
the identifier can be performed. In this way, the symbol-table is partitioned into different 
smaller symbol-tables per identifier, stored at the identifier's info field. 
The second projection, on the name-space is also implemented very efficiently. Since we 
can partition the declarations into different name-spaces and since the name-spaces are 
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Ident All declaration of "foo" in the program 

si ze 
All declarations of "foo" in name-space NS2 

"foo" 

info 

Figure 4.2: Symbol-table structure 

statically known (they are determined by the programming language, not by a particular 
program), and since we have one retrieve operation per name-space, we can use a record 
with a field per name-space, where each field refers to all declarations for the given identifier 
and the given name-space. Thus, the second projection can also be performed in constant 
time. Since the number of name-spaces is usually very limited, this scheme does not 
introduce a great amount of space overhead. In this way, the symbol-table is partioned 
further into even smaller symbol-tables per identifier and name-space. 
The third and last projection, on the scope, can be performed in at least ( or should we say 
most?) linear time (in the number of declarations for each identifier/name-space pair) by 
implcmenting the remairring set of bindings as a linear list. The retrieve operations selects 
those bindings whose scope component is compatible with the cuerent scope, according to 
the scope rules of the language under consideration. By using a binary tree instead of a 
linear list (assuming some ordering on scopes), or by exploiting the structure of the scopes 
(e.g. first projecting on the cuerent module and then on the cuerent procedure), even more 
efficient implementations can be designed. In practice however, it is not worth the trouble 
and a linear list suffices. 

4.8.7 Elegant implementation scheme fora symbol-table 

In this section we present an implementation for the scheme presented above in Elegant. 
First we list part of the relevant Elegant syntax. For a full definition of the Elegant 
language, see [Aug92b, Jan93]. In appendix A syntax diagrams descrihing the full Ele
gant syntax are listed. Readers not interested in this implementation can savely skip this 
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section. 
Elegant type-definitions have the following forms, defining a root-type, a sub-type, an 
enumerated type, an empty type and an alias type, respectively. The Elegant type system 
is treated in detail in chapter 6. 

(type-section) .. - TYPE · { {type-declaration) } 

(type-declaration) .. - (root-type) 
I (sub-type) 
I (enumerated-type) 
I (empty-type) 
I (alias-type) 

(root-type) .. - [ ABSTRACT I MEMO ] 

(ident) ROOT { , (field-declaration) 

(sub-type) .. - [ ABSTRACT I MEMO ] 

} 

(ldent) < (record-type-ident) { f (field-declaration) 

{enumerated-type) .. - (ident) ( [ (ident) { I {ident) } ] ) 

(empty-type) .. - (ident) EMPTY 

{alias-type) (ident) (type) 

} 

An Elegant function is declared to be a sequence of partial functions, called rules which 
are selected by pattem matching. The patterns are the formal types of the rule parameters, 
which in general are sub-types of the function corresponding to the rule. When the actual 
arguments are of these sub-types, the textually first of the matching rules is selected. Apart 
from matching on argument types, arbitrary boolean conditions over the arguments may be 
specified. 

(rule-section) .. - RULES { {rule) } 

(rule) .. - [ (ident) : I (operator) ] 
[ (jormal-parameters) ] [ : (type) ] 
[ CONDITIONS (condition) { , (condition) } ] 
[ LOCAL { (ident) (type) (expression) } ] 
- > { (statement) } ; 

(jormal-parameters) .. - (format-parameter) { , (jormal-parameter) } 

(format-parameter) .. - [ VAR ] (ident) : (type) 

The following types in functions imptement the symbol-table handling in Elegant: 
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TYPE 
(****** The symbol-table types ******) 

SymbolTable = EMPTY 
SymTab = ROOT 

(* The type NameSpaces is referred to by id.info. 
NSl, etc. are short-hands. 

*) 

NSl List (NSl_Binding) 
NS2 List (NS2_Binding) 

NameSpaces ROOT, nsl : NSl 
ns2 : NS2 

NIL, 
NIL, 

(* The bindinga are partitioned into different name-spaces. 

*) 

Within each name-space, different bindinga can be stored, 
for different constructs. 
These are ~plemented as sub-types of the name-space binding type. 

ABSTRACT 
Binding = ROOT, 

ABSTRACT 
NSl_Binding < Binding 
Cl_Binding < NSl_Binding, 
C2_Binding < NSl_Binding, 

ABSTRACT 
NS2_Binding < Binding 
Dl_Binding < NS2_Binding, 
D2_Binding < NS2_Binding, 

id : Ident, 
scope : Scope, 
double : Bool = FALSE 

construct Cl 
construct C2 

construct Dl 
construct D2 

RUL ES 
(******* The symbol-table operations *****) 

(* Retrieve and create the name-spaces for an identifier *) 

RetrieveNameSpaces:[id: Ident] : NameSpaces ->RETURN (id.info) 

CreateNameSpaces:[id: Ident] NameSpaces 
-> IF id.info = NIL THEN id.info := NameSpaces:[] FI 

RETURN (id.info) ; 

(* The function '++' combines two side-effects and is built-in *) 

(* The function 'Store' has one rule for each name-space *) 

127 
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Store:[b : NSl_Binding] : SymbolTable 
LOCAL n: NameSpaces = CreateNameSpaces:[b.id] 
-> n.nsl :+ b ; 

Store:[b: NS2_Binding] : SymbolTable 
LOCAL n: NameSpaces = CreateNameSpaces:[b.id] 
-> n.ns2 :+ b ; 

(* The function ':+' is defined for each name-space. 

*) 

It extends the list of bindinqs with a new one, detectinq double 
declarations. 
The types NSl and NS2 are *not* comparable and we thus have one function 
per name-space, which is implemented by the following three rules. 
We assume that the operator -- on scopes implements the scope rules 
and that the operator -- on constructs implements overloadinq. 
In the absence of overloading it defaults to the constant function TRUE. 

:+ [VAR l=NIL 
-> 1 := {b} 

NSl, b NSl_Binding] 

:+ [VAR l : (NSl), b : NSl_Binding] 
CONDITIONS b.scope -- l.head.scope, 

b.construct -- l.head.construct 
-> b.double := TRUE ; 

:+ [VAR l (NSl), b : NS_lBinding] 
-> l.tail :+ b ; 

(* The function 'Retrieve_NSi' is defined for each name-space 'NSi'. 

*) 

It retrieves all bindinga for the given identifier and the given 
name-space that match the current scope. 
The argument 'all' equals 'AllBindings' and is passed for synchronization 
purposes only! 
We assume that a function '<=' is defined on scopes which implements the 
scope rules. 
In the iteration, first the name-spaces for 'id' are retrieved and matehad 
against NIL by means of the typing '{NameSpaces)'. 
From the 'nsi' name-space, those bindinga 'b' are retrieved that 
match the scope 's'. 

Retrieve NSl:[all: SymTab, id: Ident, s :Scope] ; NSl 
->RETURN ({ b 1 ns: (NameSpaces) = RetrieveNameSpaces:[id], 

b : NSl_Bindinq <- ns.nsl, (s <= b.scope) }) 

(* The function 'Double' is defined on all bindings. 
It tests a binding for double declaredness. 
The argument 'all' is passed for synchronization only! 
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*) 

Double:[all: SymTab, h: Binding] : Bool ->RETURN {b.double) ; 

{* For each construct 'Ci' there is a projection function from a binding 
onto the construct. 

*) 

GetCl:[h {Cl_Binding)] Cl-> RETURN (h.construct) 
GetCl: [h Binding ] Cl -> RETURN {NIL) ; 

4.9 lmplementation of Elegant attribute grammars 
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In this section we present a scheme for the implementation of an attributed LL( 1) parser 
fora grammar that is in the normal form of section 4.5. We recapitulate part of that parser 
first, assuming multiple inherited and synthesized attributes per production rule, multiple 
context conditions 9c1 ••• ecp and actding local attributes: 

parse_attr io (Xo --7 X, ... Xn) a, ... ako (in, Co, e1 ... Bm0 ) 

where Co = Bc1 1\ •.• 1\ Bep 1\ c, 1\ .•• 1\ Cn 
(i,,c,,s,, ... s,k1 ) = parse_attr io x, e,, ... e1m1 

(in, Cn, Sn1 ... Snk,) = parse_attr in-1 Xn Bn1 ... Bnmn 

I, = e,1 

Ik = e,k 

Such a function corresponds to the following Elegant production rule (see section 4.8), 
where we have left out the types for conciseness. With each context condition Be, an error 
message m, is associated. 

Xo (IN a, ... ako OUT e, ... Bm0 ) 

--7 X, (IN e,, ... e1m1 OUT s,, ... S1k,) 

Xn (IN Bn1 ... Bnmn OUT Sn1 ... Snkn) 

checks if ec1 then m, 

if ecp then mp 
locall, e,1 

The parsing function for a non-terminal just eaUs the parsing function for the appropriate 
production rule after inspecting the first symbol of the remaioder of the input string, passing 
all inherited and synthesized attributes. We do not repeat it here. 
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As in [Kat84], we associate a procedure with each attribute. Our scheme is naturally suited 
for the class of pseudo-eireular attribute grammars, where in [Kat84], rather complicated 
grammar transformations are required to support non-eireular attribute gramrnars. 
In our scheme, each of the attributes is be compiled into an instanee of a lazy type, that 
can be defined as follows in a non-lazy Pascal-like language with polymorphic types: 

type Lazy(T) = record env : address; 
val: T; 
eval : proc (lazy(T)) : T; 

end; 

An instanee of type Lazy(T) is a triple (env, val, eval) and it represents a possibly un
evaluated expression e of type T. When the expression has not been evaluated yet, the 
environment env is a pointer to a record containing all the free variables in e. It is rep
resented by the generic pointer type address. A lazy object a can be evaluated by the 
expression a.eval(a). The evaluation function eval computes the value of e, making use 
of the values of the free variables that it finds in a.env. It then assigns the result to a.val. 
Since subsequent evaluations need not recompute e, at the end of the evaluation process 
the identity function idT is assigned to a.eval: 

proc idT (a : Lazy(T)) : T; 
begin return (a.val); 
end; 

Thus the evaluation function Fe for expression e is given by: 

proc Fe (a: Lazy(T)) : T; 
var env : Enve; 
begin env := a.env; 

end; 

x.val := e[v ~ env.v]; 
x.eval := idT; 
return (x.val); 

for each free variables v in e 

and a lazy object is created with the function: 

proc lazy (e : address, f: (lazy(T)) : T) : Lazy(T); 
var a : Lazy(T); 
begin new(a); 

end; 

a.env := e; 
a.eval := f; 
return (a); 

So far for the implementation of lazy evaluation. When compiling the attributed production 
rules as defined above, we can observe that all attributes for that rule can share the sarne 
environment. This environment is defined as follows, leaving out the types which are all 
lazy ones: 



4.9. lMPLEMENTATION OF ELEGANT ATTRIBUTE GRAMMARS 

type Env = record a 1 ••• ako; 
S11 •.. Snk"; 

I, ... Ik; 
end; 

131 

The LL(l) recursive descent parsing function can be extended in the following way with 
attribute allocation and initialization, assuming that the production rule is called p. lt is 
passed the (unevaluated) inherited attributes as valoe-parameters and delivers the (uneval
uated) synthesized attributes in var-parameters. It first allocates the environment e, subse
quently calls the parsing functions for the right-hand side, providing these with the proper 
inherited attributes and obtaining from them the proper synthesized attributes. Finally it 
creates its own synthesized attributes and local attributes. 

proc Parsep (a, ... ako• var out, ... outm0 ); 

vare: Env; 
begin new(e); 

Parsex, (lazy(e, Fa,,} ... lazy(e, Fe,m, ), e.s,, ... e.s,k, ); 

Parsex" (lazy(e, Fan,) ... lazy(e, Fenmn ), e.sn1 ... e.snkn); 
out, := lazy(e, Fe,); ... ; outm0 := lazy(e, Fem

0
); 

e.l, := lazy(e, Fe
1 

); ••• ; e.lp := lazy(e, Fa
1 

); 
1 p 

end; 

This parser does not construct a syntax tree, nor does it compose attribute functions, it rather 
constrocts a data-flow graph for the attributes, which can be evaluated in a demand-driven 
fashion. 
The parsing function for a non-terminal just calls the parsing function for the appropriate 
production rule after inspecting the first syrnbol of the remainder of the input string, passing 
all inherited and synthesized attributes. We assume that the input string is represented by 
a global variabie i. 

proc ParseA (a, ... ak0 , var out, ... outmo ); 
vare: Env; 
begin if hd (i) E first(a.,) then ParseA-m, (a, ... ako• out, ... outm0 ); 

end; 

else if hd (i) E first(a.n) then ParseA-Hxn (a, ... ako, out, ... outm0 ); 

else some error recovery when A -1+ e 
fi 

The parsing function for a terminal symbol x with attribute a is simple and given by: 
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proc parsex (var I : Lazy(T)); 
begin if x = head (i) 

end; 

then I := lazy(nil, idT ); 
l.val :=a; 
i := tail (i); 

else some error recovery 
fi ; 

4.9.1 Optimizations 

The compilation scheme for attributed grammars allows for numerous space and time 
optimizations. We list a few of these: 

• The env and val field of an attribute can be overlaid, since once the value is computed, 
the environment is no Jonger needed. 

• Only attributes that are used in the definition of other attributes need be stored in the 
environment. 

• Identical attributes may be shared between production rules. 

• Instead of allocating attributes separately, they are incorporated as records rather than 
as pointers in the environment and hence allocated as part of the environment. The 
pointer is obtained by an up-reference operation, i.e. the ADR operation in Modula-2 
or the & operation in C (Pascal lacks it). 

• If an attribute a is defined by a function over only one other attribute b in production 
rule P, the environmentfora is made identical to (a pointer to) the attribute b, rather 
than the whole environment of P. Hence b need no Jonger be part of the environment 
of P on behalf of a, and maybe not at all. 

• If an expression e is the only expression which depends on a local attribute a in a 
production rule P, a need not be part of the environment of P, but can be a local 
variabie of Fe of a non-lazy type, whose value is computed before the value of e 
within Fe. This is not possible when e is notstrict in a. 

These and other optimizations have been incorporated into Elegant, resulting in a very 
efficient implementation of lazy attribute grammars. The performance is presented and 
analyzed in chapter 8.3. 
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Chapter 5 

Functional scanners 

5.1 Introduetion 

Since long, regular expressions have been the formalism of choice for the specification of 
lexical scanners, see e.g. [ASU86]. In a lexical scanner specification, a regular expression 
over a certain character set is used to define the valid representations of a terminal symbol, 
each representation being a sequence of characters. A set of regular expressions indexed 
by the terminal symbols of a (context-free) grammar can be directly mapped onto a non
deterministic finite autornaton (NFA) [ASU86]. This autornaton can be transformed to make 
it first deterministic (if possible) and subsequently minimat 
In this chapter, we show that we can associate a recursive function with a lexica! scanner 
specification that recognizes the terminal symbols. We call this function a scanner. This 
recursive function can be transformed into a set of recursive equations that is isomorphic to 
the corresponding NFA. This set of equations is obtained by transformations that increase 
the level of abstraction of the expressions under consideration. It is not the correspondence 
to the NFA that inspires these transformations, but the desire for a higher abstraction level 
of the form of the equations. The most important of these transformations is (again) the 
introduetion of continuations. The resulting set of equations contains a construction that 
can be interpreted as a non-deterministic choice. For reasons of efficiency, it is desirabie to 
eliminale this non-determinism. This is done again by means of program transformations. 
The transformations are inspired by the wish to increase determinism. Minimality is already 
present in the set of equations and maintained while obtaining determinism. 
A major advantage of these techniques over the use of automata is the simplicity of adding 
attributes. The set of equations is not even modilied by the addition of attributes and their 
evaluation. The result is a smooth integration of an attributed scanner and parser, both 
expressed as functions in a functional language and both obtained by program transforma
tions. 
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5.2 Preliminaries 

In this section we show how a scanner specification can be used to describe the mapping 
of a sequence of characters onto a sequence of terminal symbols. To this end, such a 
scanner specification associates a regu/ar expression with each terminal symbol. A regular 
expression generates a language over characters, its representations. If a character string 
is in the language of a regular expression, we say that the regular expression derives that 
character string. These notions are defined formally as follows, assuming that the * and + 
take preeedenee over juxtaposition, which takes preeedenee over j. 
Definition 5.1 (def:RE) 

0 

The set of regu/ar expressions REe over an alphabet C is the smallest set satisfying: 

C ç;;;;REe 
ee REe 
a,~ E REe 
a,~ e REe 
a e REe 
a e REe 
a e REe 

:::::.a~ e REe 
:::::. a I ~ e REe 
:::::. [a] e REe 
:::::.a* e REe 
:::::>a+ e REe 

Here, a~ denotes a foliowed by ~. a I ~ denotes either a or IJ, [a] denotes zero or one 
occurrences of a, a* denotes zero or more occurrences of a and a,+ denotes one or more 
occurrences of a. 
Definition 5.2 (def:scanner-spec) 

0 

A scanner specification is a tuple (C, T,R) where 

• C is a finite character alphabet. 

• T is a finite terminal alphabet, C n T {}. 

• R is a finite set of scanner rules, R cT x REe. 
When (X, a) e R we write x ~ a. We will use this form as a qualifier in 
comprehensions in the sequel. 

Definition 5.3 (def:scan-derive) 

A regular expression a can derive a regular expression 13, denoted by a ~ 1). This 
relation is defined as the smallest relation satisfying: 

* 
!l~!l 

* 
ea ~a 

* 
ae~a 

a~ JJ., 13 ~ 11 :::::. al) ~ JJ-11 

al~~a 
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al~~~ 
* [a] -H I a 
* a*~ eI a+ 

a+~ a(a*) 

D 

This definition of derivation gives the semantics to the different constructions of regular 
expressionso 
Definition 5.4 ( def:RE-Iang) 

The language La of a regular expres si on a is defined by La = { ro I 3ro E C *, a ~ ro} 0 

D 

The language of a context-free grammar consists of a set of strings of terminal symbolso 
By concatenating elements of the languages of the regular expressions corresponding to 
these terminal symbols, another language (in terms of characters rather than terminals) for 
the CFG is obtained. This language is a subset of the language of a scanner specification: 
Definition 5.5 (def:scan-lang) 

The language Ls of a scanner specification s = ( C, T, R) is defined by 
* {rol3(t1,a1) .. o(tn,an)E R,n~O, roE C*: (a1 .. oan)~ro}o 

D 

5.3 Recursive descent scanning 

LetS= (C,R,T) be a scanner specificationo In the sequel, all definitions will be given 
relative to this S 0 A scanner is a function that given an input string i returns pairs (t, j), such 
there exists an a which with (t, a) ER and aj derives i. lt obeys the following specification: 

Specification 5.6 (spec:scanner-rd) 

scanner :: REe x C* H Set(T x C*) 

* scanner i = {(t,j) l::lj : t ~ a,aj ~i} 
D 

A straightforward recursive descent implementation can be based on the function scan 
which obeys the specification: 

Specification 5. 7 (spec:scan-rd) 

scan :: REe xC* H Set(C*) 

scan a i = {j 1 3j : aj ~i} 
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D 

The implementations of these functions are: 

Implementation 5.8 (of specification (5.6)) 

scanner {(t,j) 1 t ~a, jE scan a i} 
D 

Implementation 

scan ei 

D 

scan x i 
scan (a~) i 
scan (a 1 ~)i 
scan [a] i 
scan a* i 
scan a+ i 

5.9 (of specification (5.7)) 

{i} 
{j I x: j ~i} 
{k 1 j E scan a i, k E scan 13 j} 

= scan a i*scan ~i 
= {i} *scan a i 

{i} *scan a+ i 
= {k 1 j E scan a i, k E scan a* j} 

(scanner-rd) 

(scan-rd) 

All possible scans are given by applying the following tunetion scanall to an input string: 

scanall e = {} 
scanall i = {t: scanall j 1 (t,j) E scanner i} 

5.4 Continuation-based scanning 

The recursive descent scanner presented above is not yet abstract enough for our purposes. 
We want to transform a scanner tunetion for a regular expression as such, that is, without 
referring to the input string. A means of obtaining a more abstract form is by rewriting our 
definition in a continuation-based form. The corresponding function is called Scan and is 
defined as follows, where A is an arbitrary set: 

Scan :: REe x (C* H Set(A)) H Set(A) 

Scanac = scana; c 

By some rewriting, we obtain the following equations: 

Scant: c i 
Scan x c i 
Scan (a[}) c i 
Scan (a 1 [}) c i 
Scan [a] c i 
Scan a* c i 
Scan a+ c i 

ei 
if hd i x then c (tl i) else {} fi 
Scan a (Scan 13 c) i 
Scan a c i*Scan 13 c i 

= c i* Scan a c i 
= c i* Scan a+ c i 
= Scan a (Scan a* c) i 

(5.10) 
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By introducing the following notations for respectively the union of continuations, character 
inspeetion and the terminal continuation: 

(CId) i Ci*d i 
x . 

(-7C)l 

(!t) i 
if hd i = x then c (tl i) else {} fi 

- { (t, i)} 

we can present the algorithm a little more abstractly by leaving out the parameter i: 

Scan E c 

Scan x c 
Scan (a~) c 
Scan (a 1 ~) c 
Scan [a]c 
Scan a* c 
Scan a+ c 

c 
x 

-7C 

= Scan a (Scan ~ c) 
= Scan a c 1 Scan ~ c 

ciScanac 
= d where d 

d where d 
c I Scan ad 
Scan a (c 1 d) 

Assuming that R = {(t1, a1), ... , (tk, <X!<;)}, we can write, substituting T xC * for the arbitrary 
set A: 

(5.11) 

Thus, the terminal continuations !tj are passed in at the top and only these are the ones 
that perform the actual symbol recognition at the bottom. The arbitrary set A allows to do 
something different at the bottom, something which we will exploit later in this chapter 
when presenting attributed scanners. 

Observe that is commutative, associative and idempotent Moreover, distributes over 
I , i.e. 

5.5 Deterministic scanning 

The definition of scanner in (5.11) can be rewritten by substituting for each expression 
Scan a c that occurs in the definition, the corresponding definition for Scan, depending 
on a. Since a decreases in each rewrite step, this process terminates, leaving no instanee 
of Scan bebind. The result is a set of equations, where each expression e is of one of the 

forms !t, ~ e, e I e or d, where d is a name introduced by a where-part. These narnes can 
be chosen to be all different and can be tumed into global declarations, rather than local 
ones. The resulting set of equations thus has the following form: 
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Our goal now is to rewrite this set of equations in such a way that is is maximally deter
ministic, which we define by: 
Definition 5.12 (def:max-determ) 

D 

A set of equations of the form defined above is ma.ximally de terministic if each equation 
is of the form: 

di !t1 I ... I !tk I ~ dh I ... I ~dim 
such that all ti and Xj are different. 

The two parts of the right-hand side of this equation can be interpreled as reduce- and 
shift-actions respectively in automata jargon. 
Throughout the transformations applied, we keep this set of equations minimal by never 
introducing a new definition d2 = e when a definition d1 = e already exists. Moreover, a 
choice e I e between two identical expressions e is reduced to e, since I is idempotent. 
Our goal is achieved by applying a number of rewrite steps: 

x 
1. First, every expression that is of the form -7 e, where e is not a name, is rewritten 

x 
into -7 d where d = e, where d is a new unique name, if e was not already bound 
to a name of course. Notice that only finitely many of these narnes are introduced 
due to the finiteness of the set of equations. 

The result is a similar set of equations, each of the form: 

di d1 I . . . I dn I !h I . . . I !tk I 
Xm 

dh I · .. I -7 dim 

This new set of equations can (but need not) be interpreted as a non-deterministic 

finite state autornaton (NFA), where each name d represents a state, expression ~ d 
represents a state transition under consumption of character x, e I e represents a 
non-deterministic choice and !t represents the acceptance of terminal symbol t. 

2. We still have to get rid of the di elements on the right-hand side in order to obtain 
maximal determinism. To achieve this, expressions of the form d1 I d2 are replaced 
by d3 where d3 e1 I e2, where e1 and e2 are the defining expressions for d1 
and d2. A definition d d I e can be replaced by the definition d = e due to the 
idempotency of I . This leaves at most one d on each right-hand side. This process 
is finite, since only a finite different number of right-hand sides is possible (modulo 
renaming of the d's). 

x 
3. Every expression that is ofthe form (-7 d1) I d2 (or !tI d2) (modulo communicativity 

x 
and associativity of I ) is rewritten into ( -7 d1) I e2 (or !t I e2), where e2 is the 
defining expression for d2, until no expression of this form remains. This process 
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corresponds to the computation of the e-closure of states in a NFA. It terminates 
since the number of possible right-hand sides is finite, due to the idempotency of 1. 

As a result, all remaining equations are of the form 

which is the desired form, but which does not guarantee maximal determinism yet, 
since the Xi need not be different. 

4. To achieve this maximal determinism, the expressions are rewritten by applying the 
identity 

x x 
d; I ~ d2 = ~ d3 where d3 = e; I e2 

where e;, e2 are the defining expressions for d; and d2. As a result a set of equations 
is obtained where each equation has the form 

X1 Xm 
di = !t; I ... I !tk I ~ di1 I ... I ~dim 

where all ti and Xj are different. 

These resulting equations can be interpreled as a minimal deterministic finite state automa
ton (MDFA). The determinism bas been obtained by the application of the last identity, 
finiteness is preserved through all transformations. Minimality is obtained by the sharing 
that is introduced by the binding of expressions to names, where all right-hand sides are 
different, a property that is maintained by the transformations that are subsequently ap
plied. In automata theory, minimality is obtained by identifying equivalent states, starting 
at the end of the autornaton and proceeding forward. 1 In our derivation, equivalent states 
(i.e. narnes bound to the same expression) are identified right from the start and remain 
identified tbraughout the transformation process, thus maintaining minimality. 

5.5.1 Inherent non-determinism 

When for an equation k > 1 , the scanner is ambiguons since more than one terminal symbol 
can be recognized. When k > 0, m > 0, another kind of conflict occurs, where one symbol 
is a prefix of another one. Usually, this latter conflict is resolved in favor of the longer 
symbol, but other choices can be made as well. solves an ambiguity of the first 
kind by accepting thát symbol t that is specified by a rule t ~ a. that occurs textually first 
in the scanner specification. The latter conflict is solved in the same way, except when 
both symbols have a fixed representation (i.e., its regular expression is a string, like : and 

in which case the Jonger one is preferred by default. This can be overruled by an 
annotation that favors the shortest. Ambiguities of the first kind and rules that become 
unreachable by this arbitration are reported to the user by means of warnings. 

1 This is equivalent to making the re verse autornaton deterministic. 
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5.6 Attributed scanners 

When a scanner must work in conjunction with an attributing parser, the scanner must 
be able to deliver symbol-attribute pairs, where the attribute is a function of the symbol 
representation. Such a scanner is a straightforward extension of ~he non-attributed one. 
Definition 5.13 (def:scan-ag-spec) 

An attrihuted scanner specification is a tuple (C, T,R,D, F) where 

• (C, T, R) is scanner specification. 

• D is a set of attribute values. 

• F :: T x C * H D is the attribution function. 

0 

The non-attributed scanner specificatien is generalized as follows to deal with attributes, 
substituting T x D x C* for the arbitrary set A. 

Ascanner :: C*HSet(TxDxC*) 

Ascanner i = { (t, F t (i/j), j) 1 3j : t -7 a., a.j ~ i} 

The continuation-based implementation changes as follows: 

Ascanner i (Scan a.1 (f t1 i) 1 .•• 1 Scan a.k (f tk i)) i 
where ft ij = (t, Ft (i!j),j) 

Note that the question whether this scanner is deterministic or not is not an issue, since 
all possible results are retumed. The result delivered by a continuation-based scanner is 
completely bidden in the initia! continuations passed by Ascanner. The function Scan is 
exactly the same in the attributed as in the unattributed case. The fact that the scanning 
process itself is independent from the attribution is obtained by the abstract form expressed 
in the continuation-based version. Only the final continuations f tk i are affected by the 
attribution. 
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Chapter 6 

Types and patterlts 

6.1 Introduetion 

In this section we discuss different aspects of type systems as they are found in func
tional and imperative languages. Functional type system offer many advanced abstraction 
mechanisms, such as parameterized types, polymorphism, laziness and pattem matching. 
Imperative languages offer sub-typing, object-orientedness and explicit strong typing as 
major mechanisms. We show how these typing mechanisms from functional and imper
ative languages have been combined into the type system. It appears that by 
combining sub-typing and pattem-matching, pattems can be interpreted as sub-types. E.g. 
the non-empty list can be denoted by a pattem and since the set of non-empty lists is a 
sub-set of the set of all lists, the non-empty list pattem is a sub-type of the list type. By 
viewing pattem as sub-types, pattem-matching becomes equivalent to type-analysis. We 
present a format definition of the Elegant type system and derive from this definition, 
by means of algebraic program transformations, an efficient mechanism for type analysis, 
i.e. pattem matching. 
In lazy functional languages, laziness is implicit: no distinction is made in the language 
between unevaluated (lazy) objects and evaluated ones. Lazy objects are much less efficient 
to imptement than evaluated ones and, as a consequence, advanced techniques like strictness 
analysis have been designed by the functional programming community in order to let a 
compiler derive this distinction again. In an imperative language, implicit laziness would 
present a major problem for programmers. Since the order of evaluation is important in an 
imperative language, the programmer should be able to control this, and implicit laziness 
with implicit evaluation does not particularly offer this required controL solves 
these problems by offering explicit laziness. The construction of unevaluated objects and 
their evaluation is completely tinder the control of the programmer. Explicit laziness is 
implemented by offering predefined lazy types, instances of which represent unevaluated 
objects. Since in an imperative environment the number of times a lazy object is evaluated 
makes a difference in semantics, different variants of lazy types are supported, which are 



142 CHAPTER 6. TYPES AND PATTERNS 

distinguished by their ability to remember the result of a previous evaluation. One of these 
lazy types appears to be useful in the construction of interactive systems. 
Some imperative languages offer an empty type, like void in C or VOID in Algol-68. 
Elegant generalizes this concept by allowing multiple empty types, which can be user
defined and which are discriminated by the type system. This allows the grouping of 
sicte-effects into different classes that can not be mixed up. While an empty type has no 
instances and thus represents a side-effect, a lazy empty type can have instances which 
represent an unevaluated side-effect, and it indeed forms an important construction that is 
very frequently used by E programmers, especially in code generation, where the 
unevaluated side-effect represents the writing of code to file. 

6.2 Typing in functional languages 

In this section we give a brief overview of the most important aspects of type systems in 
modern functional languages. These aspects are analyzed and discussed. The proposed 
improvements have been incorporated in the Elegant type system. Of these, the sub
typing mechanism which combines naturally with pattem matching as type analysis is the 
most prominent. 

6.2.1 Typing and pattern matching in functional languages 

Functional languages like Miranda [Tur86] and Haskell [HWA+92, HF92] have a type 
system basedon algebraic data types, also-called sum of product types. A type is declared 
as the disjoint sum of tuples. Each disjunct is identified by a so-called constructor. Each 
element of a tuple is called a field. As an example, the following is a definition of a binary 
tree type over the integers: 

Tree LEAF Int I BRANCH Tree Tree 

The type Tree has two constructors, LEAF and BRANCH, identifying tuples with fields 
of type Intand of type Tree and Tree respectively. Generally, typescan be parameterized, 
such as the following example defining a binary tree type which is parameterized over the 
element type A: 

Tree A LEAF A I BRANCH (Tree A) (Tree A) 

Abstract data types can be combined with pattem matching in a very natural way, which 
is heavily used in functional programming. It allows the programmer to specify a function 
as the union of several partial functions, so-called rules, by restricting an argument of a 
rule to a single constructor. If rules overlap, certain disambiguation rules are needed to 
chose between them. In we have chosen the textually first one. For example, 
the following function reflects a binary tree: 

reflect (LEAF x) = LEAF x 
reflect (BRANCH x y) = BRANCH (reflect y) (reflect x) 
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The first rule applies only to leaves, the second only to branches and the two rules tagether 
form a total function of type Tree A H Tree A. 
A function defined by pattem matching need not be total, such as the following function 
that returns the left branch of a tree. It is not defined for leaves. 

left (BRANCH x y) = x 

Functionallanguages often support implicit typing, that is, it is not necessary fora program
mer to explicitly state the type of a variabie (or function). The compiler can infer the (most 
general) type for each variabie by means of a type inference mechanism [Hin69, Mil78], 
based on unitkation of type variables. Such an implicit type system allows a compact 
notation of programs, where the attention can be focused completely on the algorithms. 
Most programs presented in this thesis are given without any typing information. Such a 
concise notation is a blessing for educational purposes of small functions and algorithms. 
When it comes to software design in the large, the story is rather different. Here, typing 
information forms an essential part of the documentation of the software and a compiler 
would spend a considerable amount of time on the inference of types that are not specified 
by the programmer. The programmer should be able to write down these types easily 
(otherwise he does not know what he is writing altogether) and in that way both document 
his programs and speed up the compilation process. Moreover, the theory of type inference 
is rather subtie and should be re-thought for relatively simpte modifications of the type 
system, like actding sub-typing or overloading. 
For these reasons, and to keep things simple, Elegant bas an explicit type system and 
we consicter explicit typing for the remaioder of this chapter, which does not keep us from 
presenting untyped programs! 

6.2.2 Draw-backs of abstract data types 

Abstract data types, as they appear in main-stream functional languages, have one impor
tant draw-back from the point of view of software engineering: they lack extensibility. 
Although new constructors are added easily, actding a new field is cumhersome since all 
rules defined by pattem matching must be modified, even if they are oot accessing the new 
field. Changing the order of the fields within a disjunct is even more problematic. Again, 
all pattems for the constructor must be modified. In combination with implicit typing or 
when swapping two tielcts of equal types, it cao happen that forgetting to modify a pattem 
is oot noticed at compile time, but will result in an erroneous program. 
All these problems stem not from the notion of algebraic data types as such, but from 
the fact that fields have no name. They are only bound to a name in pattem matching 
and the pattem must list all fields in the correct order. We call this practice positional 
pattem matching. From the point of view of software engineering, it is preferabie to have 
named fields, where the narnes are declared in the type declamtion and where pattems use 
these narnes in referring to the fields. It is then not necessary to list all the fields for a 
constructor in a pattem, so that actding a field does not require the modiikation of any 
associated pattem. It is unclear why such a simple extension bas oot been included yet in 
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functional languages. lt may be the case that a drive for conciseness is the simultaneous 
reason for implicit typing and nameless fields. Another reason may be the fact that a 
function should be self-contained: named fields in pattems can only be interpreted in the 
context of a type definition, which complicates the application of program transformations. 
The positional pattem matching of fields has a counterpart in function calls: the binding 
between formal and positional argnments is positional rather than name-based in most pro
gramming languages, both functional and imperative. Exceptions are Modula-3 [CDG+88] 
and Ada [US 83]. We could present a defense of name-based parameter passing analogous 
to name-based pattem matching, but things are less clear in the case of parameter passing. 
One does not want to write down parameter narnes for simpte applications, i.e. common 
functions of a few arguments, like e.g. addition. In this respect, Modula-3 allows both 
positional and name-based parameter passing, and even mixed versions. The definition of 
parameter binding in the mixed case is rather complicated however and experience has 
shown that named-based binding is rarely used. In some cases, it is practical however, 
especially when functions with many arguments are involved, most frequently constructor 
functions, which are presenred in section 6.2.4. 

6.2.3 Sub-typing 

Abstract data types, as they appear in main-stream functionallanguages, do not support sub
typing, although it is nowadays custom to view a type that is the disjoint sumofother types 
as a super-type with sub-types, the so-called type extensions (see e.g. [Wir88b, CDG+88]). 
An instanee of a sub-type is also an instanee of its super-types. This removes the distinction 
between types and constructors, the constructors being mere sub-types of the algebrak data 
type. It allows the sub-typing of constructors to an arbitrary depth. A sub-type contains 
the fields of its super-types and may add additional fields to these. 
The binary tree example may thus be modified in the following way (using named fields): 

type Tree A 
Leaf A < Tree A 
Branch A <Tree A 

value: A 
left : (Tree A) 
right: (Tree A) 

This piece of code defines three types, Tree, Leaf and Branch. The latter two are defined 
as direct sub-types of the former. 
If not only leaves hold values, but branches as well, the value field can be moved to the 
super-type: 

type Tree A 
Leaf A 
Branch A 

= value: A 
<Tree A 
< Tree A = left : (Tree A) 

right : (Tree A) 

Multiple inheritance, where a type can have multiple super-types, can also be examined, 
but is beyond the scope of this thesis. 
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Pattem matching in combination with sub-typing can now be interpreted as type analysis. 
A rule is a partial function, defined only for a subset of the total domain, where pattems 
are used to indicate that subset. The run-time pattem matching process can be interpreted 
as type analysis, analyzing the types of the actual arguments, to select the appropriate rule. 
In section 6.4 we give an efficient implementation of pattem matching as type analysis. 
The tree reileetion function, based on named fields and sub-typing, now becomes for the 
first version of the type Tree: 

reflect (x : Leaf) = x 
reflect (x: Branch) = Branch (reflect x.right) (reflect x.left) 

And for the second version: 

reflect (x : Leaf) = x 
reflect (x : Branch) = Branch (x.value) (reflect x.right) (reflect x.left) 

The compiler should check that a field access only occurs when the left-hand side has a 
type allowing that access. Thus, the following function is erroneous, since not every tree 
has a field left: 

left (x : Tree) = x.left 

6.2.4 Constrodor fundions 

In most functional languages, when an algebrak data type defines a constructor C, a 
constructor function C is defined implicitly. This function is used to create new instances 
of the type corresponding to the constructor. We have been using it silently already. The 
arguments of this function are the fields defined for the constructor. Each sub-type has a 
constructor function associated with it, whereas the super-type has not. This however, can 
be generalized. The programmer should decide whether or not a constructor function is 
associated with a type or not, regardless of the place of a type in a type hierarchy. A type 
without a constructor function can not have instances itself and is called abstract. This 
should be the case for the type Tree in our example: 

type Tree A 
Leaf A 
Branch A 

= value : A abstract 
<Tree A 
< Tree A = left : (Tree A) 

right: (Tree A) 

The type Tree does not have a constructor associated with it, but the types Leaf and 
Branch do have constructors. 

6.2.5 Predefined fields 

Named fields open up another possibility, namely that of fields whose value is deterrnined 
at construction time, by a fixed expression over other fields. Such fields are (in the absence 
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of side-effects) of course only useful for the increase of efficiency, since their value could 
easily be recomputed from the other fields, each time it is needed. Of course, a predefined 
field does not appear as an argument of a constructor function. As an example, a binary 
tree of integers, where each node stores the sum of the values in the leaves beneath it, is 
defined as follows: 

type Tree 
Leaf 

= abstract 
< Tree value : Int 

sum : Int = value 
Branch < Tree left: Tree 

right: Tree 
sum: Int= left.sum + right.sum 

Such an optimization can be bidden in a function sum: 

sum (x : Leaf) 
sum (x : Branch) 

x.value 
sum x.right + sum x.left 

that has a more efficient implementation in the case of a pre-defined field: 

sum (x: Tree) = x.sum 

This example shows a complication with this approach: the two fields sum are completely 
unrelated and might even have different types, thereby making the last function erroneous. 
This can be solved by declaring the field sum for the super-type: 

type Tree 
Leaf 

sum :Int abstract 
< Tree value : Int 

sum =value 
Branch <Tree = left: Tree 

right: Tree 
sum left.sum + right.sum 

Here, the super-type declares the field sum, while the sub-types define the expressions for 
it. It is not necessary that all sub-types do this. A sub-type not defining a value for such 
a field simply requires that a value for the field should be given as an argument to the 
corresponding constructor function. 
The absence ofthe necessity tomention all fields fora constructor in a pattem has another 
advantage, namely that multiple constructors can be mentioned in a single pattern, as in 
the following example: 

sum (x: (Leaf 1 Branch)) = x.sum 

In such a case, the fields for the lowest common super-type of the mentioned sub-types 
(in this case type Tree) are available in the pattem and the defining expression on the 
right-hand side. 
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6.2.6 Enumerated types 

In [Wir88b], Wirth argues that enumerated types should be abandoned, since their only real 
purpose would be to serve as a discriminator in variant types and that this construction is 
better implemenled by type extensions. This statement has given rise to a lively discussion 
about enumerated types [Cas91], [Lin90], [Sak91]. 
However, given a type system with sub-typing and abstract types, enumerated types come 
for free. As a matter of fact, this is the way enumerated types are usually mimieed in 
a functional language offering algebrak data types. An enumerated type T (A, B, 
... ) can be implemented as an abstract root type T, with non-abstract sub-types A, B, etc., 
non of which have fields. In this case, assuming no side-effects, the constructor functions 
are nullary and each type A, B, etc., has exactly one instance. These instauces can be 
mapped onto integers by an implementation. This is a much better definition than the usual 
one for enumerated types (e.g. the one of Pascal (BSI82] or Modula-2 [Wir85]), which 
involves a type and implicitly defined constants for that type, in contrast with the rest of 
the type system. In our case, enumerated types are a special forrn of the types definable 
by the type system. They are easily generalized, e.g. by allowing an arbitrary level of 
sub-typing, or by allowing fields, provided that the constructor function remains nullary. 
In an imperalive language, things become somewhat more complicated, since a nullary 
constructor function need not return the same object upon subsequent invocations. It might 
e.g. allocate a new object each time it is invoked. This problem can be overcome by 
memoizing constructor functions, guaranteeing that identical invocations deliver identical 
results. 

6.2. 7 Type classes 

As a response to the class notion in object-oriented languages, where a class not only defines 
a data-type but also a set of operations for that type, the notion of a type class in functional 
languages was introduced [HWA +92, WB89]. When polymorphic types and functions are 
available in a language, it is often convenient to assert that a type-valued parameter has 
certain properties. E.g., in a sort function defined on a domain T, it is convenient to know 
that s is defined on T. If this knowledge is absent, the ordering function must be passed as 
a parameter to the sort function. Certain built-in functions can be polymorphic and have a 
dedicated notation, such as {i..j} being shorthand for from_to i j. This particular function 
can be polymorphic only for domains on which <, and succ are defined. 
A type class allows the programmer to assert that a certain type variabie 't belongs to a 
certain class C, guaranteeing that 't supports the operations declared for the class C. When 
an actual type t is substituted for 't, the type t must be declared to be an instanee of C. 
Such an instanee declaration must provide the implementation of the operations required 
by the class. 
In the following example, the class supprts the operations and I=, the class 0 rd 
extends Eq with the operations <, <=, >= and >. The function sort assumes that the 
element type is an instanee of the class Ord. 
Example 6.1: Type classes in Haskell 



148 CHAPTER 6. TYPES AND PA1TERNS 

class Eq a where 
( ) 1 (/=) •• a -> a -> Bool 

x/= y -(x== y) 

class a) => Ord a where 
(<) 1 (<=), (>=), (>) .. a -> a -> Bool 

x < y = x <= y && x I= y 
x y y <= x 
x > y y < x 

instanee Eq Int where 
(==) PrimEqint -- Built in 

instanee Ord Int where 
(<=) PrimLeint -- Built in 

sart .. (Ord a) => [a] -> [al 

sart [ l [ l 
sart (a: 1) sort [ x I x <- 1 x a l ++ 

[a] ++ 
sort [ x I x <- 1 , x > a ] 

0 

Elegant does not support a notion of type classes. It is a relatively new language con
struction that is in our opinion not mature enough to deserve incorporation yet. Moreover, 
a type class can be mimieed by a parameterized type Class(T) that contains a number 
of fields which are functions over T, namely those functions that a type class defines. 
A polymorphic function over type T can then be given explicitly such a class object as 
an extra parameter. The current Haskell implementations implicitly add such an object, 
called a dictionary. In this way the problem comes down to either explicitly or implicitly 
manipulating dictionaries. The following example shows such class types for Eq and Ord: 
Example 6.2: Class types 

type Eq(a) = 

Ord(a) < Eq(a) = 

0 

(=) :: a H a H Bool 
(:;t:) :: a H a H 8001 À.X, y. - (X= y) 
(<)::a Ha H Bool = À.x, y.x "> y A x"# y 
(">) :: a H a H Bool 
G~) :: a H a H Bool = À.x, y.y ">x 
(>)::aH aH Bool = À.x,y.y <x 

When calling a function like sort, the proper class type should be passed as an additional 
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argument. In the Haskell implementation, such an additional argument, called a dictionary, 
is passed implicitly. 

6.2.8 Enabling conditions in rules 

Apart from specifying the domain of a rule (i.e. a partial function) by means of pattems, 
an arbitrary boolean expression, a so-called guard, over the arguments of the rule can also 
be used in many functional languages to specity a restrietion of the domain. For example, 
the following function compotes the sum of all positive leaves in a tree: 

psum (x : Leaf) 1 x.value < 0 
psum (x : Leaf) 1 x.value ;;::: 0 
psum (x: Branch) 

6.2.9 Explicit lazy typing 

= 0 
= x.value 

psum x.right + psum x.left 

In lazy functional languages, no distinction is made between evaluated and unevaluated 
objects (closures): laziness is implicit. This implicitness has its price in implementation 
costs. In a naive implementation (like an SKI combinator implementation) every object is 
packed in a ciosure and stored in the heap. More advanced implementations, e.g. the one 
described in [Sme93], use strictness analysis or programmer annotations to avoid packing 
objects in ciosures and imptement parameter passing on the stack where possible. 
Another approach, which is for the programmer more cumhersome but much more effi
ciently implementable, is to distinguish explicitly between objects and closures. This can 
be done by distinguishing between a type (e.g. Int) and a lazy type (lazy(lnt)). It places 
on the programmer the burden of explicitly postponing evaluation by the creation of clo
sures. He must also explicitly indicate the laziness of fields in data structures. E.g. the 
types List(lnt), List(Lazy(lnt)), Lazy(List(lnt)) and Lazy(List(Lazy(lnt))) become all dis
tinct. But this is the price to be paid for an efficient implementation as long as strictness 
analysis within data structures is not routinely done automatically. 
Explicit laziness can also be introduced in an imperalive language. There, it is not a loss 
of abstraction, but an enrichment, since it allows the programmer to deal with unevaluated 
expressions. Of course, the presence of side-effects implies that a later evaluation may 
deliver another result than an earlier evaluation. It raises the question whether the repeated 
evaluation of a single ciosure should deliver identical values or not. A way out of this 
problem is to put the choice on the programmer again and distinguish between a type 
Lazy(T) (identical results by repeated evaluations) and a type Closure(T) (possibly distinct 
results by repeated evaluations). In this case, the type Lazy(T) will be more efficient since 
there is no need for actually re-evaluating an ciosure already evaluated. 

6.2.10 Side-effects 

In a functional language the notion of a modifiable state is absent and hence the notion of 
a side-effect. This allows a clean and simple semantics of such a language, at the price of 
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efficiency. But it is not necessary to abandon all side-effects. The following sicte-effects 
can be allowed: 

• Modification of part of the state that is never inspected. 
This allows file output to be treated as a sicte-effect and be implemented in that way. 
The introduetion of a special type Output is useful for this purpose. Semantically it 
is a write-only string of characters, but it can be implemented by writing directly to 
a file, rather than by creating a string. 

• Modification of part of the state that is not inspected after the modification. 
Since a notion of the order of the computation is not present in functionallanguages, 
it is a problem to reason about this kind of side-effect. This only seems feasible if a 
program is partioned into different parts, where one writes part of the state and does 
not read it, and the other reacts it after the writing, with some proper synchronization 
mechanism between them. 

• Modification of part of the state that is not inspected befare the modification. 
This is the counterpart of the previous possibility with the same solutions. 

• Modification of part of the state that is only inspected by the modification operation 
itself. 
This kind of sicte-effect has very interesting applications. It means that variables 
with a reference count of 1 (assuming a reference count garbage collector) may be 
updated, since the only accessing part of the program is the updating of the variabie 
itself. This kind of sicte-effect allows the efficient implementation of a symbol-table 
as explained in section 4.8.5, where each intermediate symbol-table is used only to 
store the next declamtion and only the final symbol-table is really accessed. Such a 
symbol-table can be implemented as a global variabie that is updated by sicte-effects 
and access to the final table synchronizes on these side-effects. A typing mechanism 
that distinguishes objects that are treated in this way could be designed so that such 
a single reference behavior is enforced by this type system. See e.g. [Wad9l] for 
a proposal in this direction. In [Wad91] special array types are proposed with this 
behavior which allow a CX) ) update implementation, something which is stilllacking 
in functional languages. A rather novel approach to the incorporation of modifiable 
state in functionallanguages can be found in [Wad92, Wad90]. It is basedon monads, 
a class of abstract data types that can be used to enforce that states are passed in a 
linear fashion between operations, thereby allowing them to be modified. 

• Automatic recomputation of those objects that depend on the modified variable. 
In interactive systems based on attribute grammars, like certain syntax directed ed
itors, incremental evaluation is used to recompute that part of a data structure that 
is affected by a user interaction. See e.g. [VSK90, RT88, Vog90]. Such an inter
action can be seen as a sicte-effect on a consistent data structure, thereby making it 
inconsistent, and foliowed by a recomputation to restore consistency again. Such a 
system need not be based on attribute grammars, but can use a more general func
tional language in which certain variables are modifiable, either by user interaction, 
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or by the system itself. Some automatic recomputation mechanism takes care of the 
recomputation of that part of the computation that depends on the affected variables. 
Such a system would be a very interesting vehicle for the implementation of inter
active systems. 
Elegant supports this automatic recomputation by means of the predefined types 
lncr(T) and Vincr(T). An lncr(T) object i is a ciosure and evaluation of such an ob
ject performs a re-evaluation when another lncr or Vincr object on which a previous 
computation did depend bas been changed since the previous evaluation of i. Vincr 
objects are not closures, but bound to a value rather than to an expression. They may 
be assigned to. This whole process is comparable to the Unix 'make' facility. The 
Vincr objects are sourees that can be modified, the lncr objects are targets that are 
automatically recomputed when necessary. Insteadof maintaining the consistency of 
a set of files, a data-stroeture can be kept consistent in this way. 

Especially the first kind of side-effect is easy to implcment and to deal with for a program
roer, since it is semantically equivalent to a write-only string. 

6.3 Semantics of typing and pattern matching 

In this section we present a format semantics of the functional type system and pattem 
matching presented in section 6.2. We show that pattems can be regarded as type expres
sions denoting sub-types. 

6.3.1 Definition of a type system 

Definition 6.3 (type-system) 
We define a type system as a tuple (Tp,Tu, F, D, <,lp, Inst,Abstr), such that 

• Tp is a finite set of predefined type names. 

• Tu is a finite set of user-defined type names, T11 n Tp = {}. 
• T 1p u Tu is the set of all type names. 

• F is a finite set of field names. 

• D is a function that maps a user-defined type name onto its type definition, 
0 E Tu H (F x T)*. 

• Abstr ç Tu is the set of abstract types. 

• < is the sub-type relation defined on Tu x Tu. 

• lp is a set of sets of predefined instances. 

• lnst :: Tp ~lp is the instanee function which associates with each predefined 
type the set of its instances. 
We write lt to denote lnst(t). We assume that {11 I tE Tp} is a partition of lp. 

• We assume linear inheritance, i.e. Vs, t, u E Tu : s <tAs< u => t < uv u < 
tV U t. 



152 CHAPTER 6. TYPES AND PATTERNS 

• A sub-type may add fields to a super-type: 
Vt, U E Tu : t < U :::::> 
(3k 2:: O,n 2:: k: D(t) = {f1, ... , fk,·· ., fn} 1\ D(u) {f1, ... ,fk}) 

0 
We will often use the word type for a type name. Note that D(t) is not defined for predefined 
types. 
The following definition will prove useful in the sequel: 
Definition 6.4 (proper-sub-type) 

If t < u, we call t a proper sub-type of u and u a proper super-type of t. 

0 

Definition 6.5 (sub-type) 

0 

We define the relation ::;; on T as the reflexive and transitive ciosure of< for elements 
of Tu. For t, u E Tp, we have t ::;; u = t = u. The re lation ::;; is empty otherwise. 
If t ::;; u we say that t is a sub-type of u and that u is a super-type of t 

Definition 6.6 (root-type) 

D 

If -.(3t, r < t), we say that r is a root-type. Note that a predefined type is always a 
root type. 
The root type R1 of a type t is the root type u, such that t ::;; u. lt is unique due to the 
linearity of the subtype relation. 

Definition 6. 7 (compatible-types) 
Two types t and U are comparable if t ::;; U v U ::;; t. 

D 
Definition 6.8 (siblings) 

Two typestand U are siblings if R1 Ru. 

D 

Definition 6.9 (les-type) 

D 

The least common super-type u of two sibling types s and t is the smallest type u E T, 
such that s ::;; u, t ::;; u. We denote this type by u s Ut. 

6.3.2 Instauces 

We continue with presenting definitions. The ones in this section are concerned with 
instances. 
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Definition 6.10 (instances) 

0 

Wedefine thesetof proto-instances for the type system (Tp, Tu,F ,D, <,lp,lnst,Abstr) 
as the smallest set /o satisfying Io lp u (Tu x (F x Io)*). We write f = 0 for elements 
(f,o) of F x/0 and f: t for elementsof F xT. 

Definition 6.11 (belongs-to) 
Wedefine - (belongs to) as the smallest relation on /0 x T which satisfies 

0 

0-t te Tu\AbstrAO=(t,{f1 =01, ... ,fn=On}) 
AD(t)={f1 :t1, ... ,f0 :tn},oi-ti.1 :::;i:::;n 

vt e Tp AO e 11 

Observe that this relation is empty for abstract types. 
Definition 6.12 

0 

If t is not predefined, we define 11, the set of instances oft, as 
lt={OI3ueTuu:::;t,oel: o-u}. 

(instances-t) 

Definition 6.13 (wf-inst) 
We define the set of well-formed instances., or simply the set of instances for a type 
system as the set I ç /0 , such that, 
Vo e I : 3t e T : o - t. 

0 

In the sequel we deal with well-formed instances sets only. 
We can observe that U:::; t = Iu ç lt. 
Definition 6.14 

0 

Wedefine 't(O): I H T, the (dynamic) type ofo by 
't((t,{f1 =01, ... ,fn =On})) t 
tE Tp A 0 E I,~ 't(O) = t 

(type-of-instanee) 

Definition 6.15 
We de fine o.f · · 
i:::; n. 

( field-of-instance) 

lxF Hl,thef-jieldofoby: (t,{f1 =Oj, ... ,fn On}H Oj,1:::; 

0 

6.3.3 Constructor functions 

With each non-abstract user-defined type t, we associate a constructor function Ct. This 
function creates an instanee of t. We will not model predefined fields, which requires a 
simple extension of the definition of a type system. 
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Definition 6.16 (constr-function) 

D 

Given t E Tu \Abstr, with D(t) = {f1 : t1, ... , fn : tn} and objects Oi - ti, 1 :::; i :::; n, the 
constructor function C1 is defined as: 

6.3.4 Patterns 

In this section we define the notion of a pattem and show that it is a generalization of the 
notion of a type, in the sense that the operations on types extend to pattems. 
Definition 6.17 (pattems) 

D 

Given a type system S = (Tp, Tu, F, D, <,lp, Inst, Abstr ), we define the set of patterns 
forS as the smallest set P satisfying (writing f: p for elements (f, p) E P): 

• P ç Tu x (F xP)* 

• 'v'p E p' p = (t, {ti, : P1 ' ... ' fik : pk}) : 
D(t)={f1 :t1, ... ,fn :tn}A{i1, ... ,ik}ç{1, ... ,n} 1\ 

(ij = im ~ j = m) A T(pj) :::; tii 

• 'v'p E P, p is fini te. 

Where T(p), the type of p is defined as 

• T((t,{f1 :p1, ... ,fn:Pn}))"=t 

Note that pattems for predefined types do not exist. 
Definition 6.18 (belongs-to-pattem) 

D 

We define the relation - (belongs to) on I x P as the smallest relation satisfying: 

0 - P = P = (t, g, : P1, · · · , fin : Pn} )/\ 
0 E I, 1\ /\~1 (O.fjj - Pi) 

Definition 6.19 (instances-of-pattem) 

Given -, we define lp, thesetof insfances of p by lp= { 0 I :JoE I : 0- p }. 

D 

The partial order :::; on P is defined by p :::; q = lp ç lq. It is a natura! extension of:::; on T, 
since for a pattem with no fields (t) :::; (U) = t :::; u. Note that for any p, lp ç lr(p) holds. 
Thus, a pattem can be seen as a generalization of a type, and pattems can be treated as 
types, i.e. pattems can be allowed as types for variables, fields and formal arguments. 
When pattems are allowed as a type in a field declaration, our notion of a type system must 
be revised, which is something we will not do here. 
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6.3.5 Rules and functions 

In this section we define the semantics of rules and functions defined by means of pattem 
matching. We do so by giving a transformation from a rule defined by pattem matching 
onto a rule defined without pattem matching, without giving semantics for the latter, since 
this is not the purpose of this section. 
A rule denotes a partial function, where pattems and conditions restriet the argument do
mains. A rule r has the form: 

f (X1 : P1) ... (Xn : Pn) I Cr =er 

Here, f is the function name, Xi an argument name, Pi is a pattem, Cr a condition (boolean 
expression) and er is an expression. The condition and expression have the function and 
argument narnes in scope. 
The semantics of a rule is given by defining that it is equivalent to the following rule, 
which is pattem free: 

f X1 ... Xn = if X1 - P1 1\ ..• 1\ Xn - Pn 1\ Cr 
then er 
else l. 
fi 

We write [Pr] to abbreviate X1 - P1 1\ ..• 1\ Xn - Pn for rule r. 
A function f is defined by a sequence R1 of rules, which all have the same name f. The 
ordering of this sequence is in the case of Elegant determined by the textual order of 
the rules. This order is used in disambiguating the choice between rules with overlapping 
pattems. We assume that all these rules have the same arity, share equal argument narnes 
for corresponding arguments and that corresponding argument and result types are siblings. 
We define the semantics of Rt by giving a transformation that maps it onto a function 
defined by a single, pattem-free rule. This single rule is given by: 

f Xj ... Xn = head {er I rE Rt,[Pr],Cr} 

Suppose that a function f is specified by the following rules: 

f Pm1 ... Pmn I Cn = em 

then it is required for the rules to be consistent that 

• T(Pij) and T(pkj) are siblings. 

• T(ei) and T(ej) are siblings. 

and the type Tt of the function is given by: 
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Thus, the types of the parametersandresult are the least common super-types of the types 
over the different rules. Observe that these need not be root types. As a consequence, a 
caller of a function may have to check at run-time that the actual arguments of a function 
are indeed instances of this super-type in the case that the type of an actual argument 
happens to be a super-type of the corresponding parameter type. If this happens to be the 
case, a compiler should wam that such a check is included. In turn, the callee must analyze 
the types of the arguments further to select the proper rule. The checking at the eaU side 
may interfere with laziness that requires the unevaluated passing of an argument. In that 
case, the callee might perforrn the type checking as part of its pattem matching process. 

6.4 Compilation of pattern matching 

Since pattem matching plays such an important röle in functional programming, its efficient 
implementation is of utmost importance. In this section we show how by means of a series 
of program transforrnations, pattem matching can be compiled into case expressions, such 
that (the type of) each argument or field is inspected at most once. We believe that our 
presentation is substantially simpler than those given in [Aug85, Wad87, Oph89]. Moreover, 
by interpreting type constructors as sub-types we avoid the problem of combining variabie 
with constructor pattems that appear in [Aug85, Wad87] as the so-called mixed rule, which 
was improved but not eliminated in [Oph89]. We simply do not distinguish between a 
variabie (super-type) and a constructor (sub-type). The fact that we use named fields rather 
than the unnamed ones of common functional languages avoids the introduetion of new 
variables and allows us to use more general pattems, as not every field needs to be specified 
in a pattern. 
The essential differences between our approach and [Aug85, Wad87, Oph89] is that the 
latter base their algorithm on the notion of .failure of pattem matching, while our pattem 
matching algorithm delivers a list of successes. This style is also advocated by Wadier in 
[Wad85]. This makes our pattem matching algorithm compositional, in the sense that each 
rule can be compiled into a case-analysis and that these case-analyses can be combined by 
the * operator on lists, which is associative and in this particular case even idempotent, 
though not commutative, since the order of the rul es is of importance. Due to the simplicity 
of our compilation scheme, we are able to prove its correctness by basing it on the semantics 
of pattem matching. 
Since supports explicit laziness, and since we do not allow pattem matching on 
arguments of a lazy type, we need not worry about a pattem matching algorithm that is 
fully lazy, i.e. one which only evaluates arguments when it can not be avoided for the 
selection of a rule. For a treatment of lazy pattem matching, see [Lav88]. 

6.4.1 Patterns and types 

Since a type can be sub-typed and an instanee of a sub-type is also an instanee of the 
super-type, a pattem specifying a type matches all instances of that type, and hence also 
the instances of its sub-types. Thus, a pattem matches not a single type, but a whole set 
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of (sub-)types in a type hierarchy. We assume that an instanee carries its typewithit and 
this type can be inspected by the pattem matching process. In the sequel we show how 
such pattem matching (which can also be viewed as type analysis) can be implemenled 
efficiently. 
The example that we use as an illustration is taken from [Wad87, Oph89]. We assume the 
following type definition: 

type List A = abstract 
Nil A <List A 
Gons A < List A head : A 

tail : (List A) 

The following function mappairs takes a function and two lists and applies that function 
pairwise to the elements of the lists. 

r1 : mappairs f (x : Nil) (y : List) = Nil 
r2 : mappairs f (x : List) (y : Nil) = Nil 
r3 : mappairs f (x: Gons) (y: Cons) 

= Gons (f x.head y.head) (mappairs f x.tail y.tail) 

For example, the call mappairs ( +) { 1, 2, 3} { 4, 5, 6, 7} delivers the list { 5, 7, 9}. 

6.4.2 Naive implementation of pattern matching 

We show a naive implementation of a function matching that delivers the sequence of 
matching rules, given the actual arguments of a function. This function must obey a well
formedness condition: it may only inspeet a field a.f after a has been inspected and it 
follows from this inspeetion that a indeed has a type for which field f is defined. 
We first define a mapping from the sequence of patterns Pr for rule r onto a boolean 
expression that tests the matching for r. The enabling condition for a rule r is denoted by 
C and the expression that forms the body of the rule by e. The mapping is denoted by 
the circumfix operator [.]. We let a range over (forma!) arguments, pover patterns and f 
over fields, T over types and s over so-called selectors. A selector is defined as either a 
forma! argument a or a selector indexed by a field, s.f. The selectors form a subset of the 
set of expressions (that we do not define here further). An expression and hence a selector 
can be evaluated to an instanee (in a given context). We will denote this instanee by the 
expression (selector) and thus extend the operations on instauces (like - p) to expressions 
and selectors. For convenience, we write sE t for 't{S):::::: t. The mapping is specified by: 

Specification 6.20 (spec:pattem-match) 

• [S1 : P1 ... Sn : Pn] :: (selector x P)* H Bool 
= [S1 : P1ll 1:\ ··.I\ [Sn: Pn] 

• [s: p] :: selectorxP H Bool 
s-p 

0 
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A recursive definition, not making use of the - relation, is obtained by rewriting the second 
part of this definition: 

Derivation 6.21 

D 

[s: (t, {f1 : P1 ... fn: Pn})] 
= (definition of [.]) 

S - (t, { f 1 : P1 .. · f n : Pn }) 
(definition of-) 

s E I, 1\ s.f1 - P1 1\ .•• 1\ S.fn - Pn 
= (definition of Ir and induction, reeall that Pi is finite) 

1:(S) :::; t A [s.f1 : P1] A ••• A [S.fn : Pn] 
= (convenient notation) 

sE t A [S.f1 : P1] A ••• A [S.fn : Pn] 

Summarizing, the mapping is defined by: 

lmplementation 6.22 (of specification (6.20)) 

D 

[S1 : P1 ... Sn: Pn] [S1: P1] A··· A [Sn: Pn] 

[S: (t, {f1 : P1 ... fn: Pn})] 
for a sequence of pattems 

S E t A [S.f1 : P1 11 1\ ···A [S.fn : Pn] 
selector with recursive pattems 

(pattern-match) 

Given this mapping, we can define the sub-sequence of a sequence of rules that match the 
arguments a1 ••• an. Let Rt be the sequence of rules for function f. 

matching Rt a1 ... an = {er Ir E Rt, [Pr],Cr} 

The arguments a1 ... an appear as free variables in Pr, Cr and er. 
With the aid of this definition, a function call f e1 ... en can be rewritten. Since the textually 
first matchingruleis applied and since Rt represents the sequence of rules in textual order, 
this transformation is given by: 

head (matching Rt e1 ... en) 

When a more subtie error detection in the case of ill-matching is required, this can be 
replaced by: 

f e1 ... en 
= head (matching R1 e1 ... en* {error "Missing cases for function f" .1}) 

The definition of matching can be rewritten into two forrns for a single rule and for a 
sequence of rules respectively: 
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matching {r} a1 ... an if [Pr] then {er I Cr} else {} fi 

matching (r1 * r2) a1 ... an = matching er, a1 ... an *matching r2 a1 ... an 
For our example, writing {r1, r2, r3} = Rmappairs this compilation delivers: 

matching {r1} f x y if x E Nil /\ y E List then {er,} else {} fi 

matching {r2} f x y if x E List A y E Nil then {er2 } else {} fi 

matching {r3 } f x y = if x E Gons A y E Gonsthen {er3 } else {} fi 
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The disadvantage of this simple compilation technique is that arguments and their fields 
may be inspected multiple times. By means of a number of program transformations we 
will transform this compilation scheme into a more efficient one. 

6.4.3 From if to case expressions 

The scheme presented above maps each rule onto an if expression. This if expression is of 
the form 

if c1 A ... A Cn then {er I Cr} else {} fi (6.23) 

where each so-called test Ci is of the form Si E ti, where Si is aselector and ti the union of 
a number of types. This expression can be rewritten into the expression: 

if c1 then if c2 then . . . if Cn then {er 1 Cr} el se {} . . . el se {} el se {} fi 
Now we are left with a couple of if expressions of the form 

if s E t then a else b fi 
Such an if expression can be transformed into the case expression 

casesEt --+a 
I Ts \t--+ b 

esac 
where T5 is the highest type that s can have (this is statically determinable). In general, 
for a case expression of the form 

case s E t1 --+ a1 I ... I tn --7 an esac 

it is required that tin ti={} if i ::t:. j and that U~1 ti Ts. 
The case expression is equivalent to an if expression 

cases E t1 --+ a1 I ... I tn --+ an esac (6.24) 
if sE t1 then a1 else 

if s E tn then an 
else j_ 

fi ... fi 
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6.4.4 Rewriting case expressions 

For readability we abbreviate the case expression 

case s e t1 -t a1 I . . . I tn -t an esac 

by 

case s e ti -t ai esac is:n 

For the rewriting of case expressions, the following identities are useful: 

f case s E ti -t ai esac is:n = case s e ti -t f ai esac 1s:n 

case s e ti -t ai esac is:n * e 
case s e ti -t ai * e esac is:n 

e *case s e ti -t ai esac is:n 
case s e ti -t e *ai esac 1s:n 

case s e ti -t ai esac is:m *case s E ui -t bi esac js:n 
= case s e ti rî ui -t a1 *bi esac is:m,js:n 

case s E ti -t case s E uii -t élii esac js:n, esac is:m 
case s E ti rî uii -t aii esac is:n,js:n, 

If Ts:::; T then: 

casese T-taesac ==a 

(f-case) (6.25) 

(case expr) (6.26) 

(expr-case) (6.27) 

(case-case) (6.28) 

(case-nest) (6.29) 

(full-case) (6.30) 

This rule increases both efficiency and laziness, since the right-hand side does not neces
sarily evaluate s, while the lhs does suggest such an evaluation. 

case s e t1 -t a I ... I tn -t a esac a (case-eq) (6.31) 

This rule increases laziness as welL 
Observe that the right-hand side of (6.28) obeys the restrictions (ti rî Uj) rî (tk rî UJ) = {}, 
for i* kV j *I and u=1..m,j=1..n(tj (Î Uj) = Ts, that is, it is a valid case expression. Similarly, 
the right-hand side of (6.29) is also a valid case expression. 

6.4.5 Ordering the selectors 

In order to guarantee that each selector is inspeeled at most once by a case expression, we 
assume that a total ordering on selectors is defined, such that in a case expression 

case sE t1 -t a1 I ... I tn -t an esac 
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only selectors u > s are tested within the ai's, in order to satisfy the well-formedness 
condition. 
The ordering should be chosen such that s < s.f, but arbitrary for the rest. After chosing an 
ordering, a nested case expression can be guaranteed to obey this ordering by chosing the 
order of c1 ••. Cn in (6.23) such that if Ci is of the form Si E ti. the implication i < j ~ Si < Sj 

holds. This well-formedness of the corresponding nested case expressionsis maintained by 
our transformations. 

6.4.6 Concatenating pattern matching expressions 

We use the above identities in rewriting the concatenation of case expressions for the 
separate rules into a single, nested, case expression for the function. In the resulting case 
expression, we require that the ordering relation defined on the selectors is maintained, in 
order to prevent double inspeetion of a selector. 
Thus the expression 

case s . . . esac *case r. . . esac 

is rewritten according to rule (6.26) if s < r, according _to rule (6.27) if s >rand according 
to rule (6.28) if s = r. This transformation maintains the well-formedness condition. We 
rewrite other concatenations (consisting of a single case expression) according to rule (6.26) 
or (6.27). 
After removing all * operations by means of these identities, we are left with a nested 
case expression, with guarded sequences of rules in the leaves. 
The overall structure of the pattem matching implementation after these transformations is 
a case expression with selector s 

case s e ti ---? ai esac i:<>n 

such that, if ai is a case expression itself with selector r, then s < r. As a result, each se lector 
s is inspected at most once. Since the first naive pattem matching implementation is well
formed and the transformations preserve this well-formedness, the result is well-formed as 
well. The transformation of our example thus becomes (assuming x < y): 

Derivation 6.32 

matching {r1.r2,r3} f x y 
= (Definition of matching ) 

if x e Ni I/\ y e List then { er1 } el se {} fi * 
if x E List /\ y E Ni I then { er2 } else {} fi * 
if x e Gons /\ y e Gons then { er3 } el se {} fi 

(nesting if expressions) 
if x e Nil then if y e List then { er1 } el se {} fi else {} fi * 
if x e List then if y e Ni I then { er2 } el se {} fi el se {} fi * 
if x e Gons then if y e Gons then { er3 } else {} fi else {} fi 

== (introduce case expressions) 
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case x e Nil ~case y e List~ {er,} 
esac 

I List\Nil ~ {} 
esac 

* case x e List~ case y e Nil ~ {er2 } 

esac 

* 

esac 
I List\Nil ~ {} 
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case x e Gons ~case y e Gons ~ {er3 } 

esac 

esac 
I List\Gons ~ {} 

1 List\ Gons ~ {} 

(rule (6.28), List\Nil ==Gons and List\ Gons Nil) 
case x e Nil ~case y e List~ {er,} 

esac 

esac 

* case y e Nil ~ {er2 } 

esac 
* 
{} 

1 Gons~{} 

* 

1 Gons~{} 

case y e Nil ~ {er2 } 

1 Gons~{} 
esac 

* case y e Gons~ {era} 
I Nil ~ {} 

esac 

(rule (6.26), (6.27) and (6.28), group case expressions) 
case x e Nil ~case y e Nil ~ {er1 ,er2 } 

esac 
0 

I Gons~ {er,} 
esac 

1 Gons~ case y e Nil ~ {er2 } 

I Gons~ {era} 
esac 

Being interested in the head of this expression only, we can rewrite this as: 
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Derivation 6.33 

head (matching {r1,r2,r3} f x y) 
(function application distributes over case branches, (6.25)) 

case x E Nil ~ case y E Nil ~ er1 

esac 

I Gons~ er1 

esac 
1 Gons ~ case y E Nil ~ er2 

I Gons~ er3 

esac 

(rule (6.31), combine case branches) 
case x E Nil ~ er1 

I Gons ~ case y E Nil ~ er2 
E Gons~ er3 

esac 
esac 

(definitions of erp er2' er3) 
case x E Nil ~ Nil 

esac 
D 

1 Gons ~ case y E Nil ~ Nil 

esac 

E Gons ~ Gons (f x.head y.head) 
(mappairs f x.tail y.tail) 
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The resulting nested case expression inspects each selector (x and y) at most once and is, by 
definition of a case expression, deterministic in its choices. In this way, pattem matching 
can be compiled into type analysis that requires execution time linear in the size of the 
pattem. 

6.4. 7 Code minimization 

Although the scheme presented for compilation of pattem matching does generate code that 
is linear in execution time, this is not the case for code size. Linearity of both time and size 
can not be obtained together, but a linear time case analysis is easily minimized in size by 
sharing common sub-expressions. By replacing, from inside out, common Subexpression 
e by a free variabie v and adding a where part where v = e to the outermost case 
expression, minimality is obtained. It is exactly the same technique used in minimizing a 
lexical scanner. Assume, for exarnple, that in the definition of mappairs a guard g x y was 
present for the first rule. Then the case analysis for this modilied example would become: 

Derivation 6.34 

head (matching { r1, r2, rs} f x y) 
= 
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0 

head case x e Ni I ~ case y e Ni I ~ if g x y then { er1 } else { er2 } fi 
1 Cons ~ if g x y then {er1 } else {} fi 

esac 
1 Gons~ case y e Nil ~ {er2 } 

I Gons~ {er3 } 

esac 
esac 

(distribute head and work out) 
case x e Nil ~ case y e Nil ~ if g x y then er1 else er2 fi 

I Cons ~ if g x y then er1 

~ else error "guard failed" fi 
esac 

1 Gons ~ case y e Nil ~ er2 

I Cons ~ er3 

esac 
esac 

(minimization) 
case x e Nil ~ case y e Nil ~ if guard then v1 else v2 fi 

1 Gons ~ if guard then v1 
~ else error "guard failed" fi 

esac 
1 Gons ~ case y e Nil ~ v2 

esac 
esac 
where v, = er1 

v2 = er2 

guard= g x y 

I Gons~ er3 

It can be observed that this whole process of efficiency increasing and minimization strongly 
resembles the transformations applied to the scanner functions of chapter 5. 

6.5 The Elegant type system 

In this section we present the type system and pattem matching process. The 
main ingredients have been presented above in the discussion about typing in functional 
languages. is an imperative language, however, with its own specific type 
system. 

6.5.1 Typing of side-effects 

In a functional language and in most imperalive languages, types serve as an abstraction 
of values and expressions as a prescription of these values. Hence (in strongly typed 
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languages) each expression has a unique type. In an imperative language, apart from 
expressions, so-called statements are available. A statement describes not the computation 
of a value, but of a side-effect, the modification of the state. In most languages however, 
although expressions are typed, statements are not. Exceptions are C (with type void) and 
Algol-68 (with type VOID), but still only a single predefined and fixed type for statements 
is available, making this type hardly a way to abstract from side-effects. We feel that, 
since side-effects play such a prominent röle in imperative programming, they should be 
supported much more strongly. The type of a side-effect can beseen as an empty type that 
has no instances. Thus an expression of an empty type can not deliver a value and is hence 
a statement. 
An imperative type system should distinguish between different kinds of side-effects. E.g. 
writing to a file is a very different side-effect from the modification of a global variable. 
Also, one might wish to distinguish between modifying global and local variables. The 
programroer should be able to define his own empty types, just as he is able to define 
other types. In this way, the compiler has the possibility to discriminate differently typed 
statements, preventing the mixing up of different side-effects. 
It is very wel! feasible to allow sub-typing on side-effects. Such a feature gives the pro
grammer the opportunity to create a hierarchy of empty types. He is thus able to define a 
general empty type that abstracts from any kind of side-effect, and sub-types that abstract 
from more specific side-effects. 
In the imperative languages that do have an explicit empty type, usually a coercion from a 
non-empty to the empty type is defined, with the semantics of discarding the value of the 
non-empty type, which is the only sensible semantics when only one kind of side-effect can 
be distinguished. If sicte-effects can be treated more subtly, other kinds of eoereions come 
into scope. If e.g. the side-effect of writing an instanee to a file is called Output, then the 
natura! coercion of a value to this type Output is the writing of the value to a file, rather 
than discarding it. In section 6.5.3 the subject of eoereions is treated more extensively. 
Another issue that is brought up by the availability of side-effects is that of the semantics 
of equality. Since, in an imperative language, the same expression might deliver different 
results on subsequent executions, this holds also for the application of a constructor function, 
even for the nullary one. Subsequent invocations might deliver different results even when 
supplied with identical arguments since the state may change in between. In Elegant, 
the programroer can decide to memoize the constructor function, thus eliminating this 
distinction. Since memoization makes use of an equility operation on the arguments of a 
function, two different notions of equality come up: shallow and deep equality. Shallow 
equality (pointer equality) is supported in Elegant by the operator. Since deep equality 
raises nasty questions like 'how deep?' and 'what about cyclic structures?' and 'when are 
unevaluated objects equal?', this kind of equality is not supported and the user can de fine 
his own operation for each of his types. As mentioned above, the notion of equality comes 
up with the introduetion of enumerated types when these are treated as fieldless types. The 
intuitive semantics here is that each sub-type has exactly one instance, while the super-type 
has none. Thus, the super-type is an abstract type and the constructor functions for the 
sub-types are memoized. 
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6.5.2 Description of the type system 

The type system is a rather straightforward application of the observations made 
above on functional type systems. 
First of all, so-called record types can be defined. A record type is either a root type or 
a sub-type of another record type. lt can define or add a number of fields respectively. 
These are identifier-type pairs. A record type can be abstract, in which case it bas no 
constructor function. Fields can be bound to an initia! expression, indicating the value to 
be assigned at creation time. When an initial expression is absent, a value for the field 
must be passed as an argument to the constructor function. After creation, the fields can 
be modified by assignments. The special value I\IIL is an instanee of all record types. lts 
malicious behavior is discussed insection 6.5.8. The constructor function returns by default 
a new object each time it is invoked. lt can be memoized however, thereby overruling its 
default behavior. A warning is issued when a field of a memoized type is modified. 
Parameterized record types are also present. They can have an arbitrary number of param
eters that can be used in the types of the fields. Parameterized types can be sub-typed in 
the normal way, but all types in single type hierarchy have the same parameters. 
The binary tree example can be defined in Elegant in the following way: 
Example 6.35: Binary tree definition 

ABSTRACT Tree(A) = ROOT, value : A 
Leaf 
Branch 

0 

< Tree 
< Tree, left, right Tree(A) 

Enumerated types are restricted record types. The root type is implicitly abstract and the 
elements are sub-types of the root type. They are enumerated types themselves that can 
be sub-typed to an arbitrary depth. An enumerated type may not have fields. Thus its 
constructor function is nullary and always returns the same element, the single instanee of 
a (non-abstract) enumerated type. 
Example 6.36: Enumerated types 

0 

Color = (Black I White) 
ABSTRACT TrueColor < Color 
Red < Color 
Yellow < Color 
Blue < Color 

Empty types are restricted enumerated types. An empty type can only be sub-typed by 
another empty type. It may not have fields and is always abstract. Thus, empty types have 
no instances and hence serve as an abstraction from side-effects. The following empty root 
types are predeclared: 

• VOID An arbitrary side-effect. 

• Output - Writing to stdout. 

• Message Writing to stderr. 
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A function withoutaresult type has by default result type VOID. When a function has an 
empty result, all statements in the function body must be eoereabie to that type, otherwise 
they must be eoereabie to VOID. The predefined empty types are supported by a number 
of coercions, see section 6.5.3. 
Lazy types are also present. Even lazy empty types are available, which represent unevalu
ated side-effects. Especially in the generation of code (a write-only side-effect) this is very 
convenient, since often different but consistent pieces of code have to be generated from a 
single program construction. These can be computed lazily by a single analysis of the data 
structure and later evaluated in the proper order to write them to file. When S < T, then 
Lazy(S) < Lazy(T). 
Repeated evaluation of a lazy empty type instanee should in most cases result in repeated 
side-effects, and thus in repeated evaluation of the statement within the closure. This is 
in contrast with the repeated evaluation of lazy non-empty types. It is generalized by the 
distinction between the types Lazy (T) and Closure (T). The first is evaluated at most 
once, the latter over and over again. 
Another lazy type is the type Incr (T), as explained insection 6.2.10. Instauces of this 
type are also closures, but they are only re-evaluated when the values of other Incr or 
Vincr objects, on which the previous computation did depend, have been changed in the 
mean time. The difference between an Incr and a Vincr object is that the latter is nota 
ciosure bound to an expression, but it is bound to a value and it may be assigned to. Such 
an assignment invalidates all Incr objects depending on its value, thereby giving rise to 
potential re-computation. 
The basic types, like Int, are all so-called external types, i.e. types implemenled in C. The 
user can also define her own external types, which from the point of view of Elegant 
are opaque, i.e., only the name of the type is known, but no other properties. The user 
can implcment the basic operations on such a type in C however and build more complex 
operations in Elegant on them. User-defined extemal types are rarely used. No sub
typing on extemal types is available. 
One-dimensional array types are also available: indexing always starts at 0. The array 
length is not part of the type, but determined at creation (allocation) time. Arrays are 
not very often used in compilers and thus this kind of type was added at a late stage in 
the Elegant design. For applications other than compiler construction, a more extended 
array type may be needed in the future. Since array elements can be read and modified, 
the simultaneously required co-variance and contra-varianee of the array type with regard 
to the element type prohibits a sub-typing relation on arrays. 
Function types simply list the types of the argument and the result type (if any). In addition, 
the keyword VAR can be used to indicate that a parameter is a call by reference parameter. 
The sub-typing relation on function types is defined by contra-varianee on the argument 
and co-variance on the result types. Var-parameters are no-variant of course, since they 
are simultaneously arguments and results and should thus be simultaneously contra- and 
co-variant. 
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6.5.3 eoereions 

A coercion from type S to type T is a function of type S H T that is implicitly applied 
when an expression of typeS occurs in a context requiring (an instanee of) type T. Certain 
eoereions are more or less standard, like the eoereions between integers and floats. Since 
they are implicit, when not selected with care, eoereions can cause more confusion than 
benefit Nevertheless, Elegant supports a whole spectrum of coereions, among which 
the eoereions to VOID are the most important. 

• An instanee x of a type S can be eoereed to T when a nameless function of type 
S H T is visible. The coercion consists of the application of this function to the 
instanee x. These nameless functions are predefined for the built-in types (Iike Int) 
to VOID and write their argument to the current output file. Usually these functions 
are used in code generation and overloaded with functions that write out user-defined 
types. In this way, the formulation of code generation becomes concise and readable. 
An example is the following code fragment that generates code " (a 1 b) " for integers 
a and b: 

Example 6.37: Simple code generation 
Or: [a : Int, b : Int] 
-> ''('' a ''I'' b '')'' ; 

D 

• An expression of type T can be eoereed into an expression of type Closure(T) , 
Lazy(T) or lncr(T) by creating a ciosure for it, capturing the free non-global vari
ables in the environment of the ciosure. Multiple evaluations of the ciosure result 
in multiple executions of the statement, where the global variables in it may take 
different valnes in different executions. Observe that the use of globals in ciosures 
is subtie and thus it is recómmended for advanced users only. 

• When T can be eoereed to VOID it can also be eoereed to Lazy(VOID) or 
Closure(VOID), by performing the two previous eoereions in succession. 

• When S < T, then S can be eoereed to T by the identity function. T is eoereed to 
S by checking the type of the instanee to be (a sub-type of) S. If not, the coercion 
fails and an error message is produced. 

• eoereions are not applied transitively in order to avoid cycles and confusion. 

6.5.4 Typing of function declaration 

Since a function may be specified by a set of rules, where each rule matches a different 
sub-type, it is needed to require a certain consistency among rules and to define the type of 
the function associated with these rules. This consistency is the one explained in section 
6.3.5. 
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The pattem matching process may interfere with laziness that requires the unevaluated 
passing of an argument. This problem bas been avoided by not allowing pattem matching 
on lazy types. When the callee can not find a matching rule, it reports this at run time, 
reporting the function under consideration and the actual types of the arguments. 

6.5.5 Pattern matching in Elegant 

In Elegant, pattems are one of the farms of a type and are allowed everywhere where 
a type can be written. Pattem matching is implemenled in the way presented above. The 
presence of the overloaded constant NIL which is an instanee of many types, for which 
special pattem matching is available while t(NIL) is undefined, forms a nasty, but by no 
means insuperable complication. The type (pattem) T matches NIL and the pattem (T) 
does not match NIL. In the latter case, fields may be added, resulting in pattems of the 
form (T, f1 : P1, ... ), where the Pi are types which can be pattems again. 

6.5.6 Abstract types 

Elegant supports abstract types. Reeall that an abstract type is simply a type which does 
not have instances itself. Such a type is easily modeled in our type system by defining 
o - t = false for an abstract type t. 

6.5.7 Polymorphism 

Elegant supports polymorphic functions. A polymorphic function is a function that can 
operate on many different types. Polymorphism should not be mixed up with overloading 
(sometimes called ad-hoc polymorphism), which means that differently typed functions can 
have the same name. Polymorphism in Elegant is basedon so-called generic types. We 
can illustrate these types by the following polymorphic function, which swaps the values 
of two variables. 

<-> [VAR x : ?T, y ?T] 
LOCAL z T x 
-> x := y 

y z 

The type T is a gencric type, which can be bound to an arbitrary type in a function eaU. The 
question marks in the heading indicate that T is a free ( defining) occurrence of a generic 
type, while its use in the body is a bound occurrence. 
Polymorphism gives rise to two implementation problems. The first is the need to find 
a consistent substitution for the generic types of a function, given the types of the actual 
arguments in a call. The presence of inheritance requires the finding of a least general 
substitution, i.e. a substitution that is consistent, but does not use types too high in a type 
hierarchy, since this would result in a loss of information. An illustration of this is the 
following function, that tums an arbitrary object in a single list. 
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Single: [x : ?T] : List(T) ->RETURN ({x}) ; 

When we have two types, say S and u, such that S < u and we call Single with an 
instanee of s, we want it to return a list of S, not a list of u and hence we need to bind 
the genene type T to s and not to the more general type u. 
The second problem is the implementability of polymorphic functions. We do not want to 
generate a new, specialized, implementation for each different parameter T. We are not even 
able to do so (at least not easily), since does offer separate compilation and a 
function might be used in a module where its implementation is not known. The alternative 
is to generale a (hopefully smal!) number of implementations for each polymorphic function 
declaration once, such that each call is able to piek its own specialized version from this 
set. Fortunately this is possible, although not easy. The key idea is to observe that the 
only operations available for instauces of a generic type within a polymorphic function 
are assignment, equality testing and variabie declaration (parameter passing being implicit 
assignment). The only property of the instanee needed for the implementation of these 
operations is the size of the instance. Hence it suffices to generate a separate implementation 
for each combination of possible sizes of the generic types of a function. Although this is 
exponential in the number of generic types, it is in practice not too much of a problem, 
since the number of generic types per function is usually limited to at most three in practical 
applications and the vast majority of polymorphic functions bas only a single generic type. 
For practical applications, the number of possible sizes of types can be fixed to four, namely 
size 1 (in bytes) for the C type char, 2 for type short, 4 for type int and pointers 
and 8 for type double. Hence, the function above can thus be compiled into 
four C functions, say Single_l, Single_4 and Single_8. Unfortunately, 
these sizes are implementation dependent. The only guarantee C gives is the size of type 
char, which is always one byte. In order to obtain portable code, and to avoid building 
the sizes of the types into the compiler, a rather peculiar technique has been designed. The 
C pre-processor, particularly its macro mechanism, is used to compute the narnes of these 
functions at C compilation time. Thus when the Single function is applied to an integer, 
the C text CAT(Single_,SIZE_Int) is generaled for the name ofthe function. The 
macro CAT is defined as: 

#define CAT_(a,b) a##b 
#define CAT(a,b) CAT (a,b) 

It first expands its arguments a and b and then passes them on to CAT-· This macro glues 
a and b together. Without the extra indirection, a and b would be glued together hefore 
ex panding them. In a sense, the # # operator treats its arguments non-strict, while rnacros 
pass their arguments strict to other macros. By defining 

#define SIZE Int 4 

in some system-dependent library module, the correct, system-dependent, expansion to 
is obtained. This technique is only available in ANSI-C, since the ##-operator 

is not available in pre-ANSI versions of C. lt can be mimieed in non-ANSI C however, 
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by using a non-standardized and non-portable feature of the pre-processor, namely that it 
expands a/** /b to ab, afterexpanding a and b. Many, butnotall C compilers allow 
this trick, but with the abundant availability of ANSI-C compilers nowadays, there is no 
need to use this clever but urneliabie trick. 

6.5.8 Shortcomings 

Elegant is a language that bas grown gradually from a very simpte notation for attribute 
grammars, strongly based on Modula-2, towards a system consisting of many tools, among 
which Elegant is a powerfut imperative programming language with an actvaneed type 
system. The fact that bas had a growing number of users during this development 
process has led to an upward compatibility requirement that made eertaio ftaws continue 
to exist although the author had a strong wish to eliminate them. 
One deficiency is the presence of the special value NIL that is an instanee of most user
defined (non-enumerated) types. This object did sneak in in the early design and sadly 
never went away again. It represents the null pointer, but since the notion of a pointer 
is not present in it is an unpleasant intruder. Unfortunately, it has an efficient 
implementation (namely the null pointer) which, together with upward compatibility re
quirements, has kept it alive. From a more abstract point of view, the user should decide 
for each of his types whether he wants a bottorn object or not. If so, he should make a 
(probably fieldless) sub-type. To ensure that this sub-type has a single instance, he could 
memoize the type. The implementation should then take care of the efficient compilation 
of these instances, especially of the efficient use in pattem matching and comparison. Map
ping such an instanee onto the null pointer is desirabie in this respect, but if different types 
in a type hierarchy have single instances, these instancès should be mapped onto different 
pointers. 
Another deficiency is the fact that polymorphic types can be only 1, 2, 4 and 8 bytes large 
in implementation. Fortunately, this is not a severe restriction, since larger objects can 
usually be represented by a pointer to them. 
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Chapter 7 

Generalized attribute functions 

7.1 Introduetion 

In chapter 4 we presented attribute functions and an efficient implementation scheme for 
an attributed recursive descent parser. Since an attribute grammar is such an interesting 
formalism, allowing the computation of multiple results which may be mutually dependent 
and even allowing actual arguments to be dependent on the results of the same production 
rule (i.e. attribute function), it is interesting to investigate to what extent attribute grammars 
can be generalized while maintaining an efficient implementation. This becomes even more 
interesting when one realizes that attribute grammars allow a static cyclicity check on the 
dependency of the attributes [Knu68, Knu71], a property that might also be retained fora 
more general formalism. 
In this chapter we present such a formalism, being a class of recursive functions that 
has two types of arguments: strict and non-strict. Apart from this, these functions may 
have non~strict results. By disallowing a strict argument to depend on a non-strict one, a 
separation between the two is obtained, while the static cyclicity check is preserved. The 
strict arguments can be used in the selection of a rule for the function, like a production 
rule is selected by inspeetion of the input string and like a function rule is selected by 
pattem matching. The non-strict arguments and results are treated like attributes. They 
may be mutually dependent, as long as cyclicity is avoided, something which can be 
checked statically. Strict arguments are not intended toserve as a more efficient version of 
attributes, ones that can be evaluated at parse-time. Their sole purpose lies in the selection 
of production rules by other means than by parsing the input text. 
Johnsson [Joh87] describes an approach similar to ours. He introduces a new language 
construct that can be added to a Jazy functional language and which can be regarded as 
a way to incorporate the attribute grammar paradigm into a functional language. Our 
approach is a bit different. Since attribute grammars can be regarded as limited functional 
programs, there is no need to extend a Jazy functionallanguage, but rather a need to restriet 
it, or to be more precise, to exploit the potential of attribute grammars ( circularity check, 
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efficient implementation) in the case of such restricted use. The restrietion consists of a 
strict separation between the strict arguments of a function (which are available for rule 
selection) and tbc non-strict arguments and results (which form the attributes). The strict 
arguments may be used by the non-strict, but not vice versa, since this would make the 
circularity check incomputable. 
Apart from restricting a lazy functional language, one can also extend a non-lazy language 
with functions accepting non-strict (inheritcd) argumcnts and producing non-strict (synthe
sized) results. Summarizing, the generalizcd attribute functions can be regarded in three 
different ways: 

• As generalized attribute grammars, using pattem matching instead of parsing for rule 
selection. 

• As restricted lazy functions, separating the strict and non-strict arguments. 

• As extended strict functions, adding non-strict arguments and results. 

supports a notation for such generalized attribute functions and calls them re
lations. They appear to be extremely useful in the specification of optimization and code
generation in a compiler. Theencoding of the Elegant back-end makes heavy use of such 
relations and provides a good example of their usefulness. In this chapter we first show 
how an attributed LL(l) parser can be generalized to a a generalized attribute function. 
Next we show how generalized attribute functions are incorporated in Elegantand give 
an example of their use. Then we extend an attributed LL(l) parser with strict attributes 
and show how an attribute grammar supporting strict attributes can be used to implcment 
an operator preeedenee parser. 

7.2 Generalized attribute functions 

We reeall the definilion of an attributed recursive descent parser: 

parse_attr A i a1 ... ako case x E foll ai (foll A) --* parse_attr (A --* ai) i a1 ... ako 
--* ... 

otherwise --* error "A expected" (i, false, ..l) 
esac 

where x: j = i 

parse__attr (Xo --* X, ... Xn) io a, ... ako Cin, Co, e, ... em0 ) 

Where Co ec A C1 A ••• A Cn 

01. c1, s11 ... S1k1 ) = parse_attr X, io e,, ... e1m1 

On, Cn, Sn1 ... Snkn) parse.attr Xn in-1 9n1 ... 9nmn 

We can forget about the parsing process and replace the selection of such a rule by the 
more general process of pattem matching and boolean conditions that was presented in 
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chapter 6. This replaces the (strict) argument i by an arbitrary number of strict arguments 
on which pattem matching is allowed. Boolean expressions over the strict arguments can 
also be allowed in the rule selection process. Since the other arguments ai may depend on 
the results of the very same rule, the arguments ai can not be used in the pattem matching 
process for the rule selection. 
We can generalize further by treating the first argument of a parsing function, i.e. a symbol 
or a production rule, as part of the name of the parse function (since it is known statically) 
and remove it all together as an argument. In this way we obtain a set of mutually recursive 
functions over strict and non-strict arguments. 
The context conditions are typical for a parser. They lead to error messages regarding 
the input text and without an input text they can be removed. Another option would be 
to keep them for more general error messages but we believe that normal error message 
mechanisms (like writing inforrnation to the standard output or error device) are already 
suftleient for this purpose and hence we remove the context conditions in the generalized 
attribute functions. 
Both local attributes and local variables can be added. The difference between them is that 
the latter may only depend on strict arguments and not on attributes. 
The resulting scheme for a function rule defined according to these rules is the following, 
where we have added definitions of local variables L; and attributes I; to stress the difference 
between strict and non-strict variables: 

fo P1 ... pq a1 ... ako = (e1 ... em0 ) 

conditions de 
where L1 = d1 

Lr = dr 
where (S11 ... s1k1 ) = f1 d11 ... d1s1 e11 ... e1m 1 

(Sn1 · .• Snkn) = fn dn1 · ·• 9nsn 9n1 ... 9nmn 

l1 = e11 

Here the variables Pi represent strict arguments which may be defined by pattems and the 
variables ai represem non-strict arguments (attributes) for which no pattem matching is 
available. The variables Lj represent strict local variables where li denote non-strict local 
variables (local attributes). The non-strict variables Sij represem the j-th result of fi. The 
expressions dj may depend only on the strict arguments Pi and strict locals Lk, k < j. The 
expressions dij represent the strict arguments to the attribute function fi. They may depend 
only on the strict arguments Pi and strict locals Lk. The boolean expression de may only 
depend on the arguments Pi and is used in the rule selection process as a guard for the rule. 
The non-strict expressions ei may contain arbitrary variables, both strict and non-strict. 
The formalism could be made even more general by also allowing strict results (results 
which are retumed in evaluated forrn by a function, in contrast to out-attributes which are 
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retumed unevaluatedly), but these would not in generalbe usabie in the strict expressions 
since the implementation scheme induces a certain ordering on the computation of the 
recursive calls for f1 to fn. This means that a strict result of such a recursive call is not 
available in a textually preceding recursive call, giving rise to unpleasant scope rules to 
avoid these problems. A simpler solution is not to support strict results. In Elegant 
they are nevertheless supported by the var-parameter mechanism that is available for strict 
arguments. This is a Pascal-like parameter mechanism, which supports a call by reference 
mechanism for variables. 
Since the attributes are strictly separated from the rule selection mechanism, it is possible 
to select first all the rules and perform all recursive calls, without evaluating a single 
attribute, and only then evaluate the attributes. This property makes it possible to perform 
the static cyclity check for attribute dependendes [Knu68, Knu71] also for the class of 
these generalized attribute functions. A requirement is that the implementation of all these 
functions is available to the cyclicity checker, or that it must make worst case assumptions 
for functions that are e.g. implemented in another module. 

7.3 Relations in Elegant 

Elegant supports the generalized attribute functions and calls them relations, a name 
which is historically determined and which is perhaps unfortunate, since they have little 
in common with mathematica! relations. The Elegant syntax for relations resembles the 
syntax torproduction rules as much as possible. The Elegant relation rule corresponding 
to the rule scheme presented above is the following: 

fo (P1 ... pq IN a1 ... ~OUT e1 ... em0 ) 

conditions de 
local L1 d1 

Lk = dn 
~ f1 (d11 ... d1s1 IN e11 ... e1m1 OUT 611 ... s1k1 ) 

fn (dn1 ... dnsn IN 9n1 ..• 9nmn OUT Sn1 ... Snkn) 

local l1 = e11 

The corresponding syntax is as follows: 
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(relation-rule) ::= (identifier} 
( [ {arguments} ] [ IN (attributes} ]] 

[ OUT (expression-list) ] ) 
[ CONDITIONS (boolean-expression} 
[ (local-section) ] 
- > { (right-element) } 
[ (local-section) ] ; 

{right-element) .. - {relation-rule-identifier) 
( [ (expression-list) ] [ IN (expression-list} ] 

[ OUT (attributes) ] ) 
(statement) 

(arguments) .. - [VAR] (identifier) : (pattern-type) 
{ , [VAR] (identifier) : (pattern-type} } 

(attributes) .. - (attribute-list) : (type-identifier} 
{ , (attribute-list) (type-identifier) } 

(attribute-list) .. - (attribute-identifier) { , (attribute-identifier) } 

.. - LOCAL { (local-variable) } (local-section) 

(local-variable) .. - (identifier) : (type-identifier) (expression) 
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As can be observed. this syntaxis even more general than the scheme, allowing (strict) var
parameters and arbitrary statements between the recursive calls in the right-hand side. The 
non-strict variables (attributes) in relations are implicitly of a lazy type. Thus, also attributes 
of empty types are supported. Outside of relations, laziness occurs only explicitly and this 
requires a special treatment on the boundary of these two sub-formalisms. A relation R 
may be called, from the outside, by the statement 

R (d1, ... , dn IN e1. ... , ek OUT v1, ... Vn) 

Here, dj represents an expression resulting in an argument for a strict parameter, ei repre
seuts an expression that results in a lazy (unevaluated) object that is passed as an argument 
for a non-strict parameter. The variables Vj must also have lazy types and they store the 
unevaluated out-attributes of the relation. 
During a call of a relation, the strict arguments may be used in the selection of a rule. After 
this selection, the relations of the right-hand side are called. These relations determine the 
unevaluated attributes. These attributes may be mutually dependent, as long as cyclicity is 
avoided. Hence, no such attribute is evaluated during the evaluation of the relations. After 
the call of a relation, the unevaluated attributes are retumed in the variables VJ, as mentioned. 
They may be evaluated after the call, in any order, at any place that is appropriate. This 
evaluation of the out-attributes results in the evaluation of other attributes on which the 
out-attributes depend, and so on. Note that attributes may depend on the strict variables of 
the relations as well. The latter are also stored in the closures representing the unevaluated 
attributes. 
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The implementation techniques used in the compilation of relations are simply the combi
nations of the techniques for pattem matching, presented in section 6.4 and of the imple
mentation of attribute grammars, presented in 4.9. Hence, weneed not elaborate on it bere 
any further. 

7 .3.1 Example: Elegant code generation 

The Elegant code generator, which generates C-code, is an excellent example of the 
power of generalized attribute functions. In genera!, the compilation of an 
expression results in a C-expression. But since some Elegant expressions are more 
powerful than C-expressions, extra code may be needed. This extra code may consist of 
C-statements that should be executed before the expression, extra local variables that should 
store intermediale results and extra functions or extra global variables that are needed by 
the expression. Since code generation is implemenred by a side-effect, namely writing the 
code to a file, the attributes representing these pieces of code will have an empty type, in 
this case the type VOID. 
The back-end comains a rule for the compilation each kind of expression with 
the following attributes: 

E (x : Expr OUT g, f, l, s, e : VOID) 

It has as a strict argument x an object representing the Elegant expression and delivers 
as attributes, i.e. unevaluated, the C-code to generate. This code is delivered by means of 
5 out-attributes that represent the C-code for globals, functions, locals, statements and the 
C-expression itself. 
To illustrate this we give the rule for the compilation of an Elegant EVAL-expression 
that evaluates a lazy object. lts compilation is x->eval (x), where x is the lazy ob
ject. The argument of the EVAL-expression may be an expression itself that can contain 
a side-effect and that hence should be evaluated only once. Thus x can not be the com
pilation of this expression, since it occurs twice. The solution lies in the introduetion of 
an extra local variabie to store the value. The brackets ( : and : ) delimit a statement 
sequence. The generalized attribute function NewLocal delivers a new local variabie of 
type x . 1 a z y . type with C-name v and C-declaration code 12. The resulting code for 
the C-expression becomes (x e, x->eval (x)), where x is the fresh C-variable. 

E (x : (EvalLazyExpr) OUT gl, fl, 11++12, sl, e) 
E (x.lazy OUT , fl, 11, sl, el : VOID) 
NewLocal (x.lazy.type OUT 12, v : VOID) 

LOCAL 
e : VOID = (: "("v"="el", "v"->eval("v"))" :) 

Another example is the generation of code for a closure, i.e. for a lazy expression, which 
we explain below. 

E (x : (LazyExpr) OUT t++gl, fl, (::), (::), e) 
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-> ClosureFunctions (x OUT create, gl, fl 
LOCAL 

t VOID EnvironmentType: [x.env] 

VOID) 

e : VOID create" (" EnvironmentArgs: [x.env] ")" 

179 

For such a lazy expression LAZY ( e) , a type must be dcclared that represents the en
vironment of the closure. This type declaration is represented by the attribute t. The 
environment stores all the free, non-global variables of the expression e. It has the form: 

typedef struct RecEnv *Env; 
typedef struct RecEnv {Tl xl; ... Tn xn; } 

Moreover, two functions are declared, represented by fl, which have the following form: 

LazyT CreateC1osure (Tl xl, ... , Tn xn} 
{ Env env; 

LazyT 1; 
env a11ocate (sizeof(*env}); 
1 a11ocate (sizeof (*1}); 
env-> xl = x1 ; ... env->xn = xn; 
1->env = (address)env; 
1->eva1 
return 1; 

Eva1C1osure; 

T Eva1C1osure (LazyT 1) 
{ Env env = (Env) (1->env); 

l->va1ue .... , . /* Defining expression for e, using env->xi */ 
1->eva1 IdT; /* Identity function for T, 

which returns 1->va1ue */ 

return l->va1ue; 

The first of these, CreateClosure, which name is represented by the attribute create, 
creates the closure. It is passed the values of the free variables, allocates the environment, 
stores the values of the free variables in that environment and stores the latter together with 
the second function, the evaluation function in the closure. It returns the closure. When 
the evaluation function is called, it computes the value of e using the values of the free 
variables stored in the environment. 
The whole back-end consists of a multitude of these rules, most of them no more compli
cated than this one. Without the use of generalized attribute functions, the actvaneed code 
generation of Elegant could not have been implemented in a maintainable way. Or to 
state it more strongly: the Elegant relations could not have been implemented without 
the aid of Elegant relations!! 
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7.4 Strict arguments in attribute grammars 

Once we have added strict variables to attribute functions, there is no reason not to add 
them to an attribute grammar. We only need to keepthem apart from the normal (non-strict) 
attributes, but that is statically verifiable. A nice extension can be made here. In the case 
of an LL( I) top-down parser, not only the value of the first symbol of the input stream can 
be used in the selection process for a production rule, but also the value of the attribute of 
that symbol. Elegant supports this by means of the expression FIRST that denotes the 
attribute of the first terminal symbol of a production rule and whieh is available in the strict 
part of the attribute grammar. As a restrietion, the type of this value must be equal for all 
the first symbols of a given production rule. This teehnique ean easily be implemenled in 
a top-down LL(l) parser, as our implementation scheme for attribute grammars shows. 
We can see a recursive descent parser as a special case of generalized attribute funetions, 
that uses recursion on data-structures. A simple pre-processing operation can be imagined 
that adds a strict attribute (the first symbol of the remaining input string) and a condition 
(the matching of the first symbol with the set of directors of the production rule). The result 
of this pre-processing is again a generalized attribute function. For bottorn-up and baek
traeking parsers, no sueh pre-processor is easily imaginable. Sueh a pre-processor would 
have to perform recursion to iteration transformation in order to transform the descent 
structure of the functions traversing the data structure into an aseent structure, which is 
hard to do without inverting the data strueture. Hence we claim that top-down parsers 
are the most natura! parsers for attribute grammars. Operationally explained, an LL(l) 
recursive descent parser with strict arguments selects its production rules using two different 
mechanisms. First of all, the first symbol of the input string should be an element of 
thc directors of the production rule. Secondly, the patterns and conditions over the strict 
arguments and the attribute of the first symbol of the input stringshould match, respectively 
be true. Only when all these conditions hold, is the rule seleeted. As we will see in the 
next example, the use of strict arguments in attribute grammars can add considerably to its 
expressiveness. It allows e.g. for the implementation of an operator preeedenee parser. 

7.4.1 Example: operator preeedenee parsing 

In this section we present an operator preeedenee parser for infix and prefix operators with 
user-defined priorities. It makes use of generalized attribute functions. More complex 
examples of operator preeedenee parsers, also allowing postfix operators and different 
associativities, are presenled in [Aug91]. Since we use it bere as an example for generalized 
attribute functions, we keep it simple in this section. 
Assume that a programroer can specify the priority levels of infix and prefix operators in 
some prologue to his program. Then these levels can be declared at parse time (using 
strict attributes) and they are available when expresslons using these operators are parsed 

-> 
subsequently. Let Oi denote a prefix operator of level i, that is, it binds an expression that 

H 

contains infix operators of a level j s i. Let Oi denote an infix operator of level i, that is, 
it binds expresslons that contain infix operators of a level j s i. An operator of a lower 
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level thus binds more strongly. Let .l denote an expression not containing any operators 
(or only ones enclosed in parentheses). Let max denote the maximum (weakest binding) 
level of all declared operators. Furthermore, let ei denote an expression that contains no 
infix operators of level > i. Then we can define a grammar for the expressions that we 
want to parse: 

~ 

ei ei Oi ei I e1-1. 

eo oi ei I .l, 

i> 0 
j ;:::o 

This grammar can be rewritten in the following form, assuming right associativity for infix 
operators: 

~ 

eo .ll oi ei 
~ 

ei ei-d oi ei], i > 0 

By mapping the subscripts onto strict attributes, this grammar can be implemented by 
the following attribute grammar. We assume that the function Leve 1 : [ o, f] returns 
the level of an operator identifier o with fixity f, the function Prefix: [o, e) creates a 
prefix expression for operator o applied to expression e and the function Infix : [ 1 , o, r] 
creates an infix expression for operator o applied to expression 1 and r. We explain it in 
more detail below. 

%% Expression -> E max 

(OUT e) -> E (max OUT e Expr) 

%% E -> SimpleExpression 

E (i=O OUT e) -> S sion (OUT e 

%% -> o_j E_j 

E (i=O OUT e) 
-> FindOperator (IN id, Prefix OUT op 

(OUT id : Ident) 
E (Level: [FIRST, Prefix] OUT rhs 

LOCAL e : Expr = Prefix: [op, rhs] 

%% i -> E (i-1) i 

E (i Int OUT e) CONDITIONS i > 0 
-> E (i-1 OUT lhs ) 

Infix (i IN lhs OUT e : Expr) 

Expr) 
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%% Infix i -> o i E i 

Infix (i : Int IN lhs : Expr OUT e) 
CONDITIONS Level: [FIRST, Infix] = i 
-> FindOperator (IN id, Infix OUT op 

Operator (OUT id : Ident) 
E (i OUT rhs : Expr) 

LOCAL e : Expr = Infix: [lhs, op, rhs] 

%% Infix i -> 

Operator) 

Infix (i : Int IN lhs : Expr OUT lhs) -> ; 

%% Retrieve the operator with name 'id' and fixity 'fix' 

FindOperator (IN id : Ident, fix : Fixity OUT op) 
-> 
CHECKS 

IF op = NIL THEN "Operator " id " not declared" 
LOCAL 

op : Operator = RetrieveOperator: [id, fix] 

The expression FIRST denotes the attribute of the first symbol of the corresponding pro
duction rule, in this case an identifier denoting an operator. 
The selection of a production rule for the non-terminal E proceeds as follows. First, the 
last rule for E is selected recursively until i=O. Then either the first or the second rule 
is selected, depending on the first symbol of the input string being a prefix operator or 
not. In the latter case, the argument of this prefix operator is parsed recursively. Finally, 
when the expression is parsed, e.g. by the occurrence of an infix operator on the input 
string, the recursion returns to surrounding levels, where i>O and where the rule Infix 
is applied. This non-terminal generates the empty string, except for the level which equals 
the preeedenee level of the infix operator. There, the infix operator is recognized and the 
right-hand argument of the operator is recursively parsed at the correct level. Note that 
this mechanism implies that a call at level i can never consume infix operators of a higher 
level, except as arguments of a prefix operator of a higher level. 
The rule FindOper a tor is an example of a so-called abstract production rule. Such a 
rule produces only the empty string and its purpose lies in the computation of attributes 
and context checks. In an LL(l) parser non-terminals with only abstract production rules 
can be added without any problem. In bottorn-up parsers these e-rules tend to introduce 
shift-reduce confticts. This is yet another reason to prefer LL(l) grammars when dealing 
with attribute grammars. A bout 80% of the code of an attribute grammar is concemed with 
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the attributes and not with the underlying context-free grarnmar. Hence it is important to 
allow as much abstraction (like abstract production rules and strict attributes) as possible 
for the attributes even at the expense of a slightly corrupted grarnmar. 
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Chapter 8 

An evaluation of Elegant 

8.1 Introduetion 

In this section we evaluate the abstraction mechanisms and notations Elegant offers. We 
concentrale bere on Elegant as a programming language, both for general purposes and 
for attribute grammar specification. We only discuss the more unconventional concepts 
bere. Some features that are traditional in one programming paradigm (like lazy evaluation 
in functional programming) are not found in another (like lazy evaluation in procedural 
languages) however. Since Elegant attempts to combine the best of both worlds, we 
discuss such features here in order to be able to address readers that have experience with 
one of these paradigms only. Many features, like the type system and different parsing 
techniques, have already been discussed in previous chapters. These features are mentioned, 
but not discussed bere in detail. 
We hope that the discussion in this chapter makes clear that functional and imperative 
programming can be combined in an elegant way. The design and implementation of El 
eg an t has been influenced by both worlds, although in this thesis we have stressed the 
inftuence of functional programming. This bas been done since we have been inspired 
by the abstraction capabilities of functional languages particularly. Most, if not all, of 
these abstraction capabilities can be incorporated into an imperalive language as well, as 

demonstrates. We believe that the real power of functional languages comes 
much more from these abstraction capabilities than from the absence of side-effects. How
ever, the clean semantics of functional languages bas enabled the use of algebraic program 
transformations, which have proven to be of essential importance throughout this thesis. 

Honesty farces us to admit that these transformatfans have to a large extent 
been constructed afterwards. The parsers, scanner, attribute eva/u
ator and pattern matching have all been implemenled befare they were derived 
by means of these transformations. In the field of parsing however, these trans
formatfans have yielded a lot of new parsing algorithms which have nat been 
implemenled (yet). 
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From imperative languages we have borrowed more traditional mechanisms like assignment, 
procedures, VAR-parameters and the notion of state. The main contribution of the impera
tive world however is inheritance (sub-typing), which is a powerlul abstraction mechanism, 
bom in the object-oriented world programming and not yet present in functionallanguages. 
As we have explained, it can be smoothly integrated in functional languages, unifying the 
concepts of pattems and (sub-)types and giving a very simple and clean semantics to pattem 
matching, which becomes equivalent to run-time type analysis. 
The design of Elegant can be characterized as an expedition to the border between 
abstraction level and efficiency. Starting with a simple idea, which was an efficient imple
mentation technique for lazy evaluation of attributes, has grown into a powert"ul, 
yet highly efficient programming language. During this expedition, new abstractions did 
come up, like polymorphism, which at first seemed unimplementable in the target language 
(first Modula-2 and later C), but for which implementation techniques were discovered 
later on. Especially the implementation of polymorphism is far from trivia) and on the 
borderline of what can be expressed in ANSI-C, involving heavy and essential use of the 
C preprocessor. The borderline between abstraction level and efficiency has moved also by 
the change from Modula-2 to C as implementation language. Especially the pre-processor 
with its macro facilities tumed out to be invaluable, net only in the implementation of 
polymorphism, but also in the shifting of many basic operations (like integer addition) 
from being built into the compiler to being defined in the prelude by a macro name. Last 
but not least, the availability of faster and faster hardware has contributed to moving the 
borderline. 
Elegant is also a campromise between the clean and the·efficient. Hence it offers both 
sicte-effects and powerful declarative facilities, Jike attribute grammars and relations. As 
the attribution scheme of section 4.8.5 shows, their combination can lead to both clean and 
efficient coding styles. Of course, their combination can be disastrous as well, but since we 
aim at the professional and sensible programroer as a user, this has never occurred (yet). 
The result of this campromise is a very high level programming language that combines 
the abstraction capabilities of higher order functional languages with the expressive power 
and efficiency of imperative languages. 
Concepts that were desirabie but hard to implement, or not efficiently implementable, have 
been left out. Examples of these are unification and, what is more important, garbage 
collection. Although automatic storage reelamatien is a powerlul and important facility, its 
implementation, especially when portable C is used as a target language, is far from trivia! 
and it certainly does not contribute to a better time efficiency. As E has been 
used for the construction of compilers, which run as batch programs, this has not been a 
problem, due to the abundant availability of memory nowadays. Since is now 
being used in the construction of interactive systems (using incremental evaluation), which 
can run for an arbitrary amount of time, a garbage collector would be welcomed and will 
probably be added in the near future. 
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8.2 Notational evaluation 

As language design is the art of combining incompatible concepts, languages are always 
a compromise. Elegant is more of a campromise than most languages, as it tries to 
combine the clean with the efficient. This means that less clean, but very efficient concepts 
like assignment and the NIL-object have been incorporated. In the process of designing 
Elegant language design rules have been used and discovered. The standard attribution 
scheme of section 4.8.1 is the result of such design rules. 
The golden rule is to design first the concepts to be expressed by a program, i.e. the set of 
language constructs. Only after that step, should a syntax for these constructs be designed. 
This promotes the design of a language supporting the abstractions from the application 
domain. 
Another rule is that a language should not favor the compiler over a pro grammer. Constrocts 
that are handled by the compiler should be accessible to the user as well. E.g. operators 
and overloading are present in most languages for built-in types, but seldom available for 
user-defined operations. does not contain any built-in type or operator: all of 
them are defined in the prelude, which is a perfectly legal module that is no more special 
than user-written modules. 
A third important rule says that everything that need not be forbidden should be allowed. 
Often rather arbitrary restrictions are imposed by a language due to the disregarding of this 
rule. Examples from Pascal are the forward deelaradon of procedures as opposed to pointer 
types and the need to deelare constants, types, variables and functions in a strict order. 
A fourth important rule says that concepts that are almost the same should be unified 
whenever possible into a single concept. In Pascal, there is no need to distinguish functions 
from procedures: they imptement almost the same concept, only the presence of a result 
distinguishes them. 
A fifth rule says that a concept should be generalized as far as possible, of course taking 
efficiency constraints into consideration. E.g. the void types of C and Algol-68 can be 
generalized to the concept of an empty type. 
In the design of we have tried to follow each of these rules. As Elegant 
bas grown over the years, being used in projects with their own time-scale and demands, 
upward compatibility has been of great importance. Nevertheless, we feel that from time to 
time, a new major release is needed, breaking with flaws or lack of generality of a previous 
release. Currently, Elegant is in its sixth major release and where possible, (automatic) 
support in the transition from one release to another bas been offered to users. 
In this section, we present the less conventional features of Elegant as a programming 
language and we hope it gives the reader a feeling for the way we have applied the design 
rules to Elegant. A complete language definition can be found in [Aug92b] and an 
introduetion in [Jan93]. 
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8.2.1 Features already covered 

The type system 

The Elegant type system has been presented in section 6.5. In practice, especially the 
sub-typing facilities combined with pattem matching are invaluable. Sub-typing matches 
ideally with the modeling of language constrocts that are syntactically modeled by non
terminals with production rules and semantically paired with types and sub-types. The 
efficient implementation of pattem matching forms one of the corner stones of Elegant. 
It favors the definition of functions by means of rules (partial functions) over explicit case 
analysis by a programmer. The former is both more comprehensible and efficient than the 
latter. 
Parameterized types and polymorphism have been added only recently. Up to that point, 
lazy types and arrays were built in the compiler: now they are defined as parameterized 
types. Especially the parameterized list and set types with their comprehensions, treated in 
section 8.2.2, and polymorphic higher order functions add to the expressiveness. Before 
their actdition every instanee of a list type and every operation on it had to be declared sep
arately. We have the expectation that libraries of polymorphic functions on parameterized 
data types such as lists, sets, different kind of trees, hash tables, etc. will be constructed, 
thus opening the door for reuse of software components. 
Empty types are not used very frequently. Only the predefined ones, Message for writing 
to stderr, Output for stdout and VOID for general side-effects are popular. The lazy 
forms of these types, especially the type CODE (= Closure (VOID) ), appear to be very 
useful in code generation. An instanee of CODE can be used to represent an unevaluated 
side-effect, normally to produce output code. In this way, one can abstract from code 
generation, e.g. by the following rule that generates C-code for a variabie declaration: 

Deel: [type : CODE, var : CODE) -> " " type " " var ";" NL ; 

or by the next rule that generates an altemation, useful e.g. in the generation of a parameter 
list. It is applied to a list 1, a function f that is applied toeach element of the list, performing 
a side-effect on each element. These side-effects are altemated by the evaluation of the 
third argument a, of type CODE, which represents an unevaluated side-effect. 

Alternate:[NIL: List(?T), f: [?T), a: CODE)->; 
Alternate:[l: List(?T), f: [?T], a CODE) 
-> f: [l.head] { EVAL(a) ++ f: [x] i x T <- l.tail } 

Relations 

Relations (generalized attribute functions) are used in the computation of complex properties 
of data structures, e.g. of data dependency analysis and more frequently in code generation, 
as explained insection 7.3. It allows the independent generation of different pîeces of code 
for a single data structure element by a single rule. In this way, these related pieces of 
code (e.g. code for the name generation of a fresh variable, its variabie declamtion and its 
initialization) can be kept consistent. Without relations, these pieces of code are generated 
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by multiple traversals of the samedata structure (e.g. a traversalto distribute fresh variabie 
names, one to generate code for variabie declarations and one for their initialization), which 
is both less efficient and more error prone, since the multiple operations are usually scattered 
over the souree text and must be kept consistent. 

Explicit laziness 

Elegant offers explicit laziness, in contrast to lazy functional languages that keep lazy 
evaluation implicit. On the one hand, this is an advantage since it allows a more efficient 
implementation of non-lazy objects, something which otherwise can be achieved, orbetter 
approximated, by extensive and expensive strictness analysis only. On the other hand, it 
places the burden on the programmer. 
Laziness in combination with side-effects is dangerous. The same expression may deliver 
different results when evaluated at different times. This is something that should be under 
the control of the programmer, in order to keep it controllable in an environment that 
allows side-effects. Hence we favor explicit laziness in such an environment. lt also gives 
rise to different forms of laziness, Lazy, Closure and Incr types, which all have their 
place in practical programming. This is another reason for making laziness explicit: the 
programroer should be able to choose between the different forms of laziness. 
Finally, explicit laziness provides strictness information to the cyclicity checks for attribute 
grammars, thus allowing the powerfut class of pseudo circular attribute grammars. 
In relations, implicit laziness is offered for the attributes. As a result, attributes may have 
an empty type, in contrast to normal variables. 

Useful side-effects 

In the world of functional programming, side-effects are often despised. Here we present 
some useful aspects of them, not from a point of view of efficiency, something which is 
never doubted, but from a notational point of view. We give three examples, all from the 
field of code generation. 
In code generation, one often needs a souree of new identifiers. When modeling this in 
functional languages one needs an extra variabie that is e.g. incremented each time a 
new identifier is needed. This variabie must be passed in and out to almost every code 
generating function, something which is at least an order above the complexity of what 
should be needed for such a simple task. It obscures functions that would otherwise be 
much more simple and lucid. Especially in combination with relations, the implementation 
of this by side-effect is very useful, and it can be encapsulated very simply. This is shown 
in the next example. The rule NewVar allocates a new variabiefora given type and initia! 
expression. lt delivers the declaration code, initialization code and name of the variabie as 
out-attrîbutes. 

GLOBAL 

num : Int 0 
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RULES 
NewNum: [] Int -> num :+ 1 RETURN (num) 

RELATIONS 
NewVar (IN type, va1ue 
LOC AL 

VOID OUT deel, init, name) -> 

i : Int = NewNum: [] 
name VOID (: "VAR" i :) 
deel VOID (: " " type " 
init VOID (: " " name " 

" name ";" NL :) 
" value ";" NL :) 

The implicit lazy evaluation guarantees that the rhs of the declaration of i is evaluated 
only once, and hence each occurrence of name is the same. 
Another example is the generation of properly indented code, which with the Jack of sicte
effects would require yet another additional parameter encoding the indentalion level. 

Int = 0 
GLOBAL 

indent 
Margin 
NL 

CODE { (: " n :) i Int <- 1 . . indent } 
CODE = (: "\n" Margin :) 

RU LES 
Indent: [n : Int, e 
-> indent :+ n 

e 
indent . n 

CODE] 

When Indent: [ 2, e] is executed, indent is increased, subsequently e is evaluated and 
every access to Margin or NL will reevaluate it, using the increased indenlation level. After 
the evaluation of c the indenlation level is restored. The evaluation of Inden t : [ 2, c] 
In den t : [ 1 0 , c] produces the same code c once with an extra indentation level of 2 and 
ones with an extra level of 10. 
We present a third example, again from code generation. In the generation of target code, 
say C, one generates a lot of newlines. The newlines must be suppressed sometimes, e.g. 
in the generation of a macro call. On another occasion, in the generation of debuggable C 
code, we want to generate 
#line line-number 
for each newline in order to provide the debugger with souree code line numbering in
formation. Thus, we need three types of newlines. Without side-effects we would have 
needed yet another parameter of our already obscured code generating function in order to 
eneode the newline type. 

GLOBAL 
line number Int 0 
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NL 

RULES 

CODE 
CODE 
CODE 
CODE 

"\n" 

"" 
(: "\n#line" line number "\n" :) 
Real NL 

Macro: [c : Code] 
LOCAL nl : CODE NL 
-> NL := No NL 

c 
NL nl i 

Line: [line : Int, c : CodeS] 
LOCAL nl : CODE = NL 

n : Int 
Debug_NL 

number 
-> NL 

1 number line 
c 
line number := n 
NL := nl ; 

Again, the side-effects are nicely encapsulated, but almost indispensable. 

191 

Recently, with the popularization of monads [Wad90, Wad92], a technique for dealing with 
state in functional programming has become available. Through the use of proper higher 
order function, the passing around of a state, as well as its modification can be bidden. 
When a state passing monad is implemented as an abstract data type, it can be guaranteed 
that at any moment at most one reference to a state exists and hence that state modification 
operations can be implemented destructively. On the one hand, this promises a major 
performance impravement for functional programs manipulating state, but on the other 
hand, since monads guarantee the abundant use of higher order functions and the creation 
of closures, they promise a performance penalty. A way out seems to hide the monads in 
a system unit that implements the side-effects directly in a semantically transparent way. 
lt is too early yet to draw any conclusions on them in this respect. 

8.2.2 lteration 

The elegant notation of comprehensions, which has been used so abundantly throughout 
this thesis, has inspired us to include a generalization of this notion in Elegant. The 
syntax of this construction in Elegant is as follows: 
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(iteration) .. - { [ (construction) ] [ (expression-list) ] [ I (iterators) ] 
(iterators) .. - (iterator) [ , (iterators) ] 
(iterator) .. - (typed-ident) { , (typed-ident) } 

(typed-ident) 
(destructable) 
( construction) 
(destruction) 

f-- (destructable) { , (destructable) } 
(typed-ident) = (expression) 
( condition) 

.. - (identifier) (type) 

.. - [ (destruction) ] (expression) 

.. - I ( (expression) (expression)) 

.. - I ( (expression) , (expression)) 

The number of typed-idents on the lefi-hand side of an iteration must equal the number of 
destructab/es on the right-hand side of an iterator. When multiple destructables are present, 
they are walked through simultaneously. 
When we forget about the optional construction and destruction for a moment (they have a 
default value and are explained below), this comes close to the comprehensions of functional 
languages, where the second form of an iterator, x : T = e is equivalent to x : T f-- { e}. 
An expression { e1. ... , en} is a shorthand for to { e1 } * ... * {en}, while the rest of 
the semantics remains the same as in section 2.2, that is to say, for single destructab les. 
Multiple destructables can be defined by the rule: 

{eI PJ.· .. Pn e e1, ... en} = {eI (P1, .. ·Pn) e zipn (e1, ... en)} 

where zipn is the straightforward generalization of zip to n arguments. 
The types that are added to the iterator play an important röle however. When the iteration 
x : T f-- e produces elements of type U, with T :5: U, only those elements that happen to be 
an instanee of T are selected, while the others are simply skipped over. The type T may be 
a pattem (recall that patterns are types as well) and in this way a pleasant form of filtering 
is available. 
The construction and destruction generalize the scope of the iteration to much wider classes 
of types than just lists. They allow iteration over any type whose instances can be destrucled 
and can deliver an instanee of any type whose instauces can be constructed. 
The notion of destruction must be rather general in order to allow e.g. the efficient imple
mentation of iteration over arrays. For lists, a function destructing a list into a head and 
a tail is sufficient, but for arrays, we need the element, the array and additional informa
tion: the current index in the array. We can generalize this to the following information 
respectively: an element, a destructable object and a state storing the additional information. 
Thus, the general rule for destruction is that for an iterator x : T f-- e a pair of funclions 
(Destruct, State) must be in scope. This pair can be overruled by supplying the destructor 
explicitly. The general typing of this pair is as follows and explained below: 

Start : [Te] : S 
Destruct :[VAR Te, VAR S, VAR RT]: Bool 



8.2. NOTATIONAL EVALUATION 193 

The destruction starts in a certain state of type S, the start state being obtained by Start from 
the result of e. The function Destruct transforms a (Te, S) tuple into a (Te, S, Rr) triple 
whenever it returns true and to undefined values when returning false. The idea is that it 
is called for each iteration step again, delivering an element in its third argument, until it 
returns false. At that point, the iteration terminates. In Elegant, the (Destruct, Start) 
pair is predefined for the types List, Set, Array, String, ldent and Bitset They can be 
overloaded for any user-defined type U to allow extension of tbe iteration notation to that 
type U and they can be overruled in every individual iteration by explicitly providing them. 
The construction operates in a similar fashion. Let E be the root type of e1 ... en (it 
defaults to VOID when n = 0) and let U the result type of the iteration. Then the pair 
(Construct, Null) must be defined with signature: 

Null :U 
Construct : [U, E] : U 

The iteration result is accumulated by starting with Null and by adding successive values 
for ei by means of Construct. The pair (Construct, Null) can be explicitly provided in 
the form of a construction. lt is predefined for the types List, Bitset and VOID. The 
last type represems a general side-effect with as start value the empty side-effect and as 
construction function the sequencing of side-effects. In this way, the iteration can be used 
as a convenient alternative notation for nested while-loops. 
A nice example of the application of iteration as a reptacement for loops can be found 
in section 4.8.7 in the symbol-table implementation and in the following function that 
returns the value of the first element of an association list that bas a certain key (assuming 
NoValue to be an instanee of type Value): 

Find:[1: List(Pair(Key,Va1ue)), key: Key] : Va1ue 
-> { (: RETURN (x.va1ue) :) 1 x : Pair(Key,Va1ue) <- 1, (x.key = key) } 

RETURN (NoVa1ue) ; 

The computation of the maximum value of a list is easily modeled by using constructors: 

Max: [1 : List(Int)] : Int 
->RETURN ({ /(Max,Minint) i I i : Int<- 1 }) 

Pythagorean triples are generated by the expression: 

{ [a,b,c] 1 a: Int<- 1 .. n, b: Int<- a 
(c*c = a*a+b*b) } 

The constructor functions forsets are defined as: 

Nu11:[s : ?T] : Set(T) ->RETURN (NIL) ; 

n, c Int <- b . . (a+b) , 

Construct:[s: Set(?T), x: ?T] : Set(T) ->RETURN (Insert:[x, s]) 

The destructor functions for arrays are given by: 

Start: [a : Array(?T)] : Int-> RETURN (0) 
Destruct:[VAR a: Array(?T), VAR s :Int, VAR x ?T] Bool 
-> IF s >= #a THEN RETURN (FALSE) FI 

x := a@s 
s :+ 1 
RETURN (TRUE) 



194 CHAPTER 8. AN EVALUATION OF ELEGANT 

8.2.3 Function objects 

One of the cornerslones of functional programming languages is the fact that functions 
are first-class citizens. They can be declared (bound to a name), passed as arguments and 
retumed as results. Moreover, there exists a denotation for function objects (À.-abstraction), 
which offers the ability to denote a function without declaring it (giving it a name). This 
combination of features is very rare in the world of imperative programming. Even the 
notorious Algol 68 language, well known for the rigorous, if not merciless, application of 
the orthogonality principle, did notoffer first-class functions 1• Elegant offers first-class 
functions in an imperative setting. The main complication is the storing of the free variables 
which appear in the body of a function expression in an environment, which is passed as 
an additional parameter when the function is called. In this respect, function denotations 
are just parameterized closures and they do not give rise to complications in a language 
which already offers explicit laziness and closures. 

8.2.4 Incremental evaluation 

Incremental evaluation is a novel feature that has already been introduced in section 6.2.10. 
One way to obtain a clean, referential transparent, semantics in the presence of sicie
effects is to recompute automatically every expression that directly or indirectly depends 
on the previous value of a modified variable. In this sense, incremental evaluation lies 
in between Elegant lazy types and closures. Lazy objects stabilize after one evaluation 
and are thus evaluated at most once, ciosure objects never stabilize and are evaluated over 
and over again, while incremental objects are stabie as long as none of the variables on 
which their previous computation depended changes its value. In this respect, incremental 
evaluation is comparable to the Unix make facility. To implement incremental evaluation, 
Elegant offers, apart from the Lazy(T) and Closure(T) types, the types lncr(T) and 
Vincr(T). Instances of the latter of these may be modified by an assignment (they are 
sourees in make terms), thereby invalidating instances of the lncr type (the targets), which 
are subject to (automatic) re-evaluation. 
Incremental evaluation is particularly useful in the construction of interactive systems. An 
interactive system can be viewed as a system that maintains a data-stmeture by imposing 
consistency restrictions (invariants) on that data-structure. A user event (pressing a button, 
moving a scroll-bar) modities part of the data-structure, making it inconsistent. The system 
then restores consistency again, thereby updating that part of the screen that became incon
sistent. In this respect, incremental evaluation is related to the field of constraint program
ming, found insome object-oriented languages (see e.g. [Fre90, Hor92, VMGS91, BvZ89]). 
Viewed in this way, such an interactive system is very naturally modeled by means of iocre
mental evaluation. The user events modify Vincr objects and do not care about restoring 
consistency. A back-ground process re-evaluates the screen after each user event. This 
screen is an lncr(VOID) object, representing a re-evaluatable side-effect, namely the up-

1 Although Algol 68 did allow the retuming of a local function as a result, it required that this function it 
did not access parameters or local variables stored on the stack, which could disappear after the retuming of the 
function. Hence, the facility was not of much use. 
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dating of the screen. The whole data-stmeture of the interactive system consists of lncr 
and Vincr objects, which are defined in terms of each other. Of course, not all invariants 
can be modeled in this way. The consistency relations must be brought into an effectively 
computable form, such that each object is defined by means of a (re-evaluatable) expres
sion over other objects. Not all components of the data structure need be of lncr types. 
Intermediate results may be stored in normal variables. As long as the value of such a 
variabie is not computed in one re-evaluation phase and used in a subsequent one, this does 
no harm. Also functions used in the computation of lncr objects may have their own local 
variables that they may modify. 
Since the incremental evaluation mechanism is relatively new, there is little experience 
with it and a good programming style for it is still under development. The first interactive 
prototype system indicates, however, that it is a valuable and powerful technique that allows 
for the construction of interactive systems in an untraditional way. 

8.2.5 Persistency 

For some applications persistency of a data structure is required. In order to meet this 
demand, Elegant offers so-called graph-io. An expression WRITE x TO filename 
writes the object x of, say, type T, together with all the objects it references, directly or 
indirectly, to a file. The expression READ T FROM filename reads this whole data
stmeture isomorphically back-in (possibly in another (invocation of the same) program), 
maintaining sharing and possibly cycles. Of course, not all objects can be written to a file 
in this way. Function typed objects and unevaluated lazy or ciosure typed objects (which 
are function typed objects in disguise, since they contain an unevaluated expression) can 
not be written. lt would probably require an interpreter based system to change this. 
Nevertheless it is a powerful mechanism that is particularly useful in passing data-structures 
between different programs. In order to enhance its applicability, fields in a data-stmeture 
can be declared to be write-only or read-only for graph-io, so that an application can have 
its private fields that are not shared with other applications. 

8.2.6 Safety 

A high level programming language should not only offer abstraction capabilities, but also 
safety. In the first place, safety means a guarantee that run-time errors will not take place, 
or will be detected. Detection can take place at compile time, in which case a suitable 
warning should be given, or at run-time, in which case a suitable (fatal) error must be 
reported, or both, in which case both messages should be similar. Unfortunately, certain 
run-time checks are very expensive, for instanee the checking on dereferencing NIL on 
every field access. Such checks, which are performed for each correct construction and not 
only for the erroneous case and which delay the normal execution of a program, should be 
generated optionally so that they can be removed once a program has reached maturity. 
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Raising the level of abstraction 

In genera!, a higher level of abstraction increases the safety of a language. This is caused 
by the fact that more abstract constructions require less detail and thus offer less chances 
for errors being made. Less detail implies that a programmer can concentrale more on 
the essentials of his program, the architecture and the concepts he is dealing with and 
less on the details of encoding those concepts. As a result, he is liable to make fewer 
errors. This is particularly true when the language is a problem-specific language. In this 
case, the concepts of the problem domain appear directly as constrocts in the language 
and the programmer can express them directly, writing them down instead of encoding 
them. This is e.g. the case in the use of regular expressions for scanner generators and of 
context-free or attribute grammars for parser generators. A programmer no Jonger needs to 
know how to imptement regular expressions by automata or how to implcment parsers with 
suitable error recovery. The difference in complexity between an attribute grammar and its 
implementation is between one and two orders of magnitude and the chance of making errors 
is thus dramatically decreased by the application of problem-specific languages. This is also 
caused by the fact that it is easier to make a correct generator than to make each individual 
application manually correct. A generator can also generate unreadable, incomprehensible 
but efficient code, as long as the generator itself is comprehensible. Although Elegant 
generates C, the kind of C that it generates is of a form that one would not dare to write 
by hand. In this respect, C is used as a portable assembly language, rather than as a high 
level programming language. Fortunately, the quality of C compilers nowadays is such that 
the extreme programs Elegant generates are compiled correctly. In the recent past, this 
used to be different and especially the quality of the Modula-2 compilers (we generated 
Modula-2 from 1987 to 1990) was extremely poor on many platforms. 

Strong typing 

One of the main techniques for the increase of safety is, of course, a good type system. 
By compile time checks this guarantees that objects of different types, with different rep
resentation classes, are not mixed up at run-time, thus preventing errors and run-time type 
checks are not necessary. A strong static type system can be explicit, like in most im
perative languages, or implicit, like in many modem functional languages. As remarked 
in section 6.2.1, implicit typing is technically much more complicated and much harder 
to extend, e.g. when adding subtyping, eoereions or overloading. When a programmer is 
writing an implicitly typed function, he usually knows the type (otherwise he would not 
be able to write it at all), but when he is reading it back, something which is done much 
more frequently than writing it, he has to infer that type again, thus blurring his thoughts 
which should be concemed with making a mental model of the function, not with type 
inference. Hence, when writing the function, i.e. at the moment he knows the type, he 
should write down that type, thus at the same time doeurnenting his program and speeding 
up the compiler. 
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A leak in the type system 

Although the type system of has been designed carefully, it is not completely 
type-safe, in the sense that it is possible that an object of a super-type T is interpreted as 
an instanee of a sub-type S. This is possible due to the combination of three ingredients, 
namely pattern-matching, aliasing and side-effects. Due to the absence of side-effects in 
pure-functional languages, the problem does not appear there. Aliasing frequently takes 
place in Elegant due to the pointer semantics ofthe assignment to record-typed variables. 
The problem is best illustrated by an example. Assume that field f of a type X is declared 
to have type T. By means of pattem matching, it can be matebed locally to be an S, S<T. 
When the argument a is aliased by a variabie of type X, the problem shows up: 

Leak: [a (X, f : s) l 
LOC AL b x 

s s 
t T 

-> b a %% a is aliased b 
b.f : t %% t is a valid instanee for b.f 
s a.f a.f was promised to be an S, but alas 

An possible solution would be to detect that b is an alias of a, but this is in general 
undecidable. Another solution would be to interpret a pattem for an argument not as an 
invariantfora rule (since it isn't, as the example illustrates), but as a precondition, serving 
its purpose in the selection of the rule only. Since it is extremely convenient to use a 
pattem as an invariant and since this pathological case is very rare (we have not found a 
single instanee of it in practical applications yet), we have decided to leave the leak in and 
be pragmatic in this case. 

Completeness 

A safe language should not only provide proteetion by consistency checks, e.g. by means of 
astrong type system, but also by means of completeness checks. The Elegant compiler 
provides several checks of both categories, apart from strong typing. We list the following: 

• Missing rules. 
When the rules, which together define a function by means of a sequence of partial 
functions, do not together constitute a total function, a compile time warning is given, 
listing the missing cases for the function. When at run-time, arguments are provided 
in the part of the domain for which the function is undefined, that same message 
is given, as a fatal run-time error, listing the function name and the missing cases 
again. 

• Unreachable rules. 
Apart from missing rules, it is also possible that the set of rules that form a function 
is overcomplete in the sense that the domaio of certain rules is already covered 
by preceding ones. These superftuous rules are listed as a warning and no code is 
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generated for them. Both the missing and unreachable rule checks are straightforward 
to implement giving the· pattem matching compilation technique of section 6.4. The 
semantics of conditions is not taken into account for this check, only their presence. 

• Cyclic relations and attribute grammars. 
On both relations and attribute grammars the standard cyclicity check of [Knu68], 
[Knu71] is applied, extended with all kinds of optimizations, like the ones presented 
in [RS82, DJL84]. Although this cyclicity check is intrinsically exponential, the 
practical performance is very acceptable, up to a few seconds for complex attribute 
grammars. This check is in practice extremely useful, if not indispensable, since it 
frequently signals cycles that would otherwise lead to (possible rare) run-time errors 
that could only be interpreled by either very experienced users, familiar with the 
attribute evaluation mechanism, or by expensive run-time checks. 

• Initialization at allocation time. 
A cause of hard-to-find errors in many imperative programming languages is the 
ability to allocate memory without properly initializing it. This happens e.g. in the 
declamtion of variables, or the allocation of a new record on the heap. In Ele
gant, this problem has been overcome by requiring that every variabie declamtion 
is accompanied by an initial expression. Every allocation of a record object requires 
initial expressions for some of the fields in the type declamtion and initial expressions 
for the remaining fields as arguments to the allocation function. 

• Deallocation. 
The ability to deallocate objects explicitly in imperative languages is very error-prone, 
since it might lead to dangling references. In Elegant, no deallocation is available, 
thus circumventing the problem. A garbage collector would be a proper altemative, 
reducing memory requirements, but increasing the complexity of the implementation 
considerably and requiring a non-neglectable run-time overhead. 

• Return in functions. 
One of the other consistency checks Elegant performs is a check on the pres
enee of a return statement at all possible end-points of a function. A function that 
might terminate without delivering a result is detected and not accepted. Moreover, 
statements after a return statement are unreachable and reported as a waming. 

Sub-typing of parameterized types 

A problem that is related to the leak described in the previous section is the sub-typing 
of parameterized types. When e.g. S < T, is then List(S) < List(T)? The answer is that 
in a pure-functional language, excluding side-effects, it indeed is, but again, due to the 
combination of aliasing and side-effects, this is not the case in Elegant, as the following 
example illustrates. 

LOCAL sl List(S) 
tl List(T) 
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s : s 
t : T 

-> tl := sl 
tl.head := t 
s := sl.head 

%% Assume S < T => List(S) < List(T) 
%% t is a valid instanee for tl.head 
%% s is assiqned a T, causing a type leak 

199 

Since this case is much less rare than the previous one, the induced sub-typing for pa
rameterized types is not present in This is disappointing, since it would often 
be convenient to have this relationship. The underlying cause is that fields are both read
able (giving rise to co-variance for parameterized types) and assignable (giving rise to 
contra-variance). A way out would be to distinguish the 2n different types for all possible 
combinations of assignability for n fields of a type. This could e.g. be done by allowing 
assignment only to instances of a type Ref(n, like in Algol 68. A parameterized type is 
then co-variant, when the types of its fields are. Since the Ref-type would be no-variant, a 
single assignable field would prohibit a sub-type relation. Although this salution is certainly 
possible, it would lead to an exponential amount of incomparable variants of a type, and 
we fear that this explosion would give rise to many more problems than the absence of 
co-variance for parameterized types. It would, nevertheless, be interesting to experiment 
with this salution to find out whether our fears are justified or not. 

8.2. 7 Tbe module system 

Elegant bas a rather traditional module system. Each module comes in pairs, a specifica
tion unit and an implementation unit. The specification unit can list types and the signatures 
of globals and functions, where the implementation unit provides their implementation. 

Scopes 

We believe that. a module system should obey the property that, when an identifier x is 
used in a module A while it is declared outside of A, it is always possible to find out in 
which module the declaration of x resides, using only the text of A. In order to meet this 
requirement, assuming B is declaring x, A should refer to B. x or explicitly import x from 
B. 
In practice, this requirentent needs some relaxation. The prelude declares many 
functions, like integer addition, that one does not want to import. explicitly. Thus, there 
exists a so-called export clause, which is used for each function exported by the prelude. 
Such functions need not be imported explicitly, but are implicitly available in each module 
importing the prelude (which is every module). The export clause places the declaration in 
a global scope, rather than in a scope local to the module. This export mechanism is also 
available for users, thus relaxing the requirement. 
There is another case where the explicit importing of identifiers is cumhersome and that is 
the importing of types. It is very inconvenient to import all the types needed, or to use the 
M. T notation for each type. Therefore, types are always placed in the global scope, as if 
they had an export clause. This prevents the occurrence of nasty coding standards as e.g. 
in the case of Modula-3, where an abstract data type A is modeled by a module A with a 
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type with the fixed name T and one always has to write e.g. Stack. T when referring to 
a stack type, which is a twistéd way of type naming. 

Interface to C 

Elegant offers a mechanism to interface with C functions and types. One may deelare 
extemally implemented types by the phrase FROM C-Module. In this way, the 
primitive types like Int and Bool are defined in the prelude. In genera], an extemal type 
has no structure, but any field access on it is allowed, giving rise to an untyped expression. 
lt is also possible to import a C module M and to refer to variables by the phrase M.v or 
to call functions by means of M.f( ... ). No property of these C constrocts is assumed, and 
hence no (type) checking is performed. A much better way to interface with Cis to define 
a signature for extemal functions (or even macros) in an Elegant specification unit. For 
example, one can deelare 

SPEC UNIT UnixProcess 

TYPE ExitCode (Success I Failure) 

RU LES 

Exit: [x ExitCoctel FUNCTION exit 

to map the function UnixProcess.Exit onto the C function exit. 
When one wants to pass a C type to a polymorphic function, Elegant needs to know the 
size of the type. This should be deelared by means of a macro SIZE_T for an extemal 
type T that expands to 1, 2, 4 or 8. 

Subtyping over module boundaries 

An unpleasant limitation of separately compiled modules is the inability to combine effi
cient pattem matching with extensible types. In object-oriented programming it is common 
practice to deelare a supertype with default operations in one module and sub-types with 
specilic operations in other modules. The pattem matching compilation technique of sec
tion 6.4 requires that both all sub-types of a type and all rules for a function are known 
at compilation time. Thus it is not possible to extend a type or a function later on in 
another module, but this seems the price to be paid for such an efficient pattem matching 
implementation. Since pattem matching and its efficient implementation are corner stanes 
of Elegant (as well as of most functionallanguages), we are happy to pay that price. 
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8.3 Performance evaluation 

In this section we present the performance of Elegant and show how the techniques 
described in this thesis play a crucial röle in the efficiency of Elegant. We discuss the 
main efficiency enhancement techniques grouped per compiler component. After that, we 
present a performance benchmark of the Elegant self-generation. 

8.3.1 General 

Obtaining a reasonable performance for rather abstract languages like Elegant requires 
that actvaneed compilation techniques are used. Although a 'high' level language (C) has 
been used as a target language, this by no means implies that the target language should be 
used as it normally is, namely for software engineering and structured programming. The 
target code need not be structured at all, as long as the generator and its associated input 
language are. In section 8.3.9 we elaborate on this. Basic operations which are frequently 
used should be efficiently implemented and no means, even conceptually less acceptable 
ones, should be avoided to achieve this. In this respect a major contri bution to 's 
efficiency is the use of an efficient memory allocator. First of all, memory is allocated 
from the operating system (typically Unix) in large chunks, which are re-allocated by the 
Elegant run-time system. Since Elegant bas been used mainly as a tool for creating 
batch-oriented programs, no memory de-allocation mechanism has been implemented. This 
allowed us to keep the allocator simple. Many architectures require the alignment of heap
pointers on a long word boundary. This means that rounding of the size of objects (which 
happen to be in bytes) to multiples of 4 is necessary2• This rounding can be avoided if the 
size is already a multiple of 4, which it is in the vast majority of cases. In the great majority 
of these cases, this size is C compile-time computable by means of constant expressions, 
using the sizeof operator. By trusting the C compiler in its job of constant folding, a 
conditional statement of the form: 

if (size% BYTESPERWORD 0) Fast_Allocate (&x, size); 
else General Allocate (&x, size); 

is transformed into a single call to the appropriate allocation function, where the former 
allocation function does not need to perform the required alignment. This simple trick 
gains about 10% in performance. 

8.3.2 Scanning 

Scanning is a time-consuming task, since it requires the inspeetion of all characters in 
the input string one by one. The main speed-up of a scanner comes from the following 
technique. A scanner needs a token buffer that contains at least the characters of the current 
terminal symbol. The operating system maintains an input buffer for file-10. These buffers 
should coincide to avoid copying of characters from the input buffer to the token buffer. To 

2Even ro a multiple of 8 on some systems when double precision ftoating point numbers are used. 
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achieve this, a fairly large input/token buffer is used (10k characters) tbat is filled by means 
of a low level system call (Unix One sbould never use the standard character based 
IO (like Unix getch) in lexica! scanners! 
Of mucb less importance, but still resulting in interesting speedups, is the efficient con
struction of the scanner itself. Each of the scanning functions (' states' for those who 
prefer automata) is mapped onto a C-function. These functions call each other under the 
consumption of one character. Functions that are used only once or which are trivial are 
in-lined. Tail reenrsion eliminatien is applied. When a function can eaU many different 
other functions, it selects these by means of a switch (case) statement. Otherwise it uses 
if-statements. The start state always uses a switch statement under this condition. As a 
result, the main scanning function consists of a huge switch statement, typically between 
5000 and 10,000 lines for moderate languages. To a large extent, this is caused by the 
in-lining of the 'next character' function. 
This rather voluminous main function can be made smaller but slower by not in-lining the 
'next character' function and by using a keyword table. Identifiers can be looked up in 
this table before recognizing tbem as such. Normaily, keywords are detected as separate 
symbols by the scanner automaten. 
A minor contribution to efficient scanners results from an efficient identifier bashing algo
ritbm. 

8.3.3 Parsing 

Compared to lexical scanning, parsing is of minor importance. It usually requires less than 
5% of the total compilation time and hence a rather large saving of 20% in parsing speed 
would only speed up the total compilation by l %. Of course, one should not be unnessary 
inefficient in parsing. The error detection implementation is of relative importance bere. 
Using bitsets in representing follower sets is both time and space efficient, since tbey can be 
inspected quickly and do not require heap allocation. A recursive aseent parser can use the 
same optimization tecbniques as a lexica! scanner, since both are sets of mutually recursive 
functions. Back-tracking with continuations can use stack-allocation for the continuations 
due to their stack-wise life time. 

8.3.4 Attribute evaluation 

The techniques that are used in the efficient implementation of attribute evaluation have 
already been presented in section 4.9. What is noteworthy bere however is the following 
observation. attribute grammars are usually concise since they do not requîre 
the addition of extra attributes for the removal of cyclic definitions. Hence, fewer attributes 
need to be allocated than for e.g. ordered attribute grammars. Moreover, the demand-driven 
evaluation technique allows us to assign independently an evaluation function toeach out
attribute of different instances of production rules for the same non-terminal symbol at 
parse-time. As a result, no interpretation of the parse tree is required at attribute evaluation 
time in finding the proper attribute definition. does not even construct a parse 
tree: it immediately constrocts tbe attribute dependency graph in the form of lazy attributes! 
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8.3.5 Pattern matching 

As we have seen in section 6.4, each selector is inspected at most once in the selection 
of the proper rule for a function. This selection, by means of a type-case expression, can 
be mapped onto a C switch statement by uniquely numbering the types in a type-hierarchy 
and by giving each object an additional field holding the number of its type. This number 
is then used as the selector in the switch statement. 
The nested case expressions can be mapped onto nested switch statements. If a case 
expression occurs more than once however, its code is generated separately from the switch 
statement and the associated case expression jumps towards it by means of a goto statement. 
In this way, sharing is obtained and the autornaton is kept minimaL In the same way, bocties 
of rules that are used in multiple branches of the nested case expressions are shared. Thus 
the code size is proportional to the number of different case expressions and the number 
of rules. 

8.3.6 Polymorphism 

As explained in section 6.5.7, each polymorphic function is compiled several times, for 
different sizes of its polymorphic arguments. Each of these compiled functions is as efficient 
as a corresponding non-polymorphic one would be. Hence, polymorphism does not impose 
a time penalty, only a space penalty. The latter can become fairly large when functions that 
are polymorphic in many arguments are used. In practice, only a fraction of the C-functions 
generated for such polymorphic functions is actually used. Thus, a smart enough linker 
might get rid of the redundant ones. Unfortunately, such a linker has yet to be found. 

8.3. 7 Relations 

Relations can be seen as the product of pattem matching and attribute evaluation. Hence, 
they show the same performance as these, which makes them, in combination with their 
expressive power and static cyclicity check, an attractive sub-formalism. 

8.3.8 lteration 

lteration is mapped onto while loops. The destruction and construction functions for the 
predefined types (e.g. List) are implemented by means of rnacros and as a result, a list 
iteration is as efficient as a while loop traversing the list. lt is however much more readable, 
general and concise in its notation. 

8.3.9 C as a target language 

In this section we discuss the use of the programming language C as a target language 
for a compiler. Although this language has received a good deal of criticism (see e.g. 
[PE88, Sak88, Sak92]), it is our impression that it is almost ideally suited as a target 
language. For this purpose, C is used in a way that is very different from the structured 
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programming style. lt is notimportant that the target code is structured, but that its generator 
is. One could say that C is a very good portable assembler. In the next sections we discuss 
partienlar aspects of C that have been important for the generation of code for 

The preprocessor 

The often detested preprocessor bas been indispensable in the implementation of poly
morphism. It made the efficient implementation of iteration possible. lt allowed for the 
definition of many basic functions in the prelude (like e.g. integer addition) without any 
performance penalty. Usually, such operations are built into the compiler to achieve this. 

An abundance of operators 

C offers an extraordinary amount of operators. Although C has been criticized for this 
[PE88], they were often very convenient, e.g. in the generation of code for an expression 
where an extra variabie had to be allocated and initialized. The initialization can be done 
in conjunction with the expression itself, by means of the expression composition operator 
', '. The conditional boolean operators & & and 1 1 are indispensable. The conditional 
expression c ? t : e bas been very helpfut on many occasions, which brings us to the 
following point. 

Almost an expression language 

The fact that C is almost an expression language, e.g. that assignment is an expression 
rather than a statement, is invaluable. It allows the initialization of extra variables as ex
plained above. The fact that C is not a full expression language, like e.g. Algol 68, is 
something we have often regretted. Especially the inability to use while and switch state
ments in expressions bas prevented us from allowing the iteration expression everywhere 
in and from introducing a type case expression rather than a type case statement 
in One could say that had C been an expression languages, would 
have been one! 

Function variables 

As illustrated by the implementation of lazy evaluation, the use of function valued variables 
is indispensable for Elegant. Although their syntax is obscure, to say the least, a generator 
does not bother about this syntax. We feel that they would be used much more often by C 
programmers however, if only they had a better syntax. To experience this, one should try 
to define a structured type containing a field of a function type requiring a pointer to that 
same structured type as an argument. This is exactly what is used in the implementation 
of lazy evaluation. 
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Switch statement 

The switch statement, although it has a completely outdated semantics (allowing, if not 
encouraging, the falling through from one case branch into the next one), has been in
dispensable in the implementation of our many 'automata', used in scanning, parsing and 
pattem matching. A switch statement is by no means unique to C however. 

Low level facilities 

C offers many low level facilities and very little protection. For software engineering 
this is disastrous of course, but for code generation it is very convenient. E.g. the trick 
that transforms an (environment, evaluation function) pair into a (value, identity function) 
pair for lazy evaluation relies on mixing up different types in unions. Type casting is 
indispensable in the implementation of polymorphism. Pointer arithmetic is used in the 
calculation of the sizes of certain objects that need to be allocated. 

Return statements 

The return statement is very useful in a programming style where a function first detects 
certain special cases by means of an IF c THEN s RETURN (e) FI statement. Al
though this style is often replaced by pattem matching in Elegant, it still appears rather 
frequently and could not have been compiled without a return statement. The use of a 
return statement is also very convenient in the compilation of pattem matching. The nested 
case expresslons used there never terminare normally: they terminare by a return statement 
from a rule body. Hence, several such expressions can be cascaded, conneered by jumps, 
as explained above. 

Debugging 

C allows the use of so-called line-directives. These are used to map a line in a C souree file 
onto another line, possibly in another file. Such a mapping can be exploited by a debugger, 
which may thus refer to the other file, e.g. an souree file. In this way, it is 
very easy to obtain a simple souree level debugger for Elegant. It can be used to set 
breakpoints in the text and to single step through it. The inspeetion of variables 
is more cumhersome however, since they should usually be addressed by C expressions. 

Portability and compiler quality 

C happens to be very portable. The Elegant tools compile onto about 200,000 lines of 
C code, and we have very seldom encountered a problem in the porting of Elegant to 
other systems. If there are problems, they are usually caused by optimizers, which are 
easily silenced. At the time when we used to generare Modula-2 our code was practically 
unportable, due to the low quality of Modula compilers. 
The good standardization of C run-time libraries is of lesser importance, since 
uses its own ones. 
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8.3.10 Self generation bencbmark 

In this sec ti on we present the results of some measurements of the performance of El eg an t 
in generating itself. These measurements have been performed on a sun 4/670 processor, 
containing two integer and two floating points running at 40MHz and containing 128M 
memory. 
The total compilation time for the sourees of is 43.34 seconds, compiling 22,000 
lines of souree code. As specification units are passed multiple times to the subsequent 
separate compilations of implementation units, the total amount of input lines processed 
by is 75,508 lines, meaning a compilation speed of 1740 lines/second. A total 
amount of 169,019 lines of C code is generated by these compilations. The total amount 
of heap space allocated is 76.4 Mb, about 1.76 Mb per second, allocated and tilled with 
useful information. The time and space spent is distributed over the different compilation 
phases in the following way: 

phase time (s] time [%] space [Mb] speed 
initialization 0.80 1.8 
scanning 6.91 16.0 11k lines/s 
parsing+attribute creation 9.04 20.9 34.7 8.4k lines/s 
cycle check 0.95 2.2 3.7 700 rules/s 
attribute evaluation 17.53 40.4 29.6 
code generation 

' 

8.1 1 18.7 8.4 2lk lines/s 
total 43.34 100 76.4 17 40 Iines/s 

One should keep in mind that attribute evaluation time includes the construction of the 
compiler administration and all context checks. These can not easily be separated, due to 
the demand-driven evaluation of attributes, which cause some attributes to be evaluated for 
the purpose of context checks and others later on. 
It is interesting to take a closer look at the compilation of the Elegant attribute grammar. 
This bas a size of 2878 lines and the total input to the compiler, due to the required 
specification units, is 4760 lines. This compiles in 4.44 seconds, giving a speed of 1070 
lines/second. Code generation produces 42,398 lines of C. As the attribute grammar of 
Elegant is a complex one, mainly due to overloading resolution, the cyclicity check 
requires a good deal of the compilation time. Remember that this check is intrinsically 
exponential. For average attribute grammars, the cyclicity check time is less than 5% of the 
total compilation time. It also allocates a good deal of memory since all potential cycles, 
i.e. all attribute dependency paths, are stored in order to be able to give a sensible error 
message in the case of a cycle. 
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phase time[%] space [Mb] speed 
initialization 0.5 
scanning 8.1 13k lines/s 
parsing+attribute creation 8.3 3.5 13k lines/s 
cycle check 17.2 3.5 540 rules/s 
attribute evaluation 1.54 34.7 3.2 
code generation 1.39 31.3 1.7 30k lines/s 
total 4.44 100 11.9 1070 lines/s 

As these times are not only the times of an Elegant compilation but also those of an 
generated compiler (as is self generating) they are both representative 

for compiler generation speed as well as for the speed of compilers generated by 
As the reader can deduct, this is absolute production quality performance. 
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8.4 Conclusions 

In this thesis we have shown how the design of the compiler generator and programming 
language Elegant has been inspired by the field of functional programming. The ab
straction mechanisms found in modem functionallanguages have inftuenced the Elegant 
formalism toa large extent. The most important contributions to Elegant from functional 
programming are: 

• Parameterized types. 
Elegant offers parameterized types with an arbitrary number of parameters. 

• Polymorphic functions. 
Elegant functions can be polymorphic. The Elegant compiler substitutes the 
lowest common supertypes that are consistent with the types of actual arguments of 
a function call. 

• Higher order functions. 
Elegant functions are first-class citizens that may be passed as arguments, retumed 
as results and stored in variables. 

• À.-abstraction. 
Elegant offers a function valued expression that delivers a parameterized closure, 
capturing the free non-global variables in an environment. 

• Laziness. 
Elegant offers three forms of demand-driven evaluation. It does so by offering 
three distinct, predefined types. 

La z y ( T) Instauces of this type are evaluated at most once. 
C 1 os u re ( T) Instauces of this type are evaluated over and over again. 
In c r ( T) Instauces of this type are evaluated when their value may have 

changed. 

The fact that lazy types are explicit allows us to distinguish between these different 
forms and enables the use of laziness in an imperative environment. The use of 
unevaluated objects of an empty type, i.e. unevaluated side-effects, appears to be 
indispensable in code generation. 

• Comprehensions. 
Elegant offers very general comprehensions, based on user-defined destruction 
and construction of data-objects. In many cases, they offer a convenient and concise 
alternative to iteration and recursion. 

• Pattem matching. 
Elegant pattem matching is basedon type analysis. By virtue of this foundation, 
a rule can be seen as a partial function. 
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Although Elegant has been inspired by functionallanguages, it is an imperative language 
itself. The reasons for this are twofold. On the one hand, the ability to use sicte-effects 
(with care) can enhance efficiency and also readability. On the other hand, most abstraction 
mechanisms that make functional languages so pleasant to use need not be restricted to 
functional languages. The Elegant language clearly shows that this is the case. 
Other important ingredients of Elegant arebasedon the formalismof attribute grammars: 

• Attribute grammars. 
Since Elegant started as a high level compiler generator tooi, it offers attribute 
grammars as a sub-formalism. The lazy implementation of attribute evaluation has 
allowed the definition of a very general scheme for the construction of attribute gram
mars and the support of the very general class of pseudo circular attribute grammars. 
Strict (compile time computable) attributes may be used to steer the parser, while 
non-strict attributes can be used in any non-eireular fashion. 

• Relations. 
The formalism of attribute grammars has been extended in E to so-called 
'relations'. Instead of a parser, pattem matching on data objects is used in the 
selection of a production rule. Attributes do not compute properties of the input 
string, but of the data structure that is traversed by the relations. Especially in code 
generation, relations are a blessing. 

And of course, Elegant, being an imperative language, has been inspired by other im
perative languages, which is reftected by the following constructions: 

• Sub-typing. 
Elegant supports sub-typing, in a linear fashion. By regarding patterns as sub
types, pattem matching is easily combined with sub-typing. Enumerated and empty 
types appear to be special cases of the type system. 

• Assignable variables. 
Being an imperative language, Elegant supports assignment to variables. Our 
experience shows that it should be used with care. Most bugs could be traeed back 
to unexpected sicte-effects to non-local variables. Nevertheless, in some cases sicte
effects enhance readability and in many cases, enhance efficiency. 

• Empty types. 
Elegant generalizes the notion of a single empty type to multiple, user definable 
empty types, which offer the ability to distinguish different classes of side-effects by 
means of type information. 

• eoercions. 
eoereions form an important aspect of programming. eoereions are user
defined and some convenient ones are predefined in the prelude. When used with 
care, i.e. for representation transformations from one type into another, they are very 
useful. Especially in code generation they add considerably to the readability of a 
program. 
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This combination of ingredients from both functional and imperative programming lan
guages makes Elegant a language that combines a high level of abstraction with an 
efficient implementation. Elegant programs are much more concise and structured, bet
ter protected, and more reusable than C or C++ programs, yet as efficient as the latter 
ones. Elegant programs are comparable to (typed) functional programs with regard to 
conciseness, proteetion and reusability, but much more efficient. 
Elegant has always lived up to its own expectations: its very first application was its 
self-generation, and every new version has been self-generated since. It could not have 
been constructed with the current conciseness and efficiency if it had not been written in 
Elegant. Without Elegant, Elegant could not have evolved to what it is now! 
In the foundation of eertaio key ingredients of Elegant, the use of algebraic program 
transformations has been of great value: 

• They allowed the transformation of recursive descent into recursive aseent parsers. 
The transformations used for this purpose have brought to light that bottorn-up parsers 
can be regarded as the iterative versions of top-down parsers. This fact can be 
regardedas an important contribution to parsing theory. It makestheuse of automata 
in the foundation of bottorn-up parsers unnecessary. Both top-down and bottorn-up 
parsers can be expressed and analyzed in a functional language. 

• They have been used in the expression of lexica! scanners in functional languages. 
The algebraic transformations applied to a functional scanning algorithm appear to 
be isomorphic to the conventional transformations to finite automata for regular ex
pressions. 

• They have been used in the denvation of an efficient pattem matching algorithm 
based on the view of pattems as sub-types. This algorithm is used by Elegant 
in the compilation of pattem matching and is one of the key ingredients for the 
efficiency that Elegant programs exhibit. 

We have been using the algebraic program transformations in the domaio of functional 
programming languages. We have deliberately not lifted it to the field of morphisms and 
category theory, which seems to be the current fashion. We believe that only a minorlossof 
generality is suffered when unlifted transformations are applied to real-world problems and 
that the use of transformations on the programming level brings the practical application of 
algebraic program transformations much closer to the 'average' programmer than category 
theory does. 
The often rediscovered concept of memoization has been incorporated in Elegant in the 
form of 'memo types', types for which the creation function is memoized. As memoization 
is transparent in functionallanguages, a memoized version of a function is equivalent to the 
non-memoized version, but potentially more efficient. Many imperative algorithms, among 
which the whole field of dynamic programming, appear to use memo functions in disguise. 
The Warshall, Earley and Tomita algorithm have been identified as such in this thesis. 
This thesis is a reftection of the issues that have come up in the design of the system and 
language which Elegant is. We have discussed the more general and interesting issues 
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in this thesis, but many more have been studied in the last six years. lt has always been a 
joy and a challenge to encounter new problems. Especially the balance between the clean 
and the efficient has always been fascinating and both the current design of the Elegant 
language, as well as its implementation are a reileetion of the search for this balance. 
When a eertaio problem was hard to implement, this was in the vast majority of the cases 
due to one of the following two reasons: either the problem was too specific and had to 
be generalized, or the current Elegant implementation needed a new or more general 
abstraction. When one has the comfortable ability to design, modify and implement its 
own language, the latter case can be dealt with: one simply extends the current language 
definition. Of course, this has been a problem for users from time to time. Most of the 
time, they were not waiting for a new release, but rather forced to use one. To relieve 
these problems, we have tried to keep subsequent versions upward compatible as long 
as possible and to support the upgrading of souree code from one major releases to a 
next one. Nevertheless, the new abstractions offered by a new release were often warmly 
welcomed by the users, especially by the more demanding ones, who were aiming at an 
implementation that used all language features that were useful for it. 
Forthese reasons, I would like to thank the Elegant users fortheir support, inspiration, 
challenging remarks and their willingness in accepting new releases. Without them, E 1 e
gant would nothave been what it is now and this thesis would probably never have been 
written. 
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The Elegant Prelude 

SPEC UNIT Prelude 

(* This is the Elegant prelude. 
It contains a host of predefined functions, varying from trivial arithmetic ones 
to polymorphic functions. 

235 

All functions in this prelude are exported which means that they have a system wide 
scope and thus are visible in all units. 
Importing them can not be prevented, nor can they be renamed. 
Alas, soma functions, like Bead on lists are partial and thus implemented 
as such, implying that their invocation may lead to abcrt.ion when arguments out 
of their domein are supplied. 
This unit is a regular Elegant unit, which means that you can create such kind of 
un.its yourself. 
If you create interesting polymorphic or ether functions, please inform the Elegant 
team so that we can .include them .in this prelude or another library module, thus 
serving the needs of all users. 

For the curieus, especially these interestad in polymorphism, the un.it 
Prelude . .impl m.ight be .interesting. 

*) 

IMPORT 
Prelude C 

TYPE 

Int FROM 
Float FROM 
Bool FROM 
Char FROM 
Ident FROM 
String FROM 
Bitset FROM 

Array (X) 
Lazy (EMPTY X) 
Closure (EMPTY X) 
In er (EMPTY X) 
Vin er (X) 

RaadFile FROM 
WriteFile FROM 

StandardTypes 
StandBrdTypes 
StanderdTypes 
StanderdTypes 
StanderdTypes 
StandardTypes 
StanderdTYPeS 

FROM StanderdTypes 
FROM StanderdTypes 
FROM StanderdTYPes 
FROM StanderdTYPes 
FROM StanderdTypes 

FileStream 
FileStream 
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VOID 
Message 
Output 
CODE 

List(X) 

IntList 
IdentList 

CONSTANT 

Minint 
Maxint 

Int 
Int 

SI? 
LF 
CR 
HT 
FF 
SC 

RULES 

[x 
[x 
[x 
[x 
[x 
[x 

[x 
[x 
[x 
[x 
[x 
[x 

Char 
Char 
Char 
Char 
Char 
Char 

Int] 
Bool] 
Char] 
Float] 
String] 
Ident] 

Int] 
Bool] 
Char] 
Float] 
String) 
Ident] 

EMPTY 
EMPTY 
EMPTY 
Closure(VOID) 

=ROOT, 

{Int) 
{Ident) 

-1024*1024*2048 
-Minint-1 

'\040' 
'\012' 
'\015' 
'\011' 
'\014' 
'\033' 

Message 
Message 
Message 
Message 
Message 
Message 

Output 
Output 
Output 
Output 
Output 
Output 

Nu11: [x : VOID] : VOID 
Construct: [x : VOID, y : VOID] 

Null: [x : Output] : Output 

he ad 
tail 

x, 
List(X) 

FUNCTION Messages Fromint 
FUNCTION Messages-FromBool 
FUNCTION Massages-Fromehar 
FUNCTION Messages-FromF1oat 
FONCTION Messages=FromString 
FONCTION Messages_Fromident 

FUNCTION Outputs Fromint 
FUNCTION Outputs-FromBool 
FUNCTION Outputs-FromChar 
FUNCTION Outputs-FromF1oat 
FUNCTION Outputs-FromString 
FONCTION Outputs=Fromident 

VOID 
MACRO NULL 
MACRO _CONSTRUCT 

Construct: [x : Output, y : Output) Output 
MACRO NULL 
MACRO _CONSTRUCT 

Null: [x : Messagel : Message 
Construct: [x : Message, y : Messagel Message 

MACRO NULL 
MACRO -CONSTRUCT 

Init: [] 

Integer operations --------------) 
< [i Int, Int] Bool I!'UNC'I'ION F Lt 

MACRO _LT 
<= (i Int, j Int] Boo1 FUNCTION FLe 

MACRO _LE 
> [i Int, j Int] Bool FUNCTION FGt 

MACRO _GT--

>= [i Int, j Int] Bool FUNCTION FGe 
MACRO GE--

+ [i Int, j Int] Int FUNCTION F !?lus 
MACRO _I?LÜS-

[i Int, j Int] Int FUNCTION _F_Minus 
MACRO _MINUS 

[i Int Int FUNC'I'ION _F_Neg 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 



* [i Int, j Int] Int 

I [i Int, j Int] Int 

OIV [i Int, Int] Int 

MOD [i Int, Int] Int 

%% exponentiation 
** [i : Int, j : Int] : Int 
:+ [VAR i Int, j Int] 

[VAR i Int, j Int] 
:* [VAR i Int, j Int] 
:/ [VAR i Int, j Int] 
%% absolute value 
i [i : Int] : Int 
Signum:[i : Int] : Int 

Max: [i Int, j Int] 
Min: [i Int, j Int] 

Even: [i Int] Bool 

Odd :[i Int] Bool 

Int 
Int 

.. [i : Int, j : Int] : {Int} 

MACRO _NEG 
FUNCTION _F_Times 
MACRO _TIMES 
FUNCTION _F_Oiv 
MACRO _OIV 
FUNCTION _F_Mod 
MACRO _DIV 
FUNCTION _F_Mod 
MACRO MOD 

MACRO _ASSI?LUS 
MACRO _ASSMINUS 
MACRO _ ASSTIMES 
MACRO _ASSDIV 

FUNCTION _F_Even 
MACRO _EVEN 
FUNCTION _F_Odd 
MACRO _ooo 

{--------- Float operations --------------} 

CONSTANT 
E Float 
Pi : Float 

2.7182818284590452354 
3.14159265358979323846 

RULES 

< [i Float, j Float] Bool 

<= [i Float, j Float] Bool 

> [i Float, Float] Bool 

>= [i Float, Float] Bool 

+ [i Float, j Float] Float 

[i Float, j Float] Float 

[i Float Float 

* [i Float, j Float] Float 

I [i Float, j Float] Float 

:+ [VAR i Float, Float] 
[VAR i Float, Float] 

:* [VAR i Float, Float] 
:I [VAR i Float, Float] 

%% absolute value 
# [i : Float) : Float 
Signum: [i : Float] : Int 

FUNCTION _Fl_Lt 
MACRO _LT 
FUNCTION _Fl_Le 
MACRO LE 
FUNCTION _Fl_Gt 
MACRO _GT 
FUNCTION _Fl_Ge 
MACRO GE 
FUNCTION _F_Plus 
MACRO _!?LUS 
FUNCTION _F_Minus 
MACRO _MINUS 
FUNCTION _F_Neg 
MACRO NEG 
FUNCTION _F_Times 
MACRO TIMES 
FUNCTION _F_Div 
MACRO DIV 

MACRO AS SP LUS 
MACRO :::ASSMINUS 
MACRO _ASSTIMES 
MACRO _ASSDIV 
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EXPORT 

EXPORT 

EX!? ORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 
EXPORT 



238 APPENDIX B. THE ELEGANT PRELUDE 

Max: [i 
Min: [i 

[i : Int] 

Float: [i 

Int: [i : 

Float, j 
Float, j 

: Float 

: Int] 

Float] 

Float] 
Float] 

Float 

Int 

Float 
Float 

FUNCTION F Int2Float 
MACRO INT2FL 
FUNCTION F Int2Float 
MACRO INT2FL 
FONCTION F Float2Int 
MACRO _FL2mT 

acos: [x Float] Float FONCTION acos 
asin: [x Float] Float FONCTION asin 
atan: [x Float] Float FONCTION atan 
atan2: [y : Float, x : Float] Float FUNCTION atan2 
ceil: [x : Float] : Float FONCTION ceil 
cos: [x : Float] : Float FUNCTION ceil 
cosh: [x : Float] : Float FUNCTION cosh 
exp: [x : Float] : Float FONCTION exp 
floor: [x : Float] : Float FUNCTION floor 
fmod: [x : Float, y : Float] : Float FUNCTION fmod 
frexp: [x : Float, VAR exp : Int] : Float FUNCTION frexp 
ldexp: [x : Float, exp : Int] : Float FUNCTION ldexp 
log: [x : Float] : Float FUNCTION log 
loqlO: [x : Float] : Float FONCTION loqlO 
modf: [x : Float, VAR iptr Float] Float FUNCTION modf 
%% exponentiation 
** [x : Float, y : Float] 
sin: [x : Float] : Float 
sinh: [x : Float] : Float 
sqrt: [x : Float] : Float 
tan: [x : Float] : Float 
tanh: [x : Float] : Float 

GLOBAL 

Float FUNCTION pow 
FUNCTION sin 
FUNCTION sinh 
FUNCTION sqrt 
FUNCTION tan 
FUNCTION tanh 

print exponent : Bool (~ To influence Print: [WriteFile, Float] ~} 

print:Precision : Int 

RULES 
Print: [f : WriteFile, x : Float] FUNCTION PrintFloat EXPORT 

(~~-~~~~-- Bool operations -------------~) 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

%% The followinq five operations are non-strict intheir second argument. 

[i Bool, j Booll Bool FUNCTION F Or 
MACRO _OR EXPORT 

OR [i Bool, Bool] Bool FUNCTION _F_Or 
MACRO _OR EXPORT 

" [i Bool, j Bool] Bool FUNCTION _F_A:nd 
MACRO _AND EXPORT 

AND[i Bool, j Bool] Bool FUNCTION _F_A:nd 
MACRO _AND EXPORT 

=> [i Bool, Bool) Bool FUNCTION 
MACRO EXPORT 

[i Bool Bool FUNCTION ll' Not 
MACRO _NOT - EXPORT 

NOT[i Bool Bool FUNCTION _F_Not 
MACRO _NOT EXPORT 

{~~~--~-~~ Char operations ----~-~--~---~) 

< [i Char, Char] Bool FUNCTION ll' Lt 
MACRO _LT-- EXPORT 

<= [i Char, j Char] Bool FUNCTION _F_Le 



> [i Char, j Char] 

>~ [i Char, j Char] 

[i : Char, j Char] 

%% orinal. val.ue 
11 [i : Char] : Int 

%% inverse ordinal 
Char: [i : Int] : Char 

IsAscii : [c Char] 
IsControl : [c Char) 
I sPrint : [c Char) 

Bool. 

Bool. 

{Char} 

Bool (* 0 .. 127 
Bool (* 0 .. 31, 
Bool (* 

MACRO _LE 
FUNCTION _ll'_Gt 
MACRO _GT 
Jl'UNCTION 
MACRO 

Jl'UNCTION ll' Char2Int 
MACRO _ CHÄ:R2 INT 

ll'ONCTION ll' Int2Char 
MACRO _INT2ëBAR 

*) 
127 *) 

*) 
IsSpace : [c Char) Bool (* Sl?,HT,CR,Lll',BS,Fll' *) 
IsUpper : [C Char] Bool 
IsLower : [c Char] Bool 
IsAlpha : [c Char] Bool 
IsDigit : [C Char) Bool 
IsAlphaNum: [c Char] Bool 
IsOctal : [c Char] Bool 
IsHex : [c Char) Bool 

ToLower : [c Char] Char 
ToOpper : [c Char] Char 

{--------- Bitset operations --------------} 
Empt ySet : [I : Bitset MACRO _EMPTYSET 
%% cardinality 
# [i : Bit set] Int FONCTION F Set_Size 
%% i + {j} 
+ [i : Bit set, Int] Bitset FUNCTION _F_Set_Incl 
%% i \ {j} 

[i : Bitset, j Int] Bitset ll'ONCTION _F_Set_Excl 
%% element test 
<- [i Int, j Bit set] Bool MACRO _IN 
<= [i Bitset, j Bit set] Bool MACRO SUBSET 
+ [i Bitset, j Bit set] Bitset MACRO ONION 

[i Bitset, j Bit set] Bitset MACRO DIFFERENCE 
* [i Bitset, j Bit set] Bitset MACRO INTERSECTION 
%% (i+j) (i*j) 
I [i : Bitset, Bit set] Bitset MACRO SYMMETRICDIFFERENCE 

%% construction 

EX!? ORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 
EX!? ORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 
EXPORT 
EXPORT 
EXPORT 

EXPORT 

Null: [x : Int] Bitset 
Construct: [l : Bitset, x Int] Bitset 

MACRO _BITSET_NULL EXPORT 
MACRO BITSET CONSTRUCT EXPORT 

%% destruction 
Start:[i : Bitset] : Int 

Destruct: [VAR i : Bitset, VAR s 

Identifier operations 

11 [i Ident] : Int 

+ [i Ident, Ident] Ident 

- -

FUNCTION _F_BITSET_START 
MACRO _BITSET_START 

Int, VAR x : Bool] : Bool 
FUNCTION _F_BITSE'l'_DES'l'RUCT 
MACRO _BITSET_DESTRUCT 

FONCTION Identifier_Length 
MACRO _IDENT_LENGTH 

EXPORT 

EX!? ORT 

EX!? ORT 

EXPORT 
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Ident: [s : String] : Ident FONCTION Identifier_FromString EXPORT 
%% conversion of substring s[l .. h] 
Ident: [s : String, 1 : Int, h : Int] Ident 

FONCTION Identifier_PutinidTable EXPORT 

%% destruction 
Start: [i : Ident] : Int 

Destruct: [VAR i : Ident, VAR s 

FONCTION _F_IDENT_START 
MACRO IDENT START 

Int, VAR x : ëhar] -;- Bool 
FONCTION F IDENT DESTRUCT 
MACRO _IDËNT_DESTRUCT 

{--------- String operations --------------} 

%% Allocate a new string with n characters, terminated by a 0 character. 

EXPORT 

EXPORT 

NewString: [n : Int) : String FONCTION Strings_New EXPORT 

11 [i String] Int FONCTION Strings Length 
+ [i String, : String] : String FONCTION Strings::::Append 
+ [i String, : Int] : String 
%% lexicographical comparisons 

[i String, j string] Bool 

< [i String, j String] Bool 

> [i String, String] Bool 

<= [i String, j String) Bool 

>: [i String, j String] Bool 

SubString: [s : String, i Int, j 

%% Conversions to String 
[i : Ident] : String 

String: {i : Ident] String 

String: [int : Int] String 

%% destruction 
Start: [i : String] : Int 

Destruct: [VAR i : String, VAR s 

Int] 

FONCTION Strings_IAppend 

FONCTION _FS_Eq 
MACRO _STRING_EQ 
FONCTION _FS_Lt 
MACRO STRING LT 
FONCTION _FS_Gt 
MACRO _STRING_GT 
FONCTION _FS_Le 
MACRO _STRING_LE 
FONCTION _FS_Ge 
MACRO _STRING_GE 

: String 

FONCTION Identifier_AsString 
MACRO IDENT2STRING 
FUNCTION Identifier_AsString 
MACRO _IDENT2STRING 

FONCTION _F_STRING_START 
MACRO STRING START 

Int, VAR x :-Char] -;- Bool 
FONCTION F STRING DESTRUCT 
MACRO _ STÏÜiG _DESTRUCT 

{--------- Built-in operations --------------} 

(* 

For each enumerated type T the conversion functions 
T: [x Int] : T 
11 [x : T] : Int 

For each non-abstract node type T the creation function: 
T: [fields] : T 

++ [x : VOID, y : VOID] -> x y 

*) 

{--------- Generic operations --------------} 

EXPORT 
EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 



%% shallow comparison 
[x ?T, y ?T] Bool 

# [x : ?T, y : ?T] : Bool 

%% Identity 
I: [x : ?T] : T 

%% Function composition 

EXPORT 
EXPORT 

EXPORT 

* [f : [?T] : ?U, g : [?S] ?T] [SJ u EXPORT 

%% Swap 
<-> [VAR x : ?T, VAR y : ?T] 

%% Array creation with initial value 
Array: [i : Int, x : ?T] : Array(T) 

%% destruction 
Start: [a : Array(?T)] : Int 

Destruct:[VAR a : Array(?T), VAR s 

%% Lengtbs 
11 [ 1 { ?T}] : Int 
11 [a : Array(?X)] : Int 

%% Test on emptiness 
Null:[l : {?T}] : Bool 

%% First and remaining elements 
Head: [1 ( {?T})] T 
Tail: [1 ({?T})] {T} 

Head: [1 
Tail: [1 

{?T}. b 
{?T), b 

?T] T 
{ ?T}] {T} 

%% Last and remaining elements 
Last: [1 ({ ?T})] T 
Init: [1 ({?T})] {T} 

Last: [1 
Init: [1 

{?T). b 
{?T). b 

?T] T 
{?T}] {T) 

%% First n elements and remainder 
Take: [n Int, 1 {?T}) {T} 
Drop: [n : Int, 1 : { ?T}) : {T} 

%% First n elements and remainder 
Split:[n Int, 1 : {?T}, VAR first 

Reverse: [1 : {?T}] : {T} 

%% i-th element 
• [1 : ({?T}). i 

%% element test 

Int] 

<- [x : ?T, 1 : {?T}] 

%% concatenation 
+ [x ?T, y : {?T}] 
+ [1 {?T}. u ?T) 
+ [1 {?T}. m : {?T}] 

T 

Boo1 

{T} 
{T} 
: {T} 

EXPORT 

FUNCTION Create_StandardTypes_Array 
EXPORT 

FUNCTION F ARRAY START 
MACRO -ARRAY-START 

Int, VAR x : ?T] : Bool 
FUNCTION _F_ARRAY_DESTRUCT 
MACRO _ARRAY_DESTRUCT 

MACRO _ARRAY_SIZE 

{?TL last { ?T} J 

EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 
EXPORT 
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%% construction 
Null: [x : '?'l'] : {'l'} 
Construct: [l : (?'1'}, x ?'l'] {'l'} 

MACRO _LIST_NULL EXPORT 
MACRO _LIST_CONS'l'RUCT EXPORT 

%% destructien 
Start: [a : List {?'l')] : List {'l') 

Destruct: [VAR a : List{?T), VAR s 

%% concatenation of all elements 
+ [l : ((?T}}] : {T} 

FUNCTION _F_LIST_START 
MACRO LIST START 

List{?T), VAR x-: ?T] : Bool 
FUNCTION _F_LIST_DESTRUCT 
MACRO _LIST_DESTRUCT 

%% insertion operations with side-effect on first argument 
:+ (VAR l {?T}, u ?T] 
:+ (VAR l : {?T}, m : {?T}j 

%% matrix transposition 
Transpose: [l : { {?T}}] : {{T}} 

%% apply f to all elements 
* [l { ?T), f [?'l']] 
* (1 : {?T}, f : [?T] : ?U) : {U) 

%% filter elements not obeying f 
I [l : {?T}, f : [?Tl Bool] : {T} 

%% xl + (x2 + ( ... xn +a)), where x+y ~ f: [x,y] 
Ree: [l : {?T}, a ?U, f : [?T, ?U] : ?U] : U 

%% xn + ( ... (x2 + (xl +a)) ... ), where x+y • f: [x,y] 
Iter: [l : {?T), a : ?U, f : [?T, ?U] : ?U] : U 

%% conjunction and disjunction of all elements 
& [l {Bool}] Bool 
1 [l : {Bool}] : Bool 

%% & {p*l) 
All: [p : [?T] Bool, 1 

%% I (p*l) 
Any: [p : [?T] : Bool, l 

%% sum and product 
+ I l {Int J ] Int 
* [ 1 {Int} J : Int 

+ [1 
* [l 

{Float} J 
{Float} J 

%% max and min 
Max: [l {Int}] 
Min: [1 {Int}] 

Float 
Float 

Int 
Int 

{?T}] 

{?T)] 

Max: [1 
Min: [l 

({Float})] 
({Float}) I 

Float 
Float 

Bool 

Bool 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 

EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 

EXPORT 
EXPORT 
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Samenvatting 

Dit proefschrift handelt over het ontwerp van de compilergenerator Elegant. Een com
piler generator is een computer programma dat vanuit een specificatie een compiler kan 
genereren. Een compiler is een computer programma dat een gestructureerde invoertekst 
kan vertalen in een uitvoertekst Een compiler generator is zelf een compiler welke de 
specificatie vertaalt in de programmatekst van de gegenereerde compiler. Dit heeft het mo
gelijk gemaakt om met zichzelf te genereren. Van een compilergenerator wordt 
verlangd dat deze een krachtig specificatie formalisme vertaalt in een efficiënt programma, 
een eis waar Elegant aan voldoet. 
Een compiler bestaat uit een aantal onderdelen, te weten een scanner, een parser, een 
attribuutevaluator, een optimalisator en een codegenerator. Deze onderdelen kunnen door 
het systeem geneneerd worden, ieder uit een aparte specificatie, met uitzondering 
van de parser en attribuutevaluator, welke gezamenlijk worden beschreven in de vorm van 
een zogenaamde attribuutgrammatica. 
De scanner wordt gegenereerd met behulp van een scannergenerator en heeft tot taak de in
voettekst te splitsen in een rij symbolen. Deze rij symbolen kan vervolgens ontleed worden 
door een parser. Daarna berekent de attribuutevaluator eigenschappen van de invoertekst 
in de vorm van zogenaamde attributen. De attributenwaarden vormen een datastructuur. 
De vorm van deze datastructuur wordt gedefinieerd met behulp van typeringsregels in de 
Elegant programmeertaal. De optimalisator en codegenerator voeren operaties op deze 
datastructuur uit welke eveneens beschreven worden in de Elegant programmeertaal. 

Dit proefschrift beschrijft de invloed die functionele programmeertalen hebben gehad op 
het ontwerp van Elegant. Functionele talen zijn programmeertalen met als belangrijkste 
eigenschap dat functies een centrale rol vervullen. Functies kunnen worden samengesteld 
tot nieuwe functies, ze kunnen worden doorgegeven aan functies en worden opgeleverd als 
functieresultaat. Daarnaast staan functionele talen niet toe dat de waarde van een variabie 
wordt gewijzigd, het zogenaamde neveneffect, in tegenstelling tot imperatieve talen die 
zo'n neveneffect wel toestaan. Deze laatste beperking maakt het mogelijk om met behulp 
van algebralsche regels een functioneel programma te herschrijven in een ander functioneel 
programma met dezelfde betekenis. Dit herschrijfproces wordt ook wel progammatransfor
matie genoemd. 
De invloed van functionele talen op Elegant omvat: 



244 

• Het beschrijven van ontleedalgorithmen als functionele programma's. Traditioneel 
worden ontleedalgorithmen beschreven met behulp van de theorie van stapelauto
maten. In hoofdstuk 3 wordt aangetoond dat deze theorie niet nodig is. Met behulp 
van progmmmatransformaties zijn vele uit de literauur bekende ontleedalgorithmen 
af te leiden en worden ook nieuwe ontleedalgorithmen gevonden. Deze aanpak maakt 
het bovendien mogelijk om de vele verschillende ontleedalgorithmen met elkaar te 
combineren. 

• De evaluatie van attributen volgens de regels van een attribuutgrammatica blijkt even
eens goed te kunnen worden beschreven met behulp van functionele talen. Traditio
neel bouwt een ontleedalgorithme tijdens het ontleden een zogenaamde ontleedboom 
op. Deze ontleedboom beschrijft de structuur van de invoertekst Daarna wordt deze 
ontleedboom geanalyseerd en worden eigenschappen ervan in de vorm van attributen 
berekend. In hoofdstuk 4 van het proefschrift wordt aangetoond dat het niet nodig 
is de ontleedboom te construeren. In plaats daarvan is het mogelijk om tijdens het 
ontleden functies die attributen kunnen berekenen samen te stellen tot nieuwe func
ties. Uiteindelijk wordt er zo één functie geconstrueerd voor een gehele invoertekst. 
Deze functie wordt vervolgens gebruikt om de attribuutwaarden te berekenen. Voor 
de uitvoering van deze functie is het noodzakelijk gebruik te maken van zogenaamde 
"luie evaluatie". Dit is een mechanisme dat attribuutwaarden slechts dan berekent 
wanneer deze werkelijk noodzakelijk zijn. Dit verklaart de naam welke 
een acroniem is voor "Exploiting Lazy Evaluation for the Grammar Attributes of 
Non-Terminals". 

• Scanners worden traditioneel gespecificeerd met behulp van zogenaamde reguliere 
expressies. Deze reguliere expressies kunnen worden afgebeeld op een eindige au
tomaat. Met behulp van deze automaat kan de invoertekst worden geanalyseerd en 
gesplitst in symbolen. In hoofdstuk 5 wordt uiteengezet hoe functionele talen het 
mogelijk maken om scanneralgorithmen te construeren zonder gebruik te maken van 
automatentheorie. Door een reguliere expressie af te beelden op een functie en de 
functies voor de onderdelen van samengestelde reguliere expressies samen te stellen 
tot nieuwe functies kan een scannerfunctie geconstrueerd worden. Door gebruik 
te maken van programmatransformaties kan deze scanner deterministisch worden 
gemaakt en minimaal worden gehouden. 

• Het typeringssysteem van Elegant wordt beschreven in boodstuk 6 en vormt een 
combinatie van systemen die in functionele en imperatieve talen worden gevonden. 
Functionele typeringssystemen omvatten typen welke bestaan uit een aantal varianten. 
Elk van deze varianten bestaat uit een aantal waarden. Bij een dergelijk typeringssys
teem wordt een functie gedefiniëerd door middel van een aantal deeelfuncties. Elke 
deelfunctie kan met behulp van zogenaamde patronen beschrijven voor welke van de 
varianten hij gedefiniëerd is. Het blijkt dat imperatieve typesystemen welke subtype
ring mogelijk maken een generalisatie zijn van functionele typesystemen. In deze 
generalisatie kan een patroon worden opgevat als een subtype en een deelfunctie als 
een partiële functie. Het Elegant typesystemen maakt deze vorm van typering en 
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functiebeschrijving mogelijk. Bij toepassing van een functie wordt de bijbehorende 
deelfunctie geselecteerd door de patronen te passen met de waarden van de actuele 
functieargumenten. In dit proefschrift wordt een efficiënt algorithme voor dit pa
troonpassen met behulp van programmatransformaties afgeleid uit de definitie van 
patronen. 
Het typeringssystemen bevat ook typen voor de modellering van luie eval
uatie. De aanwezigheid van neveneffekten maakt het mogelijk om drie verschillende 
luie typen te onderscheiden, welke verschillen in de wijze waarop de waarde van een 
lui object stabiliseert. 

• In hoofdstuk 7 wordt aangetoond dat de regels uit een attribuutgrammatica ook kun
nen worden gebruikt om eigenschappen van een datastructuur te berekenen in plaats 
van eigenschappen van een invoertekst biedt de mogelijkheid om zulke 
attribuutregels te gebruiken voor dit doel. 

• In hoofdstuk 8 tenslotte worden de programmeertaal en de efficiëntie van 
de Elegant vertaler en door Elegant gegenereerde vertalers geëvalueerd. Het 
blijkt dat de imperatieve programmeertaal dankzij abstractie mechanis
men uit functionele talen een zeer rijke en krachtige taal is. Daarnaast zijn zowel 
Elegant zelf als de door gegenereerde vertalers van hoge efficiëntie en 
blijken geschikt voor het maken van compilers voor professionele toepassingen. 
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I. Van alle klassen van op attribuutgrammatica's gebaseerde parsers is de klasse van 
LL(l) parsers de meest natuurlijke gezien de mogelijke generalisatie van ontleden 
naar het recursief doorlopen van een data structuur. 

[Lit.] Hoofdstuk 7 van dit proefschrift. 

2. Het feit dat de praktische uitdrukkingskracht van functionele talen in het algemeen 
groter is dan die van imperatieve talen wordt in hoge mate veroorzaakt door de 
beschikbaarheid van abstractiemechanismen als lazy evaluation, polymorfie, hogere
ordefuncties en impliciete typering en in veel geringe mate door de afwezigheid van 
neveneffekten. Derhalve is het zeer wel mogelijk een imperatieve taal met een zelfde 
mate van uitdrukkingskracht te ontwerpen. 

[Lit.] Hoofdstuk 8 van dit proefschrift. 

3. Enumeratietypen zijn typeëxtensies. 

[Lit.] Hoofdstuk 6 van dit proefschrift. 

4. Impliciet getypeerde programma's zijn compacter doch moeilijker te onderhouden en 
trager te vertalen dan expliciet getypeerde programma's. 

5. Na de introductie van LR-parsing heeft het meer dan twintig jaar geduurd voordat een 
recursieve implementatie van een LR parser werd geformuleerd. Na de beschrijving 
van het Earley-algorithme heeft het bijna twintig jaar geduurd eer dit algorithme als 
een memo-functie werd beschreven. Na de introductie van lazy functionele talen en 
hun implementatie met behulp van combinatoren heeft het ongeveer 10 jaar geduurd 
voordat ontdekt werd dat traditionele compilerbouwtechnieken een veel efficiëntere 
implementatie voor deze talen geven. 
Uit deze gebeutenissen blijkt dat een breed overzicht van de informatica van groot 
belang is voor het ontwikkelen van efficiënte technieken. 

6. Wanneer in een algorithme een stack wordt gemanipuleerd dient men verdacht te zijn 
op het bestaan van een recursieve versie van dat algorithme. 

7. De problemen die informaticastudenten ondervinden bij het leren programmeren met 
behulp van recursieve functies zijn meer van psychologische dan van technische aard. 

8. Een operating systeem dat slechts interactief bediend kan worden, zoals dat van de 
Apple Macintosh, is voor eindgebruikers een grote vooruitgang ten opzichte van een 
textueel operating systeem, zoals Unix, maar voor software ontwikkelaars een grote 
handicap. 

9. Iets ontwikkelen is het tegengestelde van iets ingewikkelds maken. 

10. Indien het Philips Natuurkundig Laboratorium goede contacten op informaticage
bied met universiteiten wil onderhouden, dan dient zij ervoor te zorgen dat zij een 
gelijkwaardige gesprekspartner is. Hiervoor is het van belang dat zij eigen informa
ticaonderzoek van voldoende kaliber verricht. 



11. De huidige tendens van het informatica-onderzoek op het Philips Natuurkundig La
boratorium om zich in toenemende mate met de vorm van het ontwikkelproces en in 
afnemende mate met de inhoud van dat proces bezig te houden leidt tot een toene
mende bureaucratie die de wetenschappelijke kwaliteit van het onderzoek aantast. 

12. In Nederland worden ouders welhaast gedwongen hun kinderen in te laten enten tegen 
de bof, mazelen en rode hond daar door de hoge inentingsgraad van de Nederlandse 
bevolking de besmettingskans gering is geworden en de betreffende ziekten op hogere 
leeftijd veel grotere complicaties met zich meebrengen dan op lagere leeftijd. 


