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Abstract 

In this paper, we propose to extend the Barendregt Cube by generalising reduction 
and by adding definition mechanisms. We sho;' that this extension satisfies all the original 
properties of the Cube including Church Rosser, Subject Reduction and Strong Normali
sation. 

Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church Rosser, Subject 
Reduction, Strong Normalisation. 
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1 Introduction 

In this paper, we introduce and motivate definition mechanisms and generalised reduction, 
and we study their interrelationship. Most importantly, we show that the Barendregt Cube 
of [Barendregt 92J, extended with these two concepts preserves all its old properties including 
Church Rosser, Subject Reduction and Strong Normalisation. 

1.1 Why generalised reduction 

In the classical A-calculus, the notions of redex and of ,8-reduction are described as follows: 

Definition 1.1 (Redexes and ,8-reduction in classical notation) 
A redex is of the form (A""B.A)C. One-step,8 -reduction -+(3 is the compatible relation gen
erated out of the axiom,8: (A""B.A)C -->(3 A[x .- Cj. Many step (3-reduction ~(3, is the 
reflexive transitive closure of -+(3. 

These notions are not as general as one might desire, as the following example shows. 

Example 1.2 In the classical term A ;: «A.,p.(Ay,Q.A"R.za)b)c)d, we have for redexes: 
(Ay,Q.AzB.za)b and (A""p.(Ay,Q.A"R.za)b)c (the fact that neither x nor y appear as free vari
ables in their respective scopes does not matte~ here; this is just to keep the example simple 
and clear). There is however a third redex which is not immediately visible in the classical 
term; namely, (A"R.za )d. Such a redex will only be visible after we have contracted the above 
two redexes (we will not discuss the order here). For example: 

«A""P.(Ay,Q.A"R.za)b)c)d -+(3 «AY'Q·AzB.za)b)~ -+(3 {A"R.za)d -+(3 da 

In classical notation, only the first two redexes'are visible at first sight, yet all the three are 
needed to reach the normal form of A. The third conld only be seen once we had contracted the 
first two redexes. There is however a need to make as many needed redexes as possible visible 
and even though the notion of a needed redex is undecidable, much work has been carried 
out in order to study some classes of needed redexes (as in [BKKS 87J and [Gardner 94]). 
Our proposal, is not only to make as many redexes as possible visible, but also to give newly 
visible redexes the possibility to be contracted before other ones. 

Example 1.3 In example 1.2, we may want to contract the redex based on (A"R.-)d before 
we have contracted any of the redexes (Ax,p.-)c and (Ay:Q.- lb. 

Firstly, this view on reduction gives an appropriate tool for the study of some programming 
languages. For example, in lazy evaluation ([Launchbury 93]), some redexes get frozen while 
other ones are being contracted. Now, if we had the ability of choosing which redex to 
contract out of all visible redexes, rather than waiting for some redex to be evaluated first, 
then we can say that we have achieved a flexible system where we have control over what to 
contract rather than letting reductions force themselves in some order. Secondly, we think 
that an investigation concerning the complete class of visible redexes in a term gives a better 
understanding of reduction strategies, e.g. the optimal reductions as in [Levy 80J. 

1.2 Why definition mechanisms 

In many type theories and lambda calculi, there is no possibility to introduce definitions which 
are abbreviations for large expressions and which can be used several times in a program or 
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a proof. This possibility is essential for practical use, and indeed implementations of Pure 
Type Systems such as Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do provide this 
possibility. But what are definitions and why are they attractive? Definitions are name 
abbreviating expressions and occur in contexts where we reason about terms. 

Exam pIe 1.4 Let id = (Ax,A'X) : A -+ A in (Ay,A_A. id) id defines id to be (Ax,A'X) in a 
more complex expression in which id occurs two times. 

The intended meaning of a definition is that the definiendum x can be substituted by the 
definiens a in the expression b. In a sense, an expression let x : A be a in b is similar to 
(Ax,A.b)a. It is not intended however to substitute all the occurrences of x in b by a. Nor is 
it intended that such a definition is a part of our term. Rather, the definition will live in the 
environment (or context) in which we evaluate or reason about the expression. 

One of the advantages of the definition let x : A be a in b over (Ax,A.b)a is that it is 
convenient to have the freedom of substituting only some of the occurrences of an expression 
in a given formula. Another advantage is efficiency; one evaluates a in let x : A be a in b 
only once, even in lazy languages. A further advantage is that defining x to be a in b can be 
used to type b efficiently, since the type A of a has to be calculated only once. A disadvantage 
is that the definition may hide information, as js shown in the following example. 

i 

Example 1.5 Without definitions, it is not p'ossible to type Ay,x.Af,a_a.jy even when we 
somehow know that x is an abbreviation for a. This is because f expects an argument of type 
a, and y is of type x. Once we make use of the'fact that x is defined to be a in our context, 
then y will have type a and the term will be typable. 

Practical experiences with type systems show, however, that definitions are absolutely indis
pensable for any realistic application. Without defnitions, terms soon become forbiddingly 
complicated. By using definitions one can avoid such an explosion in complexity. This is, by 
the way, a very natural thing to do: the apparatus of mathematics, for instance, is unimag
inable without definitions. 

Introducing definitions in Pure Type Systems is au interesting subject of research at the 
moment. For example, [SP 93] extended PTS's 'with definitions. Our approach enables such 
extension in an elegant way. In fact, the generated type derivations for terms in the Cube with 
definitions become much shorter than those in the absence of definitions (see Section 7.2). 
Moreover, we do not have to use complex relations to introduce definitions as in [SP 93]. 
Rather, the extension will be a natural way to how our terms are written. Basic for our 
proposed extensions is a new notation: the item notation. 

1.3 The item notation for definitions and generalised reduction 

The item notation is a simple variant ofthe usual notation where the argument is given before 
the function, the type is given before the abstraction operator, and where the parentheses 
are grouped differently than those of the classical notation. So that, if I translates classical 
terms into our notation, then I(AB) is written as (I(B)t5)I(A) (here is 15 a special symbol 
used for application) and I(Ox,A.B) is written as (I(A)Ox)I(B) where 0 = A or n. Both 
(tt5) and (tOx), t being a term in item notation, 1're called items. For reasons explaining the 
usefulness of such a notation, the reader is referred to [KN 93] and [KN 9z]. For this paper 
however, the reader is to notice that redexes a~d definitions can be easily generalised and 
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introduced with item notation. A traditional redex is a term that starts with a o-item next 
to a A-item. A definition is itself a certain form of a o-item next to a A-item. 

Example 1.6 I«Ax,A_(B_C).Ay,A.xy)t) == (to)(A _ (B - C)Ax)(AAy)(YO)x. The items 
are (to), (A _ (B _ C)Ax), (AAy) and (yo). The definition is (iO)(A - (B - C)Ax) and 
the redex is the whole term. 

Definition 1.7 (Classical redexes and (3-reduction in item notation) 
In the item notation of the A-calculus, a classical redex is of the form (CO)(BAx)A. We 
call the pair (CO)(BAx), a oA-pair, or a oA-segment. The classical {3-reduction axiom is: 
(Co)(BAx)A -{3 A[x := C]. One and many step (3-reduction are defined as in Definition 1.1. 

In item notation, term A of Example 1.2 becomes (do)( co)(PAx)(bO)( QAy)(RAz)(ao)z. Here, 
the two classical redexes correspond to oA-pairs as follows: 

1. (Ay,Q.A"R.za)b corresponds to (bO)(QAy). The remainder of the redex, (RAz)(ao)z, is 
the maximal sub term of A to the right of (QA y ). 

2. (Ax,p.(Ay,Q.A"R.za)b)c corresponds to (CO)(PAx), the rest being (bO)(QAy)(RAz)(ao)z. 

Looking closely at A written in item notation, one sees that the third redex described in Exam
ple 1.2 is obtained by just matching 0 and A-items. (A"R.za)d is visible as it corresponds to the 
matching (do)(RAz) where (do) and (RAz) are separated by the segment (co)(PAx)(bO)(QAy). 
Hence, by extending the notion of a redex from being a o-item adjacent to a A-item, to being 
a matching pair of 0- and A-items, we can make more redexes visible. Such an extension 
is simple, as in (CO)S(BAx), we say that (Co) and (BAx) match if s has the same struc
ture as a matching composite of opening ani closing brackets, each o-item corresponding 
to an openiug bracket and each A-item corresponding to a closing bracket. For example, 
in A above, (dli) and (RAz) match as (co)(PA;)(bli)(QAy) has the bracketing structure [][] 
(see Figure 1). We refine {3-reduction by changing ({3) from (CO)(BAx)A -{3 A[x := C] to 

nn 
(do) (co) (PAx) (M) (QAy)(RA z) (ao) z 

Figure 1: Extended redexes in item notation 

(CO)S(BAX)A '-+{3 s(A[x := CD if (Co) and (BAx) match. It is this generalised reduction 
that we will put on the top of the Cube and we will investigate its properties. 

Now, what about definitions? The first step is to define definitions as matching oA-couples 
and to include them in contexts with the condition that if a definition occurs in a context 
then it can be used anywhere in the term we are reasoning about in that context. Hence, if 
we look at Example 1.5, then we can type the term now that we allow definitions to occur in 
contexts and we extend f- slightly so that it can see what is in its context. 

Example 1.8 We use as context the segment (ao)«AAx)(xAy)(a _ aAf), establishing that 
x of type A is defined as a, that y has type x and that f has type a_a. Then, making use 
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C(CR, SN, SR) 

/~ 
C ..... ~(CR, SN) Cdef(CR, SN, SR) 

~/ 
C ..... ~def (CR, SN, SR) 

Figure 2: Properties of the Cube with various extensions 

of this definition, we have 
(a6)(AAx)(xAy)(a -+ aAf) f- f: a ---> a 
(a6)(AAx)(xAy)(a ---> aAf) f- y: x = a 
(a6)(AAx)(xAy)(a ---> aAf) f- (y6)!: a 
(a6)(AAx)(XAy) f- (a ---> a>'f)(y6)f: (a ---> a) ---> a 
(a6)(A>.x) f- (x>.y)(a ---> a>'f)(y6)f: x ---> (a ---> a) ---> a = a ---> (a ---> a) ---> a 

Based on the above discussion, we divide the paper into the following sections: 

• In Section 2, we introduce the item notation. 

• In Section 3, we recall the Cube as in [Barendregt 92], and all its properties. 

• In Section 4, we add to the Cube as in [Barendregt 92], generalised reduction ~{J and 
show that '-+>{J (the reflexive transitive closure of ~{J) generalises -*{J (Lemma 4.3) such 
that ={J and "'{J are the same (Lemma 4.5). This means that almost all the original 
properties still hold for '-+>{J. However, Church Rosser (CR) , Subject Reduction (SR) 
and Strong Normalisation (SN) deserve special attention. CR and SN are shown to hold 
(without the need for SR in the case of SN). SR holds in >.~ and A_, but fails in the 
remaining systems. This problem is solved in Section 6 by adding definitions. 

• In Section 5 we add definitions to the Cube of [Barendregt 92] and show that all the 
properties of [Barendregt 92] (including SR) hold with definitions. CR is not touched 
with the addition of definitions, contrary to the account of [SP 93], where a reduction 
relation was introduced to capture definitions and hence CR had to be shown. 

• In Section 6, we extend the Cube with both generalised reduction and definitions. 
We show that the Cube extended with definitions and generalised reduction, preserves 
all its important properties. We present in particular, the general proof of Strong 
Normalisation which applies to all earlier systems. 

• In Section 7, we discuss the conservativityof the Cube with definitions, with respect to 
the Cube without definitions. We show that more terms are typable using definitions. 
However, when a judgment is derivable in a system of the Cube with definitions, the 
judgment itself where all the definitions are unfolded is derivable without definitions 
(Theorem 7.3). We also compare our system of definitions with that of [SP 93]. 

Figure 2 summarizes our results, showing that one can safely use the Cube with definitions 
only, or with both definitions and generalised reduction. When using generalised reduction 
without definitions, one must remain in the >._ and >.~ as the other systems lose their SR. 
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2 The item notation 

Let I translate terms in classical notation to terms in item notation such that: 

I(A) 
I(Od.B ) 
I(AB) 

= A 
(I(A)Ox)I(B) 

= (I(B)o)I(A) 

if A is a variable or a constant 
ifO=AorII 

Notation 2.1 Throughout the whole paper, we take 0 to range over p, II}. 

The systems of the Cube are based on a set of pseudo-expressions 7 defined by: 

7 = V I C I (76)7 I (70v)7 

where V and C are infinite collections of variables and constants respectively. We assume 
that x, y, Z, ••• range over V and we take two 'special constants * and o. These constants 
are called sorts and the meta-variables S, Sl, S2, ... are used to range over the set of sorts 
S = {*,o}. We take A,B,C,a,b ... to range over pseudo-expressions. Parentheses will be 
omitted when no confusion occurs. For convenience sake, we divide V in two disjoint sets V* 
and V O

, the sets of object respectively constructor variables. We take x*, y*, z* , ... to range 
V • d ° 0 ° t V O over an x ,Y ,z ,... 0 range over . 

Bound and free variables and substitution are defined as usual. We write BV(A) and 
FV(A) to represent the bound and free variables of A respectively. We write A[x := B] to , 
denote the term where all the free occurrences of x in A have been replaced by B. Furthermore, 
we take terms to be equivalent up to variable renaming. For example, we take (A>'x)x == 
(AAy)Y where == is used to denote syntactical equality of terms. We assume moreover, the 
Barendregt variable convention which is formally stated as follows: 

Convention 2.2 (BC: Barendregt's Convention) 
Names of bound variables will always be chosen such that they differ from the free ones in a 
term. Moreover, different A'S have different variables as subscript. Hence, we will not have 
(XO)((AAx)XAx)X, but (XO)((AAy)YAz)Z instead. 

Definition 2.3 (Compatibility) 
Let WE {o} U {Ox I x E V}. A relation -+ on terms is compatible iff the following holds: 

(Aw)B1 -+ (Aw)B2 

Definition 2.4 (fJ-reduction -+f3 for the Cube) 
In the Cube, fJ-reduction -f3, is the least compatible relation generated out of: 

(/3) (CO)(BAx)A .... f3 A[x := C] 

We take --f3 to be the reflexive transitive closure of .... f3 and we take =f3 to be conversion, i.e. 
the least equivalence relation generated by --f3. 

Note that /3 is not assumed for II-expressions, Le. (Co)(BIIx)A f.f3 A[x := C] (see [KN 9y] 
for such an extension). Now, some needed machinery for item notation follows. 

Definition 2.5 ((main) items, (main, oO-)segments, end variable, weight) 
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o If x is a variable, and A is a pseudo-expression then (AAx), (AIIx) and (Aa) are items 
(called A-item, II-item and a-item respectively). We use s, SI, Si, . .. to range over items . 

• A concatenation 0/ zero or more items is a segment. We use S,S},Si,'" as meta
variables for segments. We write 0 for the empty segment. 

o Each pseudo-expression A is the concatenation of zero or more items and a variable or 
constant: A == SIS2" ·SnX' These items SI,S2,.' ',Sn are called the main items of A, 
x is called the end variable of A, notation endvar(A). 

o Analogously, a segment s is a concatenation of zero or more items: s == SIS2" ,sn; 
again, these items St, S2," ., Sn (if any) are called the main items, this time ofs. 

o A concatenation of adjacent main items (in A or s), Sm'" Sm+k, is called a main 
segment (in A or s). 

o A aO-segment is a a-item immediately followed by an O-item. 

o The weight of a segment s, 1leight(s), is the number of main items that compose the 
segment. Moreover, we define 1leight(sx) = 1leight(s). 

When one desires to start a ,a-reduction on the basis of a certain a-item and a A-item occurring 
in one segment (recall, no reductions are based on a- and II-items), the matching of the a 
and the A in question is the important thing, even when the a- and A-items are separated by 
other items. I.e., the relevant question is whether they may together become a aA-segment 
after a number of ,a-steps. This depends solely on the structure of the intermediate segment. 
If such an intermediate segment has a certain,form (to be called: well-balanced), then the 
a-item and the A-item match and ,a-reduction based on these two items may take place. 
Some well-balanced segments play another imp,?rtant role. They may act as a definition. For 
example, (Aa)(BAx)C may mean: we define x oftype B to be A in C. Sometimes, definitions 
are interleaved as in (Ala)(Bla)(B2Ax)(A2Ay)D:where the definition "x becomes Bl" is used 
inside the definition "y becomes AI". We will assume definitions not to contain II-items in 
this paper. Extending this work to the case wh~re for example (Aa)(BIIx) is a definition has 
yet to be investigated. In what follows we define well-balanced segments. 

Definition 2.6 (well-balanced segments) 

o The empty segment 0 is a well-balanced segment. 

o Ifs is well-balanced, then (Aa)s(BOx) is well-balanced. 

o The concatenation of well-balanced segments is a well-balanced segment. 

A well-balanced segment has the same structure as a matching composite of opening and 
closing brackets, each a- (or 0- litem corresponding with an opening (resp. closing) bracket. 
In a definition, the first [ matches the last 1 and no II-items are allowed. A aO-couple is 
a main a-item and a main O-item separated by a well-balanced segment. Such a couple is 
reducible in case 0 = A. The a-item and O-item'of the aO-couple are said to match and each 
of them is called a partner or a partnered item: The non-partnered items in a segment are 
called bachelor. The following definition summarizes all this: 
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Definition 2.7 (match, 00- (reducible) couple, partner, partnered item, bachelor item) 
Let A E T. Let s == S1·· ·Sn be a segment occurring in A. 

• We say that Si and Sj match, when 1 ::; i < j ::; n, Si is a o-item, Sj is a O-item, and 
the sequence SH1,.'.' Sj-1 forms a well-balanced segment. 

• If Si and Sj match, SiSj is a oO-couple. If 0 = A then SiSj is a reducible couple. 

• When Si and Sj match, we call both Si and Sj the partners in the oO-couple. We also 
say that Si and Sj are partnered items. 

• All non-partnered 0- (or o-}items Sk in A, are called bachelor 0- (resp. o-}items. 

Example 2.8 In s == (aAx)(bAy)(co)(dAz)(eAu)(Jo)(go)(hO)(iAv)(jAw)(ko): 

• (co) matches with (dAz), (hO) matches with (iAv) and (go) with (jAw). The segments 
(co)(dAz) and (hO)(iAv) are oA-segments (and oA-couples). There is another oA.couple 
in S, viz. the couple of (go) and (jAw). 

• (co), (dAz), (go), (hO), (iAv) and (jAw), are the partnered main items ors. (aA x), (bAy), 
(eAu), (Jo) and (kO) are bachelor items. 

• (go)(hO)(iAv)(jAw) is a well· balanced segment. 

Definition 2.9 (definitions, definition application) 

• Ifs is well-balanced and does not contain main II-items, then a segment (Ao)s(BAx) 
occurring in a context is called a definition. 

• Let s be a well-balanced segment, occurring in a context, which consists of definitions 
and A E T. We define the application of the definitions of s in A, [Ah- inductively as 
follows: [A]0 == A, [A](B5)"(w.x ) == [A[x := Bll" and [A]"" == [[A].,]". Note that 
substitution takes place from right to left and that when none of the binding variables of 
s are free in A, then [A]. == A. . 

Remark 2.10 The definitions of well-balanced segments and definitions together are equiv
alent to the following definition (which we use sometimes in proofs by induction): 

1. 0 is well-balanced. 

2. If 81, S2 are well-balanced, then (AO)S1(BOx)S2 is well-balanced. 

3. Ifs is well-balanced and does not contain main II-items, then (Ao)s(BAx) is a definition. 

Remark 2.11 We maintain the same liberal attitude for definitions, as we did for generalised 
redexes. That is, not only (Ao)(BAx) may act as a definition in a context, but also (Ao)s(BAx) 
for any well-balanced segment s without main II-items. 

Note that we speak of definitions when such an (Ao)s(BAx) occurs in a context; otherwise, 
when (Ao)s(BAx) occurs in a term, we speak of'a ,a-redex. 
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3 The ordinary typing relation and its properties 

We now introduce some general notions concerning typing rules which are the same as the 
usual ones when we do not allow definitions in the context (as is the case in the A-cube of 
[Barendregt 92]). When definitions are present however, the notions are more general. 

Definition 3.1 (declarations, pseudocontexts, r;.') 

1. A declaration is a A-item. In a declaration d == (AAx), we define subj(d), pred(d) and 
Q to be x, A and 0 respectively. 

2. For a definition d == (B6)s(AAx) we define subj(d), pred(d), Q and def(d) to be x, A, 
sand B respectively. 

3. We use d, d" d2 , ••• to range over declarations and definitions. 

4. A pseudocontext is a concatenation of declarations and definitions such that if (AAx) 
and (BAy) are two different main items of the pseudocontext, then x "" y. We use 
r,~, r', rt. r 2 , ••• to range over pseudocontexts. 

5. For r a pseudocontext we define 

dom(r) = {x E V I (AAx) is a main A-item in r for some A}, 

r -dec1 = {s I s is a bachelor main A-item of q, 
r-def = {s 18== (A6)81(BAx) is a main segment ofr where 81 is well-balanced}, 

Note that dom(r) = {subj(d) IdE r-decl U r-def}. 

6. Define r;.' between pseudocontexts as the least reflexive transitive relation satisfying: 

• r~ <;;' r(CAx)~ if no A-item in ~ matches a 6-item in r 
• rQ~ r;.' rd~ if d is a definition 

• rs(AAx)~ r;.' r(D6)s(AAx)~ if(AAx) is bachelor in rs(AAx)~, s is well-balanced 

Example 3.2 If r == (aAx)(bAy)(c6)(dAz)(eAu)(f6)(g6)(iAv)(jAw) then r-decl = {(aAx), 
(bAy), (eAu)} and r-def = {(c6)(dAz), (f6)(g6)(iAv)(jAw), (g6)(iAv)}' Furthermore r r;.' 
(*Ar )( aAx)(bAy)( M)( c6)( dAz)( kAr')( 16)( eAu)(fo)(g6)( iAv)(j Aw). 

Note that r <;;' r' t> r-decl <;; r'-decl, but r r;.' r' =} r-def <;; r'-def. 

Definition 3.3 (statements, judgements, -<) 

1. A statement is of the form A : B, A and B are called the subject and the predicate of 
the statement respectively. 

2. When r is a pseudocontext and A : B is a statement, we call r I- A : B a judgement, 
and write r I- A : B : C to mean r I- A : B 1\ r I- B : C. 

3. For r be a pseudocontext and d E r -def U r -decl, r invites d, notation r -< d, iff 

• rd is a pseudocontext 

• r I- pred( d) : S for some sort Sand subj (d) E VB. 
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• if d is a definition then r I-- def( d) : pred( d) 

Definition 3.4 (Definitional/3-equality) For aI/legal contexts r we define the binary relation 
r I-- • =def . to be the equivalence relation generated by 

• if A ={3 B then r I-- A =def B 

• if d E r -def and A, BET such that B arises from A by substituting one particular 
occurrence of subj(d) in A by def(d), then r I-- A =def B. 

Remark 3.5 If no definitions are present in r then r I-- A =def B is the same as A ={3 B. 

Definition 3.6 Let r be a pseudocontext and A be a pseudo-expression. 

1. Let d,dl , ... ,d ... be declarations and definitions. We define r I-- d and r I-- dl···dn 

simultaneously as follows: 

• Ifd is a declaration: r I-- d iffr I-- subj(d): pred(d). 

• If d is a definition: r I-- d iff r I-- subj(d) : pred(d) II r I-- def(d) : pred(d) II r I-
slll r I-- subj(d) =def def(d). 

• r I-- dl ... dn iff r I-- do for all 1 ::; i ::; n. 

2. r is called legal if 3P, Q E T such that r t- P : Q. 

3. A E T is called a r -term if 3B E T[r I-- A : B or r I-- B : A]. 
We take r -terms = {A E T I 3B E T[r I-- A : B V r I-- B : AJ}. 

4. We take r-kinds= {A I r I-- A: o} andr-types= {A E T I r I-- A: *}. 

5. A E T is called a r -element if 3B E T3S E S[r I-- A : Band r I-- B : S]. We have two 
categories of elements: constructors and objects. We take r -constructors = {A E T I 
OlB E T[r I-- A: B: oj} and r-objects = {A E T 10lB E T[r I-- A: B : *J}. 

6. A E T is called legal if 3r[A E r-terms]. Moreover, A is an X, if Olr[A E r-xs] for 
X E {type, term, kind, object, constructor}. 

In the Cube as presented in [Barendregt 92], the only declarations a!lowed are of the form 
(AAx). Hence there are no definitions. Therefore, r -< d is of the form r -< (AAx) and means 
that r I-- A : S for some S and that x is fresh in r, A. Moreover, for any d == (AAx), remember 
that!l == 0, subj(d) == x and pred(d) == A. Hence, in this section, d is a meta-variable 
for declarations only and =def is the sam~ as ={3 (which is independent of 1--). 

3.1 The typing relation 

Definition 3.7 (Axioms and rules of the Cube: d is a declaration, =def is ={3) 

(axiom) <> I-- *: 0 

(start rule) r-<d 
rd I-- subj(d) : pred(d) 

(weakening rule) r -< d rd I-- D: E 
rdF D: E 
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r I- F : (AlIz5B. r I- a : A (application rule) --r I- (ao F: B[x :- a] 

(abstmction rule) r(A'xx) I- b: B r I- (AlIx)B : S 
r I- (A>'x}b: (AlIx)B 

(conversion rule) rl-A:B rl-B':S 
rl-A:B' 

r I- B =def B' 

(formation rule) r I- A : S1 r( A'xx) I- B : S2 f (S S) . I r F (AlIxl B : S2 I 1, 2 IS a ru e 

Each of the eight systems of the Cube is obtained by taking the (S1, S2) rules allowed from a 
subset of {( *, _), (_, D), (0, _), (0, D)}. The basic system is the one where (Sb S2) = (*, _) is 
the only possible choice. All other systems have this version of the formation rules, plus one 
or more other combinations of (_, D), (0, _) and (0, D) for (Sb S2). Here is the table which 
presents the eight systems of the Cube: 

System Set of specific rules 
>.~ (-, -) 
'x2 (*,*) (0,*) 
>'P (-,*) (*, D) 
'xP2 C*, *) (0, *) (*, D) 
>'i=! (-,*) (0,0) 
,xw (*,-) (0, *) (0,0) 
>'Pi=! (-,*) (*, D) (0,0) 
'xPw = >.c (*,*) (0, *) (*, D) (0,0) 

'xw ,XC . 

>'2 >'P2 

Figure 3: The Cube 

Here are examples of typable terms in some systems of the Cube that we use further on. 

Example 3.8 
1. 1-.>.2 (*II,,)(alIy )a: * as we have the rule (0,_), but (Ie (*II,,)(alIy )a: T for any T where 
.[ E {>'~, >'i=!, >'P, >'Pi=!}. 
2. (*'x.)(a'x.)«all.) * >'Q)«tO)Q>'N) I-Ap (No)(t6)(a>'x)«xo)Q>.y)(yo)«xo)Q>.z)Z : (to)Q 
but this derivation could not be obtained in >.~, >'i=! or 'x2 as we need the (*, D) rule in order 
to derive that (all.)*: 0 and hence that «all.) * >'Q) is allowed in the context. 
3. If .[ E p~, >'i=!}, then (*>'I1)(,8,Xy' ) (Ie (y'o)(,8o)( *>.,,)( a>,y)(yO)(a>.x)x : ,8 because the term 
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of part 1 of this example is not typable in £ (note that with definitions, the last 9 steps above 
are replaced by a single one in Example 5.2). Here is how this judgement if derivable in A2. 

f- * : 0 
(*AiJ) f-~2,6: * : 0 

(*AiJ)(,6Ay') f-~2 y':,6: *: 0 

(*AiJ)(,6Ay,)(*A",) f-~2 a: * 
(*AiJ)(,6A y,)(*A",)(aAy) f-~2 y: a: * 
(*AiJ)(,6A y')( *A",)( aAy)( aAx) h2 x : a : * 
(*AiJ)(,6Ay')(*A",)(aAy) f-~2 (aIIx)a: * 
(*AiJ)(,6Ay,)(*A",)(aAy) f-~2 (aAx)x: (aIIx)a: * 
(*AiJ)(,6A y')( *A",)( aAy) f- ~2 (y6)( aAx)x : " 
(*AiJ)(,6Ay,)(*A",) f-~2 (ally)": * 
(*AiJ)(,6Ay,)(*A",) f-~2 (aAy)(y6)(aAx)x: ("IIy)a: * 
(*AiJ)(,6A y') f-~2 (*II",)(aIIy)a: * 
(*AiJ)(,6Ay') f- ~2 (*A",)( "Ay)(YO)( aAx)x : (*II",)( aIIy)a 
(*AiJ)(,6Ay') f-~2 (,60)(*A",)("Ay)(yo)(aAx)x : (,6IIy),6 
(*AiJ)(,6A y') f- ~2 (Y'o)(,6o)( *A",)( aAy)(Yo)( aAx)x : ,6 

3.2 Properties of the ordinary typing relation 

(axiom) 
(start resp. weakening rule) 
(start resp. weakening rnle) 
(start) 
(start resp. weakening rule) 
(start resp. weakening rnle) 
formation rnle (*, *) ) 

(abstraction) 
(application) 
formation rule (*, *) ) 
(abstraction rule) 
formation rnle (0, *) ) 
(abstraction rnle) 
(application rule) 
(application rule) 

Here we list the properties of the Cube (see [Bafendregt 92)). These properties will be estab
lished for the Cube extended with generalised reduction and definition mechanisms. 

Theorem 3.9 (The Church Rosser Theorem for ..... iJ) 
If A ..... iJ B and A ..... iJ C then there exists D s?-tch that B ..... iJ D and C -"'iJ D o 

Lemma 3.10 (Free variable lemma for 1-) 
Let r be a legal context such that r f- B : C. Then the following holds: 

1. Ifd and d' are two different elements ofr-decl, then subj(d) '" subj(d'). 

2. FV(B), FV(C) <;; dom(r). 

3. Fors, a main item ofr, FV(s,) <;; {subj(d) I dE r-decl,d is to the left ofs, in r}. 

Proof: All by induction on the derivation of r f- B : C. 

Lemma 3.11 (Start Lemma for 1-) 
Let r be a legal context. Then r f- * : 0 and lid E' r[r f- d]. 

Proof: As r is legal, then 3A, BET such that r f- A : B. 
derivation r f- A : B. 

o 

Now use induction on the 
o 

Note that this and the following lemmas state the same thing as the corresponding lemmas 
from [Barendregt 92] as r consists of declarations only. 

Lemma 3.12 (Transitivity Lemma for f-) 
Let r and ~ be legal contexts. Then: [r f- ~ 1\ ~ f- A : B] => r f- A : B. 

Proof: Induction on the derivation rules. o 
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Lemma 3.13 (Substitution Lemma for 1-) 
Assume r(AAx)~ I- B : C and r I- D : A then r(6.[x := DJ) I- B[x := DJ : C[x := DJ. 

Proof: By induction on the derivation rules. 0 

Lemma 3.14 (Thinning Lemma for 1-) 
Let rand 6. be legal contexts such that r <;;' 6.. Then r I- A : B => 6. I- A : B 

Proof: By induction on the length of the derivation of r I- A : B. 0 

Lemma 3.15 (Generation Lemma for 1-) 

1. r I- x: C => 3S"S2 E S3B ={3 C(r I- B: S,II (BAx) E' r II r I- C: S2J. 

2. r I- (AIIx)B : C => 3(S" S2 E S)[r I- A : S,lIr(AAx) I- B : S211(S" S2) is a rulellC ={3 

S2 II [C "I- S2 => 3S[r I- C : SJJ] 

3. r I- (AAx)b : C => 3(S, B)[r I- (AIIx)B : S II r(AAx) I- b : B II C ={3 (AIIx)B II C "I
(AIIx)B => 3S E S[r I- C : SJ]. 

4. r I- (ao)F: C => 3A,B,x[r I- F: (AIIx)B II r I- a: A II C ={3 B[x:= oj II (B[x:= aJ"I
C => 3S E S[r I- C : SJ)]. 

Proof: By induction on the derivation rules, using thinning lemma. 

Corollary 3.16 (Generation Corollary for 1-) 

1. r I- A: B => 3S[B == S or r I- B : SJ 

2. r I- A: (B,IIx)B2 => 3s[r I- (B,IIx)B2 : SJ 

3. If A is a r-term, then A is 0, a r-kind or a r-element. 

4. If A is legal and B is a subexpression of A then B is legal. 

Theorem 3.17 (Subject Reduction for I- and --{3} 

r I- A : B 1\ A --{3 A' => r I- A' : B 

o 

o 

Proof: r I- A : B II A --+{3 A' => r I- A' : Band r I- A : B II r --+{3 r ' => r ' I- A : B, where 
r --+{3 r ' means r == r,(AA x )r2 , r ' == r,(A' Ax)r2 and A --+{3 A', are proved simultaneously 
by induction on the derivation rules. 0 

Corollary 3.18 (SR Corollary for I- and --"'{3) 

1. Ifr I- A: Band B -"'{3 B' then r I- A: B'. 

2. If A is a f-term and A --{3 A' then A' is a f-term. o 

Lemma 3.19 (Unicity of Types for I- and --{3} 

1. f I- A : B, 1\ r I- A : B2 => B, ={3 B2 

2. r I- A : B II r I- A' : B' II A ={3 A' => B ={3, B' 

3. r I- B : S, B ={3 B', r I- A' : B' then f I- B' : S. 

Proof: 1. by induction on the structure of A, 2. by Church Rosser, Subject Reduction and 
1, and 3. by Corollary 3.16, Subject Reduction and 1. ° 
Theorem 3.20 (Strong Normalisation with respect to I- and --{3} 

For alll--legal terms M, M is strongly normalising with respect to --{3' 

Proof: see section 6. 
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4 Generalising reduction in the Cube 

In this section we extend the classical notions of redexes and /l-reduction of the Cube and 
show that all the properties of Section 3.2 except SR are preserved. We show moreover that 
for >.f!! and >._, SR holds yet for the remaining systems it fails. 

4.1 The generalised reduction 

We allow li>.-couples to have the same "reduction rights" as li>.-segments as follows: 

Definition 4.1 (General/l-reduction '-+{J for the Cube) 
General one-step /l-reduction '-+{J, is the least compatible relation generated out of: 

(general fl) (Bli)s(C>'x)A '-+{J s(A[x:= BD if s is well-balanced 

General '-+>{J is the reflexive and transitive closure of '-+{J and ""{J is the least equivalence 
relation generated by '-+> {J. 

Example 4.2 Take Example 1.2. As (cli)(P>'x)(bli)(Q>.y) is a well·balanced segment, then: 

A"" (dli)(cli)(p>'x)(bli)(Q>'y)(R>'z)(ali)z 
(cli)(P>.x)(bli)(Q>.y)«(ali)z)[z:= dD 
(cli)(P >'x)(bli)( Q >'y)( ali)d 

(dli)(R>.z) also has a corresponding ("generalised") redex in the traditional notation, which 
will appear after two one-step /l-reductions, leading to (>,.,R.za)d. With '-+{J, we could reduce « >'x,p.( >'y,Q.>,.,R.za)b )c)d to (>'xoP.( >'y,Q.da)b )c. This is difficult to carry out in the classical >.
calculns. We strongly believe that it is the item notation which enables us to extend reduction 
smoothly beyond ---';)-(1. Moreover, '-+f3 extends ~f3. 

Lemma 4.3 If A ->{J B in the sense of Definition 2.4, then A '-+{J B in the sense of Defini
tion 4.1. Moreover, if A '-+{J B comes from contracting a li>'-segment then A ->{J B. 

Proof: Obvious as a li>.-segment is a definition. 0 

Lemma 4.4 If A '-+{J B then A ={J B. 
Proof: It suffices to consider the case A "" SI( C li)s( D >'x)E where the contracted redex is 

based on (Cli)(D>'x), B "" s, s(E[x := CD, and s is well-balanced (hence weight(s) is even). 
We prove the lemma by induction on weight(s). Case weight(s) = 0 then obvious as '-+{J 

coincides with ->{J in this case. Assume the property holds when weight(s) = 2n. Take s such 
that weight(s) = 2n + 2. Now, s "" (C'{j)s'(D'~y)s" where Si, s" are well-balanced. Assume 
x of y (if necessary, use renaming). 

o From s(E[x := C]) '-+{J s'(s"(E[x := C])[y := C']), IH and compatibility, B ={J 

81 s'(s"(E[x := C])[y:= C']) "" S1 s'(s"[y := C'])(E[x:= C][y:= C']) "" B". 

o Moreover, A"" SI(Cli)(C'li)Si(D'>'y)s"(D>'x)E '-+{J SI(Cli)Si(s"(D>'x)E[Y := C']) ""Be 
81(Cli)s'(s"[Y:= C'])(D[y:= C']>'x)(E[y:= C']) "" B'. So by IH A ={J B'. 

o B' '-+{J sts'(s"[y := C'])(E[y:= C'][x := C]), x, y rt FV(C) U FV(C' ) (by BC). Hence, 
by IH and substitution B' ={J S1 s'( s"[y := C'])( E[x := C][y := C/ll "" B". 
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Therefore, A =(3 B', B' =(3 B" and B =(3 B", hence A =(3 B. o 

The following shows that conversion does not change the typing relation of Section 3.1. 

Corollary 4.5 
If A '-++(3 B then A =(3 B. Moreover, A ~(3 B iff A =(3 B. o 

4.2 Properties of ordinary typing with generalised reduction 

Because =(3 and ~(3 are equivalent, the only lemmas/theorems of Section 3.2 affected by our 
extension of reductions are those which have --+(3 in their heading. These are CR (Theo
rem 3.9), SR (Theorem 3.17) and its Corollary 3.18, Unicity of Types (Lemma 3.19) and SN 
(Theorem 3.20). In this section, we show that CR and SN hold for the Cube with '-++(3 and 
that SR holds for A~ and A_ but fails for the other six systems. Unicity of typing depends 
on SR and on the fact that =(3 is the same as '-++(3. Hence, we ignore it here as once we prove 
SR, its proof will be exactly that of Lemma 3.19. 

Theorem 4.6 (The general Church Rosser theorem for '-++(3) 

If A '-++(3 B and A '-++(3 C, then there exists D such that B '-++(3 D and C '-++(3 D. 
Proof: As A '-++(3 B and A '-++(3 C then by Corollary 4.5, A =(3 B and A =(3 C. Hence, 

B ={3 C and by CR for --+{3, there exists D such that B -+{3 D and C -+(3 D. But, A"""'{3 B 
implies A '-++(3 B. Hence CR holds for '-++(3. 0 

Theorem 4.7 (Strong Normalisation with respect to I- and '-++(3) 

For alll--legal terms M, M is strongly normalising with respect to '-++(3. 

Proof: This is a special case of the proof of Theorem 6.27. o 

In the following, C ranges over AII1 and A_. Here we show that SR holds for C. 

Lemma 4.8 If r I-c A : 0 then A E {', (.ITx)" (.ITx)( .IT.)., (( .ITx) • IT y)" .. . }. 
Proof: By induction on the derivation 'rules. 0 

Lemma 4.9 If B is a legal C-term, B' is a C-kind and B =(3 B' then B is a kind. 
Proof: First show by induction on the derivations: If. is a sub term of A and A is legal 

then A is a kind or. is type-information in A (as in (.Ax)Y). Now, as B' is a kind, B' is in 
normal form, hence B -+{3 B' and by the former result B must be a kind too. 0 

Lemma 4.10 Ifr I-c (AITx)B: S, then r 1-£ A: S, r(AAx) 1-£ B : S and x ~ FV(B). 
Proof: Show by induction on the derivation of r I-c A : B that if B a kind, then for all 

(CAx') E r-decl, x' ~ FV(A). We only treat two cases: 

• application rule: r I-c (a6)F: B[x := a] out ofr I-c F : (AITx)B and r I-c a : A. 
Suppose B[x := a] is a kind and (CAy) E' r, r I-c C : •. If x ~ FV(B) then B is a 
kind, so A and (AITx)B are kinds too, hence y ~ FV(a), FV(F) by the IH. 

If x E FV(B) then a is a kind (as B[x := a] is a kind) and hence A == 0 which is 
impossible as r I- c F : (AITx)B . 

• conversion rule: r I-c A: B' out ofr I-c A: B, r I-c B': S, B =(3 B'. Suppose B' is a 
kind, then by lemma 4.9: B is a kind, hence by induction hypothesis we are done. 0 
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Lemma 4.11 

1. r I- (A6)B: C => r I- C: S for some sort S. 

2. Ifr I-e A: SI,r I-e B: S2 and A ={3 B then Sl == S2. 

Proof: 

1. Generation gives r I- A : D, r I- B : (Dllx)E, E[x := A] ={3 C and E[x := A] oj C => 
r I- C : S. So suppose E[x:= A] == C, then r I- B : (Dllx)E implies by Corollary 3.16 
that r I- (Dllx)E : S. Hence, by generation r I- D : Sl, r(DAx) I- E : S2' Now, use 
r I- A : D and substitution to get r I- E[x := A] : S2. 

2. Note that Sl == 0 or S2 == 0, hence by Lemma 4.9, Sl == S2' o 

The crucial step in the proof of Subject Reduction in A!;! and A_ is proved in the following: 

Lemma 4.12 (Shuffle Lemma for A!;! and A_) 
r I-e 8l(A6)82B : C ~ r I-e 8l82(A6)B : C where 82 is well-balanced and the binding 
variables in 82 are not free in A. 

Proof: By induction on weight(82)' Case weight(82) = 0 then nothing to prove. 
Case weight(52) = 2, say 52 == (D6)(EAx), '(Ise induction on weight(5l)' Suppose first, 
weight(8l) = O. 

=» suppose r I-e (A6)(D6)(EAx)B: C. Usin9 generation three times, we obtain: 

rl-eA:F 

r I-e (m)(EAx)B : (Flly)G 

G == G[y:= A] ={3 C (Lemma 4.10, Corollary 3.16) 

fre D : H 

r I-e (EAx)B : (Hllz)I 

1== I[z:= D] ={3 (Flly)G (Lemma 4.10, Corollary 3.16) 

r I-e (Ellx)J : Sl 

r(EAx) I-e B : J 

(Hllz)I ={3 (Ellx)J 

(1) 

(2) 

(3) 
(4) 

(5) 

(6) 
(7) 

Out of (7) and Lemma 4.10 we see that x == z, H ={3 E, I ={3 J, y if. FV(G), x if. FV(I) u 
FV(J), rl-eF,G,H,I,E:Sl (8) 

and out of (7) and (5): J ={3 (Flly)G. Hence (9) 

r(EAx) I-e A : F 

r(EAx) I-e (A6)B : G 

r I-e (Hllx)G, (Ellx)G : Sl 

r I-.c (EAx)(A6)B : (Hllx)G 

(conversion, (6), (9), (8) implies 

by the generation and thinning 

lemmas: r(EAx) I-e (Flly)G: Sl) 

(thinning lemma, (I}) 
((10), (11), application, G[y:= A] == G) 

(formation, thinning, r I- e H, G, E : Sl) 

((12), (13), abstraction, conversion, 

(8) => (Ellx)G ={3 (Hllx)G) 
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r f-c (D8)(E>.,,)(Ab)B : G ((14), application, (4), G[x := D] == G) (15) 
r f-c C : S (Lemma 4.11, hypothesis) (16) 

r f-c (D8)(E>.,,)(Ab)B : C (conversion, (15), (16), (3)) (17) 

¢o) Suppose r f-c (Db)(E>.,,)(Ab)B: C 

Then r f-c C: S, (Lemma 4.11) (18) 
and by generation three times we get: 

r f-c D: F (19) 
r f-c (E>.,,)(Ab)B : (FIIy)G 

G == G[y := D] ={J C (Lemma 4.10, Corollary 3.16) (20) 
r f-c (EII,,)H : S2 (21) 

r(E>.,,) f-c (Ab)B : H 

(EII,,)H ={J (FIIy)G (22) 
r(E>.,,) f-c A : I (23) 

r(E>.,,) f-c B : (IIIz)J (24) 
J == J[z:= A] ={J H (Lemma 4.10, Corollary 3.16) (25) 

Now (24) and Corollary 3.16 imply that for some S3, r(E>.,,) f-c (IIIz)J : S3. Hence, by 
Lemma 4.10, z g FV(J),r(E>',,) f-c J : S3. Also, by Lemma 4.10, we get out of (21) that 
r f-c E : S2, r(E>.,,) f-c H : S2 and x g FV(H). Now, J ={J H from (25), hence x g FV(J). 
Moreover, by Lemma 4.11, we see S2 =0 S3. Hence, 

r f-c (EII,,)(IIIz)J: S2 

r f- c (E>.,,)B : (EII,,)(IIIz)J 

r f-c (D8)(E>.,,)B : (IIIz)J 

formation 

((26), (24), abstraction) 

(application, (27), x '1: FV(I, J) 

r f-cD: E because (22) 

implies E ={J F 

and we use conversion, (19), r f-c E : S2) 

(26) 
(27) 

(28) 

r f-c (Ab)(D8)(E>.,,)B: J (out ofr(E>.,,) f-c A: I and r f- D: E (29) 

r f-c (Ab)(D8)(E>'xlB : C 

we find by substitution (x '1: FV( A, I)), 
r f-c A : I. Now, use application) 

((29), (conversion; C ={J J 

follows from (25), 

(22) and (20)) 

Now suppase Ileight(s,) = n + 1. Using the generation lemma we obtain r' f-c s;(Ab)S2B : 
C', where Ileight(sD = n, hence the induction hypothesis says r' f-c s;s2(Ab)B : C' and by 
applying the appropriate derivation rule we obtain r f-c s, S2( Ab)B : C. 
Case Ileight(s2) = 2(n + l),n 2': 1, then S2 =o,(Db)S3(E>,,,)S4 for some C,D, x and well
balanced segments S3, S4. Then, Ileight(s3), Ileight(s4) :::; 2n and we see: 

r f-c s,(Ab)(D8)S3(E>.,,)S4B : C F~· r f-c s,(Ab)S3(D8)(E>.,,)S4B : C &~. 
r f-c s,s3(Ab)(D8)(E>,,,)S4B : C r~· r f-c s)s3(D8)(E>.,,)(Ab)S4B : C r~· 
r f-c s,(D8)s3(E>.,,)(Ab)S4B : C g r f-c s,(D8)s3(E>,,,)S4(Ab)B: C 0 
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Theorem 4.13 (Generalised Subject Reduction for >'l!1 and >._ for f- and ~iJ) 
Iff f-c A: B and A '-+iJ A' then f f-c A': B. 

Proof: We prove by simultaneous induction on the generation of f f-c A : B that 

f f-c A : B A A '-+ iJ A' ~ f f- c A' : B ( i) 
ff-cA:BAf'-+l1f' ~ f'f-cA:B (ii) 

wheref '-+11 f' meansf;: f , (A>'z)f2,f';: f , (A'>'z)f2 and A '-+11 A' forsomef
"

f 2 ,A,A',x. 
The cases in which the last rule applied is axiom, start, weakening or conversion are easy (for 
start: use conversion). We treat the three other cases. 
Formation: f f-c (A,IIz)B,: S, is a direct consequence of f f-c A,: S, andf(A,>.x) f-c B,: 
S" then (i) comes from IH( i) and IH( ii); (ii) comes from IH( ii). Abstraction: similar to for
mation. Application: f f-c (ao)F: B,[x:= a] is a direct consequence of f f-c F: (A,IIx)B, 
and f f-c a: A,. Now (ii) comes from IH(ii). We consider various cases: 

• Subcase 1: (ao)F '-+11 (ao)F' because F '-+11 F'. Then (i) follows from IH(i). 

• Subcase 2: (ao)F '-+11 (a'o)F because a '-+(1 a'. From IH(i) and application, f f- (a'o)F: 
B,[x := a']. Also, from Corollary 3.16, for some S,: f f-c (A,IIx)B, : S, and hence 
by generation: f(A>.x) f-c B, : S, and thus by substitution f f-c B,[x := a] : S,. Now 
conversion gives f f-c (a'o)F: B,[x:= a] )1Jhich proves (i). 

• Subcase 3: F;: s(A'>'y)F', s well-balanced and (ao)F '-+l1sF'[y:= a]. Now, by Lemma 
4.12, f f-c s(ao)(A'>'y)F' : B, [x := a] and s(ao)(A'>'y)F' -+l1sF'[y := a] so by SR for 
-"'11, f f-c sF'[y:= a] : B,[x:= a] which proves (i). 0 

SR however is not valid for the other systems of the Cube as the following examples show: 

Example 4.14 (SR does not hold in >'2 using ;-+>11) 
(*>'11 )(,8>'y') f-)'2 (If c for £ E {L, >'l!1}) (y' 0)(,80)( *>',,)( a>.y)(Yo)( a>.x)x : ,8 (see Example 3.8). 
Moreover, (y' 0)(,80)( *>',,)( a>.y )(yo)( a>.z)x '-+11 (,80)( *>',,)(y' 0)( a>.x)x. 
Yet, (*>'I1)(,8>'y') 1f"2 (,8o)(*>,,,)(Y'O)(a>.x)x:,8 .. 
Even, (*>'I1)(,8>'y') 1f"2 (,8o)(*>',,)(y'o)(a>'z)x: dor any T. 

This is because (a>.x)x : (aIIx)a and y : ,8 yet a and ,8 are unrelated and hence we fail in 
firing the application rule to find the type of (Y'O)(a>.z)x. Looking closer however, one finds 
that (/36)(*,\,) is defining a to be ,8, yet no such information can be used to combine (aIIx)a 
with,8. We will redefine the rules of the Cube so that such information can be taken into 
account. Finally note that failure of SR in >'2, means its failure in >'P2, >.w and >'C. 

Example 4.15 (SR does not hold in >'P using '-+>11) 
(*>'u)( 0' >.,)( (0' IIq)*>'Q )((to)Q >'N) f-"p (N 0)( tole 0' >'x)( (xo)Q >.y)(yo)( (xo)Q >'z)Z : (to)Q. Note 
here that this cannot be derived in >._, >'2 or >'l!1 (see Example 3.8). 
And (N o)(to)( 0' >'x)( (xo)Q >.y)(yo)( (xo)Q>.z)Z '->11 (to)( 0' >'x)(N 0)(( xo)Q >'z)Z 
Now, N : (to)Q, t: 0', y: (xo)Q,x: 0', (to)Q of (x6)Q. 
(*>'u)(O'>',)((O'II q) * >'Q)((tO)Q>'N) If"p (to)(O'>'x)(No)((xo)Q>.z)Z: T for any T. 

Here again the reason of failure is similar to the above example. At one stage, we need 
to matm (xo)Q with (to)Q but this is not possible even though we do have the definition 
segment: (to)(O'>'x) whim defines x to be t. All this calls for the need to use these definitions. 
Finally note that failure of SR in >'P, means itSfailure in >'P2, >'PItd. and >'C. 
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5 Extending the Cube with definition mechanisms 

As a first step in the direction of including extended reduction in the systems of the Cube, we 
now investigate adding definitions to the Cube, We shall extend the derivation rules so that 
we can use definitions in the context. The rules remain unchanged except for the addition of 
one rule, the (def rule), and that the use of r r B =def B' in the conversion rule really has 
an effect now, rather than simply postulating B =/3 B'. 

5.1 The definition mechanisms and extended typing 

Definition 5.1 (Axioms and rules of the Cube extended with definitions: d ranges over dec
larations and definitions) 

(axiom) <>f-e*:o 

(start rule) r-<d 
rd Fe subj(d}: pred(d) 

(weakening rule) r -< d rd f-e D : E 
rdPD:E 

(application rule) r f-e F : (AIIx)B r f-e a: A 
r I-e ( ao P : B[x :_ a] 

(abstraction rule) r(AAx) I-e b: B r I-e jAIIx)B : S 
r f-e (AAx)b: (AIIx B 

(def rule) rd f-e C: D 
r f-e dC : [D]dif d is a definition 

(conversion rule) r I-e A: B r f-e B' : S 
r I-e A : B' 

r I-e B -def B' 

(formation rule) r I-e A : S, . r(AAx) I-e B : S2 I" (S S) . I 
rl-e(AIIx)B:S2 J" 2 .sarue 

Note that in the abstraction rule, it follows that (AAx) is bachelor in r(AAx). The reason 
is that we can show that if f is legal then f contains no bachelor main o-items. Hence as 
r f-e (AIIx)B : S, r has no bachelor o-items and so (AAx) cannot be matched in f. , 

By fg I-e def(d) : pred(d) in the (start rul~) and (weakening rule), abbreviating 0 (as 
in (OO)(AAx)) is not allowed. Also by r41-e pred(d) : S, abbreviating kinds is not allowed. 
One might argue that this last condition could be omitted but it doesu't seem urgent to do 
so. The (def rule) says that if C : D can be deduced from a concatenation of definitions d, 
then dC will be of type D where all the sub-definitions in d have been unfolded in D. We 
do not get type dD in order to avoid things like do. Note that the (def rule) does global 
substitution in the predicate of all the occurrences of subjects in d. The reason is that d no 
longer remains in the context. In the conversion rule however, substitution is local as r keeps 
all its information (see Definition3.4). The following examples show how this works: 

Example 5.2 Here is how the term in Example 3.8 and its '->/3-contractum is typed in A2. 
(Note how quicker we can type terms once we have definitions. Note also that the derivation 
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given in Example 3.8 is also valid here, yet it is more clear and efficient to use the definitional 
segments (y8)(aAx) and (y I 8)(118)(.A,,)(aAy). The present derivation is even valid in A~, 
because we don't need ('A,,)(aAy)(y8)(aAx)x to have a type due to the (def rule).) 

f-~2 • : D 

(.AI1) f-12 11 : • : D 
(.A/l)(I1A y') f-12 y' : 11 : • : D 

('AI1)(I1Ay' )(118)( 'A,,) f-12 y' : 11 : • : D, a: • 
(.A/l)(I1Ay' )(118)( 'A,,) f-12 a =def 11 
(*A/l)(I1Ay' )(118)( 'A,,) f-12 y' : a : * 
('AI1)(I1Ay' )(y'8)(118)( 'A,,)( aAy) f-12 y : a : * 
( *A/l )(I1Ay' )(y'8)(118)( 'A,,)( aAy )(yo)( aAx) f-12 x : a 
[al(y'S)(/lS)(*Ao)("Ay)(yS)("Ar) == a[x := y][y := y'][a := !1l == 11 
('AI1)(I1Ay') f-12 (y'8)(118)( 'A,,)(aAy)(y8)(aAx)x : 11 

(axiom) 
(start resp. weakening) 
(start resp. weakening) 
(start resp. weakening) 
(definition of =def) 

( conversion) 
(start resp. weakening) 
(start resp. weakening) 

( defrule) 

Also ('AI1)(I1Ay') f-12 (118)( 'A,,)(y'8)( aAx)x : 11 as follows (needed derivation steps, including 
('AI1 )(I1Ay' )(118)( *A,,) f-X, y' : a by (conversion) , are left to the reader): 

(.A/l)(I1A y' )(118)( 'A,,)(y'8)(aAx) f-12 x : a so by (def rule): 
(.AI1)(I1Ay') f-12 (118)('A,,)(y I 8)(aAx)x: a[x:= y'][a:= 111 == 11 

Example 5.3 Also the term of Example 4.14 can be easily and quickly typed in AP (note 
that this term cannot be typed in A~ as the term Q can't): 

(,Au)(uA,)«uIIq). AQ)«t8)QAN)(N8)(to)(UAx)«x8)QAy)(y8)«x8)QAZ) f-1p Z: (x8)Q 
(.Au)(uA,)«uIIq). AQ)«t8)QAN) f-1 p (N8)(t6)(UAx)«x8)QAy)(y8)«xO)QAZ)Z: (to)Q 

Its '-> l1-contractum gets the same type as follows: 

(*.q(UA,)«uI1 q ) * AQ)«t6)Q>w)(t6)(UAx)(N6)«x6)QAZ) f-XP Z: (x6)Q 
(*Au)(uAt)«uIIq). AQ)«tb)QAN) f-1 p (to)(uAx)(N8)«xO)QAZ)Z: (t8)Q 

Remark 5.4 We need r f-e A =def B instead of A =11 B in the conversion rule because we 
want from (.AA)(A8)(,Ax) f-e A:. and y is fresh to derive not only (.AA)(Ao)(.Ax)(AA y) f-e 
y : A but also ('AA)(A8)('Ax)(AAy) f-e y : x. This is not possible if conversion is left with 
B =/l B': how can we ever derive (,AA)(A8)(.Xx)(AAy) f-e y: x as x ofl1 A? If we change to 
the conversion rule using =dei, then we are fine: 
(.AA)( AO)( .Ax)( AAy) f-e y : A 
(*AA)(Ao)(*Ax)(AA y) f-e x:. 
('AA)(A6)('Ax)(AAy) f-e x =def A and so with conversion, 
('AA)(A8)('Ax)(AAy) f-e y: x 

5.2 Properties of the Cube with definitions 

If we look at Section 3.2 and because we have changed f- to f-e but left """'11 unchanged, we see 
that all the lemmas and theorems which had f- in their heading get affected. In this section, 
we will list these lemmas and theorems for f-e and give their proofs. 

Lem rna 5.5 (Free variable lemma for f-e) 
Let r be a legal context such that r f-e B : C. Then the following holds: 

21 



1. If d and d' are two different elements of r -decl U r -def, then sub j (d) ¢ sub j (d'). 

2. FV(B), FV(C) <:;; dom(r). 

3. For S1 a main item ofr, FV( S1) <:;; {sub j( d) IdE r -declUr -def, d is to the left of S1 in r}. 

Proof: All by induction on the derivation of r f-e B : C. o 

Lemma 5.6 (Start Lemma for f-e) 
Let r be a legal context. Then r f-e * : 0 and Vd E' r[r f-e dJ. 

Proof: r legal * 3B, C[r f-e B : CJ; now use induction on the derivation r f-e B : C. 0 

Lemma 5.7 (Transitivity Lemma for f-e) 
Let r and ~ be legal contexts. Then: [r f-e ~ II ~ f-e A : BJ * r f-e A : B. 

Proof: Induction on the derivation ~ f-e A : B. o 

Lemma 5.8 (Definition-shuffiing for f-e) Let d be a definition. 

1. If rd~ f-e C =def D then r4( def( d)8)(pred( d)>'sUbj(d»)~ f-e C =def D. 

2. Ifrd~ f-e C: D then r4(def(d)8)(pred(d)>'subj(d»)~ f-e C: D. 

Proof: 1. is by induction on the generation of r( A8)s( B >'x)~ f-e C =def D. 2. is by 
induction on the proof of r(A8)s(B>'x)~ f-e C: Dusing 1. for conversion. 0 

Lemma 5.9 (Thinning for f-e) 

1. Ifr1 r 2 f-e A =def B, r1~r2 is a legal context, then r1~r2 f-e A =def B. 

2. If r and ~ are legal contexts such that r <:;;' ~ and if r I-e A : B, then ~ I-e A : B. 

Proof: 1. is by induction on the derivation r 1 r 2 f-e A =def B. 2. is as follows: 

• If r~ f-e A : B, r f-e C : S, x is fresh, and no A-item in ~ is bound by a 8-item in r, 
then also r(c>.x)~ f-e A: B. We show this by induction on the derivation r~ f-e A: B 
using 1. for conversion. 

• If 18~ f-e A : B, 18 f-e C : D : S, [C], == C, x is fresh, s is well-balanced, then also 
r(C8)s(D>'x)~ f-e A: B. We show this by induction on the derivation 18~ f-e A : B. 
In the case of (start) where r(A8)s(B>.x) f-e x: A comes from 18 f-e A: B: S, [A]. == A, 
x fresh, then [Al(C8)s(DAx) == A because x fresh and r(C8)s(DAx) f-e A: B : S by IH. 

• If 18(A>'x)~ f-e B : C, (AAx) bachelor, swell-balanced, 18 f-e D : A, [DJ. == D, then 
r(D6)s(AAx)~ f-e B : C is shown by induction on the derivation 18(AAx)~ I-e B : C 
(for conversion, use 1.). 0 

Lemma 5.10 (Substitution lemma for f-e) Let d be a definition. 

1. Ifrd~ f-e A =def B, A and B are rd~-legal terms, then r[~Jd f-e [AJd =def [BJd 

2. If B is a rd-Iegal term, then rd I-e B =def [B]d 

3. Ifr(A6)(B>'x)~ f-e C: D then r~[x := A] f-e C[x:= A] : D[x := A] 
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4. Iff(B>.x)!:!' f-e C: D, f f-e A: B, (B>.x) bachelor in f, then f!:!.[x := A] f-e C[x:= A] : 
D[x:= A] 

5. If fd!:!. f-e C : D, then r[!:!.]d f-e [C]d : [D]d 

Proof: 

1. Induction on the derivation rules of =def. 

Case fd!:!. f-e dl C =def dl (C[subj(dl ) := def(dl )]). 

Then [d l C]d;: ([def(dl)]dO)[~M[pred(dt)]d>'.ubj(d,))[C]d 

(d l C is fd!:!.-legal =} subj(dt) ~ dom(d)) 

and [dl(C[subj(dl ) := def(dt)])]d;: ~lM[C]d[subj(dl):= [def(dl )]d]), 

hence r[!:!.]d f-e [d l C]d =def ~(C[subj(dl) := def(dt)])]d 

2. Induction on the structure of B. 

Case B ;: x E dom( d): use (=def de/)o 

Case B ;: x ~ dom( d): use (=def reflJ. 

Case B ;: (C o)D: use (=def comp1). 

Case B ;: (COx)D (0 E {>., II}): use (=def comp2). 

3. Induction on the derivation rules, using 1., 2. and thinning, 4. Idem and 5. use 3. 0 

Lemma 5.11 (Generation Lemma for f-e) 

1. Iff f-e x : A then for some B: (B>.x) E' f, f f-e B : S, f f-e A =def Band f f-e A: S' 
for some sort S'. 

2. Iff f-e (A>'x)B: C then for some D and sort S: f(A>.x) f-e B: D, f I-e (AlIx)D: S, 
f f-e (AlIx)D =def C and if (AlIx)D ¢ C then f f-e C : S' for some sort S'. 

3. If f f-e (AlIx)B : C then for some sorts SI, S2: f f-e A : St, f f-e B : S2, (SI, S2) E n, 
f f-e C =def S2 and if S2 ¢ C then f f-e C : S for some sort S. 

4. If f f-e (A6)B : C, (A6) bachelor in B , then for some D, E, x: f f-e A : D, f f-e B : 
(DlIx)E, f f-e E[x := A] =def C and if E[x := A] ¢ C then f f-e C: S for some S. 

5. Iff I-e sA: B, then rs I-e A: B 

Proof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on the 
derivations (use the thinning lemma). As to 5., we use induction on weight(s). Case 
weight(s) = 0: nothing to prove. If we have proven the hypothesis for all segments s that 
obey weight(s) ~ 2n and weight(s) = 2n + 2, s ;: 81S2 (neither SI ;: 0 nor S2 ;: 0) then 
by the IH: I'81 f-e S2A : B, again applying the induction hypothesis gives fS l S2 f-e A : B. If 
we have proven the hypothesis for all segments s for which weight(s) S 2n and weight(s) = 
2n + 2,8 == (D6)S}(E>.x) where weight(sl) = 2n then an easy induction to the derivation 
rules shows that one of the following two cases is applicable: 

• rs f-e A : B', f f-e [B'ls =def Band i![B'], ¢ B then f f-e B : S for some sort s. 
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• r 1-0 D : F, rI-o sl(EAx)A : (FITy)G, rI-o B =def G[y:= D] and if G[y := D] '" B 
then r 1-0 B : S for some sort S. 

In the first case note that FV(B) n dom(s) = 0 and by thinning rs 1-0 [B'ls =def B, by 
substitution rs 1-0 [B'ls =def B'. So rs 1-0 B' =def B and by conversion rs 1-0 A: B. In the 
second case we know by the induction hypothesis that I'S! 1-0 (E Ax)A : (FITy)G, 

Now 2. tells us IS!(EAx) 1-0 A : L, I'S! !-o (EITx)L =def (FITy)G and if (EITx)L '" 
(FITy)G then I'S! 1-0 (FITy)G: SI for some SI. 

This means that x == y, IS! 1-0 E =def F, I'S! 1-0 L =def G. Out ofI'S! 1-0 (EITx)L : S we 
get by 3. that I'S! 1-0 E : S2 for some sort S2, thinning gives I'S! 1-0 D : F so by conversion 
and thinning rs 1-0 A : L. 

Out of r 1-0 B =def G[x := D] we get (thinning and substitution) rs 1-0 B =def G, out of 
rSl 1-0 L =def G we get rs 1-0 L =def G, hence rs 1-0 B =def L. 

Now if G[y := D] '" B then r 1-0 B : S for some sort S, and if G[y := D] == B then we 
get out of I'S! 1-0 (E Ax)A : (FITy)G that I'S! 1-0 G : S' for some sort S', by thinning and 
substitution we get that rs 1-0 G[y := D] : S'. In any case, we get rs 1-0 B : S for some sort 
S and by conversion we may conlude rs 1-0 A : B. 0 

Theorem 5.12 (Subject Reduction for 1-0 and ...... (3) 
r 1-0 A : B and A -+ A' then r 1-0 A' : B. 

Proof: We only need to consider A ->{3 A'. Suppose r 1-0 (Ao)(BAx)C : D. Then by 
generation, r(Ao)(BAx) 1-0 C: D, and by substitution we get r 1-0 C[x := A] : D[x := A], but 
as x ¢. FV(D), D[x := A] == D. The compatibility cases are easy. 0 

Theorem 5.13 (Strong Normalisation for the Cube with respect to 1-0 and -+(3) 

For alll-°-Iegal terms M, M is strongly normalising with respect to ...... {3. 

Proof: This is a special case of the proof of Theorem 6.27. 0 

6 The Cube with definitions and generalised reduction 

Now we extend the type system of section 5 by changing the reduction -+{3 into '--+>{3. As was 
the case in section 4 the derivation rules stay the same as those with classical ,a-reduction, 
hence almost all lemmas that have been proved for the system in section 5 are still valid. 
The only properties that have to be investigated are Church-Rosser, Subject Reduction and 
Strong Normalisation. We will show now that all these properties too are still valid. 

Theorem 6.1 (The general Church Rosser theorem for '--+>(3) 

If A'--+>{3 B and A '-+>{3 C, then there exists D such that B '-++{3 D and C '-+>{3 D. 
Proof: see Theorem 4.6. 0 

Theorem 6.2 (Subject Reduction for 1-0 and "':"(3) 

Ifr 1-0 A: B and A '-++{3 A' then r 1-0 A': B. 
Proof: We only need to consider A '--'{3 A'. Suppose r 1-0 dC : D. Then by generation, 

rd 1-0 C : D. Hence by definition-shuffling (5.8, say A == def(d), B == pred(d) and x == 
subj(d»), rfl(Ao)(BAx) 1-0 C: D. Hence by substitution rfll-° C[x := A]: D[x:= A], and by 
(def rule) r 1-0 4(C[x := A]) : [D[x := A]]lf, which is r 1-0 4(C[x := AD : [Dk Now by the 
variable convention [D]d == D so we are done. The compatibility cases are easy. 0 

Now we present the proof of SN for the Cube extended with definitions and '-++{3. 
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6.1 Strong Normalisation 

In [BKN 9x], we used the technique of [Barendregt 92] to show Strong Normalisation for 
A~ with extended reduction. However, here we use the proof of [Geuvers 94] due to its 
flexibility and the possibility of its generalisatiol' to systems beyond the Cube, which we may 
be investigating in the future. Here is the terminology that will be needed. Let -l> be a 
reduction relation which contains -l>{3, is Church Rosser and for which the least eqnivalence 
relation closed under it, denoted =_ is the Same as =(3. Let I- be a typing relation which 
ranges over I- of Section 3 and over I-e of Section 5. 

Definition 6.3 Define a map # : T -> {0,1,2,3} by #(0) = 3, #(*) = 2, #(XO
) = 1, 

#(x*) = 0, #(A) = #(endvar(A)). ForA E T, #(A) is called the degree of A. Calla state
ment A: B OK iff#(A)+ 1 = #(B), call a definition d OK iff#(def(d)) = #(subj(d)) = 
#(pred( d)) - 1, and call a judgement r I- A : B OK iff A : B is OK, all definitions d E r -def 
are OK and for all items (COx) E r,A,B (0 E {A, II}): x: C is OK. 

We shall use # to prove that the classes of kinds, constructors and objects are mutually 
exclusive. First we collect some basic facts about 0 and * in the type systems: 

Lemma 6.4 

1. If r I- A : B then A ¢ o. 

2. If r is a legal context, then 0 does not occur in r. 

3. If A is a legal term, then A == 0 or 0 does not occur in A. 

4. Suppose r I- A: B, then endvar(A) == * ¢=> B == o. 

5. If(A6) is an item in a legal context then endvar(A) ¢ *. 

6. If (A6) is an item in a legal term then endvar(A) ¢ *. 

Proof: 

1. induction on the derivation rules. 

2. simultaneous induction with 3. on the derivation rules using 1. 

4. induction on the derivation rules; for '* use 1. and 3. We treat the case in which 
r I- A : B' is a consequence of r I- A : B, r I- B' : Sand r I- B = B'. From the 
induction hypothesis it follows that B == o. Then substituting and reducing introduce 
no 0 in B' as by 1. 0 !f. r, so 0 E B'. But then by 3.: B' == o. 

5. induction on the derivation rules; use 4. and 2. 

6. induction on the derivation rules; use 5., 4. and 3. o 

Now we can prove that whenever r I- A : B then #(A) + 1 = #(B). 

Lemma 6.5 For all contexts r and terms A,B: ifr I- A: B then r I- A: B is OK. 
Proof: We use induction on the derivation rules, we treat three cases. 
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• f f- (ali)F : B[x := a] as a consequence of f f- F : (AIIx)B, f f- a : A, then by the 
induction hypothesis #(x) = #(A) - 1 = ira) and it can easily be seen that #(x) = 
ira) ~ #(B[x := aJ) = #CB). 

• f f- dC : [D]d out offd f- C : D, then by the induction hypothesis: for all subdefinitions 
d' ofd, #(def(d'» = #(subj(d'» so by repeatedly applying #(x) = ira) ~ #(B[x:= 
aJ) = #(B) we get #([D]d) = #(D). 

• f f- A : B' out of f f- A : B, f f- B' : S', f f- B = B', then by the generation corollary 
3.16 B == 0 or f f- B : S for some sort S.-

If B == 0 then f f- B = B' implies B' == 0 as in the proof of lemma 6.4. 

If B ¢. 0 then S¢.O 1\ B' ¢. 0 implies S == S'; suppose now S == 0, then f f- B : 0 
so by lemma 6.4 endvar(B) == * so again by lemma 6.4 also endvar(B') == *, hence 
#(B') = #(B) = 2. If S' == 0 then similar #(B) = #(B') = 2. 0 

Corollary 6.6 If f is a legal context, then 

1. f -kinds n f -constructors = 0, 
f -kinds n f -objects = 0, 
f -constructors n f -objects = 0, 
o 'I: f -kinds U f -constructors U f -objects. 

2. If(AIIx)B is a f-term then A and B are both a r-kind or a r-type. 

3. If (A>,z)B is a f-term then A is a f-kind or a f-type and B is a f-constructor or a 
f -object. 

4. If (AIi)B is a f -term then A and B are both a r -constructor or a f -object. 

Proof: 1. is a direct consequence of lemma 6.5. 2., 3. and 4. are an easy corollary of 
the relevant Generation Lemma and Generation Corollary. 0 

Lemma 6.7 (Soundness of ~) If A, BET are legal terms such that A =~ B then there is 
a path of one-step reductions and expansions via legal terms between A and B. 

Proof: By Church-Rosser there exists a term C such that A ~{3 C and B ~{3 C. By 
Subject Reduction for ordinary /3-reduction all terms on the path A· .. C ... B are legal. 0 

Definition 6.8 

• Define the set of untyped >.-terms by A = V I C I (AIi)A I (>'v)A 

• We say that a term MEA is strongly normalising with respect to ~ iff every ~
reduction path starting at M, terminates. Note that a priori it isn't clear whether M 
is strongly normalising with respect to ~ {3 implies that M is strongly normalising with 
respect to '-*{3 and that the reverse is trivial. 

• We define SN~ = {M E A : M is strongly normalising with respect to ~}. 

• For A,B <;; A we define A -+ B = {M E A I 'IN E A[(NIi)M E Bl}. 
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Definition 6.9 Define the key redex of a term M as follows: 

1. (Ab)(BAx)C has key redex (Ab)(BAx)C. 

2. If M has key redex N, then (Pb)M has key redex N. 

Define redk( M) to be the term obtained from M by contracting its key redex. Note that not 
all terms have a key redex and that if a term has a key redex then it is unique. 

Definition 6.10 

• Define the set of base terms B~ <:;; A by V <:;; B~, and if M E B~, N E SN_ then also 
(Nb)M E B~. 

• Call X <:;; A saturated- iff: X <:;; SN~, B~ <:;; X and for all MEA: if M E SN~ and 
redk(M) E X then also M E X. 

• Define SAT~ = {X <:;; A : X is saturated...} 

Lemma 6.11 

1. SN~ E SAT_. 

2. "IX E SAT_: X -10. 

3. If N E SN~,M E X E SAT~ and x rf- FV(M) then (Nb)(Ax)M E X. (Note here that 
{Geuvers 94J takes (Nb)(Mb)(Ay)(Ax)y instead of (Nb)(Ax)M. The first however, will 
not fit our purposes as is explained in Remark 6.25) 

4. A, B E SAT~ =l> A -----> B E SAT~. 

5. If I is a set and Xi E SAT~ for all i E I, then n'EI Xi E SAT~. 

Proof: 1. SN~ <:;; SN~, B_ <:;; SN~. Furthermore, if M E SN~ and redk(M) E SN~ 
then also M E SN~ as --/l<:;;--. 2. and 3. by the definition of saturated sets. 5. is easy. Here 
we treat 4. Suppose A, B E SAT_. 

• As v E A for all v E V, we see: tEA -----> B =} (vo)t E B =} (vo)t E SN~ =l> t E SN~. 
So A -----> B <:;; SN~. 

• IfM E B,N E A thenN E SN soMN E 8 <:;; B, s08<:;; A -----> B. 

• If M E SN~, redk(M) E A -----> B then for a/l N E A: (Nb)redk(M) E B hence 
(NIi)M E B, hence also MEA ----> B. 0 

We define three maps, first Vofr-kinds to the function space of SAT~, then [ ]e ofr-terms\r-objects 
to elements of the function space of SAT~, and third ~ Dp of r-terms to A, such that when 
certain conditions are met we have: 
r I- A : B : 0 =} [A]e E V(B), [B]e E SAL and r I- A : B =l> ~ADp E [Bk 

Remark 6.12 It can easily be seen using lemma 6.5 that all kinds look like * with some 
II-applications and definitions in front of it, and have no bachelor A- or b-items. 
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Definition 6.13 Define for all kinds A the set-theoretical interpretation of A as follows: 

• V(.) == SAT~, 

• V((AIIxc )B) == V(A) -> V(B), the function space of V(A) to V(B) 

• V( (AIIx' )B) == V( B) 

• VedA) == V(A) if d a definition 

Now define U == U{V(A) I A is a I--kind}. 

Lemma 6.14 

1. If A is a legal kind, B a legal constructor and C is a legal object, then 
V(A) == V(A[xO :== BD and V(A) == V(A[x' :== CD. 

2. If dA is a legal kind (remember Remark 6.12), d is a definition, then V([A]d) == V(A). 

Proof: 1. is by induction on the structure of A (note: A has no bachelor c- or A-items), 
2. is by 1. (note: all definienda in a definition are either constructors or objects). 0 

Definition 6.15 Let r be a I--Iegal context. 

• A r-constructor valuation, notation e 1=0 r, is a map e : VO --> U such that for 
all (AAx) E' r with A a r-kind (i.e. x E VO): e(x) E U(A). 

• If e is a constructor valuation, then []{ : r -terms\r -objects -> U is defined inductively 
as follows: 

[(Ac)B]e 

.- SN_ 

.- SN_ 

.- e(xO) 

{ 
[B]e[A]e 

.- [B]e 
if A E r -constructors 
if A E r -objects 

.- { >.f E V(A).[B]e(x,=J) if A E r -kinds 
[Bne if A E r -types 

{ 
[A]{ -> njEV(A)[B]{(x'=J) if A E r-kinds, x E VO 
[A]e -> [B]e . if A E r-types, x E V· 

where e(x :== N) is the valuation that assigns e(y) to y '" x and N to x. Furthermore, 
with [A]e[B]e we mean application of the function [A]e onto its argument [B]e and by 
>. we mean function-abstraction. 

Before we verify that [ ]e is well defined, here are some helpful facts about [ De. 

Lemma 6.16 Let A, A' E r -terms\r -objects, B E r -constructors, C E r -objects, XO a con
structor variable and x· an object variable. Then 
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1. [A[xo:= B]l = [A]e(xO,=[B!.) 

2. [A[x':= C]]e = [A]e 

3. A =(3 A' => [A]e = [A']e 

Proof: 1. and 2. are by induction on the structure of A. 3. is by induction on the length 
of the path from A to A' through the legal terms (use Lemma 6.7). 0 

Remark 6.17 Note that =(3 and =~ are the same equality relations. 

Lemma 6.18 (Soundness of [ De) Ifr I- A : B : 0 then for all e such that e 1=0 r, we have: 
[A]e and [B]e are well-defined and [A]e E V(B), [B]e E SAT~. 

Proof: By induction on the derivation rules. We treat two cases: 

• r I- (ab)F : B[x := A] as a consequence of r I- F : (AIIx)B and r I- a : A. It is not 
difficult to see that [B[x := A]l E SAT~ if [B[x := A]]e is a kind, because by Lemma 
6.5, then also B is a kind. Furthermore, by the induction hypothesis [F]e E V((AIIx)B) 
and if A is a kind then also [a]e E V(A). If A is not a kind, then [(ab)F]e = [F]e E 
V((AIIx)B) = V(B). If A is a kind, then [F]e E V((AIIx)B) = V(A) -+ V(B) and 
hence [(ab)F]e = [F]e[a]e E V(B) L'm~6H V(B[x := aD. 

• r I- dC : [D]d as a consequence of rd I- C : D. Then by the induction hypothesis 
[C]e E V(D) for all e 1=0 rd and if D is a kind, then [D]e E SAT~. Now let e 1=0 r, 
then [dC]e L'mm~ •. 1'.3 [[C]d]e = [C]c' where €'(xO) = e(xO) if XO is not the subject of a 
subdefinition in d, and f(XO) = [def(d')]e if XO is the subject of a d' a subdefinition of 
d. But e 1=0 rd, so [C]C' E V(D) L'm~6.H V([D]d). 0 

Definition 6.19 If e 1=0 r, then we call e cute with respect to r if for all d E r -def such 
that subj(d) E V o, e(subj(d)) = [def(d)]e. 

Lemma 6.20 

1. If e 1=0 r and A is r -legal, then [A]e depends only on the values of e on the free 
constructor variables of A. 

2. If e 1=0 r then there is a cute e' such that e 1=0 rand e' = e on the non-definitional 
constructor variables of dom(r). 

3. If e 1=0 rand e is cute with respect to r then r I- A =def B ==> [A]e = [B]e. 

Proof: 1. is easy, 2. is a consequence of 1. and 3. is proved by induction on the 
generation of =def using Lemma 6.16. 

Definition 6.21 

• Let e 1=0 r such that e is cute with respect to r. An object valuation of r with respect 
to e, notation p,e 1= r, is a map p: V -+ A such that for all (AAx) E' r: p(x) E [A]e 
(regardless of whether A E r -kinds or A E r -types). 
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• For p, f. F r (note: this implies f. is cute, define Q Dp : r -terms ---+ A as follows: 

QxDp .- p(x) 

Q*Dp .- * 
QoDp .- 0 

Q(N8)MDp .- (QND p8)QMDp 

Q(AAx)BDp .- (QAM)( Ay)( Ax)QBDp(x:=x) (where y ¢ FV(B» 

Q(AIIx)BDp .- « Ay)Q BD p(x:=y)8)( Q A Dp8)x (where y ¢ FV(B» 

Note that we need Be to ensure that no unwanted bindings occur in the case (AIIx)B. 
The use of the endvariable x in this case is not essential, we also could reserve one 
special variable w that should not be used otherwise and define Q(AIIx)BDp to be the 
term «Ax)QBDp(x:=x)6)(QADp6)w. . 

• We define another map f 1 : r -terms ---+ A by 

fxl .- x 

[*1 .- * 
[01 := 0 

[(N6)Ml .- (fN18HMl 
[(AAx)Bl .- (fA16)(Ay)(AxHBl (where y ¢ FV(B» 

[(AIIx)Bl .- «AyHB(x:= y)l6)(fA16)x (where y ¢ FV(B» 

Definition 6.22 Let r be a context, A, B E r -terms. r satisfies that A is of type B with 
respect to r- and~, notation r F~ A: B, iffVf.,p[P,f. F r =} QADp E [B]e]. 

Lemma 6.23 

1. If r(A6)4(BAx)tl is a legal context and p,f. F r(A6)4(BAx)tl then QADp E [B]e and 
QBDp E SAL. 

2. rd FA: B =- r F dA: [B]d 

Proof: 1. is by induction on the derivation rules. 2. is by induction on "sight(d). 
If d '" 0 then nothing to prove, suppose now d '" (C6)Sl(DAx)SZ' Then by the induction 
hypothesis r( C 6)Sl (D Ax) F szA : [B}". 

• Suppose x E V*. Let p,f. F rs1' Then for all E E [D]e we have p(x := E),f. F 
r(C6)Sl(DAx). Hence QszADp(x:=E) E [[B]:;,]e, hence (Ax)QszADp(x:=x) E [D]e -+ 

[[Bh,]e and also (QDD p6)(Ay)(Ax)QS2ADp(x:=x) E [D]e -+ [[B]..,]e (by 1. QDDp E SAT~, 
use Lemma 6.11). This means rs1 F (DAx)szA : (DIIx)[Bh" so by the induction 
hypothesis r F sl(DAx)szA: ([D]s,IIx)[Bh'82' If P,f. F r then by 1. QCDp E [D]e and 
QS1(DAx)szADp E [[DhJe -+ [[Bls,8,]e, hence (QCDp6)Qsl(DAx)szADp E [[Bh",]e = 
[[B](Co)',(V.I.)sJe, so r F (C6)Sl(DAx)szA: [B](co)s,(V.I.)',· 

• Suppose x E yD. Let p,f. F rs1. Then p(x := E),f.(x:= f) F r(C6)Sl(DAx) for all 
f E U(D) and E E [D]e, so QszADp(x:=E) E [[BlsJef.(x:= f), hence (Ax)QszADp(x:=x) E 
[D]e -+ nJeU(D)[[BlsJe(x:=f)' But then also (QDD p6)(Ay)(Ax)QszADp(x:=x) E [D]e -+ 
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nfEU(D)[[Bh,l(x,=J) (use 1. and Lemma 6.11). Hence we see: ISl 1= (DAx)szA : 
(DIIx)[Bh" so by IH r 1= sl(DAx)szA : ([Dh, IIx)[Bh,8,. 

Now let p,( 1= r. Then USl(DAx)szADp E [([Dh,IIx )[B].,8,]e and UCDp E [[D]S,De by 
1., so (UCDpp6)(USl(DAx)szADpp) E nfEU(D)[[Bh,.,h(.,=n' 

This means U(C6)Sl(DAx)szADpp E_[[Bh,.,!e(x'=ICl
r 

= [[B].,8,[X := C]]e ~ 
[[Bl(c5)8,(DA.)8,]e, hence r 1= (C6)Sl(DAx)szA: [B (C5)8,(DA.)'" 0 

Lemma 6.24 (U Dp versus f 1) 

1. VM E f-terms, Vp: QMDp == [Mllz:= p(-;')] where z are the free variables of M. 

2. Ifs is a well-balanced segment then [sAl == fsl rAl and fsl is also well-balanced. More
over, FV([Al) = FV(A). 

3. For all MEr-terms: f Ml is strongly normalising => M is strongly normalising. 

Proof: The first statement is easy to verify. The second statement is also easy. The 
third statement can be proved as follows: we prove by induction on the structure of M, that 
whenever M -- N, then [Ml -- [Nl. We show the only non-trivial case (note that when ..... 
is --f3, then s == 0). If M == (A6)s(BAx)C ..... s(C[x := All == N, then 

[Ml == (fA16lrs(BAx)Cl == (fA16lrsl(fB16)(Ay)(AxlrCl 
-- (fA16lrsl(Ax JrCl (note that y f. FV«AxlrCl)) 
-- fsHC1[x:= fAll == rsHC[x:= A]l :::.rs(C[x:= A])l == rNl. 0 

Remark 6.25 With this Lemma, it becomes clear why we depart from [Geuvers 94] by using 
[(AAx)Bl to be (fA16)(Ay)(AxlrBl instead of (rA16)«AxlrB16)(Au)(Av)u. 

Consider for example P == (A6)(B8)(CAx)(DAy)E.and Q == (B8)(CAx)E[y:= A]. It is 
obvious that P '-+f3 Q and that [Pl == ([A16)(fB16)(fC16)(Ap)(Ax)([Dl)8)(Aq)( AylrEl '-+>f3 

[Ql == (fB16)(fC16)(Ap)(AxlrEl[Y := fAll· Yet, if we use the translation of [Geuvers 94], 
then we get [Pl == (fA18)(fB16)(fC16)«Ax)[(my)E18)(Au)(Av)u 
'/+>(3 [Ql == (fB16)(fC16)«AxlrEl[Y:= [Al]6)(As)(A,)s. 

Lemma 6.26 r I- A : B => r 1= A : B 
Proof: Use induction on the structure of A' to prove that if p, ( 1= r then UADp E [B]e: 

• A == x. Then by generation for some B': r I- B' ==def Band (B' Ax) E r -decl U r -def, 
so by p,( 1= r,(B'Ax) E r-decl U r-def, and Lemma 6.16, we get UADp = p(x) E 
[B']e == [B]e. 

• A == (PAx)Q, with PEr-kinds. 

Then by the generation lemma for some R, r( P Ax) I- Q : R with r I- (PIIx)R ==def B, 
r I- P : O. By IH we find that UQDp(x,=p) E [R]e(x'=f) for all p E [P]e,/ E V(P), so 
UQDp(x,=p) E nfEV(p)[R]e(x'=J)' By IH also UPDp E [one = SN~ so by Lemma 6.11 

UADp == U(PAx)QDp == (UPD p6)(Ay)(Ax)UQDp(x,=x) E [P]e .... n'EV(p)[R](x'=fl = [Bk 

• A == (PAx)Q with PEr-types. Then similar to the previous case. 
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• If I- is ordinary typing and A == (P6)Q with PEr-objects. Then r I- Q : (RIIx)T, 
r I- P : R for some R, T with r I- T[x := Pj =def B (again generation lemma). Now 
by IH and lemma 6.11 we see that QQDp E [Rl ---> [T]e and QPDp E [R]e, 

so QADp = Q(P6)QDp = (QPD p6)QQDp E [T]e = [T[x := Pjl = [Bk 

• A == dP where d is a definition. Then by the Generation Lemma r d I-e P : B. By the 
induction hypothesis we then know that rd ~ P : B, hence by Lemma 6.23.2 we get 
that r ~ dP: [Bjd' but [Bjd == B, so r ~dP: B. 

• A == (P6)Q with PEr-constructors where (P6) is bachelor in (P6)Q then also similar. 

• A == (PIIx)Q. Then by generation r I- P: S1, r(PAx) I- Q : S2, S2 =f3 B. 

If PEr-kinds, then IH says QPDp E [0]';, QQDp(x:=p) E [S2hx:=f) for all p E [Pl, f E 
V(P), hence [P]e E SN~, (Ax)QQDp(x:=x) E SN. 

But this means QADp = «Ax)QQDp(x:=x)6)(~PDp6)x E SN = [S2]e = [Bk 

If PEr-types, then similar. 

Theorem 6.27 (Strong Normalisation for the Cube with respect to I-e and '-++(3) 
For alll-e-legal terms M, M is strongly normalising with respect to '-++f3. 

o 

Proof: Let M be a I-e -legal term. Then either M == 0 or for some context r and term N, 
r I-e M : N. In the first case, clearly M is strongly normalising. In the second case, define 
canonical elements cA E V(A) for all A E r-kinds as follows: 

c' .- SN,-*~ 
c(Allx)B := )"f E V(A).cB if A E r -kinds, x E V D 

c(Allx)B := cB if A E r -types, x E V· 

Take ~ such that ~(x) = cA whenever (AAx) E' r and ~(subj(d)) = [def(d)]e whenever 
d E' r-def and take p such that p(subj(d)) = Qdef(d)Dp for all subdefinitions d of rand 
p(x) = x otherwise. Then p,~ ~ r, hence QMDp E [N]e, where QMDp = rMl as mentioned 
in lemma 6.24. Hence rMl E [N]e <;;; SN,-*~. ~y lemma 6.24 now also M E SN,-*~, 0 

This Theorem proves also SN for the other Cubes in this paper (the Cube extended with 
nothing, definitions or '-++(3) as the legal terms ~of those Cubes are also legal in the Cube of 
this section, and SN with respect to '--++f3 implies SN with respect to --"'f3. 

7 Comparing the type system with definitions to other type 
systems 

In this section we will compare the type systems generated by I-e with the one generated by 
1-, from two different points of view. The first is the conservativity, where we show that in a 
certain sense, definitions are harmless. That is, even though we can type more terms using I-e 
than using 1-, whenever a judgement is derivable in a theory £ using definitions and I-e, it is 
also derivable in the theory £ without definitions, using only I- and where all the definitions 
are unfolded. The second viewpoint is about the effectiveness of derivations. More work has 
to be done yet but it is certain that there is a gain in using definitions. 
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7.1 Conservativity 

As we saw in example 5.2, in the type systems with defiilltions there are more legal terms. 
Therefore, it has to be investigated to what extent the set of legal terms has changed. Note 
first that all derivable judgements in a type system of the A-cube are derivable in the same 
type system extended with definitions as we only extended, not changed, the derivation rules. 
A second remark concerns the bypassing of the formation rule by using the weakening and 
definition rule instead: In A2 without definitions we can derive the following by using the 
formation rules (*,*) and (0,*) (take r == (*AiJ)(j1A y»: 

r 1-).2 y: j1 : * : 0 

r(*A,,) 1-).2 a : * 
r(*A,,)(aAx) 1-).2 x : a: * 
r(*A,,) 1-).2 (aIIx)a: * 
r(*A,,) 1-).2 (aAx)X : (aIIx)a 
r 1-),2 (*II,,)(aIIx)a: * 
r 1-),2 (*A,,)(aAx)X : (*II,,)(aIIx)a 
r 1-),2 (j16)(*A,,)(aA x)X : (j1IIx)j1 
r 1-),2 (y6)(j16)(*A,,)(aA x)x: j1 

(start) 
(start resp weakening) 
(formation rule (*, *) ) 
(abstraction) 
(fromation rule (0, *) ) 
(abstraction) 
(application, we already knew r 1-),2 j1 : * ) 
(application, we already knew r 1-),2 Y : j1 ) 

It is not possible to derive this judgement in A_ as the formation rule (0, *) is needed. Now 
we observe that the term (y6)(j16)( *A,,)( aAx)x can be seen as x with two definitions added, 
and using this observation we can derive the judgement in a type system with defiilltion 
without having to use the formation rules (*, *) and (0, *): 

r I-L y : j1 : * : 0 

r(j16)( *A,,) I-L y : (3, a: * 
r(j16)( *A,,) I-L a =det j1 
r(j16)( *A,,) I-L y : a 
r(y6)(j16)( *A,,)( aAx) I-L x : a 

(weakening resp. start) 
(use the definition in the context) 
( conversion) 
(start) 

r I-L (y6)(j16)(*A,,)(aAx)x: a[x := yJ[a:= j1J == j1 (definition rule) 

This example shows that in A_det we have more legal judgements than in A_. Now we take 
a look at the judgement r I- «(36)(*A,,)(MA.)X : (MIIx)M where M == (y6)«(3Az )(j16)(*A-yh 
and r == (*AiJ)(j1A y ). This judgement can be derived in AC using the formation rules (0, D), 
(0, *), (*, D) and (*, *) in the following way: 

r I-).c ,6 =* : 0 

r(*A,,) I-).C j1 : *: 0 
r(*A,,)(j1Az ) I-).c z: j1: * : 0 

r( *A,,)(j1Az )( *A,,) I-,\C 'Y : * : 0 

r(*A,,)(j1Az ) I-).c (*II,,)*: 0 
r(*A,,)(j1Az ) I-,\C (*A"h: (*II,,)* 
r(*A,,)(j1Az ) I-).c (j16)(*A"h : * 
r( *A,,) I-).c (j1II z )* : 0 

r(*A,,) I-).c (j1Az )(j16)(*A"h : (j1II z )* 

( weakening) 
(start resp. weakening) 
(start resp. weakening) 
(formation rule (0, D) ) 
(abstraction) 
(application) 
(formation rule (., D) ) 
(abstraction) 
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r(_A,,) f-),c M: _ 
r(_A,,)(MAx) f-w x: M:_ 
r(_A,,) f-),c (MIIx)M:_ 
r(_A,,) f-w (MAx)x : (MIIx)M 
r f-w (_II,,)(MIIx)M :-

(application, M;: (y8)(,8A z)(,88)(*A-,h) 
(start resp. weakening) 

r f-w (_A,,)(MAx)X: (_II,,)(MIIx)M 
r f-),c (,88)(*A,,)(MA x)X : (MIIx)M 

(formation rule (*, _) ) 
(abstraction) 
(formation rule (0, _) ) 
(abstraction) 
(~pplication ) 

It is impossible to derive this judgement in any other system of the cube than AC as all four 
formation rules are needed. We can however derive this judgement in A_def: 

r f-L ,8 : _ : 0 

r(,88)( _A,,) f-L ,8 : _ : 0 

r(,88)( -A,,)(y6)(,8Az) f-L ,8 : _ : 0 

r(,88)( *A,,)(y8)(,8Az)(,88)( *A-,) f-L '"I : -
r(,86)( _A,,) f-L (y8)(,8Az)(,88)( *A-,h : *['"1 := ,8][z := y] i.e. M: -
r(,88)(_A,,)(MAx) f-L x: M: * 
r(,88)(*A,,) f-L (MIIx)M: * 
r(,88)(_A,,) f-L (MAx)x: (MIIx)M 
r f-L (,88)(*A,,)(MAx)X : (MIIx)M[a:=,8];: (MIIx)M 

( weakening) 
(weakening) 
( weakening) 
(definition rule) 
(start resp. weakening) 
(formation rule (*, *) ) 
(abstraction) 
(definition rule) 

This example shows that in every system of the A-cube (except AC), adding definitions gives 
more derivable judgements. As was shown in Eample 5.2, (*A(3)(,8A y') f-).2 (,88)( *A,,)(y' 8)( aAx)x : 
,8 is derivable in A2def and hence is also derivable in ACdef, but this judgement cannot be 
derived in AC as y is of type ,8 and not of type a. At first sight this might cause the reader 
to suspect type systems with definitions of having tao much derivable judgements. However, 
we have a conservativity result stating that a judgement that can be derived in Cdef can be 
derived in C when all definitions in the whole j,!dgement have been unfolded. 

Definition 7.1 For r f-e A : B a judgement we define the unfolding of r f-e A : B, [r f-e A : 
B]U to be the judgement obtained from r f-e A : B in the following way: 

• first, mark all visible 8A-couples in r, A and B, 

• second, contmct in r, A and B all these marked 8A-couples. 

When r;: ... (C8)s(DAx) ... , contmcting (C8)(DAx) amounts to substituting all free occur
rences of x in the scope of Ax by C; these free occurrences may also be in one of the terms 
A and B. The result is independent of the order in which the redexes are contmcted, as one 
can see this unfolding as a complete develapment (see [Barendregt 84]) in a certain sense. 

Example 7.2 [( *A(3)(,8Ay)(y8)(,88)( *A,,)( aAx)( aAz) f-e (( aAu)u8)(( aIIu),8Av)( x8)v : a]U is 
(_A(3)(,8Ay)((aAz)[x:= y][a:=,8]) f-e (((x8)v)[v:= (aAu)u])[x:= y][a:=,8] : a[x := y][a:= (J], 
which is (*A(3)(,8Ay)(,8Az) f-e (y8)(,8Au)U :,8. Nate that the resulting cantext cantains anly 
A-items and that the resulting subject and predicate need nat be in narmal farm. 

Theorem 7.3 Let C be one of the systems of the Cube, r a context with definitions and A, B 
pseudoterms. If r f-c A : B then r' f- c A' : B', where r' f- c A' : B' is [r f-c A : B]u. 

Proof: use induction on the derivation of r f-c A : B. axiam, abstractian and farmation 
rules are easy, we treat the other cases. 
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• The last rule applied is the start rule. Then rd f-~ subj(d) : pred(d) as a consequence 
of r -< d. Now if d:; (AAx) then by IH r ' f-c A' : S (S a sort, a; fresh) so by the start 
rule r' (A' Ax) f- c a; : A'. On the other hand, if d is a definition, say d :; (A6)!i( B Ax), 
then by IH (r!i)' f- c A' : B' : S (S a sort), which is r ' f- c A' : B' : S as d will be 
fully unfolded, and the unfolding ofrd f-~ subj(d) : pred(d) is r ' f-c def(d)': pred(d), 
which is r ' f- c A' : B' so we are done. 

• The last rule applied is the weakerung rule, say rd f-~ D : E as a consequence of r -< d 
and r!i f-~ D : E. Because subj(d) is fresh we have that (rd)' f-c D' : E' is the same 
as (r!i)' f- c D' : E' so by IH we are done. 

• The last rule applied is the application rule. Then r f-~ (ao)F : B[a; := a] as a 
consequence ofr f-~ F: (AIIx)B and r f-~ a: A. By IH and the application rule we get 
r ' f-c (aI 6)F' : B'[a; := a'l. Now by subject reduction also r' f-c ((a'6)F')' : B'[a; := aT 
If B'[a; := a/] :; (B'[a; := a/])' then we are done, otherwise, by the Generation Corollary 
r ' f- c B'[a; := a'l : S for some sort S, so by subject reduction r ' f- C (B'[a; := a/])' : S 
and as B'[a; := a'l =(3 (B'[a; := a/])' by conversion we are done. 

• The last rule applied is the conversion rule. Then r f-~ A : B2 as a consequence 
of r f-~ A : B 1 , r f-~ B2 : Sand r f-~ Bl =def B2. Now r f-~ Bl =def B2 implies 
Bj =(3 B2 because ifC results from D by locally unfolding a definition ofr then C' :; D', 
so the result follows by IH. 

• The last rule applied is the definition rule. Then r f-~ dc : [D]d as a consequence of 
rd f- C : D. By IH, r' f-c [C/]d: [D'Jd which is the unfolding ofr f-~ dc: [Dk 

Remark 7.4 It is not sufficient in theorem 7.3 to unfold all the definitions in the context 
only, because a redex in the subject may have been used to change the type when it was still 
in the context, this is illustrated by (*A(3)(;3A y ) rL (;36)(*Aa)(y6)(aAx)a; :;3 which cannot be 
derived using f->._. However, this judgement wl)ere all the definitions are unfolded in context, 
subject and predicate, is derivable using f-. That is, (*A(3)(;3A y ) f->._ y:;3. 

7.2 Shorter derivations 

As we already noted, derivations using the definition mechanism seem to need considerably 
less derivation steps to derive a judgement that can also be derived without definitions. As 
to the type-checking of terms, we do not think that type-checking in the extended systems 
will be more difficult than in the A-cube of Barendregt, nor do we think it will become less. 

7.3 Comparison with the systems of the Barendregt cube 

Here we discuss the (dis ) advantages of our extended typing systems to the typing systems of 
the A-cube. 

In the extended typing systems we can reason with definitions in the context (which is 
very natural to do): we can add definitions to t~e context in which we reason (the start rule 
and weakening rule), we can eliminate definitions in the context (the def rule) and we can 
unfold a definition in the context locally in the type (the conversion rule). 

Furthermore, in the terms, there are more visible redexes and all these redexes are subject 
to contraction. 
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If one considers one of the seven lower systems in the >.-cube, some abstractions are 
forbidden, for instance in >'PI,!l. the abstraction of a term over a type is not aJlowed (this 
abstraction corresponds to universal quantification in logic). Intuitively such a quantification 
need not be forbidden if it is immediately being instantiated by an application, as is the 
case in the term (>'",..( >'x",.x ),B. However, in the system >'PI,!l. this term is untypable as the 
subterm >.",..( >'x,,,.x) should have type II",..(IIx,,,.x), which is forbidden as the formation 
rule (0,*) is not aJlowed. 

Now in our extended typing system >'PI,!l., we can type the term (>.",..(>'x,,,.x)),B by 
using the de! rule: from (*>'/l)(,B8)(*>.,,) 1-' (a>.x)x : (aIIx)x we may conclude (*>'/l) 1-' 
(,B8)(*>',,)(a>'x)x: (,BIIx)x. Note that the use ofthe formation rule (0,*) is avoided. 

By this property, the extended type systems are closer to the intuition than the systems 
of the >.-cube of Barendregt as there are more (intuitively correct) derivable inhabitants of 
certain types. 

7.4 Comparison with the type systems of Poll and Severi 

When we compare the extended type systems to those of Poll and Severi (see [SP 93]), we 
observe the following differences. 

1. In the systems of [SP 93], the definition of pseudoterms has been adapted, not only 
the usual variables, abstractions and applications are pseudoterms, but definitions, i.e. 
terms of the form x = a : A in B are added. A new reduction relation has to be 
introduced to be able to unfold these defiJ;litions (locaJIy). 

In our approach, we treat definitions like ,B-redexes, hence the syntax of pseudoterms 
remains the same. We only need to change the syntax of contexts and extend the notion 
of ,B-equality in a natural way to be able to use the definitions in the context. 

2. [SP 93J have a rule that takes a definition out of the context and puts it in front of the 
term and type. In our extended system however, we only put the definition in front 
of the term and unfold it in the type. By" the conversion rule, now also the type with 
the definition in front of it instead of the unfolded type can be derived (due to the 
generation corollary). 

3. [SP 93] do not demand the predicate of a definition to have some sort as type. This only 
leads to being able to abbreviate kinds, which is impossible in our extended systems. 
We consider this to be a minor disadvantage which might very well be easily overcome 
by leaving the demand of the type of the predicate. 
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