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Transformational Query Solving 

Rik van Geldrop' 

July 12, 1991 

Abstract 

A transformational programming method is used to derive algorthms for a 
class of database queries. The purpose is twofold: to illustrate a transforma­
tional programming method on the basis of a non trivial example and to give 
a program derivation for database queries (these are scarce in literature). The 
results of our efforts are two generic algorithms for files (or databases with only 
one relation) with minimimal restrictions to the system. It is shown how these 
algorithms may serve as building blocks in solving more complex problems. 

·Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. 
Box 513, 5600 MB Eindhoven, The Netherlands. 
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1. INTRODUCTION 

In the branch of computing science described by information systems, databases 
play an important role. Several models have been developed for databases, the re­
lational model, [3,4J, is one of them. Systems concerned with the implementation of 
databases are called Database Management Systems (DBMS), the 4th Generation 
(4G) systems claim to support the relational modelling of databases. In the rela­
tional model, based on set theory, specifications for database queries are given in 
a set theoretical notation. Unfortunately in most 4G DBMS's, the implementation 
language is a rather restricted set theoretical one and efficiency is mainly a mat ter 
of the system. So, if a programmer likes to have control of efficiency, a lower-level 
system should be used. However, these are restrictive with respect to set opera­
tions so that query specifications have to be transformed to the level of files. Since 
databases may have a complex internal structure, program derivation for database 
queries becomes very laborious in this (usual) way. 

In another branche of computing science, the Bird Meertens formalism (BM), re­
search has been made in the transformation of specifications based on algebraic 
properties of the underlying data-type [1,2,5J. Here an important role is played by 
'structure preserving' functions, so-called morphisms. It is claimed that specifica­
tions are programs and executibility depends on the intended machine. Hence one 
can speak of abstract programs. One of the advantages of such an approach is the 
separation between the architecture of a solution and the details of its implementa­
tion. 

Observing that in many database queries the attribute-values to be constructed are 
resulting from morphism applications, we would like to use the BM tools in our 
derivations. Program derivation in such a way will be less laborious than a deriva­
tion in the usual way. 

We don't require that the reader is familiar with the concepts of database theory or 
BM. The ingredients needed in our derivation will be introduced in section 2. The 
class of database queries, which we aim to solve, is built up by problems for files. 
In section 3, the problem class is described and generic algorithms for file problems 
are derived. How those algorithms apply to database queries is illnstrated in section 
4. In the algorithms developed, a particular representation is required, and it is 
claimed that this might be achieved by the system orderings. What can be expected 
if the representation condition has to be satisfied by the ordering facilities of existing 
systems is subject of section 5. 

2. PRELIMINARIES 

In the first part of this section we introduce some notions from database theory and 
the definition of the (essential part of the) DBMS interface. The second part deals 
with some basic concepts of BM such as datatypes and transformations (laws). A 
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link between system interface and BM is subject of the last part of this section. 

2.1 Databases and their implementing system. 
As mentioned before, we intend to use BM in our derivations. This implies that the 
algebraic properties of the databasetype (the external behaviour) will be exploited. 
Therefore, an informal description of some database notions will do. 
Databasetypes are used to model the data in some organization. Mostly, the data 
can be divided into several kinds. In the simplest case, which suffices to intro­
duce the notions needed in section 3, only one kind is involved (in database terms: 
only one object exists). An object can be described by its relevant characteristics 
(in database terms: each object is determined by a set of attribute-names). Each 
attribute name corresponds to an attribute-value set. We will assume that in the or­
ganization involved, an occurrence of the object (in database terms: a tuple) can be 
represented by an element of the (labeled) cartesian product of attribute-value sets, 
the label set being the attribute names. Usually, the organization deals with several 
occurrences of an object, i.e. a subset of the cartesian product. But, not every 
subset may represent a possible state of the object, a so-called table-constraint has 
to be satisfied. (A frequently occurring table-constraint is the key constraint, e.g. 
see the definition of SR in section 4.) The subsets of the labeled cartesian product 
which satisfy the table-constraint constitute the tabletype for the object. Common 
usage in database theory is the word "relation" for an element of a tabletype. Since 
we are also interested in (binary) relations on elements of a tabletype, we will pre­
vent confusion by using the word "table" for the database notion "relation". In this 
simple case, databases are equivalent to tables. 
For the moment these notions suffice. In section 4, where we use our schemes to 
solve database queries, the general case is described and an example databasetype 
is given. 

Implementations for databases are realized by DBMS's. We prefer to have a hold on 
efficiency, so 4G systems are left out of consideration. Apart from facilities needed 
in the solution of our intended problem class, we don't fix the system involved and 
specify the implementing interface by: 

databases are table-valued functions over the set of objects 

tables may be considered as 
1. sets with operations: 

empty, initialization of a table on 0 
fetchc, retrieval of a tuple, given one of its key-values. 
store, insertion of a tuple, if the table-constraint is satisfied. 
delete, deletion of a tuple, if the table-constraint is satisfied. 

(Direct organization of tables.) 

2. files: 

Let a be a type, then File(a) ~ raj x IN . (See 2.2 for the definition of [aJ.) 
For f: File(a) with f = (F,p), the following operations are available 
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start(f) 
eof(f) 
fetchn(j, t) 

p;= 1 
_ p=#F+l 

'" if 1 :; P :; # F -+ t ;= F.p; p ;= p + 1 
o p < 1 V P > # F -+ abort 
fi 

(Sequential organization of tables.) 

There exist ordering facilities for some types. 
Suppose R <;; 0 X 0, then Ordfile(o, R) is the subtype 

Ordfile(o, R) ~ {(F,p) E File(o) I V iJ; 1:; i:; j :; #F; (F.i,F.j) E R} 
In the summary of relations on tables (see appendix) the predicate 
(V iJ; 1 :; i :; j :; #F ; (F.i,F.j) E R) is described by "F satisfies R". 

Systems equipped with those operations are called File Management Systems (FMS). 
Some relevant facts about its interfaces are; 
- generally they are embedded in imperative languages, 
- FMS operations are time consuming, so the objective is to minimize their use. 
Our goal will be the derivation of imperative FMS programs. 

2.2 BM tools. 
The approach of BM applies to a large class of datatypes and exploits only the alge­
braic properties of those types. The intention is, after fixing an algebraic datatype, 
to transform the functional expressions, which can be formed in the language of the 
algebra, in order to exchange expensive operators for cheaper ones. The datatypes 
we are interested in are lists and sets, but before we introduce the relevant part of 
BM for these types, we recapitulate some basic facts about algebra. 

An algebra is a set together with a family of operators on the set and a (possibly 
empty) set of equations which have to hold for the operators. 
Example. M = < A, ~, { la, II } > where 

~ = { + ; A X A -+ A, 0 ; -+ A }, 
10Vx;O+x=x+O=x 
II ; Vx,y,z; (x + y) + z = x + (y + z) 

is an algebra. M models the monoids. Several instances (models) of a given alge­
bra may exist. E.g. the natural numbers with addition, M, and the booleans with 
disjunction, M', are models for the algebra above. Between two models of the same 
algebra ("two algebras of the same kind") homomorphisms can be defined. 
Let (A, 0") and (A', 0"') be algebras of the same kind. A homomorphism h from 
(A, 0") to (A', 0"') is a function h ; A -+ A' such that 

h 0 f = f' 0 hn n is the arity of f' 

for each f EO" and corresponding f' E 0"'. E.g. in our previous example, a homomor­
phism h from M to M' is a function h ; IN -+ IB such that 

4 



h.O", false 
h.(m + n) = h.m V h.n. 

It is not difficult to prove that (functional) composition preserves homomorphisms. 
Generally several homomorphisms may exist between two algebras of the same kind, 
but sometimes there is a model which has exactly one homomorphism to each other 
model. This (minimal) model is the so-called initial algebra. 
The algebra M of our example has a minimal model and it can be represented by 
the monoid ({1$}, Ell, 1$). 1$ is the (only) generator ofthe type. A set of generators 
can be obtained by parametrization with a set a as follows. 

Consider the algebras 

where 

and 
with 

Ci = < A(a),~, Li > 

~ = { + : A(a) X A(a)--+ A(a) 
,O:--+A(a) 
, T: a --+ A(a) 
} 

Li = { 10,"" Ii } 
10 Itx:O+x=x+O=x 

i = 0, ... ,3 

II Itx,y,z : (x + y) + z = x + (y + z) 
h Itx,y : x + y = y + X 

13 Itx:x+x=x 

A homomorphism h from (A, { Ell, Q, r.}) to (A', { Ell', Q', r.' }) in Ci is now defined 
by 

h 0 Q = Q' 

h 0 r.. = r....' 
h.(x Ell y) = h.x Ell' h.y 

It is clear that a homomorphism in Ci is a homomorphism in Cj , if i :2: j. Moreover, 
homomorphisms in Ci, i :2: 1, are homomorphisms in M. From the theory of alge­
bras it is known, that Ci has an initial algebra rCi, i = 0, ... ,3. Together these initial 
algebras constitute the (Boom) type hierarchyl. The datatypes that playa role in 
our application are rCi, i :2: 1. We introduce the following representation for them 

rC 1 = ([a], -tt- , [] , [-J) with [-].a = [a] 
rC2 = (-<a)-, W, -<)-, -<-)-) with -<-)-.a = -<a)­
rC3 = ({a}, U, 0, {-}) with {-}.a = {a} 

The set of generators of rC1 is { [all a E a }. [a] consists of elements obtained by 
finitely many -tt- applications on elements of this generator set, so [a] denotes the 
finite lists over o. Similar remarks can be made for the other initial types. Note 
that a homomorphism on the initial type is completely determined by its behaviour 

lThe (Boom) type hierarchy, trees - lists - bags - sets, is a hierarchy of binary structures over a 
given domain. For the definition of binary structures over a, see (7]. 
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on sigletons. 

Remark on notation. Here, . denotes functional application, the notation for func­
tional composition is 0 • In general, the use of . and 0 will be omitted 

So far some basic algebraic facts. Now we can be more detailed about BM and its 
functional transformations. Often, these transformations are based on homomor­
phisms in M (morphisms for short). Special forms of morphisms that are of interest 
for our application are the following: 

f-map, denoted by f* 
Let f: a -+ (3. Then f* : [a] -+ [(3] is such that 

f*.[]=[] 
f*.[a] = [f.a] 
f*.(x -If- y) = f*.x -If- f*.y 

el-reduce, denoted by el/ 
Letel: a X a -+ a be associative with unit 1<Jj. Then el/ : [a] -+ a is such that 

ell-[ ] = 1<Jj 

el/.[a] = a 
ell-(x * y) = ell-x el $/-y 

p-filter, denoted by p<1 
Let p : a -+ lB . Then p<1 : [a] -+ [a] is such that 

p<1.[]=[] 
p<1.[a] = if p.a -+ [a] 0, p.a -+ [ ] fi 
P<1·(x-lf-y) = P<1·x-lf-p<1.y 

f*, $/ and p<l are (unique) homomorphisms: 
f* : ([a], -If- , [] , [-]) -+ ([(3], -If-, [ ] , [-] f) 
elf. ([a], -If-, [] , [-]) -> (a, $, 1<Jj, ida) 
p<1 ([a], -If- , [] , [-]) -+ ([a], -If- , [] , pf) 

with pf.a = [a] if p.a, [ ] otherwise. 

For the initial datatypes IC2 and IC3 , f-map, $-reduce and p-filter are defined in an 
analogous way. Map, reduce and filter are standard functions in BM. Examples of 
standard functions which are not necessarily morphisms are the directed reductions. 
We will use left-reduce. 

Left-reduce 
Let $ : (3 x a -> (3 and e : (3. Then ($ + e) : [a] -+ (3 is such that 

($ + e).[] = e 1\ ($ + e).(x-lf-[a]) = ($ + e).x $ a 
or alternatively 

($ + e).[] = e 1\ ($ + e).([a] -If- x) = (el + (e $ a)).x 

For our purpose the relevant transformations are: 

L1. the composition of morphisms is a morphism 
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L2. promotion law. If h : (a,Ell,lm) --> (,6,O,10 ) is a morphism, then 
h Ell/ = O/ h* 

L3. h is a morphism iff 3 Ell,f : h = Ell/ f* 
L4. f*g* = (f g)* 
L5. filter-map rule. 

'P<l f* = f* ('P f)<l 
L6. a morphism can be written as a directed reduction. 

If h = Ell/ f* then h = (8 + 1m), where 
u 8 a = u Ell f.a 

L7. formal differentiation. Let Ell : [,6] X a --> ,6, G : [,6] --> "I, e : [,6]. Suppose 
8 : "I X a --> "I is such that G.(y Ell a) = G.y 8 a, then 

G (Ell + e) = (8 + G.e) 

Not only morphisms can be written as a directed reduction, non-morphisms may 
have a directed reduction form too. However, finding such a form may cause intri· 
cate calculations. 

2.3 Linking system interface and BM tools. 
We aim at using BM in developing FMS algorithms, so we need some link between 
the two approaches. As mentioned before, BM is concerned with the algebraic prop­
erties of functions, not with the implementation of functions and their evaluations. 
So, if a programmer wants to compute a function application he has a new problem 
at hand outside the scope of BM. He has to consider this as a specification in a 
suitable new programming environment. The use of BM in the development of pro­
grams is mainly the calculation of transformations of (possible) equivalent defining 
forms of the functions involved. In particular, if one is interested in applying stan­
dard functions of BM certaiu standard programs in other environments arise. Since 
the functions we use are restricted to those that are in fact directed reductions, we 
will give such a standard program for them only. Our interest is in imperative File 
algorithms, but due to the few algebraic properties of files, a direct link from BM 
to File level is rather complicated. An intermediate level may simplify the desired 
link and Conslists is an appropiate candidate for it: 

- morphism applications can be computed by directed reductions 
- left reductions are easy to implement as functions over conslists 
- operations on files look slightly like conslists ones. (2.3.a) 

In the sequel, we will refer to the following lemma as the standard conversion of a 
left-reduce. 

Lemma 1 
Let 8 : ,6 X a --> ,6 and e : ,6. Then 8, is a correct program fragment for the 
computation of w = (8 + e )x. 

Sl: w := ej r := x 
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do r of [ J 
-+ a:= first r; r := tail r 

w:= we a 
od 

Invariant: (e + w)r = (e + e)x 1\ r E tails x 

Proof. Follows immediately from the definition of left-reduce. o 

Note that this computation of a left-reduce on conslists leads to an iterative program 
with time-complexity O(N), if # X = N. Since these costs are relative to the costs 
of e, an efficiency comparison of the computation of (Ell + f)x and (e + e)x 
can be made from the definitions of Ell and e. 

3. GENERIC ALGORITHMS FOR FILES 

In this section, we solve some problem classes for files. The classes are interrelated: a 
fundamental problem has an interesting subproblem and can be extended in several 
ways. The fundamental problem and its subproblem are solved via transformations 
in 3.2 and 3.1 and with these solutions, we solve the extensions in 3.3. Our transfor­
mational solution method consists of two steps: First, a transformation from Sets to 
Conslists is made by using BM laws. This step is followed by a standard conversion 
to conslists. Afterwards, the resulting Couslists program is implemented by an FMS 
algorithm. The correctness of this step is based on statespace transformations. 
To avoid repeating assumptions in our solutions, we will use the conventions that 
Q and f3 are types, 0 is an associative, commutative and idempotent operator on 
(3 with unit 1"" h : ({a}, U, 0) -+ ((3, 0, 10) is a morphism, E is an equivalence 
relation on Q, X E {Q} and q : X -+ X/E defined by 

q.t = { v E X I vEt }. 

is the quotientmap. 

3.1 FMS algorithm to compute w = hX. 

Set specification : w = hX (3.1.a) 

step 1. Let sets of a-elements be implemented by lists with representation function 
Rs 

Rs = U/{-}' 

and representation invariant P s(x) 

Ps(x) : # Rs x = # x 

(Informal: a representation contains no duplicates.) 
We have to find a function h such that h = h Rs. 
Graphically 
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abstract level 
({a},U,0) 

n, concrete level 
([a],-tt- ,[ ] ) 

h ii 

(,8,0,10 ) 
id 

(,8,0,10) 

Since ii is a composition of morphisms it is a morphism itself. Furthermore, it holds 
that 

ii 
= 

h n, 
{ def n, } 

h U/ {-}* 

= { L2} 

0/ h* {-}* 

= { L4} 

0/(h {-})* 

and using L6, ii can be written as a directed reduction: 

(3.l.b) 

where 8 : ,8 X a --+ ,8 is defined by u 8 a = u 0 h{a}. Given a representation x of 
X, we may instantiate the standard conversion of a left-reduce (Lemma 1). 

Conslist program for (3.l.a) 

w:= 10 ; r:= x 

do r t- [ ] 
--+ a:= first fj f := tail r 

w:=w0h{a} 
od 

(3.l.c) 

step 2. Let conslists be implemented by files. Let f: File(a) then f = (F,p). The 
representation function n, is given by 

nc F = { [] if p = #F + 1 
(,p) [F.p]-tt- nc(F,p+ 1) otherwise 

and the representation inva.riant is 

1 :s; p :s; # F + 1 11 F is a bijection over [1..# F] 
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Given a representation f of x, an FMS algorithm for (3.l.c) requires implementations 
for the 

- initialisation r := x, 
- guard r to [ 1 , 
- statement sequence a := first r; r := tail r. 

Straightforward are r := x f-+ start(f) and r to [J f-+ ~ eof(f). It is not difficult to 
prove that, from the validity of 

{Qfi~st r,tail r)} a := first r; r := tail r {Q} 

it follows that 

{(Q'ji:,t r,taa r)R<(J)} fetchn(f, a) {QRoCfJ} 

holds. So fetehn(f, a) is a correct implementation of a := first r; r := tail r. Applying 
those statement transformations to (3.1.c) results in a solution for the subproblem. 

FMS algorithm for (3.1.a) 

w := 109 ; start(f) 
do ~ eof(f) 
-> fetchn( f, a) 

w := w 0 h{a} 
od 

Some remarks on this derivation 

(3.1.d) 

1. Tupled version for (3.1.a). Instantiate (3.1.a) with the (product) morphism 

h = <hl, ... ,hm> : ({a}, U, 0) -> ((3, 0, 109 ), 

where hi: ({a}, U, 0) -> (f3i, Oi, looJ, 1 :'> i:,> m, is a morphism, 
f3 = (31 X '" X f3m, 0 = (O" ... ,Om) is defined by 

(b" ... ,bm) (O" ... ,Om) (Cl, ... ,Cm ) = (bIOI cl,···,bm Om cm) 

10 = (1001 , ... ,lOOm) and h X = <hI X, ... ,hm X>. Then the computation of h 
X might be done" componentwise". 

Wl,···,Wm := 101 , .. ·,t:;$Im; start(f) 
do ~ eof(f) 
-> fetchn(f, a) 

; W""',Wm:= W, 0, h,{a}, ... , Wm Om hm{a} 
od 

(3.1.e) 

2. Conditional version for (3.1.a). Instantiate (3.1.a) with the morphism h <p<l, 
where <p : a -> ill . I.e. generalize the specification by 

w=h{xEXI<px} (3.1.a') 
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Again we calculate a directed reduction, now for the morphism h <p<l n,. This 
yields h <p<l n, = (e + Ie), where 

u e a = if <p a --> U 0 h { a} D. <p a --> U fi, 

which results in the following FMS algorithm for (3.l.a') 

w := Ie; start(f) 
do .eof(f) 
--> fetchn(f, a) 

if <p a --> 

D '<p a --> 

fi 
ad 

w:= w 0 h {a} 
skip 

(3.l.d') 

3. Superfluous conditions on h. The representation invariant guarantees that n, 
doesn't appeal to the idempotency of U (the commutativity is used since n, 
[a, b] = n, [b, a]). This implies that the same derivation can be made for the 
application of bag homomorphisms. Let k : (-< a >-, I:!I, -<>-) --> (;3, (j), 1$) 
be a morphism with commutative (j). Then the following FMS algorithm is 
correct. 

w := 1$; start(f) 
do. eof(f) 
--> fetchn(f, a) 

; w:=w(j)k{a} 
ad 

(3.l.f) 

4. For (3.l.a') and (3.l.e) a remark similar to remark 3 can be made. Note that 
k <p<l : (-< a >-, I:!I, -<>-) --> ({3, (j), 1$) is a morphism with commutative (j), if 
k is. Lemma 2 follows. 

Lemma 2 
Let X E {a} and f E File(a) such that f is a representation for X.2 
Let k : (-< a >-, I:!I, -<>-) --> ({3, (j), 1$) be a morphism with commutative (j). 
Then S2 is a correct FMS algorithm to compute k X, where 

S2: I[ X: {a}; f: File(a); k: (-< a >-, I:!I, -<>-) --> ({3, (j), 1$); 
I[w:{3 

I[ a: a; 
w := 1$; starter) 

; do • eof(f) 
--> fetchn( f, a) 

2We require that the representation invariant will be established by the declaration mechanism 
of the system. 
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]1 ]1 ]1 

; w:= w Eli k{a} 
od 

Conditional and tupled versions of Lemma 2 are straightforward. 

3.2 FMS algorithm to compute W = { h.q.t 1 t EX} 

Set specification: W = h*q* X 
(h*q* X is the BM notation for { h.q.t 1 t EX}.) 

(3.2.a) 

As mentioned before, we use a transformational solution method consisting of two 
steps. The method is illustrated in 3.1 on the basis of a simple problem. Here we 
have to tackle a special case of (3.l.a) because h*q* is a morphism too. There is no 
indication to change our former strategy, so we take the same approach as in 3.1. 

step 1. Let elements of {a} be implemented by lists with representation function 
lls and representation invariant P s(x) as defined in step 1 of 3.1. Assume {,6} is an 
available type. We have to find a function fI such that fI = h* q* lls. 
Graphically 

abstract level concrete level 
({a},U,0) ([a],-/t- ,[ ] ) 

({{a}},u,0) fI 

({,6},u,0) 
id 

({,6},u,0) 

fI is amorphism and, since h* q* U/ {-}* = u/(h* q* {.})*,it holds that 

fI = (0 + 0), 
where 

u 0 a = u U { h.q.a} (3.2.b) 

At this point in 3.1, we converted the directed reduction to Conslist level. We don't 
do this now because we aim at an efficient implementation of (0 + 0). To achieve 
such an implementation we have to minimize the number of U-operations and find 
an efficient computation of h.q.a given a representation x of X. Although this last 
task resembles the subproblem of 3.1, it must be noted that the definition of q.a is 
relative to the implicit universe X, i.e. (E a)<J x is a representation for q.a. Without 
any assumptions about x, an O(N2) algorithm may be obtained for fI x, if # x = 
N. Therefore, we shall assume that equivalent elements in X are consecutive in x. 
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In the appendix, this (ordering) constraint is described formally and we introduced 
the notion 'x is an E-segmentation' for it. 

Representation requirement: Elements of {a} are implemented by E-segmentations. 

For X E {a} represented by an E-segmentation, a representation for its partition is 
easy to construct. Define a function B : [a] -> [[all by 

B[ ] = [ ] 

B[a] = [[all {'f 
B(y -tt- [a]) = ~ 

a E first last By --> 

, a E first last By --> 

init By -tt- [last y-tt- [all 
By -tt- [[all 

o has several interesting properties, e.g. 

q* R, = R, * R, 0 
x=[]=Bx=[] 
x oF [ ] ;;;;>'</ y E Ox : y oF [ ] 

(3.2.c) 
(3.2.d) 
(3.2.e) 

Moreover, P,(Ox) holds, i.e. there are no duplicates in Ox, or equivalently, each 
equivalence class of X corresponds to exactly one element of Ox. 

Unfortunately, 0 is a not a morphism from ([a], -tt- , [ ] ) to ([[all, -tt- , [ ] ). (This is 
easily seen by taking a list of two equivalent elements [a,b]. Then O[a,b] = [[a,bll oF 
[[a], [bll = Oral -tt- O[b].) However, from its definition it is clear that there exists an 
directed reduction form for 0 

where 

0=(0 + [] ) 

{

[[a]] 
u (') a = init u-tt- [last u -tt- [all 

u-tt- [[a]] 

if u = [ ] 
if a E (first last u) 

if, a E (first last u) 

(3.2.f) 

Remark. Replacing first by any results in a more general form for 0. Here, the 
choice for first arose from the conslist level. 

(3.2.c) expresses that the elements of Ox are representations of equivalence classes. 
Since we are interested in efficiency, we will compare the directed reduction for 
q*R,x and Ox. In (3.2.f) the directed reduction for 0 is given. For q*R, we know 
that q*R, = q* U/ {-}* = U/(q {-})*, so (L6),q*R, = (Ell + 0) where 

u Ell a = u U { q.a} 

Clearly, a computatiou via 0 is more efficient, moreover we implicitly satify the re­
maining task in improving efficiency, the minimization of U-operations. 

Convinced that our approach can be improved by adding the intermediate level of 
([[a]], -tt- , [ ] ), we are left with the remaining problem of computing h*R, *R, if Ox 
is known. Since Ox consists of representations of equivalence classes, we will explore 
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.. 

the use of 3.1, where we showed how morphism application on a set can be computed 
if a representation of the set is known. Let h be such as introduced in 3.1, then 

h*R, * R, = R, h* (3.2.g) 

because both, h* R.* R, and R, h* are morphisms and 

h * R.* R,[x] 
= 

h* R.* {x} 

= 
{h R, x} 

= 
R, [h x] 

R, h* [x] 

Summarizing these considerations, we conclude that driven by efficiency the com­
putation of ii x has to be refined by 

xs = (0 + [] ) x 
W = R, h* xs 

Graphically 

abstract level 
({a},U,0) 

( {{a}},U,0) 

({,8},u,0) 

R, 

R, *R, 

id 

concrete level 
([a],-tJ- ,[ ] ) 

([[a]],-tJ- ,[ ] ) 

j R, h * 

( {,8} ,u, 0) 

(3.2.h) 

In contrast to our previous approach, it is not immediately clear that the succes­
sive computations in (3.2.h) can be replaced by the computation of one directed 
reduction, if a representation x for X is given. Therefore, we try to apply formal 
differentiation, L7. 
Since 0 : [[a]] X [a] --> [[a]], R,h* : [[a]] --> {,8} and [1: [[a]], we look for a.n 
operator Ell : {,8} X [a] --> {,8} such that R, h*( 0 + [1 ) = (Ell + 0). 

The construction base is correct: R, h* (0 + [] ) [] = 0 = (Ell + 0) [] . 

Construction hypothesis: R, h* Oy = (Ell + 0) y 

Step: R, h*(0 + [] ) (y -tJ- [aJ) 
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case 1 { case 1: y = [ ] ,0 } 

R, ii* [[all 

= { def' } 

R, [h[all 

= { def hand R, } 

{h{a}} 

case 2 { case 2: y ¥ [] A a E (first last Oy) } 

Rs h* (init Oy -It- [last Oy -It- [aJ]) 

{ R, h' is a morphism, def * and R, } 

R, li*init Oy U {h (last Oy -It- [all} 

= { h = (8 + 10 ), (3.l.b) } 

Rs Ii* init Oy U {h last Oy @ h{a}} 

case 3 { case 3: y ¥ [ ] A ~(a E (first last Oy )) } 

R, h' (Oy -It- [raJ]) 

= { Rs h* is a morphism, def " Rs and Ii } 

R, h* Oy U {h{a}} 

These calculations show that we may succeed in obtaining a directed reduction for 
(3.2.h) if we tuple the essential components: Rs h' Oy, Rs h* in it Oy, h last Oy and 
first last Oy. Consequently, the type of Etl has to be extended and the construction 
hypothesis will be strengthened in an appropriate way. To adjust the construction 
base, we define 

in it [ 1 = [ 1 
last[]=[] 
first [ 1 = Wfr 

where Wfr is a fictitious element of Cl'. It follows that 

Rs h' in it O[ 1 = 0 
h last O[ 1 = 10 
first last O[ ] = Wfr 

We continue our construction for the three additional components. 

Strengthened construction hypothesis: 
(R, h' 0, R, h* init 0, h last 0, first last 0) y = (Etl + (0,0,10 , wfr )) Y 

Step: Rs h' init O(y -It- [all 
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case 1,2 == 

case 3 

Step: 

case 1 

case 2 

case 3 

{ case 1 and 2: init O(y -It- [aJ) = init Oy } 

Rs h" in it Oy 

{ case 3: init O(y -It- [aJ) = Oy } 

Rs h" Oy 

(h, first) last O(y -It- [aJ) 

{ case 1: last O(y -It- [aJ) = raj, def h } 
(h{ a}, a) 

{ case 2: last O(y -It- [aJ) = last Oy -It- raj, (3.l.b), (3.2.e) } 

(h last Oy 0 h {a}, first last Oy) 

{ case 3: last O(y -It- [aJ) = raj, (3.l.b) } 

(h{a}, a) 

The recognition of case 1 seems to be a final obstacle in the definition of Ell, but by 
(3.2.d) it can be shown that 

y = [ 1 == Oy = [ 1 == first last y = W" 

Summarizing our calculations, we have constructed an operator Ell of type 
({,8} X {,8} X ,8 X a) X a...., ({,8} X {,8} X ,8 X a) defined by 

(V, I, w, pt) Ell a = 

such that 

{

({h{a}},0,h{a}, a) 
(I U {w 0 h{a}}, I , w 0 h{a}, pt) 
(V U {h{a}}, V, h{a}, a) 

W = 71"1 (El) + (0,0,10' w,,» X 

if pt =Wa 

if pt i w" II pt E a 
if pt i w" 1\ • pt E a 

Now we instantiate the standard conversion of a left-reduce 

W, I, w, pt := 0, 0, 10 , W,,; r := x 
do r -I [ 1 
...., a:= first r; r := tail r 

; if pt = W,,"'" W, w, pt := {h{a}}, h{a}, a 

od 

o pt -I W,,"'" if pt E a...., W, w:= IU{w0h{a}}, w0h{a} 
O.ptEa...., WU{h{a}},W,h{a},a 
fi 

fi 

This code can be 
- smoothened by unfolding the repetition, since only initially pt = w" holds. 
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- improved, because W = I u {w} is a property of the 4-tuple, if pt i' w". 

Conslist program for (3.2.a) 

W:= 0; r:= x 
ifr = [ 1 --+ skip 
o r # [ 1 --+ a:= first r; r := tail r 

w, pt := h{a}, a 

fi 

do r # [1 
--+ a:= first r; r := tail r (3.2.k) 

ifptEa --+ w:=w0h{a} 
o ~ pt E a--+ W, w, pt:= W U {w}, h{a}, a 
fi 

od 
W:=WU{w} 

step 2. Let conslists be implemented by files. To meet the representation require­
ment, only system orderings can be useful. In the appendix, Lemma p.33, it is 
proved that an appropriate system ordering R establishes an R n R- segmentation. 
A representation f of x can be given if an appropriate system ordering exists such 
that E = R n R- . 

Assumption: E = R n R- and cqo R is a system ordering. 
Let f: Ordfile( n, R) and f = (F,p). Let Rc be the representation function as given 
in 3.1, with the same representation invariant. In the same way as in 3.1, (3.2.k) 
can be transformed to an FMS algorithm. 

FMS algorithm for (3.2.a) 

W := 0; start( f) 
if eof( f) --+ skip 
o ~ eof(f) --+ fetchn(f,a) 

fi 

w, pt := h{a}, a 
do ~ eof(f) 
--+ fetchn(f,a) (3.2.1) 

od 

ifptEa --+ w:=wOh{a} 
o ~ pt E a--+ W, w, pt:= W U {w}, h{a}, a 
fi 

W:= W U {w} 

Some remarks on this derivation 

1. A tupled version for 3.2.a is obtained by instantiating h with the product 
morphism defined in 3.1, remark 1. The elaborations are straightforward. 
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2. Conditional versions for 3.2.a. An instantiation of (3.2.a) with the morphism 
h <p<1 yields a conditional computation for w (see 3.1, remark 2), resulting 
in a conditional version of (3.2.1). Independent of this instantiation, we can 
generalize (3.2.a) to the computation of 

W = h*q*?,b<1 X 

where ?,b Eo: ..... IB such that 

uEt~ ?,bu=?,bt 

(3.2.a') 

(**) 

Note that (**) meanS that we may define a predicate ?,b' on classes such that 
?,b' <1 q* = q* ?,b<1, e.g. ?,b' = some ?,b, where some ?,b = V / ?,b*. Consequently, 
we may interchange partitioning and filtering and transform (3.2.a') into 

W = h* ?,b'<1 q* X (3.2.b') 

The derivation of an FMS algorithm for (3.2.b') follows the same line as the 
one for (3.2.a), only some slight modifications have to be made. 
- A generalization of (3.2.g) is needed 

h*'Rs*<p<1 'Rs = 'Rs ii.*<p<1 (3.2.g') 

Its proof is completely analogous to that of (3.2.g). 
- (3.2.h) has to be modified into 

xs = (0 + [] ) x 
W = 'Rs ii.* ?,b" <1 

(3.2.h') 

where ?,b" is used as an abbreviation for ?,b' 'Rs. The correctness of this refine­
ment follows immediately from the filter-map rule and (3.2.g') 

h* 1f;'<l 'Rs* Rs 

{ L5 } 

h* 'R,* (?,b' 'Rs)<1 'Rs 

{ (3.2.g') } 

'Rs ii.*(1,b''Rs)<1 

- The construction for Ell must be adapted. The reader may easily check the 
need for tupling 'Rs ii.* ?,b"<1 By, 'Rs ii.* ?,b"<1 in it By, ii. last By, first last By and 
the modified definition of Ell 

(V, I, w, pt) Ell a = 
({h{a}},0,h{a},a) 
(0,0,h{a},a) 
(I U {w 0 h{a}},I, w 0 h{a},pt) 
(V,I, w 0 h{a},pt) 
(V U {h{ a}}, V ,h{ a}, a) 
(V, V,h{a},a) 

(3.2.j') 

if ?,b"[a] /I pt =W" 
if ~ ?,b"[a] /I pt =w" 

if ?,b" (last By-tt- [aJ) /I pt # w" /I ptEa 
if ~?,b"(last By-tt- [aJ) /I pt # w" /I ptEa 

if ?,b"[a] /I pt # w" /I ~ptEa 
if ~?,b"[a] /I pt # We> /I ~ptEa 

Remains the computation of?,b". With the definition of?,b' as suggested above, 
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we find ,p" = some ,p and a computation rule for our specific applications 
might be 

t E z S> ,p" z = ,p t 

In particular, if ()y t- [ 1 , then 

,p" last ()y = ,p first last ()y 

The standard conversion for leftreduce can be instantiated and smoothened as 
before. Again an improvement can be made, since 

(,p pt S> V = I U {w}) II (-,,p pt S> V = I) 

is a property of the 4-tuple, if pt t- WOo The following FMS algorithm results 

W := 0; start(f) 
if eof(f) --+ skip 
o -, eof(f) --+ fetchn(f,a) 

fi 

w, pt := h{a}, a 
do -, eof(f) 
--+ fetchn(i,a) (3.2.1') 

od 

ifptEa --+ w:=w0h{a} 
o -, pt E a --+ if,p pt --+ W := W U {w} 

O-,,p pt --+ skip 
fi 

; w, pt := h{a}, a 
fi 

if,p pt --+ W := W U {w} D-,,p pt --+ skip fi 

3. Superfluous conditions on h. As explained in 3.1, remark 3, the scheme of 
(3.2.1) solves a generalization of (3.2.a) 

W = k*q*X 
where k : (-0( a »-, 1oJ, -o(»-) --+ ({3, Ell, 1®) is a morphism with commutative Ell. 
Remember that k <p<l : (-0( a »-, \!I, -o(»-) --+ ({3, Ell, 1®) is a morphism with 
commutative Ell, if k is. 

4. For tupled and conditional versions a remark similar to remark 3 can be made 
and Lemma 3 follows. 

Lemma 3 
Let X E {Q} and E an equivalence relation on Q with quotientmap q. Let R <;; a X a 
be a cqo satisfying E = R n R~ and f E Ordfile (a, R) such that fis a representation 
for X.3 Let k : (-0( a »-, 1oJ, -o(»-) --+ ({3, Ell, l®) be a morphism with commutative Ell, 

3The system ordering R in this lemma is a means to meet the representation requirement that 
elements of Ordfile(a, R) are E-segmentations. 
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and .p a predicate on a satisfying 

u E t:;;. .p u = .p t. 

Then 53 is a correct FMS algorithm to compute k*q*.p<l X, where 

53: I[ X : {a}; E, R: a X a; f: Ordfile(a, R); 
k : (-< a »-, I:!J, -<»-) --+ ([3, ElJ, l(j)); .p : a --+ ill ; 
I[ W: {[3} 

I[ w : [3; pt, a : a; 
W := 0; start(f) 
if eof(f) --+ skip 
D ,eof(f) --+ fetchn(f,a) 

w, pt := k{a}, a 
do, eof(f) 
--+ fetchn(f,a) 

ifptEa --+ w:=wElJk{a} 

fi 

JI JI JI 

fi 
od 

D 'pt E a --+ if.p pt --+ W := W U {w} 
D ,.p pt --+ skip 
fi 

; w, pt := k{a}, a 

; if .p pt --+ W := W U {w} D'.p pt --+ skip fi 

Conditional and tupled versions of Lemma 3 are straightforward. 

3.3 Extensions. 
There are several problems which contain the former ones as a subproblem. Some­
times the solution of the subproblem may serve as a building block for the overall 
solution. We will treat two of tllem. 

3.3.1 FMS algorithm to compute W = { [h.q.t, g.q.tJ I t EX} 
where g = (0 + e). 

(3.3.1.30) 

Solution. Instantiate Lemma 3 with .p '" true. Add the invariant for the computation of 
(0 + e) Q where Q is the representation of q.pt. 
Then the correctness of the following FMS algorithm is easily checked. 

W := 0; start(f) 
if eof( f) --+ skip 
D ,eof( f) --+ fetchn( f,a) 

; w, pt, gO := h{a}, a, e 0 a 
; do ,eof(f) 
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fi 

---> fetchn(f, a) (3.3.lob) 
; if pt E a ---> w, gO := w 181 h {a}, g 0 a 

od 

o 'ptEa---> W,w,pt,gO:=WU{w},h{a},a,e0 a 
fi 

W:= WU{[w,gOj} 

3.3.2 FMS algorithm to compute 

W, = { h,.q,.t I t EX} /I W2 = { h2·q2.t I t EX} (3.3.2.a) 

where h, : ({a}, U, 0) ---> ((3,,181,10 ) and h2 : ({a}, U, 0) ---> ((32, Ell, l\lll are 
morphisms, E, and E2 equivalence relations on a such that E2 ~ E, and q, and q2 
the quotient map of E, and E2. 

Solution. Assume X is an E, and E2 segmentation. Instantiate Lemma 3 with 
,p == true for E, for E2 simultaneously. Using the fact that 
pt2 E, pt, /I , pt, E, t ~, pt2 E2 t, we obtain 

W" W2 := 0, 0; start(f) 
if eof(f) ---> skip 
o ,eof(f) ---> fetchn(f,a) 

fi 

w" pt" W2, pt2 := h,{a}, a, h2{a}, a 
do ,eof(f) 
---> fetchn(f,a) (3.3.2.b) 

od 

if ptl E, a ---> 
if pt2 E2 a ---> W2:= W2 Ell h2{a} 
o 'pt2 E2 a ---> W2, W2, pt2 := W 2 U {W2}, h2 {a}, a 
fi 

; w, := w, 181 h, { a} 
o ' pt, E, a ---> 

fi 

W" w" pt, := W, U {w,}, h,{a}, a 
; W2, W2, pt2 := W2 U {W2}, hz{a}, a 

WI, W2 := W, U {wI}, W2 U {W2} 

Note that it is not difficult to adjust (3.3.2.b) to the computation of 
W, = { [h,.ql.t, {h2.q2.U I u E ql·t }ll t EX} 

4. GENERIC FILE ALGORITHMS APPLIED TO DATABASES 

Now, we shall illustrate the use of the algorithms for database queries. In section 
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2.1, we described a simple databasetype and introduced some database notions. 
Generally, databasetypes are more complex and additional notions are involved. We 
will continue our informal database description of section 2.1 for the general case and 
illustrate the several notions on the basis of our example databasetype SR defined 
below. 

SR models the registration of students and their examinations. Two objects, ST 
(student) and RES (result), are distinghuised. The attribute-names for ST and 
RES are inventoried and fixed in the so-called database-skeleton g, [3]. STR gives 
the relation between attribute-name and corresponding attribute-value set for ST. 
For RES this is done in RESR. The tabletype for ST consists of subsets T of the 
labeled cartesian product n STR, which satsify the table-constraint key( {RNR},T). 
For RES the tabletype RESF is given. 

To arrive at a databasetype, we have to consider the (labeled) cartesian product of 
tabletypes, the label set being the set of objects (in our example: n DK). Often, not 
every combination represents a possible state, a so-called database-constraint has to 
be satisfied (in our example: V t E veRES) 3 s E veST) : t(RNR) = s(RNR) ). Finally, 
the databasetype consists of all combinations which satisfy the database-constraint 
(in our case: SR). 

Definition of SR 

database-skeleton g 

g = {(ST STUDENT 
{RNR registration number 
, Y1 first year of registration 
,ENQ entrance qualification 
, DEPTC department code 
,SEV additional information 
}) 

, (RES RESULT 
{RNR 
, cr course index 
, EDATE date of examination 
,MARK 
}) 

} 

tabletype for ST is STF 

STF = { T E m STR} I key({ RNR}, T) } 

tabletype for RES is RESF 

RESF = { T Em RESR} I key({ RNR, cr, EDATE}, T)} 
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• • 

where 
STR == { (RNR [1..1000000]) 

(Y1 [00 .. 99J ) 
(ENQ CHAR(80) ) 

, (DEPTC; [1..100J ) 
(SEV CHAR(80) ) 

} 

RESR == { (RNR [1..1000000J ) 
(CI CHAR(5) ) 

, (EDATE; integer) 
, (MARK; integer) 
} 

databasetype SR 

SR == { v E IT DK I V t E veRES) 3 s E veST) : t(RNR) == s(RNR) } 

with DK == { (ST; STF), (RES; RESF) }. 

Furthermore a tabletype AVF exists modelling averages of results per course index: 

AVF == { T E {IT AVR} I key( {Cr}, T) } 

and AVR == { (CI CHAR(5)) 
(NB [1..1000000J ) 

, (AV real) 
} 

number of students 
average result 

Given a database v E SR. Construct a table W : AVF containing the following 
information: 
For each course with one or more results for A-students 

- course index 
- number of A-students with one or more results in this course 
- average number of results for this course per A-student 

Here an A-student is a student with entrance qualification 'A'. 

Solution 
Specification in set notation 

W == { {(CI,WI), (NB, W2), (AV, W3)} It E v(RES) II Wo > 0 } 

where 
WI == t(CI) (4.a) 

W2 == # { u(RNR) I u E veRES) II u(CI)==t(CI) II <p(u) } 

W3 == WO/W2 
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Wo = # { u E veRES) I u(CI)=t(CI) II <p(u) } 

with 
<p(u) = 3 SEv(ST) : s(RNR)=u(RNR) II s(ENQ)='A' 

Analyzing this specification, we may conclude that part of the attrihute-values to 
he computed arise from morphism applications on equivalence classes, so we direct 
our solving strategy to the application of some version of Lemma 3. 

Instantiate (> with IT RESR. 
Since RESF <;; {IT RESR} it holds that veRES) E {IT RESR}. Define 

u EI t == u( CI)=t( CI) 

Clearly, EI is an equivalence relation on IT RESR. Let ql he the quotientmap of EI 
on veRES). Let R be a linear ordering on 'CHAR(5), then we define cqo RI hy 

UI RI U2 == uI(CI) R u2(CI) 

It holds that EI = RI n RI ~ , see appendix. Assume that RI is a system ordering. 
Let f E Ordfile(IT RESR, RJ) such that f is a representation for veRES). 
Given an element t E veRES), Wo and WI can be defined as morphism applications 
on ql.t, as follows. 

- Consider the monoid Mo = (IN ,+,0). + is associative and commutative. 
Define ko : ({IT RESR},u,0) -+ Mo by 

ko {u}=1 

Then Wo = ko { u E ql.t I <p(u) } 

- Let b E CHAR(5). Consider the two-element set {lo, b} with operation <> defined 

by 
<> 10 h 
10 10 b 
h b h 

then <> is associative, commutative and idempotent and MI = ({10, h}, <>, 10) is a 
monoid. Define kl : ({IT RESR},u,0) -+ MI hy 

k1 {u} = u(CI) 

Then W1 = k1 ql.t 

The predicate Wo > ° contains a free variable t and trivially satisfies the required 
condition for 1/;, since U1 EI U2 == q1.U1 = q1.U2. 

A first approximation for a partial solution for (4.a) is ohtained hy instantiating a 
tupled version for Lemma 3, with a conditional version for one of its components. 

first approximation 

I[ f: Ordfile(f1 RESR, RJ) 
I[ W: AVF 
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I[ Wo : IN; W1 : CHAR(5); pt1, a: T1 RESR; 
empty(W); start(f) 
if eof(f) -> skip 
D ~ eof(f) -> fetchn(f,a) (4.b) 

fi 
11 11 11 

if 'P a -> Wo := 1 D~ 'P a -> Wo := 0 fi 
W1, pt1 := a( CI), a 
do ~ eof(f) 
-> fetchn( f,a) 

od 

if pt1 E1 a -> 

if'P a -> Wo := Wo + 1 D~ 'P a --> skip fi 
; W1 := W1 <> a( C) 

D~ pt1 E1 a --> 

fi 

if Wo > 0 --> store(W, {(CI,wtJ,-,-}) 
D Wo ::; 0 -> skip 
fi 
if'P a --> Wo := 1 D~ 'P a -> Wo := 0 fi 

; W1, pt1 := a(CI), a 

; if Wo > 0 --> store(W, {(CI,wtJ,-,-)}) 
D wo::; 0 -> skip 
fi 

Two tasks remain before a complete solution for (4.a) is obtained: the computations 
of'P a and of W2' But firstly we mention that (4.b) can be improved, due to the 
definition of <>. The computation of W1 can even be omitted, since W1 = pt1(CI). 

- Task 1: computation of'P a 

From the definition of SR it follows that there exists an s E veST) such that s(RNR) 
= a(RNR). Since key( {RNR}, veST)) holds we can retrieve s via the fetchn opera­
tion. So a correct implementation for 'P a is 

fetchc(v(ST), af{RNR}, s) 
; 'P a := s(ENQ) = 'A' 

There are two reasons why we do not plug in this computation in (4.b) 

1. The code would be unnecessarily obscure. We propose the introduction of a 
procedure phi with input parameter r : T1 RESR, denoted by I r, and output 
parameter b : IB , denoted by l b, to define by 

proc phi = U a : T1 RESR, lb : lB I 
- I[ s : T1 STR; 
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, 

fetchc(v(ST), ar{RNR}, s) 
; if s(ENQ) = 'A' ---; b:= true 

o s(ENQ) -I 'A' ---; b:= false 
fiJI) 

2. It may lead to redundant table-operations. Once the entrance qualification of 
a student is known, this suffices for its other results (of this course). So we 
decide for a clustering per student within an equivalence class. Formally, this 
results in the introduction of an new equivalence relation 

Define equivalence relation E2 by 

UI E2 U2 == uI(CI) = u2(CI) A ul(RNR) = u2(RNR) 

with quotient map q2. It holds that 

Ul E2 U2 =><p Ul = <p U2 

and we may define a predicate <p' such that 

u E q2.t =><p' q2.t = <p u 

Therefore we choose for an extension like 3.3.2, however now the elements of the 
refined relation are of temporary interest and we do not explicitly construct the 
variable W 2. Let :'0 the usual ordering on IN . Define cqo R2 by 

Ul R2 U2 == Ul Rl u2 A (ul(CI) -I u2(CI) =>ul(RNR) :'0 u2(RNR)). 

Then E2 = R2 n R2 ~ . Assume R2 is a system ordering and f E Ordfile(n RESR, 
R2) such that f is a representation for veRES). A refinement of (4.b) is then given 
by 

second approximation 

I[ f: Ordfile(D RESR, R2) 
I[ W: AVF 

I[ Wo : IN ; ptl, pt2, a : n RESR; s : n STR; b : IB ; 
prot phi = ( {definition as above} ); 
empty(W); start(f) 
if eof(f) ---; skip 
o ,eof( f) ---; fetchn( f,a) 

phi(a,b) 
; if b ---; Wo := 1 0 ' b ---; Wo := 0 fi 
; ptl, pt2 := a, a 

do, eof(f) 
---; fetchn(f,a) 

if ptl El a ---; 
if pt2 E2 a ---; skip 
o ,pt2 E2 a -+ phi(a,b); pt2 := a 
fi 

26 

(4.c) 



od 

; if b -; Wo := Wo + 1 O~b -; skip fi 
O~ pt, E, a -; 

fi 

if Wo > 0 -; store(W,{ (Cl,pt, (Cl) ),-,-}) 
o Wo :<::: 0 -; skip 
fi 

; phi(a,b) 
; if b -; Wo := 1 O~ b -; Wo := 0 fi 
; pt" pt2 := a,a 

; if Wo > 0 -; store(W,{(Cl,pt,(Cl)),-,-}) 
o wo:<::: 0 -; skip 
fi 

fi 

JI JI JI 

- Task 2 : computation of W2. 

Given that f is an E, and an E2 segmentation, W2 can be defined by 

W2 = (8 + 0) q,.t 

where 
u 8 a = { u if (cpa II pt2E2a) V ~cpa 

u + 1 if (cpa II ~pt2E2a) 

Using an extension like 3.3.1 and adding some details, (4.a) is solved. 

Solution of (4.a) 

I[ f: Ordfile([I RESR, R2) 
I[ W: AVF 

I[ wo, W2 : IN ; pt" pt2, a : IT RESR; s : IT STR; b : ill ; 
proc phi = (la: IT RESR, Tb : ill I 
- I[ s : IT STR; 

fetchc(v(ST), at{RNR}, s) 
; if s(ENQ) = 'A' -; b := true 

o s(ENQ) "I 'A' -+ b := false 
ti ]I); 

empty(W); start(f) 
if eof(f) -+ skip 
o ~ eof(f) -; fetchn(f,a) (4.d) 

; phi(a,b) 
; if b -; Wo, W2 := 1, 1 0 ~ b -; wo, W2 := 0, 0 fi 
; pt" pt2 := a, a 
; do ~ eof(f) 

-; fetchn(f,a) 
; if pt, E, a -; 
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fi 

11 11 11 

od 

if pt2 E2 a --+ skip 
O~ ptz E2 a --+ 

phi(a,b) 

fi 

if b --+ Wz := Wz + 1 D~b -; skip fi 
ptz := a 

; if b --+ Wo := Wo + 1 D~b --+ skip fi 
D~ ptt Et a --+ 

fi 

if Wo > 0 --+ 

store(W,{ (CI,pt! (CI) ),(NB,wz),( AV ,WO/W2)}) 
o Wo ~ 0 -> skip 
fi 
phi(a,b) 
if b ---> wo, Wz := 1, 1 D~ b --+ wo, Wz := 0, 0 fi 
ptt, pt2 :== a,a 

ifwo > 0 ---; store(W,{(CI,pt!(CI)),(NB,w2),(AV,wo/w2)}) 
o Wo ~ 0 --+ skip 
ti 

5. SYSTEM-REQUIREMENTS 

In our problem solution we supposed the existence of a ordering R such that E = 
R n R~ . Here, we shall discuss some pragmatic aspects of ordering facilities in 
the available systems. Ordering facilities are given by syntactical constructs whose 
semantics require some primary facts about tabletypes: 
- a tabletype is defined over a heading, i.e. a set of attribute names or table indices. 
- each attribute(name) uniquely determines a domain, the attributevalue-set. 
So let TT be a tabletype, then we shall denote its heading by H(TT) while F( A) is 
used for the domain of an attribute A E H(TT). Let T : TT. 
In the syntactical constructs to achieve relations on T, the user is only allowed to 
give an enumeration of D <;; H(TT). This so-called ordering list is part of the basis 
for some lexicographical relation S on T If D which in its turn defines (the semantics 
of) the relation R on T: 

u R t '= ufD S tfD (*) 

We continue with D = {At, A2} and orderingslist ed = [A!, A21 in our illustrations. 
A complete basis for a lexicographical relation consists of a unique (labeled) carte­
sian product together with a relation for each of its factors. Such a unique cartesian 
product is implicitly derived from the ordering list 

n (At: F(At), A2 : F(A2» 
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The relations on the factors are taken to be standard orderings available by the sys­
tem. This implies the existence of at most one such ordering per domain. Generally 
those standard orderings are linear ones and a user must give its preference with 
respect to ascending or descending traversal by adding an adjective to each element 
of the ordering list, e.g. ed = [asc AI, asc A2]. 
Given that standard orderings are linear, it follows that S is linear and consequently, 
relations Ron T defined by (*) have interesting properties. However, this puts its 
restrictions on the possibilities for E, even so that the only relation satisfying our 
requirement is the discrete relation on D. For readers familiar with the relational 
approach, the following proof will do: 
Let RI and R2 be linear orderings on F(A,) and F(A2) respectively, then S = RJ 
llR2 • By the definition of backward image relation, it holds that 

R = <- 0 S 0 < 
which equals, fact 10, 

R=SII"If 
Now, we calculate 

E 

Rn R-

(S II "If) n (S II "If)-
= { - distributes over II } 

(S II "If) n (S- II "If) 
{ n distributes over II } 

(S n S- ) II "If 
{ S is linear, fact 5 } 

I II "If 
6. CONCLUSIONS 

o 

- We constructed a program for a database query by instantiating appropriate 
schemes for files. Since the problems which were solved in these schemes, relate 
to the application of structure preserving functions, a transformational program­
ming method could be used in the derivation of those schemes. 

- The advantage of schemes is trivial: no correctness proofs have to be given, instan­
tiation of the schemes suffices. Especially in the development of im perative programs 
for database queries one may profit by schemes, because deriving imperative pro­
grams for databases is almost unfeasible in the usual way. 

- Since imperative programs were our goal we had to put up with extensive code 
for our schemes. If abstract programs would suffice as solution for our problems, 
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then we could have terminated the derivations at the point where the definition of 
the directed reduction is known. In both cases, the transformation of the directed 
reduction to file level is the same and can be considered as a standard one. 

- 82, the generic scheme in Lemma 2, can be viewed as a (4G system) conversion to 
file level, if tables are implemented by sets. Each function k satisfying the conditions 
of Lemma 2 can be made available as a standard function. However, if tables are 
implemented by bags, a function such as ko in section 4, is not correctly implemented 
by 8 2 • 

- An optimal use of 83, the generic scheme in Lemma 3, can only be made if the 
programmer is acquainted with the theory of relations, in particular relations on 
cartesian products.4 E.g. during our derivation the need for an extra representation 
requirement (E segmentation) arises. Having only system orderings to satisfy such 
a condition on the data we had to prove that these suffice to meet the requirement. 
See appendix, Lemma, p.33. 
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APPENDIX. 

For reader's reference we give a short overview of our approach to relations on 
tables and some definitions and facts from the theory of relations, [6J, as used in our 
calculations. Although several notions have a wider scope of applicability, our main 
interest is in homogeneous relations. 

For each tabletype TT, there exists a labeled cartesian product LCT such that 
LCT is the smallest product such that U TT ~ LCT. 

By fixing the ordering of the labelset, LCT is isomorphic to a cartesian product CT. 
Relations defined on CT induce relations on each element of TT. 

Relations are mathematical objects on which, apart from the set operations " 
u and n, the following operations are defined: 

unary: 
binary: 

reversion 
com position 

denoted by ~ 
denoted by 0 

Since the definitions of those operators is common knowledge, it suffices to give 
priority rules with respect to their use 

- unary operators bind stronger than binary ones, 
- composition has a higher priority than U or n 

Some concrete relations are frequently used. Let X be a set, then 

Ix = { (x, x) I x EX} 
lTx == X X X 

are relations. We omit subscripts and infer type information from the context. 

Several laws hold for the relational structure, e.g.: 
RoI==IoR=R 
R ~ S 2>(R 0 T ~ SoT 11 ToR ~ T 0 S) 
, (R~ ) == (, R)~ 
o distributes forward and backward over U 

Relations may have several properties. 

Definition [functional propertiesJ 

Let R be a relation, then 

R 0 R~ ~ I l> R is functional 
R~ 0 R ~ I -" R is injective 
R~ 0 R:;:> I l> R is total 

R 0 R~ :;:> I -" R is surjective 

Well-known combination: R is bijective ~ R 0 R~ = R~ 0 R = I 

Definition [ordering propertiesJ 
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I <;; R !'= R is reflexive 

RoR<;;R !'= R is transitive 
R <;; R- l> 

R is symmetric 
R n R- <;; I !'= R is antisymmetric 
, R- <;; I u R !'= R is connective 

Apart from the well-known combinations, linear ordering (reflexive, transitive, 
antisymmetric and connective) and equivalence relation (reflexive, transitive and 
symmetric), we use 

R is a quasi ordering (qo) l> R is reflexive and transitive 

R is a cqo R is a connective qo 

A special instance of a bijection is found in 

Definition [enumemtion] 
Let V be a set and # V = N. 

F is an enumeration of V ~ F : [l..N] ---> V is a bijection. 

Fact 1. If R is a qo then R n R - is an equivalence relation. 

Fact 2. An equivalence relation E on X defines a quotient map qE : X ---> X/E by 
qE(X) = { y E X I x E y } 

qE is total, surjective and functional. (If no confusion can occur, subscripts are 
omitted.) 

Fact 3. If R is a cqo, R <;; Sand S is transitive, then S is a cqo. 

Fact 4. If f is a function, then 
f- 0 (R n S) = f- 0 R n f- 0 S 
(R n S) 0 f = R 0 f n S 0 f 

Fact 5. If R is linear, then R- is and R n R- = I 

The following common way of defining relations is of particular interest for sets on 
which no ordering structure is imposed. 

Definition [backward image relation] 
Let f: X ---> Y and T <;; Y x Y. The backward image relation S of T under f is 
defined by 

S=f-oTof 

Definition [forward image relation] 
Let f: X -+ Y and R <;; X x X. The forward image relation S of R under f is defined 
by 

Depending on the (functional) properties of f, the (ordering) properties of R or T 
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are transferred to S. For our purpose we mention 

Fact 6. The image of a linear ordering under f is linear, if f is a bijection. 
E.g. If F is an enumeration of V then F 0 :::; 0 F~ is linear. 

Fact 7. If f is a total, snrjective function and T is linear, then S is a cqo. 

Fact 8. If R is a cqo and q is the quotientmap of R n R ~ , then S is linear. 

On cartesian products, relations are often defined via relations on the factors. Using 
projection functions, the well-known product and lexicographical relation can be 
introduced via the backward image relation. Let X, Y and Z be sets and R ~ X 
x X and T ~ Y x Y. Then 

Definition [projection functions ~ and>] 
~ : X X Y -+ X and> : X X Y -+ Yare defined by 

~ (x,y) = x > (x,y) = Y 
~ and> are total and snrjective functions. 

Definition [ product relation and lexicographical relation, II and-jj] 
On X X Y, the product relation R II T and the lexicographical relation R -jjT are 
defined by 

R II T = (~~ 0 R o~) n (>~ 0 To» 
R-jjT = (R IIlf) n ((, I Illf) U (lfll T)) 

X x (Y x Z) differs from (X X Y) X Z, so there is no associativity for II and -jjin the 
usnal way. However, the cartesian products are isomorphic and therefore we model 
associativity of those operators by isomorphism. 

Still using implicit typing we mention some relevant laws for the product and lexi­
cographical relations 

~~ 0 lfo ~ = If= >~ 0 lfo > 
lflllf= If 
II and -jjdistribute forward and backward over nand U 
~ distributes over II and-jj 

Fact 9. If Rand T are linear, then R-jjT is. 

Fact 10. R IIlf= ~~ 0 R 0 ~ = R-jjlf 

Definition [monotonicity] 
Let f: X -+ Y, R ~ X X X and T ~ Y X Y. 

f is monotonic w.r.t. Rand T ~ R ~ f- 0 T 0 f 

Fact 11. Iff is monotonic w.r.t. Rand T and g is monotonic w.r.t. T and U, then 
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go f is monotonic w.r.t. Rand U. 

Fact 12. If f is total, then f is monotonic w.r.t. R and its forward image. 
E.g. If F is an enumeration of V, then F is monotonic w.r.t. $ and F 0 $ 0 F~ . 

Fact 13. II and ijare monotonic w.r.t. ~, in both arguments. 

Definition [F satisfies RJ 
Let F be an enumeration of V and R ~ V X V, then 

F satisfies R ~ $ ~ F~ 0 R 0 F 

Fact 14. F satisfies R =o>F is monotonic W.r.t. $ and R 

Fact 15. If F satisfies Rand R ~ S then F satisfies S. 

Definition [E-segmentationJ 
Let F be an enumeration of V and E ~ V X V an equivalence relation with quo­
tientmap q. Let I;:; be a linear ordering of q*V, then 

F is an E-segmenation of V ~ q 0 F is monotonic w.r.t. $ and 1;:;. 

Lemma If F satisfies R, then 

Proof 

R is a cqo =0> F is an R n R~ segmentation 

F is an R n R~ segmentation 
<$ 

q 0 F is monotonic w.r.t. $ and qo Ro q~ /I qo Ro q~ is linear 
<$ { F satisfies R, facts 11, 14 } 

q is monotonic W.r.t. Rand qo Ro q~ /I qo Ro q~ is linear 
<$ { q is quotient map of R n R~ , facts 1, 2, 8, 12 } 

R is a cqo 0 

Corollary If R ~ Sand S is transitive, then 

F satisfies cqo R =0> F is a S n S~ segmentation. 

Proof. Immediately from facts 3, 15. 
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