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Synopsis

This paper presents an experimental characterization of the three-dimensional strain-hardening
response of polycarbonate in the glassy state. Using a special mechanical conditioning technique,
large homogeneous deformations were obtained in tension, compression, and shear. The
experimental results are compared to a number of existing network models. It was found that the
state-of deformation dependence of the strain-hardening response was adequately described by
neo-Hookean behavior with a shear modulusG 5 26 MPa. Up to the deformations applied in this
study, no sign of a finite extensibility of the entanglement network was observed. ©2000 The
Society of Rheology.@S0148-6055~00!01006-3#

I. INTRODUCTION

A characteristic feature of polymer systems is their composite structure on a molecular
level, consisting out of covalent bonded chains, held together by secondary forces. At the
yield point, the applied stress is high enough to overcome intermolecular forces, and
large scale segmental motion is initiated. The primary bonds survive this segmental jump
process, and give rise to steric hindrance~‘‘chains cannot mutually cross’’!, which results
in strain-hardening behavior, the topic of this paper. The reinforcing effect of the cova-
lent chains, prevents segmental motion from leading to fracture like in low molecular
weight glasses. Instead, the deformation is spread throughout the material, and leads to
crazing or shear bands. For this reason, polymers are intrinsically very tough materials,
with a critical energy release rate which is orders of magnitude larger than the~Van der
Waals! surface energy.

The steric hindrance between the polymer chains is also of prime importance for the
flow behavior of polymer melts, where the thermal energy is sufficient to facilitate the
rapid interchange of macromolecular conformations. It is well known that, above a cer-
tain molecular weight and on a restricted time scale, a polymer melt behaves like a
rubbery solid@Larson~1988!, Chap. 4#. Comparing this behavior to that of a real~chemi-
cally cross-linked! rubber, leads to the definition ofentanglements. Entanglements are
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envisaged as physical knots, which can not unravel on the time scale of the experiment.
The molecular weight between these entanglements is calculated from the ‘‘stiffness’’
~plateau modulus! of the melt, using the classical theory of rubber elasticity. In this way,
the molecular weight between entanglementsMe provides a scalar measure of the diffuse
steric hindrance between the covalent chains.

It is, therefore, not surprising that the concept of entanglements play an important role
in the large-strain deformation behavior of polymer solids as well. For example, it is now
widely accepted, that strain hardening in glassy polymers originates from the rubber-
elastic response of the entanglement network. Moreover, it is often assumed, that the
entanglement network, like a chemically cross-linked network, has a limited extensibility.
This leads to the concept of amaximum draw ratiolmax @Allison and Ward~1967!#,
which can be estimated from the maximum extensibility of a single strand in the en-
tanglement network. It was shown by Donald and Kramer@~1982a, 1982b!# that this
maximum draw ratio of the entanglement network correlates remarkably well with the
extension ratio of craze fibrils and within shear bands.

Haward and Thackray~1968! were the first to incorporate these two features of strain-
hardening behavior, a rubber-elastic response, and finite extensibility, into a constitutive
equation. This one-dimensional equation was extended to the three-dimensional ‘‘BPA
model’’ by Boyceet al. ~1988!, who used the ‘‘three-chain model’’@James and Guth
~1943!# to describe the strain-hardening response. The BPA model was later refined with
respect to strain hardening by introducing better representations of the spatial distribution
of molecular chains, leading to the ‘‘eight-chain model’’@Arruda and Boyce~1993b!#,
and the ‘‘full-chain model’’@Wu and van der Giessen~1993!#.

Although finite extensibility is relevant for achemicallycross-linked rubber, it seems
less obvious that it also applies to a~thermoplastic! glassy polymer, which can ultimately
flow. In fact, for most semicrystalline polymers, the strain-hardening response is accu-
rately described by neo-Hookean behavior and finite extensibility was not observed
@G’Sell et al. ~1992!#. In the case of glassy polymers, however, the postyield behavior is
largely dominated by strain softening, which hampers a straight forward analysis of the
strain-hardening response in tensile deformation@Haward~1993!#. For this reason, large
deformation studies on glassy polymers were predominantly conducted in compressive
loading geometries@Boyce and Arruda~1990!#.

The purpose of this study is to analyze experimentally and theoretically the large strain
behavior of an amorphous polymer, polycarbonate, in compression, shear and, most
notably, in tension, using a mechanical preconditioning technique to ensure homogeneous
deformation.

II. THEORY

First some of the rubber elastic network models, which are used to describe strain
hardening, will be reviewed. In what follows, it will be assumed that the Helmholtz free
energyA only depends on the left Cauchy–Green strain tensorB at constant volume

B̃,B̃ 5 J22/3B, with the relative volume deformationJ ~determinant of the deformation

gradient! @Tervoortet al. ~1998!#. The evolution equation ofB̃ follows from kinematics

BP 5 Ld
•B̃1B̃•~Ld!T 5 LÕ :L , ~1!

where the dot denotes the material time derivative,Ld is the deviatoric part of the

velocity gradient, and the fourth order tensorLÕ is defined through Eq.~1!. The reversible
~elastic! part of the deviatoric Cauchy-stress tensorTd is then determined by the thermo-
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dynamic forceM 5 ]A/]B̃ and the evolution equation ofB̃ throughLÕ @Jongschaapet al.
~1994!; Tervoortet al. ~1998!#,

Td 5 M :LÕ . ~2!

III. RUBBER ELASTIC NETWORK MODELS

In the classical theory of rubber elasticity it is assumed that the internal energy re-
mains constant upon isochoric deformations. Therefore, at isothermal conditions, the
thermodynamic force is only dependent on changes in entropy

M 5 S dA

dB̃
D

T

5 S dU

dB̃
D

T

2TS dS

dB̃
D

T

5 2TS dS

dB̃
D

T

. ~3!

The change in entropy is a consequence of the distortion of the molecular network and
can be calculated from statistical mechanical arguments@Treloar ~1975!#. The most
simple expression follows from the so-called ‘‘Gaussian network approximation,’’ where
it is assumed that the end-to-end distance vectors of a chain between two crosslinks, are
described by a Gaussian distribution function@James and Guth~1943!#. In this case, the
entropy will depend on deformation as

S 5 21
2nk~IB̃23!, ~4!

wheren is the number of~randomly oriented! chains per unit volume in the network,k is

Boltzmann’s constant, andI B̃ is the first invariant ofB̃. Using the evolution equation for
the isochoric elastic strain@Eq. ~1!#, and the expression for the Cauchy-stress tensor@Eq.
~2!#, the Gaussian network approximation leads to neo-Hookean behavior

Td 5 GB̃d ~5!

with the shear modulusG 5 nkT.
A more accurate expression for the configurational entropy of a stretched molecular

chain, taking into account the effect of finite extensibility, was first derived by Kuhn and
Grün ~1942!. Considering a single ideal chain, containingN links of length l, having a
root-mean-square distanceA^r 0

2& 5 ANl and a maximum draw ratiolmax 5 AN, they
derived an expression for the Helmholtz-free energy as a function of draw ratiol

A 5 nkTS l

AN
b1 lnF b

sinhbGD2A0, ~6!

b 5 L21S l

AN
D , ~7!

whereA0 is an arbitrary constant andL(b) is the Langevin function defined by

L~b! 5 cothb2
1

b
. ~8!

A useful expression is the first Pade´ approximant of the inverse Langevin function@Co-
hen ~1991!#
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L21~x! ' x
32x2

12x2 . ~9!

For elastic behavior, at isothermal conditions, the total power inputsė, with ė 5 l̇/l, is

equal to the rate-of-elastic energy storageȦ 5 (]A/]l)l̇. Hence, the~one-dimensional!
stress–strain relation becomes

s 5 lS]A

]l
D
T

5 kTANlL21S l

AN
D . ~10!

In this equation, the stress becomes infinitely large, as the draw ratiol approaches its
limiting value lmax 5 AN. Invoking the affine deformation scheme, Wu and van der
Giessen~1993! extended this one-dimensional equation to describe three-dimensional
behavior, by calculating the exact spatial distribution of the molecular chains. This so
called ‘‘full chain’’ model, though mathematically exact, has the disadvantage that it
cannot be solved analytically. Three-dimensional extensions of Eq.~10! that lead to
analytical expressions, were obtained by sampling the orientational distribution function
only in a discrete number of directions, like the ‘‘three-chain’’ model of James and Guth
~1943!, and the ‘‘eight-chain’’ model of Arruda and Boyce~1993b!. The ‘‘four chain’’
model of Flory and Rehner, Jr.~1943! also approximates the real distribution of orienta-
tions, but does not lead to an analytical equation.

The three-chain model was obtained by assuming that Eq.~10! can be used to calcu-
late the principle stressess i from the principle stretchesl i

si 5
1

3
nkTANl iL21S l i

AN
D , ~11!

with n/3 chains per unit volume in each of the principle stretch directions.
In the eight-chain model, Eq.~6! is assumed to hold, multiplied by the number of

chains per unit volumen and using an average chain-stretch parameterlchain

lchain 5
1

)
Al1

21l2
21l3

2 5
1

)
AI B̃ . ~12!

Here, it should be noted thatAI B̃/3 equals the average change in length of a line element
at a pointP, averaged over all possible orientations@Macosko~1994!, Chap. 1#. The
thermodynamic force for the eight-chain model becomes

M 5
]A

]B̃
5 S ]A

]lchain
D S ]lchain

]I B̃
D S ]I B̃

]B̃
D , ~13!

where

S ]A

]lchain
D 5 nkTANL21S lchain

AN
D , ~14!

S]lchain

]I B̃
D 5

1

6
)I

B̃
21/2

5
1

6lchain
, ~15!
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S]IB̃

]B̃
D 5 I . ~16!

The constitutive relation for the eight-chain model then follows from the evolution equa-

tion for B̃, Eq. ~1!, and substitution of Eqs.~13!–~16! in the general expression for the
stress tensor, Eq.~2!:

Td 5
1

3
nkTANL21S lchain

AN
D 1

lchain
B̃d 5 G~ I B̃!B̃d. ~17!

In the original derivation@Arruda and Boyce~1993b!#, the total—instead of the iso-
choric strain—was used, under the assumption of incompressible behavior. This leads to
a relation between the extra stress tensor and the Green–Lagrange strain tensor and is,
therefore, slightly different from Eq.~17!. This applies also to the other rubber-elastic
models in this paper. Note that the eight-chain model can be envisaged as a neo-Hookean

relation, employing a shear modulus which is dependent on the first invariant ofB̃.
The three-chain model samples only the principle strain directions, while the eight-

chain model samples none of the principle strain directions. Therefore, the three-chain
model will overestimate the network stiffness, whereas the eight-chain model underesti-
mates the network response. Since the response of the full-chain model is always between
the upper and lower bound provided by the three- and eight-chain model, Wu and van der
Giessen~1992! proposed a simple analytical mixing rule to approximate the full-chain
model response

si
ful-ch 5 ~12r!s i

3-ch1rs i
8-ch, ~18!

r 5 0.85
lmax

AN
, ~19!

wheres i
full-ch , s i

3-ch, ands i
8-ch are the principle stresses for the full-, eight- and three-

chain model, respectively, andlmax is the maximum principle stretch.
When considering the state-of-deformation dependence, it should be realized that, in a

geometrical sense, all possible isochoric deformations are bounded by uniaxial extension
and uniaxial compression~which is equivalent to biaxial extension!. This is quantified by
the difference between the first and the second invariant of the isochoric elastic strain,
IB̃2II B̃ , which is called thealignment strength@Larson~1988!, Chap. 7#. A deformation
for which IB̃ is larger than IIB̃ is called strongly aligning, when IB̃ 5 II B̃ , the deforma-
tion is neutrally aligning, and for IB̃ , II B̃ , the deformation is weakly aligning. In this
study, uniaxial compression, uniaxial tension, and shear experiments were performed in
order to determine the state-of-deformation dependence of the strain-hardening response.

All network models introduced in this section converge to simple neo-Hookean be-
havior at small chain stretch@see for example Eq.~17! in case of the eight-chain model#.
Since the bulk modulus of a rubber is several orders of magnitude larger than its shear
modulus, in general, deformation of a rubber proceeds at nearly constant volume~except
for pure volume deformations!. Therefore, to a good approximation, the isochoric-elastic

strain tensorB̃ is equal to the left Cauchy–Green strain tensorB. According to neo-
Hookean behavior@Eq. ~5!#, in the case of uniaxial extension in thex direction, the tensile
stresss 5 Txx

d 2Tyy
d then equals
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s 5 GSl22
1

l
D. ~20!

From this last equation it is clear that even neo-Hookean behavior, which has no finite
extensibility, results in a~quadratic! upswing of the stress in as–l plot. The effect of
finite extensibility is revealed more clearly in a graph of the stress versusl221/l. In this
case, neo-Hookean behavior will yield a straight line and the effect of finite extensibility
will manifest itself as a deviation from this straight line.

All network models with finite extensibility discussed so far have two adjustable
parameters: the number of segmentsN, which determines the maximum chain stretch and
the number of chains per unit volumen which, givenN, determines the initial modulus
~at constant temperature!. The Gaussian-network approximation leads to neo-Hookean
behavior with only one parameter: the initial modulus. The response of these various
network models in uniaxial and planar extension, is depicted in Fig. 1 and 2, using the
three-chain, eight-chain, and full-chain parameters reported by Arruda~1992! and Wu
and van der Giessen~1993! for the strain-hardening behavior of polycarbonate in uniaxial
compression~see Table I!.

The value of the shear modulus of the Gaussian-chain model in Table I was chosen to
coincide with the initial shear modulus of the eight-chain modelG8

G8 5
1

3
nkT

32
1

N

12
1

N

~21!

using the Pade´ approximation of the inverse Langevin function@Eq. ~9!#.
It follows from Table I that all network models predict an extremely low number of

monomers per subchain. For example, using the Gaussian approximation, a strain-
hardening modulus of 19.5 MPa leads ton 5 4.731027subchains/m3 (G 5 nkT).

FIG. 1. Comparison of the different network models in their description of the strain-hardening response of
polycarbonate in uniaxial deformation. Network parameters according to Table I.
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Since the density of polycarbonate is 1200 kg/m3, and the monomeric weight is 250
g/mol, this leads to 0.6 monomers per subchain. This number is far to small to justify the
use of the Gaussian approximation. Also the values ofN from Table I for the other chain
models are far to low to justify the use of the inverse Langevin function.

Here, it should be noted that Eq.~10!, which is the starting point of all non-Gaussian
network theories, was criticized by Flory@Flory ~1988!, Chap. 8# for a number of reasons.
First, from statistical mechanics point of view, Eq.~10!, like the Gaussian approximation,
is only correct in the limit of a large number of segmentsN and at small chain stretch
(l/AN ! 1). It can be shown that, especially at smallN, the Gaussian distribution
function is, in fact, a better approximation of the exact distribution function than the
Langevin expression over most of the range-of-deformation, except at very high chain
stretch. Second, Flory noted that, in a number of cases, the stress upswing in uniaxial
extension could also be due to strain-induced crystallization. Therefore, it is probably
better to regard Eq.~10! as an empirical relation, which can be used to incorporate finite
extensibility.

One should also carefully distinguish between neo-Hookean behavior and ‘‘Gaussian’’
rubber-elastic behavior. Neo-Hookean behavior is a constitutive equation for large strain
elastic behavior, characterized by a shear modulusG and does not depend on the micro-
structural nature of the material. The theory of rubber elasticity, invoking the Gaussian
approximation for the distribution function of the end-to-end vector, relates the shear

FIG. 2. Comparison of the different network models in their description of the strain-hardening response of
polycarbonate in planar extension~equivalent to simple shear!. Network parameters according to Table I.

TABLE I. Network parameters required by the different rubber-elasticity
models to describe the strain-hardening behavior of polycarbonate in
uniaxial compression@Arruda ~1992!; Wu and van der Giessen~1993!#.

Three chain Eight chain Full chain Gaussian chain

nkT ~MPa! 17.0 12.7 12.7 19.5
N ~2! 3.5 2.25 2.8 —
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modulusG to the number of elastic active subchains asG 5 nkT, and might not be
appropriate for the low number of monomers per subchain found in this and other studies.

IV. EXPERIMENT

The most straightforward way to verify the strain-hardening response of polymer
glasses experimentally, is to apply large homogeneous deformations. However, most
polymer systems, and especially polymer glasses, are prone to inhomogeneous deforma-
tion. G’Sell et al. ~1992! developed an experimental technique in which locally a con-
stant strain rate could be applied to an axis-symmetric hour-glass shaped sample, by
means of video-controlled tensile testing~a digital closed loop system!. Arruda and
Boyce ~1993a! argued that the deformation in uniaxial and planar compression will
remain homogeneous, since, contrary to a tensile test, there is no area reduction. This
seems to be a rather strong assumption, since the development of shear bands in com-
pression has been observed for a number of polymers@see Bowden~1970!#. On the other
hand, finite element calculations of Wu and van der Giessen~1994! have shown that the
effect of shear band formation on the global stress–strain behavior is not very large.

In this study, mechanical conditioning will be used to ensure homogeneous deforma-
tion. It is generally accepted@Kramer ~1983!# that strain localization in polymer glasses
is initiated by the nonlinear yield behavior. Strain hardening and intrinsic-strain soften-
ing, respectively, stabilize and amplify nonhomogeneous behavior.

A way to promote large homogeneous deformations below the glass transition tep-
merature is, therefore, to reduce the intrinsic strain softening of the material. This can be
achieved by mechanical conditioning through plastic deformation. In absence of strain
softening, small fluctuations in the stress field are better stabilized by strain hardening,
resulting in more homogeneous deformation behavior@Cross and Haward~1978!; Bau-
wens ~1978!; G’Sell ~1986!#. Since intrinsic strain softening increases during physical
aging of the polymer, especially during annealing close to the glass transition tempera-
ture, the removal of strain softening through plastic deformation is often called ‘‘rejuve-
nation’’ @Struik ~1978!; Waldron, Jr.et al. ~1995!#. Large plastic deformations rejuvenate
the material up to a saturation level, which is maintained when the stress is released. As
a result, subsequent testing will not lead to strain softening, resulting in more homoge-
neous deformation behavior.~Elimination of intrinsic strain softening through mechanical
conditioning does not necessarily lead to homogeneous deformation behavior. For ex-
ample, due to their low strain-hardening modulus, polyethylene, and polypropylene, still
show necking in a tensile test, despite the fact that they display no intrinsic strain soft-
ening.!

To rejuvenate the material through mechanical conditioning, dog-bone shaped, axis-
symmetrical tensile bars@see Fig. 3~a!#, manufactured from extruded polycarbonate
~bisphenol A, Bayer! rod, were subjected to large strain torsion at room temperature. The

FIG. 3. ~a! Tensile bar used for mechanical conditioning below the glass transition temperature.~b! Part of the
tensile bar~a! used for uniaxial compression testing.
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torsion was applied manually, by clamping the sample in a universal lathe and turning
one side to and fro over 720°. By placing an identifying line mark on the surface of the
tensile bar~parallel to the axis!, the stable growth of a localized plastic zone along the
tensile bar could be monitored in detail. Torsion of the sample back to the original
configuration resulted in a complete recovery of the original straight line mark. After
predeformation some of the samples were heated to 180 °C, but no motion due to residual
stress was observed, and the identifying line mark remained straight. This indicates that,
with respect to the strain-hardening response, the samples were returned close to their
isotropic state. A disadvantage of the method is that the predeformation is not homoge-
neously distributed and that the central fiber of the sample will not deform~and, there-
fore, not rejuvenate! at all.

Immediately after rejuvenation, the samples were tested in uniaxial tension on a
ZWICK Rel 1852 servo-hydraulic tensile tester~20 kN!. Some of the rejuvenated bars
were cut to obtain samples for uniaxial compression testing@see Fig. 3~b!#. In all cases
the extension was measured using an extensometer. The relative accuracy in force and
strain measurements was 1%. The tensile tests were performed at room temperature, at
constant strain rate. The torsion experiments were performed on a custom-made torsion
rig, at a rotation speed of 1 rad/s.

V. RESULTS

A. Uniaxial testing of samples predeformed in torsion

To verify the effect of plastic predeformation on the strain-hardening behavior,
uniaxial compression tests of mechanical conditioned and unconditioned samples were
compared. The result, plotted as true stress versus (l221/l), is depicted in Fig. 4. From
this figure, it can be seen that the rejuvenated sample has a much lower yield stress
compared to the unconditioned sample. Furthermore, it is clear that the unconditioned
sample displays a strong strain softening response, whereas this is virtually absent in the
predeformed sample. However, despite these large differences in initial yield behavior, it
is also clear from Fig. 4, that the strain-hardening behavior of both samples at larger
deformations is very similar. This similarity is a strong indication that the precondition-
ing has little effect on the strain-hardening response, and can be used to determine the
large strain behavior.

FIG. 4. Uniaxial compression tests of mechanically conditioned and unconditioned samples, plotted as true
stress as a function ofl221/l.
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A true stress-strain uniaxial tensile curve of a mechanically conditioned sample is
depicted in Fig. 5. In this figure, a small strain-softening response after the yield point can
still be observed. This is probably due to the central core of the tensile bar which was not
deformed and, therefore, has not been rejuvenated. Visually, however, the deformation of
the cylindrical tensile bar remained homogeneous. From Fig. 5 it can also be seen that
homogeneous deformations up tol 5 3 were reached, in contrast to maximum draw
ratios of 2.44 and 2.5 reported by, respectively, Boyce and Arruda~1990! and Donald and
Kramer~1982a!. The results of the uniaxial tensile and compression tests, plotted as true
stress versus (l221/l), is depicted in Fig. 6 and 7. In these figures, the strain-hardening
response appears as a straight line of equal slope in both tension and compression,
indicative of neo-Hookean behavior. From the slope the strain-hardening modulus was
determined@Eq. ~20!# to be:G 5 26 MPa. No effect of finite extensibility was observed;
there is no deviation from the straight line in as vs (l221/l) plot for both uniaxial

FIG. 5. True stress as a function of draw ratio for a cylindrical tensile bar, conditioned in torsion.

FIG. 6. True stress vs (l221/l) during a tensile test atė 5 1022 s21 of a cylindrical tensile bar, conditioned
in torsion.
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tension and compression experiments. This is again in contrast with uniaxial and planar
compression data of polycarbonate, published by Arruda and Boyce~1993a!.

B. Shear testing of samples predeformed in torsion

A torsion curve of a mechanically conditioned torsion bar of lengthL and with a polar
moment of inertiaI p is depicted in Fig. 8. Assuminglinear behavior, the relation be-
tween torqueMw and torsion angle per unit lengthf/L, is given by@Roark and Young
~1984!#

f

L
5

Mw

GIp
~22!

with the shear modulusG.

FIG. 7. True stress vs (l221/l) during a compression test atė 5 1022 s21 of a cylindrical tensile bar,
conditioned in torsion.

FIG. 8. Strain-hardening of polycarbonate measured in torsion, at a rotation speed of 1 rad/s.
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From Fig. 8 it is clear that, also in shear deformation, neo-Hookean behavior is
observed. From the slope in the neo-Hookean strain-hardening regime~0.21 N m! in Fig.
8 the shear modulus was obtained as:G 5 0.21(L/I p) 5 26 MPa~L 5 0.05 m andI p
5 pd4/32, withd 5 831023 m!, in excellent agreement with the values obtained from

the tensile and compression tests. Again, no effect of finite extensibility is observed. The
agreement between the values of the shear modulus obtained from tensile, compression,
and torsion experiments also indicates that the starting material after the mechanical
preconditioning was essentially isotropic.

VI. DISCUSSIONS AND CONCLUSIONS

Nowadays, it is generally accepted that the strain hardening response of~glassy!
polymers originates from a rubber-elastic response of the entanglement network, charac-
terized by the plateau modulusGr ~which can be measured in the melt, using mechanical
spectroscopy!. Using the classical theory of rubber elasticity, the plateau modulus can be
used to calculate the molecular weightMe of a single strand in the entanglement network
@Kramer ~1983!#

Me 5
rRT

Gr
. ~23!

Assuming that entanglements cannot unravel on the time scale of the experiment, a
maximum draw ratio of the network can be estimated as the ratio of the stretched length
of a single strand~molecular weight:Me! and its random walk length

lmax 5
Nelb

AC`Nel b
2

5 ANe

C`
, ~24a!

Ne 5
Me

M0
. ~24b!

Here,Ne is the number of monomer units of an entangled strand,C` is the characteristic
ratio ~a measure of the chain stiffness!, and l b andM0 are, respectively, the length and
the molecular weight of a monomer unit.

For a number of polymers, Donald and Kramer~1982b, 1982a! determined the draw
ratio in craze fibrils and shear deformation zones, using transmission electron micros-
copy. They found that the experimental values correlated reasonably well with the maxi-
mum draw ratio of the entanglement network according to Eq.~24a!. Their estimate for
the maximum draw ratio of polycarbonate waslmax ' 2.5. Indications for a finite ex-
tensibility of the entanglement network were also found from uniaxial and planar com-
pression tests on polycarbonate and polymethyl methacrylate by Arruda and Boyce
~1993a!. They estimated, for polycarbonate, from uniaxial compression tests a limiting
chain stretchAN 5 1.5, from which a maximum draw ratio in uniaxial extension can be
calculated:lmax ' 2.5. @According to the eight-chain model, the maximum draw ratio of
the network is obtained when the average chain stretch parameter, Eq.~12!, equals the
limiting chain stretchAN#.

In this study, a mechanical conditioning technique was used to access the strain-
hardening response of glassy polymers, by means of largehomogeneousdeformations. It
was shown that the state-of deformation dependence of the strain-hardening response of
polycarbonate is adequately described by neo-Hookean behavior, with a shear modulus
G 5 26 MPa at room temperature. In particular, no effect of a maximum draw ratio was
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observed, in contrast to the studies mentioned above. The strain-hardening response
remained neo-Hookean until fracture occurred at draw ratiosl ' 3 ~in uniaxial exten-
sion!.

It should be noted, that finite extensibility is not a prerequisite to stabilize a local
deformation zone.At constant stress, the evolution of the draw ratio in a deformation
zone is determined by the stress dependence, and the intrinsic strain-softening response,
of the plastic flow process and by the value of the strain-hardening modulusGr . Using
realistic material parameters, it was estimated@Tervoort ~1996!, Chap. 4# that the shear
straingdz at which the neo-Hookean strain-hardening response stabilizes a local plastic
deformation zone in polycarbonate, is approximately:gdz 5 1.4. This corresponds to an
extension ratio ofldz 5 11 1

2gdz 5 1.7, which is in good agreement with the experi-
mental value as determined by Donald and Kramer~1982a!. Thus, in a constant stress
situation, stabilization of a deformation zone can be realized by a neo-Hookean strain-
hardening response as well@Smit et al. ~1998!#, and does not necessarily result from a
finite extensibility of the entanglement network@Haward ~1995!; Boyce and Haward
~1997!, Chap. 5#.

A comparison between the uniaxial compression data on nonrejuvenated samples by
Arruda ~1992! of a different PC grade and our compression and tensile data on rejuve-
nated samples, is depicted in Fig. 9. The lines in this figure are the calculated strain-
hardening response of polycarbonate according to neo-Hookean behavior with a modulus
of G 5 26 MPa, and according to the eight-chain model with the network parameters as
determined by Arruda~1992!. The initial strain-hardening modulus and the maximum
draw ratios in uniaxial tensile and compression, calculated from their network parameters
~see Table I!, equal:G 5 19.5 MPa,lmax

compression5 0.3, andlmax
tensile5 2.44. A detailed

comparison between the strain-hardening response is not possible since we are dealing
with two different PC grades. Nevertheless, from Fig. 9 it is clear that despite possible
differences in molar mass, etc., the actualcompressiondata do not differ substantially,
both rejuvenated and nonrejuvenated samples show an upswing in stress. However, in-
terpreting this stress upswing as resulting from a finite extensibility of the network, using

FIG. 9. Comparison between the strain-hardening response of polycarbonate as determined by uniaxial tensile
and compression experiments on rejuvenated samples~s!, and by uniaxial compression on nonrejuvenated
samples~* ! of a different PC grade@Arruda ~1992!#.
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a non-Gaussian spring model, also leads to a maximum draw ratio intensiledeformation,
which was not observed experimentally for the deformations applied to the PC grade
used in this study. Thus, Fig. 9 illustrates the danger of fitting finitely extensible strain-
hardening models in~uniaxial or planar! compression.
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