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Frequency response based multivariable control design for motion systems

Matthijs Boerlage∗, Maarten Steinbuch∗, Georgo Angelis∗∗

Abstract— In this paper, we discuss the design of multi-
variable motion controllers exploiting crosscouplings in the
controller for open loop decoupling, disturbance rejection and
feedforward decoupling. Using specific properties of motion
systems, we illustrate that frequency response design methods
can be extended to handle several multivariable control prob-
lems. Application to high performance motion systems shows
significant improvement.

I. I NTRODUCTION

Multivariable electro-mechanical motion systems are
common practice in today’s industry. Typical applications
are XY-stages, vibration isolation platforms, robotics and
many master-slave positioning devices. As modern control
software offers the possibility to implement multivariable
controllers and specifications become tighter, industry has a
desire to exploit multivariable control design freedom where
possible.

In control design for SISO electromechanical servo
systems, loopshaping in the frequency domain is a well
proven methodology as straightforward relations between
open loop and closed loop responses hold [18]. This allows
for clear interpretation of the physical properties of the
control problem. It is well known that in the general
MIMO control problem, there are no one-to-one relations
between the terms of the multivariable controller and the
resulting closed loop transfer. An × n square control
problem, then results in a control problem withn2 highly
interacting control terms. Also, design for stability (as
governed by the generalized Nyquist criterium, [16]) and
design for performance (in terms of principal gains) need
not necessarily be expressed in the same framework.

Industrial solutions to handle multivariable control problems
build strongly on reducing the MIMO problem to a
set of independent (decoupled) SISO control problems.
SISO control design techniques are then facilitated. A
typical procedure for multivariable control design for
electromechanical servo systems is as follows:

1) Identification
2) Interaction analysis
3) Static decoupling
4) Interaction analysis
5) Multiloop SISO control
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where parts of the procedure are iterated until specifications
are met.

In Step 1, frequency response measurements of several
loop transfers are obtained to derive the frequency response
functions (FRFs) of the plant. Subsequently Step 2 is
undertaken to study interaction and possibly study the
possibility to reduce the general control problem to a
subset which is smaller. Therelative gain array (RGA),
evaluated per frequency, is very useful for this application
as the RGA is a measure for two-sided interaction and
has the powerful property that it is scaling independent
[4],[17]. Other measures, as themeasure of skewness[10]
or the interaction number[17], may also prove useful.
When interaction is present, static decoupling techniques
can be used to decouple (parts of) the control problem,
Step 3. Numerical decoupling procedures can be applied,
although procedures preserving physical insight (e.g. modal
decoupling) are often preferred. When interaction has been
reduced, decentralized control or sequential loop closing is
used (Step 5) [13],[17]. Note that in all the steps sketched
above, no model is required other than the frequency
response measurements. Also, all design steps only focus
on interaction of the plant and do not take in to account
interaction of disturbances.

If one of the steps sketched above fails, specifications
may not be met. Industry often has no other choice
then to apply norm based control design techniques as
H2,H∞ and µ-synthesis for more advanced multivariable
control. Usage of these techniques requires detailed
models, controller/model reduction and therefore has large
implications for industrial usage. Implementation can be
cumbersome, especially because resulting controllers are
difficult to interpret and understand. Hence, further fine
tuning during experiments is not possible, yet preferred
by industrial control engineers. One line of research is to
combine model-based and classical loopshaping ideas such
as QFT [9] into one design paradigm as described in [12]
and used in [5].

We show that for many (electro) mechanical systems,
multivariable control design freedom is maximally exploited
using the design steps1−5 sketched above. We present two
methods to handle interaction that are not captured in this
design procedure. In both cases physical insight is preserved
and it is not necessary to rely on norm based control design
techniques. All techniques have been tested on industrial
applications. A common two degrees of freedom industrial
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Fig. 1. Multivariable control configuration used in this work.

control architecture is depicted in Figure 1. Herein,P
denotes the plant with possible inputTu and outputTy

transformations. The feedback controller and feedforward
controller are denoted byK and F respectively. The
disturbance model is denoted byGd. Signals of interest are
the servo errore, the plant inputu, the disturbance source
signald∗ and the reference trajectoryr.

In Section II, we will first show how to findTu and
Ty using frequency response data only. Then, using the
same data, we show how to improve performance by using
a multivariable feedforward controller. Finally, in Section
IV we will discuss the disturbance directionality problem.
Throughout the work, we consider square plants only.

II. D ECOUPLING ELECTROMECHANICAL MOTION

SYSTEMS

In this section, we discuss the design of the input/output
transformationsTu, Ty which are used to decouple the open
loop transfer function. When the open loop transfer function
is decoupled, then × n MIMO control problem reduces to
n independent SISO control problems. We focus on electro-
mechanical motion systems where dynamics are dominated
by mechanics and flexible modes result from limited me-
chanical stiffness which we assume proportionally damped.
The dynamics can be described as a sum of second order
modal contributions;

P (s) =
Nrb∑

j=1

uT
j vj

s2

︸ ︷︷ ︸
rigid body

+
N∑

i=Nrb+1

uT
i vi

(s2 + 2ζiωis + ω2
i )

︸ ︷︷ ︸
flexible body

(1)

WhereNrb denotes the number of rigid body modes,N−Nrb

are the number of flexible modes with resonance frequency
ωi and relative dampingζi. The corresponding eigenvectors
are denoted byui, vi. A different notation of (1) is;

P (s) =
1
s2

Prb + Pflex(s) (2)

WherePrb is a constant matrix. Since we only discuss square
plants, the number of inputs (actuators) equals the number
of outputs (sensors). Hence,Prb, Pflex(s) are square. When
modes are both controllable and observable, modes can be
perfectly decoupled using input and output transformations.
A system property that is closely related is thedyadic

property of systems [14]. A dyadic system, has the property
that it can be transformed such that

P (s) = UΣ(s)V T (3)

whereU ,V are constant for all frequencies, but not necessar-
ily unitary. Σ(s) is diagonal and its entries are SISO transfer
functions. Decoupling is possible by usingV −T andU−1 as
input (Tu) and output (Ty) transformations of the plant so
that

Pdec(s) = U−1P (s)(V T )−1 (4)

is diagonal and approximately equal toΣ(s). In [2] it was
shown that this is the case when modes can be both actuated
and measured independently (hence when they are both
observable and controllable).

We illustrate the application of dyadic decoupling by
means of the belt drive system depicted in Figure 2. The

Fig. 2. MIMO belt drive system as used to illustrate dyadic and modal
decoupling. Two rolls at the bottom of the system are used for actuation
(DC motors) and position measurement (encoders).

system has two actuators and two sensors, at both sides
of the flexibility. It is hence possible to isolate the flexible
mode from the rigid body mode. We start controlling the
system in the physical variables; that is, the motor current
and the encoder signals. The frequency response in these
coordinates is given in Figure 3. Next, we choose two
points of the frequency response function (ω2 > ω1) in the
frequency band of interest. We now use [14],[19] to obtain,

P (jω1) = UΣ(jω1)V
T

P (jω2) = UΣ(jω2)V
T

P (jω1)P (jω2)
−1 = UΣ(jω1)V

T V −T Σ(jω2)
−1U−1

→ P (jω1)P (jω2)
−1U = UΣ(jω1)Σ(jω2)

−1.

HenceU can be found solving this eigenvalue problem.V
can be determined in similar fashion. With this, no modal
analysis is required to obtain partial modal decoupling. We
obtain the followingTu, Ty:

Tu =
[

0.71 0.71
0.70 −0.70

]
, Ty =

[
0.71 0.70
0.71 −0.70

]
(5)



We see that, except for some scaling, this equals the mode
shapes of the system and we found the modal decoupling
transformations using the dyadic property of this system. The
frequency response function for the decoupled plantPdec =
TyPTu is also depicted in Figure 3 (labelled ”DTM”: thick
line). We see that we can control the flexible mode and the
rigid body mode independently, since off-diagonal terms are
relatively low. Choosing a bandwidth greater then5hz results
in increasing stiffness of the flexible mode. Hence, in more
practical applications, structural design requirements can be
relieved.

10
0

10
1

−40

−20

0

20

40

hz

dB

10
0

10
1

−40

−20

0

20

40

hz

dB

10
0

10
1

−40

−20

0

20

40

hz

dB

10
0

10
1

−40

−20

0

20

40

hz

dB

Phys. co.
DTM

Fig. 3. Static decoupling of the belt drive system (thin in measured
variable coordinates,P (jω)), using Dyadic transformation matrix (DTM,
solid, Pdec(jω))

III. M ULTIVARIABLE FEEDFORWARD

In many tracking control applications, the reference tra-
jectory can be considered as the largest disturbance in the
controlled system. Using feedforward control, most of the
tracking performance of industrial systems is obtained. The
feedforward controller can not affect stability of the closed
loop system as long as the feedforward controller itself is
stable. This creates design freedom in decoupling especially
in the case where perfect decoupling is not allowed in
feedback (e.g. leads to unstable feedback controller). The
following case illustrates how dynamic decoupling of the
plant can be contained in feedforward control. We also
present a new result for feedforward design. We study
tracking of an industrial XY-manipulator, see Figure 4 and
[20]. Each of the six degrees of freedom is controlled and
we study thez and theRz axis. This plant has the same
number of actuators and sensors as rigid body modes and
is decoupled in the coordinates of the rigid body modes. In
that case, flexible modes can not be controlled independently
as in Section II. As the rigid body modes are dominant
over the flexible modes, in the region of the bandwidth, the
open loop is diagonal dominant [16] and the system can be
robustly stabilized with a diagonal feedback controller. For

Fig. 4. An example industrial XY-manipulator controlled in six degrees
of freedom.

decoupling, only an actuator transformationTu = P−1
rb , Ty =

I is required. The plant ’as seen’ by the feedback controller
now equals;

P (s)Tu =
1
s2

I + Pflex(s)P−1
rb . (6)

It is visible that the flexible modes are still not decoupled
whenPflex(s)P−1

rb is not diagonal. Low frequency tracking
errors (cross-coupling) occur due to these non-diagonal
terms in the open loop. As these tracking errors are directly
related to the reference trajectory, multivariable feedforward
control is considered.

The objective is to let this plant track reference profiles with
high accelerations and jerks, typically step and scanning
profiles. In these cases, the energy of the reference profile
is high in low frequencies and a significant factor (100dB)
lower for frequencies around and above the resonance
frequencies of the flexible modes. When only low frequency
behavior is of interest for feedforward design, it is not
the best choice to approximate the plant only with the
first term in Equation 6, which is mostly done. As a new
result we consider a plant model where the low frequency
contribution of flexible modes is described with a matrix of
real values, the residual stiffness matrix:

Pflex(s)P−1
rb |s→0 ≈ P̃ , P̃ ∈ Rn×n. (7)

Therefore, the plant in rigid body coordinates is now modeled
as:

P ∗(s) = P (s)Tu =
1
s2

I + P̃ (8)

With the design of the feedforward controller, the transfer
between the servo errore and the reference trajectoryr is to
be minimized. This transfer is easily derived from Figure 1
leading to:

e = So(I − P ∗F )r (9)

where So is the output sensitivitySo = (I + P ∗K)−1,
K is the feedback controller andF is the feedforward
controller. In order to reduce this transfer function, we design
the feedforward controller to be the inverse of the plant



F = P ∗−1 which we require to be exact ats = 0. Using the
Taylor expansion ats = 0 we find the following;

F = (
1
s2

I + P̃ )−1 = (I + s2P̃ )−1s2

F = s2I − s4P̃ +O(6) (10)

We recognize acceleration feedforward (terms ofs2) and a
jerk derivative feedforward controller(terms ofs4). A SISO
controller of this fashion was derived in [3] and [11]. Note
that only the jerk derivative term contains interaction. Hence,
we have isolated dynamic decoupling from the reference
trajectory to the servo error in only one block which can be
tuned independently from acceleration feedforward. Hence
it is possible to (re)tune the feedforward controller online,
monitoring the servo error in the time domain. In Figure
5, simulation results for the industrial XY manipulator with
only acceleration feedforwardF (s) = s2I are shown.
Using the multivariable feedforward controller, following
(10), results in reduction of cross-coupling and significantly
improved low frequency tracking performance, see Figure 6
(different scale!). The residual tracking errors are caused as
resonance dynamics are excited with little remaining energy
at high frequencies. This is because the (multivariable) jerk
derivative feedforward controller only compensates for low
frequency modal contributions and does not invert high
frequency resonance dynamics.
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Fig. 5. Servo error inz axis (top) andRz axis (bottom) during motion in
z axis andRz axis subsequently using acceleration feedforward only. Due
to low frequency modal contributions, tracking errors appear during jerk
phases of a motion. As these modal contributions are coupled, cross-talk
occurs.

IV. D ISTURBANCE DECOUPLING

When the open loop is perfectly decoupled, there may
still be a need to introduce coupling in the feedback
controller. Often disturbances are highly coupled as they
relate to the same underlying physical process, e.g. floor
vibrations, pumps, reaction forces on metrology frames,
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Fig. 6. Servo error during motion inz axis andRz axis subsequently
using acceleration and MIMO jerk derivative feedforward. The coupled low
frequency modal contributions are compensated, resulting in a significant
reduction of the tracking error and cross-talk.

etc. [1]. A multivariable property of these disturbances is
that they have a fixeddirection, the ratio in which they
are distributed among controlled variables. The direction of
the disturbance can then be incorporated in multivariable
control design.

Use of interaction of disturbance models goes back to
the work of [21]. In the work of [15], interaction in the
multivariable controller was found to be very beneficial
because of strong coupling of disturbances. Here, we
combine the two methods and use multivariable control
design freedom to decouple the disturbance model. Hence,
interaction is created in the open loop transfer function,
which contradicts diagonalizing design approaches as that
of [16].

An example of this is the problem where two disturbances
originate from the same source and excite two decoupled
loops. When the direction of the disturbance vector (the ratio
between the disturbances) is fixed, a single off-diagonal
term may be introduced in the controller to cancel the
disturbance in one of the loops. Consider a linear time
invariant disturbance modelGd as follows;

[
d1

d2

]

︸ ︷︷ ︸
di

=
[

1 0
α 1

]

︸ ︷︷ ︸
Gd

[
d
0

]

︸ ︷︷ ︸
d∗

(11)

So that the disturbance sourced∗ is mixed with a linear time
invariant systemGd. We assume that the directionality (the
ratio in which the disturbance source is distributed among the
control loops) is fixed and known. Off-diagonal control terms
in K can be used to take advantage of this. The controller
for this situation is the product of a diagonal frequency
dependent controllerKd and a static transformationK∗ yet



to be determined. So that

K(s) = K∗Kd(s). (12)

We use the relation between the closed loop servo errore and
the input disturbance source to designK∗. Here, we make
use of the fact that at low frequencies the high gain property
holds (PK À I) and we assume invertible plant data;

e = SoPGdd
∗

= (I + PK∗K)−1PGdd
∗

≈ (PK∗K)−1PGdd
∗ = K−1(K∗)−1Gdd

∗

Therefore, choosingK∗ = Gd, directly decouples the
disturbance model. We restrict ourselves to triangularK∗

so that interaction in the open loop can not change the
characteristic gain loci (hence stability) of the controlled
system. In fact, this one sided interaction, can be seen as
disturbance feedforwardfrom one loop to the other, where
the disturbance is ”measured” in thek11p11 loop, see Figure
7. Hence, when the disturbance direction is not equal to

+ k11
-

p1

k21

+

Gd

d*

e1

+ k22 p2+ +
e2

-

Fig. 7. Disturbance decoupling control using triangularK∗ in the two by
two case equals disturbance feedforward from one loop to the other.

that of the model, performance may be worse than in the
case ofK∗ = I.

An industrial example, closely resembling that of Section
III, was studied were all (decoupled) controlled axes suffer
from the same24 Hz floor disturbance. The decoupled
axes are regulated with a diagonal controller, resulting in
a bandwidth of150 Hz. The source of the disturbance is
machinery operating in a neighboring factory, which leads
to harmonic floor vibrations of exactly24 Hz. The fixed
direction was determined using disturbance identification
techniques [8]. Using the triangular disturbance decoupling
control technique resulted in a factor2 reduction of the
servo error at24 Hz, see Figure 8. Note that herein, solely
multivariable control design freedom is used. Hence, there
are no associated SISO costs using this technique.

V. CONCLUSIONS

In this paper, three techniques are presented showing
how to exploit multivariable control design freedom. It
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Fig. 8. Cumulative power spectrum (CPS) of the servo error inp2-axis
with (α = 1.2) and without (α = 0) disturbance decoupling control.

is illustrated how bandwidth limitations due to flexible
modes can be eliminated with the use of decoupling control.
Instead of using modal control techniques, results of dyadic
control system theory can directly be applied to achieve
this. Possible independent control of flexible modes stresses
the need to exploit synergy between system design and
control.

When only rigid body decoupling is possible, flexible
mode contributions, resulting in cross-coupling, can be
reduced using multivariable feedforward design. Here,
a multivariable extension of jerk derivative feedforward
is used which decouples the transfer from reference
trajectories to the servo error. Also, an example is given
where interaction in the open loop may result in improved
disturbance control. With a fixed disturbance direction, it is
demonstrated that multivariable control design freedom can
be exploited. Hence it is demonstrated that diagonalizing
the open loop transfer function may not always lead to
the best control design. The question rises how interaction
in disturbance models can be compared with interaction
of plant dynamics as both models may require a different
decoupling technique. Development of tools to quantify
this, is subject for future research.

It is important to develop more insight in the possibilities of
multivariable control and what can be achieved using this
kind of additional design freedom. Examples of industrial
multivariable control play an important role in justifying
application other then decentralized control in industrial
practice. Herein, it is important not to underestimate the
necessity of physical insight in control problems. Therefore,
tools may be developed to assist the control designer in
choosing a specific control structure in multivariable design.
With this, physical interpretation can be preserved while,
gradually, more multivariable control design freedom can
be used. Future research will focus on this.
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