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Abstract

This report is devoted to the symbolic calculation of the scattering coefficient in

diffraction by a circular disk, by use of Mathematica. Three diffraction problems are

considered: scalar diffraction by an acoustically soft or hard disk, and electromag

netic diffraction by a perfectly conducting disk. In the low-frequency approxima

tion, the solutions of these problems are in the form of expansions in powers of ka,

where k is the wave number and a the radius of the disk. The emphasis is on the

low-frequency expansion for the scattering coeffcient, of which several terms are

determined exactly with the help of Mathematica.
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1 Introduction

In recent years the symbolic programming language Mathematica has become an im

portant tool in the analysis of mathematical problems of which the solution involves

extensive analytical calculations. In this report we will use Mathematica to calculate the

scattering coefficient for low-frequency diffraction by a circular disk. Here it is appropri

ate ro refer to Hurd [12] for a previous symbolic calculation of the scattering coefficient,

as early as 1971 and therefore of limited scope, by use of the programming language

FORMAC.

More specific, we consider the diffraction of a normally incident, plane wave by a

circular disk of radius a. A harmonic time dependence of the form exp(-hut), with

frequency w, is assumed and suppressed throughout. Three diffraction problems are

distinguished and treated in successive chapters of this report: (i) scalar diffraction by

an acoustically soft disk (Chapter 2); (ii) scalar diffraction by an acoustically hard disk

(Chapter 3); (iii) electromagnetic diffraction by a perfectly conducting disk (Chapter 4).

These diffraction problems have exact solutions in terms of spheroidal wave functions;

see [10, Chapter 14] for a survey of methods of solution and results. In this report

we are especially interested in low-frequency approximations to the exact solutions,

valid when the disk radius a is small compared with the wavelength. In the low

frequency approximation, the solution of the diffraction problem is given by a power

series expansion in powers of a = ka, where k is the wave number. Corresponding low

frequency expansions (in powers of a) are obtainable for various field quantities such as

the scattered field on the disk, the scattered far field and the scattering coefficient. Here

the scattering coefficient is defined as the ratio of the total energy scattered to the energy

incident on the disk. The first few terms of these low-frequency expansions can easily

be determined and are known from the literature. Evaluation of the higher-order terms

involves a considerable amount of work and soon becomes prohibitive with increasing

order. However, the calculations are completely systematic and straightforward, and

therefore well suited to be carried out by a computer algebra system. To demonstrate
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this by an example, we will use Mathematica to calculate the low-frequency expansion of

the scattering coefficient for the three diffraction problems mentioned. In principle the

expansion can be evaluated up to arbitrary order; in practice the order is limited by the

available computer capacity.

All diffraction problems are solved by two independent methods. In the first method,

due to Bazer and Brown [1], Boersma [3], the scattered field is represented by suitable

integrals which contain unknown auxiliary functions. The integral representations are

designed to satisfy all conditions of the diffraction problem except for the boundary

conditions on the circular disk. Imposing the latter conditions leads to Fredholm inte

gral equations of the second kind for the auxiliary functions. The kernel of the integral

equations is small of order a, thus permitting a solution of the integral equations by

power-series expansion in powers of a or by Picard iteration. The solution obtained

is inserted into the expression for the scattering coefficient yielding the desired low

frequency expansion. In the second method, due to Bouwkamp [6,8,9], the diffraction

problems are formulated in terms of integral equations of the first kind or integra

differential equations for the scattered field on the disk or, in the case of electromagnetic

diffraction, the currents induced in the disk. Substitution of low-frequency expansions

for the scattered fields or currents and further expansion in powers of ik, leads to a

recursive system of integral equations or integra-differential equations. This system is

solved by expansion in suitable Legendre polynomials, whereby the expansion coeffi

cients are determined by a recurrence relation. These coefficients are inserted into the

expression for the scattering coefficient yielding the desired low-frequency expansion.

The two methods of solution give rise to two different schemes for the calculation of

the low-frequency expansion of the scattering coefficient. Mathematica-implementations

of these schemes are listed in Appendices A-E. The results of the calculations by

Mathematica are presented in Sections 2.4, 3.4, and 4.4. For the successive diffraction

problems we have tabulated the exact values of the first ten coefficients and the numerical

values (to six significant digits) of the first twenty coefficients in the low-frequency

expansion of the scattering coefficient. It is found that the two different schemes do
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(1.1)-1~t~1.

yield the same results for the scattering coefficient. This provides an excellent check on

the correctness of the mathematical analysis and of the Mathematica-programmes.

Finally, we present a list of the key equations in our schemes for calculating the scattering

coefficient. In Chapter 2 we consider the scalar diffraction of a normally incident, plane

wave by an acoustically soft, circular disk. Two independent solutions of the diffraction

problem are presented. The solution obtained by the method of Bazer and Brown [1] is

expressed in terms of the auxiliary function get), which satisfies the integral equation

1 11
sinh [aCt - s)]

get) = cosh(at) + -. g(s) ds,
nl -I t - S

The scattering coefficient (J2 of the soft circular disk is given by

8 11

(J2 =-- 1m cosh(at)g(t) dt,
na 0

(1.2)

ap,n =

expressed in terms of the function get). In unpublished work of Bouwkamp, referred

to in [9, p. 71] and reconstructed in Section 2.3, the solution is described by expansions

in Legendre polynomials with expansion coefficients ap,nT where p = 0, 1,2, ..., n =
0, 1, ... , [pj2]. These coefficients are determined by the recurrence relation

(-It+1 (2n + 1) r(n + 1) ~r2 (l q + 1) [(P~2\_1)ma _ rem + ~)
2 r(n + 1) L..J 2 2 L..J p q,mr(m + 1)

2 q=1 m=O

1

r Gq - m - n + Dr (~q +m - n + 1)
1

r Gq - m + n + 1) r Gq +m + n + D' (1.3)

(1.4)

valid for p = 1,2,3, ... , n = 0, 1, ... ,[p/2], and initiated by ao,O = 1. The low-frequency

expansion of the scattering coefficient (Jz is given by

8 00

(Jz = -- L(-I)Pa2P+I oazP .
n p=o '

Chapter 3 deals with the scalar diffraction of a normally incident, plane wave by an

acoustically hard, circular disk. Again, two independent solutions of the diffraction
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(1.5)-1::::;t::::;1.

problem are considered. The solution obtained by the method of Bazer and Brown [1]

is expressed in terms of the auxiliary function f(t), which satisfies the integral equation

. 1 11 sinh [a(t - s)]
f(t) = smh(at) + -. f(s)ds,

7l'l -1 t-s

(1.6)

The scattering coefficient al of the hard circular disk is given by

8 11

al = - 1m sinh(at)f(t) dt,
7l'a 0

expressed in terms of the function f(t). The solution due to Bouwkamp [6] is described

by expansions in Legendre polynomials with expansion coefficients bp,n, where p =
0, 1,2, . 0 0' n = 0, 1, . 0 0, Np , with Np = p/2 (p even) or Np = (p - 3)/2 (p odd). These

coefficients are determined by the recurrence relation

bp,n = n+l( 3)r(n+l)~ (1 1) (1 1)~ m r(m+~)
(-1) n + 4 r(n +~) f=2 r '5.q - '5. r '5.q + '5. f;;;o(-I) bp-q,m r(m + 1)

1

r (4q - m - n - Dr Uq +m - n + 1)
1

r (iq - m + n + 1) r (iq + m + n + D' (1.7)

(1.8)

valid for p = 2,3,4, ..., n = 0,1,. 0 0, Np , and initiated by bo.o = -2/7l'. The low

frequency expansion of the scattering coefficient al is given by

4 ~ 2 +4
al = :3 L...,(-I)P b2p+3.0 a p .

p=o

It is interesting to note that the integral equations (1.1) and (1.5) may be solved simulta

neously. Indeed, by adding (1.1) and (1.5) we obtain the single integral equation

h(t) = eat +~ 11 sinh [a(t - s)] h(s) ds, -1::::; t ::::; 1, (1.9)
7l'l -1 t-s

for the function h(t) = g(t) + f(t). Then, g(t) is recovered as the even part of h(t), while

f(t) is equal to the odd part of h(t).

In Chapter 4 we consider the electromagnetic diffraction of a normally incident, plane

wave by a perfectly conducting, circular disk. Two independent solutions of the

diffraction problem are proposed, taken from Boersma [3, Sec 3.3] and Bouwkamp [8].
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(1.10)

(1.14)

(1.11)

(1.13)

(1.12)

Boersma's solution is expressed in terms of three auxiliary functions lo(t), go(t), and gl (t),

which satisfy the integral equations

oF. sinh(at) 1 11 sinh [a(t - s)] d
Jo(t) = + -. lo(s) s, -1 ~ t ~ 1,

a 7fl _I t-s

1 11 sinh [a(t - s)]
go(t) = cosh(at) + -. go(s)ds, -1 ~ t ~ 1,

7fl -I t-s

t sinh(at) 1 II sinh [a(t - s)]
gl(t) = + -. gl(s)ds, -1 ~ t ~ 1.

a 7fl -I t-s

Next, the constants Co and C are determined by

C = _gl(1) C = 10(1)
o go(1) , - 10(1) + gi (1) + Co g~(1)

The scattering coefficient a of the conducting circular disk is given by

a = : 1m (C + 1)11

sinh(at)/o(t) dt) ,
expressed in terms of the constant C and the function IoU). Bouwkamp's solution [8]

(1.15)

involves low-frequency expansions with expansion coefficients an,n-Zv, bn,n-zv, and pn,

where n = 1,2,3, ..., v = 0,1, ... , [(n + 1)/2]. These coefficients are determined succes

sively by the system of equations
n 1 [("(+1)/Z] [(n+I)/Z] pzv8 (n - r)! ~ a"(,"(-Zv I(v, 0, n - r; p) = ~ Pn-ZII 2z11 (v!)2'

n 1 [("(+I)/Z] [(n+I)/Z] pZII

8 (n - r)! ~ b"(,"(-ZII I(v, 1, n - r; p) = ~ pn-ZII 2z11 (v _ 1)! (v + 1)!'

(1.16)

[(n+I)/Z] ( r(v+1) 4r(v+;!»)
an,n = 8 (_1)11+1 r(~) r(v ~ 1) an,n-Zv + (_1)11 r(~) r(~) bn,n-zlI' (1.17)

valid for n = 1,2,3, ... , and initiated by P_I = 1, Po = O. Here the I-functions are

polynomials in pZ, generally given by

I(n, m, JJ,; p)

-
~r(m +~) r(m + 1) r(n - m + 1) r(4JJ, - n - m + 4) r(4JL + n - m + 1)

(1.18)

9



where F stands for the hypergeometric function. For fixed n = 1,2,3, .. "/ the equa

tions (1.15)-(1.17) can be reduced to a system of 2[(n + 1)/21 + 2 linear equations for

the same number of unknown coefficients an•n-2v, bn,n-2v, and pn. The low-frequency

expansion of the scattering coefficient a is given by

8 2:oo
)n 2na = - (-1 a2n 2n ex ,

Jr '
n=1

expressed in terms of the coefficients a2n.2n only.

10
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(2.1)

2 Diffraction of a scalar wave by a soft circular disk

2.1 Formulation of the problem

We consider the acoustic diffraction of a normally incident, plane wave by an acoustically

soft, circular disk D, of radius a. In terms of Cartesian coordinates x, y, z, the disk D is

described by °~ x2+ y2 ~ a2, z = 0. In addition we employ cylindrical coordinates p,

<{I, z, specified by x = pCOS<{I, Y = psin<{l. The incident wave is given by <t>i(X,y,z) =
exp(ikz), where k is the wave number and a harmonic time dependence exp(-iwt) is

suppressed throughout. Thus the primary wave <1>i is incident from z < 0.

Following Bouwkamp [9, pp. 38-39], we express the resulting total field <1>/ as

/ { exp(ikz) - 4>2(X, y, -z), Z < 0,
<1> (x, y, z) =

exp(ikz) - 4>2(X, y, z), Z > 0,

where 4>2, which is defined for z ::: °only, has the following properties:

1) 4>2 satisfies the Helmholtz equation

2)

3)

/),,4>2 + k24>2 = 0, when z > 0;

a4>2
~(x, y, 0) = 0, when x 2+ y2 > a2;

4>2(X, y, 0) = 1, when x2+ y2 < a2;

(2.2)

(2.3)

(2.4)

4) 4>2 satisfies the Sommerfeld radiation condition at infinity;

5) 4>2 is everywhere finite;

6) V4>2 is quadratically integrable over any domain in JR3.

In this manner the diffraction problem for a soft circular disk has been reduced to a

boundary value problem for 4>2. By Babinet's principle [9, p. 39], also the complementary

problem of diffraction through a circular aperture in an acoustically hard, infinite, plane

screen, can be solved in terms of the function 4>2.
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Since the diffraction problem is axially symmetric, ¢2 is independent of the angle ({J and

we will use the notation ¢2(P, z) as an alternative to ¢2(X, y, z). At large distances from

the disk, ¢2 behaves like an outgoing spherical wave. In terms of spherical coordinates

R, 0, ({J, specified by

p = R sin 0, z = R cos 0, 0 :s 0 :s n,

we have the far-field expansion

eikR

¢2(R sin 0, R cos 0) = A2(0) R + 0 (R-2) , (R ~ (0)

(2.5)

(2.6)

where A2(0) is the far-field amplitude. Of interest is the scattering coefficient a2 of the

soft circular disk, which is defined as the ratio of the total energy scattered to the energy

incident on the disk. Likewise, the transmission coefficient !2 of the complementary

circular aperture in a hard plane screen is defined as the ratio of the energy transmitted

through the aperture to the energy incident on the aperture. According to Levine and

Schwinger's cross-section theorem, a2 is related to the far-field amplitude of the scattered

wave -¢2 in the direction of incidence (0 = 0),

4
a2 = - a2k 1m A2(0), (2.7)

whereas !2 = &a2; see Jones [13, §§ 8.19, 9.4].

In the next sections the boundary value problem for ¢2 is solved by methods developed

by Bazer and Brown [1] and by Bouwkamp. Both methods are well suited to obtain a

low-frequency approximation to the solution, involving low-frequency expansions in

powers of ex = ka for various field quantities. The emphasis is on the low-frequency

expansion for the scattering coefficient a2, of which several terms are exactly determined

by means of Mathematica.

12



(2.8)

(2.9)

(2.12)

2.2 Bazer and Brown's solution

2.2.1 Reduction to an integral equation

Using the method of Bazer and Brown [1], we represent 412(P, z) by the integral (cf. [1,

form. (55)])

I
I exp (ikJp2 + (z + iat)2)

412(P, z) = h(t) dt,
-I J p2 + (z + iat)2

valid for z 2: O. Here, h(t) is a yet unknown function which is required to be an even

function of t. The branch of the square root is taken such that ReJp2 + (z + iat)2 > 0,

when z > O. We then have, for 0 < p < a,

-iJa2t2 - p2, -1:s t < -pia,

lim J p2 + (z + iat)2 = J p2 - a2t2, -pia < t < pia,
z,j.O

iJa2t2 - p2, pia < t :s 1.

As shown in [1], the representation (2.8) satisfies all conditions of the boundary value

problem for 412, except for the boundary condition (2.4). By use of (2.9) we have, for

0< p < a,

Imposing the boundary condition (2.4), we obtain the integral equation [1, form. (64)]

l
Pla cos (a) (pla)2 - t2) a III sinh (aJt2 - (pla)2)

--r==::;=======-----'- h (t) d t = - + - h (t) d t ,
o J(pla)2 - t2 2 i 0 Jt2 - (pla)2

(2.11)

where a = ka. As detailed in [l], the integral operator on the left in (2.11) can be inverted

by means of Laplace transformation. As a result it is found that equation (2.11) reduces

to the Fredholm integral equation [1, form. (67)]

a 1 II sinh [a(t - s)]
h(r) = - cosh (ext) + -. h(s) ds, -1:S t :s 1.

n n l -I t - S

13



By setting h(t) = (a/Jr) get), we are led to the integral equation

1 11 sinh [aCt - s)]
get) = cosh(at) + -. g(s)ds, -1::: t ::: 1,

Jrl -1 t-s
(2.13)

which is the first key equation in the scheme for calculating the low-frequency expansion

of the scattering coefficient (%z.

2.2.2 Far field and scattering coefficient

At large distance R from the disk the square root JpZ + (z + iat)Z takes the asymptotic

form

JpZ + (z + iat)Z JRZ + 2iatR cos () - aZtZ

- R + iat cos() + 0 (R- 1
), (R -* 00). (2.14)

Here, R, () are spherical coordinates, specified by (2.5). By inserting (2.14) into (2.8), we

obtain the far-field expansion

eikR

¢z(R sin(), R cos() = Az«() R + 0 (R-Z) , (R -* 00) (2.15)

with far-field amplitude

11 2a 11

Az«() = exp(-atcos()h(t)dt = - cosh(at cos ()g(t) dt.
-1 Jr 0

The expression (2.7) for the scattering coefficient (%2 now becomes

8 11

(%z = -- 1m cosh(at)g(t) dt,
Jra 0

(2.16)

(2.17)

expressed in terms of the function get). This is the second key equation in our scheme

for calculating the low-frequency expansion of (%2.

2.2.3 Scheme for calculating the scattering coefficient

Our scheme for calculating the low-frequency expansion of the scattering coefficient (%2

is based on the two equations (2.13) and (2.17). Two methods are employed for the

solution of the integral equation (2.13). In the first method, the kernel of the integral

14



equation is expanded in powers of ct and the function g (t) is replaced by the power-series

expansion

00

get) = Lg,,(t)ct",
,,=0

(2.18)

with coefficients g,,(t) to be determined. By equating terms containing the same power

of ct, one is led to a recurrence relation for g,,(t) expressed in terms of preceding co

efficients. In the second method, the integral equation is solved by Picard iteration,

whereby a factor ct is gained in each iteration step. The expansion of get) thus deter

mined is inserted into (2.17) and the function cosh(ctt) is expanded in powers of ct. Then

by a straightforward evaluation we find the required low-frequency expansion of (52 up

to a certain order.

A Mathematica-implementation of the scheme using power-series expansion is listed in

Appendix A; the function is called BazerBrown2. The Mathematica-function P icard2

listed in Appendix Buses Picard iteration. The results of the calculations by Mathematica

are presented in Section 2.4.

2.3 Bouwkamp's solution

This solution goes back to unpublished work of Bouwkamp, referred to in [9, p. 71]. In

this section we will reconstruct the details of Bouwkamp's solution. For convenience

we take the radius of the disk D equal to unity.

2.3.1 Reduction to a system of integral equations

Following Bouwkamp [9, form. (2.9)], we represent ¢2 by

¢2(X) = _1 f· [ u(x') exp(iklx - x'l) dx'dy',
2]( JD Ix - x'i

where x = (x, y, z), x' = (x', y', 0) and

u(x') = - a¢2(X', y', 0).
az'

15
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(2.23)

By imposing the boundary condition (2.4), we are led to the following integral equation

for u(x'):

_1 f' ( u(x') exp(iklx - x'l) dx'dy' = 1. xED. (2.21)
2rr Jo Ix - x'i

To solve this equation, we expand the exponential function in powers of ik and we

substitute for U (x') the power-series expansion

2 00

u(x') = - L up(x') (ik)P. (2.22)
:rr p=O

with coefficients up(x') to be determined. As a result we find that equation (2.21) passes

into

00 PIllL(ik)P L I" Up_q(x') Ix - x'l q
-

1 dx'dy' = rr Z
• XED.

p=o q=o q. 0

All terms of the power series on the left have to vanish except the term independent

of k, which must be equal to :rrz. This leads to the recursive system of integral equations

ILI:P~x'~1 dx' dy' = Up(x). xED. P = 0.1.2....•

where

Uo(x)

-t ~ I {up_q(x')lx - x'l q
-

1 dx' dy'. P = 1.2.3....
q=l q. Jo

2.3.2 Solution of the integral equations

(2.24)

(2.25)

(2.26)

We introduce polar coordinates p, q;, and p', q;', on the disk D, specified by

{

x=pcosq;. y=psinq;. O~p~ 1. O~cp~2rr.
(2.27)

x' = p' cos q;'. y' = p' sin cp' • 0 ~ p' ~ 1. 0 ~ q;' ~ 2rr.

In view of the axial symmetry of the diffraction problem, we change the notations u(x'),

up(x'), into u(p'), up(p'). Since the integrals in (2.24) and (2.26) are independent of q;, the

distance Ix - x'i = r may be taken as

r = JpZ + p'z - 2pp' cos q;'.

16
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(2.29)

and we change the notation Up(x) into Up(p). Then, in polar coordinates, the system of

integral equations (2.24)-(2.26) takes the form

1
2rr 11 U (p')

-P_-p' dp' dcp' = Up(p), °~ p ~ 1, P = 0, 1,2, ... ,
o 0 r

where

(2.30)

(2.32)

(2.31)Up(p) _ - t ~ (2rr t up_q(p') r q- I p' dp' dcp', P = 1,2,3, ...
q=1 q. io io

The integral equation (2.29) is solved by expansion of up(p') in a series of "eigenfunc

tions" P2m(JI - p,2)/Jl - p'2, m = 0, 1,2, ...; here, P2m is the Legendre polynomial of

even degree 2m. Basic in the analysis is the key integral

1
2rr 11 P (v'I - p'2)

I (m, q; p) = 2m r q- I p' dp' dcp',
o 0 Jl - p,2

m = 0, 1, 2, ... , q = 0, 1, 2, ... , 0 ~ p ~ 1,

which is a special case of an integral calculated by Bouwkamp [7]. From [7, form. (2),

(4)] we quote the result

(2.33)
n

in which the coefficients Cn are expressible in terms of gamma functions as follows:

1
m+n (2 I) f(m + ~)r(n + ~)f(q + l)f2(~q + ~)

cn(m, q) = :rr(- ) n + 2 f(m + l)f(n + 1)

1

(2.35)

(2.34)

r (~q - m - n + Df (!q + m - n + 1)
1

f (~q - m + n + 1) f Oq + m + n +~)'

In (2.33) the summation over n must be taken according to max(O, m - ~q) ~ n ~ m + ~q

(q even) or 0 ~ n ~ ~(q - 1) - m (q odd). In the latter case, I (m, q; p) = 0 if m > ~(q - 1).

In the special case q = 0 we have

1
2rr 11 P2m (JI - p'2) 1

I (m, 0; p) = - p' dp' dcp'
o 0 Jl - p,2 r

r 2(m + 1)
:rr f2(m + ~) P2m (JI - p2).

17



This integral relation explains why the functions P2m()1 - pI2)/)1 - pl2 are called

"eigenfunctions".

The solution of the integral equation (2.29) now follows in an obvious manner. The

right-hand side Up(p) is expanded in a series of Legendre polynomials P2n ()1 - p2), say

Up(p) = L Up,nP2n()1 - p2).
n

Then the solution for up (pi) is given by the "eigenfunction" expansion

(2.36)

(2.37)

(2.38)

u ( ') = ~ '"' r 2
(n + 1) U P2n C)1 - p'2)

p P Jr L;: r 2 (n + t) p,n )1 _ pl2 .

For p = 0 we have UoCp) = Jr2 = Jr2 PoC)1 - p2), hence, the solution becomes

UO(p') = PoC)1 - p12) = 1
) 1 - pl2 ) 1 _ pl2

Continuing with p = 1,2, 3, ... , we find that the expansions (2.36) and (2.37) reduce

to finite expansions where the summation over n is from 0 to [pI2]; the notation [pI2]

stands for the largest integer :s p12. Accordingly, we make the Ansatz

(2.39)

in which ao,O = 1 by C2.38), and the remaining coefficients ap,n are to be determined

recursively. On substitution of (2.39) into (2.31), we obtain the finite expansion

p 1 [(p-q)j2]
- L I" L ap_q,m ICm, q; p)

q=! q. m=O
p 1 (p-q)j2]

- L I" L ap-q,m LcnCm,q)P2n C)1 - p2),
q=! q. m=O n

(2.40)

(2.41)

from which the coefficients Up,n can be read off. By identifying the expansions (2.37)

and (2.39), we are led to the following recurrence relation for the coefficients ap,n:

1 r 2 Cn + 1) p 1 (p-q)j2]
ap,n = - Jr r2(n 1) L I" L ap_q,m cnCm, q).

+ 2 q=! q. m=O

18



Here we insert the expression (2.34) for cn(m, q) to find the recurrence relation in its final

form

r( 1) p [(p-q)/Z] rem + I)
(-It+1 (2n + 1) n + "rz (1 q + 1) " (-l)ma _ 2

Z r(n + 1)~ 2 Z ~ P q,m rem + 1)
Z q=1 m=O

1

r Gq - m - n + Dr Gq + m - n + 1)
1

r Gq - m + n + 1) r (!q + m + n + D' (2.42)

valid for p = 1,2,3, ... , n = 0, 1, ... , [pI2], and initiated by ao,O = 1. This recurrence re

lation is the first key equation in the scheme for calculating the low-frequency expansion

of the scattering coefficient az.

2.3.3 Far field and scattering coefficient

Starting from the representation (2.19) for <Pz(x), we determine the far field at an ob

servation point x = (R sin e, 0, R cos e), where R, e are spherical coordinates. For an

integration point x' E D with polar coordinates p', cp' (see (2.27», the distance Ix - x'i

takes the asymptotic form

Ix - x'i - JRZ - 2Rp' sin ecoscp' + plZ

= R - p'sinOcoscp' + 0 (R- 1
), (R ~ 00). (2.43)

(2.45)

(2.44)

Using this result in (2.19), we obtain the far-field expansion

eikR

<P2(R sin e, 0, R cose) = A2(e)R + 0 (R-Z
) , (R ~ 00)

with far-field amplitude

Az(e) = 2~ lzrr11

u(p')exp(-ikp'sinecoscp')p'dp'dcp'.

To further evaluate Az(e), we replace u (p') by its low-frequency expansion taken from (2.22)

and (2.39), viz.

2 00 [piZI P (Jl IZ)

u(p') = - "Uk)P " a ,n Zn - p .
n~ ~ p Jl a

p=O n=O - P
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(2.47)

Furthermore, we need the auxiliary integral

1
z

1I" 11 P (Jl - p'Z)
Zn exp(-ikp' sin 0 cos q/)p' dp' dcp'

° ° JI - pl2

= 7r..fi f(n + ~) hn+1/Z(k sinO)
f(n + 1) (ksinO)I/Z '

quoted from Boersma and Danicki [4, form. (2.6), (2.8)]; here, J2n+l/Z is the Bessel function

ofthe first kind of order 2n+!. As a result we have for Az (0) the low-frequency expansion

Az(O) = ,J2 fUk)P Ea nf(n +~) hn+l/.z(k sinO), (2.48)
7r P=O n=O P, f(n + 1) (k smO)I/Z

in terms of the coefficients ap,n'

According to (2.7), the scattering coefficient (7z is related to the far-field amplitude in the

direction of incidence. By setting 0 = 0 in (2.48), we find the low-frequency expansion

4 8 00

(7z = --ImA2(0) = -- L(-I)PazP+l,okzp (2.49)
k 7r P=O

for the scattering coefficient of a circular disk of unit radius. For a disk of radius a, the

low-frequency expansion of (7z follows by replacing k with ex = ka in (2.49), viz.

8 00

(7z = -- ~(-I)pazp+loexzP . (2.50)
7r L '

P=O

This is the second key equation in our scheme for calculating the low-frequency expan-

sion of (7z.

2.3.4 Scheme for calculating the scattering coefficient

The scheme for the calculation of the low-frequency expansion of the scattering coeffi

cient (7z is now obvious. Starting from the initial value ao,o = 1, we use the recurrence rela

tion (2.42) to determine a number of coefficients ap,n, P = 1,2,3, ..., n = 0, I, ... , [pI2].

Only the coefficients aZp+l,O, P = 0, 1,2, ..., are needed in the low-frequency expan

sion (2.50) of (7z.

A Mathematica-implementation of this scheme is listed in Appendix C; the function is

called Bouwkamp2. The results of the calculations by Mathematica are presented in the

next section.
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2.4 Results for the scattering coefficient U2

Using the Mathematica-packages in Appendices A, B, and C, we can evaluate the low

frequency expansion of the scattering coefficient 0'2 up to arbitrary order. The expansion

is in even powers of a and the leading term is found to be 16/1r2• Therefore we set

00 16 00

'" 2n '" - 2110'2 =~ 0'2.2n a = 2 L 0'2,2n a .
n=O 1r n=O

(2.51)

in which 0'2,0 = 16/1r2
, 0'2,0 = 1. The expansion (2.51) has been evaluated up to and

including terms of order a 18• In Table 2.1 we present the exact values of the normalized

coefficients a2.2n = (1r 2 /16) 0'2,211 for n = 0(1)9. It is observed that a2,2n1 n = 0(1)9, is a

polynomial in 1r-2 of degree n, with rational coefficients and leading term (_I)n 2211 1r-211
;

these properties can be proved for general n by induction. In Table 2.2 we present the

numerical values, to six significant digits, of the coefficients 0'2.2n for n = 0(1) 19. It has

been found recently [5] that the expansion (2.51), considered as a power series in a, has

a radius of convergence 3.39879, to five decimal places.

The calculations were performed by all three schemes, namely, the two schemes based

on Bazer and Brown's method with the integral equation solved by power-series ex

pansion or by Picard iteration (cE. Section 2.2.3), and the scheme based on Bouwkamp's

method (cE. Section 2.3.4). All schemes do yield the same results of Table 2.1, which

provides an excellent check on the correctness of the mathematical analysis and of the

Mathematica-programmes. Moreover, the results of Tables 2.1 and 2.2 were also obtained

(and extended) by Professor 0.5. Jones (Dundee) by an independent Mathematica cal

culation. The Mathematica-programmes were executed on a 486DX33 computer with

8 MB internal memory, using Mathematica Enhanced Version 2.2 for Windows and Mi

crosoft Windows for Workgroups Version 3.11. For the calculation of ten coefficients as

in Table 2.1, the evaluation times for the three programmes were: 224.15 seconds for

BazerBrown2; 230.25 seconds for P icard2; and 937.52 seconds for Bouwkamp2.

Our expansion of the scattering coefficient 0'2 agrees with and extends the results of

Bouwkamp [9, form. (8.1)] and of Bazer and Brown [1, form. (75)]. In both references the
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coefficients 52,2n have been determined for n = 0(1)3. According to [10, form. (14.50)], the

best result available so far is an expansion up to and including terms of order a IO
, due to

Hurd [11]. Later on, Hurd [12] determined two additional terms of the expansion, with

coefficients 52,12 and 52,14, by use of the symbolic programming language FORMAC. The

results from [11, Table III] and [12] do agree with our Table 2.1.

In the schemes based on Bazer and Brown's method, the integral equation (2.13) is solved

either by power-series expansion or by Picard iteration. The first option leads to the

expansion (2.18) of get), which is evaluated up to a certain order. In Table 2.3 we have

listed the expansion coefficients gn(t) for n = 0(1)6. The corresponding expansion up to

ordera7 agrees with that of Bazer and Brown [1, form. (68)]. Note thatthe coefficientgn (t)

is an even polynomial in t of degree 2[n/2]. In the solution of (2.13) by Picard iteration,

a factor a is gained in each step. Because of the factor 8/na in (2.17), we need nineteen

iteration steps for the evaluation of (2.51) up to and including terms of order a 1S
•
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Table 2.1: Exact values of the normalized coefficients O'Z,Zn = (nz/16) O"Z,2n, n = 0(1)9,

in the expansion (2.51) of 0"2.

1

4 4
--+

rr2 9

16 8 71
= Jr4 - 3rr2 + 675

64 128 1936 568
- rr6 + 9 rr4 - 2025 rr2 + 33075

256 640 304 43168 9523
= -;s - 91l'6 + 45rr4 - 1786051T 2 + 4465125

1024 1024 28288 80704 640204 329068
- rr lO + 3rrs - 675rr6 + 35721rr4 - 13395375rr2 + 1620840375

4096 14336 485632 2208512 17011712 200408 28561418
rr l2 - 9rr lO + 2025rr s - 127575rr6 + 28704375rr4 - 25727625rr2 + 1917454163625

16384 65536 876544 104992768 53558528 9409312768
-~ + 9rr l2 - 675rr lO + 893025rrs - 9568125rr6 + 72937816875rr4

5427789356576 24646112
- 5033317179515625rr2 + 28761812454375

65536 32768 1519616 219004928 1004324096 248401408
----;J6 -~ + 225rr l2 - 297675rr lO + 22325625rrs - 165391875rr6

3275445271751792 5850372900928 2953662389
+ 135899563846921875rr4 - 45299854615640625rr2 + 74809474193829375

262144 1310720 13795328 774815744 4345136128
--rr-IS- + 9rr 16 - 405rr 14 + 178605rr12 - 13395375rr10

624041153536 9417147043033088 322152102668096
+ 43762690125rr s - 27179912769384375rr6 + 81539738308153125rr4

7973773660981292 200771738036
- 589124609276406328125rr2 + 135031100919862021875
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Table 2.2: Numerical values of the coefficients (522", n = 0(1)19,

in the expansion (2.51) of (52.

n 0"2,210 n 0"2,211

0 1.62114. 100 10 -1.25015.10- 11

1 6.34833. 10-2 11 -8.26174.10-13

2 -1.21411 .10-3 12 1.04976.10-13

3 -4.21848. 10-4 13 4.75653.10- 15

4 1.49251 . 10-5 14 -8.51679.10-16

5 2.99261.10-6 15 -2.40050.10- 17

6 -1.53096 . 10-7 16 6.71043.10- 18

7 -2.03550. 10-8 17 8.81790.10-20

8 1.42562. 10-9 18 -5.14921.10-20

9 1.33048.10-10 19 4.29350.10- 23

Table 2.3: Coefficients g,,(t), n = 0(1)6, in the expansion (2.18) of get).

go(t) =

2i

n
4 {2

- n 2 +"2
8i 4i i{2
-----
n 3 9n 3 n

16 4 2{2 {4

n 4 -3n2 -3n2 +24

32i 32i 4i 4i {2 4i {2 i {4

-7 + 9n3 - 75n + 3n3 - 45n - 60n

64 80 508 8{2 34{2 {4 {6

- n 6 + 9n4 - 2025n2 + 3n4 - 135n2 - 30n2 + 720
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(3.1)

3 Diffraction of a scalar wave by a hard circular disk

3.1 Formulation of the problem

We consider the acoustic diffraction of a normally incident, plane wave by an acoustically

hard, circular disk D, of radius a. The choice of Cartesian coordinates x, y, z, and

cylindrical coordinates p, 'P, z, is the same as in Section 2.1. The disk D is described

by 0 ~ x2 + y2 ~ a2, z = O. The incident wave is given by <l>i(X, y, z) = exp(ikz), with

wave number k, and incident from z < O.

Following Bouwkamp [9, pp. 38-39], we express the resulting total field <1>/ as

I { exp(ikz) + ¢I (x, y, -z), z < 0,
<I> (x, y, z) =

exp(ikz) - cPI (x, y, z), z > 0,

where cP\, which is defined for z ~ 0 only, has the following properties:

1) cPI satisfies the Helmholtz equation

2)

3)

cPI (x, y, 0) =0, when x 2+ y2 > a2;

acP\ .
-(x, y, 0) = lk, when x2+ y2 < a2;az

(3.2)

(3.3)

(3.4)

4) cPI satisfies the Sommerfeld radiation condition at infinity;

5) cPI is everywhere finite;

6) V¢I is quadratically integrable over any domain in lR3
•

In this manner the diffraction problem for a hard circular disk has been reduced to a

boundary value problem for cPl. Also the radiation problem for a freely vibrating, hard,

circular disk and, according to Babinet's principle [9, p. 39], the complementary problem

of diffraction through a circular aperture in an acoustically soft, infinite, plane screen,

can be solved in terms of the function cPl; see Bouwkamp [6].
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Because of the axial symmetry of the diffraction problem, ¢I is independent of the

angle C{J, and we will use the notation ¢I(P, z) as an alternative to ¢I(X, y, z). At large

distances from the disk we have the far-field expansion

(3.5)

(3.7)

with far-field amplitude AI (0); here, R, 0 are spherical coordinates specified by (2.5).

The scattering coefficient of the hard circular disk and the transmission coefficient of

the complementary circular aperture in a soft plane screen are denoted by al and TI,

respectively. As in (2.7), al is related to the far-field amplitude of the scattered wave -¢I

in the direction of incidence (0 = 0),

4
al = - a2k 1m AI (0), (3.6)

whereas TI = !al; see Jones [13, §§ 8.19, 9.4].

In the next sections the boundary value problem for ¢I is solved by methods developed

by Bazer and Brown [1] and by Bouwkamp [6]. Both methods are well suited to obtain

a low-frequency approximation to the solution, involving low-frequency expansions in

powers of ex = ka for various field quantities. The emphasis is on the low-frequency

expansion for the scattering coefficient aI, of which several terms are exactly determined

by means of Mathematica.

3.2 Bazer and Brown's solution

3.2.1 Reduction to an integral equation

Using the method of Bazer and Brown [1], we represent ¢I by the integral (d. [1,

form. (11)])

I
I exp (ikJ p2+ (z + iat)2)

¢I(P,Z) = J 2 2 11(t)dt,
-I P + (z + iat)

valid for z :::: O. Here, II (t) is a yet unknown function which is required to be an odd

function of t. The branch of the square root is taken such that Re J p2+ (z + iat)2 > 0,
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(3.8)

(3.9)

when z > O. As shown in [1], the representation (3.7) satisfies all conditions of the

boundary value problem for <PI, except for the boundary condition (3.4). By use of (2.9)

we have, for 0 < p < a,

. a<pI 1 a 11 exp (ikJp2 + (z + iat)2)
11m -(p, z) - lim -- (z + iat) II (t) dt
z.j.O az z.j.O pap -I J p2 + (z + iat)2

ia a lPla 2 exp (ikJp2 - a2t2)
- -- t/l(t)dt

p ap 0 J p2 - a2t2

a a 11 2 sinh (kJa2t2 - p2)
- -- tfl(t)dl.

pap pia Ja212 _ p2

Imposing the boundary condition (3.4), we obtain the integro-differential equation [1,

form. (33)]

a l Pla cos (aJ(pja)2 - 12)
- 1!I(t) dt
ap 0 J(pja)2 - 12

kp 1 a 11 sinh (aJ12 - (pja)2)
= - + -;-- tfl(t)dt,

2 l ap 0 JI2 - (pja)2

where a = ka. As detailed in [1, Sec. IV], both sides of (3.9) are integrated from 0

to p, whereupon the integral operator on the left can be inverted by means of Laplace

transformation. As a result it is found that equation (3.9) reduces to the Fredholm

integral equation [1, form. (49)]

f ( at . h 1 11
(Sinh [a(t - s)] cosh(al) Sinh(aS») f ( ) d1 I I) = - sm (at) + -. - SIS S,

Jr Jrl -I I-S S

-1 ~ 1 ~ 1.

(3.10)

We now observe that the latter equation can be simplified through a division by t.

Indeed, by setting

--------
S

I(t - s)

1 1

t - S t
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in the resulting integral on the right of (3.10), this integral can be rewritten as

~11
(Sinh [a(t - s)] _ sinh [a(t - s)] + cosh(at) Sinh(aS») fl (s) ds

Xl -I t-s t

_~11
(Sinh [a(t - s)] _ sinh(at) COSh(aS») fl (s) ds

J'Cl -I t - S t

1 11 sinh [a(t - s)]= -. f\ (s) ds,
Xl -I t-s

(3.12)

(3.13)

because It (s) is an odd function of s. Thus the integral equation (3.10) simplifies to

a . 1 11 sinh [a(t - s)]
fl(t) = - smh(at) + -. h(s)ds,

X Xl _\ t-s

This simplification was overlooked in [1]. By setting fl (t) = (a/x) f(t), we are led to the

integral equation

1 11 sinh [a(t - s)]
f(t) = sinh(at) + -. f(s) ds,

Xl -I t-s
(3.14)

which is the first key equation in the scheme for calculating the low-frequency expansion

of the scattering coefficient al.

3.2.2 Far field and scattering coefficient

By inserting (2.14) into (3.7), we obtain the far-field expansion

with far-field amplitude

1\ 2a 11

A I (l1) = exp(-atcosB)h(t)dt = -- sinh(atcosB)f(t)dt.
-I X 0

The expression (3.6) for the scattering coefficient a\ now becomes

8 11

al = -1m sinh(at)f(t)dt,
xa 0

(3.15)

(3.16)

(3.17)

expressed in terms of the function f(t). This is the second key equation in our scheme

for calculating the low-frequency expansion of al.
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3.2.3 Scheme for calculating the scattering coefficient

Our scheme for calculating the low-frequency expansion of the scattering coefficient UI is

based on the two equations (3.14) and (3.17). Two methods are employed for the solution

of the integral equation (3.14). In the first method, the kernel of the integral equation is

expanded in powers of a and the function f (t) is replaced by the power-series expansion
00

f(t) = Lf,,(t)a".
,,=0

(3.18)

with coefficients f,,(t) to be determined. By equating terms containing the same power

of a, one is led to a recurrence relation for fIlet) expressed in terms of preceding coeffi

cients. In the second method, the integral equation is solved by Picard iteration. Here, a

factor a 3 is gained in each iteration step, since f(t) is an odd function of t. The expansion

of f(t) thus determined is inserted into (3.17) and the function sinh(at) is expanded in

powers of a. Then by a straightforward evaluation we find the required low-frequency

expansion of UI up to a certain order.

A Mathematica-implementation of the scheme using power-series expansion is listed in

Appendix A; the function is called BazerBrownl. The Mathematica-function Picardl

listed in Appendix Buses Picard iteration. The results of the calculations by Mathematica

are presented in Section 3.4.

3.3 Bouwkamp's solution

3.3.1 Reduction to a system of integro-differential equations

Apart from a change of notation we closely follow the approach of Bouwkamp [6]. For

convenience we take the radius of the disk D equal to unity. In accordance with [6,

form. (3)], we represent cPI by

<PI (x) = __1 ~ /1 vex') exp (iklx - x'l) dx'dy', (3.19)
2rr az 0 Ix - x'i

where x = (x, y, z), x' = (x', y', 0) and

vex') = <PI (x', y', 0).
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By imposing the boundary condition (3.4), we are led to the following "integro-differential

equation" for v(x'):

lim __1 ~ f· [ v(x') exp (iklx - x'l) dx'd ' = ik, x2 + y2 < 1. (3.21)
z,(..O 2n az2 JD Ix - x'i y

To solve this equation, we expand the exponential function in powers of ik and we

substitute for v(x') the power-series expansion

00

v(x') = ik L vp(x') (ik)P,
p=O

(3.22)

with coefficients vp(x') to be determined. As a result we find that equation (3.21) passes

into

00 ( 1 a
2

p 1 f1 )L(ik)P lim ---2 L - vp_q(x') Ix - x'lq- 1 dx' dy' = 1,
p=O z,j,O 2n az q=O q! D

x2 + l < 1.

(3.23)

(3.24)x2 + l < 1, P = 0, 1, 2, ... ,

All terms of the power series on the left have to vanish except the term independent of k,

which must be equal to unity. This leads to the recursive system of integro-differential

equations (d. [6, form. (10)-(12)])

. 1 a2 11 Vp(x') , ,11m ---- dx dy = ~ (x),
z,j,O 2n az2 D Ix - x'i p

where

(3.27)

Vo(x) 1, (3.25)

Vp(x) - lim _1 a
2

~~ I [ vp_q(x') Ix - x'lq- 1 dx'dy', p = 1,2,3,... (3.26)
z,j,O 2n az2~ q! JDq=l

Note that the derivative

a2

- (Ix - x'lq-l) = (q - 1) Ix - x'lq- 3 + (q - 1)(q - 3) z2 1x - x'lq- 5

az2

vanishes for q = 1; hence, VI (x) = 0. By taking limits as z .,).. 0, we find that (3.26)

simplifies to

1 p q-1J1Vp(x) = 2" L -1- vp_q(x')lx - x'l q- 3 dx' dy',
n q=2 q. D

p = 2,3,4, ... (3.28)
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3.3.2 Solution of the integra-differential equations

We introduce polar coordinates p, cp, and p', cp', on the disk D,specified by (2.27). In view

of the axial symmetry of the diffraction problem, we change the notations v(x'), vp(x'),

into V(p/), vp(p'). Since the integrals in (3.24) and (3.28) are independent of cp, the distance

Ix - x'i = r may be taken as in (2.28) and we change the notation Vp(x) into Vp(p). The

integral in (3.24) is an axially symmetric potential function, which thus is annihilated by

the Laplace operator t!. = a2jap2+ p-l ajap + a2jaz2. Hence the left-hand side of (3.24)

can be reduced to

1· 1 a
2 11 Vp(x') d 'd IIm--- x y

z.j,O 2rr OZ2 D Ix - x'i
. 1 (a

2
1 a ) /1 Vp(x') d'd'- hm- -+-- x y

ZtO 2rr ap2 pap D Ix - x'i

1 (a
2

1 a )12"'11
Vp(p/) 'd'd '- - --+-- --p P cpo

2rr op2 p ap 0 0 r

(3.29)

Then, in polar coordinates, the system of integro-differential equations (3.24), (3.25),

(3.28) takes the form

1 (cP 1 a)12
,..11

V (p')- - + -- -p-- p' dp' dcp' = v (p),
2rr op2 p op 0 0 r p

0::::: p ::::: I, p = 0, 1,2, ... ,

where

(3.30)

VO(p) - I,

0,

1 ~ q - 112lf11
I q-3' , ,- "2 L-,- Vp_q(p)r pdp dcp,

rr q=2 q. 0 0
p = 2, 3,4, ...

(3.31)

(3.32)

(3.33)

This system is identical to that of Bouwkamp [6, form. (17)].

As detailed in [6, pp. 8-10], the solution of the integra-differential equation (3.30) is most

simply expressed in terms of Legendre polynomials P2n+1 (J1 - p'2), n = 0, 1,2, ..., of
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odd degree 2n + 1. Explicit results for vp(p'), with p = 0(1)7, are presented in [6,

form. (25)-(32)]. For p = 0 and p = 1 it is found that

2 2
vo(p') = -- PI(JI - p'2) = -- J1 - p'2, VI (p') = O. (3.34)

n n

For general p, Bouwkamp makes the Ansatz [6, form. (33)]

Np

vp(p') = L bp,n P2n+1 (J1 - p'2),
n=O

(3.35)

in which

p/2, P even,

(p - 3)/2, p odd,
(3.36)

and bo,o = -2/n by (3.34). The remaining coefficients bp,n are determined by the recur

rence relation established in [6, form. (34)]. We rewrite this relation in a form similar

to (2.42), viz.

n+1 ( 3) r(n + 1) ~ (I I) (I I)~ m r(m + ~)
bp,n = (-1) n + 4 r(n 1) L..., r "2q -"2 r "2q +"2 L...,(-1) bp-q,m r(m + 1)

+ 2 q=2 m=O
1

(3.37)

r Gq - m - n - nr Gq + m - n + 1)
1

r (!q - m + n + 1) r (!q + m + n + D'
valid for p = 2,3,4, ..., n = 0,1, ... , Np , and initiated by bo,o = -2/n. This recur

rence relation is the first key equation in the scheme for calculating the low-frequency

expansion of the scattering coefficient aI-

3.3.3 Far field and scattering coefficient

Starting from the representation (3.19) for ¢I(X), we determine the far field at an ob

servation point x = (R sine, 0, R cos e), where R, e are spherical coordinates. For an

integration point x' E D with polar coordinates pi, ({J', the distance Ix - x'i takes the

asymptotic form (2.43) as R -+ 00. Furthermore we have

a a
az = cos eaR + 0 (R -I) , (R -+ 00) (3.38)
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so that

~ (exp (iklx - X'I»)
dZ Ix - x'i

eikR

- ikcosO - exp(-ikp' sinOcoscp') + 0 (R-2
) ,

R
(R --+ (0). (3.39)

Using this result in (3.19), we obtain the far-field expansion

(3.40)

(3.41)

(3.42)

with far-field amplitude

ik cos 0 12
1<11

Al (0) = - v(p') exp(-ikp' sin 0 cos cp') p' dp' dcp'.
2:rr 0 0

By carrying out the integration with respect to cp', which leads to a Bessel function 10,

we find

Al (0) = -ik cos 011

v(p') lo(kp' sin 0) p' dp'.

To further evaluate A I (0), we replace v(p') by its low-frequency expansion taken from (3.22)

and (3.35), viz.

00 Np

v(p') = ik L(ik)P L bp,n P2n+1 (JI - p'2).
p=O n=O

(3.43)

(3.45)

(3.44)

In addition, we need the auxiliary integral

In = 11

P2n+l (JI - p'2) lo(kp' sinO) p' dp'

(_l)n 0(2n + I) P (0) hn+3/2(ksinO)y2" 2n (k sin 0)3/2

h r(n + ~) hn+3/2(k sin 0)

r(n + 1) (k sin 0)3/2 '

quoted from [6, p. 12]. As a result we have for Al (0) the low-frequency expansion

A (0) = he coso f--.(ik)P~ b r(n + ~) hn+3/2(k sin 0)
I ~ ~ p,n r(n+l) (ksinO)3/2 '

in terms of the coefficients bp,n.
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According to (3.6), the scattering coefficient al is related to the far-field amplitude in the

direction of incidence. By setting () = °in (3.45), we find the low-frequency expansion

(3.46)

for the scattering coefficient of a circular disk of unit radius. For a disk of radius a, the

low-frequency expansion of al follows by replacing k with a = ka in (3.46), viz.

4 ~ 2 +4al = '3 L)-l)P b2p+3.0 a p .

p=o
(3.47)

This is the second key equation in our scheme for calculating the low-frequency expan

sion of al.

3.3.4 Scheme for calculating the scattering coefficient

The scheme for the calculation of the low-frequency expansion of the scattering coeffi

ciental is now obvious, Starting from the initial value bo,o = -21n, we use the recurrence

relation (3.37) to determine a number of coefficients bp•n , P = 2,3,4, ..., n = 0,1, ... , Np •

Only the coefficients b2p+3,O, P = 0, 1,2, .. " are needed in the low-frequency expan

sion (3.47) of al.

A Mathematica-implementation of this scheme is listed in appendix C; the function is

called Bouwkampl. The results of the calculations by Mathematica are presented in the

next section.

3.4 Results for the scattering coefficient al

Using the Mathematica-packages in Appendices A, B, and C, we can evaluate the low

frequency expansion of the scattering coefficient al up to arbitrary order. The expansion

is in even powers of a and the leading term is found to be (l6/27n 2
) a 4

• Therefore we

set

00 16 4 00

" 2n a" - 2n-4al = L...J a1,2n ex = 27n2 L...J al.2n ex ,
n=2 n=2
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in which 0'1,4 = 16/27rr2, c11.4 = 1. The expansion (3.48) has been evaluated up to

and including terms of order a 22 • In Table 3.1 we present the exact values of the

normalized coefficients c11,2n = (27rr 2/16) a1,2n for n = 2(1) 11. From the tabulated values

and from additional calculated values of c11 ,2n, not presented here, it appears that c11.2n is a

polynomial in rr -2 of degree [(n - 2) /3], with rational coefficients. In Table 3.2 we present

the numerical values, to six significant digits, of the coefficients al,2n for n = 2(1)21. It

has been found recently [5] that the expansion (3.48), considered as a power series in a,

has a radius of convergence 2.12548, to five decimal places.

The calculations were performed by all three schemes, namely, the two schemes based on

Bazer and Brown's method with the integral equation solved by power-series expansion

or by Picard iteration (d. Section 3.2.3), and the scheme based on Bouwkamp's method

(d. Section 3.3.4). All schemes do yield the same results of Table 3.1, which provides an

excellent check on the correctness of the mathematical analysis and of the Mathematica

programmes. The Mathematica-programmes were executed on a 486DX33 computer

with 8 MB internal memory, using Mathematica Enhanced Version 2.2 for Windows and

Microsoft Windows for Workgroups Version 3.11. For the calculation of ten coefficients

as in Table 3.1, the evaluation times for the three programmes were: 86.73 seconds for

BazerBrownl; 72.50 seconds for Picardl; and 326.53 seconds for Bouwkamp1.

Our expansion of the scattering coefficient 0'1 agrees with and extends the results of

Bouwkamp [6, form. (44)], [9, form. (8.2)], and of Bazer and Brown [1, form. (54)]; these

results are the best available so far, according to [10, form. (14.104)]. In the references

mentioned the coefficients c11,2n have been determined for n = 2(1)5, corresponding to

an expansion up to and including terms of order a lO•

In the schemes based on Bazer and Brown's method, the integral equation (3.14) is

solved either by power-series expansion or by Picard iteration. The first option leads to

the expansion (3.18) of I (t), which is evaluated up to a certain order. In Table 3.3 we

have listed the expansion coefficients In (t) for n = 0(1) 10. The corresponding expansion

up to order all agrees with that of Bazer and Brown [1, form. (50)]. Note that the

coefficient In (t) is an odd polynomial in t of degree n - 3 or n according as n is even or
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odd. In the solution of (3.14) by Picard iteration, a factor a3 is gained in each step. Since

the zero-order approximation sinh(at) is of order a, we need seven iteration steps for

the evaluation of (3.48) up to and including terms of order a 22•
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Table 3.1: Exact values of the normalized coefficients <Tl,2n = (27n 2/16) al.2n, n = 2(1)11,

in the expansion (3.48) of al.

al,4 = 1

al,6
8

=
25

au
311

= -
6125

4 2612
al,lO = - 81rr2 + 496125

al,12
56 166918

= - 2025 rr2 + 420217875

al,14
3872 4911008

=
- 496125 rr2 + 213050462625

al,16
16 2466752 10209259

=
6561rr4 - 1674421875rr2 + 9587270818125

al,I8
64 10344876692 555982444

=
32805 rr4 - 49638236484375 rr 2 + 13853606332190625

158224 17909145896 207559549214
= 200930625Jr4 - 762623815078125rr2 + 165038012235386915625

64 86777216 218616645875024 115358087888
= -531441 T(6 + 406884515625rr4 - 998861794274875781251C2 + 3465798256943125228125
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Table 3.2: Numerical values of the coefficients a1,2,,, n = 2(1)21,

in the expansion (3.48) of a1.

n 0"1.2.. n 0"1.2..

2 6.00422.10-2 12 1.79404 . 10-8

3 1.92135.10-2 13 2.11383 . 10-10

4 3.04867. 10-3 14 -8.12669.10-10

5 1.56882. 10-5 15 -2.65462.10- 10

6 -1.44386. 10-4 16 -4.35129.10- 11

7 -4.60949. 10-5 17 -6.52346 . 10-13

8 -7.39515.10-6 18 1.92722.10- 12

9 -6.29012.10-8 19 6.36935.10- 13

10 3.42594 . 10-7 20 1.05513.10-13

11 1.10625 . 10-7 21 1.91370.10-15

Table 3.3: Coefficients f .. (t), n = 0(1) 10, in the expansion (3.18) of f(t).

!o(t) 0 !1(t) = ( !2(t) = 0
(3 2 i ( (5

h(t) = !4(t) = ~ !5(t) = 1206

8 i ( i (3

!6(t) --+-
225 JT 45 JT

!7(t)
4( /7

= - 81 JT2 + 5040

!8(t)
2i/ 2i (3 i /5
--+--+--
735JT 525JT 1260JT

h(t)
28/ 2 t3 t9

= - 2025 JT2 - 405 JT2 + 362880

!1O(t)
8it 16it 3li t3 2 i t5 it7

-729JT3 + 127575JT + 99225JT + 14175JT + 68040JT
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4 Diffraction of an electromagnetic wave by a conducting

circular disk

4.1 Formulation of the problem

We consider the electromagnetic diffraction of a normally incident, plane wave by a

perfectly conducting, circular disk D, of radius a. In terms of Cartesian coordinates x, y,

z, the disk D is described by 0 ~ x2 + y2 ~ a2, z = O. In addition we employ cylindrical

coordinates p, cp, z, specified by x = p cos cp, y = p sin cp, and spherical coordinates R,

0, cp, specified by p = R sinO, z = R cosO, The incident electromagnetic wave, denoted

by (Ei , Hi), has Cartesian field components

Ei = 0,0,0) exp(ikz), Hi = Jc/IJ,(O, 1,0) exp(ikz), (4.1)

where c and IJ, are the permittivity and permeability of the medium surrounding the disk.

The wave number k is given by k = wM, and a harmonic time dependence exp(-iwt)

is suppressed throughout. Thus the primary wave (Ei , Hi) is incident from z < O.

The resulting total field (EI , HI) is expressed as

(4.2)

where the scattered field (ES
, HS

) is due to the electric currents induced in the disk by

the incident wave. This scattered field has the following properties:

1) (ES
, HS

) satisfy Maxwell's equations outside the disk D;

2) the tangential electric field components E~, E~, vanish on the perfectly conducting

disk, hence

E~(x, y, 0) = -1, E~(x, y, 0) = 0, (4.3)

3) (ES
, HS

) satisfy the radiation condition at infinity;
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(4.5)

4) (El', H S
) satisfy the edge condition formulated as [9, p. 45]: ES and H S are quadrat

ically integrable over any domain in 1R3•

In this manner the diffraction problem for a perfectly conducting, circular disk has been

reduced to a boundary value problem for (ES
, H S

). By Babinet's principle [9, pp. 45-46],

also the complementary problem of diffraction through a circular aperture in a perfectly

conducting, infinite, plane screen, can be solved in terms of the fields ES
, HS

•

At large distances from the disk, the scattered field behaves like an outgoing transverse

spherical wave. In terms of spherical coordinates R, e, ({J, we have the far-field expansion

ikR

ES(R sine COS({J, R sine sin({J, R CDSe) = AS(e, ({J) eR + 0 (R-2
) , (R ~ (0) (4.4)

where the far-field amplitude AS(e, ((J) is perpendicular to the direction of observation.

Of interest is the scattering coefficient a of the conducting circular disk, which is defined

as the ratio of the total energy scattered to the energy incident on the disk. Likewise,

the transmission coefficient or of the complementary circular aperture in a conducting

plane screen is defined as the ratio of the energy transmitted through the aperture to

the energy incident on the aperture. According to Levine and Schwinger's cross-section

theorem, a is related to the x-component A~ of the far-field amplitude in the direction

of incidence (() = 0),

4 S
a = -2- Im Ax (0, ({J),

ak

whereas or = ~a; see Jones [13, §§ 8.19,9.4]. Here, the component A~ appears because the

electric field Ei in (4.1) is parallel to the x-axis and of unit amplitude. The dependence

of A~ on ({J does in fact drop out when e = o.
In the next sections the boundary value problem for (ES

, HS
) is solved by methods

developed by Boersma [3] and by Bouwkamp [8]. Both methods are well suited to obtain

a low-frequency approximation to the solution, involving low-frequency expansions in

powers of a = ka for various field quantities. The emphasis is on the low-frequency

expansion for the scattering coefficient a, of which several terms are exactly determined

by means of Mathematica.
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4.2 Boersma's solution

4.2.1 Reduction to integral equations

Apart from some minor changes of notation we follow the approach of Boersma [3,

Sec. 3.3]. The scattered field (ES
, HS

) is represented by

ES=V'xrr, 1
H S = -.- V' x V' x rr,

lWJ.L

where the magnetic Hertz vector rr satisfies the vector Helmholtz equation

(4.6)

(4.7)

outside the disk D. According to Lebedev and Skal'skaya [14], the vector rr may be

taken to have Cartesian components

n~ = 0, n~ = <I>(p, z), n~ = W(p,z)sincp, (4.8)

where the functions <I> and Ware odd and even in z, respectively. From (4.6) and (4.8)

we determine the electric field components

S an~ on~ oW. 2 W 2 0<1>
E = - - -- = - SIn cp + - COS cp - -,

x oy oz op p oz

S on~ (OW W)E = -- = -- + - sin cp coscp.
y ox op P

By imposing the boundary conditions (4.3) on E~, E;, we find that

0<1>
OZ (p, 0) = C + 1, W(p,O) = Cp, when p < a,

(4.9)

(4.10)

(4.11)

where C is a constant yet to be determined. Summarizing we arrive at the following

boundary value problems for the potentials <I> and W (see [3, p. 233]):

1) <I> and W satisfy the Helmholtz equations

a2<1> 1 0<I> 02<1>
-+--+-+k2<1>=0,op2 p op oz2

02W 1 oW 02W (2 1 )-+--+-+ k -- w=O;
op2 p op OZ2 p2
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2) <I>(p,O) = 0,
oW
a;-(p,O) = 0, whenp > a; (4.14)

3)
a<I>
a;-(p,O) = C + 1, W(p,O) = Cp, whenp < a; (4.15)

4) <I> and Wsatisfy the Sommerfeld radiation condition at infinity;

5) <I> and W satisfy the edge condition reformulated as [3, p. 233]: <I> and W remain

finite near the edge of the disk D; in a point with coordinates p = a + 8cosy,

z = 8 sin y, at a distance 8 > 0 from the edge, the expressions

a<I>lay - ~wand oWloy + ~ <I>

have expansions in powers of 8, in which no terms of order 81
/
z occur.

(4.16)

(4.17)

(4.18)

(4.19)

To solve these boundary value problems, we employ the methods of Bazer and Brown [1],

Bazer and Hochstadt [2]. Thus we introduce the integral representations (d. [3, form. (3.39),

(3.40)])

/

1 exp (ikj pZ + (z + iat)Z)
<I> (p, z) = (C + 1) I (t) d t ,

_I j pZ + (z + iat)Z

(
1 0 ) /1 exp (ikj pZ + (z + iat)Z)

W(p, z) = Cp -- get) dt,
pop -1 j pZ + (z + iat)Z

valid for z ~ 0, whereas for z ::: 0 we define <I>(p, z) = -<I>(p, -z), W(p, z) = w(p, -z).

Here the yet unknown functions I(t) and get) are required to be odd and even functions

of t, respectively; moreover, get) must satisfy the condition g(l) = O.

The representations (4.17) and (4.18) satisfy all conditions of the boundary value prob

lems for <I> and W, except for the boundary condi tions (4.15) and the second part of the

edge condition. Imposing the boundary conditions leads to Fredholm integral equations

for the functions I(t) and g(t). The boundary value problem for <I> is basically the same

as the problem for ¢1, as treated in Section 3.2.1. Therefore the integral equation for l(t)

reads, in conformity with (3.13),

I
aZ sinh(at) 1 /1 sinh [aCt - s)]

(t) = -. + -. I(s)ds, -1::: t::: 1,
70 a 7rl -1 t-s
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where a = ka. The boundary value problem for \II is treated by the method of Bazer and

Hochstadt [2]. Imposing the boundary condition (4.15) for \II, we obtain the integro

differential equation

8 1PIQ cos (aJ(P1a)2 - t 2) ap 1 8 11 sinh (aJt
2

- (p/a)2)
- g(t) dt = - + -- get) dt.
8p 0 J(pla)2 - t 2 2 i 8p 0 Jt2 - (pla)2

(4.20)

(4.21)

Both sides of (4.20) are integrated from 0 to p, whereupon the integral operator on the

left can be inverted by means of Laplace transformation. As a result we find for g(t) the

integral equation

a
3

(t sinh(at) C ) 1 11 sinh [aCt - s)] () d
g(t) = - + ocosh (at) + -. g s S,

If a Jrl -I t - s
-l~t~l,

in which Co is a constant determined by the condition gel) = O. The second part of

the edge condition applies to the expansions of the expressions (4.16) near the edge in

powers of 8. In these expansions the terms of order 81/2 should vanish. On imposing

the latter condition, the constant C is found to be given by (d. [3, form. (3.43)])

C = _ af(l)
af(l) + ig'(l)'

To simplify the presentation we set

(4.22)

a2

f(t) = -. fo(t),
lfl

(4.23)

(4.24)-l~t~l,

Then the odd function fo(t), and the even functions go(t) and gl (t), are solutions of the

integral equations

+. ( sinh(at) 1 11 sinh [aCt - s)]
)0 t) = + -. foes) ds,

a lfl -I t - S

1 II sinh [a(t - s)]
go(t) = cosh(at) + -. goes) ds,

Jrl -1 t-s
(4.25)

t sinh(at) 1 11 sinh [a(t - s)]
gl(t) = + -. gl(s)ds,

a Jrl _I t-s
(4.26)
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Next, the constants Co and C are determined by

C _ _ gl(1)
0- go(1) ,

C = fo(1)
- fo(1) + gi (1) + Co g~(1)

(4.27)

Equations (4.24)-(4.27) are key equations in our scheme for calculating the low-frequency

expansion of the scattering coefficient a.

4.2.2 Far field and scattering coefficient

By inserting (2.14) into (4.17) and (4.18), we obtain the expansions

eikR

et>(R sinO, R cosO) = A(O) R + 0 (R-Z
) , (R -+ (0)

eikR

\IJ(R sinO, R cosO) = B(O) R + 0 (R-Z
) , (R -+ (0)

in which A(O) and B(O) are given by

A(O) = (C+ 1) i: exp(-atcosO)f(t)dt

2a
Z 11

- --. (C+l) sinh(atcosO)fo(t)dt,
Jrl 0

B(O) = 2ikC sinO11

cosh(atcosO) g(t) dt.

These results are used in (4.9) to establish the far-field expansion

eikR

E~ (R sin 0 cos <p, R sin 0 sin <p, R cos 0) = A~ (0, <p) R + 0 (R-Z
) ,

where the x-component A~ of the far-field amplitude is found to be

(4.28)

(4.29)

(4.30)

(4.31)

(R -+ (0) (4.32)

(4.33)

(4.34)

The expression (4.5) for the scattering coefficient a now becomes

a = ~ 1m [-ikA(O)] = ! 1m (C + 1) t sinh(at)fo(t) dt) ,
a k Jr 10

expressed in terms of the constant C and the function fo(t). This is the final key equation

in the scheme for calculating the low-frequency expansion of a.
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4.2.3 Scheme for calculating the scattering coefficient

Our scheme for calculating the low-frequency expansion of the scattering coefficient (J"

is based on the key equations (4.24)-(4.27) and (4.34). First we solve the integral equa

tions (4.24)-(4.26) by Picard iteration, leading to expansions of the functions lo(t), go(t),

gl (t), in powers of a. In the solution of (4.25) and (4.26) a factor a is gained in each

iteration step. As for equation (4.24) there is a gain by a factor a 3
, since lo(t) is an odd

function of t. Next the expansions obtained are substituted into (4.27) to determine the

constants Co and C. Finally, the expansions of C and lo(t) are inserted into (4.34) and

the function sinh(at) is expanded in powers of a. Then by a straightforward evaluation

we find the required low-frequency expansion of (J" up to a certain order.

A Mathematica-implementation of this scheme is listed in Appendix D; the function

is called BoersmaEM. The results of the calculations by Mathematica are presented in

Section 4.4.

4.3 Bouwkamp's solution

4.3.1 Reduction to a system of integral equations

We closely follow the approach of Bouwkamp [8], except that we use rationalized Giorgi

(or m.k.s.) units instead of Gaussian units. For convenience we take the radius of the

disk D equal to unity. The scattered field (Es
• HS

) is derived from a vector potential A,

according to

ES = ikA - ~ V V . A
ik '

(4.35)

The scattered field is due to the electric currents induced in the disk by the incident

wave (4.1). Let I denote the surface-current density, then the vector potential A may be

taken as

A(x) = _1 [iij (I(x') exp(iklx ~ xii) dx'dy',
4n V-; JD Ix - x I
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(4.37)

where x = (x, y, z) and x' = (x', y', 0). Clearly, A has non-zero Cartesian components A.H

Ay , whereas Az = O. From (4.35) we determine the electric field components

ES = ikA _ 2.~ (aAx aAy)
x x ik ax ax + ay ,

(4.38)ES=ikA _..!.-~(OAx OAy)
y y ik oy OX + ay ,

to be used in the boundary conditions (4.3) on the disk D. As a result we find that

. 1 0 (oAx oAy)IkA - -- -- + - = -1 (4.39)
x ik ox ox ay ,

(4.40)ikA _ ~~ (aAx + oAy) = 0
y ik ay ax oy ,

where the notations Ax and Aystand for the x- and y-components of the vector potential

on the disk, i.e. Ax,y = Ax,y(x, y) = Ax,y(x) with XED. It is easily seen that Ax and A y

are mutually dependent through

aAx = aAy (4.41)
ay ax

(4.42)

This relation is used to eliminate the mixed derivatives (a 2/axoy) in (4.39) and (4.40),

yielding [8/ form. (11)/ (12)]

a2A a2 A
__x + __x +eA =ik
ax2 ay2 x

(4.43)

(4.44)x = (x, y, 0) ED,

Consequently, Ax and A y are solutions of the (in)homogeneous two-dimensional Helm

holtz equation. Recalling that

1 I¥ /1 I exp(iklx - xii) I IAx,y(x, y) = -4 - Ix,y(x) dx dy,
IT C D Ix - xii

we observe that equations (4.41)-(4.43) form a simultaneous system of integro-differential

equations for the components of the current density, Ix and Iy.

The solution of the system of integro-differential equations is not unique. To pick out the

physically acceptable solution, Bouwkamp [8/ Sec. 3] formulates appropriate boundary
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conditions on the edge of the disk. Presently these conditions go under the name of

"edge condition". Formulated in terms of the current density I, the edge condition reads

[8, form. (20)]

(8 -+ 0) (4.45)

where the subscripts nand t refer to the components normal and tangential to the edge,

respectively, and /) measures the distance from the field point to the edge.

We now introduce polar coordinates p, cp, and p', cp', on the disk D, specified by

{

x=pcoscp,

x' = pi cos cp' ,

y = p sin cp,

y' = p'sincp',

o::; p ::; 1, 0::; cp ::; 2rr,

0::::p'::::I,0::::q>'::;2rr.
(4.46)

In (4.44) we change the notations Ax:,y(x, y), Ix,y(x), into Ax,y(p, cp), Ix,y(p', cp'), while the

distance Ix - x'i = r becomes

r = Jp2 + p,2 - 2pp' cos(cp - cp'). (4.47)

(4.48)

In view of the edge condition (4.45) and of the axial symmetry of the diffraction problem,

Bouwkamp infers that the components Ix and Iyof the current density are of the form [8,

form. (23), (24)]

_1 (Ii Ix(p', cp') = A(p') + B(p') cos(2cp') ,
4rr V-; rr 2JI _ p,2

1 ~I(' ') B(p') sin (2<{/)
- - p ,cp = -----::--;===:::-
4rr B y rr2JI _ p'2 '

where A(p') and B(p') are uniformly bounded for 0:::: p' ::; I, and

(4.49)

A(1) + B(1) = 0, B(O) = O. (4.50)

Substitution of (4.48), (4.49), into (4.44) yields the vector potential on the disk showing

the same typical behaviour with respect to the angle cp:

AxCp, cp) = C(p) + D(p) cos (2cp) , Ay(p, cp) = D(p) sin(2cp),
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(4.52)

where C(p) and D(p) are expressible in terms of A(p') and B(p') by means of certain

surface integrals over the disk. The expressions (4.51) are inserted into (4.41) and into

the Helmholtz equations (4.42) and (4.43), transformed in polar coordinates. As a result

it is found that C(p) and D(p) satisfy the ordinary differential equations

C' = D' + '!:..D,
p

and

1
C" + -C' + k2C = ik,

p
D" + ~D' + (e -~) D = O.P p2

(4.53)

(4.54)D(p) = ph(kp),

The solutions of the latter equations are expressible in terms of Bessel functions Jo(kp)

and h(kp), respectively. Thus we obtain

1
C(p) = - ik - pJo(kp),

with a common integration constant p, in virtue of (4.52).

By use of (4.51), (4.54), in (4.44), the problem of calculating the surface-current den

sity (4.48)-(4.49) reduces to solving the integral equations (d. [8, form. (33)])

1
27f 11 A(p') + B(p') cos(2cp') eikr

I

------;:--r.=-=~--:...- -- p' dp' d cp
o 0 n\/l - pl2 r

1= - ik - pJo(kp) + ph(kp) cos(2cp), 0 ~ p ~ 1, 0 ~ cp ~ 21l', (4.55)

= ph(kp) sin(2cp), o~ p ~ 1, 0 ~ cp ~ 21l', (4.56)

for the three unknowns p, A(p') and B(p'). Here, r is given by (4.47), while A(p')

and B(p') must satisfy the further conditions (4.50). It is easily seen that equation (4.55)

can be split up into two separate integral equations involving A(p') or B(p') only. The

integral equation for B(p') can be shown to be equivalent to (4.56).
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To solve the integral equation (4.55), we expand the functions exp(ikr), Jo(kp), and h(kp)

in powers of ik and we substitute for A(p') and B(p') the power-series expansions

00

A(p') = LAn(p') (ik)n,
n=1

00

B(p') = L Bn(p') (ik)n,
n=1

(4.57)

with coefficients An (p') and Bn(p') to be determined. In view of (4.50), these coefficients

must satisfy

(4.58)

The constant p in (4.55), as a function of ik, has a simple pole at ik = 0 with residue -I,

because C(p) in (4.54) is finite at p = O. Therefore we put

00

-P = LPn (ikt,
n=-I

(4.59)

with P_I = 1. In this manner we expand both sides of (4.55) in powers of ik. By equating

the terms of order (ik)n on the left and on the right of (4.55), we are led to the recursive

system of integral equations [8, form. (42), (43)]

t 1 r2rr t A,(p') + B,(p') cos(2fP') rn-,-I p'dp'dfP'

,=1 (n - r)! 10 10 rr2Jl - p,2

(n+I)/2) 2v [(n+I)/2) 2v

~ Pn-2v 22:(V!)2 + cos(2fP) 8 pn-2v 22v (v _ ~)! (v + I)!' (4.60)

o::; p ::; 1, 0::; fP ::; 2rr, n = 1, 2, 3, ...

For n = 0 the left-hand side of (4.60) is zero, so that Po = O.
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4.3.2 Solution of the integral equations

The integral equations (4.60) are solved through expansion of An (p') in Legendre polyno

mials P2v(J1 - p12) of even degree 2v, while Bn(p') is expanded in associated Legendre

polynomials Pfv(J1 - pl2) of the second order. Following Bouwkamp [8, form. (44)], we

make the Ansatz
[(n+l)/2]

An(p') = L an,n-2v P2lJ(J1 - pl2),
v=o

[(n+l)/2]
Bn(p') = L bn,n-2v piv(J1 - pl2),

v=1

(4.61)

in which the coefficients an,n-2lJ and bn,n-2lJ are to be determined recursively. Notice that

the second condition in (4.58) is automatically satisfied, since piv<l) = O. In the further

analysis we need the auxiliary integral

1 121T 11
p2m(J1 - pl2)2 2n cos(2mcp') rJA.-l p' dp' dcp'

Jr 0 0 J1 _ pl2

- l(n,m,t-t;p)cos(2mcp), (4.62)

n=0,1,2, ... , m=O,l, ... ,n, t-t=0,1,2, ... , O~p~l, 0~cp~2Jr,

which has been calculated by Bouwkamp [7]. From [7, form. (3), (5)] we quote the result

l(n,m,t-t;p)

J]rr(m + 4) rem + 1) r(n - m + 1) r(4t-t - n - m + 4) r(4t-t + n - m + 1)

(4.63)

where F stands for the hypergeometric function. It is easily verified that 1 (n, m, t-t; p) is

a polynomial in p2 of degree n + 4t-t (t-t even) or 4(t-t - 1) - n (t-t odd); in the latter case,

len, m, t-t; p) = 0 if m + n > 4(t-t - 1).

On substitution of (4.61) into (4.60), we find the following two identities in p [8, form. (47),

(48)]:

n 1 [("1:+1)/2] [(n+l)/2] p2lJ8 (n - r)! ~ ar,r-2lJ lev, 0, n - r; p) = ~ pn-2lJ 22lJ (v!)2'
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n 1 [('<+1)/2] [(n+1)/2] p2v

~ (n _ r)! ~ b"(,"(-2v J(v, 1, n - r; p) = ~ pn-2v 22v (v _ I)! (v + I)!'

(4.65)

Furthermore, substitution of (4.61) into the first condition in (4.58) leads to the equation

[(n+l)/2] ( f(v+!) 4f(V+~»)
an,n = ~ (_I)v+l f(~) f(v ~ 1) a n,n-2v + (_I)V f(~) f(~) b n,n-2v; (4.66)

see [8, form. (49)] with the second factor f'(v + 1) corrected into f(v). The system (4.64)

(4.66) suffices to determine successively all coefficients a, b, and p. To show this we

proceed by induction. For fixed n = 1,2,3, ... , we rewrite (4.64) and (4.65) as

[(n+1)/2]

L an,n-2v J(v, 0, 0; p) - Pn

v=o

[(n+l)/2) p2v n-l 1 [("(+1)/2)

= L pn-2v 2v I 2 - L ,L a"(,"(-2v J(v, 0, n - r; p), (4.67)
v=1 2 (v.) "(=1 (n - r). v=o

[(n+1)/2]

L b n,n-2v J(v, 1,0; p)

v=1

[(n+l)/2] 2v 11-1 1 [("(+1)/2]

~ P 2 P - ~ ~ b 2 J(v 1 n - r' p)L...J 11- v 22v ( _ 1)' ( 1)' L...J ( _ )' L...J "(."(- V " "
v=1 V. V + . "(=1 n r. v=1

(4.68)

in which the right-hand sides are supposed to be known. These equations are identities

for polynomials in p2 of degree [(n + 1)/2]. By equating the coefficients of p2v (v =

(0),1,2, ... , [(n + 1)/2]) on the left and on the right of (4.67) and (4.68), we are led to

a system of linear algebraic equations for the coefficients an,n-2v, bn,n-2v, pn, of the nth

approximation, expressed in terms of preceding coefficients for the approximations of

order n - 1, n - 2, ... ,1. Here we also need the initial values P-l = 1, Po = O. Together

with equation (4.66), we now have a system of 2[(n + 1)/2] + 2 linear equations for the

same number of unknown coefficients an,n-2v, bn,n-2v, and pn. This system has a unique

solution.

Equations (4.64)-(4.66) are key equations in our scheme for calculating the low-frequency

expansion of the scattering coefficient a.
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4.3.3 Far field and scattering coefficient

Starting from the representation (4.36) for A(x), we determine the far field at an obser

vation point x = (R sin 8 cos cp, R sin 8 sin cp, ReDs 8), where R, 8, cp are spherical coor

dinates. For an integration point x/ E D with polar coordinates pi, cp/ (see (4.46», the

distance Ix - x/I takes the asymptotic form

Ix-x/I J R2 - 2Rp' sin 8 cos(cp - cp/) + p/2

- R - p/ sin8 cos(cp - cp/) + 0 (R- 1
) , (R ~ (0). (4.69)

Using this result in (4.36), we obtain the expansion

A(R sin 8 cos cp, R sin 8 sin cp, ReDs 8)

1 {ii (21< t eikR

4n V-; Jo Jo I(p', cp') exp(-ikp' sin 8 cos(cp - cp'» p' dp' dcp' R

+ 0 (R- 2
) , (R ~ (0). (4.70)

Next we substitute the expressions (4.48)-(4.49) for the currents, leading to

Ax (R sin 8 cos cp, R sin 8 sin cp, ReDs 8)

eikR

= [F(8) + G(8) cos(2cp)] - + 0 (R- 2
) , (R ~ (0)

R .

Ay (R sin 8 cos cp, R sin 8 sin cp, R cos 8)
eikR

= G(8) sin(2cp)R + 0 (R- 2
) , (R ~ (0)

in which F(8) and G(8) are given by

121< 11 A(p/)
F(8) = exp(-ikp' sin 8 cos cp') p' dp' dcp',

o 0 n 2Jl - p/2

(4.71)

(4.72)

(4.73)

(4.74)121< 11 R(p') cos (2cp/)
G(8) = exp(-ikp' sin 8 cos cp') p' dp' dcp'.

o 0 n 2Jl - p,2

To further evaluate F(8) and G(8), we replace A(p') and R(p') by their low-frequency

expansions taken from (4.57) and (4.61), viz.

00 [(n+l)/2)

A(p/) = L(ik)n L an,n-2v P2v(Jl - p'2),
n=1 v=O
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00 [(n+1)/2]
R(p') = L(ik)n L bn,n-2v piv(Jl - p'2).

n=1 v=1

In addition, we need the auxiliary integrals

(4.76)

(4.77)

(4.78)

1
2Jr 11 P (Jl - p'2)

2v exp(-ikp' sin 0 cos cp') p' dp' dcp'
o 0 JI - p/2

= rrh rev + !) }zv+1/2(k sin 0)
rev + 1) (k sin 0)1/2 '

equal to (2.47), and

1
2Jr 11 p2 (Jl - p'2)

2v cos(2cp') exp(-ikp' sin 0 cos cp/) p/ dp' dcp'
o 0 JI - p,2

= -4 h rev + ~) }zv+1/2(k sin 0)
rr rev) (ksinO)I/2'

obtainable from [4, form. (2,6), (2.8)]. As a result we have for F(O) and G(O) the low-

frequency expansions

.j2 00 [(n+1)/2) rev + 1) J (ksinO)
F(O) = --;- ~(ik)n ~ an,n-2v rev +~) 2~~I:i~0)1/2 '

in terms of the coefficients an,n-2v and bn,n-2v'

By inserting (4.71) and (4.72) into (4.37), we establish the far-field expansion

(4.79)

(4.80)

eikR

E~(R sinO cos cp, R sin 0 sincp, R cosO) = A~ (0, cp) R + 0 (R-2) , (R ~ (0) (4.81)

where the x-component A~ of the far-field amplitude is found to be

A~ (0, cp) = ik [F(O) + G(O) cos(2cp) - {F(O) + G(O)} sin2 0 cos2 cp] . (4.82)

(4.83)

According to (4.5), the scattering coefficient a is related to A~ in the direction of incidence.

By setting 0 = 0 in (4.82), we find the low-frequency expansion

48 00

a = kImA~(O,cp) = rr L(-It a2n,2n en

n=1
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(4.84)

for the scattering coefficient of a circular disk of unit radius. For a disk of radius a, the

low-frequency expansion of a follows by replacing k with a = ka in (4.83), viz.

8 00

a = - L(_1)n a2n,2n a 2n
.

n n=l

This is the final key equation in the scheme for calculating the low-frequency expansion

ofa.

4.3.4 Scheme for calculating the scattering coefficient

Our scheme for the calculation of the low-frequency expansion of the scattering coeffi

cient a is based on the key equations (4.64)-(4.66) and (4.84). Starting from the initial

values P-l = I, Po = 0, we solve the system (4.64)-(4.66) successively for n = 1,2,3, .

Thus we determine a number of coefficients a n,n-2v, bn,n-2v, and Pn, n = 1,2,3, ,

v = (0), 1,2, ... , [en + 1)/2]. Only the coefficients a2n,2nr n = 1,2,3, ..., are needed in the

low-frequency expansion (4.84) of a.

A Mathematica-implementation of this scheme is listed in Appendix E; the function is

called BouwkampEM. The results of the calculations by Mathematica are presented in the

next section.

4.4 Results for the scattering coefficient a

Using the Mathematica-packages in Appendices 0 and E, we can evaluate the low

frequency expansion of the scattering coefficient a up to arbitrary order. The expansion

is in even powers of a and the leading term is found to be (128/27n 2
) a 4

• Therefore we

set

~ 2n 128 a
4 Loo

- 2n-4
a = L....,; a2n a = 2 a2n a ,

27nn=2 n=2

(4.85)

in which a4 = 128/27rr2,0-4 = 1. The expansion (4.85) has been evaluated up to and

including terms of order an, In Table 4.1 we present the exact values of the normalized

coefficients 0-2n = (27n 2/128) a2n for n = 2(1) 11. From the tabulated values and from
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additional calculated values of ihn, not presented here, it appears that 0'2n is a polynomial

in rr-2 of degree [(n - 2)/3], with rational coefficients. In Table 4.2 we present the

numerical values, to six significant digits, of the coefficients C12n for n = 2(1)21. It has

been found recently [5] that the expansion (4.85), considered as a power series in a, has

a radius of convergence 1.32335, to five decimal places.

The calculations were performed by the scheme based on Boersma's method with the

integral equations solved by Picard iteration (cf. Section 4.2.3), and by the scheme based

on Bouwkamp's method (cf. Section 4.3.4). Both schemes do yield the same results

of Table 4.1, which provides an excellent check on the correctness of the mathematical

analysis and of the Mathematica-programmes. The Mathematica-programmes were exe

cuted on a 486DX33 computer with 8 MB internal memory, using Mathematica Enhanced

Version 2.2 for Windows and Microsoft Windows for Workgroups Version 3.11. For the

calculation of ten coefficients as in Table 4.1, the evaluation times for the two programmes

were: 2224.90 seconds for BoersmaEM; and 10383.85 seconds for BouwkampEM.

Our expansion of the scattering coefficient C1 agrees with and includes the three-term ex

pansion due to Bouwkamp [8, form. (63)], and the five-term expansion due to Boersma [3,

form. (3.54)]. Boersma's expansion up to and including terms of order a 12 is the best

result available so far, according to [10, form. (14.277)].
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Table 4.1: Exact values of the normalized coefficients a2n = (27n 2/128) (52n1 n = 2(1) 11,

in the expansion (4.85) of (5.

22

25

7312

18375

64 60224
- 817l'2 + 496125

0'12
2464 35048192

= - 2025 7l'2 + 1260653625

0'14
477152 1074505984

- 496125 7l'2 + 213050462625

0'16
4096 866102528 7165401088

=
65617l'4 - 1674421875 7l'2 + 9587270818125

0'18
45056 10518751249408 3838104543232

=
328057l'4 - 496382364843757l'2 + 41560818996571875

310123264 1623120103424 1594679901356032
0'20 = 2009306257l'4 - 231098125781257l'2 + 165038012235386915625

262144 479139075584 1952093212715159552 600919849172992
(122 = - 5314417l'6 + 406884515625 7l'4 - 99886179427487578125 JT2 + 693159651388625045625
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Table 4.2: Numerical values of the coefficients a2M n = 2(1)21,

in the expansion (4.85) of a.

n a2" n a2"

2 4.80337.10- 1 12 2.44195.10-3

3 4.22697.10- 1 13 5.15600.10-4

4 1.91142.10- 1 14 -3.70006.10-4

5 1.98536.10-2 15 -4.73979.10-4

6 -4.58650. 10-2 16 -2.71167.10-4

7 -4.43846.10-2 17 -6.96125.10-5

8 -2.17365.10-2 18 3.08721.10-5

9 -3.49620.10-3 19 4.82181.10-5

10 4.19730. 10-3 20 2.97929.10-5

11 4.60964 . 10-3 21 8.90612.10-6
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Appendix A Package for the scalar diffraction problem

solved by Bazer and Brown's method with power-series ex

pansion

(* Summary Package BazerBrown:

Implementation of the scheme based on Bazer and Brown's

method for the problem of the acoustic diffraction of a

normally incident, plane wave by a circular disk; solution

of the integral equation by expansion in powers of alpha. *)

BeginPackage["BazerBrown'"]

BazerBrownl: :usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma_l up to order alpha~n,

where n is the first argument of the function. The second, optional,

argument can be set to either True or False. Default value is False;

if it is set to True, intermediate results are shown. The function

uses the scheme based on Bazer and Brown's method for the problem of

the acoustic diffraction of a normally incident, plane wave by an

acoustically hard, circular disk. Power-series expansion is used

to solve the integral equation."

BazerBrown2: :usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma_2 up to order alpha~n,

where n is the first argument of the function. The second, optional,

argument can be set to either True or False. Default value is False;

if it is set to True, intermediate results are shown. The function

uses the scheme based on Bazer and Brown's method for the problem of

the acoustic diffraction of a normally incident, plane wave by an

acoustically soft, circular disk. Power-series expansion is used

to solve the integral equation."

BazerBrownTogether::usage "This function calculates the
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low-frequency expansions of both scattering coefficients sigma_l

and sigma_2 up to order alpha~n, where n is the first argument of

the function. The second, optional, argument can be set to either

True or False. Default value is False; if it is set to True,

intermediate results are shown. The function uses the scheme based

on Bazer and Brown's method for the problem of the acoustic

diffraction of a normally incident, plane wave by a circular disk.

Power-series expansion is used to solve the integral equation."

alpha: :usage "The expansion for sigma_l resp. sigma_2 is in powers

of alpha = k a, where k is the wave number and a is the radius

of the disk."

g::usage = "The functions g[t, i) are the coefficients in the

expansion of the function F[t], G[t] or H[t] in powers of

alpha, depending on which Mathematica function is called."

t: :usage "The independent variable of the functions F[t], G[t] and H[t]."

Begin["'Private''']

Integratepol[pol_, {x_, a_, b_}] .=

Module [ {f},

f Expand [ pol ];

f f /. x~m . -> x~(m+l)/(m+l);

(f /. (x -> b)) - (f /. (x -> a)) + (b-a) (pol /. x -> 0)

BazerBrownCommonPart[n_, verbose_, choice_] .=

Module [ {G, sinhseries, integrand, integral,

integralequation, system},

G[t_) := Sum[ g[t,i] alpha~i, {i,O,n} ] + O[alpha]~(n+l);

sinhseries = Series [ Sinh[ alpha (t-s) ) / (t-s),

{alpha,O,n} ];
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Sinh[alpha t] + 1/(pi I) integral,

Cosh[alpha t] + 1/(Pi I) integral,

Exp[alpha t] + 1/(pi I) integral

sinhseries sinhseries /. s -> -x;

sinhseries sinhseries /. (k_ t + k x) Am_. -> kAm (t + x) Am;

sinhseries sinhseries /. x -> -s;

integrand sinhseries G[s];

integral = SeriesData[ integrand[[I]], integrand[[2]],

Map [ Hold[ IntegratePol[ I, {s,-I,l} ]] &,

integrand[[3]] ], integrand[[4]], integrand[[5]],

integrand[[6]] ];

integralequation

Switch [ choice,

1, G [t]

2, G[t]

3, G[t]

] ;

system = Apply [ List, LogicalExpand[integralequation] ];

If[ verbose, calctime = TimeUsed[] ];

Do[ equation = ReleaseHold[ system[[I]] ];

sol = Simplify [ Solver equation, g[t,i-l) ] ];

func = Function [ t, g[t,i-l] /. soIl [1]] ] [t];

substrule = g[t ,i-I] -> func;

system = Drop[ system, 1 /. substrule;

G[t] = G[t] /. substrule;

If [ verbose,

Print["Step ", i-I, " took ",

TimeUsed[) - calctime, " seconds; result: H);

calctime = TimeUsed[);

Print [substrule)

) ,

Ii, Length [system] }

] ;

G[t)

CalculateSigmal[F_)
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Module [ {integrand, integral, sigmal),

integrand = Sinh[alpha t] F;

integral = SeriesData[ integrand[[l]], integrand[[2)),

Map[ IntegratePol[ #, {t,a,l) ] &, integrand[[3]) ],

integrand[[4]], integrand[[5]], integrand[[6]] ];

sigmal = 8/(pi alpha) ComplexExpand[ Im[ Normal[integral) ] ] +

O[alpha]A(integral[[5]]-1);

sigmal = Simplify[sigmal]

CalculateSigma2[G_] :=

Module [ {integrand, integral, sigma2),

integrand = Cosh[alpha t] G;

integral = SeriesData[ integrand[[l]], integrand[[2]],

Map[ IntegratePol[ #, {t,a,l) ] &, integrand[[3]] ],

integrand[[4]), integrand[[5]), integrand[[6)) ];

sigma2 = -8/(Pi alpha) ComplexExpand[ Im[ Normal[integral] ) ] +

O[alpha)A(integral[[5])-1);

sigma2 = Simplify [sigma2]

BazerBrownl[n_, verbose_:False] "=

Module [ {F),

If[ verbose, Print ["Calculating F[t)"] ];

F = BazerBrownCommonPart[ n, verbose, I ];

If[ verbose, Print ["Calculating sigma_I"] ];

CalculateSigmal[ F ]

BazerBrown2[n_, verbose_:False] "=

Module [ {G),

If[ verbose, Print ["Calculating G[t]"] ];

G = BazerBrownCommonPart[ n, verbose, 2 ];

If[ verbose, Print ["Calculating sigma_2") ];

63



CalculateSigma2[ G ]

BazerBrownTogether[n_, verbose~:False] "=

Module [ {H},

If[ verbose, Print ["Calculating H[t]"] ];

H BazerBrownCommonPart[ n, verbose, 3 ];

F (H - (H /. t -> -t)) / 2;

G (H + (H /. t -> -t)) / 2;

If[ verbose, Print ["Calculating sigma_l and sigma_2"] ];

{CalculateSigmal[ F ], CalculateSigma2[ G ]}

End []

EndPackage []
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Appendix B Package for the scalar diffraction problem

solved by Bazer and Brown's method with Picard iteration

(* Summary Package PicardIteration:

Implementation of the scheme based on Bazer and Brown's

method for the problem of the acoustic diffraction of a

normally incident, plane wave by a circular disk; solution

of the integral equation by Picard iteration. *)

BeginPackage["PicardIteration'"]

PicardI: :usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma_1 up to order alpha~n,

where n is the first argument of the function. The second, optional,

argument can be set to either True or False. Default value is False;

if it is set to True, intermediate results are shown. The function

uses the scheme based on Bazer and Brown's method for the problem of

the acoustic diffraction of a normally incident, plane wave by an

acoustically hard, circular disk. Picard iteration is used to solve

the integral equation."

Picard2::usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma_2 up to order alpha~n,

where n is the first argument of the function. The second, optional,

argument can be set to either True or False. Default value is False;

if it is set to True, intermediate results are shown. The function

uses the scheme based on Bazer and Brown's method for the problem of

the acoustic diffraction of a normally incident, plane wave by an

acoustically soft, circular disk. Picard iteration is used to solve

the integral equation."

PicardTogether: :usage = "This function calculates the low-frequency

expansions of both scattering coefficients sigma_l and sigma_2 up

to order alpha~n, where n is the first argument of the function.
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The second, optional, argument can be set to either True or False.

Default value is False; if it is set to True, intermediate results

are shown. The function uses the scheme based on Bazer and Brown's

method for the problem of the acoustic diffraction of a normally

incident, plane wave by a circular disk. Picard iteration is used

to solve the integral equation."

alpha::usage "The expansion for sigma_l resp. sigma_2 is in powers

of alpha = k a, where k is the wave number and a is the radius

of the disk."

t: :usage "The independent variable of the functions F[t], G[t] and H[t]."

Begin[" 'Private'"]

IntegratePol[pol_, {x_, a_, b_}] 0=

Module [ {f),

f Expand [ pol ];

f f /. x~m . -> x~(m+l)/(m+l);

(f / ° (x -> b» - (f / ° (x -> a» + (b-a) (pol /. x -> 0)

{alpha,O, (n+l) I],

{alpha, 0, (n+l) }],

{alpha,O, (n+l)}]

ser

G [t ]

ser

ser

PicardCommonPart[n_, verbose_, choice] 0=

Module [ {v, G, GOld, ser, i, integrand, integral},

v[u_] =

Switch[ choice,

1, Series[Sinh[alpha u],

2, Series [Cosh[alpha u],

3, Series [ Exp[alpha u],

] ;

v [t] ;

Series[ Sinh[ alpha (t-s) ] / (t-s), {alpha,O, (n+l) I ];

ser /0 s -> -x;

ser / ° (k_ t + k x) ~m_. -> k~m (t + x) om;
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TimeUsed[] ];

ser = ser I. x -> -s;

If[ verbose, i = 1; calctime

GOld = 0;

While( Not[ G(t] === GOld ],

integrand = ser v(s];

integral = SeriesData[ integrand[[l]],

integrand[[2]], Map [ IntegratePol[ it, {s,-l,l} ] &,

integrand[[3]] ], integrand[[4]],

integrand[[S]], integrand[[6]] ];

v[u_] = Simplify [ l/(pi I) integral +

O[alpha]"(n+l)] I. t -> u;

GOld = G[t];

G[t_] = G[t] + v[t];

If[ verbose,

Print [tlStep tI, i-l, tI took tI, TimeUsed[] - calctime,

tI seconds; result; tI];

i i + 1; calctime = TimeUsed[];

Print( InputForm[G[t]] ]

] ;

G[t]

CalculateSigmal[F_] ;=

Module [ {integrand, integral, sigmal},

integrand = Sinh[alpha t] F;

integral = SeriesData[ integrand[[l]], integrand[[2]],

Map [ IntegratePol [ it, {t, 0,1) ] &, integrand [ [3]] ],

integrand[[4]], integrand[[S]], integrand[[6]] ];

sigmal = 8/(Pi alpha) ComplexExpand[ Im[ Normal[integral] ] ] +

O[alpha]"(integral[[S]]-l);

sigmal = Simplify[sigmal]
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CalculateSigma2[G_] :=

Module [ {integrand, integral, sigma2},

integrand = Cosh[alpha t] G;

integral = SeriesData[ integrand[[l]], integrand[[2]],

Map[ IntegratePol[ #, {t,O,l} ] &, integrand[[3]] ],

integrand[[4]], integrand[[S]], integrand[[6]] ];

sigma2 = -8/(pi alpha) ComplexExpand[ Im[ Normal[integral] ] ] +

O[alpha]A(integral[[S]]-l);

sigma2 = Simplify[sigma2]

PicardI [n_, verbose_:False] .=

Module [ {F},

If[ verbose, Print ["Calculating F[t]"] ];

F = PicardCommonPart[ n, verbose, 1 ];

If[ verbose, Print ["Calculating sigma 1"] ];

CalculateSigmal[ F ]

Picard2[n_, verbose_:False] .=

Module [ {G},

If[ verbose, Print ["Calculating G[t]"] ];

G = PicardCommonPart[ n, verbose, 2 ];

If[ verbose, Print ["Calculating sigma_2"] ];

CalculateSigma2[ G ]

PicardTogether[n_, verbose_:False] .=

Module [ {H},

If[ verbose, Print ["Calculating H[t]"] ];

H PicardCommonPart[ n, verbose, 3 ];

F (H (H /. t -> -t» / 2;

G (H+(H/.t->-t»/2;

If[ verbose, Print ["Calculating sigma_l and sigma_2"J ];
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(CalculateSigmal[ F ], CalculateSigma2[ G ])

End[ ]

EndPackage[]
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Appendix C Package for the scalar diffraction problem

solved by Bouwkamp's method

(* Summary Package Bouwkamp:

Implementation of the scheme based on Bouwkamp's method

for the problem of the acoustic diffraction of a normally

incident, plane wave by a circular disk. *)

BeginPackage["Bouwkamp''']

Bouwkampl: :usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma_l up to order alpha~n,

where n is the single argument of the function. The function uses

the scheme based on Bouwkamp's method for the problem of the acoustic

diffraction of a normally incident, plane wave by an acoustically

hard, circular disk."

Bouwkamp2: :usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma_2 up to order alpha~n,

where n is the single argument of the function. The function uses

the scheme based on Bouwkamp's method for the problem of the acoustic

diffraction of a normally incident, plane wave by an acoustically

soft, circular disk."

alpha: :usage "The expansion for sigma_l resp. sigma_2 is in powers

of alpha = k a, where k is the wave number and a is the radius

of the disk."

Begin[" 'Private''']

b[p_, n_] .=

b [p, n ] = Simpli f Y [ (- 1) ~ (n+1 ) (n +3 / 4 ) *
Gamma [n+l] / Gamma[n+3/2] *

Sum[ Gamma[(q-l)/2] Gamma[(q+l)/2] (-l)-m b[p-q, m] Gamma [m+3/2] / Gamma[m+l] *
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b[O,O]

1 / (Gamma [1/2q-m-n-l/2] * Gamma[1/2q+m-n+l] *

Gamma [1/2q-m+n+l] * Gamma[1/2q+m+n+S/2]),

{q,2,p), {m,O,If[EvenQ[p-q], (p-q)/2, (p-q-3)/2])

-2/Pi

Bouwkampl[n_] := Simplify [ 4/3 Sum[ (-1) Ap b[2p+3, 0] alpha A(2p+4),

{p,O,Max[O, Ceiling[n/2 - 3]]) ] +

O[alpha] - (2 Max[O, Ceiling[n/2 - 3]) + 6) ]

a [p_, n_] ,=

alp, n] = Simplify [ (-l)A(n+l) (2n+l/2) *

Gamma [n+l] / Gamma[n+l/2] *

Sum[ Gamma[(q+l)/2]A2 (-1) Am a [p-q, m] Gamma [m+l/2] / Gamma[m+l] *

1 / (Gamma [1/2q-m-n+l/2] * Gamma[1/2q+m-n+l] *

Gamma [1/2q-m+n+l] * Gamma[1/2q+m+n+3/2]),

{q,l,p), {m,O,Floor[ (p-q)/2 ]}

a[O,O] 1

Bouwkamp2[n_] := Simplify[ -8/pi Sum[ (_l)A p a[2p+l,0] alpha A(2p),

{p,O,Max[O, Ceiling[n/2 - 1]]) ] +

O[alpha]A(2 Max[O, Ceiling[n/2 - 1]] + 2) )

End[]

EndPackage []
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Appendix D Package for the electromagnetic diffraction

problem solved by Boersma's nlethod

(* Summary Package BoersmaEM:

Implementation of the scheme based on Boersma's method

for the problem of the electromagnetic diffraction of a

normally incident, plane wave by a perfectly conducting,

circular disk. *)

BeginPackage["BoersmaEM'"]

BoersmaEM::usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma up to order alpha'n,

where n is the single argument of the function. The function uses

the scheme based on Boersma's method for the problem of the

electromagnetic diffraction of a normally incident, plane wave

by a perfectly conducting, circular disk."

alpha::usage = "The expansion for sigma is in powers of alpha = k a,

where k is the wave number and a is the radius of the disk."

Begin[" 'Private'"]

IntegratePol[ pol_, {x_, a_, b_l .=

Module [ {f I ,

f Expand [ pol ];

f f /. x'm . -> x'(m+l)/(m+l);

(f /. (x -> b» - (f /. (x -> a» + (b-a) (pol /. x -> 0)

PicardIteration[n_, choice_] :=

Module [ {v, G, GOld, ser, integrand, integral},

v[u_] =

Switch[ choice,
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1, Series[ Sinh[alpha u) / alpha, {alpha,O,n}],

2, Series [ Cosh[alpha u), (alpha,O,n}),

3, Series[u Sinh[alpha u) / alpha, {alpha,O,n}]

) ;

G[t_) v[t);

ser Series [ Sinh[ alpha (t-s) ) / (t-s), {alpha,O,n} );

ser ser / . s -> -Xi

ser ser /0 (k t + k x) Am_ -> kAm (t + x) Am;-
ser ser /0 x -> -s;

GOld = 0;

While[ Not[ G[t) === GOld ),

integrand = ser v[s);

integral = SeriesData[ integrand[[l)),

integrand[[2)], Map[ IntegratePol[ I, {s,-l,l} ) &,

integrand [ [3)) ), integrand [ [4) ) ,

integrand[[S)], integrand[[6]] ];

v[u_] = Simplify [ l/(Pi I) integral +

O[alpha] An) /0 t -> U;

GOld = G[t);

G[t_) = G[t] + v[t]

) ;

G[t)

BoersmaEM[n_) "=

Module [ {Fa, GO, Gl, CO, c, integrand, integral, ser, sigma},

Fa PicardIteration[n, 1] ;

GO PicardIteration[n, 2) ;

Gl PicardIteration[n, 3) ;

CO - Simplify[Gl / GO / " t->l);

c Simplify [Fa / (-Fa + O[Gl, t] + CO O[GO, t) ) /0 t->l];

integrand

integral

Simplify [ Sinh[alpha t] Fa );

SeriesOata[ integrand[[l)), integrand[[2)),

Map[ Integrate [ I, {t,O,l} ] &, integrand[[3JJ ),
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integrand[[4]], integrand[[5]], integrand[[6]] ];

ser = (c+l) integral;

sigma = 8/pi ComplexExpand[ Im[ Normal [ ser ] ] ] +

O[alpha]-ser[[5]];

sigma = Simplify [ sigma

End[]

EndPackage[]
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Appendix E Package for the electromagnetic diffraction

problem solved by Bouwkamp's method

(* Summary Package BouwkampEM:

Implementation of the scheme based on Bouwkamp's method

for the problem of the electromagnetic diffraction of a

normally incident, plane wave by a perfectly conducting,

circular disk. *)

BeginPackage["BouwkampEM''']

BouwkampEM::usage = "This function calculates the low-frequency

expansion of the scattering coefficient sigma up to order alphaAn,

where n is the single argument of the function. The argument n should

be an even positive integer. The function uses the scheme based on

Bouwkamp's method for the problem of the electromagnetic diffraction of

a normally incident, plane wave by a perfectly conducting, circular disk."

alpha::usage = "The expansion for sigma is in powers of alpha = k a,

where k is the wave number and a is the radius of the disk."

Begin[" 'Private''']

(* The system of equations for the coefficients a_{n, n-2nu},

b_{n, n-2nu}, and p_n *)

eql Sum [ 1/ (n-tau)! a [tau, tau-2nu] J [nu, 0, n-tau, rho],

{tau, 1, n},

{nu, 0, Floor [ (tau+l) /2 ]}

Sum[ p[n-2nu] rho A(2nu)/(2 A(2nu) (nu!)A2),

{nu, 0, Floor[ (n+l)/2 ]}
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eq2 Sum[ l/(n-tau)! b[tau, tau-2nu] J[nu, 1, n-tau, rho],

{tau, 1, nj,

{nu, 1, Floor [ (tau+l) /2 ] j

Sum[ p[n-2nu] rho- (2nu) / (2- (2nu) (nu-l)! (nu+l)!),

{nu, 1, Floor [ (n+l) /2 ]}

eq3 a en, n] Sum[ (-1) " (nu+l) Gamma [nu+l/2] /

(Gamma [1/2] Gamma[nu+l]) a[n, n-2nu] +

(-1) 'nu 4 Gamma [nu+3/2] /

(Gamma [1/2] Gamma[nu]) ben, n-2nu],

{nu, 1, Floor [ (n+l) /2 ]}

(* Definition of the functions J{n, m, mu, rho) *)

J[n_, m_, mu_, rho_] := (-I)'(n+m) Gamma[I/2mu+l/2]"2 *

Gamma [n+m+l/2] / (Sqrt[Pi] Gamma [m+l/2] Gamma [m+l] Gamma [n-m+l] *

Gamma [1/2mu-n-m+l/2] Gamma[I/2mu+n-m+l]) *

rho- (2m) * Hypergeometric2Fl[ -1/2mu+n+m+l/2, -1/2mu-n+m, 2m+l, rho"2 ]

(* Solve the system of linear equations and calculate

the expansion of sigma *)

BouwkampEM[maxorder_] :=

Module [ {solved = {p[-I] -> 1, prO] -> a}, unknowns, system, dummy, coeff},

Do[ unknowns = Union [ Table [ a[n, n-2nu],

{nu, 0, Floor[(n+l)/2]} ],

{p[n]},

Table( ben, n-2nu],

{nu, 1, Floor [(n+l) /2] }

system

] ;

(eql[[l]] + O[rho]"(n+2)
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eq2[[1]] + O[rho]-(n+2) eq2[[2]],

eq3} II. solved;

dummy Solve [ system, unknowns] [[1]];

solved Union [ solved, dummy];

If[EvenQ[n], Print ["Coefficient alpha-II, n, II equals "];

coeff[n/2] = Simplify [ a/pi (-1)-(n/2)

(a[n, n] I. solved) ];

Print[coeff[n/2]]

] ,
(n, 1, maxorder)

] ;

Sum[ coeff[n/2] alpha-n, (n, 2, maxorder, 2) ] +

O[alpha]-(maxorder+2)

End[]

EndPackage []
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