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42.8-Gb/s RZ-DQPSK Transmission With
FBG-Based In-Line Dispersion Compensation

D. van den Borne, Student Member, IEEE, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald,
G. D. Khoe, Fellow, IEEE, and H. de Waardt, Member, IEEE

Abstract—Phase ripple impairments induced through cascaded
fiber Bragg gratings (FBGs) are discussed for 42.8-Gb/s transmis-
sion. We show the feasibility of transmission over 1140 km (12
95 km) using return-to-zero differential quadrature phase-shift
keying modulation and FBG-only dispersion compensation. We
further compare FBGs with dispersion-compensating fiber for
dispersion compensation and analyze the influence of wavelength
detuning.

Index Terms—Differential quadrature phase-shift keying
(DQPSK), dispersion compensation, fiber Bragg gratings (FBGs),
optical communication, phase ripple (PR).

I. INTRODUCTION

DISPERSION-COMPENSATING fiber (DCF) is currently
used as the standard solution for group-velocity-disper-

sion (GVD) compensation in long-haul transmission links, since
it yields colorless, slope-matched dispersion cancellation with
negligible cascading impairments. However, DCF is limited in
optical input power to avoid nonlinear impairments and has a
relatively high insertion loss, which complicates link design.

Among the promising developments towards more
cost-effective optical transmission systems are chirped mul-
tichannel fiber Bragg gratings (FBGs) for in-line dispersion
compensation. Chirped FBGs have a negligible nonlinearity
and low insertion loss [1], [2]. This potentially allows simpler,
more cost-effective, erbium-doped fiber amplifier (EDFA)
design by placing the FBG between the EDFA output and
transmission fiber, omitting the need for interstage access. The
main drawback of FBGs is that they suffer from distortions in
their phase response, better known as group delay ripple (GDR)
[3]. Fig. 1(b) depicts as an example the GDR of a typical
FBG channel. The GDR is caused by imperfections in the
gratings fabrication process. Improved fabrication processes
have, however, gradually reduced the GDR of state-of-the-art
slope-matched FBGs [4], such that for 10.7-Gb/s transmission
FBG-based in-line dispersion compensation is an appealing
alternative to DCF, up to approximately 2000 km [5].
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Fig. 1. (a) Amplitude response and (b) GDR of a typical FBG channel.

For future link upgrades (e.g., from 10.7 to 42.8 Gb/s per
wavelength-division-multiplexing (WDM) channel), the FBG-
induced penalty can still be a key concern since the higher line
rate increases the associated penalty [6]. The FBG peak-to-peak
ripple amplitude is a much larger fraction of the bit period for
42.8-Gb/s modulated signals in comparison to 10.7-Gb/s mod-
ulation. The ripple period on the other hand is usually well
below the modulation frequency for 42.8-Gb/s modulated sig-
nals, which reduces the ripple impact [3]. Note that the best pre-
diction of the penalty associated with cascaded FBGs is gen-
erally the phase ripple (PR) weighted by the signal spectrum
[7]. For FBGs that have a channelized dispersion-compensation
profile, as discussed here [see Fig. 1(a)], the broad optical spec-
trum can further increase the penalty because the FBGs incur
narrowband filtering and have an increased PR near the edge of
the passband. It is, therefore, advantageous to use a 42.8-Gb/s
modulation format with a relatively narrow optical spectrum and
longer bit period (in comparison to binary modulation formats),
as for example return-to-zero differential quadrature phase-shift
keying (RZ-DQPSK). The PR penalty is generally also smaller
for phase modulated formats in comparison to amplitude mod-
ulation [8].

In this letter, we discuss the PR-induced penalties on long-
haul 42.8-Gb/s transmission when FBGs are used for in-line
dispersion compensation. We show that in combination with
RZ-DQPSK modulation, a 1140-km transmission distance is
feasible.

II. EXPERIMENTAL SETUP

Fig. 2 depicts the recirculating loop setup. In this experi-
ment, 32 distributed feedback laser outputs are combined on
a 100-GHz ITU grid, from 1538.2 to 1563.0 nm. A 100-GHz
channel grid is used here throughout the experiments because
the channelized FBGs have a 100-GHz periodicity [Fig. 1(a)].
The RZ-DQPSK modulator chain starts with a Mach–Zehnder
modulator (MZM), carving a pulse with a 50% duty cycle. The
second modulator is an integrated DQPSK modulator [9]. A
21.4-Gb/s pseudorandom bit sequence with a length of
is split in two and fed to both inputs of the 42.8-Gb/s DQPSK
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Fig. 2. Experimental setup. Circ: circulator. AOM: acoustic optical modulator.

modulator, with the second sequence being inverted and delayed
over 10 bits for decorrelation.

The recirculating loop used in the transmission experiment
consist of 6 95 km standard single-mode fiber (SSMF) spans.
The average loss of the SSMF spans is 19.0 dB. EDFA-only
amplification is used, with double-stage EDFAs to control the
tilt of the WDM spectrum. The SSMF input power is 0.5 dBm
per WDM channel. Before the first span, an FBG-based dis-
persion-compensation module (DCM) with 1020 ps/nm of
GVD (at 1550 nm) is used for precompensation, creating a
double periodic dispersion map. The launch power into the
DCF-based DCMs is 7 dB reduced with respect to the SSMF
launch power. Loop-induced polarization effects are reduced
using a loop-synchronous polarization scrambler and power
equalization of the dense WDM channels is provided by a
channelized dynamic gain equalizer (DGE).

At the receiver, the desired WDM channel is selected using
a narrowband 34-GHz channel-selection filter (CSF) and the
residual GVD is per-channel optimized with a tunable disper-
sion compensator (DCF/SSMF-based) to minimize the bit-error
rate (BER). After the CSF, the signal is split and one part
is used for clock recovery. The other part is fed to a two-bit
(94 ps) Mach–Zehnder delay interferometer (MZDI) to convert
the signal from phase to intensity modulation, followed by a
balanced detector. The use of a two-bit instead of a one-bit
delay MZDI might result in slightly higher penalties [11]. The
signal is demultiplexed to 10.7 Gb/s with a 1 : 2 demultiplexer
and evaluated using a BER tester programmed for the expected
bit sequence.

III. EXPERIMENTAL RESULTS

To analyze the impairments resulting from the cascaded
FBGs, the performance for all 32 WDM channels is measured
after two circulations (1140 km). First, in-line dispersion com-
pensation with only FBG-based DCMs is considered. The six
in-line DCMs in the recirculating loop have either a GVD of

1345 ps/nm (5 ) or 1681 ps/nm (1 ). Hence, after two
recirculations, a total number of 14 FBGs is cascaded. Fig. 3(a)
depicts the measured -factor for all WDM channels. The
PR penalty is clearly visible through the large (3.0 dB) spread
in performance between the 32 WDM channels. Despite the
significant PR-induced penalty, the measured -factor is for
all channels above the forward-error-correction (FEC) limit of
concatenated FEC code with 7% overhead (9.0 dB).

Fig. 3. Measured Q-factor for 32 WDM channels after 1140 km (12� 95 km)
of SSMF using dispersion compensation with (a) only FBGs, (b) mixed DCF
and FBGs, and (c) only DCF.

Fig. 4. Eye diagrams showing the signal before phase demodulation [(a)–(c)]
and the quadrature tributary after demodulation [(d)–(f)]. Back-to-back [(a),
(d)] and after 1140-km transmission for � = 1553:3 nm [(b), (e)] and � =

1538:2 nm [(c), (f)].

Fig. 4 shows eye diagrams before and after phase demod-
ulation (quadrature tributary). The distortions in the back-to-
back eye diagram before phase demodulation [Fig. 4(a)] result
from narrowband filtering at the receiver. After transmission,
the combination of residual dispersion and PR impairments re-
sults in a WDM channel dependent eye shape. The eye dia-
gram in Fig. 4(e) shows a more severe PR penalty ( -factor
11.2 dB) than the eye diagram in Fig. 4(f) ( -factor 12.3 dB).
Note that in the experiment the residual dispersion is optimized
on a per-channel basis to minimize the BER. The measured
difference in optimal postcompensation between the channels
shown in Fig. 4(e) and (f) is approximately 220 ps/nm. This in-
dicates that optimizing the residual dispersion can be used to re-
duce the PR associated penalty [8], [10]. In deployed systems,
this would require per-channel tunable dispersion compensation
at the receiver, for example, through the use of a thermally tuned
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Fig. 5. MeasuredQ-factor versus wavelength detuning from the ITU grid after
1140 km, for the WDM channels at (a) 1538.2 and (b) 1544.5 nm.

FBG [6]. In the absence of PR impairments, the residual disper-
sion would normally be close to zero [9].

Next, every second FBG-based DCMs is replaced with
DCF-based DCMs and the measured performance for all
WDM channels is depicted in Fig. 3(b). The in-line dispersion
compensation now consist of FBG-DCMs ( 1345 ps/nm, 3 )
and DCF ( 1512 ps/nm, 3 ). The smaller number of cascaded
FBG clearly improves the transmission performance. The
spread between the WDM channels is reduced to 1.5 dB and
the average -factor is increased to 12.5 dB, resulting in nearly
a 3-dB margin with respect to the FEC limit.

Finally, Fig. 3(c) shows the measured performance when all
FBG-DCMs are replaced by DCF except for the precompen-
sation DCM. The in-line dispersion map consists now of DCF
modules with either 1345 ps/nm (3 ) or 1512 ps/nm (3 )
of GVD. The average -factor is with 12.1 dB slightly lower in
comparison to the mixed FBG/DCF in-line dispersion compen-
sation. The measured -factor shows a performance difference
between the lower and higher part of the WDM spectrum. We
conjecture that this is the result of increased nonlinear impair-
ments in the DCF due to a tilt in the WDM spectrum, which
increases the power in the higher part of the WDM spectrum.
This illustrates that FBG-based inline dispersion compensation
can simplify EDFA spectral tilt control. The spread between ad-
jacent WDM channels is reduced to approximately 1 dB.

IV. WAVELENGTH DETUNING

The performance in Fig. 3 depicts the measured -factor
when the WDM channel is centered on the ITU grid, whereas
PR penalties can change significantly with only a small change
in center wavelength [12]. Fig. 5 depicts the measured -factor
as a function of the wavelength detuning. Note that the chan-
nelized DGE used in the recirculating loop has a 42-GHz 3-dB
bandwidth and the detuning range is, thus, not limited by the
channelized FBGs. To measure the penalty as a function of
wavelength detuning, both the wavelength of the transmitter
laser and the center wavelength of the receiver-side CSF
are changed. Fig. 5(a) shows the measured -factor for the
channel at 1538.2 nm, which suffers only from a small PR
penalty, whereas the channel at 1544.5 nm is severely affected
[Fig. 5(b)]. Both channels show, however, that the PR penalty

can easily change with up to 3 dB within a 5-GHz detuning
range. Note though that a typical laser wavelength drift over
the system lifetime would be 1.5 GHz.

As evident from Fig. 5(b), the measured -factor drops
below the FEC limit within the detuning range. The PR-in-
duced penalty is, however, artificially enlarged in these
experiments because each of the FBGs is passed twice within
the recirculating loop. The peak-to-peak PR increases linearly
when the same FBG is passed multiple times, whereas it
increases statistically (square-root) when independent FBGs
are cascaded, as occurs in field deployment [12]. Hence, the
peak-to-peak PR will be 40% higher for a recirculating loop
with two recirculations in comparison to a straight line.

V. CONCLUSION

We compared FBG-only, mixed FBG/DCF, and DCF-only
in-line dispersion compensation, which shows the potential
impact of FBG-based in-line dispersion compensation on
42.8-Gb/s RZ-DQPSK transmission. Long-haul transmission
with only FBGs for in-line dispersion compensation might
not be feasible considering the small margins available with
42.8-Gb/s transmission. However, a smaller number of FBGs
(up to 10) result in an acceptable PR-related penalty, which
is comparable to or smaller than the increased nonlinear
penalty when DCF is used for in-line dispersion compensation.
However, tunable dispersion compensation at the receiver is
desirable to reduce the impact of PR impairments.
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