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Abstract 

In this paper, we consider a single machine at which two types of orders with deterministic pro
cessing times arrive according to independent Bernoulli processes. When the machine switches from 
producing one type of order to the other, fixed switch-over times are incurred. The machine switches 
according to a periodic switching strategy, i.e .• switches at predetermined and periodic time instants. 
We consider two simple possibilities to improve the performance of this periodic switching strategy: 
working overtime and producing to stock. We show for the two models that the queue-length distribu
tion for both types of orders can be determined efficiently. From the queue-length distribution, we can 
determine the delivery-time distribution of orders for investigating how much the performance of the 
periodic switching strategy may be improved by introducing either working overtime or producing to 
stock. 



1 Introduction 

Machines in production centers often (partly) manufacture different types of jobs. Whenever such a ma
chine switches from manufacturing one type of job to another, switch-over times are incurred since, e.g .• 
the machine has to be cleaned or tuned up. For these production centers, the average delivery times of 
orders and the fraction of orders that is handled in time are important performance measures. which are 
obviously affected by the switching policy of the machines. In a previous paper (cf. Van Eenige et al. [1]), 
we compared two switching strategies, which naturally appear in practice: a periodic and an exhaustive 
strategy. For a periodic switching strategy, the machine switches at predetermined and fixed periodic time 
epochs, so that for each type of job time can be divided into intervals of fixed length in which the machine 
is alternately available for producing this type of job (on periods) and not available (off periods). For an 
exhaustive service policy, each type of order is handled exhaustively before the machine switches to han
dling another type of order. It turned out that the performance, with respect to the delivery times of orders, 
of a periodic switching strategy is considerably worse than that of an exhaustive service policy. 

A periodic switching strategy, however, has various practical advantages with regard to the exhaus
tive service policy. For instance, it is easier to control the inventory levels of materials, it is possible to 
give accurate estimates for delivery times of orders, and it is easier to plan and schedule personnel and 
operators. Two simple possibilities to improve the performance of the periodic switching strategy are to 
allow working overtime and production to stock. The aim of this paper is to get insight at what rate this 
performance can be improved when overtime or producing to stock is incorporated. so that the practical 
advantages of the periodic switching strategy are still maintained, while at the same time the performance 
is (substantially) improved. We are aware of the fact that these possibilities are usually implemented at 
higher costs, since a production center, e.g., has to pay higher wages for hours worked in overtime, and 
has to charge holding costs for jobs on stock. Nevertheless, we only concentrate on the improvement of 
the performance, particularly the delivery times of orders, if either of these features is implemented for a 
periodic switching strategy. 

For a periodic switching strategy with working overtime, we consider a so-called threshold policy, i.e., 
if at the end of an on period the amount of work at the machine of the corresponding type of job exceeds 
a certain threshold, the machine works a specific amount of overtime. We assume that working overtime 
does not affect the future switching epochs. For example, working overtime is done outside the normal 
working hours by another firm or by hiring some additional capacity or machines. 

For a periodic switching strategy with producing to stock, the production center can have for each type 
of job at most a certain number of finished jobs on stock. If during an on period there are no orders for the 
corresponding type of job and the number of finished jobs of this type on stock is less than the maximum 
number of these jobs allowed on stock, then the machine produces another job to stock. Orders that find 
their requested job on stock are delivered immediately from stock. 

Clearly, the performance of the basic periodic switching strategy will be improved when either of these 
two possibilities is implemented. Whether to incorporate overtime or producing to stock will depend on 
the situation at the production center. If customers place orders for jobs which are rather customer specific, 
then producing to stock is not a serious option, but overtime is. Otherwise, production to stock may be 
preferred, since a more efficient use of the machine's capacity is made. 

As a first attempt to get insight in how much the performance improves by introducing these two ad
ditional features, we consider in this paper a discrete-time queueing system with one machine, which 
manufactures two types of jobs. Orders for each type of job arrive according to a Bernoulli process and 
have fixed service times. When the machine switches from handling one type of order to another, fixed 
switch-over times are incurred. We show that these models with working overtime and producing to stock 
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can be analysed efficiently by exploiting the geometric tail behaviour of the stationary queue-length dis
tribution. From this stationary distribution, we can determine the delivery-time distribution for both types 
of orders, so that we are able to compute the avemge delivery time of orders and the fmction of orders that 
is handled in time. 

The outline of the paper is as follows. The models are described in detail in Section 2. The analysis 
of the queue-length processes is the topic of Section 3. Numerical results will be given in Section 4, and 
the paper is concluded with a summary in Section 5. 

2 The models 

In this section, we describe the models in detail. We begin with the description of their common charac
teristics, followed by the specific ones. 

Orders for two types of jobs, each with its own queue, are served by a common server. Whenever the 
server switches from one queue to the other, switch-over times are incurred. We divide time into intervals 
of equal length, in the sequel called slots. During a slot, the server is either serving, idling, or switching. 

Orders for jobs of type i, i = I, 2, arrive according to a Bernoulli process with parameter Pi and have 
fixed service times equal to bi slots. The service discipline at each queue is FCFS and the arrival processes 
are mutually independent. The switch-over times from queue 1 to queue 2 (from queue 2 to queue 1) are 
fixed and equal to S12 slots (S21 slots). Note that only the arrival processes are random. 

The server is assigned to the queues according to a fixed periodic pattern. More precisely, the server is 
first assigned to queue 1 for at consecutive slots. Then, it switches to queue 2 (which takes S12 slots), after 
which it is assigned to queue 2 for a2 consecutive slots. Finally, the server switches back to queue 1 (which 
takes S21 slots), after which the periodic switching pattern starts over again. The time interval between two 
successive departures of the server from queue 1 is called a cycle (note that each cycle contains exactly one 
on period for each type of order). Clearly, the length of a cycle is al + S12 + a2 + 821 slots, and is denoted 
by N. The slots in a cycle are numbered 1,2, ... ,N. The period in a cycle during which the server is 
assigned to queue i is called an on period for queue i. If, due to the periodic switching pattern, the server 
has to interrupt servicing, upon return of the server this service is resumed where it was interrupted. 

Order arrivals as well as the start and completion of slots of service (and thus, also the start and com
pletion of a job) occur at slot boundaries. Since our main concern is the delivery-time distribution of 
orders, we assume that order arrivals and the start of slots of service occur just after slot boundaries, and 
that the completion of slots of service occurs just before slot boundaries. In the sequel, an order arriving at 
the slot boundary between slot n - 1 and slot n (i.e., the n-th slot boundary) is said to be arriving in slot n. 
Finally, the service of an order that arrives at the queue at which the server is idling begins instantaneously. 

Let the model with the opportunity of working overtime be denoted by the OVT-model. If, for this 
model, the number of slots work at queue i at the end of the last slot of its on period (after a completion 
of a slot of service) is at least Cj, then the server works dj slots overtime (or the number of slots work at 
this instant if this number is less than d;). Working overtime occurs at the slot boundary between the last 
slot of the corresponding on period and the first slot switching. So, working overtime is assumed not to 
affect the periodic switching pattern, i.e., it neither lengthens the corresponding on period nor affects the 
future switching epochs. 

We denote with the PTS-model the model with the possibility of producing to stock. If, for this model, 
the attended queue i is empty just after possible arrival instants and the number of jobs of type i on stock 
is less than Si, then the server continues or starts producing type i jobs to stock. Arriving orders that find 
their requested jobs on stock are delivered immediately from stock (independent of whether the server 
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is attending their queue or not). We note that an order arriving at an empty queue at which the server is 
already producing the first job to stock has a reduced service time. 

3 The queue-length processes 

In this section, we analyse the queue-length processes of the two models described in the previous section. 
For both models, the two queue-length processes do not affect each other so that they can be analysed 
separately. Therefore, we consider for both models only one of the queues. For notational convenience, 
we simply write b for the service times of orders of the queue to be analysed, p for the arrival rate of 
these orders, and a for the length of the on period for this queue, respectively. We assume without loss of 
generality that these a slots are the last slots in the cycle. 

For both models, we will use an embedded Markov chain approach, similar to the one in [1]. for 
analysing the queue-length processes. We will conclude that the asymptotic behaviour of the stationary 
queue-length distribution is geometric. This asymptotic behaviour will be exploited for numerical pur
poses. 

3.1 The OVT-model 

Let c denote the threshold for working overtime and d the maximum number of slots working overtime of 
the queue to be analysed. Consider the queueing system embedded just before the possible arrival instant 
in the first slot of the cycle (i.e .• just after working overtime), and let Xk denote the number of slots work 
in this queue at this instant in the k-th cycle. The process {Xk heNo is a discrete-time parameter Markov 
chain with state space the nonnegative integers Uli = 0, 1,2, .•• }. We assume that this chain is ergodic 
(i.e., Npb < a+d), and hence, that the stationary distribution {1C'j , j = 0, 1,2, ... } exists. This stationary 
distribution is the unique normalized solution of the one-cycle equilibrium equations 

j = 0, 1,2, ... , 

where qi,j denotes the one-cycle transition probability from state i to state j. i.e .• 

qi,j := Pr{Xl = ilXo = i}. 

(1) 

If a + d :::: Nb, then the states j > c are transient. The reason is that in this case the number of slots handled 
in a cycle (including the slots handled in overtime) is with probability one greater than or equal to the 
maximum number of slots work that arrives during a cycle. ThuS,1rj = 0 for j > c (if a + d > Nb, then 
state c is transient as well), so that solving the finite set of equilibrium equations for the recurrent states 
and the normalization equation yields the stationary distribution. Henceforth, we assume that a + d < Nb. 

We will first prove that for j :::: c + Nb - a - d the transition probabilities qi,j satisfy 

.. _ {13m ifi = i -mb +a+d forsomem = 0,1, ... • N. 
ql.} - 0 elsewhere, 

(2) 

where 13m denotes the probability of m customers arriving in a cycle consisting of N slots, i.e .• 

13m = ( ~ ) pm(l_ p)N-m. 

Hence. for i :::: c + Nb - a - d, the equilibrium equations (1) reduce to 

1rj = 13N1rj-(Nb-a-d) + 13N-l1rj-«N-l)b-a-d) + ... + 1301rj+a+d. 
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Later on, the structure of these equations is used to determine the stationary distribution. 
To prove (2), let j 2=: c + Nb - a-d. Since j 2=: c, the server had to work overtime at the end of the 

cycle, so that the number of slots work just before working overtime was equal to j + d. If the server is 
idle in a slot between N - a and N, then, at the end of the on period but just before working overtime, 
there are at most (a - l)(b - 1) < N(b - 1) < Nb - a ::: j + d slots of work. So, if at the beginning of 
the next cycle just after working overtime the number of slots work equals j, the server cannot have been 
idle in the cycle. Hence, qi,j = ° for i:f= j -mb +a+dfor any m = 0,1, ... , N. Ifi = j -mb +a +d 
for some m = 0, 1, •.. , N, then there should have been exactly m arrivals in the cycle. Even if these m 
arrivals take place in the last m slots, the server cannot have been idle as there are i = j - mb + a + d 2=: 
(N - m)b 2=: N - m slots of work at the beginning of the cycle. Thus, any pattern of m arrivals prevents 
the server from becoming idle, and leads to j slots of work at the beginning of the next cycle. Hence, 
qi,j = fJm ifi = j -mb +a+dforsomem = 0,1, ... ,N. 

So, the eqUilibrium equations (1) can be partitioned as follows 

1rj = qO,j1rO + ql,j1rl + ... + qj+a+d,j1rj+a+d, 

1rj = fJN1rj-(Nb-a-d) + fJN-l1rj-«N-l)b-a-d) + ... + fJ01rj+a+d, 

° ::: j < c + Nb - a - d, (3) 

j 2=: c+ Nb -a -d, (4) 

Equations (4) are called inner conditions and equations (3) are called boundary conditions. In the bound
ary conditions, the transition probabilities qi,j with i 2=: a + maxIe, d} are also given by (2), because the 
server cannot become idle in the cycle and the server has to work the maximum amount of overtime. The 
transition probabilities qi,j for i < a + maxIe, d} can be obtained iteratively from the one-slot transition 
probabilities. These one-slot transition probabilities can easily be obtained, because in each slot at most 
one order arrives and at most one slot of work is handled. Only for the one-slot transition probability from 
the last slot of the cycle to the first slot of the next cycle, the server may effectively handle more than one 
slot due to working overtime. 

As aforementioned, the stationary probability distribution is the unique normalized solution of the 
boundary and inner conditions. We will first seek solutions of the inner conditions of the form 1r j = zj. 

and then construct a linear combination of these solutions for solving the boundary conditions and the 
normalization equation. 

Inserting zj into the equations (4) and dividing by zj-(Nb-a-d) yields 

(5) 

Clearly, we are only interested in solutions z with Izi < 1. The next lemma states that there are Nb - a - d 
solutions with Iz! < 1, and that exactly one of these solutions is positive and real, which is the largest 
solution in absolute value. The proof of this lemma can be found in [1]. 

Lemma 1 Let M be a positive integer and consider the following equation 

M fJ Nb fJ (N-I)b fJ Z = OZ + lZ + ... + N· 

Then, provided that M < (1 - p)Nb, this equation has exactly M roots Zl, Z2, ••• , ZM inside the unit 
circle, and exactly one of these roots, Zl, is in the interval (0, 1). Furthermore, if M is not a multiple of 
b, then IZi! < IZI! for i = 2,3, ... , M. Otherwise, there are b - 1 roots, Z2. Z3 •••• • Zb, with IZil = IZII, 
and M - b roots, Zb+l. Zb+2 •••• , ZM, with IZil < IZII. 

For convenience, we assume that the Nb - a - d roots of equation (5) are distinct, so that we have 
Nb - a - d solutions zj satisfying the inner conditions. Hence. the inner conditions are also satisfied by 
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a linear combination of these basic solutions, i.e., by solutions of the fonn 

Nb-a-d 

1fj = L a;z/. (6) 
;=1 

where the a; 's denote the coefficients of the linear combination. The assumption that these Nb - a - d 
roots are distinct is not restrictive, because if, for instance, roots Zj and Zj+ 1 are identical, z/+ 1 should be 
replaced in (6) by jz/, so that the number of basic solutions is still Nb - a-d. Similarly, if there are more 
roots equal to Zit then higher powers of j should be used. It now remains to solve the boundary conditions 
and the nonnalization. 

Since the inner conditions do not contain the stationary probabilities 1f j for states j = 0, I, ... , c - 1, 
we seek coefficients ai such that 

Nb-a-d 

1fj= L a;z/, j=c.c+l •...• 
;=1 

satisfies the boundary conditions and the nonnalization equation. and treat the stationary probabilities 
1fo,1ft, •••• 1fc-l as unknowns. Because the eqUilibrium equations are dependent, one of the boundary 
conditions in (3) may be omitted, the boundary condition for j = 0, say. Substituting the representation 
(6) and the unknowns 1fo, 1ft , ••• , 1fc-1 into the reduced set of boundary conditions and the normalization 
equation yields a set of c + N b - a - d linearly independent equations with c + Nb - a - d unknowns, 
which are the coefficients a;, i = 1,2, ... ,Nb - a - d, and the probabilities 1fk' k = 0,1, ... , c - 1. 
Thus, this set of equations has a unique solution, yielding the stationary distribution. 

To use solution (6), we have to find Nb - a - d roots of equation (5), and to solve the boundary 
conditions and the normalization equation for the coefficients a; and the probabilities 1fo, 1fl, ••• ,1fc-I' 

The single positive root can easily be detennined numerically, e.g., by using bisection. Finding all roots 
numerically, however, can be very difficult. These difficulties especially occur when Nb - a - d is large 
or when (some of) the roots are closely clustered inside the unit circle. Moreover, even if we are able 
to compute all roots accumtely, the reduced set of boundary conditions and the nonnalization equations 
is nearly singular if the roots are closely clustered (see, e.g., Section 1.6 in Neuts [2]). Since the largest 
root(s) obviously detennine( s) the asymptotic behaviour of the stationary distribution, we will exploit this 
behaviour for approximating the stationary distribution numerically. 

By Lemma 1, the largest root of equation (5) is unique if Nb - a - d is not a multiple of b, and there 
are b such roots otherwise. In the fonner case, we have 

. 1fj+l 
bm --=ZI. 

j-+oo 1fj 
(7) 

so that the stationary distribution has a geometric tail. In the latter case, since this limit does not exist, we 
consider the quotient 1f j+b 11f j. By using z!t = zt for i = 2,3, ... , b, one easily verifies that 

, 1fj+b b 
,hm --=ZI' 

J-+OO 1fj 
(8) 

The fact that the single positive root completely detennines the asymptotic behaviour of the stationary 
distribution will be exploited numerically by using an adapted version of the numerical approach ofTIjms 
and Van de Coevering [3]. 
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The starting point in [3] is the assumption that the limit (7) exists. Since this limit does not exist if 
b is a divisor of Nb - a - d, their approach is slightly adapted for the present problem by exploiting the 
behaviour of :n'j+b/.71'j in stead of :n'j+t/:n'j. We choose a positive integer J, and set 

:n'j = t}:n'j-b, j 2:: J + I, (9) 

so that we implicitly assume that t} is a (fairly) good approximation for the quotient:n'j+b/:n'j for j > J. 
The probabilities:n'o, :n'1 , ... , :n' J are now obtained by solving the equilibrium equations for j = 0, I, •..• J 
(in which the approximation (9) is substituted), and the normalization equation, which reads as follows 

J-b b 1 
L:n'j + L ---:::;:n'J-b+i = 1. 
j={) ;:::1 1 - 'i 

The value of the integer J depends of course on the required accuracy, and has to be determined experi
mentally. 

As suggested in [3] and already confirmed by the numerical examples in [1], the asymptotic behaviour 
appears rather quickly. i.e., for already small values of J. In particular, these values are smaller than c + 
Nb - a - d, i.e., smaller than the number of boundary conditions. 

From this approximated stationary queue-length distribution, we easily compute the stationary queue
length distribution for the other slots in the cycle. From these distributions, one can straightforwardly 
compute the delivery-time distribution of an arbitrary order. 

3.2 The PTS-model 

The analysis of the queue-length process for the PTS-model is similar to the one for the OVT-model. 
Let V denote the maximum number of jobs on stock expressed in number of slots work (i.e., S . b, with 
S the maximum number of jobs on stock) for the queue to be analysed. Again. consider the queueing 
system embedded just before the possible arrival instant in the first slot of the cycle, and let Yk denote the 
number of slots work in this queue at this instant in the k-th cycle. A negative value of Yk denotes the 
number of slots work already on stock. The process {Yk}kENo is a discrete-time parameter Markov chain 
with state space {jlj = - V, -(V - 1), ... , -1,0, 1, ... }. When assuming that this chain is ergodic (i.e., 
N pb < a), the stationary distribution of this chain {:n' j, j = - V, - (V - 1), ... , -1, 0, 1, ... } exists and 
it is the unique normalized solution of the one-cycle eqUilibrium equations 

j = - V, -(V - 1), ... , (10) 

where ri,j denotes the one-cycle transition probability from state i to state j. i.e., 

ri,j := Pr{YI = jlYo = i}. 

By similar arguments as for the transition probabilities qi,j. we can show (see also [1]) that for j 2:: Nb - a 

r' . _ {Pm if = j - mb + a for some m = 0, 1,2 ...• N. 
I.J - 0 otherwise, 

(11) 

where Pm again denotes the probability of m arrivals in a cycle consisting of N slots. Then, the equilibrium 
equations (10) can be partitioned as follows 

:n'j = r -V,j:n'-v + r -V+I,j:n'l + ... + rj+a.j:n'j+a. 

:n'j = PN:n'j-(Nb-a) + PN-I:n'j-«N-I)b-a) + ... + !3o:n'j+a, 
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- V -:£ j < Nb - a, 
j 2:: Nb -a. 

(12) 

(13) 



The inner conditions (13) are identical to the inner conditions for the model without producing to stock 
(see [1]). Only the boundary conditions (12) and the number of these boundary conditions differ from 
the model without producing to stock. For i ~ a, the transition probabilities r~i are also equal to (11). 
The transition probabilities rj.i for i < a can easily be obtained from the one-slot transition probabilities. 
Like for the OVT-model, the structure of the inner conditions (13) is used for determining the stationary 
queue-length distribution. 

Since the inner conditions are identical to the inner conditions for the model without producing to 
stock, we have from [l] that there are exactly Nb - a solutions of the form Tl i = zi for the inner conditions 
with Izl < 1, Zit Zz, ••• , ZNb-a, and that exactly one of these roots. Zt. is in the interval (0, I), which is 
the largest root in absolute value. 

Like for the analysis of the OVT-model, the number of basic solutions is smaller than the number of 
boundary conditions. Furthermore, since the stationary probabilities Tl i' j = - V, - (V - 1), ... , -1 do 
not appear in the inner conditions, we represent Tl i for j ::::: 0 as 

Nb-a 

Tlj = L y;z/, 
;=1 

and consider the remaining stationary probabilities Tl-v, Tl-(V-l) , ••• ,Tl-l as unknowns. We substitute 
this representation into the boundary conditions and the normalization equation, so that (by arguments 
given in the preceding subsection) the solution of these equations uniquely yields the coefficients Yi and 
the stationary probabilities Tl_ v ,Tl-(V-l), ••• ,Tl_I' 

Again, the tail of the stationary queue-length distribution is geometric. Due to reasons mentioned 
for the analysis of the OVT-modeI. we will use the adapted approach of [3] for computing the stationary 
queue-length distribution. Since from the state of the system the sojourn time of a customer is completely 
known, the sojourn-time distribution of a customer can easily be determined from the stationary queue
length distribution. 

4 Numerical results 

The delivery time of an order is an important performance measure for production centers. In this section, 
we give numerical results for the delivery times of orders for the OVT-model and PI'S-model. These re
sults are compared with the results for the periodic switching strategy with neither working overtime nor 
producing to stock, so that the rate at which working overtime or producing to stock improves the perfor
mance can be determined. Furthermore, we compare these results with the exhaustive service policy, as 
analysed in [1], which is denoted by the EXH-model. In the latter case, each type of order is handled ex
haustively before the machine switches to the other type of order, and if there are no orders at the machine 
at all, then the machine waits for the next arrival before switching. The exhaustive service policy often 
minimizes the number of orders in the system if no additional features, like working overtime or produc
ing to stock, are allowed (see [1]). The presented results are based on the following basic example. In a 
production center, a machine is used to produce two types of products. This production center can run 
8 hours a day for 5 days a week. In each of these hours (Le., in each slot) at most one order arrives for 
a product of type 1 and at most one order for a product of type 2. The probability of an arrival of these 
orders is PI and Pz, respectively. The time for producing one product is equal to 2 hours for products of 
type I, and 3 hours for products of type 2. When the production center changes from handling orders of 
type 1 to orders of type 2 or vice versa, the machine has to be cleaned thoroughly. The cleaning of the 
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machine takes 6 hours. We define p = 2 PI + 3 P2, i.e., the average amount of work in hours arriving at 
the machine per hour. 

For the numerical results, the lengths of the on periods (Le., al and a2) are chosen such that the number 
of orders at the machine for the model with neither working overtime nor producing to stock is minimal. 
For our numerical examples, these values are presented in Table 1 (see [1]). Furthermore, for the OVT-

II P PI P2 TYpe 1 TYpe 2 
II 0.50 1/10 1/10 14 21 

1/8 1/12 18 18 
1/16 1/8 10 27 

0.75 3/20 3/20 32 48 
3/16 1/8 42 42 
3/32 3/16 24 66 

0.90 9/50 9/50 86 128 
9/40 3/20 108 108 
9/80 9/40 58 168 

Table 1: The length of the on periods in hours. 

model, we have set the thresholds for working overtime (Le., the Cj's) at zero, so that opti~ usage can 
be made of the opportunity of working overtime. 

In Table 2, we give the average delivery times of orders for the OVT-model, the PTS-modeI. and the 
EXH -model. Furthermore, we give between brackets the average number of hours working overtime for 
the OVT-model and the average number of finished products on stock for the PTS-model. The case dj = 00 

denotes the situation for which all orders that arrive during a cycle are handled in the same cycle. Except 
for the case p = 0.5, the last row for each of the examples for the PTS-model shows the minimum Sj for 
which the average delivery time of an order is lower than the average delivery time of an order for the 
EXH-model. 

Clearly. the opportunities of working overtime and producing to stock improve the performance com
pared to the standard periodic switching strategy (i.e., the case dl = dz = 0 in the OVT-model or the case 
SI = S2 = 0 in the PTS-model). However, whether working overtime or producing to stock is more ef
fective depends on the work load. 

If the load of the system is low, then there are many opportunities for producing to stock, while the 
opportunity of working overtime will not be used often (compare di = hi and d j = 00 for p = 0.50). 
Therefore, producing to stock is more effective than working overtime for these situations. In fact, al
lowing only a few products on stock already yields a lower average delivery time for the PTS-model than 
for the EXH-model. For these work loads, the improvement of producing only one product in overtime 
practically equals the maximum improvement that can be obtained by working overtime (i.e., dj = 00). 

If, on the other hand, the work load is high, there will often be (some) orders at the machine at the end 
of an on period, so that the machine will work overtime quite often (compare dj = hj and dj = 00 for p = 
0.90). For producing to stock, allowing only a small number of jobs on stock is not quite effective. But, 
if the maximum number of jobs allowed on stock increases, the average delivery time steadily decreases. 
In fact, if this maximum number goes to infinity, the average delivery time of an order will even tend to 
zero. This is in contrast with the situation with working overtime. For this latter case, an order that arrives 
during an off period has to wait at least the residual length of this off period before being served, so that 
the average waiting time for an order has a strictly positive lower bound. Finally, although, the maximum 
number of jobs allowed on stock increases in order to obtain a similar performance as for the EXH-model, 
the average number of finished jobs on stock remains rather small. 
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Type 1 product 

~ 
Type 2 product 

P PI P2 dl OVT SI PTS OVT Sz PTS EXH 
0.50 1h 1h 0 19.97 0 19.97 17.55 0 11.55 1123 

2 17.66 (0.30) 1 12.40 (0.24) 3 14.65 (0.62) 1 10.25 (027) 
4 17.16 (0.38) 2 7.14 (0.69) 6 14.05 (0.75) 2 553 (0.77) 
00 16.89 (0.42) 3 3.79 (1.31) 00 13.78 (0.81) 3 2.74 (1.43) 

1f -h 0 17.02 0 17.02 10:72 0 20,:)4 0 20.!)4 11.93 
2 15.44 (0.29) 1 10.92 (0.24) 3 16.97 (0.58) 1 11.85 (0.79) 
4 15.14 (0.35) 2 6.56 (0.66) 6 1624 (0.70) 2 629 (0.79) 
00 14.97 (0.39) 3 3.64 (1.23) 00 15.91 (0.76) 3 3.07 (1.47) 

It t 0 23.95 0 23.95 12.66 0 14.47 0 14.47 9.86 
2 20.97 (0.24) 1 12.96 (0.31) 3 12.26 (0.70) 1 8.60 (0.26) 
4 20.36 (0.29) 2 6.33 (0.88) 6 11.78 (0.84) 2 4.76 (0.75) 

00 20.10 (0.32) 3 2.81 0.62) 00 11.57 (0.91) 3 2.43 (1.39) 
0.75 ~ :!lJ 0 39.19 0 39.19 22.05 0 32.39 0 32.39 18.23 

2 34.05 (0.66) 1 33.07 (0.08) 3 26.66 (1.23) I 26.38 (0.10) 
4 32.19 (0.95) 2 27.51 (0.23) 6 24.65 (1.72) 2 21.13 (0.29) 

00 30.35 (1.26) 4 18.05 (0.74) 00 22.82 (2.21) 3 16.56 (0.57) 

~ t 0 32.39 0 32.39 19.51 0 39.26 0 39.26 20.27 
2 29.25 (0.63) 1 27.53 (0.09) 3 32.28 (1.15) I 32.04 (0.10) 
4 28.11 (0.89) 2 23.14 (025) 6 29.10 (1.60) 2 25.67 (0.29) 

00 26.82 (1.20) 3 19.15 (0.46) 00 27.81 (2.04) 3 20.12 (0.57) 

:6 ~ 0 46.76 0 46.76 26.24 0 25.90 0 25.90 15.23 
2 42.09 (0.46) 1 37.30 (0.11) 3 21.79 (1.38) 1 21.11 (0.10) 
4 40.48 (0.64) 2 29.04 (0.33) 6 20.20 (1.94) 2 16.98 (0.30) 
00 39.09 (0.81) 3 21.96 (0.64) 00 18.63 (2.54) 3 13.40 (0.59) 

0.90 ~ ~ 0 95.42 0 95.42 51.62 0 82.59 0 82.59 37.87 
2 83.76 (1.02) 1 90.02 (0.03) 3 66.94 (1.86) 1 7721 (0.03) 
4 78.41 0.62) 2 84.76 (0.08) 6 60.08 (2.94) 2 73.03 (0.09) 
6 75.39 (2.01) 3 79.63 (0.14) 9 56.39 (3.62) 3 67.00 (0.17) 
00 70.13 (2.85) 10 47.72 (1.20) 00 49.94 (5.05) 10 36.76 (1.49) 

<W :!lJ 0 80.00 0 80.00 43.69 0 98.57 0 98.57 44.29 
2 71.27 (1.05) 1 75.69 (0.03) 3 79.35 (1.76) 1 92.10 (0.03) 
4 67.08 (1.67) 2 71.50 (0.08) 6 71.45 (2.76) 2 85.85 (0.09) 
6 64.62 (2.09) 3 67.42 (0.14) 9 67.37 (3.39) 3 79.78 (0.17) 
00 59.90 (3.06) 10 41.76 (U2) 00 60.92 (4.61) 10 43.34 (1.50) 

m ~ 0 118.33 0 118.33 66.07 0 61.48 0 61.48 28.69 
2 104.57 (0.86) 1 109.74 (0.03) 3 50.06 (2.04) 1 57.18 (0.03) 
4 98.47 0.35) 2 101.43 (0.09) 6 44.59 (3.27) 2 53.09 (0.10) 
6 95.14 (1.65) 3 93.29 (0.18) 9 41.58 (4.06) 3 49.17 (0.20) 
00 90.13 (2.19) 7 64.30 (0.84) 00 36.08 (5.80) to 26.03 (1.64) 

Table 2: Average delivery times in hours for the OVT-model, PTS-model and EXH-model, and between 
brackets the average number of hours working overtime for the OVT-model and the average number of 
jobs on stock for the PTS-model. 

In Table 3, we show results for the percentiles of the delivery-time distribution. i.e., the smallest value 
of the delivery time such that a fraction ex of the orders have a delivery time less than or equal to this 
value. Hence, the values in this table can be interpreted as the delivery time given by the production center 
independent of the state of this center upon arrival such that at least a fraction ex of the orders are handled 
before this time. 

Again, if the work loads are low, producing to stock is more effective than working overtime. Fur
thermore, the improvement of the performance by producing one product in overtime almost equals the 
maximum improvement that can be obtained by working overtime (dj = (0). 

For high work loads, similar remarks as for Table 2 can be made as well. However, although the 
average delivery time for the PTS-model is lower than for the EXH-model in the last row of p = 0.90, 
this does not imply that the fraction of customers served in time for a given delivery time is also less than 
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for the EXH-model. Of course, if the maximum number of products in stock increases, the PTS-model 
will outperform the EXH-model with respect to this performance measure as well. 

OVT-model 
'tYpe 1 product 'tYpe 2 product 

p PI P2 dl a: 0.70 0.80 0.90 0.95 d2 a: 0.70 0.80 0.90 0.95 
0.50 m m 0 28 31 35 39 0 24 28 30 35 

2 25 29 33 35 3 21 24 28 29 
4 25 28 32 34 6 20 24 27 29 

00 24 28 32 34 00 20 23 27 28 
0.75 ~ ~ 0 52 59 68 80 0 42 47 58 70 

2 47 54 60 65 3 37 42 47 55 
4 45 52 58 61 6 35 40 45 48 
00 43 50 56 59 00 33 38 43 46 

0.90 ~ ~ 0 124 139 165 192 0 101 119 151 182 
2 113 127 142 163 3 88 98 119 141 
4 108 122 137 147 6 81 92 103 122 
6 105 119 134 141 9 78 88 99 109 

00 99 114 128 136 00 71 82 92 97 

PTS-model 
'tYpe 1 product 'tYpe 2 product 

P PI P2 SI a: 0.70 0.80 0.90 o.!,!) S2 a: 0.70 0.80 0.90 0.95 
0.50 1lJ nr 0 28 31 35 39 0 24 28 30 35 

1 18 23 28 32 1 14 IS 24 28 
2 9 15 21 26 2 5 10 16 21 
3 0 6 14 20 3 0 2 9 15 

0.75 E E 0 52 59 6S 80 0 42 47 5S 70 
1 45 52 61 73 1 34 41 50 63 
2 38 46 56 67 2 28 35 44 56 
4 27 35 46 57 3 22 29 39 51 

0.90 ~ ~ 0 124 139 165 192 0 101 119 151 182 
1 117 133 158 185 1 94 112 144 175 
2 112 127 153 180 2 89 106 138 170 
3 106 122 148 175 3 84 101 133 164 
10 69 86 112 139 10 48 66 98 129 

EXH-model 
Type 1 product 'tYpe 2 product 

P PI P2 a: 0.70 O.SO 0.90 0.95 a: 0.70 O.SO 0.90 0.95 

0.50 W j 15 18 22 26 14 16 19 22 
0.75 27 34 43 53 23 27 33 39 
0.90 ~ ~ 65 SI 106 130 47 58 74 90 

Table 3: Percentiles for the delivery-time distribution of orders in hours for the OVT-model, the PTS
model, and the EXH-model. 
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5 Conclusions 

In this paper, we have considered a discrete-time queueing system with a single server which serves two 
types of jobs. Orders for these jobs arrive according to a Bernoulli process with deterministic service 
times. The server switches at predetermined and periodic time epochs from serving one type of order 
to another, and switching takes a fixed amount of time. In addition, we considered the opportunity of 
working overtime and the opportunity of producing to stock. 

We have presented a technique for efficiently determining the stationary queue-length distribution 
for both types of customers. From this distribution, we computed the average delivery time, the aver
age amount of overtime, the average number of finished jobs on stock, and the fraction of orders that is 
handled in time. 

If the load of the system is low, allowing only a few products on stock already yields a better perfor
mance than the exhaustive service policy. For these loads of the system, the effect of working overtime is 
sm<yl. If the load of the system is high, much more products have to be allowed on stock for outperform
ing the exhaustive service policy. However, the average number of finished products on stock is rather 
small. As expected, for these loads of the system, the effect of working overtime is more apparent than 
for low loads of the system. 

The technique for efficiently determining the stationary queue-length distribution can easily be ex
tended to the case with more than two types of jobs. Furthermore, we can extend this technique to service
time distributions which are phase-type, like the geometric and negative binomial distribution. 
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