EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eldorado ins and outs : specifications of a data base
management toolkit according to the functional model

Citation for published version (APA):
Lemmens, W. J. M. (1987). Eldorado ins and outs : specifications of a data base management toolkit according
to the functional model. (Computing science notes; Vol. 8711). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c14076f7-acad-4ec6-ae29-eaf7801f816b

Eldorado ins and outs.
Specifications of a data base
management toolkit according to

the functional model.

by

Pim Lemmens.

june 198

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science of
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.

Copies of these notes are available from the

author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.0. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

"ins and outs.

Specifications of a Data Base Ménagement Toolkit
according to the Functional Model.

Pim Lemmens

E o
£

#

¥
Contents:
1. The functional model. 2
2. The ELDORADGO system. 6
3. Temporary data structures. g8
4. DBMS operations. 9
8. User interface. % 13
6. Implementation. 15
Appendix A. Data structures and inveriants. 19

Appendix B. Formal definition of Eldorado operations. 23

B

N A
@J

¥,

'1; The functional model.

w2

"At the . end of the pﬁ?@géeway, ‘"a small room is 1lit by a
single candle standing on a wpoden table. The wcandlelight

reveals a murky room, but ond~esed as & place of residence,
judging by the furniture . ‘tered about. Seated at the

table is a gpindly creature whose attention is focussed on a
Glass Orb standing on a plinth. The creature is mumbling
something at the Orb..Shapes and colours are swirling across

"

its surface, but you &nnnut moke out anything clearly....
o .

{from: GSteve Jackson "Th&gﬁeven Serpents", Adventure Game-
books, Penguin Boaoks, 1984)

An adventure game constitutes & world of its own, idinhabited

by weird crectures following strenge lmws. It may often be found

inside @ computer, where it may be efitered by people striving to
be "GBrand Master of Adventure”. An edventure computer contains
many facts about the adventure world in such a way that they may
easily be retrieved. In fact, it contains a data bese system that
has been filled with many items, 1like spindly sorceresses, Glass
Orbs and strange rooms. It elso contains relations among these
items, like: @& sorceress may use a Blass Orb to see you approach,
so it won’t be any use for you to try and sneak up to her.

In general we may ssy: a data base represents a model of
some world composed of a collection of item representations (data
base objects), that may have a value of scme type, like names or
numbers, and a collection of representations of relations among
these objects. The collection of objects of the data base may be
subdivided into a number of classes. In our adventure world we
have actors (you, the sorceress), (moaterial) objects (the Glass
Orb, & magic sword), locations (the small rcom, a forest) and
activities (move ta some place, ask a guestion, pick up an ob-
Ject). Between these classes we have the relations: The Glass Orb
(an object) is inside the small room (a location); the sorceress
(an actor) consults (en activity) the Glass Orb. A relation links
in & specific way two or more items, each from » specific class.
Objects are linked to locations by the relation "is located at".
Actors, activities and objects are linked by the relation "action
performed by actor using object".

Many data bsse systems centein a large number of facts about
their object system. In order to make these facts accessable the
collection of facts is structured according to some data model.
There are several different date modeling techniques, such as the
relational model (Codd,) and the entity-relationship model
{Chen,). We prefer the functional model, because of its combi-
nation of simplicity and flexibility.

The entities that play a role in a functional model are

categories and functions. A clags like "object”, which contalns
such things as "Glass Orb", "Magic Sword”, "Emerald Bracelet”,
will be celled a category, if it contains each of these things

only once {e.g. no two emerald bracelets in the object category).
and &a8ll of its items may have the same pattern of relationships
to iditems from other categories (or the same category). GSo a

ey

. - . . o i s

%“m . . v » ,) .
Speclflc “object is f@f necessard leed in a specific rela-
tion, but i¥.it is, it should be™ B items Frem the same catego-
ries as. the other objects involved. In our worid there may of
course be two emerald bracelets, but these may be represented by
an indication of their Kiﬁﬁ-("emerald bracetet") and two instan-—
tiations of this kind (the® 1 bracelets, e.g. indicated by
the numbers 1 and 2}, with d and instances linked by a rela-
tion. P]

A function 1links two categdries, respectively called the
domain and the range category of thE“fpnctlon For each element
from the domain category the funct gontains at most one pair
<a, b> llnklng element a from the# ain category to element b
from the range cetegory. Functions realise binary n-to-one rela-
tionships. But also ternary, or more gensrally, n-ary relation-
ships and m-to-n relationships may be represented wusing func-
tions. For that purpose we heed so-called ghost categories,
categories of items that don’% have any value. The ternary rela-
tion "action performed by pef%&ﬁ using object”, for example, may
be realised wusing functions by introducing a category "action"
that contains an item for every single actlon, and three func-
tions linking this ghost category to “actor" "activity" and
"object", respectively.

One kind of action is the "move” action: we may move from
one location to another. The place where we .arrive will be depen-
dent wupon the direction in which we left our previous location.
So from some location we may reach more than one new location. On
the other hand, a certain location may be reached from several

other locations. Here we have a m : n relatlonship between "“loca-
tion" and "locetion" itself. Aga;ﬂ a ghost category may be of
help: A category "move™ with an i#&m for every from—-to combina-

tion, together with two functions,”® one called "from" and one
called "to", both linking "move" to "location™.

Now we may draw a schema of the data base in which catego-
ries are represented by rectangles and functions by arrows be-

tween categories, pointing from the domain cetegory to the range
category. We have enhanced thg schema described above by adding
an extra category '"direction" apd a function Ffrom “"move" to

"direction”. We further. ;ntroducedlfgnctlons indicating the loca-

tion of el and Sejects and thi dweereship oF oL Jeets hg -1
tors.

e —————

Actor —>| [ocation

Direction

Adventure _Dats _Base
2

So a (fuh 'QnalJ da.; se contains a (poss1bly large) set
of data itemé tHdime: Wy identifiasble - no item wil]'Gogur
twice in the date base. Many items have connections to ”Bﬁﬁ%r
items, according to dertain rules. An item may, or may not, be
associatad - to -& dat bject of a certain type. It may be re-
trieved From the datd se on account of its data value or be-
cause of its connectiofffl. giher items.

Items are grouped .catepories. A category is a set of
items of the same type, F in: associated with the cgame type of
data object, and with the same pattern of connectioms to other
items. Categories are linked by &@nctlons A function-is a set of
connections among items. Pntentlarl,lyji all members of a category

may be caonnected to 1tems of a8 catdory that has a function link
to that category. .

More formally:
. ,5,:@ :
A data base state may be™described by a 3-tuple:

<Bbj, V, Link>

Where Obj = & set of indices®
v = a {partial} function: indices -> values
Link = a ternary relation: labels # indices * indices

Each 1ink 1s characterised (uniqpeiy identifiable) by a
label, a ’'from’ object and a ‘to’ object.

A data base skeleton according to the functional model is a
5-tuple: . '

DB = <Ci, Fi, D, R, T>

in which Ci and Fi are sets, 1indicating respectively: Category
indices and function-indices.

D and R are the domain functiaon and the range function of the
functions and T is a function that links each category nhame to a
set of possible values, its type. This set may be empty.

vy B Fi: D(y) € Ci AND R(y) £ Ci

Some of the symbolg used here and in the following sections

for the universal quantifier,
for the axistential quantifier,
for the set membership operator,
for the subset operator,

for the intersection operator,
u for the union operator,

"AND, OR and XOR (= exclusive or) refer to the logical operatars
of these names,.

M0 @

. A data base state in the functional model may be described
by a pair of functions:

A
AaR

where ¢ and f correspond to af

Partioning of Obj and Link, respec-
tively.

+

¥ x 8B Ci: c(x) c Obj

AND ¥ x1 B Ci: ¥ x2 B Cjgi
i i

fop x2 => clx1) L c(x2) = @

fly) is a prajectinn‘Sﬁéglselection of Link:
s = { <1, y>» 1 & labeldﬁﬁyﬂ y 8 Fi }-4s a function

¥ vy B Fi:
} 1 6 labels: y = s(1) ‘ .
AND f(y) = { <i1, i2»] <1, iT, i2> B Link
AND i1 B c(D{y)}))
AND (i2 6 c(R(y)) . OR i2 = NIL) 1}
AND f(y) is a function, :

Most applications need more thaw one data bese. First there
is the dictionary, or metadata base, that contains a descriptian
of the structure of the data base proper. Here we find the cate-
gories "category name”, "type”, "function name”, and the func-
tions "function domain®, "function range", '"category type", to-

gether with data about the way these are recorded in the dats
base.

Our adventure base may further contain, alongside the facts
base described above, & rules base where we can find which ac-
tions are legal and which are not in & given situation. Many data
base systems have such a ‘rules base’ in one form or another to
hold the constreints to be observed by update aperatians.

And finally there is information about which commands to use
for a given operation or which options are available in a given

situation. This user manual or ‘help’ information may also be
stored in a separate data base.

2. The ELDORADD System.

e¥y-conmected Devices for Dbserva-
tion, Removal and Addition o ta base Objects) is a toolkit for
the implementation of functiona¥ datas bases., It manages data that
are structured along the lines described above. For that purpose
it offers s system of data structures and operations to be used
in application programs or interpreters for DML-languages. Impor-
tant extra features are ordering of dats within a category and
the possibility to add eitensions t6 the data that may be
retrieved by the system. :

In the Eldorado syste ie values of the items within a
category are ordered: There is a "greater than" / "smaller than"”
relation between any two values of items from a specific catego-
ry. The ordering relation is type deﬁendent So if two values
from one category each have equal cquqﬂerparts in an other cate-
gory of the same type, they will in B&th categorles have the same
ordering relation.

Apart from the typed data object, an item may also have an
association to an untyped amount of data, the extension. This
extension may be produced as a by-product of retrieval of the
item from the data base. ‘

Eldorado (Ensemble of .

£@

EXT is a function,
with ¥ kK B c(x): EXT(k) = NIL OR EXT(k} & EF,
and EF is a set of untyped data.
The extension data may be of any kind: Text or graphics or even
program code. Its use will be determined by the application and
is of no concern to the DBMS.

The dets structures and operations summed up below represent
a choice from many possibilities. The considerations that led to
this choice are mainly:

1. Do they agree with the way of thinking of the user? Don‘t they
introduce concepts that are unknown to him or force him into an
"unnatural" pattern of sctions?

2. Are they of a sufficiently general nature? May all foreseeable
applications be realised by them?

3. Are they realisable? Are they able to realise all kinds of
actions that have to be performed in a reasonably efficient way,

with regerd to processor time, wuse of memory and necessary
programming effort?

It 1is difficult, 4if not impossible, to fully satisfy all

these requirements. The choice we made is primarily directed
towards generality, and secondarily towards efficiency of execu-
tion. For this reason we chose collective operations as much as
possible. Hetrieve and update operations are performed setwise

and not one item at a time.

The first consideration may be satisfied by adding some kind
of user interface - an interactive program or an interpreter for
some query/DML language that matches the user view of the data

el .Fhese programs should be tonstructed as a layer conid;ﬁ
ve ELDORABD system, using the operations and data structures
described ‘here. A propossl .for an interactive user interface is
given in chapter S. '

+

" data structup

w0 allow full manipulati?
offers the following structure
functions frﬁm the data base:

.of its data, the Eldorado system
in addition to the categories and

- Atams, thch are the building blocks of the structures men-
tioned above. Atoms come in several possihle types: integers,
reals or strings, which aré¥the types that are also used for the
objects in the data base b 2ANS, to be used for expressions
that evaluate to true or falseW¥empty, denoting objects without a
value, and refs,. g

A ref indicateé-an item in the deta,gase. Every item will be
upiguely identified by a ref. In fact, a category is a collection

of refs, even the so-called ghost categories that do not contain
any integer, real or string values., int and rl indicate, respec-
tively, integer and real elements. wd elements are strings of

some fixed length.

- Sets, which may be considered as”temporary categories. A set
may contain an extreact of a& specific category, or data to be
added to it. A set may be empty or the type ‘of its elements isg
either int, rl, wd or ref.

A set may contain refs, in which case it indicotes a subset
of some category, or it may be composed of integer, real or
string values.

- Tfunctions, or temporary functions, to be used for extracts or
updates of functians, among other things.

Functions and tfunctions may be considered as sets of pairs
of refs that link two sets of items.

- Tables, which c¢orrespond to the relations of the relational
model, to be used for the presentaticn of data from the data base
in a surveyable form.

A table may be considered as a function that 1links a set of
attribute names to a set of tfunctions. All tfunctions of a table
should have the same domain.

Sets, tfunctions and tables are built from atoms or pairs of
atoms and can not be used to construct more complex objects
recursively. Things like sets of tfunctions or tables that have a
complete set as an attribute value are not admitted by the sys-
tem. :

s
S
e

gﬁ%fations.

- W BT

Nggguthat we have established the basic data structures of
aur system, we need a number of operations for the canversion af
one structure to'ancther, or one type to another or the transfor-
mation of ‘¢eftain values into others. In principle there are many
possible cHdices of operetion collections,. but we want to concen-
trate on. g¥Fllective operations on categorigs end functions. So in
stead gf "fetching one element from o category, processing it and
then etching the next one to.repeat the processing on, we ex-
#fact a whole set of candidate elements from the data base before
processing them collectively. " Addition, removal and retrieval of
elements is performed setwise. Updating & function or a category
means first building a set of elements to be updated and then do
the update operation for the whole set.

Whereever possible, operations will be using refs instead of
values of items. Only when, after a number of operations, the
user needs the resulting values, they may be determined by a
valuation operation. B

Operations on atoms: T

TypetX) = int
+, -, #, DIV, MOD int # int -> int
=’ ?’ <’ i; >; > int #* int -2 bDOl

+, -, ¥,/ rl # rl -> rl
= rl ¥ ri -> bool

“~H
-A
A
v
iv

=, ¥, < £, >, > wd #* wd -> bool

Type(X) = ref ,

=, # ref ¥ ref -> bool

AtomVal ref -> x: x 6 {empty, int, rl, wd}
AtomExt raf -> 2 6 EF

Type(X) = bool ‘

NOT bool -> bool

AND, OR bool # bool -> bool

Sets:

CreaSet type, cat of x —->» get af type

Used for the creation of a new empty set in situations where the
user needs to build a set by adding element by element. Beveral
other operations also creste a new sat (e.g. Valuate or

CatExtract, see below), although mostly not an empty one.

SetAdd, SetRetain, SetRemo set o “g i set of x -> set of x

These are, respectively, ?Et union, intersection and diffe-

rence operation.

SetExtract get of X -> X éaget of x
Insert o x # set of x ~¥¥get of x
These operations remove aﬁﬂéﬁom from, . ¢.q. add an atom to the
set. ' L
5
Valuate set of ref -> set of x

% 6 {int, rl, wd, empty}

=‘-._ ,'S \-‘ -
Valuate replaces the refs in a 'seb%é? ref’ by the values of the
corresponding elements in the data base. Categories without dats
objects, so-called ‘ghost’ categories, produce an empty set.
Count §§$ of x -> int.
Min, Max g8t of x -> x

’ In all three cases: x B {int, rl, wd}

Sum, Average, BtdDev set of:x -> ri
x B {int, rl}

These are aggregate functions. They quantif&)over the whole set.

Categories:
CatMin, CatMax cat of x -> x

Furnish the smallest, e€.q. largest element of a category, e.g. to
be used as a lower, c.q. upper 1limit in the next operation:

CatExtract cat of x #* x #* x -> set of ref
CatExtract performs a range guery. The atom parameters indicate,
respectively, the 1lower and the upper limit of the elements of
the set.

CatExpand cat of x % int

-> cat of x #* set of ref
Adds a number of items to & category.

CatAdd cat of x #* set of ref #* set of x
-> cat of x
{(x 8 {empty, int, rl, wdl})

- Adds a set of values to a category (to existing items).

10

t of g.ﬁ-ggf of x
' -> cat of x * set of ref

“Hemoves a set of values from a é Yory and delivers the refs of
the associated 1tems s

CatReduce .. cat of x * set of ref -> cat of x

Hemoves,a-ﬁéf of items from iﬁgategory

New values should be added to a category in two steps: first a
number of items should be created’ anq .next these items should be
given a value. By dropping the s whd step you may create a. set

of -items within & category that dft)f have values, a.g. as an
extension to a ghast category. The revarse, removal of items,
takes as many steps as th91r addition.

Tfunctionsg:

CreaT#n ‘ cat of x * cat of x -> tfn
Analogous to CreaSet: The creation of an empty new temporary
function that subseguently will be filled eglement by element (or
will be kept empty, if necessary). Creation of tfns may also be
done by other means, e.g. by FuncExtract (see below).

Compose tfn * tfn -> tfn

The composition of two functions can be fairly easily eachieved
for tfunctions, os opposed to permanent functions that reside on
background storage.

TfnDom, TfnRange tfn ->» set of ref

These operations deliver the domain set or the range set of the
tfunction, respectively.

TfnAppl tfn ¥ ref -> ref

Function application for one atom.

TfnInsert . tfn ¥ ref % ref -> tfn

This operation . extends the tfunction by one element. It will
among others be used to build a tfunction to be used for addition
to a2 permanent function.

The domain and range of o tfunction are sets of ref and thus
represent a subset of some caetegory.

11

Functions:

Apply, InvApp # func -> set_of ref

These are, respectively, the func

”“:and the inverse function
application. ;

FuncAdd, Funchemove "i;f func * @@fn -> Ffunc

These are update operations._?ﬁe;main reasdﬁ for not imposing the
condition that a ‘tfqnction‘ﬁgga subset of a function 1is that
tfunctions are used to extend finctions (by FumeAdd).

FuncExtract 7 Fuﬁc # set of ref -> tfn

Produces a restriction of the function.

Tables:
CreaTable ' : -» table

Creates a new table after removing the current contents first, if
necessary. o

AddAttr table # tfn # wd -> table

Adds a new column to a table.

Select table # wd ¥ ref -> x
‘ x & {empty, int, rl, wd}

For sets and tfunctions we further have copy operations that
create & duplicete of such a structure (CopySet and CopyTfn,
respectively).

The set of operations mentioned here is not minimal: some of
these operations may be replaced by a composition of other opera-
tions, e.g. Apply(Ff, x} is eguivalent to Range(TfnExtract(f, x)).

As one application 'will require more than one data base
{e.g. an expert system using a dictiocnary, a facts base, a rules
bese and help information), every operation that involves a
category or function in fact heas one parameter more than the ones
mentioned: the relevant datae base.

Precise specifications of all cperations are shown in the
appendix.

12

. There are several kinds of users of a DBMS. First. there is
the data ba§a‘deslgner, who uses. the system to create a data base
schema. ffg; ‘persan will Specn§‘*@ set of categorzes and func-
tions fdh” the registration of sdata that -somé dinstitution
needs & ¢ .he or she will prescrlbe the constraints that the
transactidns on the DB should observe.

Next we have the apﬁﬁxtations degsigner. This person will’
specify certein queries t&? & done on the PB. He or she will also
design a user interface that allows the end user to perform these
queries withaout entering them expLacitly inta the system.

The third kind of user 1s*¥b@ end user, who has a task to

fulfill din the institution for which the data base has besen
created. He or she mey be a8 desk employee in a travel agency who
wants to make flight reservations for cwstomers, or some such
thing. - . N)
The first twog kinds of users will have much the same re-
gquirements when using a user interface. Fhey need a viesw of the
data base schema and they will want to enter data intoc the system
or receive data from the system, often straight from some catego-
ry or function. The main difference between them is that users of
the first kind will work on the dictionary, while the second kind
of user will only use the primery DB. The third kind of user will
only have to deal with the products of the application designer:
Standard screens from which data should be read and inte which
date should be entered. Thig user will not be concerned with the
structure of the data base or the kind of data it contains. Our
main interest will be with the first two users.

Now we have a system of data structures and operations to
manipulate them. The next thing to do is to create a means for a
vuser to interact with the system. We want to have an interface
that allows the user to realise the queries he has in mind on the
system he wuses. A user operates & computer by means of a key-
‘board, a mouse or some other input device. The system may respond
through a display, wusing windows for presentation of groups of
related deta. The user interface will provide the link between
_ the data structures and operations on one side and the input and

output devices on the other.

Bur main interest will be with the applications designer.
Many of the tools he will have to use may easily be transfered to
the DB designer.

As windows are often used to present (temporary) data, the
obviopus thing to do is to map sets, tfunctions and tables to
windows. The mouse may be used to indicate windows to be used as
an operand and to point at the operations, shown in some menu.
Input data may be entered by keyboard.

While "toying around” with the data base the wuser will
perform the actions needed for a query that should play a role in
some application. Then it is up to the computer to convert the
actions of the user, extended with certain commands, into a
regular query statement. The difference between the computer
generated statement and the user actions lies with the level of
generalisation:

13

‘- THe-fimal statement will contain pdKmeter
duriﬁg‘fﬁe "playing"” actual values were entered

- Furthermobe’”the' final statement will co@teln thlngs-llke thes

union of some (compound) opep xion over all elements of a
set, where the defining actiok A

element of that set.

A window is associated with a S-tuple <Qr, 0d, Cat, T, 5>,
wheare:

Or is an operator, one’frum the set of operators mentioned

in section 4. ¥

O0d is a set of operands, Od 6 windows u parameters

Cat 8 Ci u input - o

8 are the contents of th window.

T is the type of these c%%@ents.

A window will have two faces: On one side there will be data
about the window, namely Or, 0d, ‘8at, T and the number of ele-
ments. On the other side there will be the contents of the win-
dow. Refs will never be displayed, "so in this case the contents
face will not be presented. There will howéver be a command to

display the mm of theve Fafs. -

Set | THunctiof Tsble | Atown

Set Add
SetRetbain

SetRemwve
Set Extracy Set of string

lncert

Cal Addd Tou-

CadRetmove Dick

’. Jerry

Usar Inbertace For Afsﬁhbaé:’ohx -Dergner-

14

E. Implementation.

. An actual working s?ﬁﬁgm a -0 perform the operations
described above on a given i may be created wusing four
layers of software on top of tHE file system. The operations and
types described abeove constitut® the top ‘layer. For their opera-
tion they need a dig¢tionary besides the dafa base proper. So, in
the second layer from the top we have two BBs, each with their
own categories and functiofns. Below this “Bével we don’t have
categories and .functions amymore, Fuyst items containing referen-
ces, values and extensions. These Stems are identified by some
number, the ref of the item. On el deeper, the items are
dissolved into one or two recordsH different files, and the
refs have been replaced by the adresses of these records. The
lowest level consists of the file system. -

Overview:

level O0: Standard file system.
level 1: records and adresses
level 2: items and refs

level 3: DBbuffer and Dictbuffer
level 4:

Eldorado datastructures and operations.

Data and meta data.

The description of the skeleton of the DB, as shown in
section 2, will reside in the dictionary, together with the
labels and the connection between labels and functions plus the
names assigned to the categories and functions. A function or
category may have more than one name (synonyms).

The categories of the dictionary are:

Function name
Fi: Function id
Label (Link label of function, viz. section 2)
Category name
Ci: Category id
Type
NLabels

Type indicetes a finite set of domains, among which the empty set
{} (@8 Type).
¥ i 8 Ci: T(1i} & Type

Type doesn’t change during the lifetime of the system. Which
types there are and what is the ordering of their elements 1is
determined beforehand.

NLabels is an integer category indicating the maximum number
of forward or backward references an item from a specific catego-
ry will have.

15

The functions are:

Function name -> Fun
Function id ~> Label
Category name -> Category idgs
Function id -> Category id
Function id -> Category id S
: Category id -> Type

F: Coategory id -> NlLabels

B: Category id -» NLabels

2Z-1D0

The NF and NB functions are-%gr bookkeeping purposes. They will
-determine the maximum size of an item from the associated catego-
ry in the data base. T

This meta data base will be “éccessed every time the system
needs information on the structure of the DB. It will be updated
for addition or removal of categories and -functions. Fear this
purpose the same operations..and data sﬁﬁybtures may be used as
for the coresident date bases: However, an authorisation mecha-
nism should be added to prevent unwanted schema modifications.

The meta data baese is stored in the same files as the data
base it describes. However, in urdgr'to limit the mutual interfe-
rence between file accesses for different data bases, each data
base has its own set of buffers for temporary copies of DB re-
cords. An application wuses as many buffers as it needs data
bases. So. a straightforward functional facts base will need two
buffer sets: One for the facts and one for the dictionary.

Ttems and refs.

All categories of en Eldoredo data base, and possibly of
various data bases, will be stored in the same files. It would be
impracticael to open a new file every time a new category is going
to be accessed. 8o the files used will ndt correspond to the
categories created. In fact, even the structure of the files used
will not mirror the structure of the DB in terms of categories
and functions,.

At a certain level we are not aware of categories and Ffunc-

tions in much the same way as, looking through a microscope, a
plant is not seen to consist of leaves and stems, but of (more or
less differently shaped} cells. In our case these cells corres-

pond to the items of the data base. An item may have a value of
some type and connections to other items. It may be found through
its connections, by way of an other item, or it may be accessed
on the basis of its value. For this purpose, there will be an
index mechanism that, given a certain value from a specified
category, allows us to locate the associated item.

S50 every item will eventually contain at least one of the
following: a value and & number of refs of other items, where
every ref is associated with a certain label at the item itself.
If that would not be the case, the item could never be retrieved.

16

e

L

;ifgiﬁfds and Adresses. ‘ B3

If we coqigTﬁbfficientii!augménb the magnification of our

microscope, at -« & certain moment’ E@g cells would dissolve into
molecules befang'our eyes, As we h@mb seen, the "cells" of ocur
system, the items, are built FromﬁVarious components., And these

compoanents will have their. Qwn . inner structure. Different compo-
nents will be stored in dx$?arent files . where each file will
contain records of a dlfferenﬁ-type

First we have the 1ndeﬁ@file It emhsists of a tree of
trees: a category tree that allows easy access to the different
categories and s number of value trees. All trees are B-trees.
The value trees sre the leaves of the category tree. 5o if we
need a specific value from a specific category, the system first
searches for the category in the category tree. There it may find
a value tree that possibly contains the value specified and
provides us with the associated ref. '

Next we have the reference file. Its records will not con-
tain any values, just references. Their structure is:

<id, fr, br>,
where id is the ref of the item itself,

fr = <nf, fpl>,
with n¥f the number of forwerd (functional) ‘references and

fpl = A list of tuples <1, fp, 1lp>, with 1 & labels, fp
indicates the range value associated with the current element for
the function concerned, and lp-a reference to an other element
from the same category with the same function value,.

br = <nb, bpl>,
where nb = the number of backward references,

bpl = a list of tuples <1, bp> indicating an item from the
inverse function associated with 1.

[l

An item may also have an entry in the objects file, where
the values and sxtensions are stored. The elements of this file
have the following structure: -

<id, 1, v, ext>,
where id is the ref of the element, 1 the total lenght (in bytes)
of the associated data, v = <tp, cont> the value, composed of a
type identifier (tp) and the representation {(cont), which may
also be used to locate the element by way of the index file
(search argument). ext are free-format data of arbitrary length.

The position of items within the files may change as other
items are oadded or removed and unused filegpace is reclaimed. If
we want to use their mutual connections we need to keap track of
the items as they move. There is a special file for this purpose.
It contains the locetions of the reference and data parts of all
the items:

<id, rloc, dlocg>
and will be updated every time & location is changed. 5o, if the
ref (id} of an item is known, it will allways be possible to
locate its components (rloec and dloc).

The data in this storege scheme are intentionally made
redundant, e.g. by storing the item identification and the
lengths of the reference lists with esvery item. This is done for
reasons of reliability and efficiency: If part of the stored data

17

Lre

is damqggag much of it may B retrieved by inspecting the undam-
aged—pa*t. This redundancy Furthen.limits the number of disk
accesses needed, especially to theé tionary.)

If, for example, the locatiy e file had.been destroyed, it
could be .restored by going throfgh the reference and object
files, itém by item,. and noting the locations of the items and
the identifications :stored at these locations. Furthermore, the
additien ©f a new function to a date base that already contains a
large number of items, does not force us. te change all the items
of the domain and range: categories, because of added labels, as
each item has its own. indication of the number of labels. Only
those items that play & role in &fie new function need to be
adapted. ad

The next lower level of the DBEMS will be formed by the file
system, that keaps a directotg'of file names and locations.

Temporary data structures. e

Sets, tfunctions and tables will not reside on background
memory. They will cease to exist when the program that uses them
is terminated. These structures are represented in memory by an
ordered list of elesments, together with some associated data.

A set is characterised by the type of its elements and, if
this type is ref, the category that holds them, together with the
list of elements itsel¥f: '

S = <t, i, cont>,
where t B8 {empty, int, rl, wd, ref},

t = ref => i 6 Ci, ‘

cont = NIL OR cont = <v, cont>.

A tfunction will have a domain and a range category:
TF = <ed, c¢r, cont>,

with cd 8 Ci AND cr & Ci,
cont = NIL QR cont = <<rd, rr>, cont>

AND Type(rd) = Type(rr) ref.

A table is a list of tfunctions:
T = NIL OR T = <<a, f>, T>,
with Type(a) = wd AND type(f) = tfn.

More precise specifications of the layers described above
may be found in the appendix.

18

—_—— e = .,

YLy gx b=

21T/

adh}

5]

P!

Je207T uma "\Q.

———

ALA\.,

NLQ
Uy {t44
Y7 o
gAY

Pl

I NPONMES 417 Yy pve Hw\._\. 2529 pPreQq

24
eFeq

21’7
22

>/ 923

Yola mUQ.N

2114
x2p v

haeuapene oQqyuaqTI
5278/
|
2wey
17 NFW%ﬁV
2wey
W&. :c\wu:vuum.
/29€7

8a

Summary: The basic st#ctures Eldorado are: Atoms, Sets,
Categories, Tfunctions, Functions Tables. Atoms will be of
one of the following types: empty, 1ntegeT,.rea1, string, raef or
bool. ©Bets are either of type Igteger, regal, string or ref, or
they are empty. Tfunctions and functions-may be considered as
composed of refs, and tables are sets of. named temporary func-—
tions. The Follow1ng conditions hold:

w

A data base state may b@gdescribad by a 3-tuple:

<0bj, v, Link>

Where 0Obj a set of indices
v = a (partial) function: indices -> values
Link = a ternary relation: labels * indices * indices

A data base skeleton according to thérfunctional model is a
S5-tuple:

DB = <Ci, Fi, D, R, T>

in which Ci and Fi are sets, indicating respectively: Category
indices and functiom indices.

D and R are the domain function and the remge function of the
functions and T is a function that links each category name to a
set of possible values, its type. This set may be empty.

¥ v 6 Fi: D(y) 8 Ci AND R(y) 6 Ci

A data base state in the functional model may be described
by a pair of functioens:

<c, f>,

where ¢ and f correspond to a partioning of Obj and Link, respec-
tively.

¥ x E Ci: c(x) o Obj
AND ¥ x1 B Ci: ¥ x2 B Ci: x1 # x2 => c(x1) i c{x2) =0

fly) is a projection of a selection of Link:
s = { <1, y>| 1 E labels AND y € Fi } is a function
¥ v B8 Fi:
} 1 € labels: y = s(1)
AND f(y) = { <i1, i2»| <1, it, i2> € tink
AND 11 B c(D(y))

AND (i2 € c{R(y)) OR i2 = NIL) }

AND f(y) is a function.

19

¥ x 6 Ci: .J

V is a function: ¥ el &i¢lx): V(el) & T(x)
AND K = { v| v = v(el) }: oo ‘

¥ k1 8 K: k1 = max(K) OR ¥ k2 &K: k2 = suce(k1)
AND ¥ k1 & K: k1 = min(K) OR } k2 € K: k2 = pred(k1)
AND ¥ k B K, k # mip(K): sucec(pred(k)) = k
AND ¥ k B K, k # maxfK): pred(succ(k)) = k.

Definition:
X > ¥y = X

succ(y) OR' (¥} z: z > y AND-x = succ(z)).
Now, within the Eldorado system, the following holds:
}oyt, y2: o
{(}F %1, %2 6 c¢(C1): y1 B c{(C2) ANB y2 € c(C2)
AND x1 =.y1 AND x2 = y2
AND x2 > x1)}
=> y2 > y1. :

The ‘<’ relation may be defined analogously:
Xx €y = x = pred(y) OR (3 z: z « y AND x = pred(z)].

EXT is a function,
with ¥ k B8 c¢(x): EXT{k} = NIL OR EXT(k) E EF,
and EF is & set of untyped data.
Temporary data structures:
Atom{ X) => Type(X) & {empty, bool, int, rl, wd, ref}
Type(X) = ref => }+ i 68 Ci: X B cf{i)
Set(X) => (3 y &8 { empty, int, rl, wd, ref }: Type(X) = set of y)
All elements of a set have the same type. -
{Type(X) = set of . ref) => % 1 68 Ci: X ¢ e(i)
Category(X) => (}+ v € { empty, int, rl, wd }: Type(X} = cat of y)
Tfunction(X) => Type(X) = tfn
O0f course, the feollowing expression must hold:
Type(X) = tfn => } i € Ci: TFfnDom(X) ¢ c(i).
AND + 4 8 Ci: TfnRange(X) ¢ cl()
Function(X) => Type(X) = func
Table(X) => Type(X) = table
All columns of a table should have the same domein, that is:
¥ 7, Type(T) = Table:
+ i 68 Ci.

} 85 cecli):
{¢¥ <w, f> B T: TFfnDom(+Ff) = S}

20

TP

Storage structura.

defined as follows, using- #ﬂe no

¥

nentioned are stored may be
ation A.B as an indication aof

The form in which the typél

element B from tuple A

v

Data base: DB = <index, re?ereﬁéés, objécts>

index = {< cat, v, id>/
id & c{cat} AND v = Vﬁid) AND Type(v}) # empty}

raeferences = {<id, fr, br>| !—%?G Ci: id B e(i))

fr = «<nf, fpl> '

Type(nf) = int .

fpl = {<1, frefs>| 0 < 1 <'nf}

frefs = <fp, 1lp> L

Type(fp) = Type(lp) = ref
lp indicates an other item from the same category that
has the same fp value Fop the same label 1.

br = «<nb, bpl>

bpl = {<1 bp>] 0 < 1 < nb}

Type(bp) = ref
bp is a backward pointer indicating an element that has
a forward pointer to the current item,

o

objects =

{<id, length, v, ext>|

} i 8 Ci: id 6 e(i} AND v = Vv(id) AND Type(wv) ¥ empty)}
Type(length) = int

length indicates the total length (in bytes) of the

data (v and ext)

(lenght = Length{ Type(v)]) + Length{ext)})
v = <tp, cont>
tp & {int, rl, wd}
cont is the representation of a value of the type indicated
ext is a byte string of arbitrary length.

Set: B = «<t, cat, cont>

t € {empty, int, rl, wd, ref}

t = ref => cat & C1

cont = NIL OR cont = <v, cont>

t = empty <=> 5.cont = NIL

{cont # NIL AND cont.cont # NIL) => cont.v < cont.cont.v
Tfunction: TF = <ed, er, cont>

cd € Ci :

cr & Ci

cont = NIL OR cont = <p, cont>

p = <rd, rr>
Type(rd) = Type(rr) = ref
(cont # NIL AND cont.cont # NIL)
=> cont.p.rd < cont.cont.p.rd

21

AT

e

Table: T = NIL OR T = <a, &
a8 = <name, f> |
Type{ name) = wd R
Type(f) = tfn oy
(T # NIL AND T.7 # NIL)

#T.a.name < T.T.a.name

This definition only describes the implementation of the various

structures. It 1is npot used in the definit4don of the operations
below. : ’ -

22

&

>

“s)dorado operations.

ke =

g

e

Appendix B: Formal specification

CreaSet({x, Cat, S)

Input parameters: . X datatype ‘
Cat: cat of x °~

Input/output parametefé; S5: set of x
Preconditions: L

x 6 { empty, int, rl, wd, ref }

x = ref => Cat # NIL

Postconditions:
s = {3}

SetAdd(81, S52)

Input parameters: §2: get of x

Ihput/output parameters: 51: set of x

Preconditions: '
Type(S1) = set of ref => } i 68 Ci: 81 ¢ c(i) AND 52 ¢ cli)
S0 = 81 ‘

Postconditions:
§1 = 8§80 u S§2

SetRetain(51, S52)

Input parameters: 62: set of x

Input/output parameters: §1: set of x

Preconditians:
Type(S1)} = set of ref => } i € Ci: 51 ¢ c{i) AND 52 ¢ c(1i}
50 = B1

Postconditions:
81" = 80 i 82

SetRemove(51, 52)

Input parameters: 52: set of x

Input/output parameters: S1: sat of x

Preconditions:
Type(S1) = set of ref => } 1 6 Ci: 81 ¢ c(i) AND 82 ¢ c(i)
50 = 51

Postconditions:
81 = 80 \ §2

23

S: gﬁﬁéof x

Preconditionsf
SO0 = §

Postconditions:
v = min(S0) N
S = 60 \ {v} o
Insert(S, v)
Input parameters: ‘ v: X
Input/ocutput parameters: S: set of x
Preconditijons:
x # ref
50 = §

Postconditions:
Type(v} # empty <=> § = S0 u {v}

Valuate(S1, 52)

Input parameters: ' 52: set of ref
Output parameters: 51: set of x
Preconditions:

Postconditions:
81 = { vl 3+ el 6 82: v

V(el) AND Typelv) # empty }
CopySet(51, 52)

Input parameters: 82: set of x

Qutput parameters: S1: set of x

Preconditions:

Postconditions:
51 = 52

24

CatMin(v, Cat)-

Input parameters:

e

Cat: cat

Qutput parameters:*l- v: X

Preconditions:
x # ref

'Postconditions:
v = Min{ yl!

CatMax(v, Cat)

Input parameters:

} el B c(Cat) AND y =

Cat: cat

Qutput parameters: v: X

Preconditions:
% # ref

Postconditions:
v = Max{ vyl

¥} el B c(Cat) AND y =

CatExtract{(&, Cat, v1, v2)

Input parameters:

V{eIJ?}'
of x
Viel) 3}

Cat: cat of x

vl, v2:

X

Cutput paremeters: S: get of ref

Preconditions:

Postconditiaons:

S = { el 68 c{Cat)]| v1 < V(el) < v2 }

CatExpand(Cat, n, S5}

Input parameters: n: integer
Input/outputparameters: Cat: cat of x
Qutput parameters: 5: set of ref

Preconditions:

So = c(Cat}
Sn ¢ {ri ¥
#5n = n

Postconditions:
c{Cat) = So

i 8 Ci: r 8 c(i)

u 5n

25

CatAdd{Cat, S, S2)

Input paramaters: ' 51: set of raf

52: set of x
Input/output parameters: Cat: cat of x

Preconditions:
§1 ¢ c(Cat)
x # ref

Postconditions:
¥ x 6 52: 1 el € 51: x = V(eal)

CatAemove(Cat, §1, 52)

Input parameters: §1: set of x
Input/output parameters: Cat: cat of x
Qutput parameters: 52: set of ref

Preconditions:
x ¥ ref
S0 = { ell el B c¢(Cat) AND V(el) B S1)}

Postconditions:
51 ¢ { vi } el 6 c(Cat): v = V(el) }
g2 = &0

CatBeduce(Cat, §)

Input parameters: v S: set of ref
Input/output parameters: ~ Cat: cat of x
Preconditions:

8§ c c(Cat)

¥ el 6 5: Type(V(el)) = empty
AND NOT (F 1 68 Fi: <el, y>» B8 f(1) OR <x, el> € f(1i))

Postconditions:
S ¢ cl(Cat)

CreaTfn(C1, C2, TF)

Input parameters: C1, C2: cat of x
Input/output parameters: TF
Preconditions:

Postconditions:
TF = {3

26

Tanom[F,‘S)
Input parameters: o F: tfn

Output parameters: - “ S: set of ref.
Preconditions:

Postconditions: -
8 = { xi <x, y> 8 F)}

TfnRaﬁge(F, 5)

Input parameters: F: tfn

OQutput parameters: 8: sat of ref
Preconditions:

Postconditions:
§ = { yl <x, y> & F}

Compose(F1, F2)

Input parameters: F2: tfn

Input/ocutput parameters: F1: tfn

Preconditions:
} i 8 Ci: TfnRangel(F2) c c(i) AND FTfnDom(F1) ¢ c(i)
FO = F1

Postconditions:
F1 = { <x, y>| ¥ z: (<x, z> B FO AND <z, y> B F2)

OR y = NIL) 3}
TfnAppl(F, ell1, el?2)

Input parameters: F: tfn
' el1: ref

Qutput parameters: el2: ref
Preconditions:

Postconditions:
<ell, el2> € F OR el2 = NIL

27

quInéert[F, ell, el2)
Input parameters:

Input/output parameters:

Preconditions:

ell, el2: ref

F:tfn

¥ i 6 Ci: el1 € c¢(i) AND T+nDom(F) ¢ c(i)
} 68 Ci: el2 € e(j) AND TfnRange(F) c el 3)
FO = F \ { <el?1, elr>| elr € TfnRange(F) }

Postconditions:
F = FD u {<ell, el2>}

CopyT¥fn(F1, F2)
Input ﬁarameters:
Output parameters:
Preconditions:

Postconditions:
F1 = F2

Apply(S1, F, S2)

Input parametersg:

Output parameters:
Preconditions:

Postconditions:
S1 = { yl <x, y> 8 F AND

InvAppl{S1, F, §2)

Input parameters:

Qutput parameters:
Preconditions:

Postconditions:
.81 = { x] <x, y» E F AND

F2: t+n
Fi1: tfn
F: func
52: set
S1: sget
x & 52 }
F: func
52: set
S1: set
vy B 52}

28

of ref

of ref

of ref

of ref

FuncAdd{F, TF) L

Input parameters: . . TF:'EFH
Input/output paramefars: F: func
Preconditions:

TfnDom(TF) e ¢{D(F))
TfnRange(TF) ¢ c(A(F))

—

FO = F \ { <x, y> B8 F| x 8 Tannm(TF]}‘”

Pastcanditians:
F=F0 u TF

FuncRemove(F, 5)
Input parameters: 8: set of ref
Input/output parameters: F: func
Preconditions:

S e c(D(F))

FO ="F

Postconditions:
F = { <x, y>| <x, y> B FD AND NOT (x B S)

FuncEktract(TF, F, 5)

Input parameters: F: fune
5: set of ref

Output parameters: TF: tfn
Preconditions:

Postconditions:
TF = { <x, y> B8 F| x B 5}

CreaTable(T)
Input/output parameters: T: table
Preconditions:

Postconditions:

T = {}

29

N

FEUER L

AddAtte(T, TF, w)

,;nbut parameters: TF: tfn -
w: wd .
Input/output_pgramefefs: T: table " .
Preconditions: _ h ﬁf%
¥ <x, f> B T: TfnDom(f) = TfnDom(TF) ﬁ':;;
¥ o<wt, f> 6 T: wt # w " iy

TQ = T

Postconditions: e
T = T0 u {cw, TF>3} s'«

Select(v, T, w, r)

Input parameters: “ T: table
w: wd
r: ref
Qutput parameters: v: X

Preconditions:
Postconditions:
x 6 {empty, int, rl, wd}
(} f: + el: <w, f>» B T AND <r, el> 6 f => v = V(el))
X0R x = empty
AtomVal(r, v)
Input parameters: r: ref
OQutput parameters: Vi X

Preconditions:

Postconditians:
x = empty OR (v = V(r) AND x € {int, rl, wd})

AtomExt(r, e)

Input parameters: r: ref
Output parameters: e: "ext
Preconditions:

Postconditions:
e = NIL OR e~ B EF

30

COMPUTING SCIENCE NOTES

In this series appeared :

No.
85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

86/05

86/06

86/07

Author(s)
R.H. Mak

W.M.C.Jd. van Overveld

W.J .M. Lemmens

T. Verhoeff
H.,M.J.L. Schols

R. Koymans

G.A, Bussing
K.M. van Hee
M. Voorhoeve

Rob Hoogerwoord
G.J. Houben
J. Paredaens

K.M. van Hee

Jan L.G. Dietz
Kees M. van Hee

Tom Verhoeff

R. Gerth
L. Shira

Title
The formal specification and
derivation of CMQS—circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films

Delay insensitive directed trace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
real-time systems

ELISA, A language for formal
specifications of information
systems

Some reflections on the implementation

of trace structures

The partition of an information

system In several parallel systems

A framework for the conceptual

modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

On proving communication
closedness of distributed layers

86/08

86/09

86/10

86/11

86/12

86/13

86/14

87/01

87/02

87/03

87/04

R. Koymans

R.K. Shyamasundar

W.P. de Roever
R. Gerth
5. Arun Kumar

C. Huizing
R. Gerth
W.P. de Roever

J. Hooman

W.P. de Roever

A. Boucher

R. Gerth

R. Gerth
W.P. de Roever

R. Koymans

R. Gerth

Simon J. Klaver

Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff

Compositional semanties for
real—-time distributed
computing (Inf.&Control 1987)

Full abstraction of a real-time
denotational semantics for an
0CCAM-1ike language

A compositional proof theory
for real-time distributed
message passing

Questions to Robin Milner - A
responder’s commentary (IFIP86)

A timed failures model for
extended communicating processes

Proving monitors revisited: a
first step towards verifying
object oriented systems (Fund.
Informatica IX=4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of

the monitor concept

Federatieve Databases

A formal approach to distri-
buted information systems

Delay-insensitive codes -

An overview

87/05

87/06

87/07

87/08

87/09

87/10

87/11

R.KXuiper

R.Koymans

R.Koymans

H.M.J.L. Schols

J. Kalisvaart

L.R.A. Kessener

W.J.M. Lemmens

M.L.P. van Lierop

F.J. Peters

H.M.M. van de Wetering

T.Verhoeff

P.Lemmens

Enforcing non~determinism via
linear time temporal logic specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after
projection.

Language extensions to study structures
for raster graphics.

Three families of maximally nondeter-
ministie automata.

Eldorado ins and outs.
Specifications of a data base management
toolkit according to the functional model.

	Contents
	1. The functional model
	2. The ELDORADO System
	3. Temporary data structures
	4. DBMS operations
	5. User interface
	6. Implementation
	Appendix A: Data structures and invariants
	Appendix B: Formal specification of Eldorado operations

