

Eldorado ins and outs : specifications of a data base
management toolkit according to the functional model
Citation for published version (APA):
Lemmens, W. J. M. (1987). Eldorado ins and outs : specifications of a data base management toolkit according
to the functional model. (Computing science notes; Vol. 8711). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c14076f7-acad-4ec6-ae29-eaf7801f816b

Eldorado ins and outs.
Specifications of a data base
management toolkit according to

the functional .odel.

by

Pim Lem.ens.

june 1987

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing

Science Section of the Department of

Mathematics and Computing Science of

Eindhoven University uf Technology.

Since many of these notes are preliminary

versions or may be published elsewhere, they

have a limited distribution only and are not

for review.

Copies of these notes are available from the

author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

QutS.l

Specifications of a Data Base Manaiement Toolkit
according to the Functional Mo'del.

by Pim Lemmens
.. <,~-. '

Contents:

1 . The functional model.

2. The ELDORADO system.

3. Temporary data structures.

4. DBMS operations.

5. User interface. ¥

6. Implementation.

Appendix A. Data structures and invariants.

2

6

8

9

13

15

19

Appendix B. Formal definition of Eldorado operations. 23

1. The functional model.

<~'.F>t~- ,,~.~ .. -

::,,' "'--'?'~,~~;~
".,.,!:~
,)~.,

"At the en'd of t'he P6·.~'eWay, . a small room is lit by a
single candle standing on " w,9<'lc'.ten table. The candlelight
reveals a murky room, but ~";'sed as " place of residence,
judl!inl! by the furniture" ._'teredabout. Seated at the
table is a spindlY creature 'w "hse attention is focussed on a
Glass Orb standing on a plinth. The .creature is mumblinl!
something at the Orb .. ,Shapes and col",ul"S are swirling across
its surf"ce, but you 6'Oi')J'l:ot moke out'cpiything cleorly.,., n

',i;'<L

(from:
:~';'':

steve J"ckson "Th~even Serpents", Adventure Game-
books, Penguin Books, 1984)

An adventure game constitutes a world of its own, inhabited
by weird creot\lres foltowing str"ngeJ;,~ws. It may often be found
inside a computer, where it may be .ii\tered by people strivini to
be "Grand Master of Adventure". An adventure computer contains
many facts about the adventure world in such a way that they may
easily be retrieved. In fact, it contains ~ data base system that
has been filled with many items, like spindly sorceresses, Glass
Orbs and strange rooms. It also contains relations amone these
items, like: a sorceress may use a Glass Orb to see you approach,
so it won't be any use for you to'try and sneak up to her.

In ieneral we may say: a data base represents a model of
some world composed of a collection of item representations (data
base objects), that may have a value of some type, like names or
numbers, and a collection of representations of relations among
these objects. The collection of objects of the data base may be
subdivided into a number of classes. In our adventure world we
have actors (you, the sorceress), (material) objects (the Glass
Orb, a magic sword), locations (the small room, a forest) "nd
activities (move to some place, ask ~ question, pick up an ob
ject). Between these classes we have the relations: The Glass Orb
(an object) is inside the small room (a loc.ation); the sorceress
(an actor) consults (an activity) the Glass Orb. A relation links
in a specific way two or more items, each from a specific class.
Objects are linked to locations by the relation "is located at".
Actors, activities and objects are linked by the relation "action
performed by actor usinl! object".

Many data base systems contain a large number of facts about
their object system. In order to make these facts accessable the
collection of facts is structured according to some data model.
There are several different data modeling techniques, such as the
relational model (Codd,) and the entity-relationship model
(Chen,). We prefer the functional model, because of its combi
nation of simplicity and flexibility.

The entities that playa role in a functional model are
cateiories and functions. A class like "object", which contains
such things as "Glass Orb", "Magic Sword", "Emerald Bracelet",
will be called a category, if it contains each of these things
only once (e.g. no two emerald bracelets in the object cateiory).
and all of its items may have the same pattern of relationships
to items from other categories (or the same category). So a

2

-,fMii,.'-!\'~; .'
~If" . ~~", ""

specif'.ic· object is ti'G:;!: neces . ·lved in a specific rela-
tion, but ii";it is, it should items f"Iilm the same catego-
ries as .. the other objects involve In our world there may of
course be two emerald bracelets, but these may i:le represented by
an indication of their kil'!.~lk'("emerald bracelet") and two instan
tiations Of. this ki.n .. d (the •• :···. 1 bracelets, e.l/:. indicated by
the numbers 1 and 2.), with. ". d and instances linked by a rela-
tion. . . .

A function links two categ~ri.s,respectively called the
domain lind the ranl/:e category of th~"(),;1,mction. For each element
from the domaih ca'tes:ory the funct_. ····con·tains at most one pair
<a, b> linkins: element a from the'iW!mllin category to element b
from the range cqtegory. Functions realise binary n-to-one rela
tionships. But also ternary, or more generally, n-ary relation
ships and m-to-n relation_hips may be represented usins: func
tions. For that purpose we need so-called s:host categories,
cates:ories of items that do."';'.~have any value. The ternary rela
tion "action performed by pe~ian usins: object", for example, may
be realised u~ing functions by introducing a category "action"
that contains an item for every si.h4l:1e action, and three func
tions linkin2 this s:host category to "actor", "activity" and
"object", respectiveJy.

One kind of a6tion is the "move" action: we may move from
one location to another. The place where w~ .arrive will be depen
dent upon the direction in which we left our previous location.
So from some location we may reach more than one new location. On
the other hand, a certain location may be reached from several
other locations. Here we have am: nrelationship between "loca
tion" and "location" itself. Ag.!,.;j.'f> a ghost category may be of
help: A category ,,;nove" with an :t'~ for every from-to combina
tion, together with two functions,' one called "from" and one
called "to", both linking "move" to "location".

Now we may draw a schema of the data base in which catego
ries are represented by rectangles and functions by arrows be
tween catel/:ories, pointing from the domain category to the range
catel/:ory. We havl3 enhanced th.~. schema described above by adding
an extra category "direction" aD,d" a -function ,'from "move" to
"diyalOtion". Wsfu,rt~r.,introduceGct~;\oI-nctions indicatinll t\le loca
tio" .'*' _'t8>, .. _",,\$ eMi tM r_t,. " ",."a., .IK)-

• ____ -Jt~o~r~.:.~:::::::::; -~- -~~~

Ado ,..-

./)rre~.:ci Dh

.AdV€n ftlfe:D,ata ~dSe..

J

':'~~: :~>-~~
SD a ff~jj;9nal) da~ecDntains a (pDssibly

Df data iteinsfW'~'re uni~lllr;ridentifiable - nD item
t~~ce in the data base. Many items have cDnnectiDns

lar'ge) set
wHi\~~r

tD "htj'b l'
items, according to rto<lin rules. An item may, Dr may nDt, be
assDciated t6a dat t Df a certain type. It may be re-
trieved frDm the dat n accDunt Df its data value Dr be-
cause Df its cDnnect I' items.

Items are grouped A cate\l:0ry is a set Df
items of the same type, with the:,:same type of
data Dbject, anO' with the same pattern of connections tD other
items. Categories are linked by'~nctions. A functiOn-i.e a set of

-"\0(>"

connections amDng items. Potent:iC"''''l,y. all members of a category
may be connected to items, of a ca~o'r'y that h'as a function link
to that category",l'lf;,:

.' ,~

More formally:

A data base state by a 3-'tuple:

<Obj, V,Link>

Where Obj ~ a set of indices ',<'

V = a (partial) functiDn: ~ndices -> values
Link = a ternary relation: labels * indices * indices

Each link
label, a 'from'

is characterised (uniquely identifiable)
object and a 'to' objeci.

by a

A data ~ skeletDn accDrding to the functional model is a
5-tuple:

08 = <Ci, Fi, 0, A, T>

in which Ci and Fi are sets, indicating respectively: Category
indices and functiDnindices.
o and A are the domain function and the range function of the
functions and T is a function that links each category name to a
set of possible values, its type. This set may be empty.

v y G F i: D(y) G Ci AND A(y) G Ci

SDme of the symbols used here and in the fDllowing sectiDns
are:

v- for the universal quantifier,
:I- for the existential quantif'ier,
e fDr the set membership Dperator,
£. fDr the subset operator,
i. for the intersection operator,
u for the union operator,
AND, OA and XOA (= exclusive or) refer tD the logical operatDrs
of these n~mes .

A ~ ~ state in the functional model may be described
~y a pair of functiDns:

4

. ; .,

... , . _ ')' f»

where c and T correspond
tively.

'

''''0 00

, •• > ,,, •• , •• oT Obj and Link, respec-

v x SCi: c(x) ~ Obj
ANO V x 1 S Ci: V,00x2 S Ci..,,~;i(:t,; x:;!: => c(x 1) .t c(x2) - III

':~; 0 •

T(y) is a
s = { <1,
V Y S Fi:

projection &fi;';I!l selection CIT Link:
y>1 1 G lebel~.O y G Fi }is a Tunction

}- 1 S labels: y
AND T(y) = .{

s(1)
<i 1, i2>1

AND
AND

AND T(y) is a Tunction.

<1, i~, i2> SLink
i1 0 Sc(D(y))
(i2 S c(R(y)) OR i2 = NIL)

Most epp1ications need more tha'8li>one data base. First there
is the dictionary, ormetad~ta base, that contains a description
oT the structure oT the data base proper. Here we Tind the cate-
20ries "cateiory nam~", "type". "function name", and the func
tions "function domain", "function range", "category type", to
gether with data about the way these are recorded in the data
base.

Our adventure base may Turther contain, alongside the Tacts
base described above, a rules base where we can find which ac
tions are legal and which are not in a given situation. Many data
base systems have such a 'rules base' in one form or another to
hold the constraints to be observed by update operations.

And Tinally there is information about which commends to use
for a given operation or which options are ava~lable in e given
situotion. This user manual or 'help' information may also be
stored in a separate data base.

5

}

-:i,
"-~~:~-:",.-

, '!; ,

2. The ELDORADO System.' ;-~",:l'
'''0'0'0 " ••• m". 0' ~..,,-;:4;,., O.d •• , '0' ",mo

tion, Removal and Addition ~-f,"'ta base Objects) is a toolkit for
the implementation of" f:unction data bases, It manages data that
are structured along the lines described abbve. For that purpose
it off"ers a system of data structures and operations to be used
in application programs or interpreters f"or OML-languages. Impor
tant extra features are ordering of" data within a category and
the possibility to add e~tensions t6 the data that may be
retrieved by the system. .-,,*, .

In the Eldorado systen~e values of the items within a
category are ordered: There ij a "greater than" / "smaller than"
relation between any two values of items f"rom a specific catego
ry. The ordering relation is type dep_endent. So if two values
f"rom one category each have equal cc;):!!:t1'terparts in an other .cate
gory of" the same type, they will in i:5lS'fh categories have the same
ordering relation.

Apart f"rom the typed data object, aR
association to an untyped amount of data,
extension may be produced as a by-product
item from the data base.

EXT is a function,

item may also have an
the extension. This
of retrieval of the

with V k 6 c(x): EXT(k) = NIL DR EXT(k) 6 EF,
and EF is a set of" untyped data.

The extension data may be of any kind: Text or graphics or even
program code. Its use will be determined by the application and
is of no concern to the DBMS.

The data structures and opera;tions summed up below represent
a choice from many possibilities. The considerations that led to
th,is choice are mainly:

1. Do they agree with the way of" thinking of" the user? Don't they
introduce concepts that are unknown to him or force him into an
"unnatural" pattern o~ actions?

2. Are they of a sufficiently general nature? Mayall foreseeable
applications be realised by them?

3. Are they realisable? Are they
actions that have to be performed
with regard to processor time,
programming effort?

able to realise all kinds of
in a reasonably efficient way,
use o~ memory and necessary

It is difficult, if not impossible, to fully satisfy all
these requirements. The choice we made is primarily directed
towards generality, and secondarily towards efficiency of execu
tion. For this reason we chose collective operations as much as
possible. Retrieve and update operations are performed setwise
and not one item at a time.

The first consideration may be satisfied by adding some kind
o~ user inter~ace - an interactive proaram or an interpreter for
some query/DML language that matches the user view of the data

6

(<.l'<~l" lhese programs should b~structed as a layer cOIi~~iI
l1;'e' ELDDA~elJ system, using the operations and data structures
described ',lIeJ'e. A proposal ,for an interactive user interface is
given in chap,ter 5.

?

3.;£'pl data structu

~ allow full manipulat1
offers the followin~ structur~
functions fl':1l!,m: the data base:

f its data, the Eldorado system
additicn to the categories and

- Atoms, w\h:ich are the building blocks of the structures men
tioned above. Atoms come ~, several posSible types: integers,
reals or strings, which arEi"'i~l'>e types that are also used for the
objects in the date bese; b~eans, to be used for expressions
that evaluate to true or faby,'empty, denoting objects without a
value, and ref's.

A ref indicates an item in the data 6ase. Every item will be
uniquely identified by a ref. In fact, a ce~egory is a collection
of refs, even the so-called ghost categor;l..es that do not contain
any integer, real or string values. int and rl indicate, respec
tively, integer and real elements. wd elements are strings of
some fixed length.

- Sets, which may be considered as' temporary categories. A set
be may contain an extract of a specific category, or dat~ to

added to it. A set may be empty or the type of its elements is
either int, rl, wd or ref.

A set may contain refs, in which case it indicates a subset
of some category, or it may be composed of integer, real or
string values.

- Tfunctions, or temporary functions, to be used for extracts or
updates of functions, among other things.

Functions and tfunctions may be considered as sets of pairs
of refs that link two sets of items.

- Tables, which correspond to the relations of the relational
model, to be used for the presentation of data from the data base
in a surveyable form.

A table may be considered as a function that links a set of
attribute names to a set of tfunctions. All tfunctions of a table
should have the same domain.

Sets, tfunctions and tables are built from atoms or pairs of
atoms and can not be used to construct more complex objects
recursively. Things like sets of tfunctions or tables that have a
complete set as an attribute value are not admitted by the sys
tem.

B

; ")y: - -.,~,,<~":

4. D~"rations.
N6W'< that we have established the .basic data structures of

our system, we need a number of operations far the conversion of
one structyre toaryoth'er, or one type to 'an'otDer or the transfor
mation of ,.ce:fotain valu:es into others. In principle there are many
POSSi.ble ... ~q", '.ices. of operation collections~': but we want. to conce~
trate 01'\..,' .lect1veoperations on categor1.rs and funct10ns. So 1n
stead ~. 'etching one e'lement from a cateio'ry, processing it and
t.b.en 'f'etching the next one to. repeat the processini on, we ex
~act a whole set of candidate elements from the data base before
processing them collectively. 'Addition, removal and retrieval of
elements is performed setwise. Updating a function or a category
means first building a set of elements to be updated and then do
the update operation for the whole set.

Whereever possible, operations will be using refs instead of
values of items. Only when, after a number of operations, the
user needs the resulting values, they may be determined by a
valuation operation. .,

Operations on atoms:

Type(X) ~ int
+, -, *, DIV, MOD
=, r, <, ~, >, :>

·Type(X) =-!:.!.
+, -, *, /
... , =; 1 <, ~, >, >

Type(X) ~ wd
=, ." <, ~, >, >

Type(Xl - ref
~, 'f
AtomVal
AtomExt

Type(X) = bool
NOT
AND, OR

Sets:

Crea5et

int * int -> int
int * int -> bool

rl * rl -> rl
rl * rl -> bool

wd * wd -> bool

ref * ref -> bool
ref -> x: x 8 {empty, int, rl, wd}
ref -> e 8 EF

bool .-> bool
bool * bool -> bool

type, cat of K -> set of type

Used for the crea~ion of a new empty set in situations where the
user needs to build a set by adding element by element. Several
other operations also create a new set (e.i. Valuate or
CatExtract, see below), althouih mostly not an empty one.

9

,,'A". ",e",,". "'R'm.~':~ .• , ., . ~> •• , ., •

These are, respectively, set un10n, intersection and diffe-
t · . ~ rence opera 10n. .

SetExtract
Insert

These
set.

Valuate

operations remove

set of x -> x * ~et of x
x * set of x -l,~~t of x

'" c. q. add an atom to

~'

set of ref -> set of x
x 8 lint, rl, wd, empty}

the

Valuate replaces t.he refs in a 'se~~ ref' by the values of the
corresponding elements in the data base. Categories without data
objects, so-called 'ghost' categories, produce an empty set.

Count
Min, Max

Sum, Avera2e, StdOev

set of x -> int
sa of x -> x

In all three cases: x 8 {int, ri, wd}

set of-·x -> rl
x 8 {int, rl}

These are a2gre2ate functions. They quantif~. over the whole set.

Categories:

CatMin, Cat Max cat ofx -> x

Furnish the smallest, c.q. largest element of a category, e.g. to
be used as a lower, c.q. upper limit in the next operation:

CatExtract

CatExtract performs
respectively, the
the set.

CatExpand

cat of x. * x * X -> set of ref

a range query. The atom parameters indicate,
lower and the upper limit of the elements of

c .. t of x * int
-> cat of x * set of ref

Adds a number of items to a category.

CatAdd cat of x * set of ref * set of x
-> cat of x

(x e {empty, int, rl, wd})

Adds a set of values to a c .. tegory (to existing items).

10

catfl'e..I'''t of ,x ,,,,,,'at of x '.;'_;" ' '~-flf' - "->cat of x * set of ref

'"'~mbves a set of' values from a c~, '-,cry an,d delivers the refs of
thS associated items.

Cat Reduce cat of x * set of ref -> cat of x

Removes a ,sist of items from .i~ategory.
"," .

New values should be added to a ,cat.go~y in two steps: first a
number of items should be created ".;lirill-.next these items should be
given a value. By dropping the s~d step you may create a, set
of items within a category that d~~ haVe values, e.g. as an
extension to a ghost category. The reverse, removal of items,
takes as many steps as their addition.

Tfunctions:

CreaTfn cat 6fx * cat of x -> tfn

Analogous to CreaSet: The creation of an empty new temporary
function that subsequently will be filled element by element (or
will be kept empty, if necessary). Creation of tfns may also be
done by other means, e.g. by FuncExtract (see below)

Compose tfn * tfn-> tfn

The composition of two functions can be fairly easily achieved
for tfunctions, as opposed to permanent functions that reside on
background storage.

TfnDom, TfnAange tfn -> set of ref

These operations deliver the domain set or the range set of the
tfunction, respectively_

TfnAppl tfn * ref -> ref

Function application for one atom.

TfnInsert tfn * ref * ref -> tfn

This operation extends the tfunction by one element. It wJll
among others be used to build a tfunction to be used for addition
to a permanent function.

The domain and range of a tfunction are sets of ref and thus
represent a subset of some category.

1 1

Functions:

Apply, InvApp ref * func -> set of ref

These are, respectivel¥,
application.

the func:~o'n,and the inverse function
·1' "'-.'~ ~"" ~

FuncAdd, FuncRemove ->func

These are update operations., The ,main reason for not imposing the
condition that a tfunction~\',a subset of a function is that
tfunctions are used to extend ft'ctions (by FlmcAdd) .

FuncExtract func * set of ref -> tfn

Produces a restriction of the function.

Tables:

CreaTable -:> table

Creates a new table after removing the current contents first, if
necessary.

AddAttr table * tfn * wd -> table

Adds a new column to a table.

Select table * wd * ref -> x
x 8 {empty, int, rl, wd}

For sets and tfunctions we further have copy operations that
create a duplicate of such a structure (CopySet and CopyTfn,
respectively) .

The set of operations mentioned here is not minimal: some of
these operations may be replaced by a composition of other opera
tions, e.g. Apply(f, x) is equivalent to Range(TfnExtract(f, x)).

As one application will require more than one data base
(e.~. an expert system using a didtionary, a facts base, a rules
base and help information), every operation that involves a
category or function in fact has one parameter more than the ones
mentioned: the relevant data base.

Precise
appendix.

specifications of all operations are shown in the

12

- -- - --~---------~-

~;;;;"

s. ,"oro .po •••• ""'~. 0' ... " 0' • 0'.'. "'"' .n.:.;~:
the data~a:~.)1:~<designer, who use,s .. t,hesystem to cI'eate a data base
schema .. ;~~person will spec1i1a"set of categor':i:es and func
tions fQi;'\'the ree:istration of 'data that some institution
needs i!i>~;,he or she Will, presc'rl.be the constraints that the
transact~ns on the 08 shau1d observe.

Next we have the a~.!i;;l'1ations designer. TAis person will
specify certain queries t~~ done on the DB. He or she will also
design a user interface tha allows the end user to perform these
queries without entering them ex:p1:acitly into the system.

The third kind of user is .,'*" end user, who has a task to
fulfill in the institution for which the data base has been
created. He or she may be a desk employee in a travel agency who
wants to make flight reservations for Old,stomers, or some such
thing.

The first two kinds of users will have much the same re
quirements when using a user interface. ~hey need a view of the
data base schema and they will want to enter data into the system
or receive data from the system, often straight from some catee:o
ry or function. The main difference between them is that users of
the first kind will work on the dictionary, while the second kind
of user will only use the primary 08. The third kind of user will
only have to deal with the products of the application designer:
Standard screens from which data should be read and into which
data should be entered. This user will not be concerned with the
structure of the data base or the kind of data" it
main interest will be with the first two users.

contains. Our

Now we have a system of data structures and operations to
manipulate them. The next thing to do is to create a means for a
user to interact with the system. We want to have an interface
that allows the user to realise the queries he has in mind on the
system he uses. A user operates a computer by means of a key-
board, a mouse or some other input device. The system may respond
through a display, usin2 windows for presentation of groups of
related data. The user interface wi~l provide the link between
the data structures and operations on ~ne side and the input and
output devices on the other.

Our main interest will be with the applications designer.
Many of the tools he will have to use may easily be transfered to
the DB designer. '

As windows are often used to present (temporary) data, the
obvious thing to do is to map sets, tfunctions and tables to
windows. The mouse may be used to indicate windows to be used as
an operand and to point at the operations, shown in some menu.
Input data may be entered by keyboard.

While "toying around" with the data base the user will
perform the actions needed for a query that should playa role in
some application. Then it is up to the computer to convert the
actions of trye user, extended with certain commands, into a
regular query statement. The difference between the computer
generated statement and the user actions lies with the level of
2eneralisation:

13

b

,~-. _,,:~~~4;~

'. - Ttie'·'f.inal stetement will contain p.~eter indic~'t':klli~'ll' where
cluriTfg .fife "playing" actuel velues were entered.:;~

- Furthermore the fine 1 statement will c,O@tein things like the,.~·

union of some (compound) ope,r,~:t.ion ovilr ell elements of e
set, wherB< the definine: ,actio~'~Were only concerned with one
element of that set. . '''.~.'.:'.';' . , . -~~ ,'- 'l'-::

A window is
where:

associeted with e S-tuple <;,'o,r, Od, Cat, T, S>,

Or is an operator,
in section 4.

one from the set· of' operat·ors mentioned

Od is a set of operands'>,' Od 8 windows u peremeters
.."

Cat 8 Ci !! input
S ere the contents of th.~~window.
T is the type of these c~ents.

A window will have two feces: On one side there will be data
about the window, namely Or, Od,>.~at, T end the number of ele
ments. On the other side there wilt be the contents of the win
dow. Refs will never be displayed,'so in this case the contents
face will not be presented. There will however be ~ command to
displet~tl'l. u.etultftln Irl' ""'5.

SlZt Add

Se.-t 'R.€id '"
Set:~.J!_'"

Sl!.t 'Etlbae

14

I
I

Sd o.f s-trik3

-r;;
Pie/'"
Jer!:::J

6. Implementation. J;

descr~~ed aC!~~~e W~~k!n:iV:'~r§:fl~h~*-~ ~:ri'~~:at!:e u~~~;at!~::
layers oi' soi'twareon top oi' t,""'(ile system. ,The operations and
types described ab9veconstitu" the top 'layer'. For their opera
tion they need a di!p'ti-on<lry besides the d';:;ta, b<lse proper. So, in
the second l<lyer i'rom the t,.op we h<lve two '~,g:, e<lch with their
o.wn cate20ries <lnd i'uncti'o-fls. Bel.ow this"',lie,vel we don't have
catE!2ories end .f'unctions eJI:a:ymore, t items containing referen-
ces, v<llues and 'extensions. These are identii'ied by some
number, the rei' .oi' the item. el deBJ1'ler, the items are
dissolved into one or two record dii'i'erenti'iles, and the
rei's have been replaced by the ses oi' these records. The
lowest level consists oi' the' i'ile system.

Overview:

level 0: Standard i'ile ,system.
level 1 : records and adresses
level 2: items and rei's
level 3: OBbui'i'er <lnd Oictbui'i'er
level 4:· Eldorado dat<lstructures <lnd operations.

Data and meta data.

The description oi' the skeleton oi' the DB, <IS shown in
section 2, will reside in the dictionary, t02ether with the
labels and the connection between labels and i'unctions plus the
names assigned to the cate20ries <lnd i'unctions. A i'unction or
category may have more than one name (synonyms)

The categories oi' the dictionary are:

Function name
Fi: Function id

Label (Link label oi' i'unction, viz. section 2)
C<lte2ory name

Ci: Cate20ry id
Type
NLabels

Type indicates a i'inite set oi' domains, among which the empty set
{} (!11 8 Type).
V i 8 Ci: T(i) 8 Type

Type doesn't change during the lii'etime oi' the system. Which
types there are and what is the ordering oi' their elements is
determined bei'orehand.

NLabels is an inte2er category indicating the maximum number
oi' i'orward or backward rei'erences an item i'rom a specii'ic cate20-
ry will have.

15

The functions are: .~ " .,;t.-,

Function n<!lme -> FU~ ',_ ~-~. id '~~t'
Function id -> l.;~el .. t-l.~ -" Category name ->"Category iM""""

0: Function id -> Cate~ory id "
R: Function id -> Category id
T: Category id -> Type
NF: Category id -> NL<!Ibels
NB: Category id -> NLabels

The NF and NB functions are::~ bookkeeping purposes. They will
determine the maximum size of an item from t~e associated catego
ry in the data b<!lse.

This meta data base will be.a'ccessed every time the system
needs information on the structure of the DB: It will be updated
for addition or remov<!ll of c<!ltegories <!Ind functions. For this
purpose the same oper<!ltionS,;<!Ind data stP',4-t:tures may be used as
for the coresident data base~,' However, an authorisation mecha
nism should be added to preven£ unwanted schema modifications.

The meta data b<!lse is stored in the same files as the data
base it describes. However, in ord"io!.r'to limit the mutual interfe
rence between file accesses for d1~ferent data bases, each data
base has its own set of buffers for temporary copies of DB re
cords. An application uses as many buffers as it needs data
b<!lses. So, a straightforward functional facts base will need two
buffer sets: One for the facts and one for the diction<!lry.

Items and refs.

All categories of an Eldorado data base, and possibly of
v<!lrious d<!lta b<!lses, will be stored in the s<!lme files. It would be
impr<!lctic<!ll to open a new file every time <!I new category is going
to be accessed. So the files used will n6t correspond to the
categories created. In fact, even the structure of the files used
will not mirror the structure of the DB in terms of categories
and functions.

At a certain level we are not aware of categories and func
tions in much the same way as, looking through a microscope, a
plant is not seen to consist of leaves and stems, but of (more or
less differently shaped) cells. In our case these cells corres
pond to the items of the data base. An item may have a value of
some type and connections to other items. It may be found through
its connections, by way of an other item, or it m<!ly be accessed
on the basis of its value. For this purpose, there will be <!In
index mechanism that, given a certain value from a specified
cate20ry, allows us to locate the associated item.

So every item will eventually contain at least one of the
following: a value and a number of refs of other items, where
every ref is associ<!lted with <!I certain label at the item itself.
If that would not be the case, the item could never be retrieved.

16

File:.~~,i:?o'rds and Adresses. "'F

If' we COlild'pUf'f'iCient"I'y':auamEinJ;the magnif'ication of' our
microscope, at,,'·1!, certain moment': '\:'Q,,!k:cells would dissolve into

,." , ,,"'''''''''''
molecules bef'or1f'our eyes. As we '~.~ seen, the "cells" of' our
system, the items, are built f'ro.arious components. And these
components will have their.ow.n. inner stru<:).tUcre. Dif'f'erent compo
nents will be stored in Qii:ff'erent f'iles.where each f'ile will
contain records of' a "dif'f'erenl:i<;'l:ype .

First we have .. the inde~file. ItcQ·l"\sists of' a tree of
trees: a category tree that allows easy access to the dif'f'erent
cateaories and a number of' value trees. All trees are a-trees.
The value trees are ~he leaves of' t.-I:lk category tree. So if' we
need a specif'ic value from a specificcateabry, the system first
searches f'or the category in the cateaory tree. There it may f'ind
a value tree that pq.ssibly contains the v'alue specif'ied and
provides us with the associated ref'.

Next we have the ref'erence f'ile. It~ records will not con
tain any values, just ref'erences. Their structure is:

<id, f'r, br>,
where id is the ref' of' the item itself',

fr = <nf', fpl>,
with nf' = the number of' f'orward (f'unctional) ~eferences and

fpl = A list of' tuples <1, f'p, Ip>,. with 1 S labels, f'p
indicates the range value associated with the current element f'or
the f'unction concerned, and lp a ref'erence to an other element
f'rom the same cateaory with the same f'unction value.

br - <nb, bpI>,
where nb = the number of' backward references,

bpI = a list of' tuples <1, bp> indicatina an item f'rom the
inverse f'unction associated with 1.

An item may also have an entry in the objects f'ile,
the values and extensions are stored. The elements of' this
have the following structure:

<id, 1, v, ext>,

where
file

where id is the ref' of the element, 1 the total lenght (in bytes)
of' the associated data, v = <tp, cont> the value, composed of a
type identif'ier (tp) and the representation (cont), which may
also be used to locate the element by way of the index f'ile
(search argument). ext are f'ree-f'ormat data of' arbitrary length.

The position of' items within the f'iles may change as other
items are added or removed and unused f'ilespace is reclaimed. If'
we want to use their mutual connections we need to keep track of'
the items as they move. There is a special f'ile f'or this purpose.
It contains the locations of' the ref'erence and data parts of' all
the items:

<id, rIoe, dIce>
and will be updated every time a location is changed. So, if' the
ref' (id) of' an item is known, it will allways be possible to
locate its components (rloc and dloc).

The data in this storage scheme are intentionally made
redundant, e.g. by storing the item identification and the
lenaths of' the ref'erence lists with every item. This is done f'or
reasons of reliability and ef'f'iciency: If' part of' the stored data

17

"

~
:t :"'-'5' ":" .,

is dama~~:1f., much of it may ~etrieved by inspecting the undam-
aged-p~. This redundancy~rtheix"limits the number of disk
accesses needed, especi'llly to th.ionary.,

If, for example, the locat.' <"'.:l:le ·'hed. been destroyed, it
could be' .restored by lloinll thro gh the re·Cference and object
files, item by item, and notine: the locatio:ns of the items and
the ident1ficetions .,s;,tored at these locati·ons. Furthermore, the
edditiory of a new function to a dete base j,hat elready contains a
large ~u~ber of items, does not force us t. chenge all the items
of the domain and ran2~ categories, beceuse of added labels, as
each item has its ow~ indication of the number of lebels. Only
those items thet pl'ay a role in \ne new function need to be
edapted. ".'

The next lower level of the DBMS will. be formed by the file
system, that keeps a directorY of file names. and locations.

'i

Temporary data structures.

Sets, tfunctions and tables will not reside on background
memory. They will ceese to exist when the program that uses them
is terminated. These structures are represented in memory by an
ordered list of elements, together with some associated data.

A set is characterised by the type of i~s elements and, if
this type is ref, the catee:ory that holds them, together with the
list of elements itself:

5 - <t, i, cant>,
where t 8 {empty, int, rl, wd, ref},

t - ref -> i 8 Ci,
cont = NIL OR cont = <v, cont>.

A tfunction will have a domein and a range catee:ory:
TF - <cd, cr, cent>,

with cd 8 Ci AND cr 8 Ci,
cont = NIL OR cont = «rd, rr>, cont>

AND Type(rd) = Type(rr) = ref.

A table is a list of tfunctions:
T = NIL OR T = «a, f>, T>,

with Type(a) = wd AND type(f) = tfn.

More precise specifications of the layers described above
may be fou~d in the appendix.

18

~ ~
'11 '- -i]<>1-

\)

'1 t
~

~
~

V
,c

~ III ;:;
~ 0- -2! ~ - - - - - --

...... ~ ~ '" \ll
,

.: \I ;~ .. , .,-- " ~~ ~
<::I

~
~
~

1\1 "l -- ~ '-
",+-'4- 'i: 1\1
~

~

~
t,
~

/;;~
r5. - - - --
f4~
r;z
ii

"I
~

-..q ~ ~ c
"'~ ~ \I ._

~"-
~ .s

~
..... -... - ~ \'i; - -. - .- ~ ----

" ~ '- "l -.Q -<)
~ ~ ~

III
4....

~

~
~

\t-
.....

'-tl \J ~
'll

~ -....,J

~ III (J \J
~ f

~~ 1; 'IJ
~ ~ 'l:> ~

~ ~

fSa

Appendix ~ Data invariants.

Summary: The basic . ct. ures;x:r.'tEldorado are: Atoms, Sets,
Categories, Tfunctions, Functions Ta·bles. Atoms will be of
one of the .following types: emli'ty, l.ntell!,,'r, real, strinll, ref or
bool. Set s are either of type J!Ii.l:eaer, 're"al" string or ref, or
they are empty. TfOnctions and functions may be considered as
composed of refs, and tables are sets of. f)'ained temporary func-
tions. The followinll condition~ hold: ~,

A data base state may b:~;d.a,scribed by a 3-t'uple:

"
Where Obj

V
Lin"

<Obj, V, Lin">

= a set of indices
- a (partial) function: indices -> values
= a ternary relation: label~ * indices * indices

...
A data base s"eleton acoording to the functional model is a

5-tuple:

08 = <Ci, Fi, D, R, T>

in which Ci and Fi are sets, indicatinll respectively: Category
indices and function indices.
D and R are the domain function and the ramge function of the
functions and T is a function that lin"s each catellory name to a
set of possible values, its type. This set may be empty.

v Y 8 Fi: D(y) 8 Ci AND R(y) 8 Ci

A data base state in the functional model may be described
by a pair of functions:

<c, f>,

where c and f correspond to a partioning of Obj and Lin", respec
tively.

v x 8 Ci: c(x) ~ Obj
AND V xl 8 Ci: V x2 8 Ci: xl f x2 => c(xl) !. c(x2) = III

fey) is a projection of a selection of Lin":
s - { <I, y>1 I 8 labels AND y 8 Fi } is a function
V y 8 Fi:

r I 8 labels: y - s(l)
AND fey) = { <il, i2>1 <I, il, i2> 8 Lin"

AND il 8 c(D(y))
AND (i2 8 c(R(y)) OR i2 = NIL) }

AND f(y) is a function.

19

lJ x G Ci: ',.

V is a function: \I el S{Qt,,,) : V(el) S T(x)
AND K = { vi v = V(el) } :

lJ k 1 S K: k 1 = max(K) DR l- k2 ~"K: k2 - succ(kl)
AND \I k 1 S K: kl = min(K) OR '!- k2 S K: 1<.2 = pred(kl)
AND \I k S K, k l' minCK) : succ(p=red(k)) = k
AND V k S K, k 'I ma'!CK) : pred(irucc(k)) - k.

Oefinition:
x > y :- x = succ(y) OR('!- z: z > y AND·x = succ(z))

Now, within the Eldorado system, the following holds:
'!-yl,y2:

('!- xl, x2 S c(C 1): y 1 6 c(C2) ANID y2 6 c(C2)

=> y2 > Y 1.

AND xl =')'1 AND x2 = y2
AND x2 > 'x 1)

The '<' relation may be defined analogously:
x < y : = x = pred(y) OR (t z: z < y AND x = pred(z)) .

EXT is a function,
with V k S c(x): EXT(k) = NIL DR EXT(k) 6 EF,
and EF is a set of untyped data.

Temporary data structures:

Atom(X) *> Type(X) 6 {empty, bool, int, rl, wd, ref}

Type(X) - ref => tiS Ci: X S c(i)

Set(X) => (t y S {empty, int, rl, wd, ref }:.Type(X) = s.et of y)

All elements of a set have the same type.

(Type(X) = set of. ref) =>}- i SCi:.X £. c(il

Category(X) => (t y 6 { empty, int, rl, wd }: Type(X) = cat of y)

Tfunction(X) => Type(X) = tfn

Of course, the following expression must hold:
Type(X) = tfn => tiS Ci: TfnDom(X) £. c(i)

AND t j SCi: TfnRange(X) £. c(j)

Function(X) => Type(X) = func

Table(X) => Type(X) = table

All columns of a table should have the same domain, that is:
\I T, Type(T) - Table:

tiS Ci:.
t S £. c(i) :

(\I <w, f> S T: TfnDom(fJ - S)

20

Storage structure.

T~e ¥orm in which the typ tioned are stored may be
defined as ¥ollows, using,Arne no ion A.B as an indication of
element B ¥rom tuple.A: .",

..~,

Data base: D8 - <inde*, 're¥ere~a~s, obj~cts>
index - (< cat ,v, id>f

id S c(cat) AND v = V,t,iI:.d) AND Type(v) f empty}

re¥erences = {<id, ¥r, br>1
¥r = <n¥, ¥pl>

T its Ci: id 6 c(i) }

Type(n¥J - int
¥pl = {<I, ¥refs>1 D ~ 1 .t<n¥}
¥re¥s = <¥p, Ip> .~

Type(¥p) = Type(lp) = ref'
Ip indicetes an other item ¥r'om the same cateaory
has the same ¥p value ¥o;:'ithe same label 1 .

br = <nb, bpI>
bpI = {<I, bp>1 D ~ 1 < nb}
Type(bp) = re¥

..,'':;

that

bp is a b.ackward pointer
a forward pointer to the

indicatina an element that has
current it.em.

objects =
(<id, length, v, ext>1
TiS Ci: id 6 c(i) AND v = V(id) AND Type(v) f empty}

Type(length) int
length indicates the total length (in bytes) o¥ the
data (v and ext)
(lenght = Length(Type(v)) + Length(ext))

v = <tp, c~nt>

tp S {int, rl, wd}
cont is the representation o¥ a value o¥ the type indicated
ext is a byte string of arbitrary length.

Set: S - <t, cat, cont>
t S {empty, int, rl, wd, ref}
t = re¥ => cat S C1
cont = NIL DR cont = <v, c~nt>

t = empty <=> S.cant = NIL
(cont f NIL AND cont.cont f NIL) => cont.v < cont.cont.v

T¥unction: TF = <cd, cr, cont>
cd S Ci
.or S Ci
cont - NIL DR cont = <p, c~nt>

p = <rd, rr>
Type(rd) = Type(rr) = re¥
(cont f NIL AND cont.cont f NIL)

=> cont.p.rd < cont.cont.p.rd

21

Table: T = NIL OR T -
a ,.. <name, f>
Type(name) - wd
Type(f) - tfn
(T l' NIL AND T.'T '" T.T.a.name

This definition only describes the implementation of the various
structures. It is not used in the definit:''lron of the operations
below.

22

Appendix ~ Formal specification

CreaSet[x, Cat, S1

Input parameters: x: datatype
'Cat: cat of x

Input/output paramet~~~: 5: set of x

Preconditions:
x 6 { empty, int, rl, wd, ref}
x = ref -> Cat ~ NIL

Postconditions:
5 = {}

SetAdd(SI, 52)

Input parameters:

Input/output parameters:

Preconditions:

82: set of x

61: set of x

operations.

Type(61) = set of ref => l- i S C1: 81 £. c{ il AND 82 £. c{ i)
60 = 81

Postcond1tions:
61 - 80 !!. 52

5etReta1n(51, 52)

Input parameters:

Input/output parameters:

Preconditions:
Type(61) = set of ref
60 = 61

Postconditions:
51 = 60 1. 62

5etRemove(61, 52)

Input parameters:

Input/output parameters:

Preconditions:
Type{ 61) = set of ref
60 = 81

Postconditions:
51 = 60 \ 62

82: set of x

51: se t of x

=> l- i S C1: 61 £. c(i) AND 62 £. c(i)

82: set of x

61 : set of x

=> l- i S Ci: 51 £. c(i) AND 52 £. c(i)

23

Iriput/output p"'ralire~t's:
-" 'J. -"

Output par~mete~i,' ,~:

Preconditions:
80 = 8

Postconditions:
v = mine 80)
8 = 80 \ {v}

Insert(8, v)

Input parameters:

Input/output parameters:

Preconditi.ons:
x 'I ref
80 = 8

Postconditions:

)4 .

'$;.{-

s::_:~".,(.~

8: ~>Of x

v: x

v: x

8: se t of x

Type(v) 'I empty <=> 8 = 80 ~ {v}

Valuate(81, 82)

Input parameters:

Output parameters:

Preconditions:

Postconditions:
81 = { v Ire 1 6 82: v

Copy8et(81, 82)

Input parameters:

Output parameters:

Preconditions:

Postconditions:
51 = 52

82: set of ref

81: set of x

V(el) ANO Type(v) 'I empty}

82: set of x

51:setofx

24

}.

CatMin(v, Cat)

Input parameters:

Output parameters:

Preconditions:
x f' ref

Postconditions:

Cat: cat of x"

-~'.

v: x

v = Min{ yl }- el 8 c(Cat) AND y - V(el»}

CatMax(v, Cat)

Input parameters:

Output parameters:

Preconditions:
x 'I' ref

Postconditions:

Cat: cat of x

v: x

v = ~{ yl }- el 8 c(Cat) AND y - V(el) }

CatExtract(S, Cat, v1, v2)

Input parameters:

Output parameters:

Preconditions:

Postconditions:

Cat: cat of x
v1, v2: x

5: set of ref

5 = { el 8 c(Cat)1 v1 < V(el) < v2 }

CatExpand(Cat, n, S)

Input parameters:

Input/outputparameters:

Output parameters:

Prec.ondi t ions:
50 = c(Cat)

n: integer

Cat: cat of x

5: set of ref

Sn Q. { rl 'I i 8"Ci: r l! c(i) }
#5n - n

Postconditions:
c(Cat) = 50 !d. 5n

25

CotAdd(Cot, S1, S2}

Input parameters:

Input/output parameters:

Preconditions:
81 £c(Cat)
x 'I' ref

Postconditions:

81: set of ref
82: set of x

Cat: cat of x

If x g 82: :J- e 1 g 81: x - V(e 1)

CatAemove(Cat, S1, S2)

Input parameters:

Input/output parameters:

Output parameters:

Preconditions:
x .,. ref

51: se t of x

Cat: cat of x

52: set of ref

80· {ell e1 8 c(Cat) ANO V(el) 851 }

Postconditions:
51 !. { vi :J- el g c(Cat)
52 = 50

CatAeduce(Cat, S)

Input parameters:

Input/output parameters:

Preconditions:
5 c c(Cat)

v V(e 1) }

5: set of ref

Cat: cat of x

\I 91 8 S: Type(V(el) = empty
AND NOT (:I- i 8 Fi: <el, y> 8 f(i) OR <x, el> 8 f(i»

Postconditions:
S It cC Cat)

CreaTfn(Cl, C2, TF)

Input parameters: Cl, C2: cat of x

Input/output parameters: TF

Preconditions:

Postconditions:
TF = {}

26

'"
.;r.,'

Ti'nOom(F, S)

Input parameters: F: tf'n

Output parameters: s: set of' ref'

Preconditions:

Postconditions:
S .. { xl <x, Y> ,6, F }

Ti'nRanae(F, S)

Input parameters: F: tf'n

Output parameters: s: set of' ref'

Preconditions:

Postconditions:
S = { yl <x, y> 6 F}

Compose(F 1, F2)

Input parameters: F2: tf'n

Input/output parameters: Fl: tf'n

Preconditions:
Tie Ci: Tf'nRanae(F2) !2. c(i) AND Tf'nDom(F 1) !2. c(i)
FO = Fl

Postconditions:
Fl = { <x, y>1 r z: «x, z> 6 FO AND <z, y> 6 F2)

OR y = NIL) }

Tf'nAppl(F, ell, e12)

Input parameters:

Output parameters:

Preconditions:

Postconditions:

F: tf'n
ell: ref'

e12: ref'

<ell, e12> e F OR e12 - NIL

27

T.nlnsert(F, el', e12)

Input p~rameter9: e11, e12: ref

Input/output p~r~meters: F:tfn

Preconditions:
r i e Ci: el1 e c(i) AND TfnDom(F) ~ c(i)
r j e Ci: e12 e c(j) AND TfnR~nge(F) ~ c(j)
FO - F \ { <e11, elr>1 elr e TfnRanae(F) }

Postconditions:
F = FO !L {<eI1, eI2>}

Input p~rameters: F2: tfn

Output parameters: F 1: tfn

Preconditions:

Postconditions:
F1 = F2

Apply(S'. F, 52)

Input parameters: F: func
82:· set of ref

Output p~rameters: 81: set of ref

Preconditions:

Postconditions:
81 = { yl <x, y> e F AND x e 82 }

InvAppl(S'. F. 52)

Input parameters: F: func
82: set of ref

Output parameters: 81: set of ref

Preconditions:

Postconditions:
81 - { x I < x, y> e F AND Y e 82}

28

FuncAdd(F, TF)

Input parameters:

Input/output parameters:

Preconditions:
Tt'nDom(TF) £ c(O(F))
Tt'nRange(TF) £ c(~(F))
FO ~ F \ { <x, y>·S FI

Postconditians:
F = FO !!. TF

FuncRemove(F, 51

Input parameters:

Input/output parameters:

Preconditions:
5 £ c[DC F))
FO z F

Postconditions:

':~'~~ ..

TF: tt'n

F: t'unc

x S Tt'nOom(TF)}

5: set ot' ret'

F: t'unc

F = { <)(, y>1 <x, y> 6 FO ANO NOT (x S 5) }

FuncExtract(TF, F, 51

Input parameters: F: func
5: set ot' ret'

Output parameters: TF: tt'n

Preconditions:

Postconditions:
TF = { <x, y> 6 FI x 6 5}

CreaTable(T)

Input/output parameters: T: table

Preconditions:

Postconditions:
T - {}

29

AddAttr(T, TF, w)

~nput parameters:

Input/outputParame~ers:

Preconditions:

TF: tfn
w: wd

T: table

V <x, f> 8 T: TfnDom(f} ~ TfnDom(TF)
V <wt, f> 8 T: wt ~ w
TO = T

Postconditions:
T = TD ~ {<w, TF>}

Select(v, T, w, r)

Input parameters:

Dutput parameters:

Preconditions!

Postconditions:

T: table
w: wd
r: ref

v: x

x 8 {empty, int, rl, wd}
(r f: r el: <w, f> 8 T AND <r, el> 8 f z> v = V(el))

XDR x = empty

AtomVal(r. v)

Input parameters: r: ref

Output parameters: V! X.

Preconditions:

Postcondltions:
x = empty DR (v VCr) AND x 8 {int, rl, wd})

AtomExt(r, e)

Input parameters: r: ref

Dutput parameters: e: 'ext

Preconditions:

Postconditions:
e = NIL DR e' 8 EF

3D

COMPUTING SCIENCE NOTES

In this series appeared

No.
85/0l

85/02

85/03

85/04

86/0l

86/02

86/03

86/04

86/05

86/06

86/07

Author(s)
R.H. Mak

W.M.C.J. van Overveld

W.J.M. Lemmens

T. Verhoeff
H.M.J.L. Schols

R. Koymans

G.A. Bussing
K.M. van Hee
M. Voorhoeve

Rob Hoogerwoord

G.J. Houben
J. Paredaens
K.M. van Hee

Jan L.G. Dietz
Kees M. van Hee

Tom Verhoeff

R. Gerth
L. Shira

Title
The formal specification and
derivation of CMOS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films

Delay insensitive directed trace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
real-time systems

ELISA, A language for formal
specifications of information
systems

Some reflections on the implementation

of trace structures

The partition of an information
system in several parallel systems

A framework for the conceptual

modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

On proving communication
closedness of distributed layers

1

86/08

86/09

86/10

86/11

86/12

86/13

86/14

87/01

87/02

87/03

87/04

R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

C. Huizing
R. Gerth
W.P. de Roever

J. Hooman

W.P. de Roever

A. Boucher
R. Gerth

R. Gerth
W.P. de Roever

R. Koymans

R. Gerth

Simon J. Klaver
Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff

Compositional semantics for
real-time distributed
computing (Inf.&Control 1987)

Full abstraction of a real-time
denotational semantics for an
OCCAM-like language

A compositional proof theory

for real-time distributed
message passing

Questions to Robin Milner - A
responder's commentary (IFIP86)

A timed failures model for

extended communicating processes

Proving monitors revisited: a
first step towards verifying
object oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to distri
buted information systems

Delay-insensitive codes -
An overview

2

87/05

87/06

87/07

87/08

87/09

87/10

87/11

R.Kuiper

R.Koymans

R.Koymans

H.M.J.L. Schols

J. Kalisvaart
L.R.A. Kessener

W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters

H.M.M. van de Wetering

T.Verhoeff

P.Lemmens

Enforcing non-determinism via

linear time temporal logic specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time

systems with real-time temporal logic.

The maximum number of states after
projection.

Language extensions to study structures

for raster graphics.

Three families of maximally nondeter

ministic automata.

Eldorado ins and outs.
Specifications of a data base management

toolkit according to the functional model.

3

	Contents
	1. The functional model
	2. The ELDORADO System
	3. Temporary data structures
	4. DBMS operations
	5. User interface
	6. Implementation
	Appendix A: Data structures and invariants
	Appendix B: Formal specification of Eldorado operations

