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PREFACE

In recent years considerable effort has been spent on the in-
vestigation of stochastic decision processes, A stochastic de-
cision proceés may be described roughly as a stochagi}c process,
which can be influenced from the outside. The investigations in
this field have the common purpose to provide the surveyor of the
process with a recipe, which defines a rﬁle for influencing the
process in an optimal way.

The optimum criterion is mostly a function of costs. Both costs
due to actions of the surveyor and costs due 1o the autonomous
steps of the stochastic process. Examples of such functions are:
expected total costs during a specified time interval, expected
total discounted costs during a time interval, expected costs per
unit of time.

For studies on such decision processes, especially on the situa-
tion where the underlying stochastic process is Markovian, one is
referred to [1960, R, Howard; 196z, 1965, D. Blackwell; 1965,
G. de leve].

A practical draw-back to the application of results obtained in
this field, is the commonly occurring lack of knowledge on the
probabilistic behavior of the underlying stochastic process. In
this study some observations will be presented on stochastic de-
cision processes incorporating incomplete knowledge of the pro-
bability distributions. A new aspect - compared with ' common
stochastic decision processes - is constituted by the possibility

of gathering information on the unknown distributions during the



progress of the process. Information thus gathered may be of help
in reaching further decisions. The research will be restricted to
the situation where the underlying stochastic process is a Markov
chain with a finite number of states, This situation will be
studied because of the simple character of the probability dis-
tributions involved together with the surveyability of the in-
formation gathering and the obvious meaning of the information
with respect to unknown distributions., The probability distribu-
tion of a Markov chain is characterized by ite initial distribu-
tion and its matrix of transition probabilities. In this study it
wiil be assumed that the transition probabilities do not depend
on time. However the numerical values of the transition probabil-
ities are not completely known by the‘surveyorvof the process.
About the influencing possibilities it will be supposed that
between any two autonomous transitions of the process, the sur-
veyor is allowed to transfer the system from one state to another.
Fﬁrthermore it is presumed that the surveyor knows at any time of
decision the‘eomplete history of the process until that time.

The central difficulty in this type of problem, as in the theory
of statistical inference, is the guestion of which criterion will
be applied in order io discriminate between different feasible

decision rules.

This difficulty'in asgigning an optimum criterion may be outlined

as follows. A risk function may be developed in a natural way.
Such a risk function presents the surveyor's evaluation for any
decision rule combined with any parameter value ({in +this case:
allowed matrix of transition probabilities). For any feasible
decision rule, the risk function provides an evaluation in the
form of a function of the parameter values. The object of the
introduction of an optimum criterion is to present a means for
comparing these evaluation functions for the decision rules. The
final object - of course - is to provide the possibility to design

a "best" decision rule.



Some criteria, which were proposed earlier for other problems
(geme theory, theory of statistical inference), will be consider-
ed: maximum risk, maximum regret, weighed risk (Bayes).

However the first point to arrive at is a clear statement of the
problem. This includes the introducﬁion of a clasg of feasible
decision rules,

In [1956, R.N. Bradt e.a.; 1966, D. Sworder] related topics are
studied. The problem of the first publication is a very special
case of the problem in this study. An important result of the
work by R.N. Bradt e.a, is their proof of the active role in
{Bayes optimal) decision making played by the gathering of in-
formation (their theorem 3.,1). This means: decisions are in-
fluenced both by information obtained in the past and by the
possibility to gather information in the future.

The problem in D. Sworder's monograph is somewhat different from
the problem in this study.iﬁowever in some instances there is a

certain similarity in the method of investigation.

In order to prevent misunderstandings over the use of intuitive
notions, a rigorous distingtion will be maintained between the
formal structure of the mathematical theory and the elaborations
meant as comments on or justifications of formal steps. Especially
in the first few sections these comments serve the purpose of
facilitating the mutual translation of +the mathématical theory
and the terminology of a practical problem.

The distinction will be obtained by developing the mathematical
theory completely in formal assumptions; definitions, lemmas,
etc., which are all identifiable as such. Inserted verbal eluci-
dation is marked by **, Consequently there is no need for typo-

graphical identification of emds of proofs etc.



SECTION |

INTRODUCTION AND SUMMARY

** The formulation of a mathematical model describing decision
processes based on time independent Markov chains with incomplete-~
1y known transition probabilities will be initiated in this sec-
tion. This formulation begins with the description of a Markovian

decision process, -

A system is given, which is - at any time of observetion - in one
state of aset S of n states. The possible states (elements of S) are
called s (1 < i <n). For example, the system may be a storehouse
for certain product and the states different numbers of stock. Or
the system may be a machine and the states different maintenance

positions.

Assumption 1.1: n is a given natural number (# 1)
N := {i|1i natural, i <n};

S is a given set: S = {si li € N},

*% The system is observed at discrete points of time, say t =
= 0,1,2,4.. « Immediately after any observation, the surveyor of
the process may take action. He is allowed to transfer the system
from the observed state - say S - to another one -say 8, - which
is preferred by him. It is supposed that the selection and execu-
“tion of an action require no time. Thué the observation of the
system and the reaction of the surveyor take place in the same

ihstant of time.

The autonomous transitions of the process - which are supposed to

take place between two subsequent points of time - are governed



by the llarkov transition probabilities P 5 (i,j € N). These prob-
abilities form the Harkov transition matrix P. In case the systenm
is in state eh at time t (as the result of an action by the

surveyor), the probability of observing the system to be in state

n
3 . : . . == i I . 3
85 at time ti+1 equals P; Hence jizle 1 (; € N) and P 0
(isj €N)' ' ) .

Thus it is supposed, that the +4ransition probabilities of the

basic lMarkov chain do not depend on time.

n

Definition 1.1: § := {p|P = (0;5);,5eq» % Py =1 G EW,
QJ j=1

pys =0 (1,5 € M};

P

is the set of allowed llarkov transition matrices.’

¥* Tn the following sections specific assumptions on the knowledge
concerning the Markov transition mairix governing the basic Narkov
chain of the decision process will be presented, Namely, partial
numerical knowledge in section 4 and knowledge of a weight fune-
tion on gain section 7.

One step of the Markovian decision process may be represented as
follows:

In this representation, 8y is the state of the system observed at
tinme . s, is the state resulting from the surveyor's action,

right after the observation of s ., This part of the process is

) i k
supposed to be concentrated at time t. Then the Markov mechanism
produces a transfer to state sj. This state is observed at +time
t+1. It is further supposed, that state transitions of both

12 types are evaluated by real numbers. In our informal language,



these evaluations will be called costs, However it seems obvious
that the evaluations are not necessary measured in units of money.
In the informel terminology, it will be said, that action L d
costs d, . (decision costs, e.g. costs for buying stock) and Markov
transition g, sj costs,cij (process costs, e.g. op-

erating costs).

Without restriction, it may be assumed, that any action Sy

is permitted when 8 has been observed at certain time. Actions

—rs,
1

which are practically forbidden, can be taxed heavily. Iater on
this situation will be studied more specifically {section 5). A%
this moment, it is simply assumed that any action is permitied,
possibly with very high costs.

Agsumption 1.2: D = (d are given

ki)k,iEN and G = (e
n X n-matrices with real elements.

j,E)j,,EE N

** With regard to the rumning period of the decision process,
both finite and infinite numbers of steps will be dinvestigated.
In either case the total costs of a realizable state history is
calculated with discounting, For finite running pericd, the dis-
count factor is arbitrarily positive. For infinite running period,
the discount factor is supposed to be less than 1. This condition
guarantees, that for each possible state history the present time
value of the total costs is finite.

Assumption 1.3: T represents a given natural number or the symbol
o ; B is a given real positive number; when T =& , then B < 1;
T is both the total number of sﬁeps of the decision process and
its running period;

B is the discount factor.

*% The costs of action 88, at time t are supposed +to have.

the present time value Btdki. The costs of Markov +transition

13



g Sj from time t to time % + 1 are supposed to have
the present time value Btcij.

[1956, R.N. Bradt e.a.] investigates - applying the Bayesian ap-
proa¢h-~ a situation which coincides with our case:

=¢,, =0,

==t e 21

n=2 T<eo, f=1,4,.=0(ki€N), ¢, =c

ki 22 12

Before the decision processes can be investigated properly, it is
necessary, that a concept of decision rule has been introduced.
It is supposed, that at any time 1t the state history of the
process until that time (the observed state at time t included)
is known by the surveyor of the process. Hence it is supposed,
that at the time of the first decision (t = 0), the surveyor does
know the initial state of the process. This implies the super-
fluity of introducing general initjal distributions for the under-
lying Markov chain: there is only interest in the resulting pro-
cesses for given initial states,

Then, any possible initial gtate SJ € S, any allowed larkov trans-
ition matrix P € f , and any feasible decision rule determine
together a stochastic process. In sections 2 and 3 this will be
proved for two different concepts of decision rule.

Given the knowledge at the time of decision of the state history
realized until that time, a decision rule should prescribe an

action for any thinkable state history until any time t. In fact,

a decision rule maps :L1 bzt+1 into 8§ according to this concept.
=1

A generalization of this concept would allow mixing of decision
rules of the first type. This ocutline will not be followed. It
will be proved however, that the decision zrules which will be
introduced in section 2 are in fact equivalent to the mixed
decision rules just mentioned (section 3).

The decision rules introduced in section 2 allow mixing at any

-1 24+1

14 nmoment of decision. Hence a decision rule maps U S into the

=1



set of all pro"oability distributions on S, Those decision rules
are called accordingly: "decision rules applying mixed strategies".
However, the addition "applying mixed strategies" will be common~
ly‘ omitted, since decision rules of this Vtype will be the common

ones in this study. With the same terminology, the decision rules

mapping :U1 s2¥* Snto s may be called: "decision rules applying
=21 .
pure strategies". ’
In section 3 "mixed decision rules applying mixed strategies" are
introduced. Furthermore it is demonstrated, that these mixings do
not form an essential extension to decision rules applying mixed
strategies. And it is demonstrated, +that mixed decision rules
applying pure strategies and decision rules applying mixed strat-
egies are equivalent in a sense. Working with decision rules ap=-
plying mixed strategies is preferred, since they give better
chances to detailed investigation of +the resulting stochastic
processes., However, in some instances the wresulis of section 3
are profitably applied. Any initial state, any Markov +transition
matrix, and any defined decision xule determine a stochastic
process. Hence expected total costs of the decision process may
be calculated as a function of initial state, decision rule, and
Narkov matrix. This function, which serves as a risk function,
and some of its pmper"bies are presented in sections 2 and 3 for

béth types of decision rules.

The decision rules as introduced in sections 2 and 3 base their
actual decisions at any time on the complete state history real-
ized so far. However, it seems likely, that some possible state
histories until certain time bvear:. the same information with
respect to the unknown Markov transition probabilities. This in-
formation may be condensed in a so called "informatioun matrix".
The information matrix of a state history until certain time is a

n X n-matrix with for its (i,j)-element the number of larkov

15



trensitions s s j,pcoming in thet state history.

In;sa0£ionA4, it is ﬁfoved, that any decision rule (applying
miied atrategies) is equivalent with regard to the expected total
dlsccunted costs as a function of P (for <fixed initial state)
to & decision rule always prescrlbing the same decision for two
reallze§ state histories with the same information matrix and the
same state observed at the time of decision. If some elements of
P are known numerically, the corresponding elements of the in-
formation matrices may be néglected. If all elements of D are
equal, the observed state at the time of decision is not needed
explicitly for decision making.

Sectionyﬁ is devoted to the partial ordering of the decision
rules, induced by the risk functions as functions of P, The
notions of admissibility of decision rules (having non-dominated
risk functions) and completeness of subsets of decision rules
(every decision rule is dominated by one of the subset) are ine
vestigated. Special attention is devoited to the question whether

sets of admissible decision rules are complete.

The partial ordering of decision rules according to their =risk
functions givesvno possibility to select a best decision rule.
For that, other criteria are needed. In sections 6 and 7 a few
criteria are considered. Namely maximum risk and maximum regret
(both with respect to P) in section 6; weighed risk in section 7.

The existence of best decision rules according to these criteria
is proved. For maximum risk and maximum regret, there exist best
‘decision rules only taking into account: initial state, (sub)-
informetion matrix, and observed state (the latter may be skipped
in the case of egual decision costs), For weighed .risk, there
exists a best decision rule applying pure strategies, only taking
into accounts: (sub)information mairix and observed state. In the

16 case T =, there is moreover a certain time independence. The



same holds in the case of equal decision costs for all possible T
when the known elements of P fill complete rows. ‘

The property: min max risk = max min risk, which does mnot hold
generally, appears to be true in the case of equal decision costs
and {in section 8) when strategies of "Nature" are extended to
weighings over ,@ : ,
In section 8 it will be proved that each decision rule, which ié
admissible for certain initial state, is best for certain weighing
over P. This provides a characterization of admissibility.

The appeﬁdix collects some exampies with properties mentioned in
the main text,

17
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SECTION 2

DECISION RULES

Definition 2.1: a) the elements of the (2t+1)-fold Cartesian

2t41

product 8 x S X ...S =9 are called: allowed (state) histories

until time t (v = 0,1,2,444);
2t+1

into N2t+1,whichmaps (Si 185 1eeesBy )
- 2%+
) is 1=1 and onto, therefore:

the mapping from S

on (i},i yeeod

2 2t+1
b) the elements of the (2t+1)-fold Cartesian product NxNx ,.. N=
= ¥ are called: sllowed (index) histories until time t (b =
= 0y, 1525604 )0

** In (sk 8 i % ) - an allowed state history
o "o 1 t1 K

until time t - the component s, (1t = Cyues,t) denotes the ob-
T

,Sk1 ,Si,coc,s.

served state at time T; the component s (T = 0y404yt=1) denotes
T
the state resulting from the surveyorts action at +time 7v. The

one-to-one correspondence between allowed state histories and
allowed index histories, presents the opportunity of applying in
the mathematical theory the latter instead of +the former. The
application of allowed index histories yields notational profit.

Definition 2,2: R is the set of real numbers;
U = {xéRlOﬁxs']};

U™ is the n-fold Cartesisn product U x Ux...x U;

| n
Vi= {(v1,...,vn)€U‘n R via‘l}.

=1



*¥ Jince it is assumed, that the surveyor of the process knows at
any time t which allowed history until time t has been realigzed,
a decision rule has to give a recipe to find an action for any
allowed history until time t (0 <t < T). It will be permitted to
draw lots in order to décide on an action, Hence a recipe is per-
mitted which prescribes the surveyor at the moments .of decision
to execute chance experiments with n elementary events and to
select the action with the same number as the occurring event,
The probability distribution of such a chance experiment is
characterized by an element of the set 7.

Definition 2.3: a decision rule (applying mixed sirategies) B is

a sequence of mappings

b B - @ 0t <)

the set of all decision rules is denoted by B

Convéntion 2.1: bt(h) and bt(ko,io,..'.,kt) denote the image ' with
respect to b of h = (ko’io""’k’c) € g2t (t = 0,1,2,4..)3 com=
ponents of the image are denoted by bjis(h) and bg(kc,io,...,kt)
(i €W); b*(n) € ¥, vi(h) € U; b°(n) is sometimes called a de-
cision vector. ; k

Elements of B are denoted by B, possibly indexed: B o? Br;

the mappings constituting these decision rules will be denoted

by: oY, %Y, Tt (0 <t < 1),

The Cartesian product notation is used in s}lch a way, that:
. 2t t+ . :
{5} x R (JEN);

(i) € ¥ | when je N, he 12° (0st<T); {j,n} ={(Gsm)} . 19



*% The letter h - short for history - always denotés - an element
in' N' (0 < m).’ Later on, decision rules will be introduced, which
do not base their decisions on. the fuwll histories' until the

moments of decision (see section 4).

Definition 2.4: B € f3 is. a decisionrule applying pure sirategies
if and only if. )
y . v, [b.(h) € {0,1}] ;-

Host<t) g pptm fiew Dn € B,

the set of all decision rules applyirg pure strategies is denoted

by A.

** Tor convenience n classes will be defined, which are . strongly
related to B. The J-th class contains the parts of the decision

rules related to histories with initial state Sj'

Definition 2.5a: (j € N). A j-decision rule (applying mixed strat-
egies) jB is a sequence of mappings

PV (o<t <)
the set: of all j-decision rules is denoted by .B
lemma 2.1: a) to any BE B thsre corresponds a B £ B (J € ),

such that the mapplngs .bt, constituting JB, are the restrlctmno
of ‘the mappings b to {3} x Nzt ‘ '

b) to any n-tuple B € 1573 yeees B € nﬁ there corresponds exactly
one B € f), such that the B are the restrictions of B in the

sense of assertion a).

Convention 2,2: Elements of ﬁ(g EN) are denoted by JB, possibly

indexed: 330, jB 3 whenever an element of Jﬁ and one of ,/3 with

the seme index (or no index) are mentioned together, they have
20 the relatlcn of lemma 2.1, -



For the mappings constituting B Bor jBy the index § will be
skipped, thus the same notations will be applied as for the
corresponding mappings constituting B, B o? Br; hence no different

notations ’wil(l be applied for a mapping and certain restrictions,

Definition 2.5 s If f‘?o < B, then jﬁo (5 € N) denotes
{pe jﬂ] Be B}

for each n~tuple of seis 1,80 c 1?3, ""‘nﬁ

c B the set
. - n
BeBlviey p ejﬁo} is denoted by .

Q

lemark: The notation %, j% {3 € H) is consistent with the con-

vention 2.23
% = 733 "/é = ‘Ai

Ifﬁocﬁ, thenﬁ ‘,(80.

>
0

** Tn the following part of this section it will be demonstrated
that an initial state, a Markov transition matrix and a decision

rule together determine a gtochastic process.

Definition 2.6: & is the set bonsisting of all subsets of K (Z is

the power set of N).

Definition 2.7: Let X be a set and let ¥ be a o-algebra of subsets
of X, then

a) £ is the countably infinite-fold Cartesian product Xx XX ...}

b)"l/m (natural m) is the O-algebra of subsets of X, which is
generated by \l/m;

- .
c) ¥, 1is the o-algebra of subseis of X, which is generated by

(S{Yx)fo[Ye‘i’m};
m=1

2
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4) v {natural m) is the o-algetra of subsets of X :

{¥ x Xooj.Y € \Ifm} .

% lemna 2,2 mentians sowe elementary and .well<known assertions

on the sets of definition 2,7 (see e.g. [1955, M. Lodve]).

Lemma 2.2: If ¥ is a o-algebra of subsets of a set X, then:

o
a) U “I‘;f 48 an algebra;

me=q
hod OO
b) the o-algebrs generated by mU1 ¥ equals ¥, .

** For I one obtains some elementary results:

Lemma 2,3: a) Z° (m natural) .contains all subsets of N° which

consist of one element;
b) I is & o-algebra of subsets of N;

c) z (natural m) is the power set of N'.

Theorem 2,1: To each j € N, jB € jﬂ’ Pe 2 there corresponds

exactly one probability measure p.‘e B,P) on the measurable space
j 2

2T+1

(v B }, such that

2T+

(2:1) &) W] gL} x 2T = 1 5

b) Vt(ostcf) Vh€N2t+1 viEN[“%jB,P)({h} x N2(T—‘c))7éo =

(2.2)

uij,P)({h,i} x 204y NZ(T“’“)) - viw)] ;

) ¥ v v, v
tlost<T) he @ttt 1EN KEN



(2.3) [“'ng,P)Gh’i} x Nz(T"ﬂﬂ) #0=
pij’P)({h,i,k} I Nz(T-t)-1> cl -

Remark: {h,i,k} x N o= {h,i,k} .

*¥% This theorem - which will be proved below - shows the existence
of exactly one stochastic process on the assumed set of states
‘satisfying the following conditions: The process has a given
initial state and state transitions altermately with the Markov
property (given Markov transition matrix P) and the gambling
device of the given decision rule. It also appears that the
distribution of the resulting stochastic process is already de-
termined by the J-restriction of a decision rule.

With this theorem in mind an obvious formulation of a Markovian
decision problem with unknown Markov transition matrix could be
the following:

We consider the set of stochastic processes
T+t 3 N
{(N2 T‘ﬁ’ P’(jB’P)) Jj€EN, jB € jB’ Pe 73} N

of which one will be assigned by the determination of Jj, jB, P.
The surveyor of the process is entitled to choose J.B after the
obgervation of the initial state Sj'

Definition 2.8: For any j € N, BE f? Pe ﬁ} p{ ,B,P) is defzned

T+1
to be the same probability measure on (o 2T+1) as “(jB,P)

#%* With this definition another formulation becomes possibles:

we consider the set of stochastic proctesses

{(Nﬂ“ 2y P(3,3,P)) jeN,BeB, Pe 73}\,

23



of which one will be assigned by the determination of j, B, P.
The surveyor of the process is entitled to choose B.

Proof of theorem 2.'1:

A, Por each probability measure p% B,p) which satisfies the
.j g4

conditions a, b, ¢ - one proves by induction with respect to t:

]
t(o§t<‘l’) foreseri €N Yy reeesky JEN

(2y4) u‘ng’P)<{ kosionc‘.akt,rit } X NE{T-‘t)ﬂ) =

1 t ‘ .
(n P i X i b (ko,io,..*,kr}> , when k= =
= == ’L‘ ™ ’L'

0 , » when k # 5

v 3 ‘ . ) 2 (Tete1) _
(2.5) p(jB’m({ Kyadgaereskpaipsky P x W

t + : .
T . .
( I p )( n oo (ko’lo“"’kxD y vwhen k=]
= T=Q - T g/ NT=0 T

0 ‘ ,whenkoaéj.

b o
In case t = 0, the product II Py is equal to 1, by defini-

tion T=0 T T+1

B, If T <, each element of 22{1‘4»1 contains a finite number of

allowed histories until time T. Hence formula (2.5) (t = T-1)
already determines the probabilities of .the elemcnts of )32,1, e It
only remains to be checked whether this measure determines a prob-
ability measure with properties a, b; ¢. By recursion (starting
with t = T-1) one proves (2.4) and (2.5) foreach t+ (0 <t <T)
and those formulae prove a, b, ¢ and the equality to 1 of the

24 nmeasurs of NZT‘H



C, The cage T = o , The same reasoning as in part B leads +to a
uniguely defined probability measure on Z:: (natural m), which

satisfies a, b, ¢ for ¢t < E—%—l . These measures define an additive

oo
set function on the algebra U b

m=1
This algebra generates the o-algebra 5 (lemma 2,2), hence there
exists exactly one extension of this additive set function 1o a
measure on (N°°,z:oo) (a well-known theorem of measure theory, see
for example [1955, M. Lodve]). This measure is necessarily a

probability measure, since No€ 2: (each natural m).

*% The following definitions and lemmas introduce the risk func~
tion and some of its properties. The risk function evaluates the

stochastic process resulting from the fixing of P and B.

Definition 2.9: a) For each t (0 <t <T) a mapping v, is defined,

2T+1

which maps N into R (the set of real numbers) by

ot
v, . . 2T +1 {V (h) = B7(4,, +C, )] 3
h=(kgydgrk i pees) EN t dktit ik, 0

b) A mepping v is defined, which maps N°-'' into R by

T 1
] [v(h) := 2 v _(n)].
h €N2T+1 t=0 t
*¥ For measure theoretic concepts applied in formulation and proof
of the following lemma, reférence is made to [ 1955, M. Lodve].

T+1 .
Lemma 2.4: v, (0O<t <T)and v map (N2 ’E2T+1) into (R,&)
measurably (68 is the o-algebra of Borel sets in R);
moreover these mappings are integrable with respect +to every

probability measure on (N‘?T*'1 , B 25

2741 ).



Proof: v, is a step function with n’ steps (called simple function

. t
by Lodve) and hence measurable.

v is the sum of a finite or countably infinite number of step
t

functions each with n’ steps. Z v, converges to v for ¢t » 1T - 1
T=0

(pointwise, but even uniform, since B < 1 in case T = ), This

proves its measurabili’cy. The integrability of vy and v with

respect to any probability measure on (N2T+1, 22T+1)follows easi~-

ly: vy and v are both bounded:

T-1 T 1
v < 3 vy (2 %), max o ee ]

v
nen ki, LEN .

Definition 2.10: For each jEN, BE B3, pe P:

V(j,B,P) = f Vdp(J’B’P) .
2T+1

I
** V(3,B,P) may be interpreted as the expected total discounted
, P41
costs of the process (N1, Zomay 2 “L(;j,B,P))‘
fies, that the expected total discounted costs are equal to the

(ne easily veri-

total expected discounted costs (an application of the dominated

convergence theorem):

Lemma. 2.5: For each jEN, BE B, Pe P:

; Teq
Vv(j,B,P} = 2 f vtd.p.(j’B P) *

Lemma 2,6: For each j € N, B € B8, P € P the following assertions
hold:

a) Por any t (0 €% < T):

+ .
=B « max ! . tce, l 3
k,i,£€Ndk1 gt

f Vs¥(5,B,P)
NZT'H




T g

. £
v) [V(3,B,P)| s( b3 gs)» max |d .+, | .
=0 kyi, £E€EN
“ Proof: a) Vt(h) < pt . omax ]dk. te, | (definition 2.%9a).
; i Tid
k,i,LEN

b) Combination of result a) with lemma 2.5.
Lemma 2.7: A1l j € N, B,B, € B satisfy:

B, = B,== Y% o[V(§,B,,P) = V(4,B,P)] .

J 1 dJ
Proof: The measure . coincides with the measure J
Ea— ¥ (353, ,P) H(;p,07)
(definition 2.8), just like the measure u(j$332$9> in case 331 =
= B .

Jj2

*¥ Por application in other sections limit concepts and hence
topologies will be introduced in 73, 3, jﬂ (a limit concept in
a set induces in a natural way a closure operation foxr subsets,
which defines a topological space according 4o the XKuratovski
definition; see e.g. [1955, J.L. Kelley]).

In 5f7 the common n X n-matrix topology is introduced. All topo-

logical assertions involving ﬁ refer to this topology:

Definition 2,11: Let P, € P (£=0,1,2,...), with elements pj(ﬁ),

. B . o s (&) _ (o) .
then lim P, = P if and only if lim pii”/ = po (all i,k € N).

B woo £ >oo

The topology in R is the one induced by this limit concept.

Lemma 2.8: f) is compact.,

2
Proof's ? is homeomorfic with Vn c R (with the natural topology

»

in " and the relative topology in Vn). V is compact, hence

'}}n according to Tychonov's theorem.



Lemma 2.9: For cach j €N, B € B the mapping V(j,B,¢) from P
into R is continuous. '

I s i o O i = he

Even: if P, € ¥ and i&noo P, = P, then

lim V(§,B,P,) = V(j,B,F,), uniformly in j, B.

f o0

Proof: € > 0O,

|7(3,3,2,) = V(3,B,B )| <
T=1 r
< Iz v dus . . - v dp,. lemma 2.
=0 f T H(J’b9P£) J I M(J’B’Po)| (Le 5)
j2 I+ y2I+
o, .
< X du, . - v dp, . + =
=0 J V1 P‘(J’B’P’e) f T u(JyB’PO) 2
PRI+ g2l
(for t sufficiently large, t < T, lemma 2.6)
: t
< max Idk. +e. | = B°
k,i,c€N “* T o
Z T T
I p.('e) - 1 pgo) + =
i i 2
p=0 “p p+¥1 p=0 @ p+i

. : T+2
(10,k1,...,1T,kT+1)€N2

(formula (2.5), O Sb? (b) <1)
p

< g, for £ sufficiently large (with no dependence on j,B).

Definition 2.12: Let B, € B ®=0,1,2...), then lim B, = B

B -0

if and only if

v iim sz(h) = Ob:(h)] .

v v .
to<t<T) ne 2 1€N [,g-oo

28 The topology in B is the one induced by this limit concept.



Definition 2.1%: In case T <o , N(T)} is a natural number equal

Tt 2T
to x n2¥ - n2 -1
t=0 n® - 1

H

in case T = w0 , N(T) represents the symbol co .,

lemma 2.10: The topology in ‘UN<T) induced by the limit concept
of componentwise convergence- is the same as the product topology
in VN(T) generated by the relative topology in V" with respect
to the natural topology in R,

Proof: In the topological product of an arbitrary set of topolog-
ical spaces holds: the limi%t concepts of coxﬁponentwise convergence
and product topological convergence ¢oincide (eeg. [1955, J.L.
Kelley]).

Lemma 2.11: B is homeomorfic with ?}N( T) (topology of lemma 2,10).

Proof: N(T) is the total number of allowed histories until any
time t (0 <t <7T) (when T <, otherwise the number is countably
infinite). let a numbering of the allowed histories until any
time t (0 <1t <7) be given. Then a 1-1 correspondence between
53 and VN (r) is obtained by the linking of the decision vector
belonging to the m-the allowed history with the w-th component of
an element of 'I)‘N(T}. Since the topology in ’U‘N(T) is induced by
the limit concept of componentwise convergence, the homeomorfy is

obvious.

Lenma 2,12: B is compact; His a compact subset of B .

Proof: VWhen focussing on the topology in U'N( ) as a product
topology (lemma 2,10), the compactness of % N(T) appears as &
congequence of Tychonov's theorem, since V is compact. Lemma
2,11 implies the compactness of B. Ac B is closed.

29



Lemma 2,13: For any | € u, P € P the napping V(j,-,P) from B
into i is continuocus. ) )
Tven: if B, € fB(e=0c,1,2...) and lim B, = B, then

£ =0

lim \f(;‘,,Blz,P) = V(j,BO,P), uniformly in j,P.

Lo

Proof: ¢ > 0.

A

1VV(3,B£3P> - V(stO’P)i

T 4 IS IS
= I s o, - v du,. lemma 2.
=0 J Va %(J>b/e’? J T H(J,BO,P)I ( 5)
2T+ PTH
t r
< % f v dp, . - j v A, +&
=0 T (J’Bzy-?) T (QaBO:P) 2
PIH AT
3
(for t sufficiently large, t < T, lemmn 2.6)
%
< mex oo | =g —= 2741
k,i,rEN T=0 (10,1{1,...,1{7,31,"_)6}?
v To £
I bg (j,io,...,kp) - bE (j,io,...,‘kp) +3
p=0  ‘p p=0 Tp
{formula (2.5), 0 < P < 1)
p P+

< e, for £ sufficiently large (with no dependence on j,P, since

there is only a finite number of j's).

Lemma 2.14: let P, € P, B,€ B (£=0,1,2,...) and lin P,=F, -
lim B, = B, then Ao ‘
¢}
,g-»oo }
1im V(j,Bz,Pz) = V(j,BO,PO) {uniformly in j).

£



Proof: :
W(3,8,,2,) = V(3:Bys2 )| < [V(3,B,,2,) = V(5,B,E,)| +
+ Iv(j’ BoyP'g)b - V(-j:BO,PO)] .

Both terme in the right hand part of the inequality are less than
% for 2 sufficiently large (lemma 2,13 and lemma 2.9 respectively)s

Definition 2,14: j € N; let B, € jf:’ (¢ = 0,1,2,...), then

lim J.B = jBo, if and only if
£ 00

ALY 0.,
7 y Y, lim *b.(j,h) = b.(J,h)] .
t{o<t<T) nenet 1EN |G i i

The topology in i f)) is the one induced by this limit concept.

Lemna 2.15: B, € B (4= 0,1,2,...), then

lim B, = B, &=V, lim B, = .B, .
oo % o JEN y o d 4 Jo

Lemma 2,163 ﬂovc B, then

a) fBO closed (:::}b‘li eN jjjo closed;

b) 'Bo open(u)VJ.EN jﬁo‘open;
c) _ﬂakopen :__——;,vj - (j ﬂo open) and (hence) 'Bo opens
a) Jr'}O compact:-;wjeN (3,80 compact) and (hence) j‘))o compact;

e) specifically: v (Jf)’ and jﬂ: compact ).

€N

Proof: a) A direct consequence of lemma 2.15. ' 31



32

b) Define n subsets of J./? for any § € N by:

ﬁ.
A8

fb’ and ,‘8 i= fo’ for k€N, k#3j .

473
For fixed k the setis jﬂk define & subset Ek c B.
Then ]3\3 = U Bk‘ '
kEN
Iet all B be open, then ,/6 closed (k € N, assertiona)); hence

j;o is open.
Let f3 be open and non-empty (when empty ﬁ = @ and open); say

tha.t ]3 is not open, or .8 is not closed- there exists a

sequence {B'g}z=1 c 1]31 with :;;L_z:zm1 = 1Bo € 1}30; deifme' for
J#1 jB,e (£ = 0,1,2,...) such that for each Jj all the jBﬁ are
equal and B, € jfso; hence B, g B, (£=1) end il-flco B,=3B, (—:B ,

which is contradictory with ‘ﬁo open.
¢) In a similer way as the second part of b).
d) Let {j‘Ba}a be an open covering of jﬁo then {ﬁa}a with

£ e

tion b)). A finite subcovering {75-“ }a of Bo exists and hence
i7i

{ B } constitutes a finite subcovering of .3 .

3ty ’ i*o

B = ﬁﬁ for &£ 7‘ J constitutes an open covering of 730 (asser-

mma 2.17: Let B, € BB (£ =0,1,2,,..) and lim B = B for
certain j € N, then Amveo

lim V(j,BX,P) = V(j,BO,P) unifornly in P.

FA L]

Proof: Exactly like the proof of lemma 2,13,



SECTION 3

MIXED DECISION RULES

** This section is devoted to the introduction of a new <+type of
decisionrrule. The new decision rules may be interpreted as
mixings of decision rules applying mixed strategies. The new
decision rules proceed by drawing one element from B with pre-
scribed probabilities. Then the obtained decision rule is applied
during the process. In fact a mixed decision rule is defined as a
probability measure on J3. It will be proved that the stochastic
processes defined by any "mixed decision rule applying mixed
strategies" (for different j € N, P € P) essentially agree with
the stochastic processes defined by certain "(pure) decision rule
applying mixed strategies" (theorem 3.,2) and those defined by
certgin "mixed decision rule applying pure strategies" (theorem
3.3).

It is necessary to define a collection of measurable subsets of
.73, in order to be able to define probability measures on R.

The relation between B and ’UN(T) (see lemma 2,12) provides the
possibility of introducing a o-algebra of subsets of 75 with an
abundance of opportunities for +the definition of probability
measures.

Definition 3.,1: & = {X € aﬁnlx ¢ U}, hence ¢ is the o-algebra
of the n-dimensional Borel sets contained in U (Y is a Borel
Set).

Lemme 3,1: a) Let £ be the 1- 1 mapping from B onto VN(T) in-
Tt

duced by a given numbering of U Nztﬂ as defined in +the proof 33

) t=0



of lemmz 2.11, Then £ induces a o-algebra of subsets of ﬁ:
{3, < f3 }f(ﬂe) € ‘ZI’N(T)} .

T g

b) A1l numberings of U N°''' - the set of allowed histories
t=0

until any time t {0 =t < T) - induce the same g~algebra of subsets

of B (in the sense of a)).

Proof: a) Obvious, since £ is 1-1 and onto.

T1

b) Each two permitted numberings of 25 are permutations of

t=¢
each other., Hence if f 1(73 0) with 330 c B is generated by ele-
ments of

N(UT){Y x pN(T)-m |1 e &
o

n=

(see definition 2.7), then fz(ﬁo) is generated in the same

manner by elements with permuted indices.

Definition 3,2: let I' denote the o-algebra of subsets of B in-
troduced in lemma 3.1, &4 mixed decision rule (applying mixed
gtrategies) is a probability measure on the measure space (B,1).
The set of all mixed decision Tules is denoted by 73*. Elements
of .73* are denoted by B*, possibly indexed B;, B;

lemma 3.2: j € N, PER, 1<« m< 20+2, WeE N then:
“(j,o,P)({h} X N2T+1'm) maps (f3,T') into (R, D) measurably, more-

over the mapping is integrable with respect +to0 any probability
neasure on (fB,r).

Proof: Formulae {2.4) and (2.5) present explicit expressions for
this mapping: a constent multiplied by & finite product of com~

34 ponents of decision vectors. The induced mapping from ('L?Nm),fﬁﬁ(,r))



into (R, &) (given a numbering of allowed histories) is measur-
able, hence the mapping considered is measurable.

The integrability is implied by the boundedness of the mapping.

Definition 3.3: If 1W and ZW are oQalgebras of subsets of/1X and

2X, then 1W * 2? denotes the o -algebra of subsets of 1X X 2X
generated by 1W X ZW .

Remark: Definition 3.3 combined with definition 2.7 implies:

yox v =yd |

V%V =Y .

2

Theorem 3.1: To any j € N, B* € A%, PE€ P there corresponds
i R ITH

exactly one probability measure p?j’B*,P)onA(ﬁ x If ,I’*22T+1),

such that

Yn(1 <m<2T+) "hewm .ngo er ¢

[“?j,B*,P)<Jgo x {h} x N2T;1-m> =‘BJ;%3,5’P5<{h} X N2T+1-m)dB*].

o]

Proof: Let ij B¥, P) be the set function defined by the condition
. ? 9

of the theorem. It is the -purpose of this proof to show that this

set function can be extended in exactly one way %o a function on

T * 22T+1 satisfying the conditions of a probability measure on

(Bx ¥ rws

The extension in a unicue way to a function

2Tﬂ)'

on I'x & in case T <,

2T+1

oo
or on I x < u E:) in case T =
=1



is obvious (each set considered is the union of & finite number
of disjunct sets of the type ‘Bo x {h} x NZTﬂ"m). 4 similar rea-
soning proves the unique extension of u?j,B*,P), t0 an additive
set function on the algebra consisting of finite unions of sets
with a function value already defined. This algebra generates the

2 41
measure theory (see e.g. [1955, M. Lodve]) the extension to a

o-algebra T' » I , hence, according to a well-known theorem of

probability measure on (8 x NzT‘H,I‘ * 5 ) is uniquely deter-

2T 41
mined.

*% Theorem 3,7 shows that an obvious formulation of a Merkovian
decision problem with unkmown Markov transition matrix could be

as follows:

we consider the set of stochastic processes
Bx W™ pys " JEN B*eﬁ*PE)@}
’ 2T+1’ Tj,B*,P) ’ ' '

of which one will be assigned by the determination of j,B*,P. The
. surveyor of the process is entitled to choose B¥,

The next problem is to determine whether the mixed decision rules
provide an essential extension to the already introduced decision
rules., In view of theorem 3,2 the answer is: the extension is not
essential,

Theorem 3.2 shows, that for the set of siochastic processes Just
described the set of restricted processes (restricted to the his-
tories - that is the only part we are interested in)

KBX NzTH’{B} X Zomaq ! pzj,B*,P))

possesses the ‘following property. For each B* € J3*, there exists a
B € f3, such that all restricted B¥-processes (j € N, PE€ P) have
exactly similar probebility properties as +the corresponding B-

jENB* € B*PE f)}

36 processes.



Theorem 3.2:
] #3 V...V v
B*E 1B Boeﬁ JEN 'HEE o, PER

[W{j,B*;P)(jS X H) - “(j,Bo,P)@} .

Proof: In view of the construction of & y it suffices to prove

2T+
the assertion for sets H of the type:

(n} x ¥ B (heN®, 1<m<2r+2) .

Hence (theorem 3.1) it suffices to prove the existence of a
B € B for each B* € 3%, such that

Vje ¥ Vpe Pvm(1 Sm<2T+2) Yewm

T+1-m T+i-m\| '
. h} x ¥ ) dB* = p, (h ) .
[ﬂfu(JyB’P)<{ } p(JTBO’P} f } x N° ‘
In view of formulae (2.4) and (2.5), it is required that:
.Y ) v, .
t{o<t<T) Kopeossky €N oy000,i €N

t t
‘ T . : 0. T R
[I o b, (ko,lc,...,kT)dB*u il bi‘r(ko,lo,...,k,:):l .
f

=0 T =20

If in an integrand the factor b; (k ,ij,...,k;) occurs, then the
i ‘
factors bg (ko,io,...,kp) (0 =p < 1) occur also. This fact pre-

sents the possibility to define O T inductively.
0,0 0
Vi en Y% GN[ by (k) &= ﬁ’i (kc)dB*] .
o (] o g °

One verifies: “b’(k)) € V (k, € V).

37
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for all kc"”’kt € Nand i

Say that the ‘b* are defmed for 0<t<+t (¢t «T-1), such that

t 5 ‘
%F (x ,1,...,k}— h b (x rigreeask }d.B*
’%0 1‘17 ° J T ,’C 0

oreeesiy € M.

0, t+1

t
o, T . . .
If I b (kc,lc,...,k) 0 all "b/ (ko,lo,...,kt:,lt,ktﬂ)may

*¥% In the sequel of this section it is proved that there is
sssential difference between mixings on B ana mixings on A.
fact theorsm 3.3 shows that for each B* € ﬁ*, there exists

T=0 T t+1
be defined freely, if only “b""'(k ...,k 4aq) € U Otherwise de-
fine:
P
I b (k yenerk JaB*
=0 1’
0 t+1 (k ,v-.,k ,l ,k ) =
0 R A v o
Lt 0.7 )
by (kyseenskr)
T=0 T
_ \
v(ktﬁ €mn, i, €N
One easily verifies that °pt™* (ko,...,kt,l t+1) € V

no
In

a

mixing on ‘Ar, say l%;f, such that all restricted DB* - processes

{(j€ N, PERN have exactly similar probability properties as

corresponding restricted B‘f-processes.
lemma 3.,%3: A E I,

Proof:

T-1

A= n{pesh . Voo [oi(m) € {o,1}]} .

=0

the



A is the intersection of an at most countably infinite number of

measurable subsets of f3 , hence W is measurable.
Theorem 3.3: A* := {B* € 3% |B*(A) = 1}, then

y %3 * ¥V, ¥ v
B*e f3 B*e A* 'jen ‘peP BEZ,n,,

| “?j,B*,N(ﬁ x H) = “?j,B?,P)(ﬁ x H) .

Proof: According to theorem 3,2 and a similar reasoning ss in the
proof of theorem 3.2, it suffices to prové the existence of a
B* € A* for each B, € #, such that ‘

v LA v,
kt(o<t<T) Korooosk €N 40,0001 €N

E 7 (x x.) ;cx ‘bT(k k_)dB*
i 0,0.0, T - i ,c,o.’ T 1 [
T=0 T A T TT ,

Define: B*;(ﬁ \A) := 0 and hence ‘B";(TSO) := 0, when f3 €T,

Tso c 13\\J@-

t t
T o, 7T
B ({3 efln by (kgyeuesky) = 1}) = 1 b (kgyesesky)
T=0 T 1=0 T

(0=t <T;k yeeesky € X, igreeesiy € ),

o
One easily verifies that the probabilities as defined are mutual-~
ly consistent. Furthermore the collection of subsets of ﬁ) with
defined probability generates the o-algebra I’y which proves thé
existence of a probability measure on (fﬁ,r‘) with the defined
probabilities. On the other hand a i):c‘o’bability measure with the
defined probabiliﬁies satisfies the conditions Whicﬁ have been

" put forward at the beginning of the proof.



*% Theorem 3.4 stiates a result on the risk function with - regard
to mixed decision rules. The two integrals in the assertion. both
present a reasonable generalization of +the concept of a risk
function to the case of mixed decision rules.. The equality of
both integrals is a consequence of the way of introduoing‘ mixed
decision rules. Theorem 3.2 implies the equality with the risk
function for the corresponding Bo € f3. This result may be applied

in some proofs in subsequent sections of this study.

Theorem 3,4: B* € f%, then for any jE N, PE€ P

. * .
JV(J9B’P)G'B* = deu(j’B*’P) = V(;?’BO:P) »
Bx N2T+1

with w(B,h) := v(h) (BE B, h € ¥'''), B is a decision rule

which corresponds to B* according to theorem 3.2.

Proof: Note that the integrability of V(j,+,P) and w has not been
proved up till now.

Introduce wt(B,h) t= vt(h) (0o<t<T, BERB, hE Nzrgu}’ W,
(0<t<7T) and wmap (B x N‘QT'H, % EzT-{-t) into (R,8) mea~
surably and are integrable with respect to any probability mea-
sure on the first mentioned measurable space (lemma 2.4; inverse

images of Borel sets with respect to w, or w are the Cartesian

t

products of B and the inverse images with respect to v, or v

t
respectively). Furthermore '

. T-1
dp¥ . = . =
Jrasts o, 2) el [t ) -
B ﬁxN2T+1
T
t
= L I z B(dki+ci£)

=0 ) ¢ 2t K,1,£€EN

pi{ij*,P}Q)@ X {h:k,i,,ﬁ} X Na(T~t-1)> .



This sum will be transformed in two different ways:

-1 - :
1. = 2 3 z B (a, . +e.
. ki i
20 4 o2t ko1, 4EN £
{h,k,i,2} x Nz(T“t“’)> (theoren{ 3.2)
p(stO’P) e ) ot

T-1
= 3 fvtdu(j,Bo,P) = ‘V(J,BO,P) (lemma 2.5) .

%

2, = 5 b % B(dk.+c. )
,‘ . y)

=0 hENzt‘k,n.,ZQN ol

fu(j B ﬁ({h,k,i,z} x I (T't'1)) aB* (theorem 3.1)
‘3 oy N

Te1
-2 f]: fvtd“(j,B,P)}dB* (transposing finite summation

=0 2T and integration)

]

Tt ~
z v, GQp, . dB¥ lebes 's theorem, applyin
f{tzo .J t p(JsBsP)] ( gue y app.lying
B T+1 lemma 2,6)

= (I[V<J.yB:P)dB* .
J



SECTION 4

'SUFFICIENT INFORMATION

**% In view of the results in section 3, attention will be re-
stricted to 53, the set of decision rules applying mixed strate-
gies. Actually this section is devoted to +the investigation of
the possibility to restrict attention to a subset of jg. This
investigation concentrates on the possibility of refraining from
discriminating between each two different allowed histories until
time t. The purpose of this section is to prove that any decision
rule is equivalent (in terms of risk) to a decision rule, which
identifies allowed histories presenting the same information (in
some sense)} with regard to further decisions. In a subsequent
part of this sectiom, a generalization to the situation with some
elements of the Markov transition matrix known to the surveyor
and others unknown, is treated.

This section begins with the development of some tools, which
will be used in constructing the main resulis.

Definition 4.1 introduces the expected total costs of the process
from time t onwards, given the history of the process until the

decision at time t.

Definition 4.1: jE XN, BERB, PEP, 0<t<T he ¥I2 |

&) When k(5,5 P)<{h} « R {T-t)=1 # 0, the probability measure on
| At ]

{n} x

T+ :
the measurable space (I ’22T+1> defined by u(j,B,P)<H

is denoted by p h

(Tt )=1 .
a2 x N for all HE I 5P

2T+1



T-1
h)
& v, d §.
f’r=t t . J:B9P) ’

N2T+1 ( )
T . T-t)-1 ]
b) v, (J,B,P|n) := when u(j’B’P)<{h} x ¥ ) £0
0 , otherwise.
** The existence of the integral in part b) of definition 4.1 is

a consequence of lemma 2.4.

Lemme 4.1: jEN, BEB,Pe P, t (0<t<T), then:

n
V{j,B,P) = X v d +
(J’ ’ ) e JVT p'(J,B,P)
N2T+1
2(T-t)-1>
+ v B,P|h . hy x N

Proof: In view of definitions 2,9 and 2,10, it suffices to. prove:

T-1
z dp, . =
=t v H(J,B’P)

N2T+1
- > v ame | ng () P

he N2t+1

Summation and integration may be transposed in the left part

(compare lemma 2.5).

T=1 ooy

b) fv 1T - T
“ T (j,B,P)= & gz.( .+, )
T=t BT T=t (ko,io,...,k_r+1)€N”+3 dk’rl'r L

} x N2(T-T—1)>

u(;j,B,P)({ko’io’ eerkoy

CEE R PN ACERIEIR

= PN u(

J»B,P)
nen i

43



Lemma 4.2: jEN, BEB, PER, 0=t <7, h € W02 then:

a) Vt(j,B,P | n) does not depend on the choice of b* (0 < T < t)
T—‘t

as long as “(,j,B,P)Gh} X 1 )-1 ) #£0;

b) Vt(j,B,P | h) does not depend on the choice of the b’t(hvha)

for all 7 (t+1<7<T), h, €™ (n #n), b, € g2 (r=t)-1

Proof: a) The assertion follows easily, since p(h does not

(353,P)
depend on b (0 < T < t) (definition 4.1 and formula {2.4)).

(h)

b) This agsertion is implied directly by definition 4.1: 508, P)
k St 4
does not depend on the bT(h1,h2) mentioned.

lemma 4.%: JEN, BEB, PeEP, + (0 <t <T), then:

a) Jrvtdp(j,B,P) does not depend on the choice of b (t+1sT<T).
g2+
b) For any h € ¥2¥* witn K(5, P)<{h} x N2<T't)> =0, v(jB,P)
| Aat 4

does not depend on the choice of bP(h).

Proof:

2) f"td“u,B,P) -
N2T+1

-2 = Bt<dki +ci£> u(j’B,P){{h,k,i’g} X,Nz(T-t_1)>

T hentt k,i,ZEN

The W, . - factors in the terms of +this finite sum do not
(39}39?)

depend on the choice of the Bt (t+1 <t <?) (formula (2.5)).

b) B, {n} x NZ(T"J&D does not depend on bt; apply lemma
(J?BQP)

44 4.1: the first sum does not depend on bt according to assertion



a); the second sum does not depend on bt according to the supposi-

tion (one term) and lemma 4.2 a),

** Coming to the main topic of this section, the first task is
the formal introduciion of an equivalence concept in the set of

decigion rules.

Definition 4.2: B,,E, € A.

a) (j €N jB'i is said to be equivalent to 4Bp» When
v(j,B,,P) = V(j,B,,P) , for each P € P;

notation: 331 o~ sz H

b) B, is said to be equivalent to B,, when

3B1 NJ,B2 , for each j €N ;

notations B1 ~B2 .

*¥* The ~ - concept defines relations in the sets .B, since all
BE R with ;jB = jB1 possess the same V(3j,B,P) for each Pe f0
(lemma 2.7) and any .B is the je~restriction of at least one de-

cision rule (lemma 2.1 b)).

Lemma 4.4t The ~ - concepts of definition 4.2 define equivalence
relations in the sete jﬁ (j € 1) and B respectively.

¥*% When applying a decision rule, the decision at any time is
based on the realized allowed history until that time, It seems
reasonable to investigate those decision rules, which base their
decisions at time t on the numbers of the different larkov fran-
sitions in the realized allowed history until that time.

Definition 4.3 formalizes this concept of information offered by

allowed histories until certain time.



Definition 4.3: for each h=(k ,ijseresk,) € K207 (0 < & < T41),
K(h) denotes the n x n-matrix of nomnegative integers, with ele=

ment labelled (i,k) - i,k€ ¥ - equal to the mumber of 7T-values
(0 = 7 < %) such that (i,r,kw) = {i,k);

K{h) is called the information matrix of h.

** The subset of ﬁ consisting of the decision rules, which base
actual decisions on the womentary information matrix and the ob=
served state at the time of decision, is introduced in the follow-

ing definition:

Definition 4.4: B € f3 is called an information decision rule

(applying mixed strategies), when the following condition is sat-

isfied:

Vs(o<t<T) "nen?t Tren®t %k e

[K(b,k) = K(a',k) ==>b"(h,k) = b*(n1,k)] .

The subset of .ﬁ containing all information decision rules will

be denoted by ?Q.

Lemma 4.5: "R is compact (hence jﬂ( (5 €N) and K ave compact
(lemma 2,16 a))).
"R is a proper suvset of K.

Proof: The assertions follow directly from the definitions.

Lemma 4.6: O < <T, BE€ B and B satisfies the condition of
definition 4.4 for all t with r <%t < T, then:

¥

nt €N2r v

v k,i€N

Pe P V5,51 en mener

[p<j,B’P)<{h,k,i} x Nz(T"r>*1> p(j,’B’P)<{hv,k,i}xNa(T'r>">%o,

46 X(h,k) = K(b',k) ==V _(§,B,P | b,k,i) = V_(§",B,P | h',k,i):l' .



Proof: Bek=kr, i=3i

T
_ Py (hyk_,si )
. « T
Vr(J’B’P l h’kr’lr> = "r:ir Jdeu(J,B,P)
Net (dominated convergence)

Te
= 2 >
rH,...,lT,kTH)EN

T
I PR
2 (T-r )+ dk'rl'l: ik .
(hyk ;i)
'y .
b5, 5P) <{h,kr,1r,...,k1+1} XN

é(T-r—&))

The probabilities involved in ‘this sum do not depend on ’bt with
0<t<r. They do depend on b’ with r <t < T. However the b’
with » <t < T depend only on +the infdrmation matrix and the
observed state and they do not depend on the complete allowed
history until time t. This proves the assertion.

**% Theorem 4.1 proves that each historical j-decision rule is

equivalent to an information j-decision rule.

Theorem 4,1: If j € N, then V. p 3]_30€ ”n {jB ~ J.BO] .

Proof: The proof consists of two parts. In part A an induction
step will be proved. In part B it will be demonstrated that the
induction step may be applied to establish the theorem.

A, In this part of the proof it will be shown, that for any

decision rule B, € B (given r: 0 <y <T) - which satisfies

1
the condition of definition 4.4 for all t with r+1<+t <7 -
there exists a decision rule BI_ €A, which satisfies the condi-
tion of definition 4.4 for all t with r € { < T and furthermore
jBr - jBr+1 ‘

LT THLT

It will appear, that a B suffices with for =t # r.

Hence this proof consists mainly of the construction of Tyt

a7



lemma 4.1 implies:

h2 |
P)= =
=0

N2+1

1) V(5,8 dpy . +
(4.1) V(3B i p(g,Br+1,P)

() < )

+ = V(P | B

hexrt r r4+1?

The first sum in formula {(4.1) does not depend on THLT {lemma
4.3a)), hence this sum does not alter when B.,, is replaced by
the decision rule Br’ which will be constructed.

The second sum in formule (4.1) may be rewritten as a finite sum
of;finite subsums, such that any subsum = collects all terms cor-
responding to allowed histories until fime r, which possess a
certain information matrix and a certain observed state at time r.
To be explicit, regard the subsum belénging to information matrix

K and state s, observed at itime r (K a given n xn matrix of
- I
normegative integers and s, a given element of 5):

k
r

(4.2) h% E V(5B
i €W
K(h,kr)mK

P| h,kr,ir)
xr

TR S

H(39B,pys

The quantities Vr in this expression do not differ with h (lemma

4.6), provided that the corresponding .
(JrBr,H,P
equal zero. In this proof the Vr will be denoted henceforth by

Vr(P,K,kr,ar). The P(j,Br+1,P
(2.4). Hence they all contain the same elements of P as subfac-

)-fantor does not
) - factors are determined by formula

tors. In this proof, the product of these subfactors will be de-
48 noted henceforth by I(P;K). '



Expression (4.2) may be transformed into:

(4.3) H(P;K)i z V(B Kk ,1 )

r
i T 4 .
5, i b, (K i 4e.esk ) .
(ko,io,...,ir~1)€N2r ¥y 10 e 00 v

K(ko,io,qct,kr)mK

It suffices to find a decision vector rbr(h,kr) - the same for
each h € N' with K(h,kr) = K = which leaves the wvalue of ex~
pression (4.3) unchanged. Since the_vr(P,K,kr,ir) do not alter
when I"Hbr is altered (lemma 4.2a)), the following choice suffices

when the denominator involved is not equal to zero:

y rr
(4.4) Ve T (K(n,k ) =K) "i_en °i (Byk,) +=

r
r
41, T .
b, I b, (K 41 yeessk )
(ko,ie,...,ir_1)€N2r Ky a0 g 000 v
K(ko,io,ovn,kr)mK
1= -
Tow
b, T ST (K ,i,e...k ) .
(ko,io,...,ir_1)€N2r Ky g fp 000 *

K(ko,ia,...,kr)wK

If the denominator in expression (4.4) equals zero, expression
(4.3) is equal to zero and hence the choice of the rbz (h,kr) is
T

arbitrary, except for the condition of nomnegativeness and summing
to 1 for ir = 1y0.0,0,

Tt is easily verified that b’ (h,k ) as defined by (4.4) is an
element of V.

B. When T < , the assertion follows directly on application of
the induction step derived in part A of this proof: The induction

49



T s= Bs 1 dem

creagses by 1 at each step of the induction process. The decision

process may be started with r = T~ 1 and Br+1 = B

rule B s, which results finally, is an element of ']( and JBO j T'

If T = o, the establishment of the assertion is somewhat moxe

complicated:
p~1 o
(4.5 V(jBP)=2fvdu +2fvép.
) y Dy oo Joo (3,B,P) =0 Tt (3,B,P)

(0=p <) (lemma 2,5) .

The first sum in the right hand part of equation (4. 5) does mnot
depend on bt for t > 2 p (lemma 4.3a)). “The second sum satisfies:

[e
3 f v dp ..
L=P i T (J,B,

independent of B,P (lemma 2,6).

e
max id

. +c, |
TPy i,ey B 14

The decision rule B op € B s defined, such that

Ppt iyt for t<p
Bpp satisfies the condition of definition 4.4 for t = p .
Then

p
+6) [V(3,B,P ,P < 2B . +e,
(4.6) [V(3,8,%) - W<y, mer [ renl

(uniformly in P} .

By & finite induction process - applying the induction step de~-
rived in part A of this proof - with r decreasing by 1 each step:
from T = p to T = 0, a decision rule B € K is obtained, with

V(J,Bpo,}?) = v(J,Bpp,P) for a1l Pe P .

50 The compactness of '{ (lemma 4.5) implies the existence of a de-



cision rule B, € QQ, which is the limit of a subsequence of the
, }a) o o -

sequence {Bpo p=0 ° v

Formula (4.6) implies: V(j,B,P) = V(j,B,,P) (all P € ?) (lemma

2.13)}, hence jBO ~ jB .

Corollary 4.1: V. g 3130 €X [(B~3]

** Corollary 4.1 asserts, that the only information supplied by
the realized allowed history until time ©, which is relevant with
regafd to decision making at time %, consists of the initial state
of the process, the momentary informationnmﬁrix,and»the observed
state at time t. This result is analogous to the well-known fact,
that, when estimating the probabilities for the elementary events
of a trial, based on a number of independent répetitions of the
trial, it is useless to pay attention to the order in which the
elementary events occurred, only their numbers count: the nunbers

form a set of sufficient statistics.

In the next part of this section, the result of theorem 4.1 will
be generalized. This generalization initiates the specification
of the expression “incompletely known +transition probabilities"
in the title of this study. The situation will be investigated,
with some Markov transition probabilities having values which are
known by the surveyor of the process and others which are unknown.
Theorem 4.2 demonstrates that if the Markov transition probability

corresponding to Markov transition §;,—>s is known, the elew

k
ments labelled (i,k) of the information matrices are not relévant

in decision making.

Assumption 4.1: I_€ W is a given set; to each element (1,k)€l£
there corresponds a given real number m, 1k such that

e P V(1,0 €1, [Py = md -

5
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*% Definition 4.5 presents some adaptations of notions which wers

introduced earlier.

Definition 4.5: a) pc = {PeP| V(i,k)éﬁlc [Pik = nik]} .

b) B,,3, ef; ij is said to be sub-eguivalent to sz’ when
e P [(v(3,B,,P) = V(§,B5,P)] (3 € 1) 3

notations VJB ~ .B

c) B ,B, € B B, is said to be sub-equivalent to B,, when
o .
View {3;81 g sz] 3
notation: B1 2 B2 .

d) Two n x n matrices - say K and L, with elements K, and Li

ik k

respectively - are said %o be sub~equal, when
V(i,k);z’:[o (Kipe = Ll 3

notation: X £ L .

*#% The Z-concept defines relations in the sets f)’ ’ ‘since all
Be f with jB = jB1 possess the same V(j,B,P) for each P € .@U
(lemma 2.7) and any .B is the j-restriction of at least one de-
cision rule {lemma 2.1b)). Some simple properties are enumerated

in the following lemma:

Lemma 4.7: a) P # ¢ and .1/00 is a compact subset of .

b) The f-concepts establish equivalence relations in the sets

jf5 (5 €N) and B.



T

¢) The matrix-valued function K on U W and the sub~-equality
£=0 -
. . . . 2% +1
concept establish an equivalence relation in U N s the set
t=0
of allowed histories until any time.
d) Fach pair of n x n matrices K,L satisfies:
K=L=KkEL .
~ [« . N
e) ij’Bze f [331 3B :#351 b4 332] | (j €Ny .

o~ g )
£) vaBgE: 3 EB‘ BZ_:—}B1 Nsz *

*% Definition 4.6 introduces decision rules, which do not take
into account the data, which were gathered in the past of the
process, on larkov transitions with known probabilities, The de-
cision vectors of these rules are exclusively based on the '"re-
duced" information matrix (the information matrix with the ele-
ments labelled (i,k) suppressed if (i,k) € I,), the time of deci-
sion and the observed state at that tinme.

Definition 4,6: BE ﬁ is called a sub-information decision rule
(applying mixed strategies), when the following condition is

satisfied:

Vio<t<T) Yn,nt en2t Yen
[K(n,k) & K(b',k)===D"(n,k) = b°(n',k)] .

The subset of f3 containing all sub-information decision rules
will be denoted by ’Rc .

Lemma_g}. : '}{U c K 'Ko is a compact subset of H {hence jrﬁ;c
and "R (J € W) are compact (lemma 2.164)));



'RO is & proper subset of 'K, in case s £¢ 3

’}2{3 is a proper subset of )Rc

*% Lemma 4.9 presents a result of the same kind as lemma 4.6. The
proof proceeds along the same lines as the proof of lemma 4.6 and

. will be omitted for that reason.

Lemms 4.9: 0 <»r <7T3 B € f3 and B satisfies +the .condition of
definition 4.6 for every t with r <% < T, then

"Pep Ys,50en Ynten?® Ye,ien
) 2(T—r)-1 1o 2(Ter)-1
[u<j,B,P)<{h,k,1} x N )p(j"B’P><{hi,k,i} x i #0,

K(h,k) € X(h',k) ==V (3,B,P | hk,i) = Vr(j',B,Plh',k,i)] .

Theorem 4.2: If j € N, then vBE%BBoemc [jB g 3330] ‘

Proof: The proof shows a fair similarity with the proof of theorem

441, Only the proof of the induction step needs modification: Say

that Br-M € B satisfies the condition of definition 4.6 for all

t with 7+1 <% <T (given v, 0 <7 <T). A decision rule B, € 53

will be constructed, such that .B < B and B satisfies the
Jr T T

condition of definition 4.6 for all t with r <t <« 7. It again

appears that a Br suffices with r’nt = r+1bt for Ot <7, % ;4 Tr.

Again consider formula (4.1). The first sum on the xight hand
side is invariant for the replacement of Br +1 by Br as plahned.
The second sum may be rewritten as a finite sum of finite subsuns,
such that any subsum collects all terms corresponding to allowed
historits until time r, which have information matrices sub-equal
to a certain matrix and which have the same observed state at
time r. Formula (4.2) presents a typical subsum, if only K(h,kr) =

54 =X is replaced by K(h,kr)g X, The factors Vr in this expression



do not differ with h (lemma 4.9), provided that the corresponding

H(35B,,19P)

be denoted by Vr(P’K’kr’lr) in this proof. The factors p(j’BrH’P)

are determined by formula (2.4) and hence all contain the same

~factor does not equal zero. These factors will again

numbers of factors p;, for those labels (i)k) £ I, The product
of these factors will be denoted in this proof by II(P,K); the
product of the remaining n-factors is denoted by II({n}; h,kr).
Remind that the factors of I({n}; h,kr) are given real numbers.

The modified expression (4.2) may be rewritten as follows:

(4.7) H(P,K)i 2€N V(B Kk i)
r

b
r+1. T .
— )eN2r by D({n} K ,i ,..,kr> it b.T<ko,10,.,kT>.

(ko,io,.\.,l =0 B
K(ko,io,..,kr) g

Since the V_(P,K,k ,i ) do not alter when THyT i altered, the

following choice suffices, if the denominator involved does not
equal zero. For all h € N°* with K(h,k ) € K and all i_ € N:

I‘I‘

(4.8) (h k ) 3=

— bjkon<{n};kov,io,..,kr> 1 7] (kpi e k,)

. . r
(ko,lo,..,lr_1)€l\]2 =0 ‘e
K(kpigeeesk,) g

r=1
: R TH1, T
> ' or ik H({n},ko,lo,..,kr> noh (k
(ko’lo,.”lr—1)€N 0 =0 T
R(kyyiyyeesky,) gk

sigrensk )

0

If the denominator in expression (4.8) ~equals zero, expression 55



(4.7) is equal to zero and hence the choice of the rbr(h,kr) with
K(n,k ) € X is arbitrary, if only 0" (n,k,) € V.

It is easily verified that the Tb" (h,kr) defined by formula (4.8)
satisfies: "b"(hk ) € V.

. R ; — o
Corollary 4.2: V¢ ﬁBBO € %, B 2 BO] .

** Tt will be proved in the sequel,‘ that in a special case it
suffices to consider a more restricted subset of B. If the deci-
sion costs d’ki all have the same value, one may restrict consid-
eration to the class of decision rules, which only depend on the
time of decision and the '"reduced" information matrix of the re-
alized allowed history until that {time.

The case of equal (in fact vanishing) decision costs establishes
an appropriate mathematical model for +the following type of
problem: a finite number of experiments is available, each with a
finite number of possible outcomes (all expressed in the same
unit, say dollar or success); the probébility distributions for
the different experiments are incompletely known; at discrete
points of time an experiment has to be selected (compare [1956,
R.N. Bradt, e.a.]).

Definition 4.7: B € .73 is said to be a state-free sub-information

decision rule (applying mixed strategies), when the following con-

dition is satisfied:

v‘b(o <t <T) Vh,h, € jat+1 [K(h) = K(h'):}bt(h) = ?t(hu)] ]

The subset of f3 containing all state-free sub-information deci-~

sion rules will be denoted by °€o .

** The difference Dbetween state-free sub-information decision

56 rules and sub-information decision rules is found in the follow-



ing feature. When applying a decision rule of the state~free type,
decisions are not directly influenced by the actual state of the
system, but only by the time of decision and the elements of the
information matrix of the realized ‘history corresponding to un-
known Markov transition probabilities. Whereas sub- information
decision rules may base decisions on the actual state of the
system.

mma 4.10: ae, c 'R ‘f, is a compact subset of B (hence
and .{’, are compact {,} € N} (lemma 2,174))).
ﬁc is a proper subset of ’Ro, .f, is a proper subset of ve .

Lemna 4.11: O < <15 Y, ;o [dy; =3d,,] 5B€ ’ko, thens

v

VP€9)G i,5ten "nnrenert View

[“(J,B,P)({h’i} x ¥ (T_r)-1>p(j',B,P)({h',i} x NZ(T-I‘>‘1> # 0

k() g K(h')_—_w (3,B,P| hyd) =¥ (J',B P'h',l)] .

Proof: Say i = i:c" then

Pt » (h,l )
Vr(j,B,P[ h’ir) = Z—i J v du(J B P) (compare lemma 2,5)

= 2 TH

-1
= 3 >
T=r (kr+1""’11:’ 1

)€N2(T'r)+1 Bt<d * ciwk'cﬂ)

(h’l ) T
“(3,8, P)Gh lr’krﬂ’“”k“cﬂ} x ot U) 57



Tt T~1
=dy = pT+ 3 — (=1 )+1 8% x
yEW T T+

=r =T (kr+1’“"i*t:’k'r+1
(h,i ) (
Tetm1)
IJ-(JBP)<{h1 ,kr+1,..., T_‘_‘}Xﬂz )
(h,i,)

The b(35,B P)-factors do not depend on b° (0=t <r); they do
b4

depend on the % (r <t <), however these bt map (kl,ir,kr+1,

ceerky ) and (n',i ) on the same decision vector

r’ r+1"“’ T
in 1} when k(h) € K(n').

lemma 4.12: ¥ ey (4, =a,,], then

Vj,j'eN VBE&O, VP€ _@Br(j’B’P) = V(j'sB;P)] .

Proof:

T—1 T—i 4
- _——

)
v(3,B,P) = ¢ 6t ~ 43 P %5k, %3
(35347) 1 tzo (k sigsenes t+1)€N2 2 t 1;+1ch

t
(n Pk Xn bl {k o1 igree ik )> (lemma 2.5, formula (2.5))
T=0 T T T=0 T

BTk yi 500k ) docs not differ with k(B € L)

Theorem 4.3: (j € W) Ve iew [d; = d”]; then

3 g
Yse B B, € £, (2~ Bl -

Proof: Theorem 4.2 states the existence of a decision rule
B, € "KQ, such that B Z JB An induction process will modify B
1nto a decision rule B € £G, such that JB <A B .

58 The induction process applies the following property: each Br€ ,Ra



(0 <1 <T), may be modified - by only altering the "b° - into a
decision rule B, , € "R, which satisfies the condition of defi-

nition 4,7 for t=xr and jBr b jBr-M' Before proving this property,

it will be demonstrated that it furnishes a step-by-step procedure

o . . . 1%
for modification of BO into BT € "60 with jBT ~ jBo .

B, € ’){c say that B € 'K“c’ i g JBO, B satisfies the condition

of definition 4.7 for all t+ with 0 €t < v, then there exists a
o g PPN
decision rule B, € "ﬁ with ;{Bﬂ.1 ~ JBO and B, satisfies the

condition of defmltlon 4.7 for all t with O0<t<r+1 <2:* BTt
for t # r). If T <=, this prosedure leads in a finite number of
steps to the decision rule BT’ which satisfies the condition of

the theorem. If T = oo, the procedure generates a sequence of

decision rules {Br} -

pegt Since {KG is compact {lemma 4.8), there

exists a decision rule B € ’}{ which is the limit of a subse-
quence. For each r (0 <r < T) the set ’K :={B € % [B satisfies
the condition of definition 4.7 for all t with 0<t <r} is
compact and B € ’K for p > r., Hence B € ﬂ ’)(T £ ; g .B

00 J 0
=0
(lemma 2,13).

Now the step-property will be proved:
Consider the assertion in lemma 4.1 with B = B € ’ﬂa (0> <7T)
and t = r. The first sum on the right hand side of the equality

does not depend on T ,(lemma 4.3). The second sum may be rewrit-

ten as a finite sum of finite subsums, such that each subsum col~

lects all terms corresponding to allowed histories until time r,

which have information matrices sub-equal to a certain matrix.

For given matrix X, such a subsum is:
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(4.9) 3%2:1‘;‘ RERACENIEEN
k(n) x F

X . 2(Ter)~1
‘~<j,Br,:p><{h’lr} 8 )
The factors V, in expression (4.9) donot depend on h (lemma 4.11),

provided that the corresponding p(j ~factor does mnot egual

, ,B_,P)
zero. In this proof the factors Vr will be denoted henceforth by

v

v s .
r(P,&,lr). The factors p{j,Br,P) are determined by formula (2.4)

and hence all contain the same subfactors p . with (k,i) € Is
the product of these subfactors is denoted by I(P,K); the products
of the remaining (known) subfactors is demoted by H({n};h). Ex-

pression (4.9) may be rewritten as:

(4.10) WR,K) =V (B,Ki)
i €N

I
— & n({n};ko,...,kr> T 70] (kypigyeeesky) o
, o

(kG,io,...,kr)€N2r+1 K, t=0 T
K(ko,io,...,kr) gx

Since the V_(P,K,i_ ) do not alter when 'b" is altered, the follow-
ing choice suffices (if the denominator involved does not vanish).
For all h € N7 with K(h) ¢ X and all i, €N

(4.11) r+1b§: (h) :=
xr

== 5. n({@;k,...,k)ﬂrb? (K ,i ,ene,k )
(ko,io,..,,kr)££N2r*1 dk, 0 T/po *¢ O 0 T

K(ko,io,...,kr) gK

— ' .
. T .
St 5jk0ﬂ<{n}:k;0,...,kr> I bi'r(ko,lo,a cork)

(ko,ie,...,kr)€l‘l =0
60 K(ko,io,...,kr) 2K



If the denominator in expression (4.11) does equal zero, expres-
r+1br(

sion (4.10) vanishes and hence h) may be chosen arbitrarily

from U,

Corollary 4.3: vk,i€N [dki = d”], then
—_— o
Yeep I e Z BBl -
T (o)
** For application in other sections, the following lemma is
needed:
Lemma 4.13: Y i€ [dkl =d, ]; for no £m € N:
n n
Ypep |2 CpPy > B cmipmi] ,
oli=1 i=

then there exists a non-empty subset .7)1 of ﬁc, such that

VPE i‘)1 ijj'EN VB1’B2€ ﬁ |:V(J"BVP) = V(‘j"BZ’P)] ‘

n
Proof: R, := {x €R |3, pc[ii ¢ piPp = X]} (LEN). R, is &

closed, bounded interval in R. Hence R = N R, # & .
0 £
LEN
p 3 f
: t= 2 =
Choose: f := {P € 2| 3X€RO v“N[ii C Py =x|} then P Ag

and for each P € 7)1, B € $3, j € N holds (xcorresponding with P):

14

T=1 +
v(j,B,P) = = xp’ .
t=0
¥* This may be interpreted as: If decision costs are equal and no
action dominates any other, then there exist P € f’o, such that

for those P the risk function is constant in j,B.
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SECTION 5

PARTIALLY ORDERED SETS OF DECISION RULES

** Thig section will be devoted to the comparison of the effec-
tiveness of different decision rules. This will be executed by
comparing the V{(j,B,P) for different B € . In fact, the intro~
duction of the relations ~ and £ in B ana j% (section 4) was
already an initiation of such a comparison. In this section, how-
ever, notions of the type "better than" and hence orderings will
be introduced and investigated.

The material in this section is treated according to the methods
which have been outlined in [1954, D. Blackwell, M.A. Girshick].

Definition 5.1: ]31,13»2 e R H

a) (€N jB1 is said to be at least as good as ,sz’ when
v?gpc (v(3,B,,P) =< V(§,B,,P)] ;

notation: jB1 43.}32 .

v} {(j €N jB1 is said to be better than jBa’ when
B QJ.B?_ and not B, g B

notation: B, << .B_ .
g1 Jj2

c) B, is said to be at least as good as B,, when

View [£1 €481 5



notation: B1’§B2 .

d) B, is said to be better than B,, when
131(.'82 and not B 23, ;

notation: B1<: B2 .

** The - and the <T-concept define relations in the sets jﬁ’
since all B € B with jB = jB1 pogsess the same V(j,B,P) for each
Pe P (lemma 2.7) and each jB is the j-restriction of at least

one decision rule (lemma 2,1b)).

lemma 5.1: &) The K ~concepts of definition S.1a)and 5.1¢c) define
weak, partial orderings in jB (j € N) and 73 respectively.

b) The <-concepts of definition 5.1b) and 5.1d) define partial
orderings in jff?; (j € ) and B respectively.

** Some other useful notions for the inwvestigation of the quality

of decision rules follow:

Lefinition 5.2: B ¢ 8,3, € B

a) (j € N) jB, is said to be admissidle in J.IB , when for no

o]
B € ﬂ
.B<I.B ;

the set of all j-decision rules, which are admissible in fb is

denoted by ( 73 )

b) B, is said to be admissible in ﬂo, when for no B € 3?)0
B(ZBO H

the set of all decision rules, which are admissible in j3 is
- denoted by \ﬁ ) .



lemma 5.2: B € B ¢ J"Sicﬁ , then
a) "jem[fe(jfg,}::?e(g%e)] ;

b) Be <ﬂ1>=$3 € (B{,) 3

°) ["jerr(jB € (3_130»] =B e (ﬁc’) '

Proof: The assertions are implied directly by the definitions. It
should be emphasized, that none of the implications may be re-

versed.

Lemme 5',5: ﬁocﬁ s then ‘

BE (B—‘)){::ij [33 € <jf30>]

Ysew [a‘(ﬁ) - (i o)] ’

Proof: "=—=" say B 5!(1]'30) : B, € f3, and B, <13;' then

define B, € B by this B, and By = B (JEN, j#1) then
B, < B (contradiction).

or

"é==" say B ¢ B_o » then B, € ﬁ‘o’ B, < B, hence for certain
jeN 3, <8 (contradiction).

a) (3 €N) (j%o) ¢ (:.I)R) © (ﬁ) ’
v () ®)(®)

Ye,ien [ = 4y ] 5 then

64 ¢) (JEN) (J?Q > c <jmo> s



d) | (Z;) c (’E) ;
) (8,) < (£,) =2 Gem (&)= (%) -

Proof: a) is implied by theorems 4.1 and 4.2;

b) is implied by corollaries 4.1 and 4.2;

¢) and d) are consequences of theorem 4.3 and corollary 4.3 re-
pectively;

e) is implied by lemma 4.712.

*% The concept of admissibility only becomes satisfactory in case
the sets of admisuible decision rules possess some completeness

property:

Definition 5.3: ﬂo c .81 c ﬁ s then

a) (j €1 j]‘%o is said to be complete in jfBV when

e p B, b e, [Pl

b) ’@0 is said to be complete in 81 , When

¥ 3 B < B] 3
B€.?3,;1\f30 B € B, (3, < 5]

c) (j € N) jﬁo is said to be essentially complete in 3.31, when.
< .
Yse B 7p € B [ € 48] s

a) 330 is said to be essentially complete in 31, when

se s, Ip e (BB

**% Lemma 5,5 enumerates some properties, which are derived easily,

They are presented without proof for that reason,
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Lemma 5,5: ff)' c.ﬁ c ﬁ cﬁ, J € N, then

a) if j'3 {or j):' ) is complete in 3 (or .731 respeciively),
then 3’3 (or f$ ) is essentially complete in 73 (or ﬁ rE-
spectwely),

b) if f} (or 73 )13 (essentially) complete in 3 {or JB e~
speotlvely), ‘bhen the same is true in @ {or B respectlvely),

c) if ﬁ (or Jj? )} is (essentially) complete in ﬁ (or f3 re-
spectlvely), then ﬁ (or ﬁ ) is (essentially) con’plete in 73
(or B respectmvely),

a) if B is essentially complete in 731, then ?3 is essentially
complete in B

e) 73 is complete in 75 3 jﬁo is complete in jﬁo :

£) if ﬁ is complete in f3 then (:‘3) ¢ ]3

if 3.330 is comple‘ce in 33 » then( 3) /30 H

g) if ]3 {or ﬁ ) is complete in j3 {or j:@ respective.ly)
and this holds fo:c no subset of .8 then B ( 1) (or jjso =
( }3 respectively)s

h) /B or( ﬁ J) is complete in :B (or 3,31 respectively),
if and cnly if (ﬁ) {or < B )) is essantlally complete in J’3
(or .@ respectively).

i) the completeness relations between sets of (j-) decision rules

are transitive; the same holds for essential completeness,

** Ttem g) of lemma 5.5 indicates the relevance of an investiga-
tion of the possibility, that the subset of admissible decision

rules in a set of decision rules is complete in that set.

Lemma 5.6: ﬁo c ﬁ, then, if j’—3—0 c f% c B
a) [Vj en (]3 essentially complete in jﬁ1)}=)ﬁo essentially

complete in ,@



L) 3J‘GN (jﬁo complate in jﬁ1> and ::‘??JO complete in
\fj . kjﬁo essentially complete in ;}'@1) 1
Proof: a) For any B € ﬂ and j € N, there exists a jBo € jj}o’
such that B £ B, hence B, € fﬁ and B, < B,

b) Say J/? is complete in ﬁ
For any B E fB \.73 and Jj E l‘, there exists a ,jBo € ,jﬁo’ such
that B, éJ.B (for ifg M

jBO CJ.B (for 3 = 1).
Hence B, € B and B < B.

[v¢]
lemma 5,7 ?50 c 7 , J € i and for every sequence {B£}£=1 with

Vo(regeey [Bg € Pov jigp <3y

there exists a decision rule 3 _€ 73 y With V £(1 <£<Oo)[ B < B£]
Then < B ) is complete in ﬁ

Proof: Be {Pr}:_: & countable subset of F_, dense in 730.
o0

Define for B € B: U(3,B) := 5 27F V(3,B,P_ ). The sum exists
r=1

o?

for each B € B and is bounded as a function of B, since the V-
values are uniformly bounded in j,B and P (lemma 2.6b)).

For any B_,B, € B sBa gjﬂbzﬂf(j,sa) <U(§,8,), with equality
only in the case ;B 2 5B (lemma 2.9).

Assume that ( .73 ) ig not complete in 5’3

let B, € B, with B € B \/.f3>and]3 w={B € By|B< B,

{whence 5'3‘ # &), such that jﬁ1 n <jﬁo) =g . 67



&henceB(B

An induction process will present a decision rule B € f3 such
that B e \( B, ), but withno B € B such that sB s
better ’chan B (a contradlctlon) The 1nduct10n process produces
& seguence of sets ﬁ and decision rules B (£=1,2,3,44..), such
that

%}1—1 := {BE ;{31 13}3 <jB,€} ,

) . . ) 1
B, € ﬁg s with U(§,B,) < inf U(§,B) +3 (£=1,2,..)
B(-Ifi/g

This is possible, since 73 # @, for otherwise jB£-1 € (jfs());
furthermore .’f?) n ( by ) 7. k

The sequence {B } possesses the monotonicity property of the

assu.mption. J £%1£(1JB£, hence there exists a B_€ 730, with

< P {£=1,2,...). Hence JLB £ ( A ) On the other hand,
there 1s no decision rule in f@c mth a J»-restriction, which is
better than B _, for otherwise it would possess a U-value Iless

than U(j,Bw) and it would satisfy the same inequalities:

. . R 4

inf U(3,B) < U(3,B ) = inf U(3,B) + - (£ = 1,2,.0.)
BE B, °°) BE B, g |

This establish the contradiction.

mma 5.8: ﬁ ﬂ, Jekn, ﬁﬁo is closed, then <jf30> is com~
plete in j3

Proof: 3750 is closed, hence compact, which implies the monoton-
. - ] sy = 2
icity condition of lemma 5.7: each sequence {Bz}ﬁm with B'g € '?30

<O
possesses a subsequence {B } , with 1im .B = B € B ., The
'gm m=1 - Jm J® J o

result of lemme 2,17 implies:
Pej) []J-m V(Jsf’z 9P) = V(J: 9P)] s

0 (£ =1,2,...).



Theorem 5,1; J € N, then
a) ("‘Rc) is essentially complete in J.IJJ

b) if vk i€EN

in B
J

[&ki = d”] , then <j£o> is essentially complete

Proof: &) j%o is closed (lemma 4.8), hence (lemma 5.8) <J.'KG> is
complete in . (and therefore essentially complete, lemma 5, 58)).
% is PSSPgtlglly complete in 73 {theorem 4.2, since JB & JBO
mplles JB { B, ). Hence (lemma 5,5i}) < rR0> is essentially com~
plete in .73

b) The proof proceeds analogously: j’e‘c is closed {lemma 4.10)
and jﬁ‘o is essentially complete in jﬁ as a result of theoren

443
Lemma 5.9: ﬁo < ﬁ, then: ‘
[Vje N ((j‘@i)) complete in jj50>] ———-7[(.:7};) complete in ﬁo] .

P;f.%)_f ) (.@ ) (lemma 5.3) (j € ¥).
gémpietenesa of (‘B ) in j}

complete for any j €N in .,8 implies (lemma 5.6b)) the

o0
Lemma 5.10: 30 ¢ R and for any sequence {B£}£=1 with

Vo(1<a<e) By € BosBp Bl

there exists a decision rule B € .73 with V

[B,< B,l.
Then (ﬁ ) is complete in ,B

£{1 <4 <o0)

Proof : This proof possesses some features in common with the proof
of lemme 5,7, but it is somewhat more complicated and will there-

fore be presented in full,
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Again, let {Pr};; be a countable subsct which separates JOG.' For
every j € N, B € B the value U(j,B) is defined as in the proof
of lemma 5.7.

When B_,B, € B ana B < “BL_, tgxen Vjen [v(5,B,) <U(3,B))], with
n equalities only if B £ b (lemma 2.9).

Asgume that (.73/) is not complete in ﬁe‘

let B, € 739\ \ﬂog and ;{31 = {B € Bo | B {Bo} (whence 31%53),
such that .731 n (] o) =

A finite induction process will provide sets ' ffsj c ﬂo and deci-

Ay

sion rules BJ. (j = 1,2,...,n), such that

ﬁj ={se B [5<B,_} ,

i g) j o= * s s 3 -
B, € 5‘33, 585 € (ij (J = 1,2,..0,m)

jjj # ¢, since otherwise B, € f31 N <f30>,which produces & con-
tradiction,

There is no &ecision rule in .?30 which is better than Bn’ hence
B € B .0 (f} 0), which provides the desived contradiction.

It remains to be verified that there cxists for any j € N a deci-
sion rule B, satisfying the conditions assuming Bo’“"Bj..1 to be
given. B, is constructed by an induction process, which provides

sets ﬁjm and decision rules B,jm (m=1,2,...), such that

B o= 5

g1 3

ey = (B € 3, |B <3}

) ) o 1 _
B, € ]?)J.m,U(J,Bjm) &;Bgnf U(§,B) + - (@@= 1,2,...) .
Jm

ﬁjm # @, since otherwise Bjm—ﬂ € .731 n <ﬁ0> s

70 which provides a contradiction,



The sequence {B }:_ satisfies the condition of the. lemma, hence
there exists a decus:Lon rule B € fi, with B < B (m-—’i 25000 )e
There is no decision rule in .75’ , which is better tha.n BJ 1 and
possesses a j-restriction better than .B., since this decision
rule would be an element of zjm (m=1,2,...) and Bj satisfies

the inequalities

inf U(j,B)sU(j,Bj)s inf U(j,B)+% (m=1,2,.0.)

BE J’Sjm BE Bjm

Lemma 5.11: 730 c B s Bo is closed, then (ﬁ0> is complete in
N
B,

Proof : .730 is closed, hence compact. This ‘implies +the monoton-
icity condition of lemma 5,10: any sequence {B,Z};; with B/e € ﬁo
possesses a convergent subsequence {Bz }w with lim BZ =B°°€ Bo'

Lemma 2,13 implies: m)me1 m=-o “m

g | M=»o0

hence B < B, (£ =1,2,...).

*%* Hence for all special subsets of 7, which were introduced
earlier (K,R , Ry Wg, .f,o, '—{0)’ the subsubset of admissible
decision rules is complete in the subset itself. For the subsets

with bars this 'is implied already by lemma 5.9.

Theorem 5.2: a) (']4 ) is essentially complete in I))

b) If Vk iew (a i d”), then (/ﬁ ) is essentially complete in

R.

Proof: a) f)?g is complete in 07(—0 (via lemma 5.9 and lemma 5.8,
since erc is closed (lemma 4.8), or via lemma 5.11, since ﬁo is
closed (lemma 4.8)).
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Qﬁ is essentially complete in j? (corollary 4.2, since B 2 B0

1mp11es B <;B ). Hence (lemma 5.5i)) (CK is essentially complete

in j?.

b) The proof proceeds analogously: 3£ ané f are compact (lemma
4.10) and <x3 ) is essentially complete in j? (corcllary 4.3).

** A gpecific feature of the concept of admissibility just intro-
duced is the following: decision rules may exist, which are ad-

missible, but possess forno jE€H, PE f; a risk value equal to

min V(3,B,P) .
Be R

See example A.4 in the appendix., This seems to be rather obvious:
such admissible decision rules will be relatively good for all
P 64@0, while decision rules with mininum risk value for certain
jsP are as good as possible for some j,P, but perhaps rather bad
for others. This agrees with the fact that any j-decision rule,r
which is admissible in ij, is Bayes-optimal for initial state j
and at least one prior distribution on f% (this will be proved in
section 8). Hence some admissible decision rules seem o meet our
desire for a compromise. The property, that any admissible deci-
sion rule is optimal for certain j € N, P € j% is present in some
special cases. For example in the case of equal decision costs
with no action uniformly (in P) dominated by ancther one (lemma
4.13). For some further remarks on such special cases the reader
is referred to the following sections and the appendix. It should
be remarked that in the case of equal decision costs an admissible
decision rule may prescribe the application of an action, which
is uniformly dominated by another one (see example 4.2). Hence,
if one prefers to refrain from applying uniformly dominated ac-
tions, they should be removed before one studies the decision
72 rules.



‘Reviewing these problems, it appears to be necessary to study the
determination of fictitious costs, which may be dintroduced in
order to fit the mathematical model of a practical situation so
that the theory of this study may be applied.

“Pwo different cases will be. considered.

In the first case & finite number of experiments each with a
finite number of elementary outcomes is available (equal decision
costs ). The numbers of elementary outcomes may be egualized by
adding elementary outcomes with given probability zero and arbi-
traxry costs. A condition imposed by the theory, is the equality
of the number of elementafy outcomes for each experiment with the
number of experiments available. If the first number happens +to
be exceeded by the sécond, more elementary outcomes with given
probability zero can be added. If the first number exceeds the
second, an obvious trick is the addition of fictitious experiments
with fictitious costs. However, one wants to design these dummy
experiments so that they do not piay an active role in decision
making. Example A.2 shows that this should be done carefully.
Theorem 5.3 demonstrates, how such fictitious experiments may be
designed.

Secondly, the case of forbidden actions is investigated. Say that,
in the system considered, the action 1 - 3 is physically impos-
sible. An obvious way-out is the designation of a fictitious de-

cision cost d1 + The question remains, which value for d13 guar-

3
antees, that the action 1 - 3 does not play an active role in

decision making.

Before the assertions on these topics are stated, some auxiliary
theory is developed, which is anyhow desirable for application in

section 7.

Those decision vectors of a decision rule, corresponding 1o al-
lowed histories until time t (% = T T, +1,...) which coincide

until To with a given allowed history establish a decision rule
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for the decision problem with T-To steps. This mnotion of +the
restriction of a decision rule is a generalization of the concept
"j~decision rule". A new aspect, however, is the fact that such a
restriction induces a decision rule for a problem with an other
number of steps. All elaboration up till now have assumed a total
number of steps equal to T. T has been considered as given but
arbitrarily'nétural or (countably) infinite. The reason for as-
suming'T’ as given in section 1, is to prevent the necessity of

- exj)licitly stating T as a parameter in all notions.

Definition 5.4: m natural, 1 <m < 2T+1, h € N°.
A h-decision rule (applying mixed strategies) hB is a sequence of

mappings

Py} x YR L Elat<n)
the set of all h-decision rules is denoted by hB .

Lemma 5,12: 1 <m < 27+1, ’

a) To any B € B there correspond | B € hﬁ (h € ¥), such that
the mappings hbt, consituting hB, are the restrictions of bt to
{h} % NET-H-m .

b) h € Nm; to any hB € h’ﬁ there corresponds at least one B € b2 ’

‘such that , B is the restriction of B in the sense of aj.

Convention 5.1: (1 <m < 27+ 1) elements of ﬁ (h € ¥*) are de-

h50* hPr

-@ and one of B with the same index (or no index) are mentioned

noted by hB’ possibly indexed: B 3 whenever an element of

tc»gether, they satisfy the relation of lemma 5.12.
it B chB, then B (nen®) aenotes: {Be,B|B e B}.

B,B, B € j.)) h € Nm for the mappings constituting nB? nBo» hBr

74 the J.ndex h will be skipped, thus the same mnotations will be



applied as for the mappings constituting B, B, Br; hence no dif-
ferent notations will be applied for a mapping and certain re-
strictions.

In all cases where is referred to a situation with a total number
of steps unequal to the given T, this is stated explicitly. For
those cases, the same assumptions, definitions, (and hence) lemmas,
theorems hold, with only T replaced by the explicitly stated

value.

Remark: The notation S}, f (n €W") (definition 5.4) is con-
sistent with convention 5.1,

2T
Lemma 5.13: 0 <T, <T, j €N, h €N °, B € J,

a) B induces a decision rule for the problem with T - '.[‘0 steps in

a natural way, by defining as decision vector for h, € N2t (0 =<

T+t
<t <T-T,): D (B,h,).

Reversely, any decision rule for the problem with T - T, steps

induces a h-~decision rule.

b) (n )B induces a j-decision rule for the problem with T - T,
sd

steps in a natural way, by defining as decision vector for (J,h, )
T +%
withh, €N (0 <t <T-7): b ° (Bd,h,).

Reversely any j-decision rule for the problem with T - To steps

induces a (h,j)-decision rule.

2T

Convention 5.2: 0 <T, <T, j €N, h €W °.

The (j-)decision rules for the problem with T - T steps (lemma

(h, f? s will be

1B respectively. The same
(haJ)

convention will be maintained with regard to the sets (n, j ),@ and hﬁ'

R - 4

oT
Lemma 5,14: 0 <T <T, h €N ° BeAR.

B € %o implies: h-B is a sub-information decision rule for the

5.13), which correspond to B € hﬂ and (h, 3 )
denoted by the same symbols: hB and

problem with T - TO steps (if B € aﬁc, hB is moreover state-—free).

7



Proof: Say b, € WU, n € ™! (0<t <-m) and K(n,) € K(n,),

then K(h,hT) g K(h,h2).

2T
Lemna 5.15: 0 <T <T; h €N % s,keN; Pef; Be ) and
. 2(T-1g)
B(5,1,P) fh,k} xn # O, then: the expected total costs
3

for the problem with T-T  steps v(k,hB,P) are equal to

-Ty Ts
B S by (k) (3,B,P | Bykydi) .
¢]

i€N
Proof: For 0 <t <T-T, i €N, h € p2 i+
following equality holds:

TO
» by (h,k) # 0, . the

=

({k,i,h1} x w2 (T-To=t-1 )>

¥ (ky B, P)

= bfo (h,k)ug:}g:g({h,k,i,h’} x N2<T"T0't")> .

The probability on the left hand side refers to the problem with
T ~ ‘1‘0 steps.
Application of definition 4.1 then delivers the desired result,

Lemma 5.16: 0 <t <T, JEN, B€ B, PP, then:

o et
V{3,B,P) = = fv,gdpu’B P) +

N2T+1
t : Te(T—»t)>
2% V(i B,P)p,. hk} x N
TP et ew e )P(J’B’P}G ok} x '

where the Vevalues on the right hand side denote +total expected
76 costg for the problem with T~ 1t steps.



Proof: (lemma 4.1)
t-1
V(5BF) = 2 fvrd“(j,B,P) *

T=0
N2T+1

. Put Yt ; .
+ = % . nk,i} x 8¢ >v B,P | h,k,i
nenet i xen “(a,’%m({ ity x (355 [k 3)

t=1 .

= dp, . +
120 J Ve p(J’BaP)
NgT-H

+ 2 g hkxmz(T"t)>B oL (1, %)V, (3,B,P|b,k,1).
h(‘:Nﬁ:Ak(ENu(J’B’P)({ vk} . ex 5 (1,507, (3,8, P|b,k,1)

This is egual to the stated formula (lemma 5,15).

Theorem 5,33 vk,‘i e N‘[dki = d“] 5 TAEN, {r}xN c Iy

Voen [ 2 c.m . > X c.p.), BG(B),then
P610<i€N riri ien £iT L1

Ty =
"s(o<t <T) 'nen2tH [br(h) >0 =

Ve VPE% [p(j,B,P)Gh} X Nz(T_t)> - O]]

Proof: Say h € NQtM

and b;‘_(h) >0,
Define B, € A:

%% i=1" (0 <71 <t)

%%(n,,h,) = b (n,h,) (<1<, n, €x*%, n #n, hzemz(“‘t))

0, %
br(h) =0



®pb(n) 1= bi(n) + bi(n)
Obz(h) - b';(h) (1€N, ifr,if4)

Ob"‘{h,i,hg :='b’(h,i,h1) (t<T<T,if4h € N"(T't)“)
only (h,,@)Bo remains to be defined:

for (b z)Bo a decision rule for the problem with T~t-1 steps is
’
chosen, corresponding (in the sense of theorem 3.,2) to the mixed

B with proba-

decision rule for that problem, whieh chooses (h,2)
) b4
t X
b g(h) br(h)nri
bility T T and (n r)Bi with probability PN
by(n) + oL (h) ’ vy(n) + by (h)

(i € N), with B, defined by:. le(h,r,k,h1) = bT(h,r,i,hi)

(h’r)
(t<T<T, k€N b € Nz("“t")).

Note that V(k, (h,r)Bi,P) = V(i,(h’r)B,P) (x,i €N, Pe P,

Now apply lemma 5,16:

1 o

) V(3 - .
(5 ) V(J’BO!P) o fdep<3?BGSP> +

N2 T+1

++1 E—: = /. ’ . 2{T~t-1)
v h‘,éN?*J'H :i,keNv\k’(h*’i)Boyp)p(‘j’]so’P)({h1 ke )

t=1

= X Ap . + du, . +
=0 IVT u(JaByP) fvt u(J:Bo’P)
N2T+1 N2T+1

t+1 . (T=tm1)
I I e, 0Pttt 4

h #h



AT P)<{h} <) s e P ng,

i,kEN

(lemma 4.3a), definition of B, formula {2.5)).
The last sum may be rewritten as:

(5¢2) (bz(h) +b:'(h)>k éN v<k, (h’3)30,1>)pﬂ{ +

% N

+ I b, (h) = v(k, .B,P)p. .
ien oxen \ (i) 1k
i# Lyr

The first part of this sum equals (theorem 3.4):

k€N< BN o, @B P) e (h)lér " V( (n,r)54? P))%k -

= b (h)kg V(k, (h,z)B,P> By + P (h) gN V(l,(h }B P) LIPS

. \
Hence (5,2) equals: £ b.(h) = V<k, . B,P) ., (PEPR) .
sen 1o ken \ (i) ik o

Then (5.1) and lemma 5.716 for B imply:

r
V(3,8,P) = V(§,B,P) + | V+3¥(5,3,7) - j v d“(J,B P)

I
N2.L +1 N2T+1

2(T-t) 2 . )
If u(j,B,P)<{h} x N ) >0 for some P € Ic and j €N, ‘then
‘fo those P and j v dyy . > dy, . - 3 for the

¥ los J f t u(JsByP) fvt p(%B:P),

N2T+1 N2‘1‘-{-1
other P and j equality holds,
: 2(T~t) 2
Hence B <C B if p(j,B,P}Gh} gN >>0 for some P € F,

j € N. This contradicts B € (J’B)



Corollary 5.3: Vk,iGN [dki = dn} s I ¢ N, £ » IxNclI,
/.
VPEP min L2 ¢

€N
L €1
C,.P ) -
o €I 1€NW ieyg A

Then <4{1) is essentially complete in :B, when

R =
rL ri

%
’31 = BeR I Ver Yyoatar) nenet™ (2p(0) =00} .
Proof: It will be proved that

ﬁt = {B € _7'3 l VI'QI vT(O<T<t) vh€N2”€+1 (b::(h) = O>}
(ost=m)

is essentially complete in \73 and furthermore, that (Z) is
essentially complete in j‘?T' Then lemma 5.5:&.) implies the asser-
tion.

ﬁa = ﬂ, hence J?o is essentially compiete in :B.

Say jib for certain t with O £t < T is essentially complete in
3. %t will be proved, that .731:“ c ‘Bt is essentially complete
in 5,

B B, B, € B B,CB. B, € B, with B, B, and hence

1 t41 t+1

Bt+1< B may be consitructed by applying the construction method

of theorem 5.3 successively for all *x€I, h 61\72‘};'!.1 with tbz(h).‘»O.

This induction method implies the essential completeness of B T
in -ﬂ in case T <o,

Say T = o, then the induction process delivers a sequence {Bt }J::o
with Bt € ‘Bt and Bt§ B. This sequence contains a convergent

subsequence {lemms 2,12) with limit B, € j?‘l’ and BTQ B {(lemma

2,13).
461 = fo 0 ﬁT; VBT€J? 3, c® [BT S'_BTT]‘ The proof proceeds

T TTT
exactly as the proof of theorem 4.3 and corollary 4.3, since the

T

80 construction method in the proof of theorem 4,3 guarantees



'I"I' t 2b+1

(h) =0 for all h €X in case 'b (h) 0 for all €N
(see formila (4.11)).

2t+1

(£1> is essentially complete in ae (;{ is closed, lemma 5.11),

AN

hence (ﬁJ is essentially completc in ’B‘I‘ (lemma 5.5i)).

** Theorem 5ed andAcorollary 5.4 present a situation where certain

actions do not play an active role in decision-making (e.g. "for-

bidden" actions).

Theorem 5.,4: m,r € Nj

- +
4+ wmin Zc (ZIB max min [d.+ max z c.p.]
" pef seN eFrr”\ 2 )kENiEN peR ey 4

/ en: ¥
B € \B » thens Voo o ny Ve et

[b (hm}>(}==>VJ€\I ven, [(3,5 9)<{hm « 12 T—t)) o] )

Proof: Choose a i, € N for each k € N, such that

k

.+ max £ ¢, ,p. =min[.+max Ec.p.} .
dklk PER LENW LAE jeplE PEP LEN 1AL

Then: r # i

. A oo Tyt N A o
Define B € &, by bik(h“k) =1, for every t (0 < t < 1),
h, € ¥t k€N say h€ WP ana bi(h,m) > 0.
Define Bj € ﬁ, by:

b oi=b (0=s7T <)
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°b%(n, kb)) 1= b7 (h,kh)  (b<T<T, b € ¥t ke,
(b,%) # (nym), b, € 1 (7Y))

0.t
br(h,m) := 0

t t t
obim(h,m) = bim(h,m) + o (h,m)

%o¥(n,m) s=bi(hym) (€W, ifr, ifi)

°b"(h,m,i,h3) i= bT{h,m,i,hs) (t <t<T?, 1 €N,
Cifi,h € e (=t)-1y

only (h,m,im)Bo remaing to be defined:

Choose a decision rule for the problem with T - t - 1 steps, cor-
responding (in the sense of theorem 3.2) to the mixed decision
rule for that problem, which selects

bz (h,m)
. \B with probability L and
h A
(hym, 3, ) b:f: (h,m) + bﬁ(h,m)
m .

%
br(hﬂn}

with probability

B .
i 1
(hsmylm) b:‘}'t. (h,m) + b:.(h:m)

m

Now apply lemma 5,163

t
V(J;B ,P} = X v i, +
(J) 03 ) R f T p‘(J,BO’P)
N2§H4



i
(5.3) = = ~f Vil m) t ) a(g,m )

=0 £TH RIH
t4+1 (Petmt)
B h1€mﬁ¥ k2Nv(k,h13,9>p(j,B’P}<{h1,k} x N° )

h1 %(h’myim)a ?“ (h,m,r)

+ gt u(j’B’P)<{h,m} x NZ(T't)><bzm(h,m) + bi‘(h,m))

2 Vik . \B P) .
- <’(h,m,1m) 0’ plmk

(lemme 4.3%a), definition of B, formula (2.5)).

According to theorem 3.4:
vk B ,7) = (7 (h,m) + ¥(0,m))
’(h,m,im) 0! i pA

t o t ‘
‘{bim(h,m)v k,(h’m, im>B,P> + br(h,m)V<k,(h’m’im)B1,P>} .

Hence (formula (5.3) and lemma 5.16 for B):

e LGSO CI ) Pix)

(t,) x 2 2-8))

ap, . = b b .
fvt P'(J,BG,P) I eNZt kENW FL(JaByP)
N2t£‘+1 1



z BY

o, t
a. +c.,) b (h,k)p,, .
i, 4EN ki ik’ "ivt it

"Hence V(j,B,P) - V(j,By,P) =

(5.4) Btu(j,B,P)({h,m} x 12 b )

[B Z V<,8, (h,m,r)B’P> pr/e + dmr + Crlepr’e +

z
ZEN LEN

-lp =z v(z, N ,P> p. ,+d . + T c. p. } .
[ LEN (h’m’lm)1 lm'z M, £exN lmz 1m'?

Tetm2
T
v(,e, . B,P)<< Z B)max min [d.+ max 2 c, p.] .
7 (Bymyd )7 =0 /keNienl PER 4EN igik

Hence the form between square brackets in (5.4) exceeds

B zéN V(,e, (h,m,r)B’P> Pp, If all dki and Cig >0 this  means

(T-t) . )
B, < B when “(j,B,P)({h’m} x N > 0 for some j €N, P € /7,

which delivers a contradiction. The difference of V(j,B,P) and
V(,j,Bo,P) does not alter when the same number is added to all d
and ¢, ,, which 1lifts the positiveness restriction on the cost-

ig
coefficients.

Corollary 5.4: I ¢ N°j

Y d 4+ min I c_,p.,>
(m,r)€I[mr P€ﬁo gey TETL

T-1

t

>(2 B)max min{ .+ mex L c..,p. ]:l,
t=0 KEN 1EN % PER LEN 1871k

84 then (m1> is essentially complete in B, when



K o=fpe | Y(m,z) €T "t(o=<t <) "nen2t (v (n,m) = 0)} .

Proof: The proof of this corollary procesds along the same lines
as the proof of corollary 5.3: application of the construction
method of the proof‘ of theorem 5.4 in order to prove that

B = {B € ‘Bl v(m,r) €1 VT(G€T<13) Vh EN2T (b;(h,m) =0}

(o<t =<T)

is essentially complete in 73; and application of the proof of

theorem 4.2 and corollary 4.2 in order to prove that <’§E> is

essentially complete in ﬁT .

85



SECTION 6

OPTIMAL DECISION RULES: MIN-MAX RISK AND MIN-MAX REGRET

*¥ Generally, a partially ordered selt dces not contain an element
which is at least as good as all other elements of the set.s The
examples of the appendix demonstrate that, in the situation con~
sidered, a decision rule which is at least as good as 211 others
may be absent.
The trouble is caused by the fact that the risk function V(jiB,P)
 for fixed j and B depends on P, the (partially) unknown matrix of
transition probabilities of the basic Markov chain. A possible
k way out is presented by the introduction of a new criterion funce
tion, which does not depend on P, Examples of such a new criterion
function are

Slxp V ‘,B,P
Sl]g! V 'I B,P ad ".Ilf V .},B,P l -
P€ [ ( ™ ) B]€B ( )

Another example is obtained by introducing a welght function on
72, and computing the average of V(j,B,P) with respect to that
weight function »

These examples lead to min-max risk, mine~max regret and DBayes'
theory respectively. In this section some implications of ‘both
min-max procedures will be investigated. The Bayesian approach is
postponed to the next section.

 Lemma 6.1

- . - R » .
86 a) VB€ﬁvj€N 3P0€ %[V(JQBQPO) S@{V(J!Bip) * PE IG}] H



b) jBo <P, €N, jfao is closed, then:

pe o I ¢ p [V(5BuP) = inf{V(5,3,2) B € BJ] .
g o 0

Proof: a) For any j € N, B €53 V(j,B, * ) maps ilo into R contine
uously {lemma 2.9) furthermore ff’c is compact (lemma 4.7a).

b) ILet {B ﬁ};1 with B, € 3 be a sequence defining the infimum:

lin V(3,B,P) = inf{V(3,B,P) [BE B } .

F -
jﬁo is compact, hence a desicion rule Bo € 530 exists, such that
. : - o
jjba is the limit of a subsequence {szr}rﬂ .
Lemma 2,17 states: lim V(j,B£ JP) = V(j,BO,P).
r

r»ot)

Definition 6.1 a) ngn VoeR [V(3,B) := Pméaxp v(3,B,P)] ;
o

) Vien "B B "rep
 J3 closed =V 5 (j,P) = min V(j,B,P):l .
I:] © 5, B€ﬁ0

Lemma 6.2: J € Nj .?31, '?‘)2 cﬁ; ,jﬁ1’ jﬁz closed, then each of

the conditions:

P 5B, °<J‘jao>
jﬁ-' jﬂﬂ- °<j°ﬁ6> Y sen [ =48]

inplies

Vpgpc;;.za(j,?) =E732(3,P)3 .

87



Proofs The sufficiency of the first condition is implied by"hheo-‘ ;
rem Sela); item b) of that theorem implies the sufficiency of the
second condition.

Lemma 6.3t j € N, 130 c B, jﬁo is closed, thent

a) V(3j, *) maps 3 into R continuously;

oven: lim jB = jBo for B, €D (£=0,1,00.) implies:

" £
Py

lim V(5,8,) = V(5,8 ) ;

FA Y-

5. P 5 .
b) E@O(J, ) maps fc into R continuously;

°) Vpep BPOEQ{V(:]’B’PO) - }{ﬁo(j,Po) -

= sup{V(j,B,P) "’be (J',P) Pe @0}] .
0

Proofs: a) Let 1lim By =By then lim B, = B (1emma, 2.15) «

£ o0 Les oo - d

Hence it suffices to prove that

B, € 5 (2=0,1,2,40.) and ﬁ{’i;i jzsx = B, imply
Llin V(j,B,) = V(j,B,) «
2-900 ‘

IV(s3,) = V(5,8 )| = swp | V(5,B,,P) - v(5,B,P)| .
Pe P '
: o
According to lemma 2.13, this expression possesses a value less
than any selected ¢ > 0, provided that £ is sufficiently larges

D (pa ; -
b) Let P, € JG (£=0,1,2p0¢s) and ’61:;;; P, =P .

L‘i'@o(j,P}z) - 3330(3’?0)‘ < Bge@ﬁ |v(3,8,2,) = V(5,B,2 )| .

According to lemma 2,9, this expression possesses & value less
88 +than any selected & > 0, provided that 2 is sufficiently . large.



¢) For any B €5 V(j,B, ) - l/'_f) (jy * ) maps f% into R continu~-
0

ously (lemma 2.9 and assertion b) of this lemma), furthermore: f%

is corpact (Lemma 4.73.)).

Definition 6.,2¢ j € N, fﬁo c B, jﬁo closed, then:

VB(_:B[V-EO(J',B) = Pmér,ujcrD (V(j,B,P) -lﬁo(j’P)ﬂ .

**V(j,B) denotes the maximum risk for the decision rule B: the
risk value for the most unfavourable P € f%- with regard to the
decision rule B.

V(34ByP) = lﬂ(j,P) is the "regret" function: +the difference of
the actual risk and the ninimum risk for that P. Tfjb(,j ,B) denotes
the maximum regret for the decision rule B,

Lemma, 664: j € N, jbo cf.’), ,j'Bo is closed, then:

5

v o(j, ¢ ) maps J) into R continuouslys;

€73 (£4=0,1,2,0..) implies:

H 1' B = B f B
even ijm z 3 o or 'e
5) _B
vim V(5B ) =V C(5,B,) .

b= o0

Proof: As in the proof of lemma 6.3a), it suffices to prove that

B, €/3 (£=0,1,2y0s.) and lim .B, = B imply
y 2z & Jo
- 00

A /i
lim v/°(j,B£) =V 30(3,]30) .

,Z-»oo

_J )
[T7°(5,8,) =T 35,8, <Ps€uI}DIV(J',Bz,P) -xﬁo(j.P) -

- V(3,B5P) + Y‘Bo(j’P)l = Pseu}';;l"(j’Bz'P) - V(58P .
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lience = as in the proof of lemma Go3a) ~ lemma 2,13 implies ‘the
assertion.
Definition 6.3: 3,, B, € B, B, ¢, then:

a) (GewW 3B < B : e7(5,8,) < 7(5,B,) ;

b) B, <B

o

< .
SV (B € 3)

e) (jEN, j'@o is closed)

Vel

Y 3
-V =Yg, . -,
B BT U(3,8) <V V3,8,
a) (jfjo is closed for all j € W)

s
B £3°B) .

0,
B, < B, 1@V (B < B,

** e - ond < ° - concepts define relations in the sets j“@’
since all B e with B = jB1 possess the same V(j,B,P) for each
P €% (lemma 2.8) and each .B is the j~restriction of at least
one deoision rule (lemma 2,1b)).

Lemma 6e5¢ ,930 cJ3, then:

a) +the relation < defines & weak ordering in j‘ﬁ (e H);

b) the relation :Q: defines a partial, weak ordering in .B;

e} (j€ &, jﬁo closed) the relation & ° defines a weak ordering

in 3
’ A

a) (j ‘Bo is closed for all j € N) +the relation g ° defines a

partial, weak ordering mf:B;



e) (j€n, jﬁc closed)

Ve
"%B)]

B J 2 H

¥ < B <
131,32613(331 €8,= (B, < B, and 3,

£) (j J’i’)o is closed for all j € N)

‘ < < <°
V}31,Bzef>[Bt" B,= (B, <3B, and B, € "B,)] .

T

: < . ily i B < 7, j € N
Remark jBi JB2 does not necessarily imply 331 < 3}32 (3N

B, B, € J3) see example A.1b) in the sppendix,

Lemma 6.6t .)61, ,)/62 < /g, then:

a) (3 €N, jj31 and jﬁz are closed) each of the conditions

3131’ jﬁa > (;j%:)

j'Bt’ 35 :(jx'cr)’ Y sent = 4y,)
implies ﬁ ‘ ﬁ

v [ B < '3 & 38 < 23] ;

B1,332€.//(3 i1 g2 i1 j2 '

b) (J.B,' and jﬁa are closed for each j € N) each of the condim
tiong -

j31’ j'))a > <,R0>

Ly B ("is)’ Y, 1en(de = ¢

implies ﬁ ]32

—1 —
V31,1326.6{331@ B,&=3 < Ba] °

Proof: Assertion a) is a conseoguence of lemma 6.2.

b)‘ B, > <?O> implies 3..31 > (janr> (j €EN) (lemma 5.3);

N



f31 B (£c> implies jﬁi. ‘3 (J‘f. ) (3 € W) (Qemma 5.4e)); hence b)

is implied by definition 6,3d) and assertion ‘a) of this lemma.
Lemma 6.7¢ j € N, 130 c J%, jBo is closed, then:

a) BJBOE Jﬁ() VBEJBO{J’BO’E ij 2

b) J 5, ( B) VBEﬁO[jBO«E@’jB] ;

c) ep 330530[17(3,30,}"0) = suzi‘{ljz,o(;i,PH pe P}

Proof: a) Let {Bﬁ};:-! with B, € Bo be a sequence with

lim V(3,B ) = int{¥(3,B) | B € @} Then a subsequence {B }r=1
FAE- ]

and a decision rule B_ € J3  exist with lim B, = B (lemma
) o proo J %, J0

2.16). Hence

lim V(J,B ) = V(J,B ) (Lemma 643a))
L= :c

The completeness of <3]30> in jﬁo (lemna 5.8) and lemma 6.5e)
imply that B ‘may be selected such that B €< _}3)

v) If B, €D (£=0,1,2,...) and ﬁj-flfo By = By then (1emma
A

. O/, ""}30 .
6e4) lim V (J,B'g) =V (J,Bo);hence the same argument as in

A+ o0

part a) implies the assertion.

¢) The contimuity of the mapping V.B (35*) from j:) into R

(lemma 6.3b)) and the compaotness of .73 (lemma 4472)) imply the
92 assertion.



Lemma 6.8 ﬁo c /3, f_% = Bo’ Bo is closed, then:

a) EBO €<f30> VBeﬁo[Bo <3B] ; .
-3
b) 33()6(/30) VBefgo[Bo£ Bl .

Proofs Lemma 6.7a)(and b) respectively) implies the existence of
e(.n B <B B_ﬂoB) (G €W i
Bo <,j jo)’ such that B < (ox o< B , since

jﬁo is closed (lemma 2.16). Bo € <.730> (lemma 5.3); hence BozB

(ox Bo v 03 respectively) o

¥% Lemmas 6.7 and 6.8 imply the existence of min~max risk and
min~max regret decision rules, for the special subsets of I which
were introduced in earlier sections, since they all have J=re=
strictions which are closed. They even imply the existence of ad-
missible min-max (j=-) decision rules. Combined with results from

sections 4 and 5 the assertions of theorem 6.1 are obtained.

Theorem 6,1: a) (j € N)

BJBoe(.“Yl) e B L2 < 2

-e

jo
d
an 3331 €(,jnkc) VBEJB [jB1 EJBJB] ;
b) 3:%6('?(’) vBe’B[BogB] ;
and 3B1€<z> VBEB[B1-§BB] ,
¢) when 4y = d,, for all k,i € N, then j'ﬁo in assertion a)

may be replaced by jxo and ?o in assertion b) may be replaced
by ,Cc. . 93



Proof: a) j'fﬂg is closed (lemma 4.3), hence {lemma 6.,7a2)):
33 e:( K ) peg [5,€ B -
Jo\j" e o

Then theorem 4.2 implies Vo [ B, < J.13] (lemma 645a)); lemmsa
6.Tb) implies:

3 v [B < °3B] .

jnoe(j“n> B€“Rcao 3

[+

— B
Then lemma 6.6a) and theorem 4.2 imply: VBEB[jBo <. jB] (1 emma,

6e5€))e

b) As the proof of assertion a): applying lemma 6.8, corollary
402, lemma 6.6b) and lemma 6,5f) instead of lemma 6.7, theorem 42
and lemmas 6+6a), 6456)

¢) The first part proceeds as the proof of assertion a), with
theoren 4.3 instead of theorem 4.2.

The second part proceeds as the proof of assertion b), with cor-
ollary A.3 instead of 4.2; the proof is completed by the obser-
vation: V(j,4B,P) = V(j,,B,P) for all P € R, ‘31, j, €N and
B € oCo (lemma 4412).

** One easily verifies that ~ if decision costs are equal - the

decision rule which always prescribes action « == g 1 with i = io

n 0

minimizing max z
Pe 9% £=1

be made on a criterion for the discrimination between decision

CigPig has min-msx risk, Some remarks will

rules, which is related to the minemax regret criterion: the'"mine
max regret somewhere minimum regret” as introdusced in [1966, W,
Schasfsma, L.J. Smid]s This criterion in fact consists of the se~

94 lection of a special set :'30 for the criterion V o(j,B) .



Loma 6.9: J €N B < By B closed,
j% = {B € ’Boi 3P€9%{V(J,B P) = V%(J,P)]} ’ ’Bhen.
‘jﬁj is closed;

B
v

%(3,B) =V j(J’,B) for each BE€ D ;
(jf@ © (;;@;) :

* Q - - .
Proof: Let B, € ij, P,€R (4=1,2,00) ad V(5,3,,B,)
= lﬁo(j'l’z>° There exist B € 750’ P € 37)0 and subsequences

o0 oo . .

{B,gr}rz, and {P,gr}r:1 , with lin B, = B (lemma 2,16) and

roo 9 4, J0

lin P, =P (lemme. 4.7a) ). Hence
o
r=+o “p

Y (07,) = Lm g (4B, )= L VOB, 2, ) = V(5,57

-+ x' I - %

(first equality: lemms 6,3b), third equality is proved &8 lemma
2.14)e This implies: B, € 73;} and: jﬁj is closed.

= 2

j{jj‘(g,P) Vib (jyP) for 21l PE€ A (lemma 641b), definition

J

...750 _753

6.1b)), hence V °(j,B) =7V 9(3,B) for any B € f3 (definition
6e2)s
let BEJD, 5 V(3,B,B,) = fob (357,) and Be (34753) ;
let B € ff&o with B, < B,

then V(3,B,,P ) < V(§,B,P,) = vfj (3,®, ). Hence B, EB , which is

ictory; .I.) ( >;
contradictory; hence (3 ,33 c 350
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Theorem 6.2: Jj € N, 73)0 c B, ;]30 closed,

753 o= {B € -72)0 | 3P€%[V(3’B!P> =lﬁo(jsp)}}’ then
_ L '
n,€ 1, L% € () o en, (B TP

Proof: Apply lemmas 6.7b) and 6.9.

Lemma 6410 Vk,iGN(dkiadH); forno £, m € N:

n n '
Vpej?} [;3.51 CpiPyps > 151 ¢ P § I ﬁ)o, /93. as in theorem 6.2,
then

R.=B .

d 0

Proof: There exists a subset 71) c fg, such that for Pi € /?
V(34B,P,) does not vary with B, Hence for any B € f30=

V(3sByPy) = Xy (35B,) (lemma 4.13).
: (o

**® Lomma 6,10 states that, in the important case of equal deci-
sion costs, the "min-max regret" procedure and the "minemax regret

somewhere minimun regret" procedure coincide.

It should be emphasized, that the existence of min-max risk and
min-max regret j=decision rules for certain jJ € N and ‘.730 c ﬁ —
that means j-decision rules in 3“80’ which are best in é ~ or

£ = sense - does not necessarily imply the following properties
which generally sare well-~known for risk functions:

(601) min_ max V(j,B,P) = max min_V(j,B,P) ,
BES Pe R PER BE 3 "



(6.2) Bnéi%o ?% (V(j,B,P) -zﬁ (3,9)):

= Pﬁé&}% Bmelff/l3 <V(393:P) - Vﬁ (J,P)>

Theorem 6,3t Jj € N, @ c 73 3 is closed, then:

assertion (6.2) is equivalent to .'-JB EB Beﬁ [ B < jB] .

Proof: max min (V(J ByP) = V& (j P))
PES’ BE B ’ =R

=P€J")< Q(J,P) VB (U;P)> 0.

V{j,B,P) = A (3,P) when B € f3 » A decision rule B_ Eﬁ exists
[+]

with Pnéaé (V(j, sP) = V'B (J:H)

"y, ip (1m0 - 15 0)

(Lemma 6.7b)). Hence V(J,B ,P) = VB (j,P) (a11 P€ 73) for cer=

tain B € ff}o if and only if (6.2) holds, On the other hand: for

such a decision rule B holds ;jBo < jB (B € BO) and reversely.

** Theorem 6.3 proves that the minemax property (6.2) for the re=
gret function only holds for some non~interesting cases. For the
risk function, the property (6.1) does also fail to hold gemeral=-
1y, For an example not satisfying (6.1) the reader is referred to
example As3 in the appendix. However, in a subsbantial class of
problems the property does hold., A necessary end sufficient con-
dition is presented in lemmsa 6,123 & situation satisfying this
condition in theorem 6e¢4.

Lomma, 6.11: For any § € N, there exists a finite set of decision

L
riles applying pure strategies - say ﬁL 1= {B’g},(,'z=1 ¢ - such
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that %(,k) = APhr,k) forall 4 (1 s£<1), t (0=t <T),
2% . .

h and '€ N®", k € ¥; and VB€B vPeﬂg[v(J,B,P) agﬁL(J,P)} 3

specially may be demanded:

a) if T= o: “%nx) = %T(h',k) forall £ (1 <£<1L), %

and 1 (0<t, 1<), k€K, €N’ n et

b) if Vk,iew(dki“du)’ L=n and B, (,e=1,...,;1) defined by

Yobm) =1 for a1l t (0O<t<T) and he N+,

Proofs The assertions are implied directly by some results, which
will not be proved explicitly, since they are special cases of
more general theorems, which will be proved in section T.

The general result for the case T « o 1is a conseguence of corol~
lary 7.5¢ a decision rule, which is best for P € 530 is found by
considering a new set f‘; 3= {PO}; then +the corresponding set
’"J‘fo N/ is finite end independent of PO; in faect it is the set

{Be B |v5(h,k) = b°(h,k) forall + (0O<t<T), h h' € §2F,

k € N},

For T = o , the result is implied by corollary 7.7: the subset of
stationnary decision rules of the just mentioned set is finite.
For equal decision costs, the result is implied by theorem 7.8.

*#* Tn fact, lemma 6.11 is a consequence of some well~known results
on Markovian decision processes:if P is known, then a decision mile
applying pure sirategies with decision vectors only depending on
time and state of decision, is optimal. If T = even the depen=
dence on time may be skipped. See esge [1962, 1965, De Blackwell]e
In section 7 these results will be generalized to the case of a
known prior distribution for the Markov transition mabrix of the
98 basic Markov chain,



Lemne 6.12¢ (j € N)o Let 3 be a setof decision rules as implied

by lemma 6.1%. '730 c ﬁ, jﬁo is closed, ‘/OL Cﬁo, then assertion
(641) is equivalent with:

3 [V(5,5) = max Y (5B)) .
B, €73, o PER QL ’

Proof': }{36(3, P) = VBL(J’P) for each Pef‘) hence

max min V(j,B,P) = max min  V(j,B,P) .
PE/ B€]3 P€f B€-73L

Say (6.1) is true: a decision rule B € 1’50 exists with

max V(J,B s) = V(§,B)) = min . ma}:J V(jsB,P) =

PERP ef3 PE
~min  V(j,B,P) = max, min_ V(j,B,P) =
" pe B€.73 pef) BE ﬁL
= (J P) .
Peﬁ ‘B ’

Reversely: generally

max min V(j,B,P) < min max V(34B,P) ;
P€7’ Be:.@ Be)’:’) Pef

hence the existence of a decision rule Bo € ﬁo with

max min V(3j,B,P) = max V(J,B ,P)
?eﬁ’ Beﬁ rpef

implies (6.1).

' Theorem bedt vk,i€N<dki = d” ), ‘73L is the special set implied
by lemma 6.11b), J?L c “@o c J3, then for any j € N, such that

jﬁo is closed (6,1) is true.



Tt n
. . _ % =1. PEP
‘Proof. V(J,B‘a,P} = <tio 8 > i§1 piPoi (M<ss<sn=1 ..,efo).

Apply lemma 6,12 with Bo equal to the B, with minimal

P
n
max Z C,. D, .
PER =t 4174
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SECTION 7

OPTIMAL DECISION RULES: THE BAYESIAN APPROACH

** The other possibility to induce an ordering in J.ifé , which has
been noticed at the beginning of the preceding section, proceeds
by the introduction of a weight <function on \7% and averaging
V{j,B,P) with respect to this weight function, Such a weight func-
tion may be interpreted as a probability distribution on j% » Ac-
cording to that interpretation one assumes, that before the ini-
tiation of the decision prdcess an element P is drawn at random
from the set -/fz applying the given probability distribution (prior
distribution). One assumes, this specific P - the surveyor of the
roocess does not know which ~ o be the transition matrix of the
underlying Markov chain. The introduction of the concept in qﬁes-—
tion, however, proceeds quite formally by the postulation of a
«eight function. The properties joined with the probsbility inter-
pretation will appear gradually as a part of the investigation.

The introduction of the weight functions presembles the introduc-
tion of mixed decision rules in section 3., This resemblance is
also found in the game in’cerpretation of the problem: a prior
distrivution is & mixed strategy for Nature, which is acting as
the opponent of the surveyor, |

In order to define a weight function {a normed measure) on j‘? one
needs a o=-algebrs of subsets of f‘). One gets & o -algebra, which
provides an abundance of possibilities for the definition of mea-

sures, by interpreting P as a n? - vector and introducing the com=
2
mon o ~algebras of Borel sets in )
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Definition 7.1: 3n is the o -algebra of subsets of £, defined by

Vﬁz [9? {x vt ‘ 1239 Vk,ieN(x(k—1 )n+i=pki>} € @n]'

Definition 7.2: F is the set of all normed measures on (R, En) ;
elements from  will be denoted by F, possibly indexed: Fo, Fr;
F_ is the subset of ¥, containing those F € ¥ which satisfy

F(P) =1 .

Remark: one easily verifies: Qn is a o-algebra and ..@O € En .

Lemma Tel: For any jEN, BERB, 1 <m<2r+2, h €N  the

following assertion holds:

k(3,B, * )<{h} € w2 -m) maps (P, En) into (R,&) measurably,

moreover the mapping is integrable with respect to any normed mea-
sure on (.(/), 3n).

Proof: Formulae (2.4) and (2.5) present explicit expressions for
this mapping. These expressions immediately imply the measurabil-

ity and = because of their boundedness -~ the integrability.

Theorem 7.1: To any j € N, B € B, F €F there corresponds exact-

1y one probability measure

“le,B) on (Px NaTﬂ,'cf *3

n 2T ), such that

L <m<2T#) "he W vf-: eEn

[ sl PR ﬁf“u,B,P)({h} x NZT“'m)“F]

1



Proof: Since the proofs of theorem 3.1 and theorem 7.1 are fairly
similar, the latter will be omitted.

*¥ A number of definitions and lemmass will introduce the risk cone

cept and soms additional results.

Definition 7,3+ Mappings u, (0 < t < T) and u fron Px T into
R are defined by:
v v [u,(Pyh) := v, (), u(®h) = v(n)] .
PeP newelt -t t

Lemma 702: u, (0<st<T) and u map (Px Nz-hﬂ, B *3 } into

27+9
(R,#) measurably; moreover they are integrable with respect to
each probability measure on the first mentloned measurable spaces

Proof: The propositions are implied easily by lemma 2.1 (the mea=
surability and integrability of A and v), since inverse images
of Borel sets under u, and u are the Cartesian products of §° and

t
the inverse images undexr A and ve

. . . e F
Definition T.4: vjENVBE.’B VFeg—[U(a,B,F) : f u qp(j,B)].
ﬁxNzTM

** (3j,B,F) denotes the expected total discounted costs of the
decision process including the P~ lottery.

Lemma 7.3: jEN, BEDN, FEF, then:

Tt

< == . F -
a) U(j,B,F) = 1;20 f utdp‘(j,B) ;
j)xNzT“
. .
v [ wan- j“ "td“(j,B,P)]dF (0st<m) 3
@xﬂz‘l‘ﬂ P Nz’I‘M
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0) U(j’BiF) = fV(j,B,P)dF *
P

‘Proof: a) Lebesgue's theorem for dominated convergence,

®) f w5 =

Py w1

s— K F ® - 2(Ttmt )
h€ Ng‘t kﬁ:ﬂ g (dki +oi«£)p' (j,B)(f X {h,k,l,a@} x N )

#

heN k,i,L€N

Z Z Bt(dki +cite>f“(j,B,P)<{h’k’i!'e} xNZ(T-'ﬁ-ﬂ ))G.F
R

(theorem 7.1)

]

f l: f v-tdu(j,B,P)]dF (transposing finite summation and in-

P tn tegration ).
Tl F
¢) U(j,B,F) = 3 f utdp(. B) (assertion a))
£=0 Jy
@xN:zTH
=l ]
= I . F i
F e I
Tt
= [tio f vtd”(j,B,P)]dF (Lebesgue's theorem, applying
y2IH lemma 2,6)

]

fV(j,B,P)dF .
P

Lemms 7.4: jEN, BER,Fef andf’?esn,HEE

2T+1 ?
Ko, x 8 - ,J RERTOLLI

1

then 3



Prooft When it is known that for any H € 22T+1 u(j,B, . )(H) maps
(P, 5n) into (R,s8) measurably, the lemma follows easily. Namely,

measursbility implies integrability (because of the boundedness)

and the integrals of the assertion define a nonnegative set funce
R Iy c eas : F

tion on (I)n X 82’1‘4-1 coinciding with u(j,B) for sets of the type

Q x {n} x BT ( <u< 2T +2, h€ W) end furthermore sat-

isfying the relevant properties of a probability measure.
Hence because of the uniqueness of its extension to a probsgbility
measure (theorem 7o1):

¥
9,8, Ynesg, [FHom® 0 = oo mteke] -
1 n 2T+ )
f1
a) T <o, The measurebility of p(j B .)(z{) follows from the fact
s

that H is the union of a finite number of allowed histories until

time T; hence B(3,B, » )(H) is the sum of a finite number of mea=

surable functions (lemma 7.1) and therefore measurables

b) T = w, It suffices to prove for any HE £_ and any p € U:

P frel u(j,B’P)(H) =pl€d .

o0 ol
i : 1= €
Define B € £ for m natural by: H :: {(h1,h2) N|n, € e,

3¢ Noc((h1 s h) € H)}. Then the seguence {Hm}x:-‘l converges {mono=-
tonically decreasing) to H, Hence for any P € P:
k(3,3,P) (Hm) ~ k(5,B,P) () when m ~eco , This implies
OO
= H =
fo= 0 PR 5 ) =) .

Hence ‘? has been written as an intersectionof a countable number
of measurable sets (lemma 7.1), which proves the proposition. 105



Lemna 7,5¢ If ¥, c ¥, P €® with F1({P1}) =1, then for any
JEN,BERD:

-
“1 D = 1 s .
b) U(5,B,F,) = V(j,B,P) .

Proof: a) lemms Tode

b) lemma 7.30)0

** According to lemma 7.5, the theory for the situation with known
weight function for the matrix of MHarkov transition probabilities
is a direct generalization of the situation with known Markov

transition probabilities.

Lemng 7.6t j €N, BERB, FeF, 0st<T, b €N,

¥ 2{ Tl .

p’(j,B)(&Ox {r} x ® ( )) = 0, then U(3,B,F) does not depend on
XOR

Proofs Lemma 7.4 implies: /. <{h} X NQ(T—t)>= 0, except on
—_— (34B,P)

a set ﬁ‘ € @ with F(Q) = O,

Lemma 4e3b) implies for P g,ﬂ: V(j,B,P) does not depend on bt(h).
Hence (lemma T.3¢)) U(jsB,F) does not depend on the choice of
v¥(n).

Lemma 7.7: § € N, B1, Bq eR , then

= v j = j
jB'l jBQ '“———-————P i e?[U(J’B1 oF) U(JsBayF)] .

Proofs The assertion follows easily by combination of lemmas 2.7

106 and 7.30), or as a consequence of lemma T.6.



** A weight function F € # provides the possibility to discrimi-

nate between the decision rules:

Definition 7.5: F € # ;5 B, B, € A, then:
F
a) {(jEN B £ B : a::»u(j,31,F) sU(j,Bz,F) ;

F F
b) B1£B2 :mvjENQB’Qsz) .

F
** The L ~concept defines relations in the sets jj‘))’ since all

BE€J3 with jB = jB possess the same U(j,B,F) for any F € F

1

(lemma 7.7) and every jB is the j-restriction of at least one de=

cision rule (lemma 2.1b)).
Lemma 7.8: F € rf{ s then:

b
a) (j € N) <« defines a weak ordering in j‘% ;

F
b) £ defines a partial wesk ordering in @.
Lemma 7491
: F
2) View VB1,32€J/3|:jB1 <8, = VF€?{§(531 <5, )} ;
[ <s,)|
b) VE1,B2€j‘3 B, < Bzmvﬁ‘e,f?’;( B, < Bz) .

Proof: a) "=—=" on application of lemma 7.3c);
"é&=" toany P € J(gv‘, there corresponds a F € ?;,

such that Fo({PO}) = 1. Lemma 7.5b) implies:

BF°B=>V('BP v(3,B
j1€j2 JaBs o}g Jy 2:P0> .
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b) by combination of assertion a) with the definitions of the

F
£~ and < - concepts in A.

Lemma 7410: PFor any j € N, F €  the mapping U(j, * ,F) from B

into R is contimnuous;

even: if B, € I3 (£=0,1,2y00.) and ﬁ:f.:i sz = jBo, then

lim U(j,B‘g,F) = U(j,BO,F) (uniformly in F) .

FR-"
Proof: |U(3,B,,F) = U(3,3_,F)| = | KV(J',BE,P) - v(;i,BO,P)‘)dFl

= ‘f IV(j,Bﬁ,P) - V(j,Bﬁ,P)ldF
P
(lemma T+3¢))e

This implies the assertion, since lim V(j,Bﬁ,P) = V(j,BO,P) umi-

L

formly in P (according to lemma 2.17)e

** For any F € #, there exists a decision rule, which is the best
in the sense of the risk U:

;s E
H <
) Theorem 7.2 VFET 3}306.8 VBe@KBO\ B) °

Proof: F € &3 +the mepping U(j, * ,F) from the compact set [
(lemma 2.12) into R is continuous (lemma 7.10) for every j € N,

Hence, there exist decision rules Bj € (j€E N), such that

V3e g [U0:B,,F) < U(5,B,F) ]

F
: = j € <
Define B by jBo ij (j € N), hence vBEZB (BO-\. B) (Llemma
ToT)e

** Theorem 7.2 asserts, that the ordering of f5, which is induced
108 by a weight function for the Markov trangition matrix of the ba=-



sic process, guarantees the existence of a decision rule which is
at least as good as all others with respect to the Bayes risk.
Reviewing the results of section 4, one may expect, that the
search for a F=Dbest decision rule may be restricted to a class
of decision rules, which is substantially smaller than Be

However, before estoblishing some assertions on this point, ate
tention will be directed on a general structural property of any
decision rule which is best in F - sense. This property is related
to the interpretation as a prior probability distribution of the
weight function F, Given T, (0<T < 1) and h€ N0, the jmdem

clsion rule (n j)B for the problem with T - To stepsA is best for
¥

the weight function which is the posterior distribution derived
from F for (h,j) realized, when B € ) is F ~best,

Definition 746: For any T (0= T, <T+ 1), any
2T, +1
h = (ko,io,ki,.'..) EN ©° and any F €% with
T
0 ——
f I p,, dF £0, the realvalued function F on &, is defined
P =0 &+ n

T 1
I p. ar
$=0 TS+
by: Fh(ff) = = for .‘?31 €'5n
o]
I p, aF
=0 5441

(empty products equal 1).

2T +1
Lemma 711 Eo<mo<ﬂ3+1,h=(ko,io,...)c-:N o , FeEF
T
o)
and fﬂpik dF # 0, then e R,
f‘) 't=0 tt‘*‘?

if moreover F € F_, then: e 7 .



Proof: One easily verifies, that Fh defines a normal measure on

the measurable space (7, @),

If PEF : P(R) =1,
o o

Lemma 7.12: If P € #, then all allowed histories until any time

2T +1
(say TO) h = (ko,io,“.) € ¥ ° with equal information matrices
T -1
0
and f Il Pk dF 74 0 define the same normed measure Fh; if
7 =0 "ttt
Feg f‘; s the equality of the information matrices in the .primal

assertion may be replaced by sub-equality.

Proof: Remark, that only histories until the same time can have
equal information matrices. However, sub~equality is possible for
allowed histories until different times. The primal assertion is
directly implied by definition 7.6, since the integrands in numer-
ator and denominator are the same for allowed histories wuntil To
with egual informsbtion matrices.

IfrFe f’:’;, the integral ranges in the definition of Fh, may be
restricted to f3 N J) and . In these renges, the integrands in
numerator and denominator are egual and both may be rewritten as
product of a constant and a factor depending on Ps The constants
in mmerator and denominator cancel each other, whereas the other
factors are the same for allowed histories wuntil any time with

sub~equal information matrices.

** The following lemma states: if the weight function is such, that
- in probability interpretation = the rows of the matrix T are
chogen independently, then Fh (when defined) again has this pTop=
ertys Furthermore, the marginal distribution of a rowis the prior
one, only corrected for the realized Markov +transitions in h start-

110 ing in the corresponding state.



Lemma 7.13: Let F € # hnave the property that the corresponding

measure on ('l)‘n ’ (Dr) - see definition 7.1 - is the product measure,

generated by n normed measures {cpi}l;._l=1 on (’U’, @),

2T 4+
Then T (with h = (ko,io,...) en ° 0<T <T+1 and
TO-‘]
f mop, ar # O> corresponds t0 a measure on (Un,<1> ), which
S B0 Tt n

' h
is the product measure generated by n normed measures {cpi };1:1 on
(V,®) with for every i € N and Y € &:

g
(o]
II P. do,
=0, i,=1 ‘t5t+1 *

By o %

LR g ’

II . de,
¥ =0, i1 S

where p ik (k € N) denotes the k-th component of +the integration
point in U,
roof: The normed measures v;pgl are well=defined.
Applying definition 7.6 one may verify that the measure on (Vn,én)
corresponding to Fh of a product set Y=Y x...X Yn € & with
Y, €9 (i €10) equals

n

hey
.H (pi(Yi/ .
i=1

Since the extension of such a set function on the class of product
n . . . .
sets ¢ 1o a measure on <I>n is unique, this measure Jjust equals

the stated product measure.

2T _+1
Lemma 7.14: j €N, 0<T <T+1,BERB, FeF, nhev ° and

F 2(T-T ) -
u(j,B)(‘@x {h} x ¥ ° ),é 0, then for any fg €9 :

m



Fh(j?) = pﬁéj,B)(@’ « ¥ Px fn) x Nz(T-TO}) .

Proof: The right hand part of the equation equels (definition and
lemma 7e4):

?f (3,0, ) 3 (T-TO))‘IF

T)f“(j,B,P}(‘{h} " N2 (T-To) )dF

The assertion is derived by applying formula (2.5) on the inte~

grands in this quotient.

** Lomma T.14 shows that actually Fh is a posterior distribution
for the Markov transition matrix, based on the prior distribution
F and the realized state history h.

2T +1
Lemna 7,15: 0 <T < T +1, h= (ki ,e0e) €N O PEF amd

T =1
4]
I P dF%O; let G be an integrable function on the probe
P t=0 Lt
ability space (ﬁ’, En s F’h), then for any J/? € ?E:n H

T =1
y‘af “(®) tEO pitkt+1 =
f e (p)ar =

T - .
R

[e]
1 f I p. - aF
@ =0 14y

Prooft If G is a step function, then the assertion is implied di-
rectly by definition 7.6. Otherwise, there exists a sequence of
n2 step functions {G,}, . with



J ¢ (P)th f ¢(P)ar™

,ecooo
1
and T_~1 T -1
lim;G(?)II;pk dF=fG(P)Ika ar
4+ g3 =0 T¢fgeq P $=0 *t5t+1

1 1

Lemma 716t BE M, € ¥, F €F, then:

t-1
U(3,B,F) = J f Vodi (5 p p)dF +
q2T+1

+pt hégﬂ k€ . ( B)@x {n,k} x N2<T"t)> (k p,7 k)>

for 0 <t <« T, where any U~factor in the latter sum is defined,
when the corresponding ”ng B) -~ factor does not equal zero; other~
’ 1 .

wige their product is defined to be zero.

Proof: lemmas 5.16 and 7.3b), ¢) imply:

t-’l
EPRCE RN I R TTA

O 2'D+1

" hEE 2 kﬁu fv(k’ P)‘"( ,B P)<{h’k} X Na(Tﬂt))‘iF :
P
(702) jV(k, PPy, P)<{h,k} x 2= t))dF
(say h = (k ,i ""’i‘t-1)' k=kt)
£ £-1
= &jko(fci}o b:(k sl seensk )) fV(kt »P) I=Io P, ik, ar.

(formula (2.5)% N3



Applying lemma 7.15 one obtaing, if the first integral in (7.3)
does not equal zero:

Tl tml
(7‘5) = b, ( i b‘r (k sl seeeyk ) I p. aF -
ik o VN1=0 i'r 6’7o T 7 =0 11_1(1_ +

)

. fv(k ,.B,P)ar (hoky/ _
t'h
P
(formula (2.5) and lemma T.4)

(7e4) = u]dzj,B)(ﬁx {hpkt} X NZ(T"JG)>Jv(kﬁ,h;a,p)dy<h’kt)
J

F
e
Theorem 7.3t ]3(J € 17'3, FEZ, VB€93 (}30£ B) ;

O<t<T; hOENZb; isk, €N and

p%,Bo)(@x {ho,kt} X NQ(T“*’));& 0, then:

a) for the problem with T~+ steps:
F(ho’kt)
B < \B (for any B€ B)
(k)P0 S (n)sk,)

b) modification of b 13iD does not destroy the F ~bestness of

o’kt)

B yas long as property a) is maintained.

Proofs a) When U(j,BU,F) is written in the form (7.1), it appears

that (h

B only influences its term (7.2) with h = h_ (lemma
o’kt) 0

4e3a) and the proof of lemma 5.16 with lemma 442b) ).

Hence n k )B should minimize (7.2) with h =h_ or (7.4) with
0’ 'b Y 0 .

h=h,. In (7.4) only the integral is influenced by B

[¢] (ho’kt) 0

n4 (formula (2.5)), hence lemma 7.3c) proves the assertion.



b) (ho’kt)Bo only influences {7.4) with h = h as a term in the
representation for U(j,BO,F) of lemma T.16.
Hence any modification of (b ,k )B s which maintains

’ + Y

(h_yk,)
o? ™t
U(kt,hqBo,F )

B .
[¢]

minimal, does not destroy the F-optimality of

¥% Tn gddition to their usefullness in the sequel of this section,
lemma 7416 and theorem 7.3 are of value for computational pure

poses.

2%+1
Lemms 7.17: 0<+t<T,BE€S3, jEN, h€ N , then Vt(j,B,-Ih)

is a measursble mapping from ($°, En) into (R,D);furthermore the
mapping is integrable with respect to any normed measure on the

first mentioned measursble spaces

Proof: The mapping E_ from (%, E;n) into ®,®&), defined by:

[ vetns,zy o e w0 20O L0

0 s otherwise

is measurable for any T with (t €1 < T), Namely

n . 2 (Tt ) - e

5o {Pe@ I p(j’B’P)({h} x N = 0[€% and the inte-
gral is measurable on 73\@1 , since it is a finite linesr combi=-
nation of functions like RE?BB,P) ({hi} « 12 (T-p) '1>, which are

measurable (compare lemma Tel)e ns



T
Vt(j,B,Plh) = 3 E_(P) (definition 4,1b)) ismeasurable for that
T=t '

| reason.
The integrability is implied by the boundedness,

** Now it will be proved that the search for a Fwbest decision
rule may be restricted to fﬁ,c:

F .
Theorem Te4: vpeﬁ; 3]306“14:0 VB&”.@ {BO"@ B] .

Proof: Say F € }’To .

a) There exists a decision rule By, which is best in F-sense
(theorem 7.2}, There exists a decision rule By € ?o , which is
sub-equivalent to By {corollary 4.2). Hence (lemma 7.9b)) B, is
best in Fesense. In the sequel of this proof, BT will be modified
into a decision rule B € “jec with U(j,Bo,F) =U(3,BT,F) for every
JEN,

b) The modification of By € K_ into B € "R will be accom-
plished by an induction process. An induction step will be proved
in this parte. The process, which is of the same type as the ine
duction process in the proof of theorem 4.1, is treated inpart o).

Say Osr<T, B, €, with U(3,B
et T

r+1’F) - U(j,BT,F) for every

J € N, with b for 0<t<r+1and Brﬁ satisfies the

condition of definition 4.6 for» +1 < t <« T,

The existence will be proved of a decision rule Br, with

rb't L TH bt

for ¢ ;é r, the same Uwvalues ag B ot and satisfying

1
the condition of definition 4e6 for r <t < T, Lemmas 4+1, Te3b),
Tely Te17 imply for every j € N:

Tl
ne (7.5) U(J’BI'ﬂ’F):Tio jj[f "rd“(j,Br+,,P)]dF+

N2T+1



h)dF .

! h€ NZEJ" f (JvB P)<{h} el 1>V (J’BrﬂsP

The value of the first sum in the right hand part of equation (7;5}
will not be changed by altering *  'b° (lemma 4.3)e The second sum
in the right hand part may be rewritten as a finite sum of (fi-
nite) subsums, such that each subsum collects all +ferms corresm
ponding with allowed histories until time », with information ma=
trices, which are sub-equal to a certain given matrix and all
observe the same state at time r., Regard the subsum for matrix K

and state Sk € S
T

(1.6) = >— f o +1’P)({h,kr,ir} X Na(m)-«)

hENT i €N
r
vx(‘j’Brﬂ’P

o
K(h,kr) =K
The factors Vr in this expression neither depend on

hyk_i )dF .
rr

B r (lemma

(442), nor on j,h (lemma 4.9)e These factors will be denoted by

Vr(K’k:e’ iy P), The factors p(‘j’BrH’P) are determined by formula

(244) and bence all contein the same number of subfactors p,, for
those indices (i,k) § I+ The productof these subfactors will be
denoted by H(P,K). The product of the remaining n=-factors is de=-
noted by I{{r}; h’kr>‘ The mapping THT only depends on

joK (reduced), k  and images will therefore be denoted by THT

(j"K’kr) in this proof. Expression {7.6) may be rewritten as:

rHl.r 4. .
(707) [i EEN b’i (J:K’kr) fH(PQK)Vr(KrivlrsP)dF X

b2 ¥ P

R
% > r Ok ({r}sh,k ) b I’*‘b” (ko,l sesesk e
h”(kogcoo,l )ENZ ') =0

K(byk,) 2x nz



ns

Expression (7.7) is the product of +4wo rather complicated facw
tors. The second factor is nonnegative, In the first factor the
r*‘b’.; (3sKsk,) (i € N) have been selected, such that (7.7) is
o

minimal (these b's do not oceur in any other subsum). However, the

integrals in the first factor do not depend on j € No Hence one

can select the same r+1br(j,K,kr) ~values for every j € N in
order to minimize (7.7).

c) For T < , the assertion follows directly on application of
the induction step: the induction process may be started with
r = Tw1, For the case T = « , the establishment of the assertion
in somewhat more complicated:

t-1

(7.8) U(3,B,F) = £ f w au, oy z au?
™ =) px Noo'r (J’B) thj)l‘Noo% (j?B)

(0st<eo,BER, jEN) (Lama To3a))s

The first sum on the right hand side of equation (7.8) is equal to
the Uwvalue for j and F of the decision process with + steps and
the decision rule coinciding with B for those steps. Hence, acw
cording to the assertion for T <o , one can find B %o € "RU, such
that

] P

Z f u dpy.

- T *(3,B)
™0 Ry n®

is minimal with respect to By for each j € N. The seguence

{8 to}:;o possesses a convergent subsequence with limit B € "366

(Lezma 4.8): Then for all j € N:

o0
{Bt‘go}k1 *

lim U(3,B, ,F) = U(§,B,F)  (lemma 7.10) .
£

48-»00



Hence for all j € N (a finite number) and any e > O

U(j,Bo,F) =< U(j,Bt O,F) + g (£ sufficiently large)
£
t =1 P
% min z f u dp,(. B) + 2¢ (£ sufficiently large)s
Be B> "=°f’xN°°x dr®

Namely the second sum in (7.8) possesses an absolute value smaller
%
than or equal to ——  max ldk +¢.,|] (independent of B
1-By,i,2eny Xt 14
b Bl

and j; lemma 2.6a) and Te3b))e
Hence for all j € Nt

U(§,B ,F) = min U(J,B,F) + 3¢ (same reasoning) ,
° BERD

hence the same assertion has been proved.

** Refinement of the proof of theorem 7.5 even leads to a much
stronger result than the assertion of that theoreme In oxder to
minimize (7.7) one may always select a b~ (j,K,kr), which only
congists of zeros and s one. Hence it becomes apparent that a sub=-
information decision rule applying pure strategies is optimal in
Fugense.

P
Theorem T.5% ”Feg; VBoe ”j{cﬂﬂvBEﬂ[BogB] ¢

Proof: In order to prove the assertion, one may pursue the proof
of theorem T.4. Only the induction step needs a slight modifica~

tion.

Let Br-n be best in F-sense. let Br+1 satisfy +the condition of
definition 4.6 for all t = r + 1 with rﬂbt = Tbt fort<r +1,
while T0%(h) consists of zeros and ones for all t =1 + 1 and

h € N tﬂ. By altering Mbr the decision rule Br may be ocon-~ 119



structed, which is best in F-gsense and satisfies the condition of
definition 4.6 for all ¢ = r with b’ = b° for t<r, while
rbt(h) consists of zeros and ones for 211 t =r and h € N°TY',

For the case T = o0 the same reasoning as in the proof of theoren
Te4 {part ¢)) can be presented, since B,, may be selected from
"ﬁ’c N /4, which is compact (lemmas 2.12 and 4.8).

Corollary 7o5: P € 9% there exists a decision rule B, €4, such
that

o, t _o.t
Vi(o<t<T) fvh1,h2€N2b Veenl P (B k) = b7 (k)]

and

Proof: Suppose: J3 = {P }. Then I, = ¥ .

The assertion is implied by theorem 7.5 on application of lemma
Ta5b)e

** Theorem 7.5 substantially restricts the search for an Febest
decision rule.

In fact, the set "RG NA is finite when T is finite.

In view of theorem 4.3 it zmeems obvious to investigate the posgi=-
bility of restricting the search for a F-best decision rule in the
case of equal decision costs to the set of state~free sub~infor=
mation decision rules applying pure strategies afc n4 .

Theorem 7.63 If Vk,iEN(d‘ki = d“), then

F
vor o asenpife]
FeF, 3306,2‘30 na sen B

120 Proof: The proof will not be exhibited completely, since it fair-



ly resembles the proof of theorem 7.4 combined with the proof of
theorem ToH:

Theorem 7.2 implies the existence of a F-best decision rule in
B. _
Corollary 4.3 implies the exisitence of g decision rule BT Ef.c
which is sub~equivalent to the F~best decision rule and hence Fe
best itself (in fact lemmas ?930) and 4412 imply directly that a
B € ‘f‘o is P-best; however to find a B_ € Jec NA the step = by~
step procedure is still wanted).

A step~by-gtep procedure ag in the proofs of theorems 7.4 and 7.5
provides the possibility to modify BT inte a decision rule

B, € a‘ic NJ4, which is F-best.

Corcllary T.6.1: V (dki =d, ) then:

kK,i€EN
VF(_:?ZVBE@(B is best in F-gense) = Vj,,ee N(U(j,B,F) - U(A?,B,F))}
Proof: F eﬁ“c, BER

a) Combination of lemmas 7.3c) and 4,12 delivers:

BE z(o = Vj,,ee N(U(,j,B,F) = U(z,B,F)) s

b) The assertion is proved by combining result a) with +theorem
Tobe

Corollary 7.6.2: V (dki = d“); TeNwith IX Nel;

k,1€N
2 € N\I;
V(D(min zc_nach>;
P€fc L1€T key ¥ ko oy £r Fir

dﬁ’.,t defined as in corollary 5.3, then:

by
?Fei’i’; 3130641‘:1 NA VB(&:S&[BQé B] * 2
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Proof: F € ?; o The proof of the assertion proceeds as the proof of
theorem 7.6 with corollary 4.3 replaced by corollary 5.3

A decision rule B‘I‘ € af.‘ exists, which is F-best.

The same step-by-step procedure as in the proof of theorem 7.6
provides a modification of B’I‘ into a decision xule Bd which is
still F-best and which is an element of &, nA.

Lemma 74183 vk’iEN(aki =d,.); BEL ,FEF, 0<t<T, Kis
a n X n-matrix of nonnegative integers, then:

is

(h,kt> )

For the problem with T~1t steps, the value U kt’hB’F

the same for all h = (k yi seeupiy () € w5k €N witn

t
; ¢
K(h,kt) &K end
ted ’
f Hopi k " drF 7! O ©
A
Proof: F is the same for all h, k, considered (lemma 7.12):

+
call this one F(K).

Let (h,kt) and (h*,k,;) be two histories until time t which satis-
fy the conditions of the assertion,.

For those allowed histories until any time {for the problem with
T - t steps) starting with kt the decision rule hB prescribes the

same decision vectors as ,,B for those starting with k! . Those
decision vectors are determining for the values of Uk t,hB,F(K)>
and U(k%,h,B,F(KD respectively (1emma 7.7). Fuarthermore, since
(B and B €£’c (lemma 5.14) part a) in the proof of corollary

Te6e1 implies:

U<kt’hB’F(K)> = U(k%,h,B,F(K)> .



**% 50 far it has been proved that, when a weight function for the
transition matrix of the basic Markov chain has been given, deci-~
sions may be based on pure strategies only using a part of the
information provided by the realized allowed history until the
time of decision. Nemely, the information matrix (up to  sub~
equality), the time of decision and the state observed at that
“time (this last item may be skipped in the case of equal decision
costs)e It is interesting to know, whether the item "time if de~
cision" may be skipped in some situations., It is obvious, that
this may not be asked generally (compare example A.1b) in the ap~
pendix with T <n< g— )o However, it will be proved, that this
is allowed in the case T = o (theorem 7.7) and in the case of
equal decision costs with only complete rows of the Markov tran-

sition matrix known (theorem 7.8).

Definition 7.7: A sub=~information decision rule = say B = is said

to be stationary, if and only if:

2% Vh 2tV

vt(0<t<’l‘) Vr(o<T<T) Vh1 EN L EN" TkEN

[K(h1,k) 2 K(h,sk) = bt(h1,k) = b"(hz,k)] .

Theorem 7,7¢ When T = e, then:

F
. . @ R
VF €j,;; 3B0€"R° nﬂ[Bo is stationary and VB eB <B0 B):l

Proof: The assertion is a direct result of the theorems 7.3 and
7¢50¢ In the case T = ¢, the h-restriction of a decision rule
B (for any h € Nzt, 0 <t <o) is again a decision rule for the
problem with T steps.

F
Suppose Bo€“Kcﬂﬂ,F ch and  Vpo @ BOQB>
(theorem To5).

123
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Applying theorem 7.3, Bo may be modified into a decision rule in
R0 J#, which is stationary, without loosing its F =-bestness
property.

Such a modification may be defined in a doubly inductive way:

1, Indvotion with respect to the possible values of

I(h) := > x (h), with K, (h) denoting the element la=
(i,k) ¢1

belled (i,k) of the information matrix of h (allowed historyuntil

certain time);

2+ For any possible value of I the modification is performed by
induction with respect to the time of decigion t.

The result of every modification is again denoted by Bo H

a) For t subsequently equal 40 1,2,3,ee. replace (n k)Bo by kBo
#

for all h € N2

7e3)e

, k € N with I{h,k) = G, B, stays F-best {theoren

b) Say O<m<oo, B, is F-best and for every 1 (0=t <o),

n, € ¥t ¥ € N with I(n, k) <m holds:
3 N<°bt(h k) =1) and
ig iv?

' 0.1
V(02 <o) VhZENZT[K(h k) € K(h k) = % (hi,k) b (hz,k)} .

Then consider H_ := {(h,k) € U N?'t”” |x € W, I(h,k) =m} .
t=m

Divide Hm in subsets Hm(K,k), which contain all elements of Hm
with last component k and information matrix sub-equal to K.

Suppose (h Jkled (K k) for certain matrix K and k€N, such that

(h
07 / is defined. A decision rule B ) € Afc nJA exists,

o (oK) (kg ok

~ best (theorem 7.5).



For t subsequently equal to mym+T1,44s
ot . g
replace (h’k)}aa by kB(ho,k) for all h€ N°° with K(h,k) K(hc,k)o

(hgsk)
When for certain K,k no (ho,k) € Hm(K,k) with defined F

exists, B ) ey be chosen erbitrarily from ‘\Ko nA, since
09
those allowed histories do not contribute substantially to Us

B, stays F-best (theorem Te3)e

** The well-known result (e.g. [1962, 1965, D. Blackwell]) that,
if the Markov transition matrix is known and T = ®, there exists
an optimal decision rule, which applies pure gstrategies and only
depends on the state observed, is contained in theorem 7.7:

Corollary Te7¢ T = oo, Po Eﬂ; then there exists adecision rule
B0 € Jf', such that:

vj EN VB R [V(.j,BovPo) = V(j,B,Po)] H

2t ¥

s(0<t<x) 'n ew?® ke n Yr(osr ) 'n, €X°°

("bt(h,,k) ~ °b"(h2,k>) .
Proof: Suppose: 5?3 = {Po} j hence I = N?, The assertion is di-

rectly implied by theorem 7.7 on application of lemma 745b)e

Lemma 7,19: Any sub-information decision rule B, which is state~
free and stationary satisfies:

Vi(o<t<T) Yt(0<v<T) Vh1 € N3 theu‘?“"

I:K(hi) 2 x(h,) = ht(hi) = bT(ha)] .

** The following lemms presents a key assertion on the case of
equal decision costs with the known Markov transition probabili- 125



ties filling some rows of the Markov transition matrix. Say that
at time t, for certain "reduced" information matrix, it is neces~
sary to decide on transforming to s, (the elements labelled (£,k)
of the Markov transition matrix are known to be equal to = ok for
all k € N) in order to obtain a Fwbest decision rule. Then the
same is necessary at time t +1, Actually lemma 7.,20 is a genera-
lization of lemma 4.1 in [1956, R.N. Bradt e.a], which only
treats the caset B =1, T<®, n=2,¢,, =¢ , ==1, ¢ _=c¢_ =0

11 22 12 21
and I=g.
Lemma 7.20% \11{’1“1((1ki = d“); IcN, IXNcIj4e€ v\,
{1} X Nc Io;

xi defined as in corollary 5.3;

F
B el nA,ref, Be@(B\_B>
0<+t+<T~1, K is a n X n~natrix of nonnegative integers;

Bo is such, that: ¥ 2t+ [ K(h) 2x= ob};(h) = 1], furthermore,

heN
there does not exist a B €<7€ ﬂc/'il which is best in F -~ sense,

with "b° = %b" for allts (0<7T< t) and 'b (h) #1 for certain

bark |

heEN with K(r) £ K,

at+3

Then: °b;?“ (b) =1 forall hE€N with K) 2K,

Proof ¢ The necessity of obE(h) =1 for those he NZU*!

with
K(h) € X implies:

[ (T=t) .
o p,(j’Bo)(J x {n} x ¥ >> 0 for all j € N (lemma 7.6)

K(n) £
Hence:

126 X(h) £ K



2t+1

(Lemna Tu4, formula (2.5), “by(n)=1 for h€ ¥**"" with K(n) 2 K

For a1l h € W5y %" yith K(n) S K, the weight function PP

(x)

(when defined) is the same (lemma 7.12), say F

Theorem 7.3 shows, that hBo should be F(K) -best for the problem
2%+

=]

with T =+ steps when h € ¥ y Kh) & X and for the problem with

na

T -t ~ 1 sheps when h € N3, ¥(n) € ¥,

Hence it suffices to comsider t=0 and K consisting of zeros:
F(K) i=F,
Suppose Ob;(h) =1 @eN\I, mfe) for hew with K(n)2K,

U(jyB,sF) does not differ with j € N (part a)in the proof of cor-
ollary 7.6e1) and equals (lemma 7.3):

n Tet
(129) (8, + B op mp )+ f
Mok RS g p d 4" (J'B)

In short-hand notation (7.9) may be written as: -1'::3 +(3UT_1° A more

detalled expression for V(j,BQ,F) is (lemma 7e3):

n n
{7.10) (a” + Iz Cp “ﬁk)+5(d11 +f b} cmkpmk'dF) +
k=1 Sp k=1

= f {: ‘
JvB )
=D o N2T’§‘1

In short-hand notation (7,10) may be written as: m,+fp_ +B8 Uy s

The suppositions lead to the following inequalities:

(7.11) =™, +BU,, <p_+BU, .

hence ;«E(“Em .
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R TP - = 2.1
(712) mg +Bpy * B0, <oy *Bm, P U, o

hence (1-g)m, < (1-g)p, .

- e 2.1 - 1 Tog =
(7013) my+fp + B Up_, <oy *PUp_, + B m,

nence B(1~B)UL_, + (1=p)p, > w,(1-""")

, Dot
(7014) ng +Pp, +B Up_p < Ty TEOBT ’
o - - T2
hence [BT2+pm<n£ I B s

1=0

Tt

(8 =0, when T =% )

(7.12) is contradictory for B = 1.
(7411) contradicts (7.12) in case B > 1.
(7.13) contradicts (7.14) in case O0< B < 1.

Hence o'b:n(h) =0forall m€ N\I, n#f4 h€ N with K(u) 2

Theorem 7.8¢ vk,i&‘ N(dki =4, )3 N cNwith I =N XN, then
F
VFG:?(', BBTE"fo ﬂﬁ[BT is stationary and VBE.?’?}GBTQ B) .

Proof: In case N = £ (hence I, = @), the assertion is the same
as theorem 7.6, Suppose subsequently N_ ¢,
n n

Be £ € N, such that I ¢ min B oy n, 3 I = N\{4}.
get AT 1N k=t o

o£1 is defined as in corollary 5.3.

128 Be F € ?FG.



Corollary Te6.2 guarantees that:

F
S s {Bo € o€.1 nJv" pe 3(3,€ B)}
is nonempty.

Lemma 7,20 provides the possibility +to construct a decision rule
in ﬂo which is stationary. The construction proceeds by induce-
tion with respect to time.

Choose a decision rule from /fo, say 131 ¢+ if possible with

’bfé(j) =0 for all j€ N,

Let a decision rule B, {1 < r<T) be chosen fton .ﬂé, such that
the condition of definition 7.7 is satisfied for all t and v with
€ J%, r+1bt=rbt

with respect to

+
sub=equality of the information matrices are numbered and s

0<%, v <r, Then Br+ iz chosen, such that Brﬂ

2+

1

for 0 €+ < r, The equivalence classes of N

values for these classes are fixed subsequently - if possible

with rﬂbi( + ) = 0, Br+$ satisfies the conditions of definition

7«7 for all t and Tt with 0 €%, T<r + 1,

When T <, BT

may be selected as lim B_.,
r
-0

emerges in a finite number of steps, If T =eo, BT

** In the appendix (4.5) it is demonstrated that in +the general
case of egual decision costs 1t may occur that there does not

exist a stationary decision rule which is best in Fesgense.

Theoren 7.9 comwbines s number of results of ‘this section.

F
Theorem 7492 Vpe@}; 3Bo€<ﬁo> VB€ 33<B0*€ B), with BO equal to

2) 'KG nJt (all cases);

b) the subset of stabtionary decision rules in ':%ﬂﬂ, if T =% ;129



i ir ¥V = .
0) IO’ ﬂ’ if k’iEN(d-ki d‘f‘!)’
d) +he subset of stationary decision rules in &:GﬁTJQ , if

vk,it’:‘ﬁ(dki =d,,) end I =N x T,

Proof: Since all Bo involved are closed sets, the sets (@o>a:ee
complete in f3 (lemma 5.11).

Temms, 7.9 combined with theorems 7.5, 7«7, 76 and 7,8 respecti-
vely implies the assertions.
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SECTION 8

ADMISSIBILITY AND THE BAYESIAN APPROACH

** 45 notioed in section 5, the sdmissibility of B in J_?B i~
plies the existence of a weight function F € j’i , such that for all
3eR3
F
B = B .
Jo 3
The assertion, which provides a characiterization of admissibility

will be proved in this section (theorem 8.2).

Theorem 7.9a) states (for any F € f"'fo) the existence of a decision
rule B € (‘R Ne4 ) with for all B €73

A= o

F
<
B < B , hence YjGN(jBo""jB> .

Reviewing theorems 7.9a) and 8.2, it is tempting to conjecture for
any B € (R N4 ) the existence of a weight function F € ’f; with

for all1 B e

A=

B

B .
[¢]

This conjecture, however, sppears to be falses 4.6 in the sppendix
provides 4 counter example.
In section 6, it has been mentioned_ifor the expected total cosis

v(j,B,P), that the property

min  max V(3,B ,P) = max mi%V(j,B,P)
BERB PER P efg Be

is not satisfied generally.
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Consider 99(7;, the set of weight functions on .9%, as the set of
strategies for Nature (the opponent of the surveyor of the process
in the game interpretation of the problem). Then the similar prop=-
erty for the expected total costs U(j,B,F) ig satisfied generally.
This is proved in theorem 8.1, since in the proof of theoren 8.2

this assertion will be aprlied.

There exist two generally applied methods in order to proof an
assertion like theorem 8.1, The first is based on the application
of a fixed point theorem for point-to-set mappings. The second
one, which leads to success in this case, basically applies a se~
paration property of convex sets in finitely dimensional Euclidean

Spacee

Theorem 8.1: inf sup U(j,B,F) = sup inf U(§,B,F). (JEN),
BESR Feﬁ; Fefr; BER

Proof: J € N,
Lemmas 2.6b) and 7.3¢) imply the boundedness of U(j,B,F); hence
both parts of the asserted equation are finite real numbers.

Trivially holds:

inf  sup U(j,B,F) > sup inf U(j,B,F) .
BER FEF FEF BESR

Hlence the proof will consist of justifying:

(841) inf sup U{j,B,F) < sup inf U(j,B,F) .
BEPDB FEF FEF BER

Select a € Ry, with inf sup U(§,ByF) > ae
BERB FEF

Define for any P eﬁcz ﬁP = {3 efB l v(j,B,P) > a} .
A1l sets jSP are open in J3 (lemma (2.13).

132 {J?’P}PE.@C, constitutes an open covering of J3.



The compactness of 375 {1emma, 2.12) implies +the existence of a

finite subcovering: {ﬁPr}:fﬂ .

Hences

(8,2) inf  max V(j,B,P } = 3 .
BES 1<sr<i

£
Definet V= sup 3.nf £ p, V(J,BP) ,
o} BER =

with sup denoting the supremum over the seot

{,,
{(p,seeesp,) ER ip >0 for r=1yeeep4 and I p_=1 .
1 2 r v =1 T

Since sup_ inf U(j,B,F) = V (lemma 7.3%c), it suffices +to
FEF BET

proves Va = a.

Namely then: sup_ inf U(j,B,F) = ,
FEF BES

For any .a € R, with

inf sup U(§,B4F) >a
BeRD FER

which implies (8.1).

Because of (8.2), it suffices to prove:

2 )
(8.3) sup dinf I p V(3j,B,P L) = inf sup B p V(3,B,P ) .
{p,} BEB r=1 BERBfp } =1 T *

vl i
Defll’le. V = {V == (v’,oct)vz) €R %eﬁvr('] grg,g)

(vr = V(j,B,Pr)>} 133



for v, € R: W(Vo) = {w= (w1,...,\vz) € R’e‘ Vr(1 srsz)(wr < vo)}
b += supfv, € R| VN W(v,) = ¢}
hence b €R ,

This implies: VN W(b + -;-1-) £ § for natursl m.

Suppose V- € V N W(b +-3;) ,

and B_ €7 satisfies: v° = V(j,Bm,Pr) FOr r=Tyeeey 4o

T

Thens

V(3,B ,P.) <b ++ (r=1 £, natural m)

¥ m’ o o 000y $

or 2 ) 2

Eop, V(J,Bm,Pr) sb 4= {natural m) for p.>0, Zp =l

r=1 r=1

2

(8e4) This implies: inf sup 2 p_V(j,B,P ) <D .
Beﬁ{pr} =1 T T

W(b) is an open, convex subset of R'z.

V is an convex subset of R’e, namely:
"Mo<a<1) 'B,,B,€ B HBA€.@ V(1 sr<t)

[V(3,8,,2,) = AV(5,B,,2 ) + (1 =2)V(5,B,,2 )] -

This is a consequence of theorem 3.4.

vowm) =g..

A separation theorem for disjoint convex sets =~ compare [1959, C.
Berge, page 171] =- implieg the existence of nomnegative real nume
bers Ugreeesly sunming to 1, such that

£ £
134 Voev ydWEW(b) l:ri:‘l G@Ve > rE1 qrwr:[ *



Hence z
¥ bH =
mc_\éf[lc1 9 Ve b] .

This impliess

V(3 BP)
B€f x'=1qr Js ’
or:
(8.5) 2 »_V(3,5,2)
{P}B@’% r=1 ’

(8e4) and (8.5) imply (8.3).

** In fact, however, the proof of theorem 8.2 mneeds a somewhat
different result. The proof of that assertion proceeds exactly as
the proof of theorem 8.1. Whence the assertion is presented as a

corollary to theorem 8,1

Corollary 8.1.1¢ B, € 9, 3 €N, then

(846)  inf U(jyB,F) = U(3,B ,F) ) =
BE £ Fséupfc< s % )

- suwp _inf (U(3,,8) - U(3,8 ,m) .
FEF BER 1

** Actually "inf" and "sup" in theorem 841 may be replaced by
"min" and "max". This will be asserted in a second corollary to
this theorem. However, the proof needs some auxiliary measure and
integration theoretic results, These will be presented in two leme
mas. The developments are based on [1956, H. Richter].

Lemma 8.1¢ £ ig a natural number, § is a closed and bounded sube-
set of R (in the natural %topology).

oo £
Let {w_} be a sequence of normed measures on (B, £}, with

' r=1
corresponding distribution functions {Gr}; ; such that
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Wr<Q.> = 1 (3?"“:1’2,3,oo0) .

Then: there exist & normed measure w, on (R’z, of?g} with correspone

ding distribution function G  and a subsequence of the sequence
of natural numbers {rp};; y such that

0 (Q) =1
and for any x € R’e, which is a continuity point of (}o:

lim G (x) = ¢ (x)

p=o Tp ° )
Proof': Theorem V.7.3 in [1956, He Richter] implies the existence
of a measure defining function GO and hence a measure mo, which

satisfy nearly all the conditions.

It only remains to be proved that the G o and w o found are such

that G  is a distribution function and wo(Q) =1,
That G o ig a distribution function follows from the boundedness of

Q: there exist points x("), x(z) € r? with Go<x(1)> =1,

Go<x(2)>= 0 and for no x € R holds Ge(x) < 0 or GO(}:) >1,

Select for any natural k finitely many real numbers
% o < Boq Soeee < '

such that no discontinuity coordinate of Go occurs and

1 :
Gy = vat =% (V”192100-’3111{) )

Qe (ako ’ akmk]‘e (compare theorem 1.5,20 in

(1956, H, Richter]).
Define 1)
in R of the types

as the set of all '"semi open - semi closed" intervals

Y’
136 I(v,,000,v,) = {x € R ockv}‘ <x ﬁak"x“ FOr A = 15250009 £ }s



(k)

A(k) is the union of those elements of J'°’/, which have a non-
vacuous intersection with Q. Hence A k) Qe
For any I € J k holds:

lim (1) = w (T) .
p*”wp 0

(k)

Hence for &

1 = lim @, (A(k)) = wO(A(k))

pr= p

applies:

N
For any natural # holds: wo< N A = 1

k=1
o0
Thus N A(k)r-Q, implies
k=1
W) =1

Lemms 8.2: £ is a hatural number, Q i® a closed and bounded sub=-

set of R’e, Y is a seto

Let {fy)ye ¥ be a family of equicontinuous meppings of Q into R.
Furthermore this family is supposed 10 be uniformly bounded,

Let {wr};o be a sequence of normed measures on "‘(R'6 , f)ﬁ), with
corresponding distribution functions {Gr};o’ such that

wr(Q) = 1 for T = 04140

and for any x € R'e, which is a continuity point of Go :

lim Gr(x) = Go(x) o
- 00

lim | f do = f f dw (uniformly on Y} .
y =T y o°
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Remark: The equicontinuity of the family means, that to any >0
there corresponds a number & > 0, such that

|fy<:<(1 )> - fy(x(2)> <& whenever y € Y, x(1 ), x(z) €Q
; with |x(1)-x(2)| < d
Proofs Suppose: € > 03

select 5(e) > 0, such that
l‘f (x“ )> -f (x(2)>l <%
¥y y 4

whenever y € Y, x(1 ), x(z) € q with

lxx‘)*x}sa)|<b(s) for A=lyeeey & 3

select finitely many real numbers o:o <A < eee <Ay such that no

1
a (v=0y00.,m) is a discontinuity coordinate of G, and

% -o < 5(e) (v=1,000,ym)

and q c (o'.o ’ am]'e = A (compare +theorem I.5.,20 in

[1956, H, Richter]) .

The f}r are extended to functions on R'Z, by defining
i‘y(x) =0 for yE€Y, xE€ R’e\Q .

Thens

ffy dw, = ffy do,, (yE Y, r=0,1,000) =

J is the set of all "semi open - semi closed" intervals in R’8 of
the type
I(\)1,aoo,\?£> B {XER‘elC{\, <X, O®|Q for }\213000,’/8} y

A VA-H

138 having a nonvacuous intersection with Q.



Define for I €7 andyEY:fI:= inf £ (x);
Y xernq?

f(x)-i‘I when x € Q ,
for x € It ely,x) =4 7 ¥y
0 when x §Q .

Hence O < e(y,x) 6% for those x with e(y,x) defined.
f:f.‘ do = f.‘f dm < I ff dw - ff dow
[ 1€y yoe

I
= Igv fy( fdwr - fd%) + fa(y:X)dwr - fe(y,x)dwo
I I I I

| o Je]r 2, (@ ¢ ei)

=

< gl Iéﬁ fd(}r-fd(‘ro +§ (choose [£] > 0) .

GO is continuous for the vertices of any I €7 .,

Hence? 1lim fdG -—-fdG for I €T,
. r J 0 |

Then, when r sufficiently large
oo, - Jo
r 4]

I I

Hence for such r:

ff dw-ff de
y T y ©

Q Q

1 A, £
«C:'l}-r“—-mﬂ 5 forall I €7 .,

max

< g forany y€Y .
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Corollary Bet.2:

min max U(j,B,F) = max min U(j,B,F) (3EN),
BES FEF FEF BES

Proofs j € N,

It suffices to prove that "inf" and "sup" in theorem 8.1 may be
replaced by "min" and "mex".

a) Say B €/, There exists a sequence {Fr};; < 5‘; , such that

lim U(3,B,F ) = sup U(§,B,F) .
o FE:‘?;

@, En) and (U7, @n) are fairly similar (definition 7.1). Hence
FE€ ?c (definition 7.2) induces a normed messure on (U , @n) in a
natural ways. Therefore any F € fo induces by extension a normed

2
measure & On <Rn ’ b 2) with a distribution function G and the
n

property that the w-measure of the f) , =Measurable set Q which
n

corresponds o \9"0 € En is equal to 1.

oo

Then lemma 8e1 implies the existence of a subseguence {Fr }r-t
o T=

and & weight function F € J@; , which satisfy {according to lemma

7e30) and lemma 8,2):

Lim U(3,8,F, ) = U(3,B,F )

p—== P
{the y of lemme 8.2 is a dummy varisble in this case; the conti-
nuity of ff - in this case V(j,B, * ) ~ is asserted by lemma 2.9,
while the compactness of Jﬁg implies its uniformity).

Hence:

sup_ U(3,B,F) = U(J,B,F ) = max U(j,B,F) .
FEF FEF



b) ma.:?c'U(j, . ,F) is continuous on J3 (compact according to lem-
Fe
o

ma 2.12)¢

max U(jrBsF) -  max U(ijS:F)ls max [U(j!B’F) - U(j,Be,F)\
: Fe?; FeF ‘ FEF

and application of lemma 7.10.
Hence the first "inf" may be replaced By "min",.

c) Theorem 7.2 provides the justification of the "min" in the
right hand side.

) ‘ * <%, such that
d) There exists a sequence {Fr}r«x c ¥y su a

lim min U(§,B,F ) = suwp min U(j,B,F) .
r—»o BER T FEF BER ‘

As in pert a) of this proof, lemma 8.1 implies the existence of a

[+
subsequence {Frp}p==1
corresponding distribution functions satisfy: Ilim G_ (x) = Go(x)
p—® Tp

end a weight function F_ € ‘.75; s such thaet the

2
for each continuity point =x € " for GO .
Then:

min U(j,B,F_ ) = min U(j,B,F )
BEB o BED °

< max U(j’B:F )"U(j’B’F e
BE .B‘ rp 0

This maximum is less than any preassigned £ > 0 for p sufficient=-
1y large according to lemma 7.3¢) and lemma 8.2 {the role of y in
lemme 8.2 is played by B in this cese; the equicontinuity of the
femily {i‘y}ye y - in this case {V(3,B, + g gy - is ssserted by

lemma 2,10 and the compactness of ff-z’).
Hence:

sup min U(j,B,F) = min U(j,B,F ) = max min U(j,B,F) .
FEF BES BER ° FeF Bef

14



Theorem 8,2: B € B, jen, 6 € <jﬁ>, ‘then
F
<
Proof: Ancother formuletion of the theorem is:
B n <
i '<
37 {Bb € l 3Fe<€'; VB&ﬁ(ij‘“jBﬂ > (773> .

Therefore it suffices to prove:

B

PN is complete in 373 (lemma 5.5f)).

Hence attention may be restricted to essential complebeness. TFor

completeness is implied by essential completeness in this case.

Thus +the problem is:
Be B, € B . Then find By € J3, such that

jB*eJ.f}b and B, € B .

Or: find By € B, such that for certain F € %
U(3sBs F) < U(3,B,F) (for any 3 €3) ,

and V(3sBys P) <V(§,B,,P) (for any P € 730) .

Henoe it suffices to find B, € 73, such that:

(87) ¥ (natural) Sprefv'; g eﬁ{U(j,B*. Fr) < U(S,B,Fr) + i- 1,

(8.8) and VPGJ{?I[ V(ij*9 P) < V(stpP) 1 .

142 Namely, according to the same reasoning as in parta)of the proof



of corollary 8.1.2 there exist a subseguence {Fr }p= , and a weight

function Fo €f§ s such that for all B € B

1im U(j,B,Fr ) = U(J,B,F )}
4]
preo p

Defines Ui(j,B,F) := U(3,B,F) - U(3,B,,F) (BE€ B, FeF .

I% suffices to prove the existence of a decision yule B, satisfy-
ing

: . 1
(8.9) Vr(natural) 3Frej’?; vBﬁﬁ[U1(J’B*’Fr) <’?U1('J’B’Fr) +;]’

(8.10) and  sup U (j,B.,F) = inf sup U, (5,B,F) .
ref V¥ BeS FEF

Namely: (8.9)&=%(8,7) and (8.10) implies:

..

sup U (jyBy, F) < sup U (§,B,F) =0
FE A 1 FGWZ 1 {

hences U, (j,By,F) <0 for any F € ?‘f';, which implies (8.8) (via
lemma Te5b))e

Then it suffices to prove:

(8411) inf  sup U, (j,B,F) = sup -inf U, (3,B,F)
- BER FEJ%, ! FEF BED

and the existence of B, € with

(8.12)  sup U, (j,By,F) = inf sup U (§,B,F) .
FEF BEDH FEF

Nemely: (8e11) and (8012) implys

sup U (§yBy,F) = sup inf U (§,B,F) ,
FER FEF BESD

which implies the existence of a sequence {Fr}:—- ; ﬁ; with 143
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' . 1
U, (§,Bys F ) < inf U (§,B,F ) +=
1 * r BE f?) 1 r r
(8.11) is true according to corcllary B.tel.

The existence of B, satisfying (8.12) is implied by the compact-

ness of B and the continuity of su;{;g;U1 (3y » 4F) on 73 (applying
FE

0]
the same argument as in part b) of the proof of corollary 8.1.2).

Corollary 8.2: ¥ ;¢ y(dy; = d,,), B, € (K(J, then
F
Yem Voem BO‘-QB> .

Proof: B € (af.c>=> Vj'e N(jBo 6(3,75)) (lemma 5.4e), )y a)) o

,B, is F-best for certain F € ’ﬁ; (theorem 842).

Then B is best in F-sense (corollary T7+6.1), since B EnCd it
plies U(j,BO,F) = U(,@,BO,F) (part a) of the proof of corollary
Te6o1)o




APPENDIX

** Tn this appendix some exa.n_lples have been collected. No exafiple
has been included for its value in applications, The only purpose
of this appendix is to illustrate some features mentioned in the

main text of this study.

The first example already illustrates the fact that the < ~ and
£~ relations in f3 do not provide the means for the selection of
a "best" decision rule. The two investigated varieties of +this
example ('I'=1 and T=2) furthermore illustrate the wvalue of in-

formation collecting on behalf of decision -meking.

A1

S1

S,
n= 2; d11 =d12 =d22 = 0, d21 large;
B=t30y =0 =00 =0 =15

Io = {(291)9<212)}’ M,, =% My Py =% Do

a) T =1.

V(1,8,8) = by (1) ¢ (1=p) + b (1) * (1=n) = 15



= b$(1) ¢ (n=p) +1 ==

calls b?(‘f) =t b,

o
=7 S
-
<

(173>=1B ]
U(‘I,B,F):bét- fde>+1-n (Feﬁ‘vc)
0

1
Hence b=0 is Fe-optimal, if 5 = fde; otherwise b=1,
o

For min-~max risk: choose b = Q.

For min-mex regret: choose b = =g,

b) T=2,
Only consider those B with: b;(1,2,2) = b;(1,1 y2) =1,

V(158,P) = 07(1) « [(1=p) + p{6}(1,1,1) + (1 =) +

146 + b;(‘!n,‘l) c(1-m)}+ (1=p)(1-m) ]+



#22(1) + [(1-n) + a1 =) + 1 =m)pl(1,2,1) + (1-3) +
+0.(1,2,1) « (1=m)}]

calls 'b:)(1) =t b, b: (151,1) =t v, b: (152,1) =t b,
Then:
V(1,B,P) = = bb p® + [b(b,m=1) = (1=b)(1=n)b,Jp +
+ (b+b2-2-b2n-bb2+bb2n)n+2.

Hence V(1,B,P) is for any B a part of a parabole (or a straight
1ine).

(1f3>= {3 Ib1=1, b,=0} U {B|b=0,b,=0} U{B b=1,0b =1}

(the first set is the essential one)

'

2-Tt 1

201-T0)

0

b=b,

Wt
Ny

p

a _————— -

0 1

1
U(1,B,F) = 2(1=n) = b[v, + (1=n)v, = n] , with v, = fpl daF ,

0
whenb, =1, b =0 and FEF ,
i 2 [¢]

Henoe, when F is uniform for p : v, = %, v, =J3- and b=0 is F=
optimal if = 2'3-_, otherwise b=1,

Por min-mex risk: choose b=0 (and b =1, b, = 0). 147
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For min-max regrett: choose b = %1-_;@ {and b =1, b, = 0)o

Let '1131 and 2}32 both have b1 =1 and b2 =0, and b~values smaller

than 221:; (1 B1 has the smallest one), then:

- - 7
B <,B, , butnot 131@3132 (section 6) .

*%* The second example serves to demonstrste, that in the case of
equal decigion costs an admissible decision rule may prescribe the
application (in an essentiel wa.y) of an action with expected
costs, which are dominated (uniformly in P) by the expected costs
of another action (section 5).

A2

n = 3; D consists of zeros; p=1; T =2; I = {(1,3)4(2,3),(3,3)}

Myg = Tpg = gy = Oe

16 © \
C= |32 12 . (the third column is indifferent).
19 17 .)

Hence action 3 is dominated by action 1.

It will be demonstrated, that the decision rule B with %3(e ) =

= %1 (*,3,1) = ®](+,3,2) = 1 is not improved by any decision

<

rule B with b, = 0 for ©$=0,1 .

3
V(* 3By P) = 19p,, +17p,, + 16p,,p,, +p,,(20p,, +12) »
Suppose: V(¢ ,B4P) > V(» ,B,P) for certain B and &ll P€ SDG,

Then certeinly for those P with p 1'1 =1y p,, =0 and

Pyg =ta Dy =1



Or: for all p,, € [o,1] :
(o} 0
9P,y + 17Dy, + 16p31 +12p,, >16b1(-) +12 (1 -bi(- )) +

+b$(-) 16b:(o,1,1) +12 <1-b:(~,1,1)>]+

ST CHERERE EHEO)

and:

19p,, +17p,, * 16p,, + 32p,, = 1607(+) + 32 (1 by (e )) *
+b)(+ )| 160, (,1,1) + 32 (1 -b}(-,m))] *
+ (1 -2 (- )>E6b:(' 12,1) + 32 (1 -b:(- ,2,1)):| .

Or: 29212+4b$(-)+b?(-)‘<4b:(-,1,1)+12)+
+<1-b$(r )) <4b:(-,2,2)+12>

and s 35216[2-10:’(-)+2b;’(-)-b;’(-)b:’(-,1,1)+

+ <1 -b:)( . )> (2-b1 (e 92,1))]

Whenever this is true, then for b: (+,2,1)

1,b:(-,2,2)=0 :
0 0 1
%>b1(')+b1(')b1(’ o1e1)
1 0 1
'1—2<b1(‘)b1(-,1,1) .
However the second inequality implies:
! 1 1 1
(e ) + b2 oy (41,1) = 260( o) (0 1,1) 22,

This contradicts the first inequality. 149
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#* The next example does not satisfy (6.1) (the min-mex property

for V(j,B,P)).

4,3
‘ 2 0
=2 P=23B =1, d  =d__=0, 4, =55, d,,_ large; C= 3
11 22 21 12
54 54
= {(2 1) (292)}9 6' P” L
10
109
v
102%
103 101§
100 =TT - -
99 PN L 99
] ¢ R
v !
) 22 ' ‘ '
AN o :
55/ 5 Co :
s AN Q0 M ! -
? 54 0 R 3 i LI
{xq28)
B, end B, are such that: ’b°(2) b‘ (2,2,2) = b‘ (2,2,1) = ¢

zbf(z)a (21,2)= b(211)—1 .

For any p one of B, B, is best (sterting ins,).
1
V(2,B,,P) = Aporgg, V(2,B,,P) = gg(p - 1—1-> +—‘1‘11" .

3
max  min V{2,B,P) = v(z,B 2, ) 100,32 .
eﬁ BES3

B, satisfies: b (2) = b: (2,2,2) = 3b: (2,1,2) =

41 '

33 minimizes the meaximum prisk:
maxv(eB P)-—V(QB,sz} -i—f- o
P€/



*% An example of an admissible decision rule, which does notminie
mize V(j,B,P) for a single Pe.@c is presented next (section 5).

Aot

n=2 T=2 g=1; & =0, d =66 4 =60, a  larges
¢, =2y o, =c, =c =0 I ={(21),22} =, -5
Pyg "2 P

B,y B,y B, are such that: 'b)(2) = 'b1(2,2,2) = 1b1 (2,2,1) =1,

“n7(2) = "0} (29152) = %6} (211) = 1,

*5(2) = %b} (2,2,2) = %b](2,2,1) =1 .

Vv 125
120+
MW
110 1 ! i
] ]
24 Vo :
S, X t ' + i
Sy : b Z
VAN 0 ; v i
1  — ¢ e
= T o 1 %8 P
(=) (=3)

For any p one of B,, B,, B, is best (starting in 32).
2
-
V(2,B,,P) = 10p + 104%, V(2,B,,P) = 24(p - -g) + 107% ’
V(2,B,,P) = 24p + 101 .

B, satisfies: ‘bJ(2) = ;‘51— , 4b: (2,1,2) = “b;(z,z,z) =1 .

- £
V(2,B4,P) =137 .

,B, is sdmissible in ,fJ, but is best for no P € R
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#* Example A5 presents a situation with equal decision costs, but
no stationary sub-information decision rule which is best in Pe
sense for certain F €970 (section 7).

A.5

n=3T=2;8=1;4,=0 (ki € N)3 c, =¢, =¢, = large,
= = = - E— £ E —-2— -4

Cag = Cpp = O3 =Ty Oy =-25 0, =0y o 16 °

I, = {(1,3),(2,1),(2,2),(2,3)}, 7, = %5 F is wnifom for p,, on

0,2

[ 34]‘

B € B is optimal with respect to F, only if

B2(e) =1y (e,1,1) = b (0y1,2) =BY(e,1,3) =1 .
Wh‘ereas stationarity requires:
bI () =bl(+,1,3) .

1

*% The last example shows, that }30 € (’}@c n A) is not necesse-

rily Feoptimal for certain P € ch (section 8),

A6

2
l" = = = = oe. l 3
n~2,;3=2; T =23 d” 0, diala.rge, ':121 1y cl22 22 H
« O
R B R T R



Ba’ soe ,Bf such that:

%ﬁﬁ,u2)=1

bb:(1,1,2) =1

p2(2) = %) (2,1,2) = 1

db$(2) - db;(2,1,2) =1

ebi(z) = eb:(2,2,2) =1

be(?) = fb;(2,2,2) = 1

4

then v@ﬂwp)a-%

V(1,Bb,P) =
V(B,BC,P) =
V(2,Bd,P) =
V(?,BG,P) =

V(2,Bf,P) =

'}{o N .4 contains the following combinations:

B
1

with

with

with

with

with

with

All are admissible.

Suppose that }33 is best for certain F € ?:}, then a contradiction

and

and

and

and

and

and

B = B
21 2 ¢
B = B
22 2e
B = B
23 2°%
B = B
24 24d
B = B
2's 2 e
2Bs=2Bf

is obtained by considering the requirements:

1.

-s

-

-

s

-

we

-
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SAMENVATTING

Het onderwerp van dit proefschrift behoort tot de theorie van de
stochastische beslissingsprocessen. Fen stochastisch beslissings-
proces is een stochastisch proces dat van buiten af beinvloced kan
worden, In deze studie is het autonome proces een Markov keten
met eindig veel toestanden, terwijl de overgangswasarschijnlijk-
heden niet van de tijd afhangen. Cm bij een veel voorkomende
praktische situatie aan te sluiten, wordt niet aangenomen dat de
overgangswaarschijnlijkheden precies bekend zijn, Het proces werkt
gedurende eindig veel of (aftelbaar) oneindig veel perioden. 3Bij
de start van elke periode mag ingegrepen worden; vervolgens is er

gelegenheid voor een Markov stap.

Een beslissingsregel is een voorschrift, dat in elke mogelijk
voorkomende situatie (een situatie wordt niet uitsluitend bepaald
door de toestand op een bepaald moment, doch mede door de hele
voorgeschiedenis, want die beInvloedt onze kennis van de onbekende
overgangswaarschijnlijkheden) aangeeft hoe ingegrepen dient te
worden.

Een beslissingsregel, een starttoestand en een matrix wvan over-
gangswaarschijnlijkheden bepalen tezamen een stochastisch proces,
Dit wordt asngetoond in de paragrafen 2 en 3: in § 2 voor beslis-
gingsregels die op elk tijdstip wvan ingrijpen loting +toestaan
tussen de diverse ingrijpmogelijkhedens in § 3 voor beslissings-
regels die vé6r de start loting tosstaan tussen beslissingsregels
van het type uit § 2. In § 3 wordt voorts aangetoond, dat de

klassen van beslissingsregels met verschillende soorten loting 157



{loting alleen op de beslissingsmomenten, loting alleen bij de
start, loting zowel bij de start als 6p de beslissingsmomenten)
in wezen dezelfde verzamelingen stochastische processen opleveren.
Op grond van dit resultaat kunnen de beschouwingen verder beperkt
worden tot beslissingsregels met uitsluitend loting op de beslis~
singstijdstippen. Deze klasse wordt gekozen omdat de beslissings-
regels uit deze klasse de gunstigste mogelijkheden bieden bij de
bestudering van de eigenschappen van de resulterende stochastische
processen, bovendien zijn ze het gemakkelijkste toe te passen, De
resultaten van § 3 kumnen bovendien in volgende parasgrafen nog

enige keren nuttig worden gebruikt.

Verondersteld wordt voorts, dat aan de ingrepen {ingrijpen wil
zeggen: het systeem in een andere toestand brengen) en aan de
toestandsveranderingen ten gevolge van het autonome proces kosten
zijn toegekend: respektievelijk beslissingskosten en proceskosten.
Als kriterium voor de kwaliteit van een TDeslissingsregel wordt
ingevoerd: de verwachting van de totale {verdiskonteerde) kosten
van het stochastische proces., Deze verwachting wordt, behalve
door de gekozen beslissingsregel, bepaald door de geldende matrix
van overgangswaarschijnlijkheden en door de begintoestand van het
Proces,

In deze verkemnende studie worden eigenschappen onderzocht van
de verzameling beslissingsregels met betrekking tot de verwachie
totale kosten: de z.g. risikofunktie, In het bijzonder wordt een
aantal eigenschappen behandeld die van belang zijn voor de keuze

van een beslissingsregel.

In § 4 wordt aangetoond, dat men zich wat betreft de ingevoerde
risikofunktie, kan beperken tot het beschouwen van een deelklasse
{genzamd FR; ) van JS3 (de in § 2 geIntroduceerde klasse van be-
slissingsregels). Bij beslissingsregels uit @; worden de afszon-
derlijke ingrepen niet bepaald door de volledige geschiedenissen
158 tot en met het beslissingstijdstip, doch slechts door de start-



toestand, het tijdstip, de momentane toestand en de aantallen ge-
registreerde autonome toestan&sovergangen waarvan de bijbehorende
overgangswaarschijnlijkheden onbekend zijn. In het geval de bew
slissingskostén gelijk zijn, behoeft ook niet naar de momentane
toestand gekeken te worden (de betreffende verzameling beslis-
singsregels heet ;é‘a). |

In § 5 wordt de partiBle ordening ven de beslissingsregels bestu-
deerd, die geintroduceerd wordt door dominantie van het wrisiko
als funktie van de matrix van overgangswaarschijnlijkheden, Dege
parti&le ordening bepaalt in het algemeen geen "beste" beslisg-
singsregel, Daarvoor zijn andere kriteria nodig, Enige uit andere
problemen welbekende k;riteria, die gebaseerd zijn op de wrisiko-
funktie, worden behandeld. Nemelijk: maximum risiko en maximum
spijt (regret) in § 6; gewogen risiko in § 7.

Voor maximum risiko en maximum spijt bestaan optimale beslissings-
regels uit ﬁo. Als de beslissingskosten gelijk =zijn, is wvoor
beide kriteria een besliss}_ngaregel uit £0 optimaal ("{c bevat
de beslissingsregels uit "{c waarbij niet naar de starttoestand
gekeken wordt voor de momentane ingrepen).

Bij het kriterium “"gewogen risiko" bestaat een optimale Dbeslis-
singsregel uit 'Rc waarbij nergens geloot wordt., Als T =co is er
een optimale beslissingsregel met een zekere mate van tijdsonaf-
hankelijkheid. Dit is cok het geval als de beslissingskosten ge-
1ijk zijn en bovendien de bekende overgangswaarschijnlijkhedeh
volledige rijen in de Markov matrix vullen, Tevens wordt de struke-
tuur ven optimale beslissingsregels aahgegeven.

ledere beslissingsregel waarvan-bij een gegeven begintoesténd. het
risiko als funktie van de Markovmatrixniet dbor. de risikofunktie
van enige andere beslissingsregel gedomineerd wordt, is optimsal

voor zekere weging van de mogelijke Markov matrices (§ 8).
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STELLINGEN
behorende bij het proefschrift ven J. Wessels,

1. Door het invoeren van een belastingfunktie voor schendingen
van de beperkingen, kunnen verschillende typen van stochastische
programmeringsproblemen venuit één gezichispunt worden beschouwd.

J. Wessels, Stochastic pro
Statistica Neerlandica 21 ?967) 39 53,

2. Ten onrechte beweert D.J. Wilde, dat de methode van de con~
tourraakvlakken om het maximum te vinden van een differentieer-
bare, sterk eentoppige funktie op een begrensd gebied een iij
punten oplevert die naar het maximumpﬁnt konvergeert, als bi]
iedere stap het door hem gedefinieerde middenpunt van het overge-
bleven gebied wordt gekozen en dit middenpunt 1in het inwendige
van het overgebleven gebied ligt.

D.J, Wilde, Optimization by the Method of Contour

Tangents.
&£.I.Ch.E.-Journal 9 {1963) 186 - 190.

3. De cerste inbeddingsstelling ven Sobolev geldt voor open ge-
bieden in R" die voldoen aan een eenvoudige kegelvoorwaarde.
Dit volgt reeds op betrekkelijk elementaire wijze uit de oor-
spronkelijke uitsprask van S.L. Sobolev voor begrehsée open ster-
vormige gebieden,

8.L. Sobolev, Einige Anwendungen der Funkitional-Analysis

auf Gleichungen der Mathematischen Physik.
Akademie~Verlag, Berlin 1964,



4. 7ij K een deelverzameling van R".

Voor x € R" wordt de verzameling A(x) van bereikbare richtingen
gedefinieerd als de verzameling van alle a € Rn, waarvoor - als a
niet de nulvektor is - een n-vekiorwsardige funktie ¥ wvan éen
re8le variabele 6 bestaat, zodat:

¥(0)=x en ¥(O)#x als 640 ,
terwijl voor gzekere © ’ > O
¥{6) € X als 0<8 <o, H

¥ heeft in © = O een rechterafgeleide en wel:

lim \I‘_f__)___‘e‘-xga

8lo 0

Als er een konvexe verzameling Kc ¢ K bestaat met io = f(, dan is
A(x) voor iedere x € B een gesloten en konvexe kegel.

% 5. Bij het berekenen van de kansverdeling voor de werkingsduur
van een systeem uit de kansverdelingen voor de werkingsduur van
de samenstellende komponenten, kanmen soms op nuttige en elegante
wijze gebruik maken van de theorie van de Markov processen.

Het verdient echter geén aanbeveling om, zoals G.H. Sandler doet,
op deze wijze te werk te gman bij problemen die ook eenvoudig op
te lossen zijn met behulp van elementaire kansrekening,

G.H. Sandler, System reliability engineering.
Prentice-Hall, Englewood Cliffs 1963,

><6. Stel in een systeem worden komponenten van een bepaald +type

) toegepest. Aangenomen wordt dat voor de levemsduur van de kompo=-
nenten vermoeidheid door langdurige belasting geen rol speelt: de
"conditional failure rate" A op tijdstip t hangt slechts af wvan
de momentane belasting b{t), dus A = A(b{(t)) (voor terminologie
zie bv. het bij de vorige stelling genocemde boek van G.H.Sandler)
In het systeem kunnen deze komponenten op +twee manieren worden .

toegepast:



Bij methode A wordt steeds één exemplaar belast en dit wordt ver-
vangen zodrs het faslts totaal mogen n exemplaren gébruikt worden.

" Bij methode B worden n exemplaren parallel geschakeld en gelijk-~
tijdig belast; stel: als de belasting ven het systeem b(t) be~
draagt en er nog k exemplaren werken ig de ‘“conditional failure
rate" van elk van deze exemplaren gelijk aan a.k?\(b(t)).

De kansg dat het systeem op tijdstip t nog werkt bedraagth:

1) bij methode A en bij methode B als alle ke, gelijk (en dus= 1)

zijns

RO R I N
j=o '

2) bij methode B als alle kak =0 verschillend zijn:

n -ockA(t) noa,
a e , Wwaarin = I .
k=1 B Ei o=1 %27 %
A
t .
Hierin is A{t) = f Ab(T))dT ; dearbij wordt sangenomen dat deze

0
' integraal voor elke t > O bestaat.

7. Van de beide volgende uitspraken verdient de eerste de voor-
keurs

"de kens dat geen verjaardagen samenvallen is reeds kleiner dan
een half bij een groep van 23 door loting asangewezen personen';
"de kans dat geen verjaardagen samenvellen is nog groter dan een
half bi] een groep ven 22 door loting asngewezen personen”.

8. Bij stochastiasche beslissingsprocessen waarvan het kensmecham
nisme onvolledig gespecificeerd is, verdient, ter verkrijging van
een opiimaliteitskriterium, een Bayesisanse behandeling van de

gekozen risikofunktie overweging.



9, laat fH o (p regel, o >0) de kansdichtheid =zijn die een
? .

normale verdeling karakteriseert met als verwachtingen standaard-

afwijking respektievelijk p en o.Stel 0 < p < 1. De kansdichtheid

h wordt gedefinieerd door:

h(x) = pfu’,%(x) + (1—p)fu2,dz(~x}‘ o,

Als p, O.5 9, ,
[0, ), dan is h op den duur tweetoppig. Echter, het kan voorkomen

vast gekozen zijn en p 1= By doorloopt het interval

dat h eerst een stuk eentoppig is, dan tweetoppig, vervolgens weer
eentoppig en dearna pas definitief tweetoppig.
Jo Wessels, Bmitimodality in a family of probability
densities, with application %o & linear mixture of two

normal densities.
Statistica Neerlandica 18 (1964) 267 - 282,

10. In § 7 van dit proefschrift wordt bewezen, dat bij een gegeven
gewichtsfunktie op de parameterverzameling f‘; een sub-informatie
beslissingsregel bestaat die optimeal is. Bovendien wordt aange-~
toond, dat er een dergelijke beslissingsregel is die wexrkt met
zuivere strategie&n, Het laatste is een nevenresultaat bij het
bewijs van het eerste. De existentie bij een gegeven gewichis=-
furnktie op fg van een optimale beslissingsregel met zuivere stram
tegiedn kan ook worden bewezen met behulp van de resultaten over

gemengde beslissingsregels in § 3 van dit proefschrift.

1. Invoering van het onderwerp Statistiek in het wiskunde pro-
gramms van het Voorbereidend Wetenschappelijk Onderwijs is wense-~
1ijk ter demonstratie van de basis van elke empirische wetenschaps:
de mogelijkheid te ocordelen over de waarde van -een theorie op

grond van waarnemingsmaterisal,



