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Abstract. Exploring a graph through search is one of the most basic
building blocks of various applications. In a setting with a huge state
space, such as in testing and verification, optimizing the search may be
crucial. We consider the problem of visiting all states in a graph where
edges are generated by actions and the (reachable) states are not known
in advance. Some of the actions may commute, i.e., they result in the
same state for every order in which they are taken (this is the case
when the actions are performed independently by different processes).
We show how to use commutativity to achieve full coverage of the states
while traversing considerably fewer edges.

1 Introduction

In many applications one has to explore a huge state space using limited resources
(such as time and memory). Such applications include software and hardware
testing and verification [4], multiagent systems, games (e.g., for the purpose of
analyzing economic systems), etc. In such cases, it is obviously important to
optimize the search, traversing only the necessary states and edges.

In this paper, we consider the problem of searching a large state space, where
transitions between states correspond to a finite number of actions. We do not
assume that the entire system is given to us as an input. Rather, we are given
an initial state, and a method to generate states from one another. More specif-
ically, for each state, there can be one or more actions available from this state.
Executing an available action leads to another state. Also, we are given a fixed
independence relation on actions: if two actions are independent, then executing
them in any order from a given state leads to the same state. It is easy to model
many of the problems in the above-mentioned application areas in this frame-
work (we provide specific examples later in the paper). Traversing an edge and
checking whether it leads to a new state has a cost. Hence, we want to predict if
an edge is redundant (i.e., leads to a state that we have already visited or that
we will necessarily visit in the future) without actually exploring it. Exploring
fewer edges may also reduce the size of the search stack, and in particular re-
duce the memory consumption. Intuitively, the independence relation between
actions should be useful here: if two sequences of actions lead to the same state,
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it suffices to explore one of them. Of course, it will defy our goal to use a lot of
overhead, both in terms of time and space spent computing the subset of edges
to be explored.

The main contribution of this paper is an efficient state space search algorithm,
which we call commutativity-based edge-lean search (CBEL). Our algorithm se-
lects a total order on actions, extends it to paths (i.e., sequences of actions) in a
natural way, and only explores paths that cannot be made smaller with respect
to this order by permuting two adjacent independent actions. The proof that
combining this simple principle with depth-first search ensures visiting all states
turns out to be quite non-trivial (see Section 3). Another approach, which is
inspired by trace theory [11,12], is to only consider paths that correspond to
sequences in trace normal form (TNF) (defined later in the paper). This method
provides a more powerful reduction than the one described above, as it only ex-
plores one sequence in each trace. In Section 4, we investigate this idea in more
detail, describing an efficient data structure (called summary) that supports this
search technique. We prove that the TNF-based algorithm is guaranteed to visit
all states as long as the underlying state system contains no directed cycles. Un-
fortunately, if the state system is not loop-free, this algorithm may fail to reach
some of the states: we provide an example in Section 4. While this limits the
scope of applicability of this algorithm, many state systems, especially the ones
that arise from game-theoretic applications, are naturally acyclic. Whenever this
is the case, the TNF-based algorithm should be preferred over the algorithm of
Section 3.

A related approach is the family of partial order reductions [13,5,14]. As op-
posed to our algorithms, in general these methods — known as ample sets,
persistent sets, or stubborn sets, respectively, — do not preserve the property of
visiting all the states, but guarantee to generate a reduced state space that pre-
serves the property that one would like to check. Our algorithms are most closely
related to the sleep set approach of [5], in particular, the non-state-splitting sleep
set algorithms. In Section 5, we show that our TNF-based algorithm generates,
in fact, exactly the same reduced graph as the very first version of the sleep set
algorithm proposed in [6] (when edges are explored according to a fixed order
between actions). The counterexample of Section 4 (see Figure 1) can therefore
be seen as an explanation why in the presence of cycles, all existing sleep set
algorithms have to use additional techniques to visit all states. In particular,
the algorithm of [7] generates and checks back-edges, and discards them when
redundant, thus paying the cost of checking some of the redundant edges. A
fix suggested in [5,13] requires splitting nodes into several copies, which may
increase the number of effective states. Surprisingly, our edge lean algorithm
achieves a full coverage of the states without incurring these costs, and even in
the presence of cycles.

An obvious application area for this technique is model checking and verifica-
tion, but it can be useful in many other domains as well (see the full version of
the paper [2]) To illustrate this, in Section 6 we describe an example from bioin-
formatics where one can use this method. In Section 7, we provide the results of
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several experiments that compare our algorithms with classical depth-first search
used in SPIN [9]. Our experiments show that for a number of natural problems,
our methods provide a dramatic reduction in the number of edges explored and
the stack size.

2 Preliminaries

A system is a tuple A = 〈S, s0, Σ, T 〉 such that

– S is a finite set of states.
– s0 ∈ S is an initial state.
– Σ is the finite alphabet of actions.
– T ⊆ S × Σ × S is a labeled transition relation. We write s

a−→ s′ when
(s, a, s′) ∈ T .

– A symmetric and irreflexive relation I ⊆ Σ × Σ on letters, called the inde-
pendence relation. We require that independent transitions a I b satisfy the
following diamond condition for every state s:

If s
a−→ q

b−→ r then there exists q′ ∈ S such that s
b−→ q′ a−→ r. In

this case, we say that the system has the diamond property.
Note that we do not require the other common diamond condition:

If s
a−→ q and s

b−→ q′ then there exists r ∈ S such that s
a−→ q

b−→
r.

An action a is enabled from a state s ∈ S if there exists some state s′ ∈ S such
that s

a−→ s′. We say that a path ρ = s0
a1−→ · · · an−→ sn is loop-free or simple if

si �= sj for all i �= j. Its labeling is �(ρ) = a1 · · · an.

Definition 1. Let σ, ρ ∈ Σ∗. Define σ
1≡ρ iff σ = uabv and ρ = ubav, where

u, v ∈ Σ∗, and a I b. Let σ ≡ ρ be the transitive closure of the relation
1≡. This

equivalence relation is often called trace equivalence [11].

That is, ρ is obtained from σ (or vice versa) by commuting the order of an
adjacent pair of letters. For example, for Σ = {a, b} and I = {(a, b), (b, a)} we

have abbab
1≡ababb and abbab ≡ bbbaa. Notice that if the system has the diamond

property and u ≡ v, then s
u−→ r iff s

v−→ r.
Let 	 be a total order on the alphabet Σ. We call it the alphabetic order.

We extend 	 in the standard lexicographic way to words, i.e., v 	 vu and
vau 	 vbw for v, u , w ∈ Σ∗, a, b ∈ Σ and a 	 b.

All the search algorithms to be presented are based on depth-first search
(DFS), which provides a space complexity advantage over breadth-first search:

proc Dfs(q);
local q’;
hash(q);

forall q
a−→ q′ do

if q′ not hashed then Dfs(q’);
end Dfs;
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3 An Edge Lean Algorithm for Complete State Coverage

A key idea to reduce the number of explored edges is to make use of the diamond
property, defined in the previous section.

Definition 2. Let w ∈ Σ∗. Denote by w̃ the least word under the relation 	
equivalent to w. If w = w̃, then we say that w is in trace normal form (TNF) [12].

As w̃ ≡ w, any state that can be reached by a path labeled with w can also be
reached by a path labeled with w̃. Therefore, it is tempting to limit our attention
to paths labeled with words in TNF, as such paths do explore all reachable states.
However, one has to use caution when applying this approach within the depth-
first search framework (see Section 4). The main reason for this is that all paths
explored during depth-first search are necessarily acyclic. Hence, by using this
method, we only consider paths that are both acyclic and labeled with words
in TNF. On its own, neither of these restrictions prevents us from reaching all
states. Unfortunately, it turns out that combining these limitations may result in
leaving some states unexplored; we provide an example in Section 4. Therefore,
for general state systems we have to settle for a less ambitious reduction. In what
follows, we define a smaller relation on strings in Σ∗, and prove that it suffices
to explore paths whose labeling is minimum with respect to this relation.

Set ubav �1 uabv if and only if a I b and a 	 b and let � be the transitive
closure of �1. We say that a word w ∈ Σ∗ is irreducible if there exists no
w′ �= w such that w � w′. Intuitively, this means that w cannot be reduced,
i.e., transformed into a smaller word with respect to �, by a local fix (a single
permutation of adjacent independent letters). We call a path ρ irreducible if its
labeling �(ρ) is an irreducible word. Observe that a prefix of an irreducible path
is also irreducible. Notice that if w is in TNF, then it is irreducible. The converse
does not necessarily hold.

Our algorithm EdgeLeanDfs explores some irreducible paths in depth-first
manner. For this, it suffices to remember the last letter a seen along the current
path, and not to extend it with letter b whenever a I b and b 	 a.

EdgeLeanDfs(s0,ε);

proc EdgeLeanDfs(q,prev);
local q’;
hash(q);

forall q
a−→ q′ such that prev= ε or ¬(aIprev) or prev	 a do

begin
if q′ not hashed then EdgeLeanDfs(q’, a);

end EdgeLeanDfs;

Let first cbel(s) be the first path by which EdgeLeanDfs(s0, ε) reaches the
state s; if EdgeLeanDfs(s0, ε) does not reach s, set first cbel(s)=⊥.

Theorem 1. For any s ∈ A, we have first cbel(s) �= ⊥, i.e., our algorithm ex-
plores all states. This implies that EdgeLeanDfs(s0, ε) is correct.
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Proof. To prove Theorem 1, we fix a state s, and show that EdgeLeanDfs(s0, ε)
reaches this state. To do so, we start with an arbitrary simple irreducible path
in the state graph that reaches s (we show that such path always exists) and
repeatedly apply to it a transformation T , defined below. This transformation
produces another simple irreducible path that also leads to s. We show that
for any ρ for which T (ρ) is defined, an application of T results in a path that
is smaller than ρ with respect to a certain well-founded ordering, defined later.
Therefore, after a finite number of iterations, we obtain a simple irreducible path
ρ such that T (ρ) is not defined. We then prove that any such ρ is a path taken
by EdgeLeanDfs(s0, ε), i.e., s is reached by our algorithm. The details follow.

For any simple path ρ and any state t on this path, we denote by ρt the prefix
of ρ that reaches t; in particular, ρs is a simple path that reaches s. We will now
show that we can choose ρs so that it is irreducible.

Claim 1. For any path ρs, there exists a path ρ′s that is simple and irreducible.

Proof. We iteratively (1) delete loops and (2) rearrange the labels to obtain
an irreducible path. Each application of (1) strictly decreases the length of the
path, while (2) does not change its length. The path obtained also leads to s.
We obtain a simple irreducible path after a finite number of iterations.

Given a simple path ρ that reaches s, all states on ρ can be classified into three
categories with respect to ρ: we say that a state t is red if first cbel(t)= ρt,
blue if first cbel(t)�= ⊥, but first cbel(t)�= ρt, and white if first cbel(t)= ⊥. This
classification depends on the path ρ: a state can be red with respect to one
path but blue with respect to a different path. It turns out that for a simple
irreducible path, not all sequences of state colors are possible.

Lemma 1. Suppose that ρs is loop-free and irreducible. Then if t is the last red
state along ρs, all states that precede t on ρs are also red. Moreover, either t is
the last state on ρs, i.e., t = s, or the state t′ that follows t on ρs is blue.

Proof. The first statement of the lemma follows from the definition of a red state
and from the use of depth-first search. To prove the second statement, assume
for the sake of contradiction that t′ is white (t′ cannot be red as t is the last
red state on ρs). The path ρt′ is a prefix of ρs, so it is simple and irreducible.
Hence, EdgeLeanDfs(s0, ε) must explore the transition that leads from t to t′.
Therefore, t′ cannot be white.

We define a transformation T that can be applied to any simple irreducible path
ρ = ρs that contains a blue state; its output is another simple irreducible path
that reaches the same state s. Recall that �(π) denotes the labeling of a path π.
The transformation T consists of the following steps (w and v appear only for a
later reference in the proof):

(1) Let ρt be the shortest prefix of ρ such that t is blue. Decompose ρ as ρ = ρt σ.
Modify ρ by replacing ρt with first cbel(t), i.e., set ρ=first cbel(t)σ. Set
w = y = �(first cbel(t)), v = z = �(σ) and x = yz = �(ρ).



On Commutativity Based Edge Lean Search 163

(2) Eliminate all loops from ρ. Update x, y, and z by deleting the substrings
that correspond to these loops.

(3) Replace ρ with an equivalent irreducible path as follows.
(3a) Replace z with an equivalent irreducible word.
(3b) Let a be the last letter of y, and let b be the first letter of z. If a � b

and a I b, move a from y to z and push it as far to the right as possible
within z.

(3c) Repeat Step (3b) until the last letter a of y cannot be moved to z, i.e.,
a 	 b or a and b are not independent.

(3d) Set x = yz, and let ρ be a path reaching s with �(ρ) = x.
(4) Repeat (2) and (3) until ρ is simple and irreducible.

By the argument in the proof of Claim 1, we only need to repeat Steps (2)
and (3) a finite number of times, so the computation of T terminates. Observe
that if s is red with respect to ρs, then T (ρs) is not defined. On the other hand,
consider a simple irreducible path ρs such that s is not red with respect to ρs. By
Lemma 1, we can apply T to ρs. The output of T (ρs) is loop-free and irreducible,
so if s is not red with respect to T (ρs), we can apply T to T (ρs). We will now
show that after a finite number of iterations n, we obtain a path T n(ρs), which
consists of red states only.

Definition 3. For a word v ∈ Σ∗, let �a(v) be the number of occurrences of the
letter a in v. We write v <� w if there exists a letter a such that for all b 	 a,
�b(v) = �b(w) and �a(v) < �a(w).

Claim 2. The relation <� is a well-founded (partial) order, i.e., there does not
exist an infinite sequence u1, u2, . . . , ui ∈ Σ∗ such that u1 >� u2 >� . . . .

Consider a simple irreducible path ρ = ρs. Suppose that both ρ and T (ρ) contain
blue states.

Lemma 2. Let ρ = ρtσ, where t is the first blue state on ρ, and let T (ρ) = ρ′t′σ′,
where t′ is the first blue state on T (ρ). Let v = �(σ), v′ = �(σ′). Then v >� v′.

Before we prove the lemma, let us show that it implies Theorem 1. Indeed,
by Claim 2, there does not exist an infinite decreasing sequence of words with
respect to <�. The strings v, v′ satisfy v′ <� v, and are well-defined as long as
both ρ and T (ρ) contain blue states. Hence, for some finite value of n, T n(ρ)
contains no blue states, it is simple and irreducible. Therefore, by Lemma 1 we
obtain a path of our algorithm that reaches s. We now prove Lemma 2.

Proof. We use the notation introduced in the description of T : we have w =
�(first cbel(t)), v = �(σ), and x = wv = �(ρ) after ρt was replaced by first cbel(t).

In the rest of the proof, we abuse notation by using the word ‘letter’ to refer
both to an element of Σ and an occurrence of this element in a word. The specific
meaning will be clear from the context. In particular, we will assign colors to
occurrences of the elements of Σ rather than the elements itself, whereas when
we write a 	 b, we refer to the respective elements of Σ.
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Let us color all the letters in the word wv so that all letters in w are yellow
and all letters in v are green. By construction at any point in time all letters in y
are yellow, and therefore all letters pushed into z during Step (3) are yellow. We
construct a directed acyclic graph (DAG) whose set of nodes includes all yellow
occurrences of letters in z as well as some of the green occurrences of letters.
Namely, if a yellow letter a gets pushed into z when the first letter of z is b, there
is an edge from this occurrence of a to this occurrence of b. Also, if a (yellow
or green) letter a that is currently the first letter of z gets transposed with its
right-hand side neighbor b (by (3a)), there is an edge from this occurrence of a
to this occurrence of b. Observe that in both cases if there is an edge from an
occurrence of a to an occurrence of b, then we have b 	 a, so our graph contains
no directed cycles. We do not delete a node from this graph even if the respective
occurrence is deleted from x by (2).

Claim 3. Each yellow letter pushed into z has an outgoing edge. Moreover, if
a letter has incoming edges, but no outgoing edges, either it has been eliminated
from x, or it is the first letter of z after the execution of T is completed.

Proof. Each yellow letter acquires an outgoing edge as it is moved into z. Now,
consider a letter that has incoming edges. It acquired them either when it was the
first letter of z and yellow letters were pushed past it, or when it was transposed
with its left-hand side neighbor and became the first letter of z. In both cases, it
was the first letter of z at some point in time. If it remains in that position till
the end of the execution of T , we are done. Now, suppose that it stopped being
the first letter of z. Then either it was deleted during loop elimination phase, in
which case we are done, or it was transposed with its right-hand side neighbor,
in which case it acquired an outgoing edge. [Claim 3]

Let G be the set of nodes of our DAG that have incoming edges, but no outgoing
edges. By Claim 3 none of the letters in G is yellow, so all of them are green.
Moreover, each letter in G either has been eliminated from x or is the first letter
of z after the end of the execution of T .

Consider the string x = yz obtained after the end of the execution of T . This
string corresponds to ρ′ = T (ρ). Recall that w corresponds to first cbel(t), which
consists of red states only, and y is a prefix of w. Hence, the prefix of ρ′ that
corresponds to y reaches a red state. Therefore, to reach a blue state along ρ′,
we need to progress over at least one letter of z, or, equivalently, v′ is a strict
suffix of z, that is, v′ does not include the first letter of z. Using Claim 3, we
conclude that v′ does not contain any of the letters in G.

Let a be the minimal (for 	) letter of G. It is contained in v, but not in v′.
On the other hand, each letter c that is contained in v′, but not in v, is a yellow
letter that appears in the DAG, that is there is a path of the DAG leading from
c to some b ∈ G. By construction of the graph, the existence of a path from c to
b implies c � b, and hence c � a. Hence, for all b in v′ with b 	 a or b = a, b is
green, hence �b(v′) ≤ �b(v), and a ∈ G is in v but not in v′, hence �a(v′) < �a(v),
that is v′ <� v. [Lemma 2,Theorem 1]
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4 An Efficient Reduction for Cycle Free State Spaces

It can be argued that the reduction of Section 3 is not optimal: let a 	 b 	 c,
a I b, b I c and ¬(a I c). Let x = cab and y = bca. Then we have x ≡ y, i.e., the
states reached after x and y are the same. However, both x and y are irreducible,
since a 	 b and ¬(a I c). Therefore, the algorithm of Section 3 will explore both
of the paths labeled by x and y.

In this section, we describe an algorithm TNF Dfs(s0) that only explores
paths labeled with words in trace normal form. This algorithm often provides
a significant reduction in the size of stack needed, both compared to DFS and
EdgeLeanDfs. For acyclic state spaces, TNF Dfs(s0) explores all states. However,
it may not be the case in general. In the end of this section, we provide an ex-
ample in which some of the states are not reached. Denote by α(σ) the set of
letters occurring in σ.

Definition 4. A summary of a string σ is the total order ≺σ on the letters from
α(σ) such that a ≺σ b iff the last occurrence of a in σ precedes the last occurrence
of b in σ. That is, σ = vaubw, where v ∈ Σ∗, u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

Our reduction will be based on generating paths that are in TNF. The proofs of
the following two lemmas can be found in the full version of the paper [2].

Lemma 3. Let σ ∈ Σ∗ be in TNF and a ∈ Σ. Then σa is not in TNF if and
only if σ = vu for some v, u such that (i) vau ≡ vua and (ii) vau 	 vu.

Intuitively, Lemma 3 means that we can commute the last a in vua backwards
over u to obtain a string that is smaller in the alphabetic order than vu. The
following lemma shows how we can use a summary to decide whether σa is
in TNF. It implies that it suffices to consider the suffix of the summary that
commutes with a, and look among these letters for one that comes after a in the
alphabetic order.

Lemma 4. Let σ ∈ Σ∗ in TNF and a ∈ Σ. Then σa is not in TNF if and only
if there is a b ∈ α(σ) such that a 	 b and for each c such that b �σ c, aIc.

To perform a reduced depth-first search (DFS) that only considers strings in
TNF, we store the summary in a global array summary[1..n], where n = |Σ|.
The variable size stores the number of different letters in the current string σ.
We update the summary as we progress with the DFS, and recover the previous
value when backtracking, i.e., the value of the summary is calculated on the fly
and not stored with the state information.

The reduced DFS procedure TNF Dfs(s0) considers all transitions enabled at
the current state. For each of them, it checks whether the current string aug-
mented with this transition is in TNF. This is done through a call to the function
normal, which checks the summary, according to Lemma 4. The pseudocode de-
scription of auxiliary functions used by TNF Dfs can be found in [2].
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s0

s1 s2 s3 s4
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bb b b bb
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a

Fig. 1. A state space for which TNF DFS does not explore every state

proc TNF Dfs(q);
local q’, i;
hash(q);

forall q
a−→ q′ in increasing 	-order do

if normal(a) and q’ not hashed then
i:=ord(a);
update sumr(i,a);
TNF Dfs(q’);
recover sumr(i,a);

end TNF Dfs;

Theorem 2. Given an acyclic state space A, the algorithm TNF Dfs(s0) visits
all states of A.

Proof. We show that every state s is reached by the path first(s), where first(s)
stands for the path labeled by the minimal (for 	) word reaching s. Clearly,
first(s) is in TNF. By contradiction, if it is not the case, take the state with the
smallest first(s) such that s is not explored by first(s). Then first(s) = ua, with
u reaching t with u 	 first(s), hence u = first(t). When considering a, ua is in
TNF and acyclic, hence s will be reached by ua = first(s), and since first(s) is
minimal for 	, no other path that reaches s has been considered before.

Unfortunately, for graphs that contain cycles, the conclusion of Theorem 2 is no
longer true since ua and the minimal word reaching s may have loops. Figure 1
provides an example of a (diamond closed) graph that is not fully covered by
the TNF algorithm (and hence, as shown in the next section, neither by the
SleepSetsDfs version of the sleep set algorithm). The nodes, except s6, are or-
dered in the order in which they are discovered. The node s6 is not discovered.
The alphabet is {a, b, c, z}, with the ordering a 	 b 	 c 	 z. The indepen-
dence relation is given by b I a, b I c. Consequently, z depends on every other
letter a, b, c, and a, c are dependent. The state s6 can only be visited through
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s3 and s5, with first(s3) = bca and first(s5) = bcazb. Neither bcab (≡ bbca)
nor bcazba (≡ bcaaab) is in TNF (but note that bcab is irreducible, as required
by EdgeLeanDfs), hence s6 is not visited. On the other hand, s6 is visited by
EdgeLeanDfs.

5 TNF Dfs and Sleep Sets

In the full version of the paper, we explore the relationship between the algorithms
of Sections 3 and 4, and the sleep set approach [5]. Here, we show that the most
straightforward version of the sleep set approach [6] is equivalent to TNF Dfs.

proc SleepSetsDfs(s,sleep);
local s′, current;
current:=sleep;
hash(s);

forall a �∈ sleep, s
a−→ s′ do

begin
if s′ not hashed then

SleepSetDfs(s′,current \{b | ¬(b I a)});
current := current ∪ {a};

end;
end SleepSetsDfs;

Lemma 5. Assume that both TNF Dfs and SleepSetsDfs use the same alpha-
betic priority order 	. Then from any given state s during the search they explore
exactly the same successors.

Proof. Consider an action a that is in the sleep set of a state s. Suppose that
s is reachable from the initial state via a path labeled with σ in TNF. Then σ
can be decomposed as σ = vu so that there is a state t reached from s0 via v, a
has been taken from t, and all the letters in u are independent of a. According
to the priority 	, we have a 	 u. Thus, if a is in the sleep set of s, according
to Lemma 3, σa cannot be in normal form.

Conversely, assume that TNF Dfs does not take a transition labeled with a
after a state s, where the path on the stack is labeled with σ. This is because σa
is not in normal form. As per Lemma 3, let u be the longest suffix of σ such that
σ = vu, vau ≡ vua and vau 	 vu. Let t be the state reached after v. Then a is
enabled from t. Now, consider the sleep set algorithm. If a is taken from t, it will
be taken before the first letter of u, according to the lexicographic order priority
(since a 	 u). Then a must be in the sleep set of s, and thus is not taken from
it. Since a is enabled at t, if a is not taken from t, it must be because a is in the
sleep set when we reach t. But this means that there is a longer suffix u′ of σ
such that a is independent of u′, and a 	 u′, a contradiction to the maximality
of u.
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6 Applications

The idea of speeding up state-space search by using independence relation be-
tween actions is well-known in the model-checking community. In this section,
we present an example motivated by bioinformatics, where one can also apply
this technique. In [2], we provide examples from other domains such as voting
theory, cellular automata theory and auction theory.

Mining Maximal Frequent Itemsets. Mining maximal itemsets is an impor-
tant problem in data mining (e.g. [8]) with various applications in other areas
like, for instance, bioinformatics [10]. We assume a set I = {i1, i2, . . . , im} of m
distinct items and a database of n transactions D = t1, t2, . . . , tn. Each transac-
tion is a subset of I. Let X ⊆ I. We define the support σ(X) of X as the number
of transactions in which X occurs as a subset. A set is frequent iff σ(X) ≥ minsup ,
with some minimum support value minsup . A frequent set is maximal if it is not
a subset of any other frequent set. The algorithm for generating all maximal
frequent sets [8] is a backtracking algorithm that, beginning with an empty set,
builds frequent sets by adding one item at a time. An item is added to the
current (frequent) set only if the new set that is obtained is frequent too. The
algorithm generates a state space whose states are frequent sets. The transitions
correspond to the actions of adding a new item to the set. The choice which
item will be added to the set is obviously non-deterministic. Two actions are
independent if they add items that are contained in all sets of the database. The
maximal frequent sets correspond to “deadlock” states, i.e., states (sets) that
cannot be further extended. Since added items are never removed from a set the
state space graph is acyclic. A variant of this algorithm is applied in bioinfor-
matics for finding similarities between biological networks [10]. For this purpose
the original problem is transformed into a one of finding maximal subgraphs in
a collection of undirected graphs. The graphs are represented as sets of edges,
therefore there is a one-to-one correspondence with the original problem (edges,
graphs, collection of graphs, vs. items, sets, database, respectively).

7 Experiments

We implemented the algorithms EdgeLeanDfs and TNF Dfs from Sections 3 and 4
in the tool Spin [9]. We tested state space generation of examples from the lit-
erature. The results are shown in Table 1: The columns correspond to regular
depth-first search, the edge lean algorithm, and the TNF-based algorithm, re-
spectively. For each example we give the number of states and edges explored,
and the maximal size of the stack, in unit, thousands (K) and millions (M). The
first two examples, DMSnoCC and DMSwithCC, are models of system-on-chip
designs of a distributed memory system on message passing network without
and with cache coherency, respectively( [1]). The examples RW1, RW4, and
RW6 are models of various instances of the so-called Replicated Workers prob-
lem described in [3]. The rest of the models are from the test suite that comes
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Table 1. Experimental Results

Spin with regular DFS Spin with EdgeLeanDfs Spin with TNF Dfs
model states edges stack states edges stack states edges stack

DMSnoCC 229M 1009M 26M 229M 296M 47,3K 229M 265M 32,2K
DMSwithCC 132M 541M 18,9M 132M 174M 384K 132M 151M 29,2K

RW1 181K 852K 2219 181K 409K 1224 181K 339K 360
RW4 263K 1.1M 2253 263K 558K 1247 263K 462K 625
RW6 11.5M 65.6M 827K 11.5M 59.6M 784K 9.9M 41.3M 148K

petersonN 25362 69787 5837 25362 28855 1035 25362 28328 632
pftp 207K 604K 3077 207K 480K 2578 207K 473K 2824

snoopy 62179 213K 6877 62179 193K 5670 62179 192K 5546
leader 38863 158K 113 38863 51565 112 38863 51565 113
sort 374238 1.53M 177 374238 413K 176 374238 413K 177

with the standard distribution of Spin. We observed in only one case (RW6) a
difference between the number of states generated by EdgeLean and TNF.

In most of the experiments, both of our algorithms explore roughly the same
number of edges, considerably fewer than regular depth-first search. With respect
to the stack size (and thus memory consumption), our algorithms are up to a
thousand times better than regular DFS. Also, on many examples TNF uses
much less space than EdgeLean, but the converse is never the case.
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