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Abstract

This short contribution describes the scientific programme “Ran-
dom Dynamics in Spatially Extended Systems” that is supported by
the European Science Foundation. In this programme, which runs over
the period 2002-2006, 13 European countries participate. The main
activities of the programme are listed, and a brief sketch is given of
some of the main developments and future challenges in each of the
eight research themes the programme is targeting.
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1 Activities

Random Dynamics in Spatially Extended Systems (RDSES) is a sci-
entific programme that is running with the support of the European Science
Foundation (2002-2006). The programme centres around mathematical sta-
tistical physics. Spatially extended systems consist of a large number of
components that interact locally but that may nevertheless exhibit a global
dependence, resulting in anomalous fluctuation phenomena and phase tran-
sitions. The main goal of the programme is to study the random dynamics,
acting on the components of such systems, through the application of space-
time scaling arguments and probabilistic limiting techniques. The challenge
is to give a precise mathematical treatment of the interesting and complex
physical phenomena that arise from this random dynamics.

RDSES focusses on the following eight research themes in equilibrium and
non-equilibrium statistical physics:

Gibbsian vs. non-Gibbsian spin systems.

Polymers and self-interacting random processes.

Interfaces and surface phenomena.

)
)
)
(d) Disordered media.
) Relaxation to equilibrium and metastability.
) Hydrodynamic behaviour of conservative systems.
) Entropy production and fluctuations far from equilibrium.
)

Granular media and sandpile dynamics.
In total 13 European countries are participating in RDSES:

Austria, Belgium, Czech Republic, Denmark, Finland, France, Ger-
many, Hungary, Netherlands, Poland, Sweden, Switzerland, United
Kingdom.

Each country has a representative on the steering commitee, which oversees
the development of the programme. Chair: F. den Hollander.

The main activities of the programme are:



(1)

Visitor exchange: short scientific visits of 1-2 weeks. A call is
sent out 4 times a year to some 120 junior and senior researchers. So
far 50 applications have been granted. Special care is taken that the
call reaches young people.

Workshops: 3-5 day meetings on topics selected by the steer-
ing committee. Since the start, 10 workshops have been supported
throughout Europe:

e Constructing Non-FEquilibrium Statistical Mechanics
(November 2002, Leuven, Belgium);
e Statistical Mechanics and Probability Theory
(March 2003, Marseille, France);
e Random Walks in Random Environments
(August 2003, Cambridge, United Kingdom);
e Random Matriz Theory
(September 2003, Gregynog Hall, Wales, United Kingdom);
e (7ibbs vs. non-Gibbs in Statistical Mechanics and Related
Fields
(December 2003, Eindhoven, Netherlands);
e Interacting Particle Systems: New Trends, with Application in
Biology and Economy
(January 2004, Paris, France);
e Young Furopean Probabilists I: Conformal Invariance, Scaling
Limits and Percolation
(April 2004, Eindhoven, Netherlands);
e Fquilibrium and Dynamics of Spin Glasses
(April 2004, Ascona, Switzerland);
e Statistical Mechanics and Interacting Particle Systems
(June 2004, Rouen, France);
e Stochastic-Geometric and Combinatorial Ideas in Statistical
Mechanics
(June 2004, Gothenburg, Sweden).

Targeted topics for the future are: hydrodynamic scaling, metastability,
ageing in disordered systems, and polymers. Two more workshops for
Young Furopean Probabilists are scheduled for 2005 and 2006, to train
junior researchers.

Summer schools: 2-4 week tutorial programmes for junior re-
searchers. One summer school on Mathematical Statistical Mechanics
was organised in Prague, Czech Republic, in July 2003. A follow-up is
planned for 2006. A large summer school on Mathematical Statistical



Physics will take place in Les Houches, France, in July 2005. There
will be lectures on 15 hot topics by top researchers from Europe and
from North- and South America. These topics are intended to be a
road map for mathematical physics in the next decade.

(4) Meetings of the steering committee. The steering committee
meets once a year. Thus far, meetings were held in Strasbourg (April
2002), Cambridge (August 2003) and Gothenburg (June 2004). During
these meetings the activities of the programme are discussed, the work-
shop and summer school topics are selected, and strategic discussions
take place on the development of the research area in the participating
countries and in Europe.

RDSES maintains a homepage at the ESE website:
www.esf.org/rdses

This homepage describes the mission, goals and scientific background of the
programme, as well as details of the various activities that are being under-
taken. Suggestions and comments are welcome.

In March 2003, an ESF-brochure for RDSES was printed, which has been
widely distributed. Copies are available upon request from the ESF Admin-
istrative Assistant to the programme:

Ms. C. Werner, e-mail: cwerner@esf.org

Mathematical statistical physics is an eclectic research area. The aim
of the programme is to bring together the various groups that are active in
this area within Europe. RDSES also acts as a forum for the development
of ideas and actions, as witnessed by the start-up of a number a bilateral
collaborations that grew out of the RDSES activities.

Mathematical statistical physics is an interdisciplinary research area, with
interfaces towards physics, chemistry, computer science, the life sciences, en-
gineering, economics and telecommunication. RDSES provides training in
the analysis and modelling of complex dynamical processes via the propaga-
tion of a common language and the stimulation of international exchange.

2 Research themes

In this section we give a brief sketch of some of the main developments and
future challenges in each of the eight research themes that are targeted by
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RDSES. The aim is to give the reader a flavour of what is going on and to
guide him /her to some of the relevant literature. Obviously, it is not possible
to do full justice to the field.

(a) Gibbsian vs. non-Gibbsian spin systems. Gibbs theory, which has
been successful for almost a century, aims at describing physical systems
in equilibrium. Such systems consist of countably many interacting com-
ponents, often referred to as spins, that are subject to a local interaction,
among themselves and/or with an external field. This interaction is given
by a Hamiltonian, which assigns an energy to each spin configuration. In
equilibrium, the probability of a spin configuration is proportional to the
negative exponential of its energy, the so-called Boltzmann weight factor.
The Hamiltonian typically contains one or more relevant parameters, such
as temperature or magnetic field. Depending on the type of Hamiltonian,
the system may undergo a phase transition along a curve of critical values
in the space of parameters. On or close to this curve the system exhibits
long-range dependence with universal scaling properties. At the extremities
of this curve the system is believed to be scale invariant.

More recently, it has become clear that Gibbsianness out of equilibrium
is rare: many physical systems that are subjected to some dynamics do not
allow for a Gibbsian description, due to the presence of a non-local interac-
tion that cannot be properly described by a Hamiltonian. Examples are spin
systems subject to random dynamics, to renormalization transformations or
to disorder. For instance, a high-temperature Glauber spin-flip dynamics ap-
plied to a low-temperature Ising-spin Gibbs measure may destroy the Gibbs
property in finite time and may afterwards restore it.

Currently there is intense research activity to classify various possible sce-
narios for non-Gibbsianness and to investigate how much of classical Gibbs
theory can be saved. A particularly important notion, namely that of weak
Gibbsianness introduced by Dobrushin, gives focus to these efforts. Here the
idea is that a Hamiltonian description is still possible for “most” spin config-
urations, after some “bad” configurations (of measure zero) are discarded. It
is still unclear what the full physical consequences of this notion are. Some
systems turn out to be weak Gibbs, others not.

One challenge is to find an algorithm that decides non-Gibbsianness. An-
other challenge is to understand Gibbsianness under conservative dynamics
and under non-reversible dynamics.

Georgii [12] is a key monograph for Gibbs theory. A fundamental paper
on the issue of Gibbs vs. non-Gibbs is Van Enter, Ferndndez and Sokal [9].
For a recent overview of the area, see the proceedings of the workshop in



December 2003 that was supported by RDSES, edited by Van Enter, Le
Ny and Redig [10]. Key references for interacting particle systems are the
monographs by Liggett [22], [23].

(b) Polymers and self-interacting random processes. The spatial and
temporal behaviour of polymer chains is an exciting area, with applications
in the physical, chemical, biological and engineering sciences. Mathematics
has been involved since the 1950’s, although full immersion is taking place
only since 15 years or so. Polymer chains are characterised by an irregular
folding in space and by a long-range interaction (remote parts of the chain
meet and interact with each other). As such they are rather different from
more classical objects like Brownian motion, percolation or the contact pro-
cess. There is a host of interesting models: self-repellent polymers, elastic
polymers, charged polymers, polymers in a random potential, copolymers
near interfaces. Many of these models are still largely unexplored. The self-
avoiding walk, which is the archetypical model of a polymer, is described in
the monograph by Madras and Slade [24]. For an overview on a variety of
different polymer models in a more physical context, see the monograph by
Vanderzande [37].

Copolymers are polymer chains consisting of a random concatenation of
monomers of two (or more) types, e.g. hydrophobic and hydrophilic. In
the presence of an interface separating two immiscible fluids, e.g. oil and
water, the copolymer may or may not localise near the interface. Which of
these two scenarios it chooses depends on the Hamiltonian of the interaction,
which favours one type of monomer in one type of fluid and vice versa.
A phase transition between the two scenarios depends on the parameters
in the Hamiltonian and on the shape of the interface. The techniques to
study this phase transition rely on the theory of large deviations. For an
introduction to large deviation theory, see the monograph by den Hollander
[16]. For an overview on the behaviour of random copolymers, see Soteros
and Whittington [32].

Branched polymers, consisting of a network of polymer chains appropri-
ately tied together, turn out to scale to super-Brownian motion in high di-
mensions. The same type of scaling occurs in a variety of models that are (or
turn out to be) close to branching random walk, such as critical percolation,
lattice trees and the critical contact process. The key technique to prove this
scaling is the lace expansion, a diagrammatic perturbation technique that is
able to deal with complex interactions in high dimensions. A key reference
for percolation is the monograph by Grimmett [13]. For an overview on the
lace expansion and its applications, see Slade [31]. For related aspects, see
the contribution by T. Luczak elsewhere in this volume.



In dimension two, conformal invariance and the Schramm-Lowner evolu-
tion are central to a whole range of models at criticality. This theory, which
combines ideas from stochastic analysis and conformal map theory, has led
to a spectacular development, providing the identification of scaling limits
and of associated critical exponents (the latter describe the behaviour close
to criticality). Overviews are given in Werner [38] and in Kager and Nien-
huis [18]. The candidate scaling limits of a variety of discrete critical models
have been identified, but it remains a challenge to prove that these scaling
limits actually exist and are conformally invariant. This has so far been
achieved for only a few models, like critical site percolation on the triangular
lattice, loop erased random walk, uniform spanning trees, and the harmonic
explorer. Still open are the self-avoiding walk and the Potts model. See the
contributions by O. Schramm and W. Werner elsewhere in this volume.

(c) Interfaces and surface phenomena. Interfaces in spatially extended
systems arise from geometric constraints or from inhomogeneous initial condi-
tions in combination with conservation laws. Examples are wetting phenom-
ena (droplets interacting with a wall) and metastable phenomena (droplets
acting as the energy barrier for a crossover between different phases).

Wulff droplets have recently been the object of intense investigation. For
a system in equilibrium at a first-order phase transition, a large droplet
of one phase inside another phase assumes the so-called Wulff shape. On
the macroscopic scale, the shape is deterministic and is the solution of a
variational problem involving the surface tension associated with the interface
between the two phases. Examples occur in Ising and Potts models and in
solid-on-solid models. For an overview, see Bodineau, Ioffe and Velenik [5].

An open question is to identify the shape of large droplets subject to a
random dynamics, such as large critical droplets for metastable transitions
between different phases. For Ising spins subject to a Glauber spin-flip dy-
namics, it was shown by Schonmann and Shlosman [30] that, close to the
phase transition line, the critical droplet has the Wulff shape, i.e., the dy-
namics manages to keep the droplet close to (quasi-)equilibrium while it is
growing, shrinking and moving. It is a challenge to extend this result to the
lattice gas subject to a Kawasaki hopping dynamics. Here, particle conserva-
tion turns out to be a serious obstacle, since it causes long-range dependence
and depletion of the gas around growing droplets. Anisotropic dynamics are
expected not to preserve the Wulff shape.

On the mesoscopic scale, the interface of droplets typically shows anoma-
lous fluctuations. Remarkably, these fluctuations exhibit a high degree of
universality. In dimension two considerable progress has been made, with



Wigner’s semi-circle law and the Tracy-Widom distribution appearing as
universal attractors for the scaling. A unification is envisioned for a whole
range of different models, all in some way related to the behaviour of spectra
of large random matrices. Here a new world is opening up, linking geometry
and analysis. A key reference is Baik, Deift, Johansson [2]. See also the
contribution by A. Guionnet elsewhere in this volume.

Simulations indicate that limiting shapes are delicate objects, which typ-
ically retain part of the information of the underlying lattice structure.

(d) Disordered media. This has been a very active area for several decades
already, with applications to amorphous materials, neural networks, chem-
ical catalysis and biomolecules. Percolation, the random field Ising model,
the Hopfield model, the random energy model, and random walk in ran-
dom environment are by now classical. Exciting recent developments con-
cern spin glasses (“random magnetic alloys”), in particular, the Sherrington-
Kirkpatrick model and the Edwards-Anderson model. Here, new types of
phase transitions are expected to occur due to a competition of interactions
(“frustration”), causing a highly complex energy landscape given by a ran-
dom Hamiltonian. For the Sherrington-Kirkpatrick model, which is a mean-
field model with a long-range interaction, Parisi predicted the occurrence of
replica symmetry breaking. After many years of hard effort, this prediction
has recently been proved to be correct by Guerra [14] and Talagrand [35].
(See the contribution by F. Guerra elsewhere in this volume.) In Parisi’s
solution, a key concept is the ultrametric structure of the ground states. The
role of this ultrametric structure has been elucidated through the work of
Aizenmann, Sims and Starr [1]. The techniques that are developed in this
area find application in a range of different areas, including coding and hard
combinatorial optimisation. An overview of spin glass theory can be found
in the monograph by Talagrand [34].

The Edwards-Anderson model has a short-range interaction. Its relation
to the Sherrington-Kirkpatrick model remains unclear: replica symmetry
breaking may not occur in short-range models (see Newman [28] for an al-
ternative scenario).

Caricatures of spin glasses, such as the Hopfield model and the random
energy model, are by now well understood. They shed light on the univer-
sality of ultrametricity in mean-field models. See Bovier and Kurkova [6] for
an overview on the developments around random energy models.

Ageing in disordered media is a new challenge on the horizon. Here one
studies the evolution of systems that go through a cascade of metastable
equilibria. This results in a correlation structure of the system that evolves



with time. The behaviour of spin glasses subject to a random dynamics is
still largely open.

Random walk in random envrionment has recently gone through major
developments, especially in higher dimensions, where now some of the hard
questions are finally reaching a solution. See Zeitouni [40] for an overview.
Catalytic branching models, describing a reactant evolving in the presence of
a catalyst, are models of disorder with random dynamics. This is an area that
is growing fast, with applications in population dynamics. See the overviews
by Dawson and Fleischmann [7] and by Klenke [21].

(e) Relaxation to equilibrium and metastability. A physical system
out of equilibrium tends to relax towards equilibrium. This relaxation may,
however, be extremely slow, a phenomenon that is called metastability. Con-
sider, for instance, a system in equilibrium with parameters on one side of a
first-order phase transition curve. Suppose that the parameters are suddenly
changed to values corresponding to the opposite side of this curve. Then the
system wants to relax from the old phase to the new phase, but in order to
do so it has to overcome an energy barrier. Before crossing this energy bar-
rier, the system persists for a long time in what is called a metastable state,
which is characterised by many unsuccessful attempts to cross the barrier.
The crossover is typically achieved after the system creates a critical droplet
of the new phase inside the old phase.

Several models are of interest, such as Ising spins under a Glauber spin-
flip dynamics or the lattice gas under a Kawasaki hopping dynamics. The
challenge is to give a detailed description of the crossover time and of the
typical trajectories followed by the system prior to the crossover. The the-
ory either relies on large deviation theory for the trajectories of the system
(“pathwise approach”) or on a close analogy between metastable transition
times and capacities in electric networks (“potential-theoretic approach”).

In two dimensions substantial progress has been made and key questions
have been settled for a variety of different models. In three dimensions the
geometry of critical droplets is rather complex and progress has only been
partial. Describing metastable behaviour under a conservative dynamics is a
hard challenge.

For an overview of the history and the developments in metastability, see
the monograph by Olivieri and Vares [29]. For a critical comparison between
Glauber and Kawasaki, as well as for mathematical references to droplet
growth in metastability, see den Hollander [17].

(f) Hydrodynamic behaviour of conservative systems. One of the
basic problems of non-equilibrium statistical mechanics is the derivation of



hydrodynamic equations. On the proper macroscopic space-time scales, in-
teracting particle systems develop autonomous behaviour for a collection of
locally conserved quantities, such as density, momentum and energy. The
evolution of these quantities is given by a set of coupled partial differential
equations. For deterministic microscopic dynamics only mild progress has
been made, with even issues like ergodicity and mixing being still largely
open. For random microscopic dynamics (i.e., in the presence of noise),
progress has been fast over the past decade, especially for those systems
whose quasi-equilibria conditioned on the locally conserved quantities are
well understood. The type of pde depends on the scaling that is chosen.
Eulerian scaling (space scales like time) leads to hyperbolic pde’s, diffusive
scaling (space scales like square root of time) leads to parabolic pde’s. Dif-
fusive systems are generally well understood, hyperbolic systems are much
less so, since they may develop “shocks” in finite time. For an overview on
hydrodynamic scaling, see the monographs by Spohn [33] and by Kipnis and
Landim [19].

The large deviation techniques developed by Kipnis, Olla and Varadhan
[20], and the relative entropy method of Yau [39], yield a derivation of the
hydrodynamic equations in a rather broad context of models. Both Eulerian
and diffusive scaling can be handled. In the former, the shocks and their
microscopic counterpart have been the subject of intense research. Typically,
the methods that are employed only give the hydrodynamic equation until
the first time when a shock appears.

A majour breakthrough in the understanding of hydrodynamics with
shocks is made in recent work by Fritz and Téth [11], where, with the help
of the analytic theory of conservation laws, the validity of the hydrodynamic
equation is obtained beyond shocks. This promises to open up a new line
of research. Particularly challenging is the analysis of multi-component hy-
perbolic systems, where attractiveness typically fails, causing trouble with
uniqueness issues. Important progress has been achieved in the recent paper
by Téth and Vilko [36].

(g) Entropy production and fluctuations far from equilibrium. For
systems in a non-equilibrium steady state, such as a gas flowing through a pipe
or a fluid in contact with two heat reservoirs at different temperatures, it is
no longer possible to use considerations that are valid for systems in or close
to equilibrium. Especially when driven by large external fields, the system
is beyond the regime where linear response theory can be applied. Therefore
it is of key importance to search for general principles in non-equilibrium,
in particular, symmetry relations between the transport coefficients. A non-
equilibrium steady state is non-reversible, and so it produces entropy. The
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study of entropy production and its fluctuations is therefore a central issue.
For a discussion, see Maes, Redig and Van Moffaert [26].

The Gallavotti-Cohen fluctuation theorem expresses a symmetry property
for the large deviations of the entropy production that holds in complete gen-
erality. Close to equilibrium, this symmetry reduces to the classical Onsager
reciprocity relations for the response coefficients. In a recent approach, put
forward by Maes [25], a non-equilibrium steady state is viewed as a Gibbs
measure on space-time trajectories. In this setting, the Gallavotti-Cohen
fluctuation theorem immediately follows from the Dobrushin-Lanford-Ruelle
conditions on the space-time Gibbs measure. The entropy production is pre-
cisely the time-reversal antisymmetric part of the Hamiltonian of the space-
time Gibbs measure. The Gallavotti-Cohen fluctuation theorem can thus be
viewed as similar to the Ward identities in quantum field theory.

The area is witnessing the slow emergence of a microscopic theory, from
which not only the thermodynamics of irreversible processes close to equilib-
rium can be derived, but which promises to go far beyond the linear regime.

Further challenges in the study of non-equilibrium systems are recent ef-
forts to derive Fourier’s law (relating macroscopic flow with external field)
and to construct non-equilibrium fluctuation symmetries for quantum sys-
tems.

(h) Granular media and sandpile dynamics. Granular media are sys-
tems whose components have a physical shape, rather than being idealised
point particles. Examples are powder, sand, grains or rocks. The question
is how this shape affects the microscopic, mesoscopic and macroscopic be-
haviour. Inelastic collisions between the components and internal degrees of
freedom play an important role. For the proceedings of a recent workshop in
this area, see Helbing, Hermann, Schreckenberg and Wolf [15]. Mathemati-
cally, the area is largely undeveloped.

In sandpile dynamics, grains of sand topple and cause avalanches, i.e.,
a motion involving a large number of components at the same time. Since
these avalanches are highly non-local, it is hard to even define the dynamics
properly.

The concept of self-organised criticality (SOC), originally proposed by
Bak, Tang and Wiesenfeld [3], has become central to a variety of physical,
chemical and biological systems. SOC means that the system is “dynamically
tuned towards criticality”, even though it has no parameter to tune. In other
words, the system exhibits “power-law decay of avalanche sizes” (power law
decay of correlations being typical for systems at criticality). Experiments
on granular media, such as sandpiles, have confirmed the presence of these
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power laws.

One outstanding paradigm of SOC is the so-called abelian sandpile model,
which allows for a mathematical treatment because of an underlying abelian
group structure, originally revealed by Dhar [8]. This model has strong
connections with fundamental objects in graph theory, such as the discrete
Laplacian, wired spanning forests, and two-component spanning trees. In
two dimensions, physicists predict a conformal field theory in the continuum
limit.

The abelian sandpile model also appears in algebraic combinatorics, in
discrete potential theory, in group theory, and in computer science (see Biggs
[4]). From the perspective of mathematical physics, the limit of infinite
graphs is important, corresponding to what is called the thermodynamic limit
in statistical physics. The first results in this direction have been obtained
by Maes, Redig and Saada [27] for the abelian sandpile model on an infinite
tree. By now, much progress has been made in a global understanding of the
ergodic theory of this system, and its relation to random walks on compact
groups.

A challenge is to understand the basic features of abelian sandpile models
in high dimensions.

Acknowledgment. The author is grateful to Aernout van Enter and Frank
Redig for commenting on a draft of this paper.
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