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Introduction 

Over the last two decades a. variety of ma.thematical forma.Iisms for rea.soning a.bout 
parallel programs and systems have been proposed. A few well-known representa.tives 
are: the theory of Petri Nets (see [ReO]), CCS (Calculus of Communica.ting Systems, 
[Mil]), CSP {Communica.ting Sequential Processes, [Hoa.]), ACP (Algebra. of Com
municating Processes, [Ber]), the theory of tempora.l logic (see [Man]), the theory of 
Ma.zurkiewicz tra.ces ([Ma.O]), and the tra.ce theory as developed a.t Eindhoven Uni
versity of Technology (see [Rem]). An important a.nd controversial issue in rea.soning 
about parallel programs and systems is the issue of the interleaving approach versus 
the, so-called, true concurrency (also known as pa.rtial-order approach). In some the
ories (e.g., CCS, CSP, and ACP), execution of parallel actions a and bis modelled 
by interleaving: first a and then b, or first b and then a. In theories based on true 
concurrency (e.g., Petri Nets and Ma.zurkiewicz tra.ces), a and bare considered a.s in
dependent a.ctions. Both approaches have an impact on liveness. When considering 
parallel actions in an interleaving model, faimess a.ssumptions are often necessary to 
prove certain liveness properties. In pa.rtial-order models, fairness a.ssumptions are not 
needed in this case. 

The purpose of this thesis is to present a. formalism for reasoning about parallel systems 
using the pa.rtia.l-order approach. The systems tha.t we consider are described in terms 
of tra.ce theory ([Rem], [Sne], and [Kal]). A system is a. ma.thema.tical model of several 
mechanisms co-opera.ting with each other in a parallel ma.nner. Each mechanism is 
modelled by a. tra.ce theory process. 

Systems are used for two purposes: to describe the desired beha.viour of mecha.nisms 
we want to construct, and to describe the actua.l beha.viour of existing mecha.nisms. 
The first descriptions are called specifications and the second ones are called imple
menta.tions. To be a.ble to formally verify whether a. system is a. correct implementation 
of (or simply satisfies) a. given specification, we introduce a. pre-order relation on 
systems that is motivated by an opera.tional view of functioning mechanisms. Esta.b
lishing whether this rela.tion holds between two systems is a.lso referred to as cornparing 
systerns. 

Interna.lly a. system may exhibit a complicated beha.viour; for a user, however, only 
the visible (extemal) behaviour is of importance. In particular, the user is interested 
in a characterization tha.t tells in which sequences of externa.l actions the system ma.y 

3 



4 Introduction 

engage (safety, also called possible external behaviour) and in which of them it must 
engage (liveness, also called guaranteed external behaviour). Within our formalism, 
these notions are defined in terms of transition systems that constitute the operational 
model of trace theory systems. System So is then defined to be an implementa.tion of 
specification S1 if in every context, the possible external beha.viour of 80 is a. subset 
of the possible external behaviour of S1, and if the gua.ranteed external behaviour of 
81 is a subset of the guaranteed external behaviour of 80 • Parallel composition and 
projection are then shown to be monotonie with respect to the introduced relation on 
systems. This allows hierarchical designs in such a way that the verification of the 
composite can be done by verifying its components. 

Subsequently, following the strategy of [Hen], an abstract model of systems is defined 
that provides, for a restricted class of systems, the sa.me identifications and differentia
tions as in the operational model. An important feature of this model is composition
ality with respect to the parallel composition operator and to the projection operator. 
However, the abstract model has a drawback of not being fully abstract with respect 
to the operationa.l model. 

A direct motiva.tion for the research described in this thesis was the desire to adopt 
the failures model of [Hoa] to systems using the partial-order approach. In this way 
the undesired identifications that are made in the failures model would disappear. 
This is explained by means of a simple example. Consider two mechanisms: one that 
can choose between either executing an infinite sequence of internal (invisible for the 
environment) actions x, or executing a. finite numher of actions x and then external 
( visible for the environment) a.ction a followed by infinitely many x's; and the other that 
consists of two independent parts, of which the first one executes an infinite sequence 
of x's and the second one executes a. The two mechanisms are specified by systems 
80 and S1, respectively. Set { a} is the external alphabet of both systerns; S0 consists 
of one process and S1 consists of two processes running in parallel. Systems S0 and S1 

are represented by the sta.te graphs below 

x x x 

Q Q a ·----..; ... 

These two systems are identified in the failures model. This is not at all surprising, 
since in this mathema.tical model of systems parallelism is modelled by interleaving. 

It turned out that it is difficult to adopt the failures model to systems in the intended 
way. The research resulted in a new model. In this model the two systems described 
above do not exhibit the sa.me external behaviour. Namely, system S1 is an implemen
tation of system 80 , which in turn does not implement 81 • System S0 does not satisfy 
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S1 because a.ction a will not happen if S0 chooses to perform an infinite sequence of 
x's, wherea.s the occurrence of ais gua.ra.nteed by S1 • 

As we assume that each process models a mecha.nism, we do not employ any fa.irness 
considera.tions in cases similar to system S1• We do, however, introduce the possibility 
of treating S0 as a. correct implementation of S1 under suitable fairness assumptions, 
viz., that 80 is fair with respect to a. To achieve this, an extension of the abstract 
model with concepts of justice and fairness is proposed. 

Several concepts and idea.s known from the literature have influenced the research 
described in this thesis, specifically: safety and liveness ([Owi] and [Alp]), faimess 
([Leh], [Fra], and [Paw]), the pa.rtial-order model of [Rel], the failures model of [Hoa], 
the testing relations of [Hen], and finally, the specification-oriented approach of [Hen] 
and [Old]. 

Both safety and liveness properties are associated with descriptions of the behaviour of 
systems. Safety properties define the maxima.l beha.viour of a. system in the sense that 
the system does nothing that is not allowed by its specification. Usually, the system 
that does nothing at all satisfies every specifica.tion in the a.bove sense. As observed 
in [Owi], this concept corresponds to the notion of partial correctness of programs. 
Liveness properties define the minimal behaviour of a. system in the sense that the 
system gua.rantees to perform the specified ta.sks. Program termination is an exa.mple 
of a liveness property ([Owi]). Both concepts are touched upon in this thesis. 

The concept of fairness is connected to tha.t of nondeterminism. Faimess properties 
can be seen as restrictions on infinite executions of systems: if there is a recurring 
choice out of a few alternatives, none of them should be constantly ignored. Fair
ness is a convenient abstra.ction from (irrelevant) implementation details. In [La.m] it 
has a.lrea.dy been recognised tha.t fairness a.ffects liveness properties of systems (pro
grams ). Therefore, fairness assumptions should, in our opinion, be apart of a. system 
description. 

In [Rel] an operational model for CSP-like languages is proposed in which parallel 
commands are partially ordered, rather·than interleaved (as, e.g., in [Plo]) or executed 
in a single step (as, e.g., in [Elr]). In, e.g., [Roz] and [Ber], in different settings, the 
two last approaches are combined in one model. [Rel] shows that a certain kind of 
unfair executions in interlea.ving models is due to expressing pa.rallelism by mea.ns of 
interleaving. 

The failures model of [Hoa] consists of three elements tha.t are relevant to processes: 
the a.lphabet, the set of failures, and the set of divergences. A failure represents a. se
quence t of accepted communica.tions together with a set of communications that ca.n 
be refused after t. A divergence represents a sequence of communications a.fter which 
the behaviour of the process is chaotic (e.g., when an infinite sequence of communica
tions is concealed). In [Hoa], verifying whether a process meets .a specification amounts 
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to proving that its traces, failures, and/or divergences satisfy specified conditions. 

The testing relations of [Hen] serve to forma.lly verify whether a system (process) 
satisfies a specifica.tion. They are based on the idea of an experimenter tha.t intera.cts 
with the system. Since both the system and the specification are described in the 
same language, testing relations are simply (pre-order) relations on systems. Testing 
equivalence was proposed in [DelJ. It can be regarded as a successor of observa.tional 
equivalence of [MilJ and bisimula.tion equivalence of [Par] in the sense that it is another 
altemative hehavioural equivalence for ces. 

Overview 

In Chapter 1, we present a. short recapitulation of that part of trace theory that forms 
the background for our study. This includes basic concepts and notions, followed by 
several useful results. Properties of processes and systems concerned with disabling 
and divergence are discussed. The failures model of systems is defined. 

Chapter 2 focuses on an operational view of systems. In our approach, concurrency 
is not modelled by interleaving. Some new concepts are introduced, which are used 
later on for defining the testing (behavioural) relations. Moreover, some properties 
of the testing relations are proved. Specifically, parallel composition and projection 
are monotonie with respect to the implementation ( sat) relation, and the equivalence 
relation induced by sat is a congruence with respect to parallel composition and to 
projection. Comparing systems in this setting involves calculations on a large domain 
of tests. 

Chapter 3 provides an abstract model for comparing systems. This model is composi
tional with respect to the parallel composition operator and to the projection operator. 
For a restricted class of systems, this model is consistent with testing relations. In the 
abstract model, comparing systems is much simpler than by mea.as of testing relations. 

In Chapter 4, our abstract model is used to define a semantics of a subset of Tangram 
programs. (Tangram is a simple CSP-based programming language for describing VLSI 
designs.) 

Finally, Chapter 5 considers incorporating fairness assumptions into the abstract model 
of systems. As an example, the Alternating Bit Protocol is discussed. 

Each chapter contains several small examples illustrating notions and concepts intro
duced . 

. The Appendix contains some additional results in connection with the opera.tional 
model of Chapter 2, including the compá.rison with an interleaving model, and an 
example considering three candidate implementations of a buffer. 
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Notation 

In this thesis, the following notations are used. 

For set A, we use A* to denote the set of finite sequences of elements from A. HA is 
a set of symbols, A* is the set of finite sequences of symbols from A. lf Ais a set of 
finite sequences of symbols, A* is the set of fini te conca.tena.tions of sequences from A. 

Fora E A, the concatena.tion of i a's is denoted by ai. 

Numerical quantification (#x: P: Q) stands for "the number of x such that P 1\ Q". 
For sets A and B, A+ B = (A UB)\ (A nB). 
To denote bags (multisets), symbols-< and>- are used. For insta.nee, the bag with two 
a's and one b is denoted by -< a, a, b >-. For bag union and bag difference + and -
operators are used, respectively. 

Cardinality of set Ais denoted by IA!. 

The power set of Ais denoted by 'P.A. 

Priorities of operators, from high to low: 

• unary operators (like a, t, p, ts, pr, c), 

• applica.tion dot, 

• p" for symbol p, 

• concatenation, 

• projection ( t), 

• binary operators (U, n, \, x, +, -, w, Il). 

The proofs are presented in the style introduced in !Dij]. 



1 Basic concepts of trace theory 

Trace theory provides our basic framework. An extended treatment of this theory can 
he found in !Sne] and !Kal]. In this chapter, we indude only a few definitions and 
results that are used in this thesis. 

In trace theory, processes are the main objects under consideration. A process is a 
mathematical model of a sequentia} (possibly nondeterministic) mecha.nism. A mecha
nism is represented by its repertoire of actions ( also called events) and the set of finite 
sequences of actions that may be observed during its operation. 

A derived notion is that of systems (!Kloj, [Zwa]). In contrast toa process, a system 
is a mathematical model of several mechanisms co-operating with each other in a non
sequential (parallel) fashion. Therefore systems are our primary concern. 

Composition of mechanisms is modelled by the composition of their corresponding sys
tems, rather th~ their corresponding processes. Interaction ( communication) between 
them is modelled by common a.ctions. 

Actions are assumed to be atomie, that is: they have no duration and they ma.y happen 
either one a.fter another or at the same time. 

In Section 1.1, we present basic definitions and notions of trace theory, among them 
that of a process. For a class of regular processes an alternative way of specifying them 
is described. Fundamental results conceming processes and other related notions are 
mentioned. In Section 1.2, the notion of a system is introduced. Results concerning 
systems that are necessary for the rest of this thesis can be also found in this section. 
In Section 1.3, we discuss some properties of processes and systems that are associated 
with liveness. A special dass of processes is also described here. Finally, Section 1.4 
presents the failures. model adjusted to systems in a non-compositional way. It still is 
an interleaving model. 

1.1 Basic definitions and results 

In trace theory, actions are modelled by symbols (na.mes). We assume the existence of 
· a. universe n of symbols. Subsets of 0 are ca.lled alphabets. 

A trace is an element of O*. The empty trace is denoted by e. Subsets of O* are called 

8 



1.1 Ba.sic definitions and results 9 

trace sets. 

Throughout this thesis a, b, c, d, e, x, y, z (possibly primed) are used to denote elements 
of a, and s, t, u, v (possibly primed) are used to denote elements of a· - unless ex
plicitly stated otherwise. 

The length of trace t is denoted by l.t, and is defined by 

l.e = O, 

l.(ta) = l.t + 1. 

The concatenation of traces t and u is denoted by tu. Concatenation has the highest 
priority of all operations on traces. 

A frequently used operation is projection. For tra.ce t and alphabet A, t r A denotes 
projection of t onto A (hiding of symbols that are not in A). Formally, for trace tand 
symbol a 

dA =e, 
tatA = tt A, 
tarA = (ttA)a, 

fora'/. A, 
fora E A. 

In the sequel we abbreviate tt{a} to tta. 
Another operation on traces that is used in this thesis is \ (the same symbol is used 
to denote set difference). For trace t and bag (multiset) Bof symbols, trace t \Bis 
obtained by removing from t, from the left to the right, all occurrences of symbols that 
are in B, respecting their number in t. Formally, for tra.ce t and symbol a 

e\B = e, 
at\ B = a(t \ B), 
at\ B = t \ (B- -< a >-), 

fora(/. B, 
fora EB. 

The bag of symbols of trace t is denoted by U. Formally, 11 is defined by 

11.e = 0, 

11.(at) -< a >- + P.t. 

In the bag of symbols of t, symbol a occurs l.(tta) times. 

For instance, for the trace t = aabaac, we have 

t\ -< a, c >-= abaa, 

t\ -< a, a, c, c >-= baa, 

11.t =-< a,a, a,a, b, c >-. 
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In Sections 2.5 a.nd 3.1 we refer to the following property ([Zwa.j). 

Property 1.1.1 

For tra.ces t, u, a.nd v, a.nd for alpha.het A 

• (t \ ~.u)rA = (ttA) \ l>.(utA), 

• tu \ P.(tv) = u \ l>.v. 

0 

On tra.ces relation :5 is defined. Tra.ce s is a. prefix of tra.re t, denoted by s :5 t, if 

(3u :: su = t). 

We write s < t if s :5 t a.nd s ":F t. Sometimes we use t ~ s instea.d of s :5 t. 
For set X of tra.ces 

pre/.X = {u 1 (3t: t EX: u :5 t)}. 

Set pre/.X is also ca.lled the prefix closure of X. Tra.ce set X is called prefix-closed if 
X =pre/.X. 
A trace structure is a. pair {A,X), where Ais a.n a.lpha.bet a.nd X Ç A*. Alpha.bet A 
is called the alphabet of the trace structure and X is called the trace set of the tra.ce 
structure. For tra.ce structure T, we denote its alpha.het a.nd its set of tra.ces by aT 
a.nd tT, respectively. 

The definition of projection is extended to sets of tra.ces, sets of sets of tra.ces, a.nd 
trace structures. For set X of tra.ces a.nd alphabet A 

XtA={tÎAltEX}. 

For set X of sets of tra.ces a.nd alphahet A 

X t A = {X t A 1 X E X}. 

For tra.re structure T a.nd a.lphabet A, trace structure TtA is defined by 

TtA = {aT t1 A, tTtA) . 

. For tra.ce structure T 

pre/.T = (aT,pre/.tT}. 
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Trace structure pref.T is also called the prefix closure of T. Trace structure T is 
prefix-closed if tT is prefix-closed. Tra.ce structure T is non-empty if tT -:/= 0. 

Trace structures are pa.rtially ordered by the inclusion relation Ç defined as follows. 
For trace structures T and U 

T Ç U # aT = aU A tT Ç tU. 

Intersection and union are defined for trace structures with equal alphabets. Let T 
and U be trace structures with the alpha.bet A. Then 

TUU = (A,tT UtU) and TnU= (A,tTntU}. 

A process is defined as a non-empty and prefix-closed tra.ce structure. The alphabet of 
process T represents the a.ctions in which the (sequentia.l) mecha.nism described by this 
process may participate. The tra.ce set of process T denotes all its possible behaviours 
(sequences of a.ctions). 

In the following example, the process corresponding to a. one-place buffer is defined. 

Example 1.1.2 

Consider a one-place buffer tha.t is initially empty. The actions relevant for the buffer 
are 

p: a. value is put in the buffer, 

r: a. value is retrieved from the buffer. 

Hence, the alpha.bet of process T tha.t specifies this buffer is aT = {p, r}. 

In order to define the tra.ce set, we first discuss when the actions may, and ma.y not, 
take place. A value ma.y be retrieved from the buffer only if the buffer is not empty, 
and no value can be put in the buffer if it a.lrea.dy conta.ins one. Additiona.lly, as the 
buffer is initially empty, the tra.ce set of T consists of the tra.ces tha.t do not start with 
an r and that are a.lternations of pand r. Formally, 

t E tT # t E {p,r}* A (Vu: u :$ t: 0 :$ l.(utp) - l.(utr) :$ 1). 

Examples of tra.ces specified above are: e,p,pr,prp, etc. 

The complete formal definition of process T specifying the one-place buffer is then 

T = ({p,r},{t 1 t E {p,r}* A (Vu: u :5 t: 0 $ l.(utp)-l.(utr) $1)}}. 

0 
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Property 1.1.3 expresses the fa.et that projection of a process on an alphabet is again 
a process. 

Property 1.1.3 

H T is a process and A is an a.lpha.bet, then Tt A is a process. 

0 

For processes that are frequently used in trace theory na.mes are introduced. These 
are: stop.A, run.A and syncAi,1·A.B, for alphabets A,B and natural numbers k,l. 

For alphabet A, processes stop.A and run.A are defined by 

stop.A = (A,{e:}}, 
run.A = (A,A*}. 

Process stop.0 will also be denoted by stop. 

For alphabets A, B and natura! numbers k, l (~ 0), process synch,l·A.B is defined by 

sync.,1.A.B 
= (AU B, {t 1 t E (AU B)• A (Vu: u :5 t: -l :5 .t.(utA) - .t.(uÎB) :5 k)}}. 

Process sync.,0.A.B is also denoted by bufk.A.B. 

Process buf.A.B is defined by 

buf.A.B = (Ui : i ;:::: 0 : buf,.A.B). 

When A or B are singletons we omit the braces. 

The set of all processes with alphabet Ais denoted by T.A, and (T.A, Ç) is a complete 
lattice ([Bir]) with the least element stop.A and the greatest element run.A ([Kal]). 

For process Tand trace t E tT, the successor set of t in T contains the a.ctions that 
ma.y take place after t. The successor set of t in T is denoted by suc.t.T, and it is 
defined by 

suc.t.T = {a 1 a E aT Ata E tT}. 

Property 1.1.4 ([Zwa]) shows how successor sets after projection can be calculated from 
the original successor sets. 
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Property 1.1.4 

Let T be a. process, t E tT, and A Ç aT. Then 

suc.(ttA).(TtA) = (Uu: u E tT fl. utA = ttA: suc:u.T nA). 

0 

For process Tand tra.ce t E tT, process after.t.T is defined as follows ([Zwa.]): 

after.t.T = (aT,{u 1 u E aT* fl. tu E tT}}. 

A simila.r notion, a.pplied to sets (e.g., [Ra.b]) and regula.r expressions ([Brz]), is well
known in a.utomata. theory, among others under the na.mes deriva.tive and quotient. 
The following notion is a.lso simila.r to the notion of the sta.te from a.utoma.ta. theory 
(e.g., [Hop}). 

The states of process T are the equiva.lence classes induced by after, i.e., corresponding 
to the equiva.lence rela.tion :!, defined for s E tT and t E tT by 

T s ,...., t <:> after.s.T = after.t.T. 

In the sequel we write [t]r to denote the equiva.lence class to which t belongs. We omit 
T in [t]r when it is obvious in a. given context. 

Processes tha.t have a. finite number of states are ca.lled regular. 

Rela.tion ! is a.n equiva.lence rela.tion. It is right congruent with respect to conca.te
na.tion, i.e., 

(Vt,u,v: {tv, uv} Ç tT At! u: tv! uv). 

Hence, rela.tion 'R. on states can be defined by 

[t]'R.[u] <:> (3a : a E aT: [ta] = [u]). 

This rela.tion can be represented by a. directed la.belled gra.ph, in the usua.l wa.y ([Hop]). 
The directed la.belled gra.ph a.ssocia.ted with T as described above is called the state 
gmph of T. It is minimal and deterministic (ea.ch node has outgoing arcs with distinct 
labels and the number of nodes is equa.l to the number of sta.tes of the tra.cc set). State 
gra.phs can be used to represent processes gra.phica.lly. 

Example 1.1.5 

The sta.te gra.ph of process sync1,1.a.b is 
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b a 

[b]·=·[a] 
a [e] b 

State [e] is called the initial state. 

0 
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The state graph of T Î A is obtained from the state graph of T by removing the la
bels that are not in A and by, subsequently, transforming the result into a minimal 
deterministic state graph. A well-known result from automa.ta theory is that a finite 
nondeterministic state graph can be transformed into a finite minimal deterministic 
one. As a oonsequence, we have that regularity is closed under projection, which is 
expressed by Property 1.1.6. 

Property 1.1.6 

Let A be an alphabet. H T is a regular process, then Tî Ais a regular process as well. 

0 

Processes can be composed by means of weaving. The weave of processes Tand U, 
denoted by T w U, is defined by 

T w U = {aTU aU,{t 1 t E (aT UaU)* A tîaT E tT /\ tîaU E tU}}. 

The following property expresses that the set of processès is closed under weaving. 

Property 1.1.7 

Let T and U be processes. Then T w U is a process as well. 

0 

As the weave of two processes also is a process, it corresponds to a sequentia! mecha
nism. 

The following property expresses that weaving is idempotent, commuta.tive, and asso
ciative, and that stop is its unit ([Kal]). 

· Property 1.1.8 

For processes T, U, and V 
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• TwT=T, 

• TwU=UwT, 

• (T w U) w V T w (Uw V), 

• Twstop=T. 

0 

Property 1.1.9 states that weaving preserves regularity ([Kal]). 

Property 1.1.9 

If T and U are regular processes, then T w U is again a regular process. 

0 

Weaving can also be generalized to sets of processes. Let Y be a set of processes and 
let A = (UT : T E Y : aT). The weave of the processes of Y is denoted by W .Y and 
is defined in the following way 

W.Y = (A,{t 1 t E A* /\ (VT: TE Y: ttaT E tT)}). 

Note that W.0 =stop, the unit element of weaving. 

The next property shows that weaving is compositional. 

Property 1.1.10 

For sets of processes Y and Z 

W.(Y U Z) = W.Y w W.Z. 

0 

We introduce the following convenient notation. Let Y be a set and let f be a function 
from Y to processes. The weave of processes f.i, for i E Y, is denoted by 

(W i : i E Y : f .i). 

Using this nota.tion we have W.Y = (WT: TE Y: T). 

The following lemmata show the relationship between weaving and projection in three 
special cases ([Kal], [Zwa]). 
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Lemma 1.1.11 

For processes T and U, and a.lpha.bet A 

(T w U)t(aT UA) Ç T w UîA. 

0 

Lemma 1.1.12 

For processes T and U, and alphabet A, such that aT n aU Ç A, 

(Tw U)ÎA = TÎAw UÎA. 

0 

Lemma 1.1.13 

For processes Tand U, and alphabets A and B, such tha.t A Ç aT, B Ç aU, and 
aTnaU =AnB, 

(Tw U)t(A UB)= TÎA w UtB. 

0 

Lemma. 1.1.14 expresses that wea.ving and projection are monotonie with respect to 
process inclusion([Kal]). 

Lemma 1.1.14 

For processes T, U, V, and alphabet A 

• TÇU => TwVÇUwV, 

• TÇU => TtAçUtA. 

0 

Lemma 1.1.15 shows tha.t projection is monotonie with respect to set inclusion and 
with respect to trace prefixing ([Kal]). 

Lemma 1.1.U 

For tra.ces s and t, sets of tra.ces X and Z, and alphabet A 
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• s $ t ~ s t A $ t t A, 

• X Ç Z ~ XtA Ç ZÎA. 

0 

The following property shows tha.t successor sets of the weave of two processes can be 
expressed in terms of successor sets of the processes ([Zwa]). 

Property 1.1.16 

Let T and U be processes. For t E t(T w U) we have 

suc.t.(T w U) =(suc.(tîaT).T nsuc.(t1aU).U) 

U (suc.(tÎaT).T \ aU) U (suc.(tîaU).U \ aT). 

0 

Directly from the definition of projection the following property can be derived. 

Property 1.1.17 

For process Tand a.lpha.bet A, such tha.t A naT = 0, 

• TtaT T, 

• TtA =stop. 

0 

Properties 1.1.18 and 1.1.19 provide some more results ([Kal] and [Zwa]) concerning 
weaving and projection, which a.re used in this thesis. 

Property 1.1.18 

For processes T and U 

Tw UtaT ç T. 

0 
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Property 1.1.19 

Let f be a trace, or a set of traces, or a process. For alphabets A and B we have 

(ftA)tB = (ftB)tA = /t(A nB). 

D 

The following lemma is a generalization of the property (T w U)taT ç; T ([Kal]). 

Lemma 1.1.20 

For set Y of processes and T E Y 

W.YtaTÇT. 

Pro of 

We derive 

W.YîaT 
= { Property 1.1.10, Y = {T} U Y} 

(TwW.Y)îaT 
= { aT n a(W.Y) Ç aT, Lemma. 1.1.12} 

TÎaT w W.YîaT 
= { Property 1.1.18} 

TwW.YtaT 
Ç { Property 1.1.18} 

T. 

D 

In general, for processes Tand U, we have (Tw U)taT Ç T (see above). Ina special 
case, when the alpha.bets of T and U are disjoint, the equality holds. 

Lemma 1.1.21 

For processes Tand U, such tha.t aT naU = 0, 

(T w U)taT = T. 

·Proof 

We derive 



1.1 Basic definitions and results 19 

(Tw U)taT 

= { aT n aU ç aT, Lemma 1.1.12} 

TtaTw UtaT 

= { aT n aU = 0, Property 1.1.17} 

Tw stop 

= { Property 1.1.8} 

T. 

D 

Lemma 1.1.22 provides a simple way of checking whether 

(VV : V is a process : V w T Ç V w U) 

holds for processes T and U. 

Lemma 1.1.22 

Let T and U be processes. Then 

(VV : V is a process : V w T Ç V w U) <=> T Ç U. 

Proof 

The implication from the right to the left holds on account of the monotonicity of 
weaving with respect to process inclusion (Lemma 1.1.14). For the implication the 
other way around we derive 

(VV : V is a process: V w T Ç V w U) 

=> { predica.te calculus} 

TwTÇTwU/\UwTÇUwU 
=> { Property 1.1.8} 

TÇTwU/\TwUÇU 
=> { Ç is transitîve} 

TÇU. 

D 

Lemmata. 1.1.24 and 1.1.23, and Corollary 1.1.25 ([Kal]) fa.cilitate calculations with 
sync's and buf's. 
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Lemma 1.1.23 

Let k, 1, m, and n be natural numbers, such that k + l ~ 1 and m + n ~ 1. For 
non-empty alphabets A, B, 0, and D, such that A nB = 0, C nD = 0, A no= 0, 
B n D = 0, An D =F 0, and B n 0 =F 0, 

(syncA:,1·A.B w syncm,".O.D)Î((A UC) + (B UD)) 

= 
syncA:+m.i+n·((A U C) \ (B U D)).((B u D) \(Au G)). 

0 

Lemma 1.1.24 

Let k, 1, m, and n be natural numbers, such that k + l ;;::: 1 and m + n ;;::: 1. For 
non-empty alphabets A, B, and G, such that A nB = 0 and B nC = 0, 

(sync•.z·A.B w syncm,...B.G)Î(A + 0) = syncr.+mJ+n·(A \ G).(O \ A). 

0 

Corollary 1.1.25 is a. special case of Lemma 1.1.24. 

Corollary 1.1.25 

Let k and l be natural numbers, such that k + l ~ 1. For non-empty alphabets A, B, 
and 0, such that A nB = 0, B no= 0, and A no=' 0, 

(buf".A.B w buf,.B.O)t(A UO) = bul•+i·A.0. 

0 

Regular processes can be described by a generalized form of regula.r expressions called 
commands. Every command C defines a trace structure tsC. Below follows an inductive 
definition of commands and their associated trace structures ([Kal], [Zwa]). In the 
sequel the following abbreviations are used: aC for a(tsC) and tC for t(tsC). 

• e is a command and tse = stop, 

• ais a command and tsa = ({a},{a}}, fora E 0, 

• ü C is a command then so is C* and tsC" = {aC, (tC)"), 
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• if C0 and C1 are commands then so is C0 1 C1 and 

ts(Co 1 C1) = (aCo U aC1, tCo UtC1}, 

• if Co and C1 are commands then so is Co ; C1 and 

ts(Co; C1) = (aCo UaC17 {tu 1 t E tCo /\ u E tC1}), 

• if Co and C1 are commands such that tsCo w tsC1 :/:: stop. ( aCo U aC1) 
then so is C0 , C1 and ts(Co, C1) = tsC0 w tsCi, 

• if C is a command then so is C0 and tsC0 = stop.aC. 

21 

The highest priority belongs to the star operator ( * ), followed, in decreasing order, by: 
the zero (0), the comma (,},the semicolon (;)and the bar (1). Commands are defined 
to be equivalent if and only if their trace structures are equal. 

Because trace structures of commands are non-empty, their prefix closures are pro
cesses. Hence, prC defined by 

prC = pref.tsC 

is a process. 

For finite concatenations of the same command C an abbreviation is introduced. For
mally, for command C and natural number n ~ 0 

C"+l=C;C". 

Example 1.1.26 illustrates the use of commands. 

Example 1.1.26 

For symbols a and b 

D 

sync1,1 .a.b 
buf2.a.b 
stop.a 

pr((a, b)*), 
pr(a; (a, b)*), 

= pr(a0
). 

1.2 Systems 

A process describes the behaviour of a sequentia! mechanism. In the weave of processes, 
which again is a process, parallelism is not represented because information about the 
individual mechanisms is no longer available. In contrast to this, a system does retain 
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information about the participating oomponents. In Section A.3 of the Appendix, the 
difference between both approaches is explained in more detail. 

A system ([Klo]) is a mathematica.l abstra.ction of co-operating mechanisms that are 
represented by processes in terms of trace theory. Forma.lly, a system is a pair (E, Y}, 
where Y is a. set of processes and E is a subset of a(W.Y). Process W.Y describes 
the entire sequentia.lized behaviour of the co-operating mechanisms, set E represents 
the set of externa.l actions ( only these may be used by the environment for interaction 
with the composite). The internal actions are those of a(W.Y) \E. 
For system S, we denote its extema.l a.lphabet by eS, and its set of processes by pS. 
Process W.pSteS is denoted by prS. Notice that a(prS) = eS. For the sake of 
brevity, we abbreviate a(W.pS) to aS, and t(W.pS) to tS. 
In the sequel, we restrict ourselves to systems S that satisfy the restriction that every 
a.ction appears only in a finite number of processes, i.e., 

(Va: a E aS: {T 1 TE pS /\ a E aT} is finite). 

This restriction :6.ows from the demand that only finitely many mechanisms of a com
posite participa.te in a communication action. 

In [Zwa.], oomposition of systems is defined only for systems with common symbols 
helonging to the intersection of their externa.l a.lphabets. Tha.t is, systems 80 and 
S1 m.ay be composed only if aS0n aS1 = eS0n eS1• We would like to treat parallel 
composition of systems in a slightly different way. We prefer an opera.tor realizing 
parallel composition that completely abstracts from intema.l symbols. The idea bebind 
this is a very operationa.l one. When connecting two components with each other by 
means of the accessible ( external) connections in compliance with instructions received, 
one should not be concerned with the na.mes of the connections inside the components. 
Systems tha.t are identica.l except for the names of intema.l a.ctions can therefore be 
treated as equivalent ones. This concept of equiva.lence is form.alized below. For this 
purpose, we introduce some preliminary notions. 

A bijection p from A onto B, A Ç S1 and B Ç S1, is called a renaming of A to B. 
Renaming is extended to tra.ces, processes, and systems in the following way. 

For tra.ce t, t E A*, the renaming of t, p.t, is defined by 

p.e = e, 
p.(ta) = (p.t)(p.a). 

For process T, aT ç; A, the renaming of T, p.T, is defined by 

p.T = (p.aT, {p.t 1 t E tT}). 
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For system S, aS Ç A, the renaming of S, p.S, is defined by 

p.S = (p.eS, {p.T 1 TE pS}). 

Systems 80 and S1 are defined to be equivalent if there exists a renaming p of aS0 to 
aS1 such that 

(Va: a E eS0 : p.a a) A S1 = p.So. 

The fact that 80 is equivalent to 81 in the above sense is denoted by 50 Ri S1 • It can 
be proved that Ri is an equivalence relation. By [S], where S is a system, we denote 
the equivalence class to which S belongs. 

Systems belonging to the same equivalence class have equal external processes. That 
is, for every S' E [SJ, prS' = prS. 

Parallel composition operator, Il, is defined for the equivalence classes of systems under 
relation Ri. 

Definition 1.2.1 

The composition of systems S0 and 81 is denoted by [So] 11 [S1], and it is defined by 

where S~ and S~ are systems such that S~ Ri S0 , Si R: Si, and aS~n aS{ = eSón eS~. 

0 

For any 50 and S1 it is always possible to find suitable S~ and Si provided the universe 
of symbols, n, is large enough to allow desirable renaming (such that the intersection 
of aS~ and aS~ equals the intersection of eSó and eSi). 

The above definition is a proper one, because for every representative Só of [So] and 
Si of [51], such that aSónaS~ = eSóneS~, {eSóUeS~,pSóUpSi} belongs to the same 
equivalence class. 

The following property expresses that our parallel composition operator is commutative 
and associative, and that its unit is [(0, 0) ]. 

Property 1.2.2 

For systems R, S, and T 

• [R] Il [S] = [SJ Il [R], 
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• ([R] Il [S]) Il [T] = [R] Il ([S] Il [T]), 

• [SJ Il ((!21,0)] = (S]. 

0 

Note that the parallel composition operator is not idempotent, that is [SJ Il [S] =F [SJ. 
Consider, for instance, S = {!21, {prx}}. Then (S] Il [S] ({!21, {pr(x, x')}}] and this is 
different from [SJ. 
If Y is a. bag of systems, (Il S : S E Y : [S]) denotes the parallel composition of systems 
of Y. For parallel composition of parametrized systems we introduce a convenient 
notation. For instance, let n be a natural number (n ;:::: 0). Parallel composition of 
systems s,, for 0 s.:; i < n, is denoted by (Il i : 0 s.:; i < n : [S,]). Also, for set A we 
denote parallel composition of systems S.a, for a E A, by (Il a : a E A : [S.a]). 
Since prS1 = prS, for systems S and S' such that S ~ S', the following definition is 
sound. 

Definition 1.2.3 

For system S 

pr[S] = prS. 

0 

An important result associated with Il is the following lemma. 

Lemma 1.2.4 

For any two systems So and S1 

pr((So] !l [81]) = prSo w prS1. 

Pro of 

We derive 
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D 

pr([So] 11 [S1]) 
{ Definition 1.2.1} 

pr[ ( eS~U eS~, pS~U psrn 

= { Definition 1.2.3 } 

pr{ eSbU es;, pS~U pSD 

{ prS = W.pSteS} 

W .(pSbU pSD t( eSbU eSD 

= { Property 1.1.10} 

(W.pSb w W.pSDt(eS:,ueSD 

{ eSb Ç aSb A eS~ Ç aSi A aS~naSi = eSbneSi, Lemma 1.1.13} 

w.pSbteS~ w W.psnesi 

{prS = W.pSteS} 

prS~ w prSi 

= { Sb ~ S0 A s; ~ Si, and S' ~ S => prS' = prS} 

prSo w prS1 

25 

In the sequel, if it does not cause confusion, we write S, meaning [S], in the context of 
parallel composition. 

lt is possible to restrict external communica.tions of a given system by means of the 
projection on an alphabet. The system obtained by projection of system Son alphabet 
A, denoted by S Î A, is defined by 

SîA = (eS nA,pS). 

The following property ([Zwa]) shows the relationship between pr(SÎA) and prSîA. 

Property 1.2.5 

For system S and alphabet A 

pr(SÎA) = prSîA. 

D 

Property 1.2.6 ([Zwa]) is related to parallel composition and projection, and it is used 
in Chapter 4. 
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Property 1.2.6 

For systems S a.nd T, and a.lpha.bet A, such that eSn eT Ç A, 

(S Il T)tA = SîA Il TtA. 

D 

Composition of systems a.nd projection ma.y be used to describe hierarchica.l designs. 
For insta.nee, (R Il S)Î(eR + eS) represents a mechanism built from two components 
specified by systems R and S, possible interactions with the environment may take 
place via actions from eR + eS. (Common externa.l symbols - eR n eS represent 
interna.l connections that are bidden from their environment.) 

1.3 Properties of processes and systems 

Two properties of processes that are important for this thesis concern the behaviour of 
a process with respect to the actions from a subset of its a.lphabet. The first one deals 
with the situation in which a.ction a of A can be disa.bled by the process performing 
some action of its alphabet that is not in A, whereas the projection on A suggests 
that a is a possible continuation. The second one deals with the situation in which the 
process can engage in an infinite sequence of actions from outside of A. 

These properties are defined for process Tand A Ç aT by ([Kal], [Zwa]) 

disabling.A.T {:} (3t: t E tT: after.t.TÎA '!- after.(tÎA).(TÎA)) 

and 

divergent.A.T {:} (3t : t E tT 

: (Vn: n ~ 0: (3u: uîA = e A tu E tT: l.~ > n))). 

Example 1.3.1 illustrates both notions. 

Example 1.3.1 

Consider process T defined by 

T = pr(x j a 1 y; b) . 

. Then disabling. { a, b} .T holds beca.use 

after.y.TÎ{a,b} ({a,b},{e,b}}, 



1.3 Properties of processes and systems 27 

after.(yt{a,b}).(Tt{a,b}) = ({a,b},{e,a,b}) 

and hence, 

after.y.Tt{a,b} =f. after.(yÎ{a,b}).(Tî{a,b}). 

From T Î { a, b} it can be concluded that initially hoth a and b are possible. However, 
from the analysis of T follows that if the process is in state [y], a cannot occur because 
it is disabled. Hence, a is not necessarily possihle initially. 

Now consider process T' defined by 

T' = pr(x•; a). 

Then divergent.{a}.T' holds because 

(Vn : n ~ 0 : xn E tT'). 

From T' Î a can be concluded that a may occur in the initial state. However, since there 
is no upper bound for the number of times x can be performed, it is not guaranteed 
that a wîll ever occur. 

p 

Both notions are used to express the possibility of lade of progress (e.g., [Kal] and 
[Hoa]). The second notion, however, unjustly classifies some processes as having the 
possibility of lad:ing progress. As an example consider process T defined by 

T = {{a, y} u {x, 1 i ~ O}, {t 1 (3i: i ~ o: t $ x,y•a)}). 

According to the given definition, process T is divergent with respect to {a}, that is, 
divergent.{a}.T holds. From divergent.{a}.T one can condude that T may engage in 
an infinite sequence of y actions. In this case a will not happen. On the other hand, 
every execution (maxima} trace) of T ends in a, i.e" ais guaranteed to happen. 

An even more convincing case is process T = pr(a; x*). We have from the definition 
that T is divergent with respect to {a}. But after a has happened, no external activity 
is expected. Thus T cannot exhibit lade of external progress. 

Both examples above suggest that the notion of divergence as defined in [Kal] (and in 
[Hoa]) is not quite suitable to characterize the behaviour of a process with respect to 
a subset of its actions, where progress is concerned. 

The notion of divergence is also known under the na.mes livelod: ([Kal], the term 
livelock is due to [Ash]) and infinite chatter ([Mil]). It is used in the context of 
Hoare's processes as well. 
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The notion of disabling appears under different names too, for instance as internal 
nondeterminism ([Mil]) or as refusing ([Hoa]). 

If -.disabling.A.T and -.divergent.AT hold for process T and A Ç aT, we say that 
TtA adequately describes the behaviour of T after projection on alphabet A. In other 
words: internal actions have no influence on the external behaviour of the mechanism 
specified by process T, with respect to possible interactions with its environment. 

The notions of disabling and divergence are defined for systems as well ([Zwa]). 

Definition 1.3.2 

System Sis called disabling, if disabling.eS.(W.pS) holds. 

0 

Definition 1.3.3 

System Sis called divergent, if divergent.eS.(W.pS) holds. 

0 

Because systems have more structure than processes do, the above definition of diver
gence qualifies more systems as being divergent than one would expect when taking 
this structure into account. This can easily be seen from the following example. 

Example 1.3.4 

Processes T and U are denoted by 

T = pr(a*) 

and 

U = pr(b*). 

Then, according to the definition, divergent.{a}.(T w U) holds. But the mechanisms 
represented by Tand U are independent of each other (true concurrency is assumed) 
and so are a and b. Thus there is, in fact, no reason why a would not be executed 

· while U can communicate an unbounded number of b's. 

0 
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In this thesis we develop a. more suita.ble cha.ra.cteriza.tion of the beha.viour of systems 
with regard to divergence (the possibility ofla.ck of extemal progress). This character
iza.tion makes use of pa.ra.llelism in systems, if present. 

Fina.lly, we discuss a. special class of processes introduced in (Zwa.] which are called 
conservative processes. A few results concerning conservative processes are used in 
Chapters 2, 3, and 4. 

Definition 1.3.5 

Process T is called conservative if 

(Vt, a, b: {ta, tb} Ç tT /\ a :/: b: {tab, tba} Ç tT /\ [tab] = [tbaJ). 

0 

The sta.tes of a conserva.tive process depend only on the number of occurrences of 
events (the na.me conservative is due to this property). Furthermore, such a. process is 
non-disa.bling with respect to every subset of its a.lpha.bet. 

Consider T = pr((a, b; c)*) as an exa.mple. The sta.tea of T are 

[e] = {t 1 t E tT /\ t.(tta) = l.(tfb) = l.(tfc)} 
[a] = {t 1 t E tT /\ l.(tta) - 1 = l.(tfb) = l.(tf c)} 
[b] = {t 1 t E tT A l.(tta) = l.(ttb) -1 = l.(trc)} 
[ab] = {t 1 t E tT /\ l.(tfa) = l.(trb) = l.(tîc) + 1}. 

It is easily shown tha.t -.disabling.A.T holds for any A Ç aT. 

An important observa.tion is that any process with at most one symbol in every suc
cessor set is conservative. 

In the sequel, we refer to the following properties ([Zwa]). 

Property 1.3.6 

For conservative process T 

• (Vs,t: {s,t} Ç tT /\ suc.s.T = 0 /\ suc.t.T = 0: P.s = P.t), 

• (Vs,t: {s,t} Ç tT A P.s = ~.t: [s] = [t]). 
0 
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Property 1.3. 7 

If Y is a set of conservative processes then W .Y is a conservative process. 

0 

Property 1.3.8 

Let A he an alphabet and T a. conservative process. Then TÎ A also is a. conserva.tive 
process. 

0 

Property 1.3.9 provides an alternative characteriza.tion of conservative processes. 

Property 1.3.9 

Let T he a. process. Then 

T is conservative #- (Vs,t: {s,t} Ç tT: s(t \ '1.s) E tT). 

0 

1.4 Failures model of systems 

This section gives a short presentation of the failures model of trace theory systems; 
it is essentially based on [Hoa]. In the failures model, parallelism is expla.ined in terms 
of interleaving. That is, a system in which two actions may occur concurrently is 
equivalent to a. system in which these actions are interleaved. 

The failures model provides a more deta.iled description of systems behaviour than the 
one introduced in the previous section, which is based on the predicates disabling and 
divergent. The model described in this section is not compositional. 

First a. few preliminà.ry notions are introduced. 

Definition 1.4.1 

For system S, a E eS, and u E tS 

dis.u.a.S § (Vv: vres = e /\ uv E tS: uva ~ tS). 

0 
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If dis:u.a.S holds, we say that a is disabled a.fter u. 

Definition 1.4.2 

For system S, a E eS, and u E tS 

div.u.a.S # (Vn: 0 5 n: (3v: vîeS = e /\ uva E tS: l.v > n)). 

0 

If div.u.a.S holds, we say tha.t a.fter u system Sis divergent with respect toa. 

Definition 1.4.3 

For system S, alphabet R s;;; eS, and t E t(prS) 

ref.t.R.S # (3u: u E tS /\ uîeS = t: (Va: a ER: dis.u.a.S V div.u.a.S)). 

0 

If re/ .t.R.S holds, Ris called a refusal set after t. 

Definition 1.4.4 

For system S 

fS = {(t, R) 1 t E t(prS) /\ R Ç eS /\ re/ .t.R.S}. 

0 
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Elements of fS are called fa.ilures ([Hoa]). In the sequel, for the sake of brevity, only 
failures with maximal refusal sets are explicitly given in abstract models of concrete 
systems. This is possible on account of .the following property. 

Property 1.4.5 

For system S 

(t,R)efS /\ R!ÇR =? (t,R')efS. 

0 
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Observe aJso tha.t 

t(prS) = {t 1 (t, 0) E fS}. 

In [Hoa.], a. rela.tion on processes is defined tha.t expresses whether a. process is a correct 
implementa.tion of a. specifica.tion (tha.t is, some other process). We define a corre
sponding rela.tion for systems. 

Definition 1.4.6 

Let S0 a.nd S1 be systems. We say that S0 implements S1 if 

eSo = eS1 /\ fSo Ç fS1. 

0 

The following example illustra.tes the above notions. 

Example 1.4. 7 

Let 

So = {{a,b},{pr(x; a 1 y; z*; a),pr(y; b),pr(a 1 b)}) 

and 

S1={{a,b},{pr(x';a1 y'; b)}). 

For 80 we ha.ve div.y.a.S0 and div.y.b.S0 , and hence, 

(e,{a,b}) E fSo. 

For S1 we have dis.y'.a.S1 and dis.x'.b.Si, and hence, 

(e,{a}) E fS1 /\ (e,{b}) E fS1 • 

However, (e,{a,b}) '/. fSi, because -.ref.e.{a,b}.S1 • The sets offa.ilures with maximal 
refusa.l sets for both systems are then 

fS0 = {(e,{a,b}),(a,{a,b}),(b,{a,b})} 

and 

fS1 = {(e,{a}),(e,{b}),(a,{a,b}),(6,{a,b})}. 

This yields that 80 does not implement 81 and S1 does implement 80 . lntuitively, we 
would say tha.t 80 is equivalent to S1 (thus a.lso implements Si), beca.use y; z* cannot 
prevent the execution of b. 

0 
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A process as defined in the trace theory of [Rem], [Sne], and [Kal] is a model describing 
possible behaviours of a sequentia! mechanism. As opposed to this, a system ([Klo], 
[Zwa]) is a model describing several mechanisms co-operating with each other in a 
non-sequentia! (parallel) fashion. 

Operational models of both processes and systems can be defined by sets of sequences 
of global states and action occurrences of the objects in question, assuming that every 
action occurrence changes the global state in which it is executed. If mutually inde
pendent actions are possible in a state, they are usually interleaved. Such kinds of 
operational models are called interleaving models. These models explain parallelism 
in terms of nondeterminism. In yet another approach to operational models, mutually 
independent actions are treated as being partially ordered instead of totally ordered 
by interleaving (e.g., [Rel]). This idea, which originated in Petri Net theory ([Pet]), 
also gave rise toa variety of non-operational partial-order models (e.g., [Mal], [Pra], 
anq [Win]). In partial-order models nondeterministic hut sequentia! systems can be 
distinguished from concurrent ones. 

In this chapter, we give a non-interleaving opera.tional model of systems as defined 
in tra.ce theory. The model is inspired by pa.rtial-order models, in particular by the 
one presented in [Rel]. It formalises our view of how systems a.ctually work. The 
behaviour of a system in our model is represented by partially ordered subsets of local 
states (of processes that are the components of the system) and action occurrences. In 
this chapter, we provide a characterization of the external behaviour of systems ba.sed 
on this model. 

In Section 2.1, a formal definition of the operational model of systems is given and it 
is illustrated by several examples. The opera.tional model associates a la.belled transi
tion system with every trace theory system. The notion of computation is introduced 
to formally define the entire behaviour of a system (more precisely, the behaviour of 
the mechanisms described by the system). The internal activity is still explicit. In 
Section 2.2, the notion of acceptances is introduced to characterize the external be
haviour of systems, thus abstra.cting from the internal activity. By means of a few 
examples acceptances are rela.ted to failures defined in Section 1.4. In Section 2.3, a. 
more direct characterization of acceptances is presented. This characterization is given 
not in terms the operational model hut in terms of the system itself, and therefore it 

33 
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is simpler. Section 2.4 presents relations on systems based on the operational model. 
These relations formalize a. verifica.tion method for systems tha.t deals with safety and 
liveness properties. In Section 2.5, some properties of the relations introduced in the 
previous seetion are proved. Specifically, parallel composition and projection are mono
tonie with respect to the implementation relation (sat), and the equivalence relation 
induced by sat is a. congruence with respect to parallel composition and to projection. 

In the Appendix, some additional results associated with the operational model are 
described. They include some further properties of computations, the relationship 
between the transition systems of Section 2.1 and nets, the comparison of the model 
defined in this chapter with an interlea.ving model, and an exa.mple considering three 
candidate implementations of a buffer. 

2.1 Operational model 

The purpose of this section is to define a. non-interleaving operational model of systems 
a. description of the beha.viour of a system that maintains full information about 

concurrency. This description is then used to forma.lly justify statements concerning 
gua.ra.nteed behaviour (progress) of a. system, like "after tra.re t action a will certainly 
happen". More precisely, the opera.tional model we aim a.t should allow us to conclude 
that for system S = {{a},{T,U}), where T = pr(b*; e) and U = pr((c 1 e); a), the 
occurrence of a is guara.nteed. This example is discussed in more detail at the end of 
this seetion (see Example 2.1.17). 

Our model is inspired by [Rel]. The basic idea underlying this model is that of local 
states of constituent parts of the system and independence of actions. This is also 
the main distinction between our model and the labelled transition systems of [DeO]. 
When a number of processes co-opera.te, the execution of an action does not change 
the sta.te of a process that does not participate in it. 

In order to give the definition of the operational model of a system, we first introduce 
some preliminary notions. In the sequel, S is always a. system characterized by the re
quirement that every action of its alphabet appears only in a. finite number of processes 
that constitute S (as defined in Section 1.2). Newly introduced notions are illustrated 
by referring to procèsses T and U defined by 

T = pr(a, c; d), 

U = pr((b 1 d); c), 

. and to system S defined by 

S = ({a,b,c,d},{T,U}). 
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Note that the process and system names in this running example are script letters T, 
U, and S, respectively. 

The operational model of a system is defined as a transition system. In this thesis, 
by a transition system we mean a triple of which the first element defines the set 
of local (process) sta.tes, the second the set of action occurrences, and the third a 
transition relation between the local states and a.ction occurrences (this is a slightly 
modified combination of the definitions from (Henj and [DeO]). In the sequel, these 
three elements associa.ted with a system are introduced in the given order. The ma.in 
goal is a. suitable definition of a transition relation tha.t is able to express parallelism 
explicitly. That is, in such a way that the two systems from the Introduction can be 
distinguished with the help of this relation. 

The following definitions are inspired by [Rel]. 

A configuration is a pair (t,T), for process Tand trace t oftT. Configuration (e,T) is 
called an initial configu.ration. 

Examples of configurations are 

(e, T), (a, T), (c, T), (aal, T), and (e,U), (d,U), (b,U), (dc,U). 

Definition 2.1.1 

The set of configurations of system S, Conf.S, is defined by 

Conf.S = {(utaT, T) 1 TE pS A u E tS}. 

The set of initia.l configurations of S, Jnit.S, is defined by 

lnit.S = {(e,T) 1 TE pS}. 

D 

The set Con/ .S is the first element of the transition system associated with S. 

For S, our running example, we have 

Con/ .S = {(e, T), (a, T), (c, T), (ac, T), (ca, T), (e,U), (b,U), (bc,U)} 

and lnit .S = {( e, T), ( e, U)} ( see page 40 for a graphical representation of the transition 
system belonging to S). · 
Note that configuration (aal, T) is nota member of Conf.S. 

From Lemma 1.1.20 we infer W.psraT ç; T, for system S and process Tof pS. Hence, 
we have the following property. 
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Property 2.1.2 

Let S be a. system. Then 

Conf.S Ç {(t,T) 1 TE pS At E tT}. 

0 

Intuitively, oonfigura.tions represent local sta.tes (sta.tes of processes). Suitable sets of 
configura.tions form global states (states of the system), also ca.lled distributed states, 
or simply sta.tes. 

Definition 2.1.3 

A distributed state of system S is a subset D of Con/ .S such tha.t 

(3u: u E tS: D = {(ufaT,T) 1 TE pS}). 

The set of distributed sta.tes of Sis denoted 'D.S. 

0 

Exa.mples of distributed states of system S are {(e,T),(e,U)}, {(a,T),(e,U)}, and 
{(ac,~T'),(bc,U)}. 

We say tha.t sta.te D is associated with trace u of tS if 

D = {(ufaT,T) 1 TE pS}. 

Such a trace is not necessarily unique: in case of system S, sta.te {(a, T), (b,U)} is 
associated with both ab and ba. 

Property 2.1.4 follows immedia.tely from Definitions 2.1.l and 2.1.3. 

Property 2.1.4 

Let S be a. system. Then 

Conf.S (UD: DE 'D.S: D). 

0 

. We say that action a is enabled in state D of system S if 

(3u: ua E tS: D = {(ufaT,T) 1 TE pS}). 
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For instance, a is enabled in state {(e, 7), (e,U)} of S and c is enabled in state 
{(a, 7), (b,U)} of S. 

Due to our restriction on systems, only finitely many configurations can participate 
in a single action that is enabled in state D. If action a is enabled in state D, only 
configurations (t,T) ED such that a E aT participate in it. 

In state {(e, 7), (e,U)} of system S, only configuration (e, 7) participates in a. In 
state {( e, 7), (b,U)}, both configurations participate in c. 

For convenience, sets of configurations that participate in action a are collected in 
C.S.a. Formally, C.S.a is defined for every a E aS by 

C.S.a {C 1 (3u: ua E tS: C = {(uraT,T) 1 TE pS /\ a E aT})}. 

Every set C belonging to C.S.a is a subset of a distributed state. 

Note that C.S.a Ç 'P.( Con/ .S). 

With every element C of C.S.a an occurrence of action a, in which the configurations 
of C participate, is associated. For a E aS and C E C.S.a, the occurrence of action a 
associated with C is denoted by (a, C). 

For system S we have 

C.S.a = {{(e, 7)},{(c, 7)}}, 
C.S.b = {{(e,U)}}, 
C.S.c {{(e, 7), (b,U)}, {(a, 7), (b,U)}}, 
C.S.d= 0. 

Thus the action occurrences of S are 

(a,{(e,7)}),(a,{(c,7)}),(b,{(e,U)}),(c,{(e,7),(b,U)}),(c,{(a,7),(b,U)}). 

Definition 2.1.5 

The set of action occurrences of system S, Act.S, is defined by 

Act.S = {(a, C) 1 a E aS /\ C E C.S.a}. 

D 

The set Act.Sis the secónd element of the transition system associated with S. 

We prefer to label action occurrences with natural numbers, instead of with sets of 
configurations. This is possible when every C.S.a is countable, fora E aS. System S 
satisfies this requirement if 
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(VT,a: TE pS /\ a E aT: {u 1 ua E tS}taT is counta.ble), 

which is proved by the following lemma.. 

Lemma 2.1.6 

Let S be a. system a.nd let a E aS. Then 

(VT: TE pS /\ a E aT: {u 1 ua E tS}taT is counta.ble) 

C.S.a is counta.ble. 

Pro of 

For a E aS we have 

C.S.a 

= { definition of C.S.a} 

{O 1 (3u: ua E tS: 0 {(utaT,T) 1 TE pS /\ a E aT})} 

= {calculus} 

{O l IOI = (#T: TE pS: a E aT) 
/\ (3u : ua E tS : (VT : TE pS /\ a E aT: ( u îaT, T) E O))} 

Ç { predicate calculus} 

{O l IOI = (#T: TE pS: a E aT) 
A(VT: TE pS /\ a E aT: (3u: ua E tS: (uîaT,T) E C))} 

Furthermore, 

l{O l ICI = (#T: TE pS: a E aT) 
/\ (VT: TE pS /\ a E aT: (3u: ua E tS: (uÎaT,T) E O))}I 

= { definition of cartesian product } 

l(xT: TE pS Aa E aT: {(utaT,T) 1 ua E tS})I. 

= {calculus} 

l(xT: TE pS Aa E aT: {utaT 1 ua E tS})I. 
= { definition of r for sets of tra.ces } 

l(xT: TE pS /\ a E aT: {u 1 ua E tS}taT)I. 

From set theory we know that the cartesia.n product of a. finite number of countable 
sets is counta.ble. In Section 1.2 we a.ssumed tha.t {T 1 TE pS /\ a E aT} is finite a.nd 
a.bove we a.ssumed that { u 1 ua E tS}taT is counta.ble. Hence, 

(xT: TE pS /\ a E aT: {u 1 ua E tS}taT) 
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is countable. On account of the above derivations we can conclude that C.S.a is count
able as well. 

D 

If every C.S.a is countable, for a E aS, there exists a function f from Act.S to the 
natural numbers such that f restricted to {a} x C.S.a is an injective function. Then 
the occurrence of action a associated with Cis denoted by (a,f.a.C), instead of by 
( a, C). We call f an enumerotion. 

We then permit ourselves to write: Act.S = {(a,f.a.C) 1 a E aS /\ C E C.S.a}. 

A possible enumera.tion for S is 

f.a.{(e, 'T)} = f.b.{(e,U)} = f.c.{(e, 'T), (b,U)} = 0, 
f.a.{(c, 'T)} = f.c.{(a, 'T), (b,U)} 1. 

Thus we may write: Act.S = {(a, 0), (b, 0), (c, 0), (a, 1 ), (c, 1)}. 

As we already mentioned, the main goal of this section is the definition of a suita.ble 
relation between configurations and action occurrences. A very important demand for 
this relation is preserving concurrency, if it is present in a system. 

A transition relation between configurations and action occurrences of system S is 
defined, formalizing how processes that form the system work. There are two kinds 
of transitions: from configurations to action occurrences and the other way a.round. 
Configuration ( t, T) is in the relation with · action occurrence ( a, C) if a E aT and ( t, T) 
participates in this action (in another words: if (t,T) E C). Action occurrence (a,C) 
is in the relation only with those configurations ( ta, T) that satisfy ( t, T) E C ( trace 
of configuration (t,T) is extended with a). This is formally expressed by the following 
definition. 

Definition 2.1.7 

For system S, rela.tion -+s Ç (Con/ .S x Act.S) U (Act.S x Conf.S) is defined by 

D 

(Va,C,t,T: (a,C) E Act.S /\ (t,T) E Conf.S 

:(t,T)-+s(a,C) # (t,T)EC) 

A(Va,C,t,T: (a,C) E Act.S /\ (t,T) E Conf.S 
: (a,C) -+s (t,T) # (3u: t = ua: (u,T) E C)). 

For S we have the following transition relation 
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(e, T) -+s (a, 0) -+s (a, T) -+s (c, 1) -+s (ac, T), 
(e,U) -+s (b,O) -+s (b,U) -+s (c,O) -+s (bc,U), 
(e, T) -+s (c,O) -+s (c, T) -+s (a, 1) -+s (ca, T), 
(b,U) -+s (c, 1) -+s (bc,U). 

The transition system corresponding to system S describes operationally the behaviour 
of processes that constitute S. Therefore, we choose to define the operational model 
of system S, denoted by O[S), as the triple (Con/ .S, Act.S, -+8 ). 

Note that ( Gonf.S, Act.S,-+s) is a. bipartite graph. 

The operational model of Sis the triple ( Gonf.S, Act.S, -+6 ). It can also be presented 
in a graphical form, e.g., 

where arrows stand for -+ s rela.tion. 

As a.nother example consider the system with the empty set of processes, {0, 0). The 
opera.tional model of this system is then (0, 0, 0). 
In the sequel, we omit Sin -+5. 

Note that in general -+*is nota partial order, as the following example shows. 

Example 2.1.8 

Consider processes T = pr(a, b), U = pr(b, c), and V = pr(c, a), and system S 
.defined by 

S = ({a,b,c},{T,U, V}). 
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The set of configurations of S is 

Conf.S = { (e,T),(e,U),(e, V),(a,T),(a, V),(b,T),(b,U),(c,U),(c, V), 

(ab, T), (ba, T), (be, U), (eb, U), (ac, V), (ca, V)}. 

We have 

C.S.a {{(e,T),(e, V)},{(b,T),(e, V)},{(e,T),(c, V)},{(b,T),(c, V)}}, 

C.S.b {{(e,T), (e, U)}, {(a, T), (e, U)}, {(e,T), (c, U)}, {(a, T), (c, U)}}, 
C.S.c = {{(e, U), (e, V)}, {(b, U), (e, V)}, {(e, U), (a, V)}, {(b, U), (a, V)}}. 

A possible enumera.tion f is 

f.a.{(e,T),(e, V)} f.b.{(e,T),(e,U)} = f.c.{(e,U),(e, V)} 0, 

f.a.{(b, T), (e, V)} = f.b.{(a, T), (e, U)} = f.c.{(b, U), (e, V)} = 1, 
f.a.{(e,T),(c, V)} = f.b.{(e,T),(c,U)} f.c.{(e,U),(a, V)} = 2, 

f.a.{(b, T), (c, V)} = f.b.{(a,T), (c, U)} = f.c.{(b, U), (a, V)} = 3. 

The set of a.ction occurrences of S is 

Act.S {(a, i) 10 $ i :5 3} U {(b,i) 10 $ i :5 3} U {(c,i) 10 $ i :5 3}. 

Transition relation --. is 

(e,T)--. (a,i)-. (a,T), 
(e, V)-. (a,i)--. (a, V), 
(e, T) -. (b, i)-. (b,T), 

(e,U)-. (b,i)--. (b,U), 

(e,U)--. (c,i)--. (c,U), 

(e, V)--. (c,i)--. (c, V), 

(b,T)-. (a,i)-. (ba,T), 
(a,T)--. (b,i)--. (ab,T), 
(b, U)-. (c, i)--. (be, U), 
(c, V)--. (a, i) --. (ca, V), 
(c,U)-. (b,i)-. (cb,U), 

( a, V) -. ( c, i) -. ( ac, V), 

Then --. contains a cyde, viz., 

i 0 v i 2, 

i = 0 v i 1, 

i = 0 v i = 2, 

i = 0 v i = 1, 

i=0Vi=2, 

i = 0 v i = 1, 

i = 1 v i = 3, 

i = 1 v i = 3, 

i = 1 v i = 3, 

i = 2 v i = 3, 

i = 2 v i = 3, 

i = 2 v i = 3. 

41 
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(a, T)----(b, 1)---.... (b, U) 

t ! 
(a,2)-----(c, V)-----(c,1) 

Hence, -+* is not a.ntisymmetric, a.nd thus it is not a. pa.rtial order. 

D 

The a.bove exa.mple a.lso serves the purpose of showing tha.t we have to be ca.reful when 
formally defining a. beha.viour of a. system. We first explain wha.t is mea.nt by a full 
beha.viour of a system ([Rel]). Intuitively, it is a maximal part of O[SJ, such tha.t 
Init.S is included in it, every configura.tion and every action occurrence is rea.cha.ble 
from an initial configuration, and there are no choices ( every configuration has at most 
one successor in it). An exempla.ry full beha.viour from Exam.ple 2.1.8 is 

(e,U) 

l 
(<,T)~(yi----(y) (ab,T) 

(a,O) (b,U) 

~ l l ~(bc,U) 
(e, V) (a, V) (c,3)'-......_ 

~(ac,V) 
But another part of O[S) tha.t also sa.tisfies our informa.l definition is (see the cycle in 
Exam.ple 2.1.8 for compa.rison) 

(e,U) (ab,T) 

(a,T) ~(b,1(// {~U) 
t ! 

(a,2)----(c, V)----(c, 1) 

/~ /~ 
(ca,V) (e,T) (bc,U) (e,V) 
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It clearly is not a behaviour of system S because traces of the final configurations 
(configurations that have no successors) cannot be combined into one global trace 
describing which actions have taken place. Such parts of O[SJ should be excludéd as 
unrealistic ones system S ca.nnot behave accordingly to them. So we have to be 
careful about the formal definition of a behaviour of a system. The remainder of this 
section addresses tha.t issue. First some intermedia.te results are described. 

The following property shows a relationship between traces belonging to configurations 
that are in the relation -+*, with exactly one action occurrence between them. 

Property 2.1.9 

For system S, {(t,T),(t',T')} Ç Conf.S, and (a,G) E Act.S 

(t,T)-+ (a,C)-+ (t',T') :::::} t'taT = (ttaT')a. 

Pro of 

From Definition 2.1. 7 we have 

(t, T)-+ (a, C) # (t, T) E C 

and 

(a,C)-+(t',T') # (3u':t'=u'a:(u',T')EC). 

Let (u',T') E C such that t' = u'a. We derive 

(t,T) E C A (u',T') E C 

:::::} { C E C.S.a} 

(3u : ua E tS : ut aT = t A ut aT' = u') A a E aT 

=> {Lemma 1.1.15, property of r} 
(3u:uaetS:uî(aTnaT') tîaT' A uî(aTnaT') u'taT) /\ aEaT 

:::::} { predicate calculus} 

u'îaT tîaT' A a E aT 

:::::} {calculus, definition of Î, t' u'a} 
t'îaT = (tîaT')a. 

0 

In the sequel, for subset 11" of Conf .S U Act.S the following a.bbreviations are used: 
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Conf.1f 

Act.1r 

for 

for 

1r n Conf.S, and 

1r nAct.S. 

2 Opera.tional model of systems 

The beha.viour of a. system is chara.cterized by all possible computations. Ea.ch com
puta.tion conta.ins only those configurations and action occurrences tha.t can a.ppea.r in 
a. single full execution (run) of the system, where the choices have been ma.de, and 
independent a.ctions are all included. They correspond to observations of [Mal]. 

We introduce two notions used for defining computa.tions. The first one concerns 
bra.nching of elements of Con/ .S U Act.S (1Re1]). 

Deftnition 2.1.10 

Let 11' be a. subset of Conf.S UAct.S, and let rp E 11'. We say that rp is 

• backward branchedin 1f if (3x,y: {x,y} Ç 71" /\ x =/= y: x-+ rp /\ y-+ rp), 

• forward branched in 1f if (3x, y: {x, y} Ç 1i /\ x =/= y: <p-+ x /\ rp-+ y). 

0 

Forward branched configura.tions in Conf.S U Act.S represent choices in processes 
(nondeterrninism) belonging to S. Forward branched a.ction occurrences represent syn
chroniza.tion between processes of S. 

Observe tha.t for 1f = Conf.S U Act.S, and a.ction occurrence o: of 1i 

o: is forward branched in 1f # a is backward bra.nched in 1i. 

Even stronger, the number of configura.tions tha.t directly precede a equals tha.t number 
of configura.tions tha.t are its direct successors. Tha.t is, 

(#x: x E Conf.S: x-+ a) == (#x: x E Conf.S: o:-+ x). 

Hence, in the context of action occurrences it is sufficient to simply spea.k about hranch
ing, without further qua.lification. 

In case of our exemplary system S (see pa.ge 40 for O[S]) we have that 

• configura.tion (e, T) is forward bra.nched, 

• configura.tion (bc,U) is backward bra.nched, 

• a.ction occurrence (c,O) is forward and backward branched, or simply, branched 
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in Con/ .S U Act.S. 

The second notion necessa.ry for the definition of computa.tions chara.cterizes subsets of 
Conf.S U Act.S. Subset 11" of Con/ .S U Act.Sis admissible means tha.t, firstly, every 
configura.tion (t,T) of it is reacha.ble via a. pa.th in 11" from (e,T). Secondly, it mea.ns 
tha.t for every a.ction occurrence ( a, C) E 11" action a is ena.bled in a distributed state 
D such that C Ç D Ç 11". This part takes care of the problem described in connection 
with Example 2.1.8. 

Definition 2.1.11 

Subset 11" of Conf.S U Act.Sis admissible if 

(VT,t,a: (ta,T) E Conf.r: (3C: (a,C) E Act.11": (t,T) E C)) 
/\(Va, C: (a, C) E Act.r: (3u: ua E tS: C Ç {(uîaT, T) j TE pS} Ç 11")). 

0 

Examples of a.dmissible subsets of Conf.$ U Act.S are 

• 0 and Con/ .S U Act.S, 

• {(e, T), (a,O), (c,O), (e,U), (b,O), (b,U}}, 

• {(e, T), (a, 0), (a, T), (e,U), (b, 0), (b,U), (c, 1), (ac, T), (bc,U}}. 

An alterna.tive way of checking upon forward branched configura.tions in admissible 
subsets of Con/ .S U Act.Sis presented in the following property. 

Property 2.1.12 

For admissible subset 11" of Con/ .S U Act.S 

(Vcp: cp E Conf.11": cp is not forward branched in 11") 

(Va,a',C,C': {(a,C),(a',C')} Ç Act.r /\ C nC' =f. 0: (a,C) = (a',C')). 

Pro of 

We derive 

(Va,a',C,C': {(a,C),(a',C')} Ç Act.11" /\ C nC' =f. 0: (a,C) = (a',C')) 

{:?- { 7r is admissible, hence, ( a, C) E Act.11" => C Ç 1r, set and predicate 
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calculus} 

(Va,a',C,C': {(a,C),(a',C')} Ç Act.11" 
1\ (3t, T: (t, T) E Con/ .11": (t,T) E C n C') 

: (a, C) = (a', C')) 
# { predicate calculus } 

(Va,a1,C,C1,t,T: {(a,C),(a',C')} Ç Act.11" A (t,T) E Conf.11" A (t,T) E C nC' 
: (a, C) = (a', C')) 

# { Definition 2.1.10, definition of-+} 

(Vcp: cp E Con/ .11": cp is not forward bra.nched in 11"). 

By mea.ns of computations, formally defined below, full behaviours of systems are 
described. 

Definition 2.1.13 

A computation of system S is a maximal (with respect to set inclusion) subset 11" of 
Conf.S U Act.S such that 

• 11" is admissible, 

• no configuration is forward hranched in 11". 

D 

A computa.tion is mea.nt to describe the a.ctual behaviour of a mechanism at work, 
where choices have alrea.dy been ma.de and actions have a.ctua.lly taken place. Tha.t is 
why we require admissibility and no forward branched configurations in computations. 

The set Vof all admissible subsets of Con/ .S U Act.S that have no forward branched 
configurations forms - with set inclusion a partial order. Since every chain of 
this set bas an upper bound in it, which is proved below, on account of Zorn's lemma 
([Wee]), computations exist. 

Lemma 2.1.14 

Let V be the set of all admissible subsets of Conf.S U Act.S that have no forward 
branched configura.tions. Let Y be a. chain of (V, Ç) and 11"1 = (U 11" : 11" E Y: 11"). Then 
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Proof 

We first prove that 7r
1 is admissible (see Definition 2.1.11). 

For configurations we derive 

(ta, T) E Con/ .7r' 

::::} { definitions of 7r
1 and of Con/} 

(37r: 7r E Y: (ta, T) E Con/ .7r) 

::::} { (V7r : 7r E Y : 7r is admissible), Definition 2.1.11} 

(37r,C: 7r E Y /\ (a,C) E Act.1r: (t,T) E C) 

=?- { definitions of 1r1 and of Act } 

(3C: (a,C) E Act.11'1 : (t,T) E C). 

For action occurrences we derive 

(a,C) E Act.11'1 

::::} { definitions of 7r1 and of Act} 

(31r: 11' E Y: (a,C) E Act.11') 

::::} { (V11' : 11' E Y: 1f is admissible), Definition 2.1.11} 

(311',u: 1f E Y /\ ua E tS: C Ç {(ufaT,T) 1TEpS}Ç11') 

::::} { definition of 1f
1 

} 

(3u: ua E tS: C Ç {(ufaT, T) 1TEpS}Ç1f'). 

Next we prove that 1f
1 ha.s no forward bra.nched configura.tions. We derive 

(a,e) E Act.1r1 
/\ (a',e') E Act.1f1 /\ene' =f. 0 

::::} {Y is a chain} 

(3?r: 7r E Y: (a,e) E Act.1r /\ (a1,e1
) E Act.1r /\ene'=/= 0) 
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=?- { (V11': ?!' E Y: 7r has no forward hra.nched configurations), Definition 2.1.10, 

Property 2.1.12, predicate calculus} 

(a,e) (a1,e1
). 

Hence, on account of Property 2.1.12, 11'1 ha.s no forward hra.nched configurations. 

0 

As an illustra.tion, we mention computa.tions of S 

• {(e, T), (a, 0), (a, T), (e,U), (b, 0), (b,U), (c, 1 ), (ac, T), (bc,U)}, 
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• {(e;'.T),(c,O),(c,T),(e,ll),(b,O),(b,ll),(a,1),(ca,7'),(bc,Zl)}. 

Amore a.ppealing form of these computations might be a picture. The first computa.tion 
is then illustra.ted by 

(e,T)---(a,0)--(a,T)~ /ac,T) 

(c,1) 

(e,ll)--(b,0)--(b,ll) / ~(bc,ll) 
This is a possible behaviour of system S: first, T a.nd ll independently perform a and 
b, respectively, a.fter tha.t they synchronize on c. 

The second oomputa.tion is illustra.ted by 

(e,T)~ /(c,T)--(a,1)-(ca,T) 

(c,0) 

(b,U)< ~(bc,U) 
/(b,O) 

(e,ll)/ 

In this computation, first proooss ll performs b, then T a.nd ll synchronize on c, a.nd 
fina.lly, T performs a. 

We define relation -+.,.. to be the restriction of -+ to the elements of 1r. 

With every subset of Con/ .S U Act.Sa. set of tra.ces is associa.ted. 

Definition 2.1.15 

Let S be a system and "' a subset of Conf.S U Act.S. We define the function tr8 : 

'P.( Con/ .S u Act.S) -+ 'P.tS by 

trs.1r = {t 1 t E tS A {(ttaT,T) 1TEpS}Ç11'}. 

·The set of tra.ces associated with pis then defined to he tr8 .1r. 

0 
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In the sequel, we usually omit Sin tra. 

Because computations form partially ordered sets (see Theorem A.1.8 of Section A.1 
in the Appendix) they are also called partial-order computations, and the set of com
puta.tions of systern Sis denoted by poc.S. 

With a non-sequentia! hut deterministic system only one pa.rtial-order computa.tion is 
a.ssociated, while there are - in genera! - many cornputations resulting from modelling 
parallelisrn by means of interleaving. Nondeterministic systems genera.te many partial
order computations. 

Notice tha.t, for the time being, external alpha.bets of systems are of no importa.nee. 
This also means that the distributed sta.tes, the operational model, and the partial
order computa.tions depend only on the set of processes of the system. This is expressed 
by the following property. 

Property 2.1.16 

For set Y of processes, and subsets E and E1 of a(W.Y) 

• V.{E, Y) = 1).(E', Y), 

• O[{E,Y)D = O[(E',Y)], 

• poc.{E, Y} = poc.{E1
, Y}. 

0 

The purpose of our operational model is to have a description of the behavióur ófá 
system that maintains full information about concurrency. This information is crucial 
if one wants to make statements about guaranteed behaviour (progress) of the system, 
e.g" statements like "after trace t action a will certainly happen". To illustrate the 
relevance of the introduced operational model to this issue we present the following 
example. 

Example 2.1.17 

Let 

T = pr(b•; e), 

U = pr( ( c 1 e) ; a) 

and 

S ({a},{T,U}}. 
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A possible enumera.tion f is 

f.a.{(c, U)} = o, 
/.a.{(e,U)} = 1, 
f.c.{(e, U)} = O, 
/.e.{(e,U),(11,T)} = i, 
/.6.{(11,T)} = i, 

The operationa.l model of S is then defined by 

O[S) = (Coaf.S,Act.S,-), 

where 

n~o. 
i 2!: o. 

• Conf.S = {(li,T),(lie,T) 1i2!: O} U {(e,U),(e,U),(ea,U),(c,U),(ca,U)}, 

• Act.S = {(a,O),(a, 1), (c,O)} U {(e, i),(6,i) 1 i ~ O}, 

• (11,T)-+ (6,i)-+ (11+1,T), i ~ O, 

(11,T)-+ (e,i)-+ (lle,T), i ~ 0, 

(e,U)-(e,i)-+(e,U), i~O, 

(e,U)-+ (a,1)-+ (ea,U), 
(e,U) - (c,O) - (c,U)-(a,o)- (ca,U). 

In a. gra.phica.l form we ca.n expose only a. part of O[S). 

(e,T) {b,O) (b,T)-----

! ! 
(Î~l)-----(be,T) 

(e,U) : . (e,U) (a,1)----(ea,U) 

! 
(c,O) (c,U) (a,0)---(ca,U) 

One can ea.sily check tha.t ( e, T) is a. forward bra.nched configuration and that ( e, U) is 
· a. ba.ckward bra.nched configura.tion. 

Examples of partial-order computations are 
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• {(b',T) 1 i;:: O} U {(b,i) 1 i;:: O} U {(e,U),(c,U),(ca,U)} U {(c,O),(a,O)}, 

• {(e,T),(e,U),(e,T),(e,U),(ea,U)} U {(e,O),(a,l)}. 

Gra.phically, (a. part of) the first computation is represented by 

(e,T)--(b,0)--(b,T)--(b,l)--

(e, U)--( c, 0)--(c, U)--(a, 0)--(ca, U) 

The second computation is represented by 

(e,T)~ /(e,T) 

/(e,O) 

(e,U)/ ~(e,U)--(a,1)-(ea,U) 
Considering the failures model (of Section 1.4) of system S results in the conclusion 
that (e, {a}) E fS. In connection with progress considera.tions this is interpreted as the 
possibility that a may never happen while S is executing. From our opera.tional model 
of S, intuitively, an opposite conclusion can be drawn. Since in every partial-order 
computation of S an occurrence of action a is included (there is a. tra.ce t associa.ted 
with that computa.tion for which Ha= a holds), ais guaranteed to happen. 

0 

The observa.tion concerning occurrences of a.ction a in every partial-order computation 
of system S from Example 2.1.17 has a direct implica.tion, namely, tha.t each compu
tation has a. configuration with a belonging to its trace. This observation gave the 
inspiration for the definition of accepta.nces in Section 2.2. 

2.2 A characterization of external behaviour - acceptances 

Intuitively, a. proper characteriza.tion of a. system's externa.l beha.viour should allow us to 
distinguish between nondeterminism and concurrency. If the distinction between both 
phenomena. can be made, precise statements a.bout guaranteed beha.viour of the system 
can be formulated. To explain this more precisely we present two simple examples of 
systems tha.t should be distinguished in our opinion. 
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Example 2.2.1 

Consider processes T = pr(a) and U = pr(x*). Let 

So = ({a}, {T w U}}, 

and 

Si= ({a},{T,U}}. 

System S0 oonsists of only one process. This process can choose to perform an un
bounded numher of x's; in other words, it suffers from divergence. In system S1 

however, a and x are independent of each other, so even if U keeps on performing x's, 
external action a will take place. In the failures model of Section 1.4 these systems are 
identified. In the operational model of Section 2.1 hoth systems have different sets of 
oomputations. System S0 has infinitely many oomputations, including one that gives 
only {e} if its set of traces is projected on {a}. On the other hand, 81 has precisely 
one oomputation, viz., the one with {e,a} resulting from the projection of its set of 
traces on {a}. From this result it can he concluded that during the execution of S0 

action a may never happen, whereas it certainly will happen during the execution of 
81• Hence, it is worthwhile to have a. closer look at externa.l tra.ces of computa.tions. 

Cl 

Example 2.2.2 

Consider processes T = pr(a) and U = pr(b). Let 

80 = ({a, b}, {T w U}}, 

and 

Si= ({a,b},{T,U}}. 

Since the choice is nondeterministic, we get two oomputations in the case of the mech
a.nism specified by system S0 , with a.ssocia.ted sets of externa.l tra.ces { e, a, ab} and 
{e,b,ba}, respectively. In the case of the mechanism specified by system S1, a and b 
are independent of ea.ch other, which results in only one computa.tion with which the 
set { e, a, b, ab, ba} of externa.l tra.ces is a.ssociated. Thus the difference hetween S0 and 
81 can a.lso he detected from the sets of externa.l tra.ces of computations. 

· In the fa.ilures model of Section 1.4 both systems are identified. 

D 
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Since we are interested in guaranteed behaviour in every state of S, or more precisely, 
for every tra.ce t E t(prS), we consider sets of externa.l tra.ces containing guaranteed 
extensions of t. The smaller these sets are, the more information about the system we 
have. 

The following example shows that it is important to consider sets of tra.ces, because 
sets of actions are not su:fficient. 

Example 2.2.3 

Consider systems 

S0 = ({a,b},{pr(b*; a)}) 

where process T is defined by 

and 81 = ({a,b},{T}}, 

T = ({a,b} U{xi 1i;:::O},{t1(3i:i;:::0: t ~ x,b'a)}}. 

The externa.l processes of both systems are equal. Consider sets of a.ctions as guaranteed 
extensions. Then { a, b} is the gua.ranteed extension for every external trace t, such tha.t 
tta = e, in both systems. System 81 has failures tha.t 80 does not have, for insta.nee 
(e,{a}). It is a failure of S1 because for u = x1 we have (see Section 1.4) 

u E tS1 A ut{a,b} = e A dis:u.a.81• 

On the other hand, every failure of S0 is also a failure of S1• From this one can conclude 
that in the fa.ilures model 80 implements 81• However, considering sets of tra.ces as 
guaranteed extensions leads to a diiferent conclusion. Namely, as {lla 1 0 ~ i} is a 
gua.ranteed extension for every external trace t, such tha.t tta = e, in 81 and not in 80 

(80 ha.s a computa.tion in which a does not occur), from our point of view 80 should 
not be considered as an implementa.tion of 81• 

0 

The guaranteed extensions are called acceptances. The a.cceptances as defined here 
di:tîer from the a.cceptances of [Hen]. 

Definition 2.2.4 

Let t E t(prS) and L Ç es•. Pair ( t, L) is an accepta.nce of system S if 

(Vr: 11' E poc.S At E tr.11'feS: {v 1 tv E tr.rteS} nL-:/= 0). 

D 
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In the sequel, we denote the set of acceptances of system S by acS. 

For the systems of Example 2.2.1 we have 

acS0 ={(t,L)1 (t = e V t = a) AL Ç {a}• A e EL} 

and 

acS1 {(e,L) 1 L Ç {a}* A (e EL Va EL)} U{(a,L) 1 L Ç {a}* A e EL}. 

For the systems of Example 2.2.2 we have 

ac80 ={(e,L) ILÇ{a,b}* A Ln{e,a,ab}:;l0 A Ln{e,b,ba}:;l0} 

U{(a,L) 1 L Ç {a,b}* A (e EL V b EL)} 

U{(b,L) 1 L Ç {a,b}* A (e EL Va EL)} 

U{(t,L) 1 (t = ab V t =ba) AL Ç {a,b}* A e EL} 

and 

acS1 ={(e, L) 1 L Ç {a,b}* A L n{e,a,b,ab,ba} =F 0} 

U{(a,L) ILÇ{a,b}* A (e:ELV beL)} 
U{(b,L) 1 L Ç {a,b}* A (e EL Va EL)} 

U{(t,L) 1 (t = ab V t =ba) AL Ç {a,b}* A e EL}. 

The following property expresses, among other things, the fact that it is sufficient to 
consider minima.I acceptances. 

Property 2.2.5 

For system S, t E t(prS), and L Ç eS* 

• (t, {e}) and (t, t( after.t.prS)) are acceptances of every system S, 

• (t, 0) is not an acceptance of S, 

• (t, L) E acS :::::} (VL': L Ç L' Ç eS* : (t, L') E acS), 

• S' ~ S :::::} acS' = acS. 

0 

Beca.use acS' = acS, for S' ~ S, the following definition is sound. 
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Definition 2.2.6 

For system S 

ac[S] = acS. 

0 
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Equipped with additional tools to characterize systems, we return to Exa.mple 2.1.17 of 
the previous section. After ha.ving calculated the set of partial-order computations of S, 
we are able to conclude that ( e, { a}) is an a.ccepta.nce of that system. An interpretation 
of this result is that this particular action certainly will take place during the execution 
of system S (in the initia.l state). In genera.l, it would not be possible to prove a similar 
assertion in an interleaving operationa.l model (as, e.g., in [Paw] and [Hen]) without 
employing fairness assumptions (see Section A.3 in the Appendix). 

Next, a few exa.mples are presented to show the relationship between acceptances and 
a characteriza.tion of systems by means of the failures model of Sedion 1.4. 

System Sof Exa.mple 2.1.17 is non-disabling and divergent, according to Definitions 
1.3.2 and 1.3.3. A consequence of the divergence is that (e, { a}) is a fa.ilure of S, thus a 
may never happen. Because (e, {a}) E acS (thus a will certainly happen), we conclude 
that the characterization of S given by the failures model does not agree with its 
operationa.l model. Thus we can give a more suitable characterization of divergence in 
our operational model. Notice however, that acceptances alone do not always preserve 
information about disabling or divergence, as can be ohserved in the following example. 

Example 2.2. 7 

Let 

T = pr(x; a 1 y; b) 

and 

So = ({a,b},{T}). 

Then O[S0] can be represented by 

/(x,0)---(x,T)---(a,0)---(xa,T) 

(e,T)~ 

~(y, 0)---(y, T)---(b,0)---(yb, T) 



56 2 OperationaJ model of systems 

We ca.n compute that (e,{a, b}) E ac80 , (e, {a}) !/. ac80 , a.nd (e, {b}) !/. ac80 holds. 

For a. similar system 81 

S1 = ({a,b},{U}), 

where 

U = pr(a 1 b), 

we get the following as the representa.tion of O[S1) 

/(a,0)---(a,U) 

(e,U)~ 

(b,111----(b,U) 

Accepta.nces of 81 are equal to those of 80 , thus for 81 the sa.me condusions as for 
80 can be dra.wn. But then, according to the fa.ilures model, (e, {a}) and (e, {b}) are 
both fa.ilures of 80 a.nd not of S1 , white S0 and 81 cannot be distinguished considering 
acceptances only. Information about disabling gets lost in this case. 

A similar information loss occurs in the case of system 82 defined by 

S2=({a,b},{pr((x1 x'; y*); a),pr((x' 1 x; z*); b),pr(a 1 b)}). 

Accepta.nces of this system are also equal to that of S0 (and, of course, of S1). For 
failures we have f80 C f82, because (e,{a,b}) E fS2 a.nd (e,{a,b}) </. fS0 • This 
particular failure of 82 is caused by divergence as defined in Section 1.4. 

0 

In the case of the system in the following example, the information about disabling 
ca.n be found in the set of acceptances as well. 

Example 2.2.8 

Let 

So = ({a},{T}}, 

where 

T = pr(x 1 a). 

For O[So] we then have 
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/(x,O),---(x,T) 

(e,T)~ 

~(a,0)---(a,T) 

57 

We ca.n now compute tha.t (e, {e,a}) E acS0 and (e,{a}) <f acS0 , and from the failures 
model we deduce that ( e, { a}) E f 80 , so in this case the sa.me conclusions can be drawn 
from both chara.cteriza.tions (tha.t a is not gua.ranteed to happen). 

Intuitively, system 80 cannot be an implementa.tion of 81 that is defined by 

S1 = ({a},{pra}}, 

where (e,{a}) E acS1 (and (e,{a}) <f CS1). 

0 

These sma.11 examples make dear why sets of a.cceptances are not enough to distînguish 
between systems. 

On the other hand, with a.cceptances the distinction between concurrency and interleav
ing can easily be ma.de. The next example shows this distinction for systems without 
divergence and without disa.bling. 

Example 2.2.9 

Let 

T = pr(a), 
U = pr(b), 
80 = ({a,b}, {T, U}} 

and 

S1 = ({a, b},{T w U}). 

The gra.phica.1 representa.tion of O(So] is the following 

(e, T)---(a, 0) ---(a, T) 

(e,U)---(b,0)---(b,U) 
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We compare O[S0 ] with O[Si] that is represented by 

/(a,0)---(a, V)---(b,1)---(ab, V) 

(e, V)~ 

~(b,0)---(b, V)---(a,1)---(ba, V) 

where V stands for T w U. 

The difference between O[So] and 0(81] results a.lso in different acceptances. Namely, 
acS1 C acS0 , because (e,{a}) E acS0 /\ (e,{a}) fj acS1 (the sa.me holds for (e,{b})). 

D 

The notion of acceptances we introduced in this section represents those aspects of 
system behaviour that are of importance in our approach. However, it turned out 
that taking only them into account causes undesired identifications (Example 2.2.7). 
In Section 2.4, a system equivalence is defined that is based on acceptances, and that 
resolves the problem just mentioned. 

2.3 A simpler characterization of acceptances 

On account of Definition 2.2.4, it is suffi.cient to consider sets of extema.l tra.ces a.sso
ciated with partia.1-order computations for the purpose of determining the acceptances 
of a system. In this section, a different definition of these sets of tra.ces is presented. 
This definition does not make use of the operationa.l model. By Corollary 2.3.21, which 
in turn is a consequence of Theorem 2.3.20, we show that both definitions (Definition 
2.1.15 and the altemative definition of this section) coincide. 

At the end of this section, a few results are included that refer to conservative processes 
and that are used in Section 2.5. 

A few new notions are introduced. The first one is the notion of a prefix of a compu
tation. 

Definition 2.3. l 

A prefix of a partia.1-order computation of system S is defined to be a subset 11" of 
Con/ .S U Act.S sa.tisfying 

• {(e,T) 1TEpS}ç;11", 



2.3 A simpler cb.aracterization of acceptances 59 

• (VT,t,a: (ta,T) E Conf.?r: {3C: (a,C) E Act.?r: (t,T) E C)), 

• (Va,C: (a,C) E Act.?r: (3u: ua E tS: C Ç {(utaT,T) 1TEpS}Ç1r 
A {(uafaT, T) 1 TE pS} Ç '11')), 

• (Va, a', C, C' : {(a, C), (a', C')} Ç Act.11' A C n C'.,,; 0 : (a, C) = (a', C')). 

The set of prefixes of partial-order computations of Sis denoted by ppoc.S. 

0 

Note that the set of maxima! elements of ppoc.S equals poc.S. 

We refer to the set of traces belonging to a prefix of a partial-order computation as 
po-trace. Definition 2.3.2 provides an alternative formalization of po-traces, which is 
proved by Corollary 2.3.19. 

Definition 2.3.2 

A po-trace of system Sis defined to be a subset pof tS that satisfies 

• p 'Î' 0, 

• pref.p = p, 

• (VT,t,u,a,b: TE pS A {a,b} Ç aT A {ta,ub} Ç p A tfaT = ufaT: a = b), 

• (Vt,u: t E p Au E tS A (VT: TE pS: tfaT = utaT): u E p). 

The set of po-traces of Sis denoted by ppot.S. 

The set of maxima! elements of ppot.S is ca.lled pot.S. 

0 

The ultimate goal is to prove that pot.S {tr.p 1 p E poc.S}. 

Property 2.3.3 provides an alternative way of specifying the maxima! po-traces. 

Property 2.3.3 

For system S 
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p E pot.S 

p E ppot.S /\ 0/i,a: ta E tS\p /\ t E p 

: (3T,u,b: TE pS /\ub E p /\ utaT = ttaT 

: {a,b} Ç aT /\ a =f:. b)). 

Observe that for po-trace pof system S and process Tof pS, the process (aT,ptaT) 
bas at most one symbol in every successor set. 

The following results (Lemma 2.3.4 through Corollary 2.3.19) forma preparation for 
Theorem 2.3.20, which proves that (ppoc.S, Ç) is isomorphic to (ppot.S, Ç). 

For every prefix 11" of a computation of S, tr.11" is a member of ppot.S, which is expressed 
by Corollary 2.3. 7 and which is proved by Lemmata 2.3.4, 2.3.5, and 2.3.6. 

Lemma 2.3.4 

Let 1r be a prefix of a computation of system S. Then 

tr.11" =f:. 0 /\ pref .(tr.7r) = tr.7r. 

Pro of 

lt is clear from the definition that tr.7r is not empty. We prove that tr.11" is prefix-closed. 

Let t E tS and ta E tr:ir. We derive 

ta E tr.11" 

# { Definition 2.1.15} 

{(taîaT,T) 1TEpS}ç;11" 

=> { Definition 2.3.1, definition of t} 

{(ttaT,T) 1 TE pS /\ a '/. aT} ç; 11" 

/\ (VT: TE pS Aa E aT: (30: (a,C) E Act.11": (tîaT,T) E C)) 

=> { Definition 2.3.1, predicate calculus} 

{(ttaT,T) 1 TE pS /\ a '/. aT} Ç 7r /\ (VT: TE pS Aa E aT: (ttaT,T) E 7r) 

# { calculus } 

{(tîaT, T) 1 TE pS} Ç 7r 

# { Definition 2.1.15} 

t E tr.11". 
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Hence, tr. 'lr is prefix-closed. 

D 

Lemma 2.3.5 

Let S be a. system and 71" be a. prefix of a. computa.tion of S. Then for process Tof pS, 
and a.ctions a and b of aT 

{ta, ub} Ç tr.7r A ttaT = utaT => a = b. 

Pro of 

Let {ta,ub} Ç tr.11', such tha.t ttaT = utaT. We derive 

D 

ta E tr.11' A ub E tr.11' 

=> { Definition 2.1.15} 

(tataT,T) E 1r A (uMaT,T) Er 

=> { Definition 2.3.1 } 

(3C: (a,C) E Act.1r: (tîaT,T) E C) A (3C': (b,C') E Act.r: (utaT,T) E C') 

# {tÎaT=uÎaT} 
{3C: (a,C) E Act.1r: (ttaT,T) E C) A (3C': (b,C') E Act.r: (tîaT,T) E C') 

# { predica.te calculus} 

(3C, C': {a, C) E Act.r A (b, C') E Act.1r: (tÎaT,T) E C n C') 

=> { calculus } 

(3C,C': (a,C) E Act.11" A (b,C') E Act.11": C nC' ::/:. 0) 

=> { Definition 2.3.1 } 

(3C,C': (a,C) E Act.11" A (b,C') E Act.'ll': (a,C) (b,C')) 

=> { calculus } 

a= b. 

Lemma 2.3.6 

For system S and prefix 71" of a. computation of S 

(Vt, u: t E tr.r Au E tS A (VT: TE pS: tÎaT = utaT): u E tr.r). 

Proof 

Let {t,u} Ç tS, such that (VI': TE pS: tîaT = utaT). We derive 
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D 

t E tr.7r 

# { Definition 2.1.15} 

{(ttaT,T) 1TEpS}Ç7r 

# { ('VT: TE pS: ttaT = utaT)} 

{(utaT,T) 1TEpS}Ç1r 

# { Definition 2.1.15} 

u E tr.7r. 

2 Operational model of systems 

The following corollary expresses the relationship between prefixes of computations and 
po-traces of a system. It is, on account of Definition 2.3.2, an immediate consequence 
of the three preceding lemmata. 

Corollary 2.3. 7 

For system S 

{tr.11" 111" E ppoc.S} Ç ppot.S. 

D 

From every element p of ppot.S, a prefix of a computation of system S can be con
structed. This result is expressed by Corollary 2.3.14 and it is proved by Property 
2.3.9, Lemmata 2.3.10, 2.3.11, and 2.3.13. 

In order to facilitate the proofs, we first introduce some convenient notation. 

Definition 2.3.8 

For po-tra.ce p of S 

• con/ .p = {(ttaT, T) 1 t E p A TE pS}, 

• act.p = {(a,{(ttaT,T) 1 TE pS Aa E aT}) 1 ta E p}. 

D 

Because, on account of Definition 2.3.2, every po-trace pof system S is non-empty and 
prefix-closed, we have the following property. 
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Property 2.3.9 

Let S be a system. For every po-tra.ce p of S 

{(e,T) 1 TE pS} Ç conf.p U act.p. 

0 

The a.bove property mea.na that conf.p U act.p, fora po-tra.ce pof system S, satisfies 
the first requirement of the Definition 2.3.1. In the next three lemmata we prove that 
the other requirements of tha.t definition also are satisfied by conf.p U act.p. Lemmata 
2.3.10 and 2.3.11 prove that conf.p U act.pis admissible. Lemma 2.3.13 proves that 
configurations of conf.p are not forward bra.nched. 

Lemma 2.3.10 

Let S be a system, pa po-tra.ce of S, and 11' = conf.p U act.p. Then 

(VT,t,a: (ta,T) E Oonf.1r: (30: (a,O) E Act.11': (t,T) E 0)). 

Pro of 

Let (ta,T) E conf.p. Note that conf.p Oonf .11' and act.p = Act.11'. 

We derive 

(ta,T) E conf.p 

:::} { definition of con/ .p} 

(3u : u E p : ta = ut aT) 

:::} { p is prefix-closed, Definition 2.3.2, definition of projection} 

(3u: ua E p: t = uiaT) 

:::} { definition of act.p} 

(3u: ua E p: t = uiaT A (a, {(uiaU, U) 1 U E pS A a E aU}) E act.p) 
:::} { a E aT, calculus } 

(3C: (a,C) E act.p: (t,T) E C). 

Hence, because con/ .p = Conf .11' and act.p = Act.11', 

(VT,t,a: (ta,T) E Oonf.1r: (30: (a,C) E Act.11': (t,T) E 0)). 

D 



64 2 OperationaJ model of systems 

Lemma 2.3.11 

Let S be a system, p a po-trace of S, and 7r = conf .p U act.p. Then for action 
occurrence (a, C) of Act.'lr 

(3u: ua E tS: C Ç {(utaT,T) 1TEpS}Ç7r /\ {(uaîaT,T) 1TEpS}Ç7r). 

Pro of 

Let (a,C) E act.p. Note that e-0nf.p = Conj.'lr and act.p = Act.'lr. 

We derive 

0 

(a,C) E act.p 

<::> { definition of act.p} 

(3u: ua E p: C = {(utaT,T) 1 TE pS /\ a E aT}) 
~ { definition of conf.p, Definition 2.3.2 (p =pref .p)} 

(3u: ua E p: C = {(utaT,T) 1 TE pS /\ a E aT} 
/\{(uîaT,T) 1 TE pS} U{(uaÎaT,T) 1 TE pS} Ç conf.p) 

=> { calculus } 

(3u: ua E p: C Ç {(utaT,T) 1 TE pS} Ç conf.p 

/\{(uaîaT,T) 1 TE pS} Ç e-0n/.p) 
=> { definition of 'lr, conf.p = Conf.7r a.nd act.p Act.'lr, p Ç tS} 

(3u: ua E tS: C Ç {(ufaT,T) 1TEpS}Ç7r /\ {(uataT,T) 1TEpS}Ç7r). 

The following result expresses an important property of traces belonging to the same 
po-trace. It facilitates the proof of Lemma 2.3.13 (and the proof of Property 2.3.15). 

Property 2.3.12 

For system S and po-trace pof S 

(VT, t,u,a: TE pS /\ a E aT /\ {ta,ua} Ç p /\ tîa = uîa: ttaT = ufaT). 

Proof 

Let TE pS,a E aT, and {ta,ua} Ç p. We derive 

tfaT :f:. uîaT 

=> {calculus} 

tataT =F uaîaT 



2.3 A simpler cbara.cteriza.tion of a.ccepta.nces 

# {calculus} 

(3s,b,c: sb $ tataT Ase$ uataT A {b,c} Ç aT: b f. c) 
VtataT < uataT V tataT > uataT 

# { property of projection} 

(3s,s',b,c: sb $ ta A s'c $ ua A staT = s'taT A {b,c} Ç aT: b f. c) 
VtataT < uataT V tataT > uataT 

# { p E ppot.S and { ta, ua} Ç p, which implies 

(Vs,s', b, c: sb $ ta A s'c $ ua: {sb,s'c} Ç p), Definition 2.3.2} 

tataT < uataT V tataT > uataT 
=> { property of t, < and :5 } 

tataT :5 utaT V ttaT:;::: uaîaT 
=> { a E aT, property of r} 

tîa < uta V tîa > uîa 
=> { definition of < } 

tîa :f. uîa. 

Hence, 

(VT,t,u,a: TE pS Aa E aT A {ta,ua} Ç p A tîa = uîa: ttaT = utaT). 

D 

Lemma 2.3.13 
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Let S be a system, pa po-trace of S, and 11" conf .p U act.p. Then no configuration 
of 1f' is forward branched, that is, 

(Va,a1,C,C1
: {(a,C),(a',C')} Ç Act.'Tf' A C nc' f. 0: (a,C) = (a',C')). 

Proof 

Note tha.t con/ .p = Conf .'Tf' and act.p = Act.11". 

We derive 

{(a, C), (a', G')} Ç act.p A C n C' f. 0 

# { definition of act.p, calculus} 

(3U,t, t': U E pS A {a, a'} Ç aU A {ta, t1a1
} Ç p A tÎaU = t'ÎaU 

:C {(tîaT,T)ITEpSAaEaT} 
AC' = {(t'ÎaT,T) 1 TE pS Aa' E aT}) 
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=> { predicate calculus } 

(3U,t,t': U E pS A {a,a'} Ç aU A {ta,t1a1
} Ç p: ttaU = t1ÎaU) 

=> {p E ppot.S, Definition 2.3.2} 

a =a'. 

Let {(a, C), (a', C')} Ç act.p, and let tandt' satisfy 

ta E p A t1a1 E p A C = {(tîaT,T) 1 TE pS Aa E aT} 

and 

C' = {(t'taT,T) 1 TE pS Aa' E aT}. 

We derive 

CnC'-:f:.0 
=> { definition of t and t', a = a' from the above derivation, calculus } 

(3T: TE pS A a E aT: ttaT = t'taT) 
=> { property of t } 

tta = t'ta 
=> { Property 2.3.12} 

(VT: TE pS A a E aT: tÎaT = t'taT) 
=> { definition of t and t'} 

C=C'. 

Hence, because act.p = Act.11', 

(Va,a',C,C': {(a,C),(a1,C1
)} Ç Act.11' A C na'-:/; 0: (a,C) (a',C')). 

0 

On account of Definition 2.3.1 we have then the result expressed by Corollary 2.3.14. 
It shows the relationship between po-traces and prefixes of computations of a system. 

Corollary 2.3.14 

For system S 

{con/ .p U act.p 1 p E ppot.S} Ç ppoc.S. 

0 
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The following property facilita.tes the proof of Lemma 2.3.16. 

Property 2.3.15 

For system S, prefix 11' of a computa.tion of S, and tra.ce ta of tS 

{(tataT,T) 1TEpS}Ç11' A {(ttaT,T) 1TEpS}Ç11' 

(a, {(ttaT, T) 1 TE pS A a E aT}) E 71". 

Pro of 

For every U E pS, such that a E aU, we ha.ve 

((ttaU)a,U) E 11' 

=> { Definition 2.3.1 } 

(3C: (a,C) E Act.11': (ttaU,U) E C) 

=> { Definition 2.3.1} 

(3C,u: (a,C) E Act.11' A ua E tS A (ttaU,U) E C 
: C Ç {(utaT,T) 1TEpS}Ç1r A {(uataT,T) 1 TE pS} Ç r). 

Furthermore, let C = {(ttaT,T) 1 TE pS Aa E aT}. We derive 

(a',C') E Act.r A C nC' f. 0 

=> { Definition 2.3.1, definition of C, calculus} 

(3u, U: ua' E tS A U E pS A {a,a'} Ç aU A (ttaU,U) E C' 
: C' Ç {(utaT,T) 1 TE pS} Ç r A {(ua'taT,T) 1TEpS}Ç11'). 

=> { Definition 2.1.15, calculus} 

(3u,U: ua' E tr.11' AU E pS A {a,a'} Ç aU A utaU = ttaU 
: C' = {(utaT,T) 1 TE pS Aa' E aT}) 

=> { property of t, tr:ir E ppot.S and ta E tr.11', Definition 2.3.2, calculus} 

a = a1 A (3u: ua E tr.11': uta tta A C' = {(ulaT,T) 1 TE pS A a1 E aT}) 

=> {tr.11' E ppot.S and ta E tr.11', Property 2.3.12} 

a = a' A (3u: ua E tr.'11' A C' = {(utaT,T) ! TE pS A a' E aT} 
: (YT: TE pS Aa E aT: utaT = ttaT)) 

=> { definition of C, calculus} 

(a,C) = (a',C'). 

67 
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Hence, a.ccording to Definition 2.3.1, 

(a,{(daT,T) 1 TE pS Aa E aT}) E 1r. 

Cl 

We alrea.dy proved for system S that (Corollary 2.3.7) 

{tr.1r l 1r E ppoc.S} Ç ppot.S. 

As we mentioned, the main goal of this section is to prove tha.t (ppoc.S, Ç) is isomorphic 
to (ppot.S, Ç) and function tr is an isomorphism, which constitutes Theorem 2.3.20. 
To a.chieve this goal, two intermediate results are needed that a.re proved by Lemmata 
2.3.16 and 2.3.18. 

In the following lemma. we prove that every prefix 1r of a computation of system S is 
equal to con/ .(tr.1r) U acqtr.11"). 

Lemma 2.3.16 

For system S and prefix ,,. of a computation of S 

1r = con/.(tr.'ll') U act.(tr.'l!'). 

Proof 

First, 1r 2 con/.(tr.1r) U act.(tr.1r) is proved. 

Let TE pS. We derive 

(t,T) E con/.(tr.1r) 

# { definition of con/ } 

(3u: u E tr.'ll': ufaT = t) 
=> { Definition 2.1.15} 

(3u: {(utau, U) 1 U E pS} Ç 1r: utaT = t) 
=> { T E pS, set and predica.te calculus } 

(t,T) E 1r. 

Hence, conf.(tr.1r) Ç ?r. 

We derive 

(a, C) E act.(tr.1r) 

# { definition of ad } 
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(3u: ua E tr:1r: C = {(ufaU,U) 1 U E pS Aa E aU}) 

=> { tr:1r is prefix-closed, Definition 2.1.15} 

(3u: ua E tS f\ {(uataU,U) 1 U E pS} Ç 'Il' 

: C = {(ufaU,U) 1 U E pS Aa E aU} A {(ufaU,U) 1 U E pS} Ç '11') 
=> { Property 2.3.15} 

( a, C) E Act.'11' 
=> { definition of Act.'11'} 

(a,C) E 'Il'. 

Hence, act.(tr.'11') Ç 'Il'. 

The two a.bove results prove 'Il' 2 con/ .(tr.r) U act.(tr.11'). 

Next, 'Il" Ç con/.(tr.r) U act,(tr.11') is proved. 

From Definition 2.3.1 we have {(e,T) 1 TE pS} Ç ,.., which implies e E tr.11', and 
hence from the definition of con/ {(e,T) 1 TE pS} Ç con/.(tr.11'). 

Furthermore, for T E pS 

(ta,T) E Conf.'11' 

=> { Definition 2.3.1 } 

{3C: (a,C) E Act.r: (t,T) E C) 
::;. { Definition 2.3.1 } 

(30,u: (t,T) E C /\ ua E tS: C Ç {(utaU,U) 1 U E pS} Ç"' 

/\ {(uataU, U) 1 U E pS} Ç r) 
=> {set and predica.te calculus, Definition 2.1.15} 

(3u: t = ufaT: ua E tr.r) 

::;. { definition of con/ } 

(ta,T) E con/.(tr.r). 

Hence, Conf.r Ç con/.(tr.r). 

We derive 

(a,G) E Act.'11' 

=? { Definition 2.3.1 } 

(3u: ua E tS: G Ç {(utaU,U) 1 U E pS} Ç r A {(uataU,U) 1UEpS}Ç1r) 

=> { Definition 2.1.151 definition of Act.S} 

(3u: ua E tr.11": C = {(utaU,U) 1 U E pS Aa E aU}) 
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# { definition of act } 

(a,C) E act.(tr.11'). 

Hence, Act.11' Ç act.(tr.?r). 

2 Operational model of systems 

The two above results prove 1r Ç con/ .(tr.?r) U act.(tr.11"). 

0 

In the following lemma. we prove tha.t for every po-tra.rep of system S, the tra.re set 
associa.ted with conf.p U act.p equa.ls p. This lemma facilita.tes the proof of Lemma. 
2.3.18. 

Lemma 2.3.17 

For system S and po-trace p of S 

p = tr.(con/.p U act.p). 

Pro of 

Let t E tS. 
In order to prove we derive 

tEp 

=> { definition of con/ } 
{(tîaT,T) 1 TE pS} Ç conf.p 

# { Definition 2.1.15} 

t E tr.( con/ .p U act.p). 

Hence, p Ç tr.(conf.p U act.p). 

In order to prove we derive 

t E tr.( con/ .p U act.p) 
# { Definition 2.1.15} 

{(ttaT,T) 1 TE pS} Ç conf.p 

=> { definition of con/ } 

(3u: u E p: (VT: TE pS: utaT = ttaT)) 
=> {pE ppot.S, Definition 2.3.2} 

t Ep. 
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Hence, tr.(conf.p U act.p) Ç p. 

0 
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The following lemma. shows that every element of ppot.S is associated with a. prefix of 
a. computation of system S. 

Lemma 2.3.18 

For system S 

ppot.S Ç {tr.'11" l '11" E ppoc.S}. 

Pro of 

We derive 

p E ppot.S 

=> { Corollary 2.3.14} 

con/ .p U act.p E ppoc.S 

=> { definition of tr} 
tr.(conf.pUact.p) E {tr.'11" j '11" E ppoc.S} 

{:? {Lemma. 2.3.17} 

p E {tr.'11" 111" E ppoc.S}. 

Hence, ppot.S Ç {tr.11" 111" E ppoc.S}. 

D 

As a consequence of Corollary 2.3.7 and Lemma 2.3.18, we have the equality of the set 
of po-tra.ces of system S and the image of ppoc.S under tr. This is expressed by the 
following corollary. 

Corollary 2.3.19 

For system S 

ppot.S {tr:K 111" E ppoc.S}. 

D 
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Finally, we present the main theorem of this section. On account of this theorem, the 
alternative way of determining the a.cceptances is given further on. 

Theorem 2.8.20 

Let S be a system. Then (ppoc.S, Ç) is isomorphic to (ppot.S, Ç), and function tr is 
an isomorphism. 

Proof 

Our proof obligation consists in showing that tr is a bijection such that for elements 
7r and 1r' of ppoc.S 

From Corollary 2.3.19 we a.lready have tha.t tr is a. surjection, tha.t is, 

tr.(ppoc.S) = ppot.S. 

We then prove that tr is an injection too. In other words, for elements 7r and 71'
1 of 

ppoc.S 

tr.7r = tr.11"1 => 11" 1f'
1

• 

We derive 

tr.1f' = tr.11"1 

=> { definition of con/ and act } 
con/ .(tr.11") U act.(tr.r) = con/.(tr.r') U act.(tr.'lf') 

# {Lemma. 2.3.16} 

?r = 11"'. 

Hence, tr is a. bijection. 

Consequently, for elements r and 11"
1 of ppoc.S we prove 

Assume 11" Ç 11"
1 and t E tS. We derive 

t E tr.11" 
# { Definition 2.1.15} 

{(t~aT,T) 1. TE pS} Ç 11" 
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=> {7rÇ1r'} 
{(ttaT, T) 1TEpS}Ç1r' 

# { Definition 2.1.15} 

t E tr.'lr'. 

Hence, 7f Ç 'lr1 => tr.7f Ç tr.'lr'. 

In order to prove the implication the other wa.y around, assume tr.'lr Ç tr.'lr'. 

For configura.tions we derive 

e<>nf .(tr.'lr) 

= { definition of con/ } 
{(ttaT,T) 1 TE pS At E tr.1r} 

c {tr.11' ç tr.r} 

{(ttaT,T) 1 TE pS At E tr:ir'} 

= { definition of con/ } 
con/ .(tr.r). 

For action occurrences we derive 

act.(tr.11") 

= { definition of act } 

{(a,{(ttaT,T) 1 TE pS Aa E aT}) 1 a E aS Ata E tr:ir} 
c {tr.11' ç tr.r} 

{(a,{(ttaT,T) 1 TE pS /\ a E aT}) 1 a E aS /\ ta E tr.'11"'} 

= { definition of act } 

act.(tr.7r1
). 

Hence, con/.(tr.7r) U act.(tr.'lr) Ç conf.(tr:ir') U act.(tr.11'1). 

Together with Lemma. 2.3.16 this gives 71' Ç 7r1
• 

D 
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A standard result for isomorphic pa.rtially ordered sets is that maxima! elements of one 
of them coincide with the isomorphic images of maximal elements of the second one. 
In our case, this mea.na tha.t 

11' is a. maximal element of ppoc.S # tr.11' is a maxima.l element of ppot.S, 



74 

which is expressed \>y Corollary 2.3.21. 

Corollary 2.3.21 

For system S 

pot.S = {tr.11' 111' E poc.S}. 

0 

2 Operational model of systems 

A consequence of the fa.et that the set of ma.xima.l po-tra.ces of system S equa.ls the 
image of poc.S under tr is tha.t a.ccepta.nces of S can be determined using pot.SîeS. 
Hence, we do not have to use the operationa.l model for this purpose. This result is 
expressed by the following corolla.ry. 

Corollary 2.3.22 

For system S, tra.ce tof t(prS), and subset Lof es• 

(t,L) E acS <:> (Vp: p E pot.SA t E pÎeS: {v 1 tv E pÎeS} nL =1-'0). 

An equivalent formulation is 

(t,L) E acS <:> (VX: X E pot.SÎeS /\ t EX: {v 1 tv EX} nL =f. 0). 

0 

The results presented in the sequel relate the elements of ppot.S to conserva.tive pro
cesses. This rela.tionship is used in the proof of Lemma 2.5.6 in Section 2.5. 

On account of Definitions 1.3.5 and 2.3.2 we have the following property. 

Property 2.3.23 

For system S, po-trace pof S, and process Tof pS 

(aT,pîaT) is a conservative process. 

0 

Property 2.3.24 

.For system S and po-trace p of S 

{aS,p) = (WT: TE pS: {aT,pîaT)). 
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Proof 

The alphabets of both processes are equal, viz., aS. The remaining proof obligation 
consists in showing that their trace sets are equal too. 

In order to prove Ç, we derive 

tep 

=> { p ç ( aS)*, definition of f } 
t E (aS)* /\ (VT: TE pS: tfaT E pfaT} 

# { definition of W} 

t E t(WT : TE pS: (aS,pf aT) ). 

In order to prove ~, we derive 

0 

t E t(WT: T E pS : (aS,pf aT}) 
# { definition of W} 

t E (aS}* /\ (VT: TE pS: tfaT E pfaT) 

# {p Ç tS, t is monotonie, definition of tS, Lemma 1.1.20} 

t E tS A (VT: T E pS: tfaT E pf aT) 

=> { definition of t } 
t E tS A (VT: T E pS: (3u: u E p: traT = ufaT)) 

=> { definition of con/ (2.3.8)} 

t E tS A (VT: TE pS: (ttaT,T) E conf.p) 

=> {p E ppot.S, hence on account of Corollary 2.3.14 and Definition 2.3.1, 
conf.p U act.p Ç Conf.S U Act.S, Definition 2.1.15} 

t E tr.(c<>nf.p U act.p) 

# {p E ppot.S, Lemma 2.3.17} 

t E p. 

By Property 1.3. 7 and the two a.bove properties we have the following result. 

Corollary 2.3.25 

Let S be a system and p a po-trace of S. Then 

(aS,p) is a conservative process. 

0 
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2.4 Behavioural relations 

Different theories intended to describe and to reason about concurrent and nondeter
ministic systems are known in the literature. They use various notions of equivalence of 
systems, e.g., string equivalence, observational equivalenèe, failure equivalence, testing 
equivalence. A thorough review of these notions can be found in [DeO]. Almost all of 
them are based on the idea that two systems are equivalent whenever no external ob
server can distinguish between them. This idea is inspired by the fact that for a given 
system usually not its internal structure is of interest hut its behaviour with respect 
to the environment in which it is placed (that is, a system with which it is supposed 
to co-operate). 

We decided to compare systems by exposing them to tests and confronting their re
sponses (see, e.g., [Hen], also for further references), because the identifications and 
distinctions that are made in this way seem to be very reasonable. The formalization 

' of this approach results in behavioural relations embedded in the operational model 
of Section 2.1. By means of these relations, parallel systems can be distinguished 
from nondeterministic hut sequential systems. We borrowed the general idea of testing 
from [Hen], however, the relations defined in this section are different from the testing 
relations described there. 

When comparing systems by means of testing, different aspects of their behavioui can 
be considered. Two of them are of interest to us. For every pair of systems exposed 
toa test (also a system) their potential and guaranteed responses are compared. The 
potential response of system S to test Ris defined to be pr(R Il S) - the external 
process of the parallel composition of R and S. By the guaranteed response of system 
S to test R we understand the set of acceptances of the parallel composition of R and 
S. Ba.sed on these two aspects three behavioural ( testing) relations between systems 
are defined. 

In the sequel, SY represents the set of systems with alphabets contained in n, and PR 
represents the set of processes with alphabets contained in n. 
The first testing relation considers potential responses of systems to tests. 

Definition 2.4.1 

Let S0 and S1 be systems. Relation psat compares systems S0 and S1 with respect to 
their potential responses. It is defined by 

So psat S1 # (VR: RE SY: pr(R Il So) Ç pr(R Il S1)). 

0 
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If S0 psat S1 holds, we say that S0 potentially satisfies (implements) S1 • Tha~ is, 8 0 

cannot produce other sequences of actions than the ones S1 can produce too,, if they 
are placed in the same context. In other words, S0 cannot do anything "wrong" with 
respect to what S1 can do. In our model, relation psat takes care of the verifica.tion 
of the, so-called, safety properties. 

The following lemma shows that there is a simple way to check whether S0 psat S1 

holds. Na.mely, we can get rid of the universal quantification, which considera.bly 
simplifies ca.lcula.tions. 

Lemma 2.4.2 

For systems S0 and S1 

So psat S1 # prSo Ç prS1. 

Proof 

We derive 

0 

So psat S1 

# { Definition 2.4.1 } 

(VR: RE SY: pr(R Il So) Ç pr(R Il S1)) 

# {Lemma 1.2.4} 

(VR: RE SY: (prR) w (prS0) Ç (prR) w (prS1)) 

# {{prRIRESY}=PR} 
(VT : T E PR : T w (prS0) Ç T w (prS1)) 

# {Lemma 1.1.22} 

prSo Ç pr81. 

The second testing relation considers guaranteed responses of systems to tests. 

Definition 2.4.3 

Let S0 and S1 be systems. Relation gsat compares systems 80 a.nd S1 from the point 
of view of gua.ra.nteed responses. It is defined by 

So gsat S1 # (VR: RE SY: ac(R Il So) 2 ac(R Il S1)). 

0 
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If 80 gsat 8 1 , we aay that 80 is guaranteed to satisfy (implement) 81 • That is, ev
erything 81 can guarantee to execute in a. context, will certainly be performed by 80 

in the same context. In our model, relation gsat takes care of the verification of the, 
so-called, liveness properties. 

The third testing relation combines the two previous ones. 

Definition 2.4.4 

Let 80 and 81 be systems. Relation sat expressing that system 80 is an implementation 
of (satisfies) 81 , 80 sat Si, is defined by 

80 sat 81 # 80 psat 81 A 80 gsat 81. 

0 

For the systems of Example 2.2.3, -.(80 sat 81) holds. To establish this result consider 
test R= ({a,b},{pr(b*; a)}}. Then 

(e:, {b0a 10 :::; i}) E ac(R Il 81) and (e:,{b'a 10 5 i}) </. ac(R Il So). 

We also have -.(81 sat 80 ), which can be established by considering as a test system 
R= {{a,b},{pr(b; a)}}. Then 

(b,{a}) E ac(R 11 80) and (b,{a}) </. ac(R Il 81). 

Furthermore, two systems are declared to be equivalent, if each of them is an imple
mentation of the other one. 

Definition 2.4.5 

For systems 80 and 81 

80 equ 81 # 80 sat 81 A 81 sat Bo. 

0 

Testing relations solve the problem related to the phenomenon of disabling that is 
_ mentioned in Section 2.2. That is, thanks to the fact that systems are exposed to 
tests, acceptances supply information about the system's external behaviour that is 
sufficient to distinguish between systems with and without disabling. 
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Relation gsat enables us to distinguish between systems S0 and S1 of Example 2.2.7, 
which have equal external processes. In this case, it is easy to verify that for the test 
R= ({a,b},{({a,b},{e,a})}) we have 

(e,{a}) E ac(R Il 81) A (e,{a}) </. ac(R Il 80). 

This implies -.(So gsat S1). Hence, S0 does not implement S1, i.e., -.(S0 sat S1). 

Consequently, So and S1 are not equivalent, Le" -.(So equ S1). 

In the sequel, some more examples are presented. All of them concern pairs of systems 
with equal external processes, which implies that they are potential implementations of 
each other. In these ex~ples we concentrate on showing why they are not equivalent 
to each other. 

Example 2.4.6 

Consider systems S0 and S1 defined by 

So = ({a,b,c},{pr(a; (x 1 c)),pr(b; (x 1 c))}) 

and 

S1=({a,b,c},{pr((a;b1 b; a); c)}}. 

Because for R ({a, b, c}, {pr(a; b; c)}} 

(ab,{c}) E ac(R Il 81) and (ab,{c}) </. ac(R Il So), 

we have -.(So gsat S1 ). Hente, S0 does not implement S1 • 

We also have -.( S1 gsat S0), because for R = ( { a, b, c}, {pra, prb, pr( c0)}} 

(e, {a}) E ac(R 11 So) A (e, {a}) <f. ac(R Il 81 ). 

Consequently, 8 1 is not a correct implementation of S0 . 

0 

Example 2.4. 7 

Let 80 and S1 be systems defined by 

So = ({a}, {pr(a*)}} 

and 

81 = ({a},{pr(x;; a;) l 1 Si}}. 
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We have -.(S1 gsatS0 ), because for R = ({a},{pr(a; a)}) 

(a,{a}) E ac(R Il So) A (a,{a}) 'I. ac(R Il 81). 

Hence, S1 is not a correct implementation of S0 • 

0 

Example 2.4.8 

Consider systems S0 and S1 that are defined by 

S0 = {{a,b},{pr(a; x),pr((y 1 x); b)}) 

and 

S1 = ({a,b},{pra,prb}}. 

We have ..., ( S0 gs!'-t S1), heéa.use for R = ( { a, b}, {pra, prb}} 

(e, {b}) E ac(R Il S1) A (e, {b}) '/. ac(R Il So). 

Consequently, S0 does not implement 81• 

0 

It is obvious from their definitions that psat, gsat and sat are pre-orders. This implies 
then that equ is an equivalence relation (equ is refl.exive, symmetrie and transitive). 

A consequence of relation sat being a pre-order is that equ is a congruence with respect 
to sat. That is, for systems So, Si, To, and T1 

S0 equ T0 A S1 equ T1 :::> (So sat 81 # T0 sat T1). 

So fa.r we have provided means to compare systems with for us - satisfactory 
results. However, to prove that two systems are equivalent requires a. lot of effort, 
heca.use of the universal quantifications over the large system domain. 

The purpose of testing is to check how the external hehaviour of a system is influenced 
by all possihle environments. In fa.et, the intemal actions of tests ca.nnot influence the 
hehaviour of the tested system. Moreover, tests with too large externa.l processes do not 
provide more information a.hout the tested system than other tests. More precisely, for 
system Sit is sufficient to consider tests R such tha.t aR = eR = eS and prR Ç prS . 

. We claim that 

Test.S {R 1 RE SY A aR= eR = eS AprR Ç prS} 
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constitutes the domain of relevant tests for system S, if S stands for the right argument 
of sat. Tha.t is, for systems 80 and 81 

So sat S1 # prSo Ç prB1 A (VR: RE Test.B1 : ac(R Il S0 ) 2 ac(R Il B1 )). 

The proof of this statement can he found in Section A.5 of the Appendix. 

In the case of systems Bo a.nd B1 of Example 2.2.7 the relevant tests are 

• {{a,b},{pra,pr(b0 )}}, 

• {{a,b},{pr(a0),prb}), 

• {{a,b},{pr(a 1 b)}}. 

(Test ({a, b}, {stop.{a, b}}) gives no information about the tested system and other 
tests of Test.Bo are of no releva.nce, because their behaviours correspond to the be
haviours of the above tests.) 

For all the above tests R we have ac(R Il S1 ) 2 ac(R Il Bo). Together with prB1 Ç pr80 

this yields S1 sat 80 • 

In the following example we show the equivalence of two systems with equal external 
processes. 

Example 2.4.9 

Let S0 ={{a,b},{pr(a1x),pr(b1 y)}} and 

S1=({a,b},{pr((a1 x); (b 1y)1(b1 y); (a 1 x))}). 

The relevant tests are 

• {{a,b},{pra,pr(b0
)}}, 

• {{a,b}, {pr(a0),prb}), 

• {{ a, b}, {pr(a; b)}}, 

• {{ a, b}, {pr(b; a)}), 

• ({a, b}, {pra,prb}). 

It is then easy to verify that S0 gsat S1 and S1 gsat B0 • 

0 
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The operationa.I view of system behaviour presented in this section results in the testing 
relations tha.t a.Ilow us to oompare systems. Systems with and without para.llelism are 
distinguished in our approach. We use the testing relations to justify our choice of the 
abstract model that is discussed in Chapter 3. 

,, 
2.5 Properties of behavioural relations 

In this section some fa.cts about testing relations are proved. They include monotonicity 
of parallel oomposition and projection with respect to psat, gsat, sat, and equ. This 
mea.ns that the verification method ba.sed on the sat rela.tion is oompositional with 
respect to parallel composition and projeetion. Moreover, as a consequence of the above 
monotonicity properties, equ is a congruence with respect to parallel composition of 
systems and to projection of systems on a.lphabets. 

Lemma 2.5.1 shows that Il is monotonie with respect to psat. 

Lemma 2.5.1 

For systems S0 ,S1, and T 

So psàt 81 ::::} (Bo Il T) psat (81 Il T). 

Pro of 

We derive 

0 

Bo psat 81 

<=> {Lemma. 2.4.2} 

prSo Ç pr81 

::::} { weave is monotonie, Lemma 1.1.14} 

(prS0 ) w (prT) Ç (pr81 ) w (prT) 

{:} { Lemma. 1.2.4 } 

pr(So Il T) Ç pr(S1 Il T) 
<=> { Lemma 2.4.2} 

(So Il T) psat (S1 Il T). 

Lemma. 2.5.2 shows tha.t Il is monotonie with respect to gsat. 
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Lemma 2.5.2 

For systems S0 , S1, and T 

So gsat S1 => (So Il T) gsat (Si Il T). 

Proof 

We derive 

So gsat S1 
{::} { Definition 2.4.3} 

(VR: RE SY : ac(R Il Bo) ;;::? ac(R Il S1)) 

=> {predicate calculus (substitute R' Il T for R)} 
(VR!: R' E SY: ac(R' Il T Il So) 2 ac(R' 11 T Il S1)) 

{::} {Il is associative and commutative, Definition 2.4.3} 

(So Il T) gsat (S1 Il T). 

D 

As a. consequence of the preceding lemmata we have monotonicity of Il with respect to 
sat and equ. 

Corollary 2.5.3 

For systems S0 , Si, and T 

• So sat S1 => (So Il T) sat (81 Il T). 

• So equ S1 => (So 11 T) equ (S1 Il T). 

D 

Theorem 2.5.4 expresses the fa.et that relation equ is a congruence with respect to Il· 

Theorem 2.5.4 

For systems S0 , S1, To, and T1 

So equ To /\ Si equ T1 => ( So Il Si) equ (To Il Ti). 

Pro of 

We derive 
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So equ T0 /\ 81 equ T1 

~ { corollary 2.5.3} 

(So Il 81) equ (To Il Si) /\ (S1 Il To) equ (T1 Il To) 
{::} { Il is commutative} 

(So Il S1) equ (To Il 81) A (To Il S1) equ (To Il Ti) 
~ { equ is tra.nsitive} 

(So Il S1) equ (To ff Ti)· 

0 

Lemma. 2.5.5 shows that projection is monotonie with respect to psat. 

Lemma 2.5.5 

Let S0 and S1 be systems, and let A be an alphabet. Then 

S0 psatS1 '~ (S0 ÎA)psat(S1 ÎA). 

Pro or 

We derive 

So psat S1 

{::} {Lemma 2.4.2} 

prS0 Ç prS1 

~ { projection is monotonie, Lemma 1.1.14} 

(prSo)tA Ç (prS1)ÎA 
{::} { Property 1.2.5} 

pr(SoÎA) Ç pr(S1tA) 
{::} {Lemma 2.4.2} 

(SoÎA) psat (S1ÎA). 

0 

The following lemma facilitates the proof of Lemma 2.5. 7. 

~' 

Lemma 2.5.6 

For system S, p E pot.S, and alphabet A 

u E p /\ u'v E p A uÎA = u'îA ~ u(u'v \ li.u) E p /\ vÎA:::::: (u'v \ li.u)tA. 
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Proof 

On account of Corollary 2.3.25 and Property 1.3.9, we have 

u E p /\ u'v E p =? u(u'v \ l>.u) E p. 

Assume ut A u' t A. We derive 

(u'v \ l>.uHA 

= { Property 1.1.1} 

u'vtA \ l>.(utA) 
= { property of projection} 

(u'tA)(vtA) \ b.(utA) 
= {utA=tltA} 

(utA)(vtA) \ li.(utA) 

{ Property 1.1.1} 

vÎA \ !>.e 
= { li.e = 0 and s \ 0 = s, for trace s} 

vtA. 

Hence, 

u E p /\ u'v E p /\ uÎA u'tA =? u(u'v \ b.u) E p /\ vÎA (u'v \ b.u)tA. 

D 

Lemma 2.5. 7 shows that projection is monotonie with respect to gsat. 

Lemma 2.5.7 

Let 80 a.nd 81 be systems, such tha.t prS0 Ç pr81, and let A be a.n a.lpha.bet. Then 

So gsat 81 =? (8oÎA) gsat (S1tA). 

Pro of 

Assume 

(VR: RE 8Y: ac(R Il 80);;;;? ac(R Il S1)). 

85 

Let R be a system. For the sake of brevity (see Definition 1.2.1) we a.ssume that 
aR n a80 = eR n eS0 n A and aR n a81 = eR n e81 n A. 

Let t E t(pr(R Il (81 tA))) and L Ç (eRU(e81nA))*. 
Define 
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L' = (Up,u, v: p E pot.(R Il 81) A uv E pt(eR Ue81) 

A ut(eR U (e81n A)):::: t A vt(eR U (eS1 n A)) EL 

: v) 

UL \ {v 1 tv <t t(pr(R Il (S1tA)))}. 

We derive 

(t,L) E ac(R Il (81tA)) 

{:} { Corollary 2.3.22} 

(Vp:pEpot.(Rll (S1tA)) A tEpt(eRU(eS1nA)) 

: {v 1 tv E pt(eRU(eS1nA)))}nL #: 0) 

* {(eS \ A) neR = 0 => R Il (StA) = (eR U(e8\ A),pR Up8), 
Property 2.1.16, Corollary 2.3.21, predica.te ca.lculus} 

(Vp: p E pot.(R Il 81) At E pt(eRU(e81nA)) 
: (3v: v EL: tv E pf(eRU (eS1nA)))) 

{:} { property of projection, predica.te calculus} 

(Vp,u: p E pot.(R Il Si) Au E p A ut(eRU (e81nA)) = t 
: (3u',v: vf(eRU (e81n A)) EL: u'v E p A u't(eR U (eS1nA)) = t)) 

{:} { => : Lemma 2.5.6 with 8 substituted by R Il S1 a.nd A substituted by 

eR U (eS1n A), predica.te calculus; *== predica.te ca.lculus} 

(Vp,u: p E pot.(R Il 81) Au E p A ut(eRU (eS1nA)) t 
: (3v: vf(eRU(eS1nA)) EL: uv E p)). 

{:} { definition of L', set a.nd predica.te ca.lculus } 

(Vp, u: p E pot.(R Il 81) A u E p A ut(eR U (eS1n A)) = t 
: (3v: vt(eR U e81) EL': uv. E p)) 

{:} { property of projection} 

(Vp, u: p E pot.(R Il 81) A u E pt(eR UeS1) A ut(eR U (e81n A)) = t 
: (3v: v EL': uv E pÎ(eRUeS1))) 

{:} {predica.te calculus, u E pt(eRUe81) => u E t(pr(R Il 81 )), 

Definition 2.2.4} 

(Vu: u E t(pr(R Il 81)) A ut(eR U (e81n A)) = t: (u, L') E ac(R Il 81)) 

=> { ac(R Il 81) Ç ac(R Il So), prSo Ç pr81} 

(Vu: u E t(pr(R Il 80 )) A uÎ(eRU(e80nA)) = t: (u,L') E ac(R Il 80 )) 

{:} { repetition of the first seven steps of this deriva.tion in the reverse order, 

L = L't(eR U (e80nA))} 

(t,L) E ac(R Il (8oÎA)). 
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Hence, 

0 

From Lemmata 2.5.5 and 2.5. 7 immedia.tely follows tha.t projection is monotonie with 
respect to sat and equ. (In the case of the equ rela.tion, this also means that equ is 
a oongruence with respect to projection.) 

Corollary 2.5.8 

For systems S0 and S1, and for alpha.bet A 

• S0 sat Si => (S0 tA) sat (S1tA). 

• S0 equ S1 => (SofA) equ (S1 tA). 

0 
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In the previous chapter, testing relations are introduced to formalize an operationa.l 
view on how to compa.re systems. It is easy to show tha.t two systems are related (or 
are not related) via psat - on account of Lemma 2.4.2 it is sufficient to compare 
their externa.l processes. To show that S0 is not gua.ranteed to implement S1 it suflices, 
according to Definition 2.4.3, to point out a test R for which ac(R Il S1) is nota subset 
of ac(R Il S0). However, to establish that two systems are related via gsat all possible 
tests must be considered. In this case, a nontrivial reasoning about the large system 
domain is involved. 

This chapter provides an abstract model of systems that is compositional (with re
spect to projection and parallel composition), and in which the outcome of compar
isons is the sa.me as in the opera.tional model, white the calcula.tions are much sim
pler here. At the sa.me time the domain of systems is restricted. Only systems with 
nondeterministic choices that do not dépend on external actions are considered. To 
give an informal explana.tion of what is meant by this, we mention two simple exam
ples of systems tha.t do, and do not satisfy this requirement. For insta.nee, system 
({a,b},{pr(a 1 b)}} is excluded, and system ({a,b},{pr(x; a 1 y; b)}} - which has 
a nondeterministic choice between a and b may be considered. Moreover, sys
tem ({a, b,c}, {pr(x; a 1 y; b),pr(c; y}}) is excluded from our considerations, whereas 
system ({a,b,c},{pr(x; a 1 y; b),prc}) is not. The rea.son for the exclusion of the 
first system is an important change in its behaviour when it is exposed to the test 
( { c}, {pr( c°)}}. Whereas in the sa.me context the nondeterministic choice of the sec
ond system stays intact, in the case of the first system there is no choice anymore. 
The nondeterministic choice of the second system depends on the occurrence of the 
external action c, which can be influenced by a test. We want to exdude this kind of 
influence by the testing environment. Although these exclusions genuinely restrict the 
application domain, it is still suflicient to cover among other things - the semantics 
of Tangram programs, as is shown in Chapter 4. 

In Section 3.1, a few results concerning computations of parallel composition of systems 
are presented. Section 3.2 contains the formal definition of the abstract model for the 

, restricted system domain. This model is compositional with respect to parallel com
position and projection. Finally, in Section 3.3, we show that for the restricted system 
domain both - operational and abstract - models give the sa.me identifications and 

88 
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differentiations. As a consequence, verification in the abstract model can he realized 
hiera.rchically. 

3.1 Preliminary results 

This section contains results that allow us to relate sets of traces associated with 
computations of a. parallel composition to sets of tra.ces associated with computations 
of its components. The first two lemmata present intermedia.te results associated with 
po-traces. 

Lemma 3.1.1 

For system S, po-trace pof S, trace tof p, and trace u of tS 

(VT: TE pS: utaT $ ttaT) => u E p. 

Pro of 

Assume (VI': TE pS: utaT $ ttaT). We derive 

D 

tEp 

# {Lemma 2.3.17} 

t E tr.( conf .p U act.p) 

# { t E p /\ p E ppot.S ::;.. t E tS, Definition 2.1.15} 

{(ttaT, T) 1 TE pS} Ç con/ .p U act.p 

=> {Corolla.ry 2.3.14, from Definition 2.3.1 follows that (v,T) E conf.p 
implies (Vv' : v' $ v : ( v1

, T) E con/ .p), assumption} 

{{utaT,T) 1 TE pS} Ç conf.p U act.p 

# { u E tS, Definition 2.1.15} 

u E tr.(conf.pUact.p) 

# {Lemma 2.3.17} 

u Ep. 

Lemma3.l.2 

For system S, po-trace pof S, and tra.ces tand u of p 

(3v: v E p: (VT: TE pS: ttaT $ vtaT /\ utaT $ vtaT)). 



90 3 Abstract model of systems 

Pro of 

We derive 

tEp/\uEp 

=> { Corollary 2.3.25, Property 1.3.9, definition of :5 for tra.ces} 

t(u \ P.t) E p /\ t :5 t(u \ P.t) 
=> {Lemma. 1.1.15} 

t(u \ U) E p /\ (VT: TE pS: tîaT :5 t(u \ li.t)ÎaT). 

For tra.ces tand u of p we have (compare this with Corollary A.1.6) 

Let T E pS. We distinguish two cases. 

Case 0 

Then 

utaT :5 tîaT 

tîaT :5 t(u \ P.t)taT 

~ { ufaT :5 tfaT, :5 is transitive} 

utaT :5 t(u \ l>.t)taT. 

Case 1 ttaT :5 utaT 

Let v E (aT)*, such that uîaT = (tfaT)v. We derive 

t(u \ '1.t)taT 

= { Property 1.1.1} 

(tfaT)(ufaT \ li.(tfaT)) 

= { definition of v } 

(tfaT)((tîaT)v \ li.(tîaT)) 

= { Property 1.1.1 } 

(tîaT)(v \ '1.e) 

= {li.e = 121, v \ 121 = v} 

(tîaT)v 

= { definition of v } 

ufaT. 
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Hence, uîaT::; t(u \ ~.t)îaT. 

On account of the above derivations we have 

(VT: TE pS: tîaT::; t(u \ ~.t)taT /\ uîaT::; t(u \ U)taT). 

0 

In the sequel, So and 81 are systems. Moreover, for Po E ppot.So and Pi E ppot.S1, 

Po w p1 is used to denote t((aS0 ,pg} w (aS1,Pt)). 

The alphabets that play a röle in p0 w Pi should be inferred from the context (i.e., 
from the definitions of So and 81). 

By means of the following properties and lemmata we prove 

ppot.(So Il S1) ={Po w P1 1 Po E ppot.So /\ Pi E ppot.S1}, 

which is expressed by Corollaries 3.1.6 and 3.1.11. 

First, ~ is proved by Property 3.1.3, and Lemmata 3.1.4 and 3.1.5. 

Property 1.1. 7 and the definition of w yield that Po w p1 is a non-empty and prefix
closed subset of t(S0 Il S1). This is expressed by Property 3.1.3. 

Property 3.1.3 

Let Po E ppot.So and Pi E ppot.S1. Then 

Po w Pi :/: 0 A pref .(po w P1) =Po w Pi /\ Po w P1 Ç t(So Il S1)· 

0 

Lemmata 3.1.4 and 3.1.5 prove that Po w p1 also satisfies the last two requirements of 
Definition 2.3.2. 

Lemma 3.1.4 

For Po E ppot.So and P1 E ppot.S1 

(Vt,u,a,b,T:TEpS0 UpS1 /\ {a,b}ÇaT /\ {ta,ub}Çpgwp1 

: ttaT = uîaT => a = b). 

Pro of 

Let TE pS0 , {a,b} Ç aT, and ttaT = uîaT. We derive 
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{ta,ub} Ç Po w Pi 

=> { definition of w, predicate calculus } 

tataSo E Po /\ ubtaSo E Po 

# {TE pSo, {a,b} Ç aT, definition of t} 
(ttaS0 )a E Po /\ (utaSo)b E Po 

3 Abstract model of systems 

=> {TE pS, hence, (ttaS0)taT = ttaT and (utaS0 )taT = utaT, ttaT = utaT, 

Po E ppot.So} 

a = b. 

In the same way the derivation for T E pSi and Pi can be given. 

0 

Lemma 3.1.5 

For Po E ppot.80 and Pi E ppot.Si 

('v't,u: t E Po w Pi /\ u E t(So Il Si)/\ (VT: TE pSo UpSi: ttaT = utaT) 

: u E Po w Pi)· 

Pro of 

Let t E Po w Pi and u E (aS0 UaSi)* satisfy (VI': TE pS0 UpSi: ttaT = utaT). 
We derive 

0 

u E t(So Il Si) 

# { t E Po w pi, u E (aSo U aSi)*, definition of w} 

ttaSo E Po /\ ttaSi E Pi /\ utaSo E tSo /\ utaSi E tSi 

=> {TE pSo, hence, (ttaSo)taT = ttaT and ttaT = utaT, Po E ppot.80 , 

similar arguments hold for T E pSi and Pi } 

utaSo E Po /\ utaSi E Pi 

# { definition of w, u E (aS0 U aSi)*} 

u E Po w Pi· 

,The following corollary is a consequence of Property 3.1.3, and Lemmata 3.1.4 and 
3.1.5. It shows that the weave of po-traces of systems 80 and Si is a po-trace of their 
parallel composition. 
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Corollary 3.1.6 

For systems 80 a.nd 81 

ppot.(So Il S1) 2 {vo w Pi 1 Po E ppot.So 1\ Pi E ppot.S1}. 

0 

Next, Ç is proved by Corollary 3.1.7, Property 3.1.9, and Lemmata 3.1.8 and 3.1.10. 

In the sequel, pis a po-trace of 80 Il 81. Moreover, for i E {O, 1}, we define 

P• = {t 1 t Ets,/\ (3u: u E ptaS,: (VI': TE pS,: ttaT s utaT)}}. 

In the above definition, we could equally well use = instead of$. However, it is much 
ea.sier to prove statements about S than about =· 
Corollary 3.1.7 follows from Property 1.1.3, and the definitions of w, po, and Pi· It 
shows that, for i E {0,1}, Pi is a non-empty prefix-closed subset of tS,. 

Corollary 3.1. 7 

For i = 0 or i = 1 we have 

Pi =F 0 1\ pref ·P• = P• /\ Pi ç ts._ 
D 

The following lemma proves that, for i E {O, 1}, Pi satisfies the third condition of 
Definition 2.3.2. 

Lemma 3.1.8 

Let i E {O, 1}. Then 

(Vt, u,a,b, T: TE pSi /\ {a, b} Ç aT /\ {ta, ub} Ç Pi /\ ttaT = utaT: a = b). 

Pro of 

Let TE pSi, {a,b} Ç aT, and {ta,ub} Ç Pi· We derive 

tîaT = utaT 
# { definition of Pi, { ta, ub} Ç Pi } 

(3t': t' E ptaSi: (VU: U E pSi: tafaU S t'ÎaU)) /\ 
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(3u': u' E pta8i: (VU: U E p8i: ubtaU $ u'taU)) /\ ttaT = utaT 

=> { predicate calculus, T E p8i } 

(3t',u': {t',u'} Ç pta8i: tataT :5 t'taT /\ ubtaT :5 u'taT) /\ ttaT = utaT 

=> { (a80 Ua8i,p) is a process, Property 1.1.3, {a,b} Ç aT, definition of t} 
(ttaT)a E pta8i /\ (utaT)b E pta8i /\ ttaT = utaT 

=> { predicate calculus} 

(3t',u': {t'a,u'b} Ç pta8i: t'taT = u'taT) 

=> { property of t, p E ppot.(80 Il 81), hence, pis prefix-closed, calculus} 

(3t',u': {t'a,u'b} Ç p: t'taT = u'taT) 

=> {p E ppot.(80 Il 81)} 

a =b. 

D 

The following property follows from the definition of Pi· It shows that, for i E {0, 1}, 
Pi satisfies the forth requirement of Definition 2.3.2. 

Property 3.1.9 

For i = 0 or i = 1 

(Vt, u: t E Pi /\ u E t8i /\ (VT: TE p8i: ttaT = utaT): u E Pi)· 

D 

Lemma 3.1.10 

Let p be a po-trace of 80 Il 81. For Po and p1 as defined above, we have 

P =Po w P1· 

Pro of 

We derive 

tEp 

=> {p Ç t(8o Il 81), property of t} 
t E (a80 U a81)* /\ tta8o E pta8o /\ tta81 E pta81 

=> { definition of Po and p1 } 

t E (a8o U aS1)* /\ tta8o E Po /\ ttaS1 E P1 
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<:::> { definition of w } 

t E Po w Pt· 

Hence, p Ç Po w Pt· 

For the inclusion the other way around we derive 

tEPoWPt 

=> { definition of w } 

ttaSo E Po A ttaS1 E Pt 

<:::> { definition of Po and P1 } 

(3tco: uo E ptaSo: (VT: TE pSo: (tîaSo)taT S uoîaT)) f\ 

(3u1: u1 E pÎaS1: (VT: TE pS1: (tÎaS1)taT $ u1ÎaT)) 

=> { Property 1.1.19, from T E pS follows aS n aT = aT, property of t} 
(3tco: uo E p: (VT: TE pSo: ttaT 5 tcotaT)) f\ 
(3u1: u1 E p: (VT: TE pS1 : tîaT $ u1 taT)) 

=> {Lemma 3.1.2, $ is transitive, predicate calculus} 

(3v: v E p: (VT: TE pS0 UpS1 : tîaT $ vîaT)) 

=> {Lemma 3.1.l} 

t E p. 

Hence, p ~Po w Pt· 

0 
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Corollary 3.1.7, Property 3.1.9, and Lemma 3.1.8 together prove that, on account of 
Definition 2.3.2, Po is a po-trace of S0 and P1 is a po-trace of S1• Moreover, together 
with Lemma 3.1.10 this gives the following result expressing that every po-trace of the 
parallel composition can be obtained as the weave of po-tra.ces of its components. 

Corollary 3.1.11 

For systems 80 and S1 

ppot.(So Il S1) Ç {Po w Pt 1 Po E ppot.So A Pt E ppot.S1}. 

0 

Combining Corollaries 3.1.6 and 3.1.11 we get the equality of both sets. 
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Corollary 3.1.12 

For systems S0 and Si 

ppot.(So Il Si)= {Po w Pt 1 Po E ppot.So /\ Pi E ppot.B1}. 

D 

An immedia.te consequence is that pot.( Bo Il Si) is equal to the set of maxima.l elements 
of {Po w Pt 1 Po E pot.Bo /\ Pt E pot.Si}. This is why we only have Ç in Corolla.ry 
3.1.13. 

Corollary 3.1.13 

For systems S0 a.nd Si 

pot.(So Il S1) Ç {Po w Pt 1 Po E potSo /\ P1 E pot.Si}. 

D 

As an example, consider systems 

So = ({a,b},{pr(a 1 b)}} 

and 

Si ({a,b},{pra}). 

Then Po = { e, b} belongs to pot.So, and p1 = { e, a} belongs to pot.811 hut Po w Pt = { e} 
does not belong to pot.(S0 Il B1). This is a consequence of the fa.et that in the parallel 
composition of 80 and S1 the choice between a and b present in 80 is reduced by S1 to 
a only. Hence, the only element of pot.(So Il S1) is {e,a}. 
However, for systems with disjoint external alphabets, we do have the equality of the 
sets !rom Corolla.ry 3.1.13. 

Lemma 3.1.14 

For systems S0 and S1, such that eBon eS1 = 0, 

pot.(So Il 81) 2 {Po w Pt 1 Po E pot.Bo /\ Pt E pot.Si}. 

Proof 

We a.ssume that aS0 n aS1 = eS0 n eS1 ( = 0) holds. 

Let Po E pot.S0 and p1 E pot.Si. Then, on account of Corollary 3.1.12, Po w Pt is an 
element of ppot.(80 Il 81). Consequently, by Property 2.3.3, it is suflicient to prove 
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(Vt, a : ta E t( So Il Si) \Po w Pi /\ t E Po w Pi 

We derive 

: (:JT, u, b : TE p(So Il Si) /\ ub E Po w Pi /\ utaT = tîaT 
: {a,b} Ç aT /\ a =/= b)). 

ta E t(So Il Si)\ Po w Pi /\ t E Po w Pi 

<=? { definition of w and tS} 

ta E ( aSo U aSi)* /\ ta taSo E tSo /\ ta taSi E tSi /\ 
(tataSo (/.Po V tataSi (/.Pi) /\ tîaSo E Po /\ ttaSi E Pi 

:::} { aS0 n aSi = 0, set and predicate calculus} 

(a E aSo \ aSi V a E aSi \ aSo) /\ tataSo E tSo /\ taîaSi E tSi /\ 

(tataSo (/.Po V ta îaSi (/.Pi) /\ tîaSo E Po/\ tîaSi E Pi 

:::} { definition of Î, predicate calculus} 

(aEaSo\aSi /\ (d aSo)aEtSo\Po /\ tîaSoEPo) 
V (a E aSi \ aS0 /\ (tîaSi)a E tSi \Pi /\ tîaSi E Pi) 

:::} {Po E pot.Bo a.nd Pi E pot.Si, Property 2.3.3, furthermore, 

by Property 1.1.19, TE pS; => tîaS;îaT = tîaT, for i = 0 a.nd i = 1} 

(3T, uo, b: TE pSo /\ u0 b E Po /\ uoÎaT = daT: {a, b} Ç aT /\ a =/= b) 

V (:JT, ui,b : TE pSi /\ uib E Pi /\ ui taT = tÎaT: {a, b} Ç aT /\ a =/= b) 

=> { aS0 n aSi = 0, hence on account of Lemma. 1.1.21, (Po w pi)laS; = p;, 

for i = 0 a.nd i = 1 } 

(3T,u,b: TE pSo /\ub E Po w Pt /\ uÎaT = tÎaT: {a,b} Ç aT /\ a =/= b) 

v(3T,u,b: TE pS1 /\ub E Po w Pi/\ u îaT = tîaT : {a,b} Ç aT /\af= b) 

<=? { predica.te calculus} 

(3T, u, b : TE pSo U pSi /\ ub E Po w Pi /\ uÎaT = ttaT 
: {a,b} Ç aT /\af= b). 

Hence, on account of Property 2.3.3, p0 w Pi belongs to pot.(So Il Si) . 

0 

X0 w X1 is used to denote t((eSo,Xo) w (eSi,X1)). 

The a.lpha.bets tha.t pla.y a. role in Xo w Xi a.re eS0 a.nd eS1 , respectively. 

97 
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Because Po w Pt does not necessarily belong to pot .(S0 Il Si) , for p0 E pot .S0 and 
Pi E pot.Si, in genera!, we also do not have the equality of the sets from Corollary 
3.1.13 projected on the union of the external alphabets. That is, in genera!, 

does not necessarily hold. Since in the example discussed above aS0 = eS0 and aSi = 
eSi, exactly the same arguments can be used to justify this statement. 

However, we do have one inclusion, namely Ç , which is expressed by the following 
lemma. 

Lemma 3.1.15 

For systems S0 and Si 

pot.(So Il Si)t(eSo UeSi) Ç {Xo w Xi 1 Xo E pot.SoteSo /\ Xi E pot.SiÎeSi}. 

Proof 

Assume aS0 n aS1 = eSon eS1. We derive 

X E pot.(So Il S1)t(eSo UeSi) 

~ { definition of projection} 

(3p: p E pot.(So 11 S1): X = pt(eSo UeSi)) 

=> { Corollary 3.1.13} 

(3po,Pt : Po E pot.So /\Pi E pot.Si : X =(Po w P1)t(eSo U eSi)) 

~ {Lemma 1.1.13, aSon aSi = eSon eSi} 

(3Po,Pt : Po E pot.So /\ Pi E pot.Si : X = PoÎeSo w Pt reS1) 

~ { predicate calculus, definition of projection} 

(3X0 , Xi : Xo E pot.soreso /\ Xi E pot .Si res1 : X = Xo w Xi). 

D 

Lemma 3.1.16 shows that for systems with disjoint external alphabets we also have the 
other inclusion . 

Lemma 3.1.16 

.For systems S0 and S1 , such that eS0neS1 = 0, 
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Pro of 

Assume aS0 naSi = eS0 neSi (= 0). We derive 

D 

Xo E pot .SoÎeSo /\ Xi E pot.SiîeSi 

{:} { definition of projection } 

(3po,Pt : Po E pot.Sa /\ Pi E pot.Si : Xo = PaÎeSo /\ Xi =Pi ÎeSi) 

=> { eSon eSi = 0, Lemma 3.1.14} 

(3Po ,Pi : Po E pot .Sa/\ Pi E pot .Si /\Po w Pi E pot.(So Il Si) 

: Xo =poÎeSo /\ Xi =piÎeSi) 

{:} { aSo n aSi = 0, hence on account of Lemma 1.1.21, (Po w Pi)ÎaS; = p;; 

aS; n eS; = eS;, Property 1.1.19, for i = 0 and i = 1} 

(3po,Pi: Po E pot.Sa/\ Pi E pot.Si /\Po w Pi E pot.(So Il Si) 

: Xo =(po w Pi)ÎeSo /\ Xi =(Po w Pt)ÎeSi) 

{:} { aS0n aSi = eSan eS1, Lemma 1.1.13, predicate calculus } 

(3Po,P1: (po w P1) E pot.(Sa Il Si): (Po w Pi)Î(eSo UeSi) = Xo w X1) 

=> { predicate calculus} 

(3p : p E pot .(So Il Si) : pf( eSo U eSi) = Xo w X1) 

{:} { definition of projection} 

Xo w X1 E pot.(So Il Si)Î(eSo UeSi) . 

3.2 Abstract model 
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The operational model gives a view of how systems behave, and testing relations serve 
the purpose of identifying (or distinguishing between) them. In the sequel we define 
an abstract model of systems that yields a more straightforward way of establishing 
the same results for a restricted system domain. 

In the sequel, the following abbreviation is used. 

Definition 3.2.1 

For system S 

cS = pot.SîeS. 

D 
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From now on we use the name computation for the elements of c8. 

On account of Corollary 2.3.22, using c8 we can rewrite the definition of acceptances 
as follows. 

Corollary 3.2.2 

For t E t(pr8) and L Ç e8* 

(t,L)Eac8 {::} (VX:XEc8/\tEX:{vltvEX}nL=f.0). 

0 

The reason for introducing testing relations is the fact that otherwise we would not be 
able to distinguish two systems, one with a nondeterministic choice and another one 
with deterministic choice between two external actions (see Example 2.2.7), only by 
means of acceptances. A first guess for a suitable abstract model of system 8, denoted 
by A[8], would then be 

A[8] = (e8,f8,ac8). 

Relation ;;;J on abstract models of systems S0 and 81 would then be defined by 

.A.[80] ;;;J A[81] {::} e8o = e81 /\ f8o Ç f81 /\ ac8o 2 ac81. 

Unfortunately, this idea was unsuccessful, because 

• we were not able to derive suitable expressions for failures and acceptances in 
order to achieve compositionality with respect to parallel composition and pro
jection, 

• systems like 80 and 82 of Example 2.2. 7 would be different according to the 
above relation (A[82] i'.) A[80]), whereas they have the same external behaviour 
(80 equ 82). 

The latter is a consequence of the fact that in the definition of div the information 
about concurrency is neglected. We have to admit that it is not easy to formalize the 
notion of divergences using concurrency, especially if compositionality with respect to 
Il and ris required. An attempt at such a formalization may be found in [Klo]. 

In the next attempt, ac8 was changed into c8 in the definition of A[8]. Then one 
problem disappeared: computations of 81 A can be expressed in terms of computations 
of 8. But we were not able to find a suitable expression for computations of parallel 
composition. In the meantime we had discovered that the last problem can be solved 



3.2 Abstract model 101 

fora certain class of systems. This class is ca.lled RD (from Restricted system Domain) 
and it contains systems with nondeterministic choices that do not depend on external 
actions (as informally described at the beginning of this chapter). Class RD of systems 
is closed under parallel composition and projection, which is prov~ by Lemmata 3.2.5 
and 3.2.6. Formally, RD is defined as follows. 

Definition 3.2.3 

Let S be a system. Then 

SERD # (Vt,p,a:pEpot.SAtEpAtaEtS\p 

: (3T, b : T E pS A tb E p : { a, b} Ç aT \ eS)). 

D 

The following property supplies an intermedia.te result used in the proofs of Lemmata 
3.2.5 and 3.2.16. 

Property 3.2.4 

Let So E RD, Si E RD, Po E pot.So, and Pi E pot.Si. Then 

t E Po w Pi Ata E t(So Il 81) \Po w Pi 

(3T,b: TE pSo UpS1 Atb E Po w Pt: {a,b} Ç aT\ (eSo UeS1)). 

Pro of 

Assume that aS0 n aS1 = eS0 n eS1. 

Let t E (aS0 UaS1)*. We derive 

t E Po w Pi A ta tJ Po w Pt A ta E t(So Il 81) 

# { t E ( aS0 U aSt)'", definition of w } 

ttaSo E Po A ttaS1 E Pi A ((ta)taSo (j Po V (ta)taS1 (j P1)A 

(ta)taSo E tSo A (ta)taS1 E tS1 /\ a E aSo Ua81 

# { predicate and set calculus} 

ttaS0 E Po /\
1 

tîaS1 E Pt /\ (a E aSo \ a81 V a E aSon a81 V a E aS1 \ aS0) /\ 

(((ta)taSo E tS0 \po A (ta)ÎaS1 E tS1) V ((ta)taS1 E tS1 \p1 /\ (ta)taSo E tS0 }) 

# { definition of t, set and predicate calculus} 

tÎaSo E Po A tÎaS1 E Pt A 
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D 

((a E aS0 \aS1 /\ (ttaSo)a E tS0 \Po) 
V (a E aSon aS1 /\ (tfaSo)a E tSo \Po /\ (ttaS1)a E tS1) 
V(a E aSonaS1 A (tfaSo)a E tSo /\ (ttaS1)a E tS1 \p1) 
V (a E aS1 \ aSo /\ (tf aS1)a E tS1 \Pi)) 

<::> { since So E RD, S1 E RD, Po E pot.So, and P1 E pot.Si, on account of 

Definition 3.2.3 we have tfaS; E Pi/\ (tfaS1)a E tS, \p; =?- alf/ eS,, 
for i = o a.nd i 1, aS0 naS1 eS0 neS1} 

ttaSo E Po /\ tfaS1 E Pi/\ 

((a E aSo \ aS1 /\ (tfaSo)a E tSo \Po) V (a E aS1 \ aSo /\ (tfaS1)a E tS1 \Pi)) 

=? { So E RD a.nd S1 E RD, Po E pot.S0 a.nd p1 E pot.Si. predica.te calculus} 

ttaSo E Po /\ tf aS1 E Pi/\ 
((3T, b: TE pS0 /\ (tfaS0)b E Po: {a, b} Ç aT \ eS0 ) 

V (3T, b: TE pS1 /\ (tfaS1)b E Pi : { a, b} Ç aT \ eS1)) 

=? { definition of w, t E ( aS0 U aS1 )*, aS0 n aS1 = eS0 n eS1 } 

(3T, b : T E pSo /\ tb E Po w P1 : { a, b} Ç aT \ eSo) 
V (3T, b : T E pS1 /\ tb E Po w Pi : { a, b} Ç aT \ eS1) 

=? { aS0 n aS1 = eS0 n eS1, predicate calculus} 

(3T,b: TE pS0 UpS1 /\tb E Po w Pi: {a,b} Ç aT \ (eS0 UeS1 )). 

The following two lemmata express tha.t set RD is dosed under parallel composition 
a.nd projection. 

Lemma 3.2.5 

For systems S0 and S1 of RD 

So Il S1 E RD. 

Pro of 

We derive 

p E pot.(So Il S1) 
=?- { Corollary 3.1.11} 

(3Po,Pi : Po E pot.So /\ Pi E pot.Si : p =Po w P1) 

<::> { S0 E RD and S1 E RD, Property 3.2.4} 

(3Po,Pi : Po E pot.So /\ Pi E pot.Si /\ p =Po w P1 
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D 

: (Vt, a : t E Po w Pt A ta E t(So Il Si)\ Po w Pt 

: (3T, b : T E pSo U pS1 A tb E Po w Pt 

: {a, b} Ç aT \ (eS0 UeS1))}) 

=> { predicate calculus} 

(Vt, a : t E p A ta E t( So Il S1) \ p 

: (3T, b : T E pSo U pS1 A tb E p : { a, b} Ç aT \ { eS0 U eS1))). 

Lemma 3.2.6 

For system S of RD and a.lphabet A 

srAERD. 

Proof 

We derive 

D 

SeRD 
# { Definition 3.2.3 } 

(Vt, p, a : p E pot.S A t E p A ta E tS \ p 

: (3T, b : T E pS A tb E p: { a, b} Ç aT \ eS)) 

=> {pot.S=pot.(srA),a~eS => a~eSnA,e(StA)=eSnA} 
(Vt,p,a: p E pot.(SrA) At E p Ata E tS \p 

: (3T,b: TE pS Atb E p: {a,b} Ç aT\ e(SrA))) 

# { Definition 3.2.3 } 

SIAE RD. 
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A very satisfactory consequence of considering only systems of RD is the fa.et that 
fa.ilures become unnecessary in the abstract model. In Section 3.3 we prove that the 
compositional abstract model introduced below is consistent with the testing relations 
of Cha.pter 2. 

This concludes our expla.nation for the restriction of the system doma.in and for the 
choice of the abstract model. In the sequel, formal definitions and proofs of composi
tionality with respect to parallel composition and projection are given. 

Let E = {(T,X) 1 TE PR A tT = (UX: X EX: X) 
A (VX: X EX: {aT, X) is a. conservative process)}. 
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For system S of RD we have then tha.t (prS, cS) is a.n element of E. 

We use the following ahbrevia.tion. 

Definition 3.2. 7 

Let (T,X) E E and (U,Y) E E. For X EX and Y E Y 

X w Y = t((aT,X) w (aU, Y}). 

0 

On systems of RD, the sema.ntic function .A is defined. 

Definition 3.2.8 

Let S be a system helonging to RD. We define the function .A : RD -+ E by 

.A(S] (prS, cS). 

Then .A(S) is ca.lled the abstract model of S. 

D 

To see why .A cannot be defined on the whole system doma.in, consider a~a.in systems 
S0 and 81 from Example 2.2.7. They have equa.l external processes (pr(a 1 b)) and the 
same computations ({e,a} and {e,b}). As a consequence, they would be ma.pped by 
.A on the same object of E. However, their external behaviour is different, which can 
be verified by applying the sat relation. 

The notion of a.cceptances (see the chara.cterization given by Corollary 3.2.2) is gener
a.lized to elements of E in the obvious way. 

Definition 3.2.9 

For (T,X) E E 

ac(T,X) = {(t,L) 1 t E tT /\ L Ç aT" 
/\(VX: x Ex/\ t Ex: {v 1 tv EX} nL rf 0)}. 

D 

Furthermore, on pairs of elements of .E, relation ;J is defined. 
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Definition 3.2.10 

For (T,X) E E and (U,Y) E E 

(T,X) ;! (U,Y) {;> T Ç U /\ ac(T,X) 2 ac(U,Y). 

0 

We use ;! to emphasize the contribution of the aceepta.nces. This symbol a.lso agrees 
with the following interpreta.tion of A[S0) ;;;;! A[Si]: from the point of view of a.n 
external observer, 80 is at least ~ deterministic as 81• 

The above definition implies that rela.tion ;;;! is reflexive and transitive. ObseÎ:Ve tha.t 
relation ;;;! is not a.ntisymmetric (henee, not a. pa.rtial order), that is, the following 
implication 

A[So) ;! A[S1] /\ A[So) ç;; A[S1] => A(So] = A(S1) 

is not necessa.rily true. For insta.nee, systems 80 and 81 of Exa.mple 2.4.9 do not satisfy 
this implica.tion. Na.mely, we have prS0 = prS1 and acS0 = acSi, but cS0 =F cS1• 

For the elements of E we have the following lemma. and two properties. 

Lemma 3.2.11 

Let (T,X) E E and (U,Y) E E, such that aT = aU a.nd X = y, Then 

• T=U, 

• (T,X) ;J (U,Y) /\ (U,Y);;;;] (T,X). 

Pro of 

We derive 

tT 
= {(T,X) E E} 

(UX:XeX:X) 

= {X = Y} 
(UX :X EY:X) 

= {(U,Y)'E E} 

tU. 

Hence, T = U. 
Let t E tU and L Ç aU*. We derive 
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(t, L) E ac(U,Y) 

<==> { Definition 3.2.9, t E tU and L Ç aU*} 

(VX : X E Y /\ t E X : { v 1 tv E X} n L l 0) 

<==> {X=Y} 
(VX: X EX/\ t EX: {v 1 tv EX} nL j 0) 

<==> { T = U, Definition 3.2.9} 

(t,L) E ac(T,X). 

On account of the above derivations and Definition 3.2.10 can be concluded that 

(T,X) ;;;;! (U,Y) /\ (U,Y) ;;;;! (T,X). 

0 

Property 3.2.12 

For (T,X) E E and (U,Y) E E 

(TwU,{XwY!XeX /\ YeY})eE. 

0 

Property 3.2.13 

For alphabet A and (T, X) E E 

(TtA,XtA) E E. 

0 

We define two operators on E: binary operator Il and unary operator ~ A, for alphabet 
A. 

Definition 3.2.14 

Let (T,X) e E and (U,Y) E E. Operator Il: Ex E -t Eis defined by 

(T,X) Il (U,Y) = (T w U,{X w Y 1 X EX/\ Y E Y}). 

D 
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Definition 3.2.Ui 

Let A be an alphabet and (T,X) E !:. Operator tA: r:-+ I:: is defined by 

(T,X)tA = (TtA,XtA). 

0 

For compositionality the equality of A(S0 Il S1) and A.(S0] Il A.[S1] is needed. 

On account of Lemma 1.2.4 we already have 

pr(So Il S1) = prSo w prS1. 
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We are left with the proof obligation concerning the computation part. For the actual 
proof an intermediate result is necessary. 

Lemma 3.2.16 

For systems 80 and S1 of RD 

(VPo,Pt : Po E pot.Sa /\ Pt E pot.Si : Po w Pt E pot.(So Il S1)). 

Proof 

Let Po E pot.80 and Pt E pot.S1• On account of Corollary 3.1.6 we have 

Po w Pt E ppot.(So Il S1)· 

We prove that Po w Pt is a maximal element of ppot.(So Il 81). 

Assume t E (aS0 UaS1)* and ta rf. Po w Pt· We derive 

t E Po w Pt /\ ta E t(So Il S1) 
=> { ta rf. Po w Pt, Property 3.2.4 } 

(3T,b: TE pSo U pS1 /\tb Epo w Pt: {a,b} Ç aT \ (eSo UeS1)) 

=> { ta rf. Po w Pt, predicate calculus} 

(3T,u,b: TE pSo UpS1 /\ {a,b} Ç aT /\ub E Po w Pt /\ uîaT = ttaT 
: a ;H). 

Hence, we have 
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Po w P1 E ppot.(So Il 81) 
A 

(Vt, a : t E Po w Pt A ta E t( So Il 81) \Po w Pt 

3 Abstract model of systems 

: (3T,u,b: TE pSo Up81 A {a,b} Ç aT A ub e Po w Pi/\ utaT = ttaT 
: a 7.H)). 

This gives, on account of Property 2.3.3, 

Po w Pi e pot.(80 Il 81). 

D 

The following theorem shows that computations of A(S0 Il S1] a.nd A(So] Il A(81] a.re 
equa.l. 

Theorem 3.2.17 

For systems So and 81 of RD 

c(So Il S1) = {Xo w X1 1 Xo E cSo A X1 E cS1}. 

Pro of 

Assume for convenience that a80 n aS1 eS0 n eS1• 

The inclusion Ç is alrea.dy proved by Lemma 3.1.15. Here a proof for the inclusion the 
other way around is supplied. 

We derive 

Xo E cSo /\ X1 E cS1 

# { Definition 3.2.1 } 

(3Po,Pt: Po E pot.So /\ Pt E pot.81: PoteSo Xo /\ PtteS1 = X1) 

# {Lemma 3.2.16} 

(3Po,Pt : Po E pot.Bo A Pt E pot.Si A Po w Pt E pot.(So Il S1) 

: PoteSo = Xo A Pt teS1 X1) 

=> { w is monotonie, aS0 n aS1 = eS0 n e81 , Lemma 1.1.13} 

(3Po,Pt : Po E pot.Bo /\ Pt e pot.Si /\Po w Pl e pot.(So Il 81) 

: Xo w X1 =(Po w P1)t(eSo UeS1)) 

=> { predicate calculus} 

(3p: p E pot.(So Il 81): Xo w X1 = pt(eSo UeS1)) 
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{:} { Definition 3.2.1} 

Xo w X1 E c(So Il 81). 

0 

In order to a.chieve compositionality the equality of .A[SÎA] and .A[SJtA has to be 
proved. 

On account of Lemma. 1.2.5 we already have 

pr(SÎA) = prSîA. 

Theorem 3.2.18 supplies the proof for the computation part. 

Theorem 3.2.18 

For system S and alphabet A 

c(StA) = cSîA. 

Proof 

We derive 

c(SÎA) 

= { Definition 3.2.1, e(StA) eS n A} 

pot.(SÎA)Î(eS n A) 
= {pot.(SÎA) = pot.S, Property 1.1.19} 

(pot.SÎeS)tA 

= { Definition 3.2.1 } 

cSîA. 

0 

3.3 Relationship with the operational model 

The abstract model of systems is introduced as an alternative to the testing relations 
of Cha.pter 2. It gives an easier method of establishing whether or not two systems 
of RD are related via sat, not in terms of how they can effect other systems hut in 
terms of, their own external processes and a.cceptances. This statement is f ormalized 
and proved by Theorem 3.3.4. First we supply some intermedia.te results. 
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The following lemma shows an alternative way of esta.blishing the relationship between 
accepta.nce sets in the case of systems with equal external processes. 

Lemma3.3.l 

For systems S0 a.nd S1, such that prS0 = prS1 , 

(VXo,t: Xo E cSo /\ t E Xo 

: (3X1: X1 E cS1 /\ t E X1: {v 1 tv E X1} Ç {v 1 tv E Xo})). 

Pro of 

Let X0 E cS0 and t E X0 • Define L by 

L = {v 1 (3X1: X1 E cS1 : tv E X1) /\ tv</. Xo}. 

We derive 

(VX1: X1 E cS1 /\ t E X1: {v 1 tv E X1} g; {v 1 tv E Xo}) 

# { set and predicate calculus } 

(VX1 : X1 E c81 /\ t E X1 : (3v: tv E X1 : tv</. X0 )) 

:::} { definition of L, L -:f:. 0, prS0 = prS1 implies t E t(prS1), definition of 

acceptances } 

(t,L) E acS1 /\ (t,L) r./. acSo. 

Hence, 

acSo 2 acS1 

(VX0 ,t: Xo E cSo /\ t E Xo 

: (3X1: X1 E cS1 /\ t E X1: {v 1 tv E X1} Ç {v 1 tv E Xo})). 

Let t E t(pr81) and L Ç es;. Assume 

(VXo,t: Xo E cSo /\ t E Xo 

: (3X1: X1 E cS1 /\ t E X1 : {v 1 tv E X1} Ç {v 1 tv E Xo})). 

We derive 
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(t,L) E acS1 
<::> { definition of acceptances, t E t(prS1), L Ç eSi} 

(VX1: X1 E cS1 At E X1: {v 1tvEX1}nL=f:.0) 

=> { assumption, set calculus } 

(VX0 : Xo E cS0 At E Xo: {v 1 tv E X0}nL =J 0) 

<::> { definition of acceptances, prSo = prS1 implies L Ç eS0 and t E t(prS0 )} 

(t,L) E acS0 • 

Hence, 

0 

acSo 2 acS1 
{::: 

(V Xo, t : Xo E cSo A t E Xo 

: (3X1: X1 E cS1 At E X1: {v 1 tv E X1} Ç {v 1 tv E Xo})). 

The following lemma facilitates the proof of Lemma 3.3.3, which states tha.t for system 
R, systems 80 and 81 of RD such tha.t prS0 = prSi, 

acSo 2 acS1 =? ac(R Il So) 2 ac(R Il 81)· 

Lemma 3.3.2 

Let S0 and S1 be systems of RD, such that prS0 = prS1 and acS0 ;2 acS1. Let, 
a.dditionally, R be a system, X0 E cS0 , and X E cR. Then 

Pro of 

X w Xo E c(R Il So) A t EX w X0 

(3X1 : X1 E cS1 A tteS1 E X1 A X w X1 E c(R Il 81) 

: {v 1 (tteS1)v E Xi} Ç {v 1 (ûeSo)v E Xo}). 

Assume for convenience that aS0 n aR = eS0 n eR = aS1 n aR. 

Let X w X0 E c(R Il S0) and t EX w Xo. 

On account of Definition 3.2.1 and Corollary 3.l.13, we have 
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X w X0 E c(R Il So) 

(3Po,P : Po E pot.So /\ PoteSo = Xo /\ p E pot.R /\ pteR = X 

: p w Po E pot.(R Il So)). 

Let Po E pot.So and p E pot.R, such that PoteSo X0 , pteR = X, and p w Po belongs 
to pot.(R Il So). 

Furthermore, 

tEXwXo 

=> { definition of w } 

tteSo E Xo 

=> { assumption } 

(3X1: X1 E cS1 /\ tteS1 E X1: {v 1 (tteS1)v E X1} Ç {v 1 (tteSo)v E Xo}). 

The set of all X1 's that sa.tisfy the above requirements is called X. Because prS0 is 
equal to prSi, X w X0 is a computation of R Il So, and both systems (So and 81 ) 

belong to RD, it is possible to find in X a (minimal) computation that matches X 
with respect to choices between common actions (action of eR neS1). Let X1 be such 
a computation, which is formally expressed by 

(W : Y E X /\ X1 </:. Y : X w X1 </. X w Y). 

By the definition of computations we have then 

Let p1 be as specified by the above predicate. In the sequel we prove that p w p1 

belongs to pot.(R Il S1 ) by applying Property 2.3.3. We already know that p w Pi is a 
po-trace of R Il S1. 

Let ua '/. p w p1 and u E (aR U aS1)*. We derive 

u E p w P1 /\ ua E t(R Il S1) 

=> { ua '/. p w p1 and u E ( aR U aS1 )*, definitions of w and t } 
utaR E p /\ utaS1 E P1 /\ 
((a E aS1 \aR1\ (utaSi)a E tS1 \p1)V 

(a E aS1naR 1\ (utaS1)a E tS1 \p1 1\ (utaR)a E tR)v 
{aEaS1naR 1\ (utaS1)aEtS1np1 /\ (utaR)aetR\p)V 

(a E aR\aS1 1\ (utaR)a E tR\p)) 
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{:} { S1 E RD and aS1 n aR = eS1 n eR imply that the second disjunct in 
the above formula is false } 

utaR E p /\ utaS1 E P1 /\ 

((a E aS1 \ aR /\ (utaS1)a E tS1 \ Pt) V 
(aEaS1naR/\ (utaS1)aEtS1nPt /\ (utaR)aEtR\p)V 
(aEaR\aS1 /\ (utaR)aEtR\p)) 

* { S1 E RD and Pt E pot.Si } 
utaR E p /\ utaS1 E Pt /\ 
((3T, b: TE pS1 /\ (utaS1)b E P1 : {a, b} Ç aT \ eS1 ) V 
(a E aS1naR /\ (utaS1)a E tS1nPt /\ (utaR)a E tR\p)V 
(aEaR\aS1 /\ (utaR)aEtR\p)) 

* { u E (aR UaS1)*, aS1naR = eS1neR, definition of w, p E pot.R, 
Property 2.3.3 } 

(3T, b : T E pS1 /\ ub E p w p1 : { a, b} Ç aT \ eS1) V 
(utaR E p /\ utaS1 E P1 /\ 
((a E aS1naR /\ (utaS1)a E tS1np1) Va E aR \ aS1) /\ 
(3T,u',b: TE pR /\ {a,b} Ç aT /\ u'b E p /\ u'taT = utaT: ajb)) 

* { acS0 2 acS1, prSo = prS1, assumptions about Pt and p, properties of 
computations and of conservative processes} 

(3T,u',b: TE pS1 /\ {a,b} Ç aT /\ u'b E p w Pt 1\ u'taT = utaT: a :/:- b)V 
(3T,u',b: TE pR /\ {a,b} Ç aT /\ u'b E p w p1 1\ u'îaT = uîaT: a :/:- b) 

{:} { predicate calculus} 

(3T,u',b: TE pR UpS1 /\ {a,b} Ç aT /\ u'b E p w P1 /\ u'îaT = utaT 
: ajb). 
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By Corolla.ry 3.1.6 and Property 2.3.3, the above derivation proves tha.t p w Pt belongs 
to pot.(R Il S1). Then, on account of Definition 3.2.1, X w Pt ÎeS1 belongs to c(R Il 81). 
Hence, 

0 

(3X1 : X1 E cS1 1\ tteS1 E X1 A X w X1 E c(R Il S1) 
: {v 1 (tteS1)v E Xi} Ç {v 1 (tîeSo)v E Xo}). 

Lemma 3.3.3 

For systems S0 and S1 of RD, such that prS0 = prS1, and for system R 

acSo 2 acS1 * ac(R Il So) 2 ac(R Il 81). 
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Pro of 

By Lemma 3.3.1 we have 

(VXo,t: Xo E cSo /\ t E Xo 
: (3X1: X1 E cS1 /\ t E X1: {vj tv E X1} Ç {vj tv E Xo})). 

Assume 

(VXo,t: Xo E cSo /\ t E Xo 
: (3X1: X1 E cS1 /\ t E X1: {v 1 tv E X1} Ç {v 1 tv E Xo})). 

Let X 0 E cS0 and X E cR. We derive 

X w Xo E c(R Il S0 ) /\ t E X w X0 

:;. {Lemma 3.3.2} 

(3X1 : X1 E cS1 /\ tîeS1 E X1 /\ X w X1 E c(R Il S1) 

: {v 1 (tÎeS1)v E X1} Ç {v 1 (tîeSo)v E Xo}) 
/\t EX w Xo 

<=> { definition of w } 

(3X1 : X1 E cS1 /\ tîeS1 E X1 /\ X w X1 E c(R Il S1) 

: {v 1 (lteS1)v E X1} Ç {v 1 (tîeSo)v E Xo}) 
/\ t E (eS0 UeR)" /\ tÎeR EX/\ tîeS0 E X 0 

=? { predicate calculus, prSo = prS1, definition of w, wis monotonie} 

(3X1 : X1 E cS1 /\ t E X w X1 /\ X w X 1 E c(R Il S1) 
: {v 1 tv EX w X1} Ç {v 1 tv EX w Xo}) 

::} { predicate calculus} 

(3X1: X1 E c(R Il S1) At E X1: {v 1 tv E X1} Ç {v 1 tv EX w Xo}). 

Furthermore, 

acS0 2 acS1 

<=> {Lemma 3.3.1} 

(VX0 , t: Xo E cS0 /\ t E Xo 
: (3X1: X1 E cS1 /\ t E X1: {v 1 tv E X1} Ç {v 1 tv E Xo})) 

=? {Lemma 3.1.15, the above derivation} 

(VXo,t: Xo E c(R Il So) /\ t E Xo 
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0 

: (3X1 : X1 E c(R Il S1) /\ t E X1: {v 1 tv E X1} Ç {v 1 tv E Xo})) 

# {Lemma 3.3. l } 

ac(R Il So) 2 ac(R Il S1). 
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The following theorem shows that verification of systems in the operational model of 
Cha.pter 2 (by means of sat relation) gives the same results as in the abstract model 
(i.e., sat is consistent with ;;;!). 

Theorem 3.3.4 

For systems S0 a.nd S1 of RD 

80 sat S1 # A[So) ;;;! A(S1). 

Pro of 

We derive 

50 sat S1 

# { Definition 2.4.4 } 

So psat S1 ·/\ So gsat S1 

# {Lemma 2.4.2, Definition 2.4.3} 

prSo Ç prS1 /\ (VR: RE SY : ac(R Il So) 2 ac(R Il 81)) 

=? { predica.te calculus, {0, 0} E SY} 

prS0 Ç prS1 /\ ac( {0, 0} Il So) 2 ac( {0, 0} 11 81) 

# { Property 1.2.2} 

prS0 Ç prS1 /\ acS0 2 acS1 

# { Definitions 3.2.8 and 3.2.10} 

A[S0] ;;;;! A[S1]· 

For the implica.tion the other way a.round we derive 

A(So] ;;;;! A[S1) 

# { Definitions 3.2.8 and 3.2.10} 

prSo Ç prS1 /\ acSo 2 ac81 

# { Property 2.2.5} 

. prSo = prS1 /\ acSo 2 acS1 
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=> { Lemma 3.3.3, S0 and S1 are elements of RD } 

prSo = prS1 A ('VR: RE SY: ac(R Il So) 2 ac(R Il S1)) 

# {Lemma 2.4.2, Definition 2.4.3} 

So psat S1 A So gsat S1 

# { Definition 2.4.4 } 

So sat S1. 

Since relation ;;;;! is not antisymmetric, as mentioned in the previous section, the abstract 
model is not fully abstract ([MiO] and [Hen]) with respect to the operational model 
(to the sat relation). Another abstract model, similar to the above one - in which 
computations are replaced by acceptances, is fully abstract to the operational model. 
Whether it would also be compositional, however, is still an unsolved problem. 



4 An application 

In tb.is chapter, we use the abstract model of Chapter 3 to discuss communication 
behaviours of Tangram programs ([Be2]). Tangram is a simple CSP-based ([Hoa]) 
programming language for describing VLSI designs. A more extensive description of 
Tangram can be found in [Be2]. Tangram programs can be a.utoma.tically transla.ted 
into VLSI circuits ([Be1]). In Section 4.1, an intermedia.te implementation of (a subset 
of) Tangram programs by means of networks of handsha.ke processes ([BeO]) is de
scribed. A sema.ntics of Tangram progrf,LIIlS ba.sed on the abstract model of Section 3.2 
is defined in Section 4.2. A forma.l proof óf the rela.tionship between the sema.ntics of 
Tangram and its implementation is presented. Section 4.3 consists of a. few examples 
of equivalent and different progr!IJilS. 

4.1 C-'Ià.ngram 

In this section, à. subset of Tangram is described. Only undirected communication 
actions without value passing are considered. This restricted version of Tangram is 
called in the sequel c-Tangra.m. In addition we introduce a restriction on the names 
of communication actions. To explain this restriction, we first discuss the structure 
of the universe n of symbols ([Zwa]). We define n, to be a set of simple symbols. 
Furthermore, for n > 0, the set n: is defined to be the set of n-tuples of symbols from 
n,. Our universe of symbols, n, is then defined by 

{} = (U n : n > 0 : n:). 

The elements of n that are not in n, are called compound symbols. For n > O, the n
tuple (a0,a11 ••• ,a..-1) E {}is denoted by ao·a1"···a..-1. In particular, (a) is denoted 
by a. 
In c-Tangram programs only simple symhols, like a and b, are used. 

Furthermore, we define 

(p-)0a = a, 
(p· )'+1 a = p'(p· )' a 

p· A = {p·a 1 a E A} 
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for i;::: 0, 

for A Ç ll, 



118 

p-e = e, 

p-(ta) = (p·t)p·a, 

~P· X = {p·t 1 t E X} 
p·T = (p·aT,p·tT) 

p·S = (p·eS,{p·T 1 TE pS}) 

for x ç n·, 
for trace structure T, 
for system S. 

4 An appllcation 

An essential element in Tangram programs is the command. We give an inductive 
definition of the type of commands that are allowed in our restricted version. 

• ais a conunand, fora En.\ hl}, 

• if Cis a. command, then so is #[C] - infinite repetition (it never stops), 

• if Nis a natural number (N ~ 0) and Cis a command, then #NIC] - finite 
repetition (N times) - is a command as well, 

• if C0 and C1 are commands, then so àre 

- Co Il C1 - parallel composition, 

- Co; C1 - sequential composition, 

C0 n C1 selection (nondeterministic choice). 

The parallel composition operator has the highest priority and the selection operator 
has the lowest priority. 

For finite conca.tenations of the same command an abbreviation is introduced. For 
command C and natural number N ~ 1 

C1 =C, 
cN+i = c; cN. 

The alphabet of command C, aC, is the set of symbols from n. that appear in C. 

A c· Tangram program is a construct of the form A.C, where C is a command and 
AÇaC. 

Commands are implemented by networks of basic components co-operating by two
phase handshake signalling (!Be2], [BeO]). For the purpose of this thesis these basic 
components are described by trace theory systems. 

In the sequel, 0 and 1 are fixed, different from each other elements of n. \ { .J}. 

The sequencer, seq(a,b,c), defined by 

seq(a,b,c) = {{O·a,l·a,O·b,l·b,O·c,1-c},{pr((O·a; O·b; l·b; O·c; l·c; l·a)*)}), 
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is a basic component with three ports a, b and c. After a.ctivation along a, first the 
communica.tion along b (following the handshake protocol) and then along c takes place, 
after which the communication along a is oompleted. The component may subsequently 
be a.ctivated again. In a similar way the operational explana.tion of the remaining basic 
oomponents can be given. 

Besides the sequencer we have the following ba.sic components 

• the repeater, 

rep(a, b) = {{O·a, I·a, O·b, l·b}, {pr(O·a; (O·b; l·b)*)) w stop.{l·a}}), 

• the N-repeater, for N ~ O, 

repN(a,b) = {{O·a,l·a,O·b,H},{pr((O·a; (O·b; 1-b)N; l·a)*)}), 

• the mizer, 

mix(a,b,c) 

• the connector, 

{ {O·a, 1 ·a, O·b, I ·b, O·c, 1 ·c}, 
{pr((O·a; O·c; 1,c; l·a 1 O·b; O·c; l·c; l·b)*)}), 

con(a,b) = {{O·a, l·a,O·b, l·b}, {pr((O·a; O·b; I·b; l·a)*)}), 

• the selector, 

sel(a,b,c) = ({O·a,l·a,O·b,l·b,O·c,l·c},{pr((O·a; (O·b; l·b 1 O·c; l·c); l·a)*)}). 

Note that the repea.ter can be activated only once, and that the only purpose of 
stop.{l·a} in the definition of the repeater is to include l·a in the external a.lpha.
bet (see Section 1.2). 

Command C is implemented by the network of handshake processes represented by 
trace theory system sys.C. We give an inductive definition for sys.C. In the sequel, 
l and r are fixed, different from ea.ch other (and from 0 and 1) elements of n. \ { v'}. 
For commands C, Co, and C1 

sys.a = con( .J, a) 

sys.#[C] rep(.J,Z..J) Il (Il a: a E aC: con(l·a,a)) 11 l·(sys.C) 

sys.#N[C] = repN(.J,l·.J) Il (Il a: a E aC: con(l·a,a)) 11 l·(sys.C) 

sys.(C0 ; C1) seq(.J,l·.J,r·.J) Il (Il a: a E aCo naC1: mix(l·a,r·a,a)) 

Il (Il a: a E aC0 \ aC1 : con(l·a, a)) 
Il (Il a: a E aC1 \ a00 : con(r·a, a)) 111-(sys.Co) Il r-(sys.C1) 

sys.(Co Il 0 1 ) =con(.J,l·.J) Il con(.J,r·.J) Il (Il a: a E aCo: con(l·a,a)) 

Il (Il a: a E aC1 : con(r·a, a)) Il l·(sys.Co) 11 r·(sys.C1) 

sys.( C0 n 0 1 ) =sel( .J, l·.J, r·.J) Il (Il a : a E aC0 n aC1 : mix( l·a, r·a, a) 



120 4 An application 

11 (Il a: a E aCo \ aC1 : con(l·a, a)) 
11 (Il a: a E aC1 \ aCo : con(r·a, a)) Il l·(sys.Co) Il r·(sys.C1). 

Moreover, we define 

tick= {{O·.J,l·J},{pr(O·v'; l·v')}) 

and, fora E aC, 

trans(a) ({O·a,l·a,a},{pr((O·a; a; l·a)*)}). 

For a E aC, trans( a) serves the purpose of translating the two-phase handshake on a 
into the occurrence of a. 

With program P = A.C, system sys.P is associated, which is defined by 

sys.P (sys.C Il (Il a: a E aC: trans(a)) Il tick)tA. 

Observe that e( sys.P) = A. 

The execution of program A.C corresponds to a single execution of command C. This 
is modelled by the parallel composition of sys.C and tick. 

Note that for every program P, p( sys.P) forms a set of regular processes, and hence, 
pr(sys.P) is a regular process (Properties 1.1.9 and 1.1.6). 

Let P = A.C. The remainder of this section is devoted to the proof of the fact that 
sys.C and sys.P both belong to RD (so that it makes sense to compare programs 
using acceptances only). The fact that sys.C belongs to RD is also of importance for 
the next section. 

The proof goes by induction on C. 

Components seq(a,b,c), rep(a,b), repN(a,b), con(a,b), trans(a), and tick all have 
only one po-trace. Hence, they all belong to RD. Then, on account of Lemmata 3.2.5 
and 3.2.6 it can be conduded that for program P with a command of the form: a, 
#[C], #N[C], or Co Il C1 

sys.C E RD and sys.P E RD. 

Command a forms the basis for the induction; for the remaining commands we use 
l·(sys.C) E RD (or l·(sys.C0 ) E RD and r-(sys.Ci) E RD) as induction hypothesis. 

In the remaining two cases (sequentia1 composition and nondeterministic choice) com
ponents mix(/·a, r·a, a) and sel( .J, l·.J, r·v') that do not belong to RD are used, so in 
this case Lemmata 3.2.5 and 3.2.6 alone do not help. However, in the case of sequen
tial composition the choice present in mix is ruled out by seq first the actions with 
narnes preceded by l· occur, after which occurrences of actions with na.mes preceded 
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by r· are a.llowed. In the case of selection either symbols preceded by l· or symbols 
preceded by r· (and not both) are a.llowed, depending on the choices in sel. Because 
of the specific form of possible traces the conditions of Definition 3.2.3 are fulfilled. 
Hence, also for program P with a command of the form C0 ; C1 or C0 n C1 

sys.C E RD 

and, on account of Lemmata 3.2.5 and 3.2.6 (trans(a) and tick belong to RD) 

sys.P E RD. 

4.2 Semantics of c-Tangram 

The commands of c-Tangram of the previous section are given meanings in the sequel. 
The semantica is partia.lly based on the abstract model of Section 3.2 and partially on 
[Hoa]. From the la.tter the idea of successfully termina.ted computa.tions is taken. This 
concept is crucial for the definition of the semantics of sequentia! composition. The 
computations that are either non-terminating (infinite) or unsuccessfully termina.ted 
are in the sequel called dea.dlocked computa.tions. The computa.tions that are suc
cessfully terminated are in the sequel called completed computations. In the (direct) 
semantica of Tangram presented in [BeO], which maps comma.nds into handsha.ke pr~ 
cesses, a Il b does not implement a; b n b; a. In our semantic model, a Il b implements 
a; bn b; a. 

Before we give the definition of the semantica of commands, we introduce some auxiliary 
notations and some new notions. 

For sets X and X' of tra.ces we define the concatenation of X and X', denoted as 
X *X', by 

X * X' = {tu 1 t E X A u E X'}. 

Observe that * is associative. 

For set A of sets of tra.ces we define Ai, for i ~ O, by 

A6 = {{e}}, 

A'+1 = {X * X' 1 X E A1 A X' .E A}. 

Observe that, for N 2". 1, 0N = 0. 

Then A* =(Ui: i 2". 0: A1) denotes the set of finite concatenations of elements of A. 
Furthermore, A"° = {Xo * X1 * ... 1 (Vi: i;:: 0: X, E A}} denotes the set of infinite 
conca.tenations of elements of A. For the empty set we have 0 00 = 0 and 0* = {{e}}. 
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For set X of tra.ces, µ.X is the set of ma.ximaJ. tra.ces of X. Formally, 

µ.X = {t 1 t EX /\ ('v'u: u =F e: tu sf X)}. 

For set A of sets of traces we also define 

µ.A = {µ.X 1 X E A} 

For subset A of simple symbols, 6.A = {i·a 1 a,E A /\ (i = 0 V i = l)}. 

The set of c-Ta.ngram comma.nds is called Gom. The set of triples ( A, X, Y) such that 

((A,(UX: X EX uy: X)),X UY) EI: 

is called r. 
On r, two unary and three binary operators are defined. 

Definition 4.2.1 

Let (A,X,Y), (A0 ,Xo,Yo), and (A1,X1,Yi) he elements of r. 

• Operator # : r -+ r is defined by 

#(A,X,Y) 

= 
(A,0,{pref.X 1 X E (µ.X) 00

} U{pref.(X * Y) 1 X E (µ.X)* /\ Y E Y}). 

• Let N ;:::: 0. Operator #N : r -+ r is defined by 

#N(A,X,Y) 

(A, {pref.X 1 X E (µ.X)N} 
,{pref.(X * Y) 1(3i:0 S: i < N: X E (µ.X)') /\ Y E Y}). 

• Operator ; : r x r -+ r is defined by 

= 
(AoUA1,{pref.(Xo*X1) IXoEµ.Xo /\ X1 Eµ.Xi} 

,Yo U{pref.(Xo * Yi) 1 Xo E µ.Xo /\ Yi E Y1}). 

• Operator Il: r x r -+ r is defined by 
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= 
(Ao UA1 
,{Xo w X1 1 Xo E Xo A X1 E X1 A 

(3t: t E Xo w X1: ttAo E µ.X0 A tÎA1 E µ.X1)} 

,{Xo w X1 l(Xo E Yo A X1 E X1UYi) V (Xo E XoUYo A X1 E Y1) 
V (Xo E Xo A X1 E X1 A 

(Vt: t E Xo w X1: tÎAo f/. µ.Xo V tÎA1 f/. µ.X1))}), 

where for Xo E Xo and X1 E X1 

• Operator n : r x r -+ r is defined by 

0 
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Assume a E n. \ { V} and N ~ 0. Let C, C0 , and C1 be c-Tangram commands. The 
semantic function M : Gom -+ r is inductively defined by 

• M[a] = ({O·a,l·a},{pref.{O·a l·a}},0), 

• M[#[C]] #M(C], 

• M(#N[C]] = #NM[CJ, 

• M(Co; C1] = M[Co]; M[C1], 

• M(Co Il C1) = M[Co] Il M[C1], 

• M[Co n C1] = M[Co) n M[C1)· 

For command C we have that the first element of the triple M(C] equals ó.aC. The 
second element and the third element of that triple are called completed and deadlocked 
computations of C, respectively. The completed computations of C are denoted by cC 
and the deadlocked computations of Care denoted by dC. Hence, 

M(C) = (6.aC,cC,dC). 
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It can be proved by induction that cC is a fini te set of finite prefix-closed sets of traces, 
for all commands C. For X E cC we have that X is fully characterized by the set of 
its maxima.l traces, i.e., 

X = pre/.(µ.X). 

It can a.lao be proved by induction that, for command C and X E cC, (S.aC,X) is a 
conservative process. 

It can be proved by induction that, for X E dC, (6.aC,X) is a conservatire process. 

Properties 4.2.2 and 4.2.3 follow directly from Definition 4.2.1 and the definition of M. 

Property 4.2.2 

Assume a En.\ h/} and N 2:: O. Let C, Co, and C1 be c-Tangra.m commands. For 
the completed computations of commands we have 

0 

ca = {pref.{O·a l·a}}, 
c#[C] = 0, 
c#N[C] = {pre/ .X 1 X E (µ.cC)N}, 

c(Co; C1) ={pref .(Xo * X1) 1 Xo E µ.cCo /\ X1 E µ.cC1}, 

c( Co Il C1) = { Xo w X1 1 Xo E cCo A X1 E cC1 /\ 
(3t: t E X 0 w X1: trS.aCo E µ.X0 A ttS.aC1 E µ.X1)}, 

c(Co n C1) = cCo UcC1, 

Property 4.2.3 

Assume a En.\ {v1} and N 2:: 0. Let C, C0 , and C1 be c-Tangram commands. For 
the deadlocked computations of commands we have 

da=0, 

d#[C] = {pref .X 1 X E (µ.cC) 00
} 

U {pre/ .(X * X') 1 X E (µ.cC)* A X' E dC}, 

d#N[C] = {pref.(X * X') 1(3i:0 ~ i < N: X E (µ.cC)') /\ X 1 E dC}, 

d(Co; C1) = dCo U {pre/ .(Xo * Xi) 1 Xo E µ.cCo /\ X1 E dC1}, 

d(Co Il C1) = {Xo w X1 
l(Xo E dC0 A X1 E cC1UdC1) v (Xo E cC0UdCo A X1 E dC1) 

V (Xo E cCo /\ X1 E cC1 A 
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D 

('rit: t E X0 w X1 : ttc5.aC0 f/, µ.Xr>, V tîc5.aC1 f/, µ.X1))}, 

d(Co n C1) = dCo UdC1. 

Furthermore, we have the following two properties. 

Property 4.2.4 

For commands 0 0 and 01 

µ.c(Co; 01) = {Xo * Xi 1 Xo E µ.cCo /\ X1 E µ.cC1}. 

D 

Property 4.2.5 

Let Co and 0 1 be commands, X0 E cCo, and X1 E c01 , such that 

(3t': t' E Xo w X1: t'tc5.aCo E µ.Xo /\ t'Îc5.aC1 E µ.Xi). 

Then fort E X0 w X 1 we have 

t E µ.(Xo w X1) <:? tîc5.aCo E µ.Xo /\ tÎc5.aC1 E µ.X1• 

Pro of 

To prove <= we derive 

tîc5.aC0 E µ.Xo /\ tîc5.aC1 E µ.X1 

<:? { definition of µ.X } 
t Î 8.aCo E Xo /\ ('Vu : u :/:- e : ( t Î c5.aCo )u f/, X0 ) /\ 

tîc5.aC1 E X1 /\ ('Vu: u #= e: (tîc5.aC1)u r:f. X1) 
::::? { t E X0 w Xi. definition of w, Property 1.1.16} 

('Vu : u :f:. e : tuf/, Xo w X1) 
<:? { t E X0 w X1, definition of µ.X} 

t E µ.(Xo w X1). 
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Let t' E X 0 w X1, such that t'Îc5.aCo E µ.Xo and t'îc5.aC1 E µ.X1 • Then we a.lso have 
t' E µ.(Xo w X1). To prove ::::? we derive 
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t e µ.(Xo w X1) 

<=>- { t' E µ.(Xo w X1), {6.(aCo U aC1), Xo w X1} is a. process, definition of 
µ.X} 

te Xo w X 1 A suc.t.{t5.(aC0 UaC1),X0 w X1} = 0A 
t' E Xo w X1 A suc.t'.(6.(aC0 UaCi),X0 w X1} = 0 

=> { definitioil of w, {6.( aC0 U aC1), X0 w X1} is a conservative process, 
Property 1.3.6} 

tî6.aCo E Xo A t't6.aCo e Xo A U = b.t' 
=> {for tra.ces u,v a.nd set A we have that ~.u = b.v => b.{uÎA) = b.(vÎA)} 

tÎ6.aCo E Xo A t'tt5.aCo E Xo A b.(tt6.aCo) = b.(t'Î6.aCo) 

::::? { (6.aC0 , X0} is a conservative process, Property 1.3.6} 

[tÎ6.aCo]{8.a00 ,X0 ) = [t1Î6.aC0]{8.aOo.Xo) 

=> { definition of [u]T a.nd !, } 
tf 6.aC0 e X0 A suc.(tî6.aC0 ).(6.aC0,X0} = suc.(t'î6.aC0).(6.aC0,X0) A 

t'ît5.aCo e Xo 
=> {t't6.aC0 e µ.X0 => suc.{t't6.aC0).(6.aC0,X0} = 0, predicate calculus} 

tî6.aC0 E X 0 A suc.(tî6.aC0 ).(ó.aC0,X0} = 0 

<=>- { definition of µ.X} 

tîó.aCo e µ.Xo. 

By the above derivation we proved 

te µ.(Xo w X1) => tÎ6.aCo e µ.Xa. 

On account of symmetry we also have 

D 

Directly from Properties 4.2.2 and 4.2.3 we have 

c(Co n C1) = c(C1 n Co), 

d(Co n C1) = d(C1 n Co), 
c((Co n C1) n C2) = c(Co n (C1 n C2)), 

d((Co n C1) n C2) d(Co n (C1 n C2)), 
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hence, operator n on c-Ta.ngram oomma.nds is oommutative and a.ssociative. 

The following lemma shows tha.t the ; operator ( for c-Tangram comma.nds) is a.ssocia
tive. 

Lemma 4.2.6 

For commands G0 , G1 , and G2 

and 

d((Go; G1); G2) = d(Go; (C1; G2)). 

Pro of 

For completed oomputations we derive 

c((Co; C1); C2) 

{ Property 4.2.2} 

{pref.(X * X2) 1 X E µ.c(Co; G1) A X2 E µ.cC2} 

= { Property 4.2.4, * is a.ssociative} 

{pre/ .(Xo * X1 * X2) 1 Xo E µ..cCo A X1 E µ.cC1 A X2 E µ.cG2} 

= { Property 4.2.4, * is associative} 

{pre/.(Xo * X) 1 Xo E µ.cCo /\ X E µ.c(C1; C2)} 

{ Property 4.2.2} 

c(Co; (C1; C2)). 

For deadlocked oomputations we derive 

d((Co; G1); C2) 

= { Property 4.2.3} 

d(Co; C1) U{pre/.(X * X2) 1 X E µ.c(Co; C1) A X2 E dC2} 

= { Property 4.2.3, Property 4.2.4, * is associative} 

dG0 U{pref.(Xo * X1) 1 Xo E µ.cCo A X1 E dC1} U 

{pre/.(Xo * X1*X2)1 Xo E µ.cCo A X1 E µ..cG1 A X2 E dC2} 

= {pre/.(X * Y) pref.(X * pref.Y), set calculus} 

dGoU 

{pref.( Xo * X) IXo e µ..cGo /\ 
X E dC1 U {pre/ .(X1 * X2) 1 X1 E µ..cC1 A X2 E dGa}} 
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= { Property 4.2.3} 

dCo U {pref .(Xo * X) 1 Xo E µ.cCo /\ X E d( C1; C2)} 

= { Property 4.2.3} 

d(Co; (C1; C2)). 

0 

Since weaving is commuta.tive (Property 1.1.8), it follows from Propertfos 4.2.2 and 
4.2.3 tha.t opera.tor Il on c-Tangra.m comma.nds is commutative as well. The following 
lemma esta.blishes the associativity of Il (for c-Tangra.m comma.nds). 

Lemma 4.2.7 

and 

d((Co Il C1) Il C2) = d(Oo Il (01 Il 02)). 

Pro or 
For completed computations we derive 

c((Co Il C1) Il C2) 

= { Property 4.2.2} 

{X w X2 IX E c(Co Il C1) /\ X2 E cC2 /\ 

(3t: t EX w X2 : tt6.(aC0 U aC1) E µ.X /\ tf 6.aC2 E µ.X2)} 

= { Property 4.2.2, w is associative} 

{Xo w X1 w X2 IXo E cCo /\ Xi E cC1 A X2 E cC2 A 

(3t: t E Xo w X1: ttó.aOo E µ.Xo A tfó.aC1 E µ.X1) /\ 

(3t: t E X0 w X1 w X2: tî6.(aCo UaC1) E µ.(Xo w X1) 

/\ tf 6'.aC2 E µ.X2)} 

= { Property 4.2.5, definition of w, property of Î } 

{Xo w X1 w X2 IXo E cCo /\ X1 E cC1 /\ X2 E cC2 /\ 

(3t: t E Xo w X1: tî6.aCo E µ.X0 /\ tf 6.aC1 E µ.X1) /\ 

(3t: t E Xo w X1 w X2: tÎ6.aCo E µ.Xo A d6.aC1 E µ.X1 
1\ tt6.aC2 E µ.X2)} 

= { definition of w, predicate calculus} 
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{Xo w X1 w X2 IX0 E cGo A X 1 E cG1 A X2 E cC2 A 

(3t: t E Xo w X1 w X2 : ttó.aGo E µ.Xo A ttó.aC1 E µ.X1 

A ~tó.aG2 E µ.X2)} 
{ definition of w, predica.te calculus } 

{Xo w X1 w X2 IXo E cCo A X1 E cC1 A X2 E cG2A 
(3t: t E X1 w X2 : tîó.aC1 E µ.X1 A ttó.aC2 E µ.X2)A 

(3t: t E Xo w X1 w X2 : ttó.aC0 E µ.Xo A tÎó.aC1 E µ.X1 

A tló.aC2 E µ.X2 )} 

{ Property 4.2.5, definition of w, property of Î} 

{Xo w X1 w X2 IXo E cCo A X1 E cC1 A X2 E cG2 A 
(3t: t E X1 w X2 : ttó.aG1 E µ.X1 A tÎó.aG2 E µ.X2 )A 

(3t : t E X0 w X1 w X 2 : tîó.aC0 E µ.X0 
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AtÎ6.(aG1 UaG2) E µ.(X1 w X2))} 

= { Property 4.2.2, w is a.ssocia.tive} 

{Xo w X IXo E cCo A X E c(C1 Il C2) A 
(3t: t E Xo w X: tîó.aGo E µ.Xo A Hó.(aC1 U aG2) E µ.X)} 

= { Property 4.2.2} 

c(Go Il (G1 Il 02)). 

For dea.dlocked computations we derive 

d((Co Il C1) Il C:i) 
= { Property 4.2.3} 

{X w X2 l(X E d(Co Il C1) A X2 E cC2 U dC2) V 

(X E c(Co 11 C1) Ud( Go 11 01) A X2 E dC2) V 

(X E c(Co Il 01) A X: E cC2A 

(Vt: t EX w X2 : tîó.(aC0 U aC1) f/. µ.X V tîó.aC2 f/. µ.X2))} 

= { Properties 4.2.2 and 4.2.3, w is a.ssociative, predicate calculus} 

{XowX1 wX2 

l(Xo E dCo A X1 E cC1 UdC1 A X2 E cC2 UdC2)V 

{Xo E cCo UdCo A X1 E dC1 A ~2 E cCz UdC2)V 

(Xo E cC0 A X1 E cC1 A X2 E cC2 UdC2A 

(Vt : t E X0 w X 1 : tîó.aC0 </. µ.Xo V ttó.aC1 </. µ.X1)) V 

(Xo E cCo A X1 E cC1 A X2 E dC2) V 
(X0 E dC0 A X1 E cC1 UdG1 A X2 E dC2)V 

(Xo E cCo UdCo A X1 E dC1 A X2 E dC2)V 
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(Xo E cCo /\ X1 E cC1 /\ X2 E cC2 /\ 

(3t: t E Xo w X1 : tÎ6;aCo E µ.Xo 1\ tÎ6.aC1 E p..X1) /\ 

(\ft: t E Xo w X1 w X2: tÎ6.(aCoUaC1) 'f. µ.(Xo w X1) V tt6.aC2 '/. µ.X2))} 

= { predicate calculus } 

{Xow X1 w X2 

l(Xo E dCo 1\ Xi E cC1 UdC1 /\ X2 E cC2 UdC2)V 

(Xo E cOo U dCo /\ Xi E d01 /\ X2 E cC2 U dC2) v 
(Xo E cCo /\ X1 E cC1 /\ X2 E d02) V 

(Xo E dOo /\ Xi E c01 UdC1 /\ X2 E dC2)V 

(Xo E cOo U dCo /\ Xi E dC1 /\ X2 E dC2) V 

(Xo E cCo /\ Xi E cC1 /\ X2 E cC2 /\ 

(\ft: t E Xo w X1 : tî6.aCo '/. µ.Xo V tt6.aC1 '/. µ.X1)) v 
(Xo E cC0 /\ X1 E cC1 /\ X2 E cC2 /\ 

(3t: t E Xo w X1: tÎ6.aCo E µ.Xo /\ tÎó.aC1 E µ.X1)/\ 

(lr/t: t E Xo w X1 w X2: tt6.(aC0UaC1) '/. µ.(Xo w X1) V tt6.a02 '/. p..X2))} 

= { Property 4.2.5, definition of w, predicate calculus} 

{Xow X1 wX2 

l(Xo E dCo /\ Xi E cC1 UdC1 /\ X2 E cC2 UdC2)V 

(Xo E cCo U dCo /\ Xi E dC1 /\ X2 E cC2 U dC2) V 

(Xo E cCo A X1 E cC1 /\ X2 E dG2) V 

(Xo E dCo /\ X1 E cC1 UdG1 /\ X2 E dG2)V 

(Xo E cCo UdCo A X1 E dG1 /\ X2 E dC2) V 

(Xo E cCo /\ Xi E cC1 /\ X2 E cC2 /\ 

(lr/t: t E Xo w X1 w X2: Ûh'.aCo '/. µ.Xo V tt6.aC1 '/. µ.X1 V 

tî6.aC2 '/. µ.X2))} 

{ Property 4.2.5, definition of w, predicate calculus} 

{Xow X1 w X2 
l(Xo E cGo U dCo /\ X1 E dC1 /\ X2 E cC2 U dC2) V 
(Xo E cC0 U dC0 /\ X1 E cC1 U dC1 /\ X2 E dC2) V 

(Xo E cCo U dCo /\ X1 E cC1 /\ X2 E cC2 /\ 

(lr/t: t E X1 w X2 : dó.aC1 '/. µ.X1 V tî6.aC2 </. µ.X2)) V 

(Xo E dCo /\ Xi E cC1 A X2 E cC2) V 

(Xo E dCo A X1 E dC1 A X2 E cC2 UdC2)V 

(Xo E dCo /\ X1 E cC1 U dC1 /\ X2 E dC2) V 

(Xo E cCo /\ X1 E cC1 /\ X2 E cC2 /\ 
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(3t: t E X1 w X2 : ttS.aC1 E µ.X1 A ttS.aC2 E µ.X2) A 

("lt: t E Xo w X1 w X2: tth'.aCo '!. µ.Xo V tt6.(aC1 Ua02) '!. µ.(X1 w X2)))} 

{ Properties 4.2.2 a.nd 4.2.3} 

d(Oo Il (C1 Il C2)). 

0 

We sa.y tha.t comma.nd C is implemented by system S if aS 2 S.( aC U { v'}) and 

and 

cC = {pt6.aC 1 p E c(Stê.(aG U {v'}) Il tick) A p = pref.(µ.p) 

A (Vt: t E µ.p: (3u :: t = u l·y'))} 

dG = {ptá.aC 1 p E c(St6.(aC U{v'}) Il tick) A ptl·v" = {e}}. 

In order to prove tha.t sys.G as defined in the previous section implements comma.nd 
C an intermedia.te result is needed that is expressed by the following lemma.. 

Lemma 4.2.8 

Let Che a. comma.nd and let ..,.c = {{O·v'} * X * {l·v'} 1 X E µ.cC}. Then 

c(sys.CtS.(aC U { v'})) 

= 
{pref.X 1 X E ('"f.C)00

} U{pre/.(X * {O·v'} * Y) 1 X E ('"f.C)* AYE dC}. 

Pro of 

This proof goes by induction on the structure of C. 

Base C=a 

Then '"(.a = {{O·v"O·a l·a l·v'}} and 

c(sys.at{O·a, l·a, O·y", 1 ·v'}) 

= { definition of sys.a } 

c(con.y".a) 

{ definitions of con, a.nd of computations} 

{t(pr((O·y"; O·a; l·a; l·y')*))} 

= { definitions of A00
, and of '"(.a} 
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{pref .X 1 X E ('Y.a)""} 
= {da = 0, set calculus} 

{pref.X 1 X E (7.a)00
} U{pref.(X * {O·.J} * Y) 1 X E (ï.a)• /\ Y E da}. 

Step 

• 0=#[01 

Then î·#[01 = 0, which follows frorn the fa.et tha.t c#[O'] = 0. Also aC = aC'. We 
derive 

c(sys.#[01tó.(aC' U {.J})) 
= { definitions of sys.#[C1, rep, con, a.nd of cornputa.tions} 

{(t(pr((O·v1; (l·O·v1; /.1 ·v1)*)) w stop.{1 ·.J} 
w (Wa: a E aO': pr((l·O·a; O·a; l·a; l·l·a)*))) 

w X)tó.(aO' U{.J}) 1 X E l·c(sys.01
)} 

= { properties of projection, set calculus, Lemma 1.1.13} 

{(t(pr((O·v1; (l·O·v1; /.l·v1)*)) w stop.{1·.J} 
w (Wa: a E aC': pr((l·O·a; O·a; l·a; l+a)*))) 

w X}ró.(aC' U{.J}) 1 X E l·c(sys.O'tó.(aC' U{.J}))} 
{ induction hypothesis} 

{pre/.({O·.J} * X) 1 X E (µ.cC') 00
} U 

{pre/.({O·.J} * X * Y) 1 X E (µ.cC')* /\ Y E dC'} 
= { Property 4.2.3 - the part concerning d#[C}} 

{pre/.({O·.J} * X) 1 X E d#[C']} 
= { î·#[C'] = 0, 0 00 = 0, 0* = {{e}}} 

{pref .X 1 X E (î.#[C1)""} U 

{pref.(X * {O·.J} * Y) 1 X E (î.#[C1)* AYE d#[C1}. 

• C=#N[O'] 

Then î·#N[C'] = {{O·.J} * XN * {l·.J} 1 X E µ.cC'} and aC = aC'. We derive 

c(sys.#N[01Jró.(a01 U{.J})) 
= { definitions of sys.#N[C'], repN, con, and of computations} 

{(t(pr((O·y1; (l·O·y1; l·l·v1}N; l·v1}*) 
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w (Wa: a E aC': pr((l·O·a; O·a; l·a; /.l·a)*))) 
w X)îö.(aC' U{v'}) 1 X E l·c(sys.C')} 

{properties of projection, set calculus, Lemma 1.1.13} 

{(t(pr((O·J; (l·O·J; l·h/)N; l·V}*) 
w (Wa: a E aC': pr((l·O·a; O·a; l·a; H·a)*))) 

w X)fó.(aC' U{v'}) 1 X E l·c(sys.C'îó.(aC' U{v'}))} 

= { induction hypothesis, definition of 7.#N[C]} 
{pref .X 1 X E (1'.#N[C'])00

} U 

{pref .(X * {O·v'} * X' * Y) 
1 X E (1.#N[C'j)* /\ (3i: 0 :5 i < N : X' E (µ.cC')') /\ Y E dC'} 
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= { Properties 4.2.2 and 4.2.3 the parts concerning c#N[C] and d#N[C]} 

{pref.X 1 X E (7.#N[C'J)00
} U 

{pre/ .(X * {O·v'} * Y) 1 X E (1'.#N[C1)* /\ Y E d#N[C1}. 

• C =Co; C1 

In this case we have 

We derive 

c(sys.(C0 ; C1)f6.(aCo UaC1 U{v'})) 
= { definitions of sys.( C0 ; C1), seq, mix, con, and of computations, the 

choices in mix are resolved during the execution by the sequencer} 

{(t(pr((O·v'; l·D·J; l·I·v'; r·O·J; r·l·v'; l·v1)*) 
w (Wa: a E aC0naC1 : pr((l·O·a; O·a; l·a; l·l·a 1 r·O·a; O·a; l·a; r+a)*)) 
w (Wa: a E aCo \ aC1: pr((/·O·a; O·a; l·a; /.l·a)*)) 
w (Wa : a E aC1 \ aC0 : pr((r·O·a; D·a; 1 ·a; r· l ·a )*))) 

w Xo w Xi) tc5.(aCo U aC1 U { v'}) 
1 Xo E l·c(sys.C0 ) 1\ X1 E r·c(sys.C1)} 

= {properties of projection, set calculus, Lemma 1.1.13 (twice)} 

{(t(pr((O·v'; l·O·v'; l-l·v'; r·O·J; r·l·v'; l·v1)*) 
w (Wa: a E aC0naC1 : pr((l·O·a; O·a; l·a; l·l·a 1 r·O·a; O·a; l·a; r·l·a)*)) 
w (Wa: a E aC0 \ aC1 : pr({l·O·a; O·a; l·a; l·l·a)*)) 
w (Wa: a E aC1 \ aC0 : pr((r·O·a; O·a; l·a; r·l·a)*))) 

w Xo w X1)t6.(aCo UaC1 U{v'}) 
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1 X0 E l·c(sys.C0 tc5.(aC0 U{J})) /\ X1 E r·c(sys.C1tc5.(aC1 U{J}))} 

= { induction hypothesis, definition of 7 .(Co ; C1) } 

{pref .X 1 X E ('Y.(Co; Ci))00
} U 

{pref .(X * {O·J} * X' * Y) 1 X E ('Y.(Co; C1))* /\ X' E µ.cCo /\ Y E dC1} 

U {pref.(X * {O·J} * Y) 1 X E ('Y.(Co; C1))* /\ Y E dC1} 

= { Properties 4.2.2 and 4.2.3 - the parts concerning c( Co; C1) and 

d(Co; C1)} 

{pref.X 1 X E ('Y.(Co; C1))00
} U 

{pref .(X * {O·J} * Y) 1 X E ('Y.(Co; C1))* /\ Y E d(Co; C1)}. 

• C =Co Il C1 

In this case 

7.(Co Il Ci) 

{{O·J} * µ.(pref.Xo w pref.X1) * {l·J} 
1 Xo E µ.cCo /\ X1 E µ.cC1 /\ 

(3t: t E pref.Xo w pre/.X1: ttc5.aCo E Xo /\ ttc5.aC1 E X1)}. 

We derive 

c(sys.(Co Il C1)tc5.(aC0 UaC1 U{J})) 

= { definitions of sys.(Co Il C1), con, and of computations} 

{(t(pr((O·.J; l·O·.J; l·l·.J; 1·.J)*) w t(pr((O·y'; r·O·y'; r·l·y'; 1·.J)*) 
w (Wa: a E aC0 : pr((l·O·a; O·a; l·a; /.l·a)*)) 
w {Wa: a E aC1 : pr{(r·O·a; O·a; l·a; r·l·a)*))) 

w X0 w X1)tc5.(aC0 UaC1 U{J}) 

1 Xo E l·c(sys.Co) /\ X1 E r·c(sys.C1)} 

= { properties of projection, set calculus, Lemma 1.1.13 (twice)} 

{(t(pr((O·y'; l·O·y'; /.l·y'; 1·.J)*) w t(pr((O·y'; r·O·y'; r·l·y'; 1·.J)*) 
w (Wa: a E aC0 : pr((l·O·a; O·a; l·a; l·l·a)*)) 
w (Wa: a E aC1 : pr((r·O·a; O·a; l·a; r·l·a)*))) 

w X0 w X1)Îc5.(aCo U aC1 U { J}) 

1 Xo E l·c(sys.Cotc5.(aCo U{J}) /\ X1 E r·c(sys.C1tc5.(aCo U{J}))} 

= { induction hypothesis, definition of 7.( Co Il C1)} 

{pref .X 1 X E ('Y.(Co Il C1))00
} U 
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{pref.(X * {O·J} * (Xo w X1)) 
i X E (1.(Co; C1))*A 

((Xo E cCo UdCo A X1 E dC1) V (Xo E dCo A X1 E cC1 UdC1) 
V(Xo E cC0 A X1 E cC1A 

(Vt: t E Xo w X1: ttt5.aCo </. µ.Xo V ttt5.aC1 </. µ.X1))} 

= {Properties 4.2.2 and 4.2.3- the parts concerning c(C0 Il C1 ) and 

d(Co Il C1)} 
{pref.X 1 X E ('y.(Co Il C1))00

} U 

{pref .(X * {O·J} * Y) 1 X E ('y.(Co il Ci))* A Y E d(Co il Ci)}. 

• C = ConC1 

Then we have 

'Y·( Con 0 1 ) = { {O·J} * X * {1 ·J} 1 X E µ.cOo U µ.c01}. 

We derive 

c(sys.(00 n 01)t(i5.(a0o U a01) U {O·.J, l·J})) 
{ definitions of sys.(00 n 0 1), sel, mix, con, and of computations, the 

choices in mix are resolved during the execution by the chokes made 

in the selector } 
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{(t((Wa: a E a00na01 : pr((l·O·a; O·a; l·a; l·l·a 1 r·O·a; O·a; l·a; r·l·a)*)) 
w (Wa: a E aC0 \aC1 : pr((l·O·a; O·a; l·a; H·a)*)) 
w (Wa: a E a01 \ a00 : pr((r·O·a; O·a; l·a; r·l·a)*))) 

w Y w X0 w X1}tó.(aCo UaC1 U{J}) 
1 Y is a maxima! chain of t(pr((O·.J; ( l-0·.J; l+.J 1 r·O·.J; r+v'); 1 ·v')*)) 

AX0 E l·c(sys.C0 ) A X1 E r·c(sys.Oi)} 

{ properties of projection, set calculus, Lemma 1.1.13 (twice)} 

{(t((Wa: a E a00naC1 : pr((l·O·a; O·a; l·a; H·a 1 r·O·a; O·a; l·a; r+a)")) 
w (Wa: a E aC0 \aC1 : pr((l·O·a; O·a; l·a; l·l·a)*)) 
w (Wa: a E aC1 \a00 : pr((r·O·a; O·a; l·a; r·l·a)*))) 

w Y w Xo w Xi)ît5.(aCo Ua01 U{J}) 
1 Y is a maximal chain of t(pr((O·.J; (/·O·.J; 1-1·.J 1 r·O·.J; r·l·v'}; l·v')*)) 

AXo E l·c(sys.Cott5.(a0o U{J})) A X1 E r·c(sys.01tt5.(a01 U{v'}))} 

= { induction hypothesis, definition of 'Y·( 0 0 n 0 1)} 

{pre/ .X 1 X E ('y.(Co n 01))00
} U 
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{pref.(X * {O·V} * Y) 1 X E (î'.(Co n C1))* /\ Y E dCo UdC1} 

= { Properties 4.2.2 and 4.2.3 - the parts conceming c( Con C1) 1and 

d(Co n C1)} 

{pref.X 1 X E (î'.(Co n C1))00
} u 

{pref.(X * {O·V} * Y) 1 X E (î'.(Co n C1))* /\ Y E d(Co n C1)}. 

D 

From the previous section we know that, for command C, sys.C E RD. Moreover, on 
account of Lemma 3.2.6, we have 

sys.Ct6.(aC U{V}) E RD. 

Hence, on account of Theorem 3.2.17, Lemma 4.2.8, and the fact that pref .{O·y' 1 ·V} 
is the only computation of tick, we have the following property. 

Property 4.2.9 

For command C 

c(sys.Ct6.(aC U{V}) Il tick) 

= 
{pref.({O·V} * X * {l·V} 1 X E µ.cC} U{pref.({O·V} * X) 1 X E dC}. 

D 

Theorem 4.2.10 

Every command Cis implemented by sys.C. 

Pro of 

On account of the definitions of sys.C and of all the components, we conclude that 

asys.C 2 6.(aC U{V}). 

We derive 

p E c(sys.C~6.(aC U { v'}) 11 tick) /\ p =pref .(µ.p) /\ 

(\:/t: t E µ.p: (3u :: t = u l·v')) 

~ { Property 4.2.9} 

(3X: X E µ.cc: p = pref.({O·V} * X * {l·v'})) 
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=> {property off, predicate calculus, X E µ.cC => X E (6.aC)•, O·./ <t 6.aC 
and 1 ·./ <t 6.aC } 

(3X: X E µ.cc: pf6.aC pref.X) 

# { X E µ.cC # pref .X E cC, predicate calculus } 

(3X' : X' E cC : pt 6.aC = X'). 

Hence, 

cC 2 {pi6.aC 1 p E c(sys.Cié.(aC U { ./}) Il tick) /\ p = pref.(µ.p) 

/\ (Vt: t E µ.p: (3u :: t = u 1·./))}. 

For the inclusion the other way around we derive 

XEcC 

=> { Property 4.2.9, X E cC # µ.X E µ.cc, X E cC => X E ( 6.ac)• } 

(3p: p = pref.({O·./} * µ.X * {1·./}) /\ p E c(sys.Ctó.(aC U {./})Il tick) 
: pf 6.aC = X A X = pref.(µ.X)) 

=> {p = pre/.({O·./} * µ.X * {1·./}) and X = pref.(µ.X) imply 
µ.p = {O·./} * µ.X * {l·./} and p = pref.(µ.p), predica.te calculus} 

(3p: p E c(sys.Cf6.(aC U{./}) Il tick) A p = pref.(µ.p) 

: (Vt: t E µ.p: (3u :: t = u 1·./)) A pfó.aC = X). 

For deadlocked computations we derive 

p E c(sys.Cfó.(aC U{./}) Il tick) /\ pfl·./ = {e} 
# { Property 4.2.9} 

(3X: X E dC: p = pre/.({O·./} * X)) 
=> {property of t, predicate calculus, X E dC => X E (6.aC)*, O·./ f/. é.aC} 

(3X: X E dC: pfé.aC = pref.X) 

<* {X E dC => X pref.X} 

(3X : X E dC: pÎ8.aC = X). 

Hence, 

dG 2{pió.aC1 p E c(sys.Ció.(aC U {./})Il tick) /\ pÎl·./ = {e}}. 

For the inclusion the other way around we derive 
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XedC 

=> {Property 4.2.9, X E dC => X E (6.aC)*, O·y' '/. 6.aC and l·y' '/. 6.aC, 
property of t } 

0 

(3p: p = pref.({O·v'} -tt- X) /\ p E c(sys.Ct6.(a0 U{v'}) Il tick) 
: pt6.aC = X /\ ptl·y' = {e}) 

=> { predicate calculus } 

(3p: p E c(sys.Gt6.(aC U {v'}) Il tick): ptl·y' = {e} /\ pt6.aC = X). 

4.3 Comparing programs 

In this section a method of comparing communication behaviours of programs is intro
duced. This method is based on the abstract model of Section 3.2 and it is illustrated 
by means of a. few examples. Since we are interested in the occurrence of actions, we 
have to translate the two-phase ha.ndshakes into action occurrences. 

For P = A.C the process of P is denoted by pr P a.nd is defined by 

prP = ((6.aC,(UX: X E cC UdC: X)) w pr(ll a: a E aC: trans.a))tA. 

The set of computations of P is denoted by cP a.nd is defined by 

cP = {(X w t(pr(ll a: a E aC: trans.a)))tA 1 X E cC U dC}. 

The semantics of program P is denoted by M(P] and is defined by 

M(P] = (prP,cP). 

The following lemma shows that computations of program P are equaJ to computations 
of sys.P. 

Lemma 4.3.1 

For c-Tangram program P = A.C 

c( sys.P) = cP. 

Pro of 

Let T =(Il a: a E aC: trans(a)). We derive 
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sys.P 

= { definition of sys.P} 

(sys.C Il T Il tick)tA 

= { A Ç aG, hence ( 6.( aG U { v'}) U aG)n A = A, Property 1.1.19, Il is 
commuta.tive } 

(sys.C Il tick Il T)f(6.(aG U {v'}) UaG)f A 

= { e( sys.C Il tick )n eT Ç 6.( aG U { v'}) U aG, Property 1.2.6 } 

((sys.C Il tick)Î(ó.(aG U{v'}) UaC) Il Tf(6.(aG U{v'}) UaG))fA 

{aCne(sys.C Il tick) = 0, eT ó.aC UaG, ~ ft aC, definitionof 
projection for systems } 

((sys.C Il tick)f6.(aC U{v'}) 11 THA 
= { e(tick) = 6.{ v'}, e(sys.G)ne(tick) Ç 6.(aG U { v'}), Property 1.2.6, 

definition of projection for systems} 

(sys.Cf6.(aC U{v'}) Il tick Il T)fA. 

Furthermore, 

c((sys.Cf6.(aC U {v'}) 11 tick Il T)f A) 

= { Theorem 3.2.18} 

(c(sys.Cf6.(aC U{v'}) Il tick Il T))fA 
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= { sys.C E RD, tick E RD, for a.11 a E aG, trans( a) E RD, Lemmata. 3.2.6 
and 3.2.5, Theorem 3.2.17, definitions of Tand of trans} 

{X w t(prT) 1 X E c(sys.Cf6.(aC U {v'}) Il tick)}I A 

= { Property 4.2.9, cC {pref .X 1 X E µ.cC}} 

{X w t(prT) 1 X E cC UdCHA 

= { definitions of projection and of cP} 

cP. 

0 

Additiona.lly, since a(prP) = A a.nd a(pr(sys.P)) = A, on account of Lemma. 3.2.11 
we have 

M(P] = A(sys.P]. 

Hence, sys.P is a. correct implementa.tion of P. 
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Observe tha.t (prP,cP) belongs to E. Additionally, we define 

acP = ac(prP,cP). 

On programs a relation is defined that is based on the abstract model of systems 
described in Chapter 3. 

We say that program P implements (is at least as good as) program Q, which is denoted 
byP;;;JQ,if 

M[P];;;JM[Q]. 

We say that program P is equivalent to program Q if 

P;;;JQ /\ Q;;;JP. 

An alternative definition of prP and cP takes as starting point the sligl:J.tly changed 
definitions of completed and deadlocked computations of the previous section. Namely, 
O·a 1 ·a is replaced by a in the definition of ca. Furthermore, in the definitions of the 
completed and deadlocked computations of Co Il 0 1, li.aC0 and 6.aC1 are replaced by 
aC0 and aC1 , respectively. Then 

prP = {A,(UX: X E cC UdC: XÎA)}. 

and 

cP = {XtA 1 X E cC UdC}. 

These expressions define exactly the sa.me processes and the same sets of sets of tra.ces 
as those at the beginning of this section, and they are much easier in use. The original 
definitions are, however, necessary to achieve the results of the previous s~tion. 

An immediate consequence of the a.bove definitions is the following property. 

Property 4.3.2 

For programs P = A.C and Q = A.C', such that cG UdC = cC' UdC', 

cP=cQ. 

0 

The above property and Lemma 3.2.11 yield Corollary 4.3.3. 
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Corollary 4.3.3 

Programs A.C a.nd A.C', such tha.t cC U dC = cC' U dC', a.re equivalent. 

0 

In the following exa.mples we compare a few Tangram programs. 

Example 4.3.4 
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Consider two programs P = {a, b}.(a n b) Il a and Q = {a, b}.a n b. We show that Pis 
equivalent to Q. 

For P we derive 

c((a n b) Il a) 

= { parallel composition } 

{Xo w X11 Xo E c(a n b) /\ X1 E cal\ 
(3t: t E Xo w X1: tÎ{a,b} E µ.Xo /\ tîa E µ.X1)} 

= {selection, ca = {{e,a}}, µ.{e,a} = {a}} 
{X0 w{e,a}1 (Xo = {e,a} V Xo {e,b})/\ 

(3t: t E Xo w {e,a}: tt{a,b} E µ.Xo /\ tîa = a)} 
= { defi.nition w for computations, a(a n b) = {a, b}} 

{{e,a}} 

and 

d((a n b) Il a) 
= {parallel composition, da= 0 and db = 0, hence d(a n b) = 0} 

{Xo w X1 IXo E c(a n b) A X1 E ca A 

(Vt: t E X0 w X1 : tî{a,b} <i/. µ.Xo V tîa <i/. µ.X1)} 

= {selection, ca = {{e,a}}, µ.{e,a} {a}} 

{X0 w {e, a} l(Xo = {e, a} V X0 = {e, b}) /\ 
(Vt: t E Xo w {e,a}: tÎ{a, b} <i/. µ.Xo V tîa =Ia)} 

{ definition w for computations, a(a n b) = {a,b}} 

{{e, b}}. 

For Q we derive 
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c(anb) 

= { selection } 

caUcb 

= { ca = {{e,a}}, eb= {{e,b}}} 
{{e,a},{e,b}} 

and 

d(an b) 
{ selection } 

daUdb 

= {da = 0, db = 0} 

0. 

Hence, 

c((a n b) Il a) U d((a n b) Il a) c(a n b) U d(a n b). 

Since P and Q also have equa.l alpha.bets, on account of Corolla.ry 4.3.3, P is equivalent 
toQ. 

0 

Example 4.3.5 

We establish that for N ~ 1 programs 

P = A.#N[#[C]] 

and 

Q=A.#[C] 

are equivalent. 

For completed computa.tions we derive 

c#N[#[C]] 
= { finite repetition } 

{pref.X 1 X E (µ.c#[C])N} 
= { c#[C] = 0, hence also µ.c#[C] = 0, N ~ 1 => 0N = 0} 

0 

= { infinite repetition } 

c#[C]. 
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For dea.dlocked computations we derive 

d#N[#[C]) 
= { finite repetition } 

{pref.(X * X 1
) 1(3i:0 :5 i < N: x E {µ.c#[C])' A X 1 E d#[C]} 

= {µ.c#(CJ = 0, hence the only possibility is i = 0, 0° {{e}}} 
{pref .X 1 X E d#[C]} 

{ dea.dlocked computa.tions are prefix-closed} 

d#[CJ. 
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Because the a.lpha.bets of P and Q are equa.l as well, the programs are equivalent (on 
account of Corollary 4.3.3). 

0 

Example 4.3.6 

We prove by induction tha.t for a natura.l number N :;::: 1, 

P= A.#N[C] and Q=A.CN 

are equivalent. We actua.lly prove tha.t 

and 

for N 2:: 1. 

Base N = 1 

We derive 

c#l(C] 
= { finite repetition} 

{pref .X 1 X E µ.cC} 
= {for X E cC we have X = pref.(µ.X)} 

cC 

and 



144 4 An application 

d#l[C] 
= { finite repetition } 

{pref.X 1 X E dC} 

= { dea.dlocked computations are prefix-closed} 

dC. 

(Hence, on account of Corolla.ry 4.3.3, A.#l[C] is equivalent to A.C). 

Step N 2: 1 
The induction hypothesis is 

and 

For completed computations we derive 

c#(N + l)[C] 
{ finite repetition } 

{pref.X j X E (µ.cC)N+l} 

{ definition A1 } 

{pref.(X * X') 1 X E (µ.cC)N /\ X' E µ.cC} 
= { (µ.cC)N µ.c#N[C] } 

{pref.(X * X') 1 X E µ.c#N[C] /\ X' E µ.cC} 
= { induction hypothesis (holds also for sets of maximal traces)} 

{pref.(X * X') 1 X E µ.c(CN) /\ X' E µ.cC} 
= { sequential composition} 

c(CN; C) 

= { associativity of ; } 
c(CN+l). 

For deadlocked computations we derive 

d#(N + l)[C] 

= { finite repetition} 

{pref.(X * X') 1(3i:0 ~ i < N + 1: X E (µ.cC)') /\ X' E dC} 
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= { predica.te calculus} 

{pref.(X * X') 1((3i:0 :5 i < N: X E (µ.cC)') /\ X' E dC) 
V (X E (µ.eC)N /\ X 1 E dC)} 

= { predica.te and set calculus} 

{pref.(X * X') 1(3i:0 :5 i < N: X E (µ.cC)') A X' E dC} 
U {pref.(X * X') 1 X E (µ.eC)N A X' E dC} 

= { finite repetition } 

d#N[C] U {pre/ .(X * X') 1 X E (µ.cC)N A X' E dC} 
= { induction hypothesis (for dea.dlocked computa.tions), 

(µ.cC)N = µ.c#N[C] } 
d(CN) U{pref.(X * X') 1 X E µ.c#N[C] A X' E dC} 

= { induction hypothesis (for completed computations, holds also for sets 

of maxima.l tra.ces) } 

d(CN) U{pref.(X * X') 1 X E µ.c(CN) /\ X' E dC} 
= { sequentia.l composition } 

d(CN; C) 

= { a.ssociativity of ; } 

d(CN+l). 
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(Hence, on account of Corollary 4.3.3, A.#(N + I)[C] and A.CN+l are equivalent.) 

0 

The next example shows tha.t parallel composition is not modelled by interlea.ving. 

Example 4.3. 7 

Consider two programs P = {a,b}.a Il band Q = {a,b}.a; bnb; a. 

For P we derive 

c(a Il b) 
= { parallel composition } 

{Xo w X1 IXo E ca /\ X1 E eb/\ 
(3t: t E X0 w X1: tta E µ.Xo /\ ttb E µ.X1)} 

= { ca = {{e, a}} and eb= {{e,b}}, definition w for computa.tions, 

aa = {a} and ab= {b}} 

{pre/. { ab, ba}} 
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and 

d(a Il b) 
= {parallel composition, da = 0 and db = 0 } 

{Xo w X1 IXo E ca A X1 E cbA 
(Vt: t E Xo w X1 : tîa ft µ.X0 V tîb ft µ.X1)} 

4 An application 

{ ca {{e,a}} and eb= {{e,b}}, definition w for computations, 

aanab= 0} 
0. 

For Q we derive 

c(a; bnb; a) 
{ selection } 

c(a; b) Uc(b; a) 

= { c(a; b) = {pref.{ab}}, c(b; a) = {pref.{ba}}} 
{pref.{ ab}, pref .{ba}} 

and 

d(a; bnb; a) 

= { selection } 

d(a; b) Ud(b; a) 
{d(a;b) 0,d(b;a) 0} 

0. 

Then we have 

prP = ({a,b},pref.{ab,ba}) prQ 

and 

acP 2 acQ and acQ ~ acP. 

Hence, on account of the definition of M[P) and Definition 3.2.10, P ;;;;! Q and Q ;?J P. 

0 
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In the preceding ehapters two models of trace theory systems have been introduced 
allowing reasoning a.bout concurrency and nondeterminism. In particular, the distino
tion between these phenomena is made explicit in both models. A direct consequence 
of this distinction is that in many cases we can prove desired properties of systems 
without referring to fa.irness. In fact, our pa.rtial order computations from Chapter 2 
are alwa.ys fair a.ccording to (Mal]. We claim that fa.imess a.ssumptions are necessary 
if properties ha.ve to be proved that depend not only on the structure of systems but 
also on other aspects, such as the treatment of chokes in the system component& (pro
cesses ). In this ehapter we present a model of systems that allows explicit assumptions 
about fa.irness (or justice) and their impact on extemal behaviour of systems. This is 
an abstract and not compositional model for systems of the restricted class defined in 
Section 3.2. 

In Section 5.1, we shortly discuss fa.imess problems. Section 5.2 presents our abstract 
model incorporating fa.irness. In Section 5.3, the classical example of the Alternating 
Bit Protocol is a.ddressed. 

5.1 A short introduction to fairness 

The concept of faimess is connected to tbat of nondeterminism. Fairness properties 
can be seen as restrictions on infinite executions of systems: if there is a recurring 
choice out of a few alternatives,. none of them should be constantly ignored. Fairness 
is a convenient abstraction from (irrelevant) implementation details. 

Fairness properties ( also known as faimess assumptions) are used for two purposes: 
in the definition of the semantics of programming languages and in the descriptions 
of the behaviour of systems. A review of the literature on faimess together with a 
classification of fairness properties is presented in [Paw]. In [Fra], the use of fairness 
assumptions for proving termination of programs is extensively explored. 

In [Paw), two classes of fairness concepts are distinguished: general and specific fairness 
properties. General fairness properties are mostly associated with constructs of pro
gramming la.nguages. An example of such a property can be the assumption that any 
guard of a. program being enabled permanently is chosen infinitely often. This property 
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is called weak fairness, or justice. H "perma.nently" is replaced by "infinitely often", 
we get the property known under the name strong fairness. General fairness properties 
are used for defining models and proof systems for programming languages. Specific 
fairness properties are related to the behaviour of a specific system or program under 
study. An example might be the assumption that the system is fair with respect to a 
certain action in the sense that it cannot persistently choose other actions if this action 
is permanently ena.bled. In this thesis we are concerned with specific fairness proper
ties only, although in this context general fairness would be a special case of specific 
fairness. Namely, when a system is regarded to be fair with respect to a11 its. actions. 
We refer to thè above specific fairness. property as justice. Again, if "permanently" is 
replaced by "infinitely often", we get a specific fairness propertY: referred to as strong 
fairness, or simply fairness. The choice of these na.mes for the two mentipned specific 
fairness properties is motivated by the direct association with the general concept of 
justice and strong fairness. 

5.2 Abstract model 

In our a.bstraet model with fairness we con centra.te on the question of what the external 
beha.viour of a system is if the system is fair with respect to some explicitly chosen 
actions. To specify the set of fairly treated actions an extended notion of system is 
introduced. 

Anf-system (fair system) is a triple {A,Y,F), where (A,Y) E RD and Ji Ç a(W.Y). 
As before, A is the external alphabet of the f-system. Set F contains actfons that are 
treated fairly by the f-systern and it is called f ai mess set of the f-systern. Notice that 
we do not require F Ç A. For f-system S we denote its external alphabet by eS, its 
set of processes by pS and its fairness set by fsS. 

For f-system S we define 

pot.S = pot.(eS, pS). 

In Section 3.2 we defined cornputa.tions of system S. They are derived from pot.S. 
In this chapter we present two abstract rnodels of f-systerns for two kinds of fairness, 
namely weak fairness (justice) and strong fairness. In the sequel we write fairness for 
strong fairness. 

In the abstract rnodelwith jtistice just computations are of importance. Just compu
ta.tions of f-system S are derived frorn just elements of pot.S. We first explain what 
unjust means with respect to elernents of pot.S. Element pof pot.Sis unjust if there 
is a trace t in p and an action a in fsS which is perrnanently ena.bled in p after t -
expressed by 

(Vu: u E p A t ~ u: ua E tS), 
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and which does not occur in p alter t - expressed by 

(Vu: u E p J\ t 5 u: ua '! p). 

We a.re interested in those elements of pot.S that a.re not unjust. The set of just 
elements of pot.S, denoted by jpot.S, is defined as follows. 

Definition 5.2.1 

Let S be an f-system and let p E pot.S. Then 

p E jpot.S 

(Vt,a: t E p J\ a E fsS: (3u: u E p J\ t $ u: ua '! tS V ua E p)). 

D 

From jpot.S just computations, denoted by jcS, are derived. 

Definition 5.2.2 

For f-system S 

jcS = jpot.SîeS. 

0 

The abstract model with justic:e of f-system Sis defined to be the pair (prS,jcS) and 
it is denoted by .1(8). 
Similarly, in the abstract model with fairness fair computations are of importanc:e. 
Fair computations of f-system S are derived from fair elements of pot.S. As before, we 
explain what the opposite means. Element p of pot.S is unfair if there is a trac:e t in p 
and an a.ction a in fsS which is infinitely often enabled in p after t - expressed by 

(Vu: u E p J\ t $ u: (3v: v E p J\ u 5 v: va E tS)), 

and which does not occur in p after t. We conc:entrate on those elements of pot.S that 
are not unfair. The set of fair elements of pot.Sis denoted by fpot.S, and it is defined 
as follows. 

Deflnition 5.2.3 

Let S be an f-system and let p E pot.S. Then 
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p E fpot.S 

('rit, a : t E p /\ a E fsS 

: (3u: u E p /\ t ~ u: (Yv: v E p A u ~ v: va</. tS) V ua E p)). 

0 

From fpot.S fair oomputations, denoted by fcS, are derived. 

Definition 5.2.4 

For f-system S 

fcS fpot.SîeS. 

0 

The abstract model with fairness of f-system S is defined to be the pair (pJl'S, fcS) and 
it is denoted by F[S]. 
For f-system S we have .1[S] E E and F[S] E E. 
We say that f-system So is a just implementation of system S1 if 

Respectively, we say that f-system S0 is a fair implementation of system S1 if 

F[So] ;;;J .A[S1). 

As one would expect, all finite oomputations are fair and just. 

The following property proves that every fair cómputation is also just. 

Property 5.2.5 

For f-system S 

fpot.S Ç jpot.S Ç pot.S. 

Proof 

Let p E pot.S. From Definition 5.2.1 we have jpot.S Ç pot.S. 

We derive 
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p E fpot.S 

{:? { Definition 5.2.3 } 

(Vt, a : t E p A a E CsS 
: (3u : u E p A t :5 u : (Vv : v E p A u :5 v: va </. tS) V ua E p)) 

~ { predicate calculus } 

(Vt, a : t E p A a E fsS : (3u : u E p A t :5 u : ua </. tS V ua E p)) 
{:? { Definition 5.2.1} 

p Ejpot.S. 

As a. consequence, we have for f-system S 

fcS ÇjcS. 
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H the fairness set is empty, all computa.tions are fair and just. Hence the following 
property. 

Property 5.2.6 

For system S 

0 

.A(S] = ..1[{eS,pS,0)], 

.A[S] = F[(eS,pS,0}). 

We illustra.te our abstract model with incorporated justice by Example 5.2.7. The 
model with fairness is illustrated by Example 5.2.8. It is also used in the next section 
for the verifica.tion of a communication protocol. 

Example 5.2. 7 

Consider system 

So = {{a}, {pra}) 

and f-system 

81 = {{a},{pr(.x*; .x'; a)},{.x'}}. 
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We show that 81 is a. just implementa.tion of 80 • 

Both systems belong to RD. External processes of So and 81 are both equal to pra. 
System S0 bas only one computa.tion: {e,a}. Ma.ximal po-traces of S1 are' 

pot.Si= {t(pr(x'; x'; a)) 1 i;::: O} U{t(pr(x•))}. 

The only not just element of pot.S1 is p t(pr(x*)), because 

(Vu : u E p : ux1 E tS1 /\ ux' rf. p). 

(Note tha.t, on account of Property 5.2.5, this particular pis also not fair.) Hence, the 
set of just elements of pot.S1 equals 

jpot.81 = {t(pr(x'; x'; a)) 1 i ;::: O}. 

As a consequence, the set of just computations consists of one element: {e,a}. (Every 
element of jpot.S1 also satisfies the requirements of being fair. Hence, fcS1 = jcS1.) 

As prS1 = prS0 and jcS1 = cS0 (and fcS1 = cS0 ) we can conclude tha.t 8 1 is a just 
(and fair) implementation of 80 • In every just computation action a is guaranteed to 
occur. 

0 

Example 5.2.8 

Consider processes 

T = {{q,n,y,x,x',z,z'} U{x; 1i2 O}, 
{t 1(3i,j:i2 0 /\ j;::: 0: t $ z'x•(qx'n)•x(qy)i) 

V (3i,j: i 2 0 /\ j 2 0: t $ z'xi+1 (qx'n)'qxx'n(qy);) 

v(3i: i;::: 0: t $ z(qn)•rn, 

U = pr(z 1 z'; a; x) 

and system 

S = {{a,q,n,y},{T,U}). 

Process T models a synchronizer. By means of q the environment (which can be some 
other processor system) can inquire whether event x already took place. The answer 
is positive (y) if event x occurred prior to q, otherwise it is negative (n). (Note that T 
is not regular.) 

Process U determines whether event x will happen. It makes a. choice between zand 
z'. Hz is chosen event x will not occur. If z' is chosen, after a event x will take place. 



5.2 Abstract model 153 

System S helongs to RD, because every choice is between intema.l a.ctions ( x' is intro
ducecl only for this purpose). 

Computations of S are 

cS = {t(pr((q; n)*))} U {t(pr(a, (q; n)'; (q; y)*)) 1 i ;::: O}. 

Let T' = pr(((x"; q; x'; n)*; x 1 x"; q; (x'; n; x"; q)*; x; n); (q; y)*). In the sequel 
we show tha.t f-system 

S 1 = {{a,q,n,y},{T',U},{x}} 

is a fair implementation of S. 

System S' belongs to RD, because every choice is between internal a.ctions ( x11 and x' 
are introducecl only for this purpose). 

Process T' is a. kind of a regular a.pproximation of the synchronizer. It ha.s the same 
set of traces when a.ctions x, q, n, and y are concernecl. It ha.s the advantage of being 
regular and the disadvanta.ge of being divergent with respect to x. 

The state graph of T' is 

x" q 

In the context of T', if a is executecl by process U, occurrence of event x depends on 
the beha.viour of T' with respect to the choice between x and x", and hetween x and 
x'. We a.re interestecl in showing that the occurrence of a will eventually lead to the 
answer y under the a.ssumption tha.t T' is fair with respect to x. The faimess set of S' 
is chosen to equa.l { x} to forma.lize this a.ssumption. 

Externa.l processes of S and S' are equal. 

Sets of tra.ces helonging to pa.rtial order computations of S' are members of 

pot.S' = {t(pr(z, (x"; q; x'; n)*)), t(pr((z'; a), (x"; q; x'; n)*))} 

U{t(pr((z'; a), (x"; q; x'; n)1 ; x; (q; y)*)) 1 i;::: O} 

U{t(pr((z'; a), (x"; q; (x'; n; x"; q)1 ; x; n; (q; y)*)) 1 i;::: O}. 
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The only not fair element of pot.S' is p = t(pr((z'; a), (x"; q; x'; n)*)). This is 
because z'a E pand 

(Vu: u E p /\ z'a :5 u: (3v: v E p A u :5 v: vx E tS') A ux '/:. p). 

All other elements of pot.S' do satisfy the requirement of Definition 5.2.3. Hence, the 
set of fair elements of pot.S' is 

fpot.S' pot.S' \ {t(pr((z'; a), (x"; q; x'; n)*))}. 

The set of fair computations is 

fcS' = {t(pr((q; n)*))} U{t(pr(a, (q; n);; (q; y)*)) 1i2 O}. 

As prS' = prS and fcS' = cS we can conclude that S' is a fair implementation of S. 

In every fair computation containing a a.ction y is guaranteed to occur ( after a finite 
number of occurrences of n ). 

This analysis makes critical use of our faimess assumption. In the abstract model of 
Chapter 3 we would find computa.tion t(pr(a, (q; n)*)) in cS'. In that' model we, 
consequently, could not show tha.t the execution of a will eventually lead to the answer 
y. 

0 

ö.3 Alternating Bit Protocol 

The Alternating Bit Protocol was introduced in [Bar] and has been extensively studied 
in the literature as a test example for various description formalisms. lt is a simple data 
link protocol for error-free one-way communication over a medium that may corrupt 
messages. In this section we are only concerned with the communica.tion behaviour 
of the protocol. Our presenta.tion is essentially based on [Paw], with the exdusion of 
timeouts (we assume that the communication medium cannot lose messa.ges). This 
simplification is not necessary because timeouts can be modelled by additional actions. 
However, the absence of timeouts makes the discussion less complex. 

The external communication behaviour of the Alternating Bit Protocol is specified by 

T = ({s,r},{pr((s; r)*)}), 

where s and r model the send and receive actions, respectively. System T belongs to 
RD. 
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r------ -------, 

SI s R 

1 

L------
_____________ _J 

Figure 5.1: A scheme of the implementation of the Alternating Bit Protocol. 

We have 

A[T) = (pr((s; r)*),{t(pr((s; r)*))}). 

The proposed implementation of the protocol consists of four components: sender S, 
receiver R and two communication media M0 and M1 (see Fig. 5.1). The eender 
and the receiver communica.te via M0 and M1 • Both media may corrupt hut not 
lose or re-order messa.ges. The sender accepts a messa.ge for transmission, which is 
modelled by action s, and adds one bit to it (starting with 0). The extended messa.ge 
is transmitted via M0 to the receiver. This transmission is modelled by action smo. 
After reception of the correct acknowledgement ms0 (with the sa.me sequence bit) 
via M1 a new messa.ge is accepted for transmission. This messa.ge gets the inverted 
sequence bit and the procedure is repeated with actions sm1 and msi. respectively. H 
the sender receives an acknowledgement with the wrong sequence bit ( ms1 in the case 
when the preceding transmission action was smo, and ms0 in the another case) or a 
corrupt acknowledgement (modelled by ea) it retransmits the messa.ge. 

The forma.l specification of S is 

S = pr((s; smo; ((ms1 1 ea); smo)*; mso; s; sm1; ((mso 1 ea); sm1)*; ms1)*). 

The receiver R accepts messa.ges from M0 , which is modelled by actions mr0 and mr1• 

Every messa.ge with the sequence bit different from that of the preceding messa.ge is 
delivered to the environment via r. Each arriving messa.ge is acknowledged via M1 by 
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a.n acknowledge action (rm0 or rm1) consistent with the sequence bit of the message. 
If a. corrupt messa.ge arrives (e), the last acknowledgement is retransmitted. 

The formal specification of R is 

R = pr((mro; r; rmo; ((mro 1 e); rmo)*; mr1; r; rm1; ((mr1 1 e); rm1)*)*). 

(Notice that the ma.in repetitions in the specifications of S and R consist of two parts 
that dilfer only in the intercha.nge of zeros and ones.) 

The medium M0 accepts a messa.ge for transmission (smo and sm1), after which the 
messa.ge is delivered intact (mr0 and mr1) or corrupt (e). The medium M1 has a 
similar behaviour with respect to acknowledgements. Accepting of acknowledgements 
for tra.nsmission is modelled by rm0 and rm1• Delivering of proper acknowledgements 
to the sender is modelled by ms0 and ms1; for corrupt a.cknowledgements a.ction ea is 
used. 

Formally, Mo and Mi are specified by 

Mo = pr((smo; (mro 1 e) 1 sm1; (mr1 1 e))*) 

and 

M1 = pr((rmo; (mso 1 ea) 1 rm1; (ms1 1 ea))*). 

(To include timeouts, a.ction to should be introduced as an additional alternative: 

• in the sender S, in (ms1 1 ea) and (ms0 1 ea), 

• in the medium Mo, in (mro 1 e) and (mr1 1 e), 

• in the medium M1, in (mso 1 ea) and {ms1 1 ea).) 

For a start we consider the implementa.tion of the Alternating Bit Protocol without 
a.ny fairness assumptions. 

Let T' = { { s, r}, { S, R, M0 , M1 }). In order to facilita.te further calculations we first 
determine the weave of S, R, M0 , and M1, which is 

pr(( s; sm0 ; (e; rm1 ; (ms1 1 ea); smo)*; mr0 

r; rm0 ; (ea; smo; (mr0 1 e); rmo)*; mso 

s; sm1 ; (e; rmo; (ms0 1 ea); sm1)*; mr1 

r; rm1 ; (ea; sm1 ; (mr1 1 e); rm1 )*; ms1)*). 

The state gra.ph of the weave is 
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• 
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Note that all choices in the wea.ve are only between internal actions (thus T' E RD) 
tha.t belong to the sa.me process, viz., M0 and M1• These choices model the possibility 
that a. medium rorrupts a. messa.ge or delivers it intact. Extemal process of T' is equal 
to that of T. 

In order to chara.cterize pot.T' we la.bel four particular sta.tes of the weave 

• ao = [s smo], 

• a 1 = [s smo mro r rmo], 

• a 2 = [s smo mr0 r rm0 ms0 s sm1], 

and define 
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• E1 = {easmomrorm0,easm0 ermo}, 

• E = {t 1 t E [e]}. 

Furthermore, for set X of tra.ces, by MC.X we denote the set of maximàl cha.ins of 
(X, :$;). That is, 

YEMC.X 

Y Ç X /\ (Vt, u : t E Y /\ u E Y : t :5 u V u :5 t) 
/\ (Vt : t E X \ Y : (3u : u E Y : -i(t :$; u V u :$; t))). 

Then one can check tha.t 

pot.T' = {pref.{ty 1 y E K} 10 :5 j < 4 /\ t E a; /\ K E MC.EJ} U 

{pref.K 1 K E MC.E}. 

According to Definition 3.2.10 we have that T' does not implement T. In Jila.rticular, 

A[T') = (pr((s; r)*),{t(pr((s; r)i)) 1 i;:::: O} U {t(pr(s; (r; s)')) 1 i;:::: O} 
U{t(pr((s; r)*))}). 

Hence, { e} E cT'. This, in turn, implies tha.t ( e, { s}) fj. acT'. For T we have that 
(e,{s}) does belong to acT and, hence, A[T'] ~ A[T]. 
We now discuss an implementation of the protocol tha.t gua.rantees fairness of choices 
with respect to the actions mr0, mso, mr1 , and ms1. That is, we consider f-system T" 
defined by 

Externa.l processes of T" and T are equa.l. 

On account of Definition 5.2.3 and with the help of the state gra.ph from the previous 
page, can be concluded tha.t only infinite traces in which the initia.} sta.te is. repea.tedly 
passed, belong to fpot.T". Forma.lly, 

fpot.T" = {pref.K 1 K E MC.E}. 



5.3 Alternating Bit Protocol 

Hence, fcT" = {t(pr((s; r)*))}. Furthermore, we have 

F[T"] = (pr((s; r)*),{t(pr((s; r)*))}). 

Hence, we have that T 11 is a fair implementation of T. 

On account of Property 5.2.5 we have 

{pref.K 1 K E MC.E} Ç jpot.T". 

For every other p E pot.T" holds 

(Vt, a : t E p A a E fsT" : (3u : u E p /\ t :5 u : ua 'f. tT'')) 
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(see the sta.te graph of S w R w M0 w M1 ). A conclusion is then that jpot.T" = pot.T". 
Hence, T" is nota. just implementation of T (see the argument for A(T1 ;?l A[T]). 

The f-system T'' ha.s four events (mr0, ms0 , mr1, and ms1) in its faimess set. The 
fairness set of Tn expresses the property that in the infinite executions of T" infinitely 
ma.ny messa.ges with 0-bit and infinitely ma.ny messa.ges with 1-bit are delivered to 
the receiver, and infinitely ma.ny a.cknowledgements with 0-bit and infinitely many a.c
knowledgements with 1-bit are delivered to the sender. In [Pa.w], a. different fa.imess 
property is used in the verifi.ca.tion of the Alterna.ting Bit Protocol. Na.mely, tha.t in
finitely many messa.ges with 0-bit or infinitely ma.ny messages with 1-bit are delivered 
to the receiver, and infinitely ma.ny a.cknowledgements with 0-bit or infinitely ma.ny 
acknowledgements with 1-bit are delivered to the sender. These properties are a.sso
cia.ted with the communica.tion media M0 and M1 instea.d of with the whole system, 
which is the case in our method. This is possible beca.use the verifica.tion method of 
[Pa.w] is compositiona.l. 



Conclusions 

This thesis proposes two new methods for verifying designs with respect to their spec
ifica.tions. Both specifica.tions and designs are given in terms of trace theory systems. 

The first method is operationaL It comprises both safety and liveness considerations, 
and it distinguishes nondeterministic, but sequentia! systems from parallel ones. It is 
compositional in the following sense: 

• if Sis an implementation of T then StA is an implementation of TtA, 

• if, additionally, S' is an implementation of T' then S Il S' is an implementation 
of T Il T'. 

However, the model on which this method is based is not compositional. To be more 
precise, we did not succeed in expressing O[S Il S') in terms of O[S) and O[S']. By 
Property 2.1.16 we know, on the other hand, tha.t O(St A) equa.ls O(S]. 

The second method is restricted to a certain class of systems. As a. consequence, the ab
stract model on which this method is based is compositional (i.e., A[S Il S') = A(S] Il 
A(S'] and O[StA] = A[S]ÎA). The second method provides the sa.me comparisons 
as the first one for the restricted system doma.in, hence, it also is compositional in the 
above sense. In the second method calculations are easier than in the first one. The 
model on which the second method is based turns out to be not fully abstract with 
respect to the operational model, because relation ;;;i is not a.ntisymmetric. This model 
is not very much different from the fa.ilures model and yet it can express more liveness 
properties. Although the abstract model applies to a restricted system domain, it is 
rich enough to be used as a basis for defining a semantics of CSP-like languages, as it 
is shown for c-Tangram. 

In the approach presented in this thesis parallelism is explicitly present in models used 
for comparing systems. The construction of the models follows, in broad outlines, that 
of [Hen]. However, the theory of [Hen] explains parallelism in terms of nondeterminism 
and interlea.ving. This is also the case in [Hoa], [Mil], and in related work. As a. con
sequence, these theories identify systems like S0 and 81 discussed in the Introduction. 

Additionally, the second method is extended - in a non-compositional way - to f
systems, which are systems with incorporated fairness requirements. In this manner, 
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the concept of fa.irness is strictly separated from the concept of parallelism. In this 
thesis, f-systems are used to describe only designs, hut they can equally well be used 
to describe specifications. 

Finally, we mention two major open questions. 

• Is there another compositional model that is fully abstract with respect to the 
operational model on the whole system domain? 

• Is there a. compositional model fora. system doma.in tha.t includes f-systems? 



A Appendix 

This appendix contains some additional results in connection with the operational 
model of Chapter 2. Section A.1 describes several properties of partial-order compu
tations. In Section A.2, the relationship between our operational model and nets is 
investigated. In Section A.3, a comparison of our model and an interleaving model 
of trace theory systems is presented. Section A.4 contains a non-trivial example. In 
Section A.5, a statement from Section 2.4 is proved. 

A.1 Properties of partial-order computations 

The following property shows that if ( t, T) belongs to computation 11' then so does every 
configuration of process T with the trace being a prefix of t. Moreover, there is a path 
inside 11' from such a configuration to (t, T). 

Property A.1.1 

Let 1r be a computation of system S. Then 

(t,T) E Conf.1r =? (Vt': t' < t: (t',T) E Conf.1r A (t',T) -.; (t,T)). 

Proof 

The property is proved by induction on l.t fort E tT. 

Base l.t = 0 

Then t = e and the universal quantification is trivially true. 

Step l.t-:/:- 0 

Then t :/= e. Let t = ua. We derive 

(ua,T) E Conf.11' 

=? { Definitions 2.1.13 and 2.1.11 - 7r is admissible} 

(3C: (a,C) E Act.1r: (u,T) E C A C Ç 7r) 

162 
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=> { Definitions 2.1. 7 and 2.1.5, set and predica.te calculus} 

(3C: (a,C) E Act.-n-: (u,T) -+" (a,C) -+" (ua,T)) /\ (u,T) E Conf.-n-
=> { definition of -+ ;, predicate calculus } 

(u,T) -+; (ua,T) /\ (u,T) E Conf.-n-
=> { induction hypothesis } 

(Vt' : t' < u : (t', T) E Con/ .-n- /\ (t', T) -+; ( u, T)) /\ (u,T) -+; (ua, T) 
=> { -+; is transitive, predica.te calculus} 

(Vt': t' < ua: (t',T) E Conf.-n- /\ (t1,T) -+; (ua,T)). 

D 

The next lemma shows that tra.ces from two configura.tions of the sa.me process that 
belong to one computa.tion are related to each other. Na.mely, one of them is a prefix 
of the other one. 

Lemma A.1.2 

For computa.tion 1r of system S, and configura.tions ( t, T) and ( u, T) of 1r 

t ::;; u v u ::;; t. 

Pro of 

The proof consists in showing tha.t (Vv, a, b : va ::;; t /\ vb ::;; u : a = b). 
We derive 

va::;; t /\ vb::;; u 

=> { Property A.1.1} 

{(va,T),(vb,T)} Ç Conf.-n-
=> { Definitions 2.1.13 and 2.1.11 1r is a.dmissible} 

(3C,C': {(a,C),(b,C')} Ç Act.1r: (v,T) E C nC') 
=> { Definition 2.1.13 - no forward bra.nched configurations in 1r, Property 

2.1.12} 

a=b. 

0 

A consequence of Property A.1.1 and Lemma. A.1.2 is tha.t in a. computa.tion config
ura.tions belonging to the sa.me process are totally ordered, which is expressed in the 
following corolla.ry. 
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Corollary A.1.3 

For computation 11' of system S, and configurations (t,T) and (u,T) of 11' 

(t,T)-+; (u,T) v (u,T) -+; (t,T). 

D 

Property A.1.4 shows that the set of tra.ces associated with a computation is prefix
closed. 

Property A.1.4 

For computation 11' of system S, tr.11' is prefix-dosed. 

Pro of 

We derive 

ua E tr.11' 

=> { Definition 2.1.15} 

(VI': TE pS: (uataT,T) E 11') 

=> { Property A.1.1, definition of t} 
(VI': TE pS: (utaT,T) E 11') 

=> { Definition 2.1.15} 

u E tr.11'. 

Hence, tr.11' is prefix-dosed. 

D 

The configurations of a computation are precisely those configurations that contribute 
to the traces associated with it (this results from the second conjunct in Definition 
2.1.11). This yields the following property. 

· Property A.1.5 

For computation 11' of system S 

Gonf.11' = {(utaT,T) 1 u E tr.11' /\ TE pS}. 

Pro of 

For TE pS we prove that (t,T) E Gonf.11' # (3u: u E tr.11': uîaT = t). 
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Case l.t = 0 

Then t = e. On account of Definition 2.1.15 and the fact that tr.11" is prefix-closed we 
conclude 

(e,T) E Conf.1f <:> (3u: u E tr.11": uîaT = e). 

Case l.t :f:. 0 

Then t :f:. e. Let t = va. We derive 

(va,T) E Conf.7r 

=> { 11" is a.dmissible (Definition 2.1.11)} 

(30,u': (a,C) E Act.11" A (v,T) E C A u'a E tS 
: C Ç {(u'îaT',T') 1 T' E pS} Ç 1r} 

=> { predicate and set calculus, definition of C .S.a } 

(3u': u1a E tS: {(u'îaT',T') 1 T' E pS} Ç 7r /\ u'ÎaT = v /\ a E aT) 

=> { 7r is maximal, Definition 2.1.13, s = s' => sb = s'b} 

(3u': u'a E tS: {(u'îaT',T') 1 T' E pS} Ç 7r A (u'îaT)a =va/\ a E aT 

A{{(u'îaT')a,T') 1 T' E pS /\ a E aT'} Ç 7r) 

=> { predicate and set calculus, definition of r } 
(3u': u'a e tS: {(u'aÎaT',T') 1T'epS}Ç7r A u'aîaT =va) 

<:> { predicate calculus, Definition 2.1.15} 

(3u: u E tr.7r: uîaT =va). 

For the implication the other way around we derive 

0 

(3u: u E tr.11': uîaT =va) 

=> { tr.7r is prefix-closed - Property A.1.4, definition of t} 
(3u': u'a E tr.11": u'aÎaT =va) 

<:> { Definition 2.1.15} 

(3u': u'a E tS: {(u'aîaT',T') 1 T' E pS} Ç 7r /\ u'aîaT =va) 

=> { predicate and set calculus, T E pS } 
(va,T) E 11" 

<:> {forTEpS,(s,T)E1r <:> (s,T)eConf.1r} 

(va,T) e Conf.1r. 
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Lemma A.1.2 and Property A.1.5 yield the following corollary, showing that projections 
of traces associated with a computa.tion on the a.lpha.bet of one process 

1
a.re tota.lly 

ordered by the prefix rela.tion. 

Corollary A.1.6 

For oomputa.tion 11' of system S, tra.ces t, u of tr.11', and process Tof S 

ttaT :5 utaT V utaT :5 ttaT. 

0 

Lemma A.1.7 facilitates the proof of Theorem A.1.8. 

Lemma A.1.7 

For computation 11' of system S, process U of S, u E tr.11', oonfiguration (t, T), and 
action occurrence ( a, C) 

(t,T) -+" (a,C) -+" (utaU,U) => t < utaT. 

Proof 

We derive 

0 

(t,T) -+,,. (a,C)-+,.. (utaU,U) 

=> { Property 2.1.9, Corollary A.1.6, and Definition 2.1.15} 

(ttaU)a = uî(aU naT) A (t :5 utaT v t ~ ufaT) 
=> {Lemma 1.1.15, from the first conjunct follows that a E aU n aT} 

(ta)Îa = uta A (t :5 utaT V t ~ uÎaT) 
=> { calculus } 

tta < uf a A (t :5 ufaT V t 2:: ufaT) 
=> { t :5 uîaT => tîa :5 uta and t;::: utaT => tîa;::: uta, predicate calculus} 

t < uÎaT. 

Theorem A.1.8 shows that in contrast to _,.•, relation -+; is a partial order. 

Theorem A.1.8 

If 11' is a computation of system S, relation -+; is a partial order. 
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Pro of 

From the definition (of*) we have tbat -+;is refl.exive and transitive. We prove that 
-+; is antisymmetric, i.e" that there are no cycles in 7r. It is sufficient to show that no 
configuration of 7r occurs in a cycle in 11'. That is, on account of Property A.1.5, 

(Vu, t, T: u E tr.11' /\ TE pS A t :5 uîaT: (t, T) not in a cycle in 11'). 

This is proved by induction on l.u, for u E tr.11'. Let TE pS. 

Base l.u = 0 

Then u = e. It is obvious from Definition 2.1.7 tha.t 

(Va: a E Act.S : •(a-+ (e, T))). 

Hence, (e,T) not in a cycle in 11'. 

Step l.u =/: 0 

Then u =/: e. Let u = va. We derive 

(vaîaT,T) E Conf.11' 

=> {Lemma A.1.7} 

(\lt,C,U: (t,U) -+,,. (a,C)-+,,. (vaîaT,T): t < vaîaU) 
. ::::} { property of t } 

(Vt,C,U: (t,U) -+,,. (a,C) -+,,. (vafaT,T): t :5 vîaU) 

:::? { induction hypothesis, calculus } 

(vaîaT,T) not in a cycle in 11'. 

0 

The distributed states contained in computa.tion 11' are the maxima! antichains of 
(Conf.K,-+;), which is proved by Theorems A.1.9 and A.1.10. 

The fact tbat subset X of Conf.11' is a maxima! anticha.in of ( Conf.7r,-+;) is formally 
expressed by 

(Vrp': <p1 E Conf.11' \ X: (3<p: 'P EX: 'P -+; <p1 V <p1 -+; 'P)) 
/\ (V<p, <p' : { <p, IP'} Ç X /\ rp f IP' : -.( rp -+; rp')). 
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In Theorem A.1.9 we prove that every distributed state of computation 11" is a maximal 
anticliain of (Con/ .11", -+;). 

'l'heorem A.1.9 

For computation 11" of system S and trace t E tr.11" 

{(ttaT,T) 1 TE pS} is a maximal antichain (Conf.11",-+;). 

Pro of 

Set {(ttaT,T) 1 T E pS} cannot be extended with other configurations beca.use on 
account of Corollary A.1.3 we have 

\'lu,T: (u,T) E Conf.1r Au# ttaT 
: (u,T) -+; (ÛaT,T) v (ttaT,T) -+; (u,T)). 

We show that {(tîaT,T) 1 TE pS} is unordered by proving that 

(Vv,U,T: (v,U) E Conf.11" AT E pS A (v,U) -+! (tîaT,T): v < tîaU). 

This is proved by induction on t.t. 
Let (v, U) be a configuration of 11" and let T be a proress of S. 

Base l.t = 0 
Then t = e. From Definition 2.1.7 we have then 

(Vr.p: r.p E Conf.11": -.(ip-+! (e,T))). 

Hence, the domain of the universal quantifica.tion to prove is empty, whicli means that 
the quantification itself holds. 

Step t.t #- O 
Let t = ua. We derive 

(v,U)-+! (uaîaT,T) 
# { definition of-+ and -+;t'} 

(3C: (a,C) E Act.11": (v,U) -+; (a,C) -+,,. (uaÎaT,T)) 

'* { definition of -+ } 

(3C: (a,C) E Act.11": (v,U) -+; (uÎaU,U) -+" (a,C) -+" (uaîaT,T)) 
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=? {case a.nalysis: v = utaU - Lemma A.1.7, v 1' utaU - induction 

hypothesis; calculus } 

v < uaîaU. 

0 

In the following theorem we prove for computation 11' that every maximal antichain of 
(Conf.1r,-+;) forms a distributed state of 11'. 

Theorem A.1.10 

Let 11' be a computation of system S, and let D be a maximal antichain of ( Conf.7r,-+!). 
Then 

(3t: t E tr.7r: D = {(tÎaT,T) 1 TE pS}). 

Pro of 

Let Vó = {{(e, T) 1 Te pS}} and, for i;::: O, 

V.+i = {(D \ C) U {(va,T) 1 (v,T) E C} 1 (a,C) E Act.1r ADE V. A C Ç D}. 

Using Definitions 2.1.7 a.nd 2.1.13 an inductive proof ca.n be given for the fact that the 
set of maximal antichains of ( Conf.1r,-+!) equals {Ui : i ;::: 0: V.). This proof is not 
included here. It consists of two parts. Firstly, for D E V. and i ;;:: 0 one has to prove 
(by induction on i) that Dis a maximal antichain of (Con/ .11', -+;). Secondly, one has 
to prove that there are no other maximal a.ntichains of (Con/ .'lr, -+;), i.e., for every 
maximal a.ntichain X of ( Conf.1r, -+!) there exists an i ;;:: 0 such that X E V. (this 
part also goes by induction on i). 

We prove by induction on i that D E V., for i ;;:: 0, implies 

(3t: t E tr.11': D = {(tÎaT,T) 1 TE pS}). 

Base i =0 
The only element of V0 is {( e, T) 1 T E pS}. Moreover, from Definition 2.1.15, we have 
that e E tr.11'. Hence, the ahove existential quantification holds for every Dof l/ó. 

Step i;;:: 0 

Let {a, C) E Act.7r and D E V., such that C Ç D. Let, furthermore, the a trace of tr.r 
satisfying D = {(ttaT, T) 1 TE pS} (such t exists on account of induction hypothesis). 

Wederive 
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(D\C) U{(va,T) 1 (v,T) E C} 
= {Definition 2.1.5, C Ç D, for TE pS we have v = ttaT} 

{(ttaT,T) 1 TE pS Aa~ aT} U{((ttaT)a,T) 1 TE pS Aa E aT} 
{ definition of t, set calculus} 

{(tataT, T) 1 T E pS} 

Ç { Definitión 2.1.13 } 

11'. 

Moreover, from Definition 2.1.15, ta E tr.11". Hence, the above existential quantifica.tion 
holds for every D of V.+i · 

D 

Ina computation of S no forward branched configurations occur, according to Defini
tion 2.1.13. A consequence of this, thanks to the structure of configurations of S, is 
that no configuration of a computation of Sis backward branched, which is proved in 
the next lemma. 

Lemma A.1.11 

No configuration of a. computation of a system is backwa.rd branched. 

Pro of 

Let 11' be a computation of system S. Note that ( e, T), for any T E pS, is not ba.ckwa.rd 
branched in 11'. Let {(a,C),(a',C')} Ç Act.11' and (ta,T) E Conf.11'. We derive 

(a,C)-+ (ta,T) A (a',C')-+ (ta,T) 

# { Definition 2.1.7} 
(3u: ta = ua: (u,T) E C) A (3u: ta = u'a: (u,T) E C') 

#- { calculus } 

(t,T) E C Aa= a' A (t,T) E C' 

:::} { set and predicate calculus } 

C nC' =/= 0 

:::} { Property 2.1.12} 

(a,G) = (a',C'). 

Hence, according to Definition 2.1.10, (ta,T) is not backward branched in 11'. 

D 
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A.2 Relationship between the operational model and nets 

The elements underlying our operational model show a great similarity to nets. In this 
section we expose this relationship. For this purpose the basic notions of net theory 
are recalled after [Gol]. First the general notion of a net is defined. 

Definition A.2.1 

Let S and T be disjoint sets and let :F be a relation, F Ç (S x T) U (T x S). The 
triple ( S, T, F) is called a net if 

(Vt: t ET: (3s: s ES: (t,s) E F V (s,t) E :F)). 

0 

The following notation is used often in the context of nets: 

•x = {y 1 y EX /\ (y,x) E :F}, 
x• = {y 1 y EX /\ (x,y) E :F}, 

for x E Tand X = S, or x ES and X = T. 
There are many different kinds of nets. They may have additional structure oompared 
to Definition A.2.1 (for instance marked nets), or they may be special cases (for instance 
occurrence nets). An overview of different kinds of nets together with related notions 
can be found in !Gol]. We restrict ourselves toa special kiµd of net, viz., occurrence 
nets, because of their similarity to partial-order computations of systems. 

Definition A.2.2 

Net (S, T,:F) is called an occurrence net if 

:F* is antisymmetric 

and 
(Vs,t,t!: s ES/\ ((t,s) E :F /\ (t!,s) E :F) V ((s,t) E :F /\ (s,t') E :F): t = t'). 

D 

Let us now consider O[S] = ( Conf .S, Act.S,-+) being the operational model of system 
S. Then it is easy to check that ( Conf .S, Act.S,-+) is a net. First of all, Conf .S and 
Act.S are disjoint sets. Furthermore,-+ Ç ( Conf .S x Act.S) U (Act.S x Conf .S) and 

(Va : a E Act.S: (31p: <p E Conf.S: a-+ <p V <p-+ a)). 
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All conditions of (Con/ .S, Act.S,-+) being a net are thus satisfied. 

Partial-order computations are related to occurrence nets. Let 7r be a partial-order 
computation of system S. Then (Con/ .'lr, Act.11",-+") is an occurrence net. Firstly, it 
is a net, which is easy to verify. Secondly, relation -+;is antisymmetric (it is a partial 
order, Theorem A.1.8). Furthermore, from Definition 2.1.13 it follows that no element 
of Conf.1r is forward branched, and from Lemma A.1.11 we know that no element of 
Con/ :zr is backward branched. 

Nets corresponding to O(S) and to computations of S have a few specific properties. 
The following definitions come from [Roz]. 

Definition A.2.3 

Net ( S, 'I, :F) is finite if S U 'I is fini te. 

0 

Definition A.2.4 

Net (S, 'I,:F) is pure if 

(Vx: x ES U'I: u nx• = 0). 

0 

Definition A.2.5 

Net (S, 'I, :F) is simple if 

(Vx,y:{x,y}ÇSU'I:u=•y /\ x•=y• =? x=y). 

D 

Nets corresponding to O(S] and to computations of S are not necessarily finite or 
simple. All of them are pure. 

A.3 Comparison of the operational model with an interleav
ing model 

The usual way of defining the operational semantics of mechanisms is by labelled tran
sition systems ([HenJ, and others). They are often used as an operational model that 
underlies many existing models of concurrency as well. Labelled transition systems are 
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based on the notions of global state and indivisible actions that cause state transitions. 
Basically, this results in an interleaving semantics and therefore usua.Ily leads to an 
inappropriate treatment of divergence problems. 

Definition A.3.1 

A labelled transition system ([DeO]) is a quadruple (S,.A,-+,so), where 

• S is a set of (global) sta.tes, 

• .Ais a set of actions, S n.A = 0, 

• -+ is a transition relation, -+ ç;; S x .A x S, 

• s0 E S is the initia.} state. 

0 

Por states 8 and 8 1 of S, and for action a of .A, we usua.Ily write s ..!. s1 instead of 
( 8, a, s') E -+. Furthermore, relations ..!. , for a E .A, are extended to relations .!+, for 
a.ny t E A*, as follows 

• s ..!+ 8
1 if s = s1

, 

• s ~ s1 if (3s" : s11 E S : s ..!. s11 
/\ 8

11 .!+ s'). 

We provide an interleaving operational model of the same systems as in the previous 
cba.pter. The interleaving model of system S is defined to be the la.belled transition 
system 

(sS,aS,-+, s0), 

where 

• sS is the set of states, whicb a.re mappings s from pS into aS*, such that ((Ver]) 

(VT: TE pS: s.T E tT) A (3t: t E tS: (VT: TE pS: ttaT = s.T)), 

• s0 is the initial state, sucb that (VT: TE pS: s0 .T = e), 

• -+ is the tra.nsition rela.tion, sucb tha.t for two sta.tes s and s' a.nd a E aS 
s ..!. s' if (VT: TE pS: (a E aT => (s.T)a = s'.T) /\ (a '/. aT => s.T = s'.T)). 
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Note that, for state s, trace t E tS such that (VJ' : T E pS : tfaT = s.T) is not 
necessarily unique. 

States of S can be represented by tuples of traces, if we fix the order of processes. 

The behaviour of a system in the interleaving model is characterized by sequential 
(interleaving) computations. 

Definition A.3.2 

A sequentia! (interleaving) computation of system Sis defined to be a subset pof sS 
that satisfies the following conditions 

• soEp, 

• p is admissihle, that is, ('ris' : s' E p A s' =/= s0 : (3s, a : s E p A a E aS : s ~ s')), 

• every state of p bas at most one successor in p, i.e., 
a a' ('r/s,a,s1,a1,s11

: {s,s',s0
} Ç p As --t s1 A s --t s11

: s1 s11 Aa a1
), 

• p is non-extendable, that is, 

('ris, s1
, a : s1 E sS \ p A s E p A s ~ s' : (3s0

, b: s11 E p A s ..!. s11 
: a =F b)). 

0 

With every state s in a given interleaving computation the unique (global) trace tr.s 
is associated (as a result of the requirement that all sta.tes in a computation have at 
most one successor). It is defined inductively by 

tr.so = e 
tr.s;+i = (tr.s,)a, for i 2:: O,a E aS, and s, ~ Bi+l· 

Trace tr.s can be calculated in a finite number of steps because traces are finite by 
definition. 

Sequentia! computations are in fact the complete traces (infinite traces or traces with 
empty successor sets), and we have already observed that they do not characterize 
systems properly. 

In order to compare the interleaving opera.tional model just introduced with the oper
ational model of Section 2.1, the notion of accepta.nceà is defined. In this case accep
tances do not have the ability to reflect parallelism. 

Deflnition A.3.3 

Let t E t(prS) and L Ç eS*. Pair (t,L) is an acceptance of system S (in the inter
leaving model) if 
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(\fp,s: p E ilc.S /\ s E p /\ t tr.steS 
: (3s', v: s' E p /\ v EL: tv= tr.s'teS)), 

where ilc.S denotes the set of sequentia! computations of S. 

0 

According to the interleaving model of system S of Example 2.1.17, ( e:, { a}) is not an 
acceptance of S, which is because {(b', e) 1 i;::: O} (the first trace in every pair belongs 
to T and the second one to U) is a sequentia} computation. Essentially this means, 
from an interpretational point of view, that a will not necessarily be executed even if 
the environment is willing to participate in that action. This result is due to global 
states and interleaving. To avoid this problem one usually restricts the computations 
to fair sequentia! computations (e.g., [Mal]). On account of Definition 2.2.4, (e,{a}) 
does belong to the acceptances of S, which means that ais gua.ranteed to occur. 

The set of acceptances of the interleaving model of systern S equals ac(eS, {W.pS}}. 
This statement is implied by 

{ {tr.s 1 s E p} 1 p E ilc.S} = {p' 1 p' E pot.(eS, {W.pS}) }. 

The remainder of this section consists of the proof of the a.bove equality. Note that 
{eS, {W.pS}) bas only one process. 

Let p E ilc.S. We prove that {tr.s 1 s E p} belongs to pot.(eS, {W.pS}) (see Definition 
2.3.2). 

• {tr.s 1sEp}:#0 

Pro of 

We derive 

p E ilc.S 

* { Definition A.3.2} 

so Ep 

* { definition of tr } 
e: E {tr.s 1 s E p} 

* { set calculus } 

{tr.s l s E p} ;I: 0. 

• {tr.s l s E p} is prefix-closed 
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Pro of 

We derive 

ta E {tr.s 1 s E p} 

<=> {set calculus, tr.s0 = e} 

(3s': s' E p /\ s'-:/; s0 : tr.s1 = ta) 

=> { Definition A.3.2 - p is admissihle, predicate calculus} 

(3s',s,a': s E p /\ a' E aS: s ~ s' /\ tr.s' = ta) 

~ { definition of tr, predicate calculus} 

(3s,a': s E p /\ a' E aS: (tr.s)a' = ta) 

=> { predicate calculus } 

(3s : s E p : tr.s = t) 
<=> { set calculus } 

t E {tr.s 1 s E p}. 

• (Vt,a,b: {a,b} Ç aS /\ {ta,tb} Ç {tr.s 1 s E p}: a b) 

Pro of 

Let {a,b} Ç aS. We derive 

{ta,tb} Ç {tr.s 1 s E p} 
# { set calculus } 

(3s',s": {s',s"} Ç p: tr.s1 = ta /\ tr.s11 tb) 

=> { definition of tr } 

(3s,s',s": {s,s',s"} Ç p: s ~ s1 
/\ s-..!+ s") 

A Appendix 

=> { Definition A.3.2 every state of p bas at most one successor in p} 

a =b. 

• (Vt, u : t E {tr.s l s E p} /\ u E tS /\ t = u : u E p) is trivially true. 

• {tr.s 1 s E p} is a maximal subset of tS that satisfies the above four conditions. 

Proof 

On account of Property 2.3.3 it is sufficient to prove that 

(Vt, a : ta E tS \ {tr.s 1 s E p} /\ t E {tr.s l s E p} 
: (3b: tb E {tr.s 1 s E p}: a =F b)). 
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Let ta E tS and t E {tr.s" 1 s11 E p}. We define s to be an element of p such that 
tr.s = t, and s' to be an element of sS such that tr.s' = ta. We derive 

ta (j. {tr.s" 1 s" E p} 
=> { definitions of tr, s', and--+, tr.s = t} 
s'(j.pAs~s' 

=> { s E p, Definition A.3.2 - p is non-extendable} 

(3s11
, b: s" E p A s ~ s" : a =/= b) 

=> { definition of tr, tr.s = t, set and predica.te ca.lcul~} 

(3b: tb E {tr.s" 1 s" E p} : a =/= b). 

Now let p' E pot.(eS, {W.pS}). We prove tha.t p = {s l s E sS A (3t: te p: tr.s = t)} 
belongs to ilc.S (see Definition A.3.2). 

• so Ep 

Pro of 

We derive 

p' e pot.{eS, {W.pS}} 

=> { Definition 2.3.2 - p' is non-empty and prefix-closed} 

e E p' 

=> { definitions of tr and of p} 

So Ep. 

• (Vs': s' E p /\ s' =f: so: (3s,a: s E p /\ a E aS: s ~ s')) 

Proof 

Let s' E p. We derive 

s' =/= s0 

=> { s1 E p, definitions of tr and of p} 

(3t,a: ta e p1
: tr.s' = ta) 

=> {p' is prefix-closed, definitions of tr and p} 

(3t,a,s: ta E p A t E p' /\ s E p: tr.s' = ta /\ tr.s = t) 

=> { definition of --+1 ta E rJ => aaS, predicate calculus} 

(3s, a : s E p /\ a E aS : s ~ s'). 
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" ". • (Vs,a,s', a1,s11
: {s,s1,s11

} Ç p /\ s-+ s1 
/\ s-+ s": s1 = s" /\ a = a') 

Proof 

Let { s, s1
, s11

} Ç p. We derive 

s ..!+ s' /\ s ~ s" 

<=> { { s1
, s"} Ç p, de:finitions of p and tr, predicate calculus} 

til a' s-+ s1 
/\ s-+ s11 

/\ (3t: {ta, ta'} Ç p': tr.s' = ta /\ tr.s" = ta') 
=> {on account of De:finition 2.3.2 and the fact tha.t (eS, {W.pS}) bas only 

one process, we have (\fu, b, Il : {ub, ub'} Ç p' : b = b'), predica.te calculus} 
4 a' s -+ s' /\ s -+ s" /\ (3t : ta E p' : tr.s1 ta /\ tr.s" = ta) /\ a = a' 

=> { {s',s"} Ç p, definitions of pand-+} 

s' = s" /\ a = a'. 

• (Vs, s1
, a : s' E sS \ p /\ s E p /\ s ..!+ s' : (3s", b: s" E p /\ s ~ s11 

: a f b)) 

Proof 

Let s' E sS and s E p. We derive 

s' f/. p /\ s .!!+ s1 

=> { s E p, de:finitions of p a.nd tr, set and predicate calculus } 

tr.sEp' /\ (tr.s)al/p' 

=> { Property 2.3.3, (eS, {W.pS}) has only one process} 

(3b: (tr.s)b E p': af b) 

=> { definitions of p, tr, a.nd -+ } 

(3s",b: s" E p /\ s ~ s": a :f. b). 

The conclusion is then that 

{{tr.s 1sEp}1 p E ilc.S} = {p' 1 p' E pot.{eS,{W.pS})}, 

which completes the proof. 

A.4 An example: three buffers 

The example is presented along with a program notation ([Kal]) that serves the purpose 
of denoting systems ([Zwa]). For the discussion of the structure of the universe of 
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symbols, n, see Section 4.1. In programs simple symbols, like a and b, as well as 
compound symbols, like p·a and p·b, are used. 

Every program - also called a component - defines a system. We distinguish three 
classes of components: simple components, non-recursive components, and recursive 
components. 

A simple component descrihes a sequentia! mechanism without internal actions. lt is 
of the form 

eom c(A) : C moe. 

The name of the component is c, A is its external alpha.bet and C is its comma.nd. 
Such a program has to sa.tisfy the following restrictions 

• A is finite and consists of simple symbols only, 

• A = a(prC). 

The system corresponding to component e is denoted by sys.e and is defined by 

sys.e = (A,{prC}). 

A process can also he a.ssocia.ted with a component, as a means to describe the se
quentialized behaviour of the component. The process a.ssociated with component e is 
denoted by pre and it is defined by pre= pr(sys.c). For simple components e defined 
ahove we have pre= prC. 

Example A.4.1 

Component bu/1 is defined by 

eom bufi( { a, b}) : ( a ; b)* moe. 

The system associated with this component is 

sys.bu/1 = ({a,b},{buf1.a.b}). 

The process a.ssociated with bu/1 is 

0 

A non-recursive component describes a parallel composition of sequentia! mecha.nisms. 
It has the following genera.l form 
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com c(A): 

moe. 

sub Po : Co, P1 : c1, ... , Pn-1 : Cn-1 bus 

[xo = Yo,x1 = Y1, · · ·, Xm-1 = Ym-1] 
c 

Here a.ga.in c is the na.me of the component, A is its externa.l a.lphabet, and C is its 
cornmand. Between sub and bus, the suboomponents a.re declared. In this decla.ra.
tion, Co 1 Ci, ••• , c,._1 a.re previously defined components, and Po,Pt, ... , Pn-i are the 
subcomponents of c of the types eo,c1 , •.. , C..-i. respectively. If 1Jo,p1, •.• , Pi have the 
sa.me type (tha.t is, Co= c1 =... c;), the a.bbreviation 1Jo,p1 , ••• , Pi: Co is used. With 
subcomponent p,, system P•·sys.c; is a.ssocia.ted. In the sequel, B denotes the union of 
the sets of externa.l symbols of a.ll subcomponents, i.e" 

B = (Ui : 0 $ i < n : ep1·sys.c;). 

Observe that externa.l alpha.bets of systems p;:sys.c;. a.re pairwise disjoint. The inter
section of the externa.l a.lpha.bet of Pi·sys.c;. and A, for 0 $ i $ n, is empty a.s well. 
Tha.t is, 

(Vi,j: 0 $ i < j < n: eJJi·sys.es nep;-sys.c; = 0) 
A (Vi : 0 $ i < n : ep1·sys.c;. n A = 0). 

The set of interna.l symbols of c equa.ls B \ { x; 1 0 $ j < m}. 

The equa.lities represent connections between two subcomponents and giVe the links 
between interna.l a.nd externa.l symbols. Equa.lity x; = Y; results in rena.ming x; to Y; 
in ea.ch JJi·sys.q tha.t has x; in its alphabet, for 0 $ j < m and 0 $ i < n. 

The requirements for this case are 

• A is finite and contains simple symbols only, 

• Po,Pt, ... , p"_1 aren distinct and simple symbols, 

• no externa.l symbols of the sa.me suhcomponent are connected either directly or 
indirectly, that is 

- (Vj : 0 $ j < m : x; E B), 

- (Vj : 0 $ j < m : Yi E B U A), 

- l{x; 1 0 $ j < m}I = m, 

- {x; 10 $ j < m} n {y; 10 $ j < m} = 0, 
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- for all j, 0 :5 j < m, symbols x; a.nd YJ belang to two different extemal 
alpha.bets of the subcomponents, i.e., 

(Vi : 0 :5 i < n : {x;, y;} </:. epi·sys.c;), (note tha.t, beca.use of the first 
restriction, {x;.y;} </:. A), 

- for all j and k, 0 :5 j < k < m, such tha.t Y; = y," symbols x; a.nd 
x1c belong to two different external a.lpha.bets of the subcomponents, i.e., 
(Vi : 0 :5 i < n : {x;, x1c} </:. ep.-sys.c;), (note tha.t, beca.use of the first 
restriction, {x;.x1c} </:. A), 

• every externa.l symbol of the component a.ppea.rs in comma.nd C or is a.ssociated 
with an internal symbol, that is, A Ç a(prC) U {y; 1 0 :5 j < m}, 

• the a.lphabet of comma.nd C consists of externa.l symbols a.nd interna.l symbols 
tha.t are not in {x; 10 :5 j < m}, i.e., a(prC) Ç AU B \ {x; 10 :5 j <m}. 

The system oorresponding to component c is defined by 

sys.c = ((Il i : 0 :5 i < n : (p,·sys.c;)::;:::::::.~·,,1) Il {a(prC), {prC})) t A, 

where (PJ·sys.c;)::;:;:::Z.:1 denotes system p.·sys.c; in which every occurrence of sym
bol x; is replaced by y;, for 0 :5 j < m. Note tha.t due to the above restrictions sys.c 
is well-defined. 

The process associated with c is ([Zwa.]) 

Pre= ((Wi: 0 < i < n: (p··prc;)"'0·•1 " •• ..,"_,) w prCJ' fA. 
- t. W-1Ytt•••1h-l 

Example A.4.2 

Component bu/3 is defined by 

com bu/3 ({a,b}): 

moe. 

sub p, q : bu/1 bus 

[p·a = a, q·b = b] 
(p-b; q·a)* 

The system associated with component bu/3 is 

sys.bu/3 = {{a, b}, {buf1.a.(p·b), buf1.(p·b).(q·a), buf1.(q·a).b}}. 

The process associated with bu/3 is 
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prbu/a 

= { definition of the process a.ssociated with a component } 

(buf1 .a.(p·b) w buf1.(p·b).(q·a) w buf1.(q·a).bH{a,b} 

= {Lemma 1.1.13, set calculus, Property 1.1.18} 

((buf1 .a.(p·b) w buf1.(p·b).(q·a))i{a,q·a} w buf1.(q·a).b)Î{a,b} 

= { Corollary 1.1.25 with A = {a}, B = {p·b} and C = {q·a}} 

(buf2.a.(q·a) w buf1.(q·a).b)i{a,b} 

= { Corollary 1.1.25 with A = {a}, B = {q·a} and C = {b}} 

buf3.a.b. 

D 

We diseuss only direct recursive components. A recursive component with name c, 
external alphabet A and command C bas the following form 

com c(A): 

moe. 

sub p :c bus 

c 

The restrictions imposed on such a. program are 

• A is a finite alphabet consisting of simple symbols only, 

• p is a. simple symbol, 

• a(prC) =AU p·A. 

The system assodated with component e is defined by 

sys.c = {A, {(p·)iprC 1 i;::: O}). 

The process associated with component c is 

pre= (Wi: i;::: o: (p·)'prCHA. 

From [ZwaJ we know that pre equals the least fixpoint of function f : T.A -+ T.A 
defined by f.T = (p·T w prC)fA, for TE T.A. This least fixpoint is 

(Ui : i ;::: 0: f .(stop.A)). 
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Example A.4.3 

Component buf is defined by 

com buf({a,b}): 

sub p : buf bus 
((a 1 p·b); (p·a 1 b))* 

moe. 

The system corresponding to component buf is 

sys.buf = {{a,b},{(p·)'buf1.{a,p·b}.{p·a,b} 1 i;::: O}). 
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The process corresponding to buf equals the least fixpoint of function f defined by 

f.T = (p·Tw bufi-{a,p·b}.{p·a,b})i{a,b}, 

for process TE T.{a,b}. 

We have r.(stop.{a,b}) = stop.{a,b} and 

/1.(stop.{a,b}) 
= { definition of f } 

(p·stop.{a,b} w bufi-{a,p·b}.{p·a,b})t{a,b} 

= { definition of p· } 

(stop.{p·a,p·b} w bufi-{a,p·b}.{p·a, b})t{a, b} 
= { calculus } 

buf1 .a.b. 

We prove by induction that f.(stop.{a,b}) = buf0.a.b, for i;::: 1. 

Base i = 1 
From the above derivation we have /1.(stop.{a,b}) = buf1.a.b. 

Step i;::: 1 

We derive 

f+l.(stop.{a,b}) 

= { calculus } 

f .(!'.(stop. { a, b})) 
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= { induction hypothesis} 

/.(buf,.a.b) 
{ definition of f } 

(p·buf,.a.b w bufi-{a,p-b}.{p·a,b}}i{a,b} 
= { definition of p· } 

(buf0.(p·a).(p·b) w buf1.{a,p·b}.{p·a,b}}î{a,b} 

= { correspondence buf1 - sync"0 , Lemma 1.1.23 with A = {p·a}, B = {p·b}, 
C = {a,p·b} and D = {p·a,b}} 

bufs+1.a.b. 

Furthermore, 

(Ui: i ~ 0: f.(stop.{a,b})) 

= { calculus } 

stop.{a,b} U(Ui: i ~ 1: f.(stop.{a,b})) 
= {stop.{ a, b} = buf0 .a.b, the a.bove deriva.tion} 

(Ui: i;;::: 0: buf,.a.b) 

= { definition of buf } 
buf.a.b. 

Hence, prl>u/ = buf .a.b. 

0 

We discuss three programs in the nota.tion introduced a.bove as possible implementa.
tions of buf.a.b = (Uk: k ;;::: 0: buf1o.a.b). 

The first two programs come from !Kal]. The third one was inspired by [Ka.IJ. 

For this purpose system S = ({a,b}, {buf.a.b}} is compa.red to systems a.ssociated with 
these programs by means of testing relations. Observe tha.t system S ha.s no divergence 
and tha.t no action of its alpha.bet can ever be disabled. 

The first program is of the following form: 

com eo({a,b}): 
sub p :eg bus 
((a 1 p·b); (p·a 1 b))* 

moe. 



A.4 An example: three buffers 

The system associated with Co is 

sys.CfJ = ({a,b},{(p·)'pr(((a 1 p·b); (p·a 1b))*)1 i ~ O}. 

The process associated with CfJ is buf.a.b (see Example A.4.3 for the calculation). 

The second program is of the following form: 

com c1({a,b}): 
sub p :c1 bus 

( a; p·a 1 a ; b 1 p·b; b)* 
moe. 

The system associa.ted with c1 is 

sys.ci = ({a,b},{(p-)'pr((a; p·a 1a;b1 p·b; b)*) 1 i ~ O}. 
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The process associa.ted with c1 is the least fixpoint offunction f defined for TE T.{a, b} 
by ( see above) 

f.T = (p·Tw pr((a; p·a 1a;b1 p·b; b)*))t{a,b}. 

We have f°.(stop.{a,b}) = stop.{a,b} and 

/1.(stop.{a,b}) 

= { definition of f} 
(p·stop.{a, b} w pr((a; p·a 1 a; b 1 p·b; b)*)H{a, b} 

= { definition of p· } 

(stop.{p·a,p·b} w pr((a; p·a 1 a; b 1 p·b; b)*)) Î{a, b} 
= { definition of w, calculus } 

buf1.a.b. 

We prove by induction that /'.(stop.{a,b}) = bufi.a.b, for i ~ 1. 

Base i=l 

From the a.bove deriva.tion we ha.ve /1.(stop.{a,b}) = buf1.a.b. 

Step i ~ 1 

Wederive 
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f+l .(stop.{a, b}) 

= { calculus } 

f .(!'.(stop. { a, b})) 

= { induction hypothesis} 

f.(buf,.a.b) 

= { definition of f } 
(p·buf;.a.b w pr((a; p·a 1 a; b 1 p·b; b)*))t{a, b} 

= { definition of p- } 

(buf,.(p·a).(p·b) w pr((a; p-a 1a;b1 p·b; b)*))t{a,b} 

= {by definition of buf, we know that p·b's cannot precede p·a's a.nd 
maximally i p·a's can precede a p·b, hence, by the definition of w, 
b's cannot precede a's and maximally i + 1 a's can precede a b} 

huf;+l.a.b. 

Furthermore, 

(Ui: i ~ 0: f.(stop.{a,b})) 

= { calculus } 

stop.{a,b} U (Ui: i ~ 1: f.(stop.{a,b})) 

= {stop.{ a, b} = buf0 .a.b, the above derivation} 

(Ui: i ~ 0: buf0.a.b) 

= { definition of buf } 
buf.a.b. 

Hence, prc1 = buf.a.b. 

The third program is of the following form: 

com c2({a,b}): 
sub p :c2 bus 

((a; p·a)*; a; b; (p·b; b)*)* 
moe. 

The system associated with c2 is 

sys.c2 = {{ a, b}, {(p·)'pr(((a; p·a)*; a; b; (p·b; b)*)*)) 1 i ~ 0). 

In the similar way as for ei, it can be derived that prc2 = buf.a.b. 
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Applying definitions from Section 2.4 we have, for i E {O, 1, 2}, 

sys.~ psat S. 

Thus, all three programs are potential implementations of S. 

But none of them is guaranteed to implement S. In the case of Co consider test 

~ = {{a,b},{pr(a; b)}}. 

On account of the definition of sys.c for a recursive c, we have tha.t in the case of eo: 

• in the initia! state only a is possible, 

• after trace a, the infinite repetition of p·a p·b excludes the execution of (p·) 2a and 
(p· )2b, and therefore also the execution of (p-)1a and (p-)'b, for i ~ 3. 

This implies that {e} U{at 1 t E t(p·buf1.a.b)} E pot.(sys.eo Il ~). Thus we can 
calculate that 

(a,{b}) f/. ac(sys.eo Il~) and (a,{b}) E ac(S 11 ~). 

This yields, on account of Definition 2.4.3, 

-i(sys.eo gsat S). 

The fact that ( a, { b}) is not an acceptance of sys.eo Il ~ is a consequence of the 
divergence in sys.eo after trace a. Observe, however, that bis not disabled in sys.eo 
after a. 

In the case of c1 consider test 

R1 = {{a,b},{pr(a; a)}}. 

On account of the definition of sys.c fora recursive c, we have that in the case of c1 : 

• in the initia! state only a is possible, 

• after trace a, the choice between b and p·a must be made, 

• after trace a p·a, the choice between p·b and (p· )2a must be made, 

• after trace a p·a p·b, only b is possible. 

This implies that {e,a,a p·a,a p·a p·b} E pot.(sys.c1 Il Rt). Hence, we can conclude 
that 
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(a,{a}) r:/. ac(sys.ci Il R1) and (a,{a}) E ac(S Il Ri). 

On account of Definition 2.4.3, this implies 

-.(sys.c1 gsat S). 

In this case, (a,{a}) is not an a.cceptance of sys.c1 Il R1 , beca.use a can be disabled in 
sys.c1 after trace a. 

Finally, in the case of c, consider, a.gain, test R.o. We define 

• Xo = {a}, 

• Xi+i = {t(p·)i+la 1 t EX,}, for 0 $ i. 

From the definition of sys.c fora recursive c, we can conclude that in the case of c2: 

• in the initial state only a is possible, 

• after trace t of x., for i ;;::: 0, the choice between (p· )i+1 a and (p· )1b must be made. 

We have then {e} U(Ui: 0 $ i: X,) E pot.(sys.c2 Il R.o), and 

(a, {b}) r:/. ac(sys.c, Il R.o) and (a,{b}) E ac(S Il R.o). 

On account of Definition 2.4.3, this implies 

-.(sys.c2 gsat S}. 

Action b can be disa.hled in sys.c, after trace a and this causes that ( a, {b}) is not an 
acceptance of sys.c2 Il R.o. 
Hence, none of the presented programs implements 

buf.a.b =(uk: k ~ 0: buf".a.b). 

Whether a program that is a correct implementation of buf exists is still an open 
question (although we strongly suspect that the answer is negative). 

We additiona.lly compa.re the programs with each other. The calculations in the sequel 
follow from the reasoning sirnilar to the one descrihed above. We only shortly present 
the essential results. 

Consider, again, test R.o. For this test we have 

(a, {b}) E ac(sys.c1 Il .Ro), 
(a,{b}) (/. ac(sys.eo Il .Ro), and 

(a,{b}) r:/. ac(sys.c2 Il R.o). 
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Hence, on account of Definition 2.4.3, 

a.nd ...,(sys.C2 gsat sys.c1 ). 

When R1 is considered, the following results are obtained 

(a,{a}) E ac(sys.c2 Il Ri), 
(a,{a}) 'f.ac(sys.eo Il Ri), a.nd 

(a,{a}) 'f. ac(sys.c1 Il R1)· 

Hence, on account of Definition 2.4.3, 

a.nd 

Programs c1 and c2 are thus not comparable. 
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Furthermore, let R be a member of Test.(sys.eo), such that prR :/= stop.{a,b}. Then 
we have 

(e,{a}) E ac(sys.eo 11 R), 
(e,{a}) E ac(sys.c1 Il R), a.nd 

(e,{a}) E ac(sys.c2 Il R). 

Let t E t(sys.eo Il R), such that t is different from e, a.nd let L Ç {a,b}*. Then 

(t,L) E ac(sys.eo Il R) <* e EL, 

and, on account of Property 2.2.5, 

(t, L) E ac(sys.eo Il R) 

(t,L) E ac(sys.c1 Il R) /\ (t,L) E ac(sys.C2 Il R). 

Hence, on account of Definition 2.4.3, 

sys.c1 gsat sys.eo and sys.c2 gsat sys.eo. 

Neither program c1 nor program c2 is an implementa.tion of Co· This is not surprising, 
because at any time after the first a, Co can refuse both a and b by enga.ging in an 
unlimited internal activity (divergence), whereas c1 and c2 ma.y only refuse either a or 
b, hut not both (no divergence, only disabling). 
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A.5 A proof 

In this section, the proof is presented of a. statement made in Section 2.4 and related 
to the sat relation. 

In Section 2.4, we defined for system S the set of relevant tests by 

Test.S = {R IR E SY A aR = eR = eS A prR Ç prS}. 

The following properties are used in our proof. 

Property A.5.1 

Let R, S0 , and 81 be systems such that prS0 prS1 • Let t E t(pr(R Il 80)). Then 

D 

{X 1 X E pot.R A (3Xo : Xo E pot.Bo A X w Xo E pot.(R 11 So) 
: t E XteR w X0 teSo)} 

{X 1 X E pot.R A (3X1 : X1 E pot.Si A X w X1 E pot.(R Il S1) 
: t E XteR w X1teS1)}. 

Property A.5.2 

Let R and S be systems. For t E t(pr( R Il S)) and L Ç ( eR U eS)* we have 

D 

(VX': X' E pot.(R Il S)t(eR UeS) At EX': {v 1 tv EX'} nL :/: 0) 

(VX0,X1 : X0 E pot.RA X1 E pot.SA X0 w X 1 E pot.(R Il S) A 

t E X0 teR w X1teS 
: {v 1 (tteR)v E XteR} n LteR :f: 0). 

In the sequel, we prove that for systems S0 and 81 

S0 sat S1 # prS0 Ç prS1 A (VR : RE Test.S1 : ac(R Il S0 ) 2 ac(R Il 81)). 

By Definition 2.4.4 and Lemma 2.4.2 we immediately have the "implies" -part. We are 
left with the prooffor the "follows from"-part. 

On account of Property 2.2.5, we have 
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prS0 Ç prS1 /\ (VR: RE Test.Si : ac(R Il So) 2 ac(R Il S1)) 

prSo = prS1 A (VR: RE Test.Si : ac(R 11 Bo) 2 ac(R Il S1)). 

Finally, we show that for systems R, S0 , and S1 such that prS0 = prS1, 

(VR: RE Test.Si : ac(R Il So) 2 ac(R Il S1)) 

=> 
(VR: RE SY: ac(R Il So) 2 ac(R Il S1)), 

which completes our proof. 

Assume for convenience that aR n aS, = eR n eS" for i = 0 and i 1. 
Define R! = (eS1,{TÎeS1 1 TE pR}}. 
Assume (VR: RE Test.Si : ac(R Il So) 2 ac(R Il 81)). 
Let t E t(pr(R Il 81) and L Ç (eR UeS1)*. 
We derive 

(VX: X E pot.(R Il S1)t(eR UeS1) /\ t EX: {v 1 tv EX} nL =I 0) 
# { definition of t } 

(VX : X E pot.(R Il S1) /\ t E Xî(eR U eS1) 

: {v 1 tv E XÎ(eR UeS1)} n L =J 0) 
=> { definition of R!, property of Î, set and predicate calculus } 

(VX' : X' E pot.(R! Il S1) /\ deS1 E X'îeS1 

: {v 1 (tîeS1)v E X'îeS1} n LîeS1 =J 0) 
=> { assumption, Definition 2.2.4, eS0 = e81} 

(VX': X' E pot.(R1 Il 80) /\ tîeSo E X'îeSo 

: {v 1 (tÎeSo)v E X'îeSo} nLîeSo # 0) 
# { Corollary 3.1.12} 

(VX', Xo : X' E pot.R' A Xo E pot.Bo /\ X' w Xo E pot.(R! Il So) /\ 

tîeSo E (X' w Xo)ÎeSo 

: {v 1 (tf eSo)v E (X' w Xo) ÎeSo} n LÎeSo # 0) 
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# { from the definition of R' and because eS0 = eS1 , we have aR! n aS0 = eS0 

and aR! = eS0 , Lemma 1.1.12 and Property 1.1.17} 

(VX',Xo : X' E pot.R! A X0 E pot.So A X' w Xo E pot.(R! Il S0) /\ 

tîeS0 EX' w XoÎeSo 

: {v 1 (tîeS0 )v EX' w X0 feS0} nLteSo =J 0) 
=> { Properties A.5.1 and A.5.2, properties of t and w} 
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(VX,Xo: X E pot.RA Xo E pot.So A X w Xo E pot.(R Il So)A 
t E XteR w XoteSo 

: {v 1 tv E XteR w XoîeSo} nL-:# 0) 
<=> { aR n aS0 eR n eS0 , Lemma 1.1.13} 

(VX, X0 : X E pot.R A X0 E pot.80 A X w X0 E pot.(R Il 80 ) A 
t E (X w X 0)Î(eR U eS0 ) 

: {v 1 tv E {X w Xo)t(eR UeSo)} nL ::f:. 0) 

<=> { Corollary 3.1.12} 

A Appendix 

{VX: X E pot.(R Il So)t(eRUeSo) At EX: {v 1 tv EX} nL ::f:. 0). 

Hence, on account of Definition 2.2.4, 

ac(R Il 80 ) ;;;? ac(R Il 81). 
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Samenvatting 

Dit proefschrift behandelt twee methoden voor het verifiëren van de correctheid van 
een ontwerp ten opzichte van zijn specificatie. Ontwerpen en specificaties die wij 
beschouwen zijn gedefinieerd in termen van tracetheorie ([Rem],[Sne], eJ [Kal]). Ze 
worden gemodelleerd door systemen ([Klo] en [Zwa]). Een systeem beschrijft een 
mechanisme bestaande uit componenten die onderling en met de omgeving kunnen 
communiceren. Binnen een systeem wordt onderscheid gemaakt tussen interne en ex
terne communicatieacties. De interne structuur van een systeem kan heel gecompliceerd 
zijn, maar voor zijn gebruiker is alleen het waarneembare (externe) gedrag van belang. 
Da.ar de interne structuur het externe gedrag kan beïnvloeden is het belangrijk dat dit 
tot uitdrukking komt in de specificatie. Het externe gedrag van een systeem wordt 
gespecificeerd door 

• de verzameling van toegestane externe communicatieacties, 

• de verzameling van alle mogelijke rijen communicatieacties (safety), en 

• de verzameling van gegarandeerde voortzettingen van elke rij (liveness). 

Een systeem kan verschillende liveness eigenschappen hebben, afhankelijk van de ma.
nier waarop het uitvoeren van parallelle acties wordt gemodelleerd. We spreken van 
interleaving als er ordeningen op de parallelle acties worden geïntroduceerd. Als de 
acties niet geordend worden spreken we van true concurrency. Om de formele verificatie 
mogelijk te maken wordt op systemen een partiële ordeningsrelatie geïntroduceerd, die 
alleen rekening houdt met het externe gedrag van systemen. 

De eerste verificatiemethode is operationeel. Daarin wordt het externe gedrag van een 
systeem gekarakteriseerd door zijn werking in verschillende omgevingen uit te drukken 
in termen van toestanden en transities tussen de toestanden. Deze methode is com
positioneel ten opzichte van de opera.toren waarmee samengestelde systemen gemaakt 
kunnen worden: Il (parallelle samenstelling) en t (projectie). Dat wil zeggen: 

• als S een implementatie is van T dan is S ~ A een implementatie van T t A, 

• als bovendien S1 is een implementatie van T1 dan is S 11 81 een implementatie 
van T Il T. 
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Het model waarop deze methode is gebaseerd is niet compositioneel. Bovendien, omdat 
de verificatie het testen in alle mogelijke omgevingen inhoudt, vereist het aantonen dat 
S een implementatie is van T niet-triviale argumenten. 

Deze twee nadelen worden vermeden in de tweede verificatiemethode, ten koste echter 
van een beperking van het systeemdomein. In het model waarop deze methode is ge
baseerd worden systemen op paren afgebeeld, die safety en liveness karakteriseren. Op 
deze paren wordt een partiële ordeningsrelatie gedefinieerd. De tweede methode komt 
overeen met de eerste voor het beperkte systeemdomein en is dus compositioneel in de 
hierboven genoemde zin. 

Dankzij de keuze voor true concurrency, kan met behulp van beide verificatiemethoden 
onderscheid gemaakt worden tussen sequentiële en parallelle systemen. 

De structuur van het proefschrift ziet er kort samengevat als volgt uit. In hoofdstuk 1 
wordt een overzicht van de tracetheorie gegeven. Hier komen de voor dit proefschrift 
relevante begrippen disabling en divergence aan de orde, evenals een aanpassing van het 
failures model voor systemen. Disabling en divergence hebben te maken met de interne 
structuur van systemen. In het failures model wordt het parallellisme gemodelleerd 
door interleaving waardoor het onderscheid tussen sequentiële en parallelle systemen 
niet te maken is. 

Beide verificatiemethoden en de modellen waarop deze zijn gebaseerd worden behan
deld in hoofdstukken 2 en 3. 

Hoewel voor het abstracte model waarop de tweede verificatiemethode is gebaseerd 
het systeemdomein moest worden beperkt, kan het model worden gebruikt voor het 
definiëren van de semantiek van CSP-achtige programmeertalen. In hoofdstuk 4 is dit 
gedaan voor c-Tangram. 

In hoofdstuk 5 is de tweede verificatiemethode uitgebreid voor f-systemen, dat wil 
zeggen systemen met expliciete aannamen over Jairness. Deze uitbreiding is echter 
niet compositioneel. Door de introductie van f-systemen kan fairness onafhankelijk 
van het parallellisme beschouwd worden. 

In de appendix worden op hoofdstuk 2 aanvullende resultaten gepresenteerd: onder 
andere een vergelijking van het operationele model met een interlea.ving model en een 
bespreking van drie mogelijke implementaties van een buffer. 
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1. Voor systemen die divergentievrij en sequentieel zijn komt de 'implements'-rela.tie 
van het failures model overeen met de sat-relatie gedefinieerd in dit proefschrift. 

2. Transitie8ystemen lenen zich bij uitstek voor het definiëren van de operationele 
semantiek van CCS/CSP-achtige programmeertalen. 

lit. - Hennessy, M. Algebraic Theory of Processes. The MIT Press, Cambridge, 
Massachusetts, 1988. 

Olderog, E.-R. and C.A.R. Hoare. Specification-Oriented Sema.ntics for 
Cornmunicating Processes. Acta Informatica, 23, 1986, pp. 9 - 66. 

3. Door hun compositiona.liteit sluiten de verificatiemethoden beschreven in dit 
proefschrift op natuurlijke wijze aan bij een bottom-up ontwerp van systemen. 

4. Het tijdens executie laten testen van de geldigheid van asserties kan het formeel 
verifiëren van programma's niet vervangen. 

lit. - Meyer, B. From Structured Prograrnming to Object-Oriented Design: 
the Road to Eiffel. Structured Programming, 1, 1989, pp. 19 39. 

5. De definitie van de functies div en mod op p.40 in het boek "Verification of 
Sequential and Concurrent Programs" van Apt en Olderog is fout. 

lit. - Apt, K.R. and E.-R. Olderog. Veriftcation of Sequential atid Concurrent 
Programs. Springer-Verlag, New York, 1991. 



6. Het is onjuist het breken van de Enigmacode uitsluitend aan Engelse wiskundigen 
toe te schrijven. 

lit. - Bertrand, G. Enigma ou les Plus Grande Énigmes de la Guerre 1939 -
1945. Pion, Paris, 1974. 

- Winterbotham, F.W. The Ultra Secret. Weidenfeld & Nicolson, London, 
1974. 

Hodges, A. Alan Tv.ring: the Enigma. Burnett Books, London, 1983. 

7. Het belang van het ontwikkelen van schriftelijke uitdrukkingsvaardigheden wordt 
door technische opleidingen niet voldoende onderkend. 

8. Ten behoeve van het verkrijgen van vaardigheid in het afleiden van programma's 
zou in het wiskunde-onderwijs meer aandacht besteed moeten worden aan het 
afleiden van recurrente betrekkingen. 

9. Een taal die samenstellingen van woorden toelaat noemen wij compositioneel. 
Niet-compositionele talen (zoals het Russisch) zijn minder geschikt voor het 
maken van cryptogrammen dan compositionele talen (zoals het Nederlands). 

lit. Dik, S.C. en J.G. Kooij. Algemene Taalwetenschap. Uitgeverij Het 
Spectrum, Utrecht, 1979. 

- Verschuyl, H.J. Cryptogrammatica: het Cryptogram als Taalspel. Uit
geverij Kosmos, Utrecht, 1990. 

10. Van de Nederlandse uitdrukkingen die betrekking hebben op Polen heeft "nog 
is Polen niet verloren" de minst negatieve betekenis. Dit geeft aan dat posi
tieve kenmerken van Polen (in het verleden) weinig indruk gemaakt hebben op 
Nederlanders. 

lit. Geerts, G. en H. Heestermans (redactie). Van Dale Groot Woordenboek 
der Nederlandse Taal. Van Dale Lexicografie bv, Utrecht, 1984. 


