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EXECUTABLE SPECIFICATIONS FOR DISCRETE 
EVENT SYSTEMS 1 

by 

K.M. van Bee, G.J. Bouben, L.J. Somers and M. Voorhoeve 

ABSTRACT 

A formal framework for the specification of discrete event systems is introduced. The 
precise description of such a system, either for analysis or design, is a major problem 

in systems engineering. The underlying theoretical model is based on automata theory, 
and subsumes the Petri net approach. For modeling real systems one has to consider a 
network of interacting components and therefore three aspects of a system have to be 
specified: the structure of the state spaces of the components, the state transformations 
of the components and the interaction structure. Within the framework a tool has been 
developed with a language for an integrated specification of those three aspects of a 
system. After the introduction of the language an example illustrates our approach. 

IThis research is partly supported by IBM Nederland N.V. 
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1. INTRODUCTION 

One of the major problems of systems engineering is the precise description of the 
system under consideration. The need for such a description manifests itself in two 
different situations: either one wants to analyse an existing system or one wants to 
design a new system. In the first case one has to map a part of the physical world into 
a description, in the second case one has to map concepts in our head into a descrip
tion. If we compare these aspects of systems engineering to architectural design then 
we observe that the description language of the architect has an alphabet consisting 
of line segments, the descriptions are drawings and their semantics are abstract three 
dimensional objects. We all know that the abstract three dimensional objects are ide
alizations of the objects in the physical world they represent: there are no flat walls 
and rectangular corners. However, the abstract objects are useful guidelines for the 
building contractor to realize the physical object. The contractor may deviate from the 
abstract object within some tolerance bounds: the implementor's freedom. 
For the analysis and design of systems we are looking for similar tools: a description lan
guage with semantics such that the described objects are realizable within some bounds. 

The systems that we consider are the ones that are called discrete event systems (des). 
The characteristic of such systems is that they have a finite or countable state space 
and their behaviour can be described by sequences of successive states. Hence, systems 
that can be described by (partial) differential equations are out of scope. 
The class of systems we focus on contains distributed information systems such as air
line reservation systems and production control systems. However, other systems such 
as logistic systems fit also into the framework of des's. In mathematics and comput
ing science may formalisms to describe des's are developed, however, most of them 
are only suitable to describe some aspects of a des, but the systems engineer needs a 
formalism that covers all relevant aspects in an integrated way. A simple formalism 
is given by automata theory. There a system is considered in combination with an 
(unknown) environment that sends actions to the system and waits for reactions. An 
automaton is usually characterized by a state space, input/output alphabet and a tran
sition function. However, often the model of one automaton exchanging information 
with its environment is not adequate, for instance to describe a distributed database 
of an airline-reservation system. Then one needs to consider a network of interacting 
components and then one has to specify an interaction structure in addition. 
In fact there are three major aspects of a des: 

- the structure of the state spaces of components, 

- the state transformations of components, 

- the interaction structure. 

We will review some formalisms for specifying these aspects; we do not claim to give a 
com plete survey. 
A state space is in fact a set and there are many ways to specify them: any language to 
define data types provides one. For complex state spaces one often uses a data model 
such as the entity-relationship model [Chen 76J or the relation model [Ullman 82J. A 
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database scheme specifies in fact a data type. 
For the specification of state transformations we often use logic to define pre- and 
postconditions, but functional languages are also used. The latter approach gives 
a constructive specification: functions are specified by lambda expressions involving 
more elementary functions, and in the end by primitive functions. Typed functional 
languages have also facilities for specification of data types, so they cover the first two 
aspects of a des. Two approaches for specification of state structure and transforma
tions, that cover both the functional way and the way of pre- and postconditions, are 
the languages Z [Hayes 87J and VDM [Jones 86J. They are very suitable for specifying 
the first two aspects of a des, however, at the moment they have no way to specify the 
third one. Algebraic specifications [Goguen et al 77J, [Guttag, Horning 78J also allow 
only to specify the first two aspects. 
There are many formalisms to specify an interaction structure in a distributed system. 
By interaction we mean the way components transfer data and the way they activate 
(or trigger) each other. The first way of interaction is also called data flow and the 
second way may be called control flow. Often it is not possible to distinguish both 
types of interaction. There are two well-known algebraic process theories, CSP [Hoare 
85J and CCS [Milner 80J. Closely related are trace theory [Rem 83], [Mazurkiewicz 84] 
and process algebra [Bergstra, Klop 84J. In these approaches parallelism is modeled by 
interleaving of actions and they are suitable to specify communication between com
ponents of a system. They are poor in their capabilities of specifying data structures 
and data transformations. Another way to describe interaction structure is the use of 
Petri nets [Petri 76] where conditions and events are modeled by bipartite graphs. A 
generalization is found in predicate/transition nets [Genrich, Lautenbach 81J. 
An approach based on finite state machines with a graphical language and formal se
mantics is called statecharts [Harel 86]. Petri nets and statecharts are not very well 
suited to describe data structures and transformations. 
There are several informal frameworks to describe data flow, using graphical languages. 
In practice ISAC [Lundeberg 79], DFD [Ward, Mellor 85] and SADT [Ross 77] are used 
frequently. Most of these frameworks have also methods for specifying data structures, 
using the entity-relationship model or Bachman diagrams [Bachman 69J. However, 
transformations are specified by sugared imperative languages. 

We have developed a formal framework based on a mathematical model of discrete 
event systems and a language to specify the components of a des. The model is related 
to Petri nets. We use here Petri net terminology to explain our model. We have at
tached a value to each token. Each place has a type and values of tokens in a place 
belong to that type. Transitions are endowed with a transformation that transforms 
input tokens into output tokens. We do not require that all output places get a token 
nor that an output place gets only one token. A transition may fire only if from all its 
input places a token can be consumed. In our terminology a token is called a trigger, a 
place a channel and a transition a processor. Besides a des we also consider a real-time 
des where each token/trigger has besides the value a time stamp. The meaning of it 
is that it cannot be consumed before that time. The real-time des is modeled as a des 
with some additional properties. It is more powerful than the DEVS-model [Concep
cion, Zeigler 88]: the basic components of DEVS can be made easily from ours. In 
Section 2 we introduce our model. 
We introduce a language for the specification of a des. This language has been devel-
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oped with the following aims in mind: 

- it must be executable, and can thus be used for prototyping, 

- it must allow the comparison of alternative specifications, 

- it must encourage the reuse of specified components, 

- it must have an open interface to allow the incorporation of external software. 

Our language consists of two parts: a functional part and an dynamic part. The 
functional part is used to define types and functions, in other words to define a many 
sorted algebra. The type system consists of some primitive types and a few type 
constructors to define new types. In this way one specifies a type for each channel. 
A sugared version of lambda calculus is used to define new functions from a set of 
primitive functions. In this way one specifies for each processor its transformation. 
The dynamic part of the language is used to specify the network of processors and 
channels and therefore the interaction structure. 
The state of a des is the configuration of triggers in the channels. The structure of the 
state space of a channel is characterized by its type: the set of all bags over this type. 
In this way one is able to specify all three aspects of a des: 

- the structure of state spaces of components is specified using the type·system, 

- the state transformations are specified by functions using lambda calculus, 

- the interaction structure is specified by the network structure. 

The type system is specified by the network structure. The type system we use is simple 
but more powerful than the relational data model because it allows nested structures. 
To model a database one may define a channel that is connected to a processor both 
as input channel and output channel, and that contains always exactly one trigger that 
represents the database state. This way of modeling a database corresponds to SADT 
and ISAC. The language is treated in Section 3. 
The fact that our networks may be considered as Petri nets allows us to use Petri net 
theory to verify structural properties [Genrich 81]. Since we use a typed-functional 
language to specify types and functions we specify by high level construction. This has 
two advantages: 

- we have an existence proof for each specified system (it is, for instance, not possible 
to specify a processor that computes the largest prime number), 

- we are able to generate a simulation model or prototype of the specified system. 

Having a prototype of a specified system is very important because potential end· users 
are seldom able to check formal specifications, however, they may test the functionality 
of the specified system by playing with the prototype. A simulation model of a specified 
system can also be used to test performance. This can be done using the real· time 
variant of the des· model: the throughput of triggers can be measured. 
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We have developed a software tool to support the specification process. It consists of a 
type checker that verifies the rules of the type system and an interpreter that generates 
a simulation of the specified system. We have specified many different systems such as: 
a token ring, a distributed data base, an access control system, a distributed inventory 
control system and a banking system. We have also done examples from [Shridar, Hoare 
85J and [Hayes 87J and these comparisons give us the confidence that our framework is 
powerful and not too complicated to apply. In Section 4 we treat an example. 
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2. FRAMEWORK 

A very elementary notion of a system is a graph (S, T), called a basic system. Here S 
is a finite or countable set, called the state space, and T is a binary relation over S, 
called the transition relation. Elements of {s E S I ..., 3 t E S : (s, t) E T} are called 
terminal states. Any finite sequence of states ending with a terminal state or any finite 
sequence of states, such that each pair of successive states belongs to T is called a path 
and any finite, serried subsequence of a path is called a trace. The set of all paths of a 
basic system is called the process of the system. 
Although it is, in principle, possible to map complex systems into the framework of 
a basic system it is practically infeasible. Therefore we introduce a more structured 
framework, called discrete event system (DES). It is much easier to map a complex 
system into this framework. A discrete event system (des) has also a state space and a 
transition relation and is therefore a basic system. Hence, concepts such as path and 
process have a meaning for discrete event systems too. A des consists of two kinds of 
components: processors and channels. (They correspond to transitions and places in 
Petri nets.) A processor is connected to one or more input channels and one or more 
output channels. With each channel a type is associated and with each processor a 
function. The signature of the function of a processor corresponds with the types of in
and output channels. A channel may be shared by several processors as input or output 
channel. At each moment the channels may contain triggers (tokens in Petri nets). A 
trigger has a value that belongs to the type of the channel. There may be more than 
one trigger with the same value. So a channel contains a bag over its type. At each mo
ment there may be a transition, which means that the configuration of triggers, called 
the state, in the channels may change. Such a transition occurs instantaneously and 
is executed by the processors. A processor may execute if it is able to select a trigger 
in each of its input channels. A trigger can be selected by only one processor. The 
execution of a processor means that the selected triggers are consumed (deleted) and 
that new triggers for the output channels of the processor are produced. To represent 
a des we use a diagram technique like for Petri nets. 
Now we formalize the DES-framework. We use the following notations. If A is a set, 
then lP(A) denotes the set of all finite subsets of A. If Y is a set of sets, then U Y 
denotes the union of all elements of Y. For a set-valued function F, IIF denotes the 
set of all (total) functions f over dom(F) and II* F the set of all partial functions f 
over dom(F), both with 'Ix E dom(f) : f(x) E F(x). for set A, JB(A) denotes the 
set of all multisets (bags) over A, i.e. the set of all functions from A to INo, the set of 
nonnegative integers. INl denotes the set of all positive integers. For x E JB(A) and 
a E A: 

aEx iff x(a) > 0 . 

For x E JB(A) and s E lP(A): 

sex 
x\s 
x Us 

iff Va E s 
= >.aEA 

= >.aEA 

aEx 
if a E s /I a E x then x( a) - 1 else x( a) 
if a E s then x(a) + 1 else x(a) . 
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For x,y E lB(A): 

xU y = >. a E A : x(a) + y(a) . 

For notational clarity we often write the function application I(x) as Ix. We denote 
function restriction by r and the set of all partial functions from A to B by ArB. 

Definition l. 
A discrete event system (des) is a four tuple (R,C,I,O) where R is a function· valued 
function and C, I and ° are set-valued functions, such that 

- dom(I) = dom(O) = dom(R), finite or countable sets, 

- "Vi E dom(R) : I, C dom(C) /\ 0, C dom(C) /\ I, # 0/\ 0, # 0, 

- "Vi E dom(R) : R, E II(C r I;) ..... lB({(k,x) IkE 0, /\ x E Ck}), 

- "V i E dom( C) : C, is finite or countable. 

dom( R) is called the set of processor indices and is denoted by P. 
dom( C) is called the set of channel indices and is denoted by K. 

For i E P: Ii is called the set of input channels of i, 
Oi is called the set of output channels of i, 
R, is called the raction function of i. 

For k E K: C k is called the type of channel k. 

We will use these symbols strictly for the concepts defined. If we consider different 
des's we distinguish them by super- or subscripts. 

Definition 2. 
Let a des be given. Then 

Q:= {(k,x) IkE K /\ x E Ck} 
S:= Q ..... INo 
E CPr W(C) such that"Ve E E: 

"Vm E dom(e) : e(m) E II(C rIm). 

Q is called the trigger set, S the state space and E the event set. 

Note that a state is a bag over Q and that an event is an assignment of a set of 
triggers to a processor such that for each input channel exactly one trigger is chosen. 



Definition 3. 
The event function F of a des is a function with 

FE S - JP(E) and 
'I s E S : 'I e E E : e E F(s) +-+ 

e ~ 0" 
'1y E Q : L(m E dom(e) : ge,m(Y)) $ sty) 

where: 

g"m := >.(y E Q : if y E e(m) then 1 else 0) . 
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Hence e E F( s) holds only if s contains enough triggers to supply all the processors of 
dom(e). Note that g"m is the characteristic function of the set e(m) as subset of Q. 
It is easy to verify that 

'1s,tES: sct-F(s)CF(t). 

Next we define the transition function: it assigns to a state s and an event e E F(s) a 
new state. 

Definition 4. 
The transition function T of a des satisfies: 

TESxEr S 

such that 

'Is E S : 'Ie E F(s) : (s,e) E dom(T)" 
T(s,e) = s+ L(m E dom(e) : R",(e(m))-ge,m)' 

The transition relation of a des is: 

{(s,t) E S x S 13e E F(s) : T(s,e) = t} . 

We use the symbol T also to denote the transition relation. It is easy to verify that the 
graph (S, T), where S is the state space and T the transition relation of a des, forms a 
basic system. If we speak of path, trace or process of a DES we mean the path, trace 
or process of the basic system induced by the des. 
Note that we have 'true' parallellism in our model: processors may execute simulta
neously. However, it is always possible to split an event into other events such that 
each of them triggers only one processor, and such that the successive execution of 
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these events, in any order, ends in the same state as the original compound event. This 
property is a consequence of the following theorem, which we present here without proof. 

Theorem 5. 
Let a des be given and let s E Sand e, el, e2 E F(s) such that e = el Ue2 and el ne2 = 0. 
Then e2 E F(T(s,el)) and T(T(s,el),e2) = T(s,e). 

Note that Vs E S : Ve E F(s) : Vm E dom(e) : {(m,e(m))} E F(s). Hence 
for some e E F(s) and some mE dom(e) : el := {(m,e(m))} and e2 := e \ el satisfy 
the conditions of Theorem 5. In this way we may split e into a sequence of single· 
processor events. Note that the characteristic of a single-processor event is that its 
domain is a singleton. 
Let 

1':= {(s,t) E S X S 13e E F(s) : e is a singleton II T(s,e) = t} . 

Then (S,1') forms also a basic system. It is easy to verify that the transitive closures 
of l' and T are equal and therefore we may consider the system (S,1') as a simulation 
of (S, T). 

Now we introduce another framework to model also real· time aspects of discrete event 
systems, we call it RTDES. This framework is closely related to DES: a real-time des 
(rtdes) is a des with some mor~ structure and some extra restrictions on events. In a 
des each trigger has a value and in an rtdes it has a time stamp in addition. 

Definition 6. 
A real-rime discrete event system (rtdes) is a des 

(R, C,l, 0) 

with the properties: 

- there is a set· valued function V and an ordered set D such that: dom(V) = K and 
VkEK: Ck=VkxD, 

- Vm E P : Vc E ll(C) : 
R".(c f/m)C {((k,(x,t)),n)lkEOmllxEVklltEDII 
nE1VoII(n>O-->t~max{dEDI3IEIm: 3VEVm : (1,(v,d})EC tIm})}. 

Hence, the time stamps of the produced triggers are at least as large as the time stamps 
of the consumed triggers. 
The trigger set, state space and event set of an rtdes are the same as of the correspond
ing des. 
The events that may be used in a transition are more restricted than in a des. This is 
because of the meaning of the time stamps. A time stamp of a trigger means that that 
trigger may not be consumed before that time. Hence each event has an earliest time 
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it may be executed. This is expressed by the function h. 

Definition 7. 
For an rtdes the function h assigns an event time to each event, such that for e E E 

h(e)=max{dED :3mEP: 3kE1m 3xEVk 

(k,(x,d)) E e(m)}. 

The chosen event must have the lowest possible event time. This expresses that pro
cessors are eager to start: as soon as they can get their triggers they execute. So for 
each state we may define a transition time: it is the time the system will leave the state. 

Definition 8. 
For an rtdes the function H assigns to each state a transition lime, such that for s E S: 

H(s) = min{h(e) : e E F(s)} . 

Now we are able to define the event function for an rtdes, it is called the real-time event 
function. 

Definition 9. 
For an rtdes the real-time event function FT satisfies: 

- FT E S -+ JP(E), 

'Is E S : 'Ie E FT(s) e E FT(s) +-+ e E F(s) Ah(e) = H(s). 

This expresses that only events with lowest event time are allowable. Now we define 
the real-time transition relation: 

Definition 10. 
For an rtdes the real-time transition relation T R satisfies: 

TR = {(s,l) E S X S 13e E FT(s) : T(s,e) = I} . 

We can prove that transition times of successive states on a path are ascending. 

To specify an rtdes, one often specifies the computation of values and time stamps 
of triggers separately. Then the values of produced triggers are independent of the 
time stamps of the consumed triggers. Furthermore, the time stamps are computed by 
a delay depending only on the values of the consumed triggers. This delay is added to 
the event time to obtain the time stamps of the produced triggers. 
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Hence, one specifies also a des, namely by leaving the time stamps aside. The rtdes 
realizes the des: each path of the rtdes is also a path of the des (note tha.t the opposite 
does not hold). 
Finally, we remark that a des or an rtdes may have starvation of triggers, i.e. some 
trigger is never consumed. It is the responsibility of the designer to a.void this. 
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3. SPECIFICATION LANGUAGE 

3.1. Functional part 

As mentioned in the introd uction, our specification language (called EXSPECT) has 
a functional and a dynamic part. The functional part is used to specify functions and 
types. Functions and types together form a many-sorted algebra, i.e. a set of types 
(or sorts) and functions operating on these sorts. The functions include the constants 
(functions having no parameters, only a result). 
Constructive specification of a many-sorted algebra means defining its types and func
tions by means of simpler types and functions; this process is continued until a basic 
level is reached that is generally understood. How to choose the intermediate levels is 
not clear; there exists a multitude of methods and heuristics for it. In this section we 
concentrate on the construction of types and/or functions from simpler ones. 
For the functions, We introduce variables, expressions and the lambda quantor. This 
suffices (together with recursion) to define every function we need. For types we need 
type constructors, like e.g. the army constructor in procedural languages. Type con
structors are accompanied by functions that go back and forth between the composite 
type and its constituents, like e.g. array indexing. These functions are of a polymorphic 
nature, i.e. they do not operate on individual types, but on classes of types. 
From a set of types and type operators we can form type expressions that symbolize 
new (composite) types. Vie can attach names to type expressions, thus defining new 
types. The new type is a su btype of the type expression it is derived from and "inher
its" all functions that could be applied to the original type expression. 
Summarizing, the ingredients of the functional part are as follows. 

1. Basic types and type constructors. 

2. Basic functions (often polymorphic). 

3. A way to construct new functions from expressions (with variables). 

4. A way to construct new types from type expressions. 

In the remainder of this section we shall indicate how these ingredients are realized. 

We start with defining objects. These objects provide a semantics for types and func
tions. Each EXSPECT type expression denotes a set of objects, whereas functions map 
objects onto objects. Functions are not objects themselves, so EXSPECT is first-order. 
We have the following recursive definition for objects. 

1. The booleans, rational numbers and character strings are objects. 

2. Finite sets of objects are objects. 

3. Ordered pairs of objects are objects. 

The set of objects corresponding to type expression A is denoted by s(A). The basic 
types are void, bool, num and str. These correspond to the empty set, the booleans, 
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the rationals and the strings, respectively. The basic type operators are set (denoted 
by a $ prefix) and cart (denoted by a >< infix). If A and B are type expressions, then 
SA denotes the set of finite sets of objects in s(A) and A >< B denotes the set of pairs 
of objects, the first in s(A), the second in s(B). 
The type operator map (denoted by a -> infix) is derived from set and cart. The type 
expression A -> B denotes the set of mappings from s(A) to s(B); a mapping is a finite 
set of pairs with different first components. 
In type expressions containing these operators, set takes precedence over the other two 
and cart over map. Explicit precedence is indicated by "()" brackets. 

We shall now define our set of basic functions. We indicate the signature of polymor
phic functions by means of type variables, represented in this paper by the identifiers 
R, Sand T. The semantics of a type expression with type variables is a function from 
assignments (functions of type variables to type expressions without variables) to sets 
of objects. A function of signature 

TEl X .•• X TEn ..... TEo , 

where the T Ei are type expressions, possibly containing type variables, accepts nob
jects in sv(TEI ), ... ,sv(TEn), respectively and returns an object in sv(TEo) for any 
possible assignment v. Here sv(T E) is the semantics of T E derived from assignment v. 
We indicate the basic constants and functions in EXSPECT by their signature and a 
short explanation in words. A complete algebraic specification is omitted because of 
its lengthy nature. 

taIse, true boo I -- falsehood and truth 
0,1,-1,... num -- integers (decimal notation) 
' .. . ' str -- strings 

-- between the above quotes any non-quote character is allowed 
quote str -- the character "," 
empty Svoid -- empty set 
cond bool X TXT ..... T -- if-then-else construction 
eq TXT ..... bool -- equality test 
It num X num ---+ bool -- less-than comparison 
sub num X num -+ num -- subtraction 
div num X Dum -+ num -- rational division 
cat str X str ---+ str -- string concatenation 
head str -+ str - - first char of string 
tail str ---+ str - - string with head removed 
ins TX$T ..... $T - - insertion in set 
pick $T ..... T - - "first" element of set 
rest $T ..... $T -- set with pick deleted 
pi1 T >< 5 ..... T -- projection first coordinate 
pi2 T >< 5 ..... 5 - - projection second coordinate 
prod TXS ..... T>< 5 - - pair formation 
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The syntax of EXSPECT is denoted in BNF-like format. Terminals are in typewriter 
font. Optional parts are enclosed in "[]" brackets; parts that can be repeated without 
separator or with a comma" I'" separator are enclosed in "'{}" or "()" brackets, re
spectively. 
The type definitions are represented as follows. 

tdef 
te 

type id [trom tel 
id I ( te ) I $ te I te >< te I te -> te 

When a type A is defined from a type expression T E, A inherits all functions allowed 
for T E. Similarly, A -> B inherits all functions allowed for $( A >< B ). 
Function (constant) definitions are represented as follows. 

The defini tion 

def 
expr 

id [[(id : te)]] := expr : te 
id [((expr))] I [id: expr I expr] 

f [x : TEl , y : T E2] : = e : TEo 

defines a function of signature TEl X T E2 - TEo given bye. The expression e may 
contain x and y as variables. The expression 

g(a,b) 

denotes the application of 9 onto the expressions a and b. The function 9 must be basic 
or defined and of the correct signature. The expression 

[t : S I e] 

denotes the mapping with domain s (s must be an expression denoting a set) defined 
bye. The expression e may contain t as a variable. 

The set of basic functions can be extended with definitions for general-purpose func
tions, like addition, multiplication or deletion from a set. We shall give a few examples. 



not [x:boo1] := - - logical inversion 
eond (x. false, true) : bool: 

e1t [x:T.y:$T] := -- test whether y contains x 
cone! (eq(y.empty). talse. 

cond (eq(x.pick(y». true. 
e1t(x.rest(y»» boo1; 

add [x:num.y:num] := sub (x. sub(O.y» : num; -- addition 
sum [x: T->numJ : = - - sum quantor 

cond (eq(x.empty). O. add(pi2(pick(x».sum(rest(x»» num; 
dom [x:T->5] := -- domain of a mapping 

cond (eq(x.empty). empty. 
ins (pil(pick(x». dom(rest(x»» $T; 

set [x: T->boo1] : = - - domain restriction 
cond (eq(x.empty). empty. 

cond (pi2(pick(x». ins(pil(pick(x».set(rest(x»). 
set (rest(x»» $T 

apply [x:T->5.y:T]:= -- application of mapping 
cond (eq(pil(pick(x».y). pi2(pick(x». 

app1y(rest(x).y» 
inv [x: T->5. y: 5] : = - - inverse of mapping 

set ([t:dom(x)leq(app1y(x.t).y)]): $T; 
sditt [x:$T.y:$T] := -- set difference 

set ([t:xlnot(e1t(t.y)]): $T; 

5' • 
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The above notation for expressions and type expressions, though simple in structure, 
is awkward for the human eye. The original syntax is sugared to allow a more readable 
notation. In the list below we give some hints how this sugaring is done; the other 
constructions are in the same vein and can be easily understood. 

cond(a.b.c) 
eq(a.b) 
prod(a.b) 
ins(al •.... ins(an.empty) ... ) 

empty 
app1y<!.a) 

it a then b else c ti 
a=b 
«a.b» 
{al •...• an } 

{} 
f·a 

3.2. Dynamic part 

The complete language obeys the following syntax definition, where "expr" is defined 
in the previous section. 

sysdef .-
ppars .-
procdef .-
chdef .-
stat .-

sys id ppars :: = { (tdef I def I procdef I chdef) } end 
[ [in (id : tell [out (id : tell [val (id : tell ] 
proc id [ (ppars)] := (stat) 
channel id [tel [:= (expr)) 
id <- expr [: expr] I it expr then (stat) [elae (stat)] ti 
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The program parameters (ppars) specify the external interface of the system. They 
consist of values (val) that must be specified when the system is started and input (in) 
and output (out) channels for interactive communication. 
The channel definitions (chdef) define the internal channels of the system. By default, 
channels are initially empty, but an initialization can be given by providing a list of 
expressions after the ":=" sign in the definition. Each expression in this list represents 
an initial trigger value. 
The processor definition consists of a processor name, followed by a list of input chan
nels. The activation of the processor requires a trigger in each input channel. These 
triggers are consumed, while the processor executes a series of (conditional) assign
ments. An assignment of the form "a <- e" evaluates expression e and produces the 
result for channel a (without delay). A delay can be specified by adding a numeric ex
pression after the":" sign. All expressions within a "procdef' may contain the names 
of the input channels of the processor; while evaluating them, the consumed triggers 
are substituted for these names. 
A formal semantics definition in terms of Chapter 2 is omitted here. The above syntax 
suffices for the specification of small systems. For larger systems it is possible to include 
systems in each other, even with recursion. 
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4. AN EXAMPLE 

In this section we illustrate the concepts of the previous chapters by specifying a sim
ple inventory control system. In short, this system accepts orders from customers and 
schedules deliveries to these customers. Also it will generate replenishment orders for 
goods which are out of stock and it will handle the incoming deliveries from the sup
plier. 
The environment of the system consists of the customers and the supplier. Customers 
have two interaction channels to the system: one for ordering products (cin) and one 
for receiving deliveries (cout). In the same way there are two channels for the supplier: 
one for the reception of replenishment orders (rout) and one for the delevery of prod
ucts (rin). 
,Ve use three types for these channels, 

type custid; 
type prodidj 
type qty trom numj 

Here custid is the customer identification, prodid the name of a product and qty 
denotes the quantity which is ordered or delivered. Therefore the channels are declared 
as follows, 

channel cin: 
channel cout: 
channel rout: 
channel rin: 

(custid><prodid)->qty; 
(custid><prodid)->qty; 
prodid><qty; 
prodid><qtYi 

We see that a customer order has as key the identification of customer and product. 
Since we assume only one supplier per article we don't need a supplier identification 
for replenishment orders. 
For simplicity we assign each of the external channels to a dedicated processor. Pro
cessor pcin handles the incoming customer orders of cin; pcout schedules customer 
deliveries on cout; prout orders replenishments on rout; prin handles the replenish
ments of rin. 
The status of the inventory is stored in three storelike channels, 

channel custorders: 
channel stock: 
channel replorders: 

(custid><prodid)->qty; 
prodid->qty; 
prodid->qty; 

Channel custorders holds the aggregated customer orders: we don't keep track of the 
time at which an order has been made; stock is the physical stock; it only contains 
entries for products for which the stock quantity is positive. Finally replorders holds 
the aggregated quantity which has been ordered for each product. This quantity is 
always non-zero. 

We are now able to define the four processors. Processor pc in gets a customer order 
and updates the 'store' custorders. 

proe pcin[pcin, custorders] := 
custorders <- tupd (custorders, pil{cin), pi2(cin»; 

The function tupd updates its first argument, which is a mapping, in the place denoted 
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rout rin 

rp 

cp 

Figure 1: Inventory control system. 

by the second argument by adding the third argument. Furthermore it will remove all 
elements which are mapped upon 0 (this is not really necessary for custorders). 

fupd[f:A->num, x:A, y:num] := 
clear([z: ins(x,dom(f» 

I it zeIt dom(f) then f.z else 0 fi 
+ 
it z = x then y else 0 til); 

Here clear is a function which removes the kernel of a mapping: it restricts g to its 
domain with all points which are mapped to 0 removed, 

clear [g: A->num] := restrict(g,dom(g)\inv(g,O»; 

The next processor we consider is prout, which generates orders to replenish the stock. 
This processor periodically triggers itself to check whether there are any products out 
of stock. It uses a channel rp of type selttrigger, 

type; self trigger: 
channel rp: self trigger; 

If there are any products out of stock prout will order one such product. The other 
products which are out of stock will be handled later. When we are using the real time 
option it is possible to give the self trigger rp a short delay when there are any other 
products out of stock and a long delay otherwise. 

proe prout [rP. custorders. replorders. stock] := 
rp <- rp, 
stock <- stock f 
if repl != {} then 

rout <- «pick(repl), -virtstock(pick(repl»», 
replorders <- fupd(replorders, pick(r.pl), -virtstock(pick(repl»» 

else 
rout 
replorders 

ti 

<- rout. 
<- replorders 
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Here we use a function which gives us the virtual stock of a product, that is the 
quantity in stock plus the replenishment quantity already ordered from the supplier 
min the quantity ordered by the customers. 

virtstock[x:prodidJ := 

it x elt dom(stock) the stock.x else 0 ti 
+ 
it x elt dom(replorders) then replorders.x else 0 1i 

sum[y: $[z: dom(custorders) I pi2(z) = xJ I custorders.yJ 

Replenishments are ordered in such a way that the virtual stock of a product will be 
zero. repl is the set consisting of all products which should be replenished, pick(repl) 
is the product for which a replenishment order will be made. 

repl := $[p: pi2(custorders)) I virtstock(p) < oJ; 

The processor prin handles the incoming deliveries from the supplier. It updates the 
'stores' stock and replorders. Note that the quantity in replorders may become 
negative if the supplier delivers more than has been ordered. 

proc prin [replorders, stockJ := 
replorders <- fupd(replorders, pil(rin), -pi2(rin)), 
stock <- tupd(stock, pil(rin), pi2(rin)) 

Finally we describe the processor pcout which handles the deliveries to the customers. 
It works more or less the same as prout by using a self trigger channel 

channel cpo selttrigger; 

and handling one delivery at a time. This could lead to starvation of certain customer 
orders and might be mended by numbering all incoming customer orders. 

proe pcout [cPt custorders. stock] := 
cp <- cp, 
it cust != {} then 

cout <- «pick(cust,amount(pick(cust))», 
custorders <- fupd(custorders, pick(cust), -amount(pick(cust))), 
stock <- tupd(stock, pi2(pick(cust)), -amount(pick(cust))) 

else 

ti 

custorders 
stock 

<- eustorders. 
<- stock 

Here cust is the set of all customer orders which may be (partially) delivered; pick(cust) 
is the order which will be handled and amount denotes the quantity which can be de
livered for such an order. 

cust := $[p: dom(custorders) I pi2(p) elt dom(stock))J; 
amount[p: custid><prodidJ:= min(stock.pi2(p), custorders.pJ 

In cust we have used the fact that stock only holds products which are really in stock 
(quantity positive). 
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