

Executable specifications for discrete event systems

Citation for published version (APA):
Hee, van, K. M., Houben, G. J. P. M., Somers, L. J. A. M., & Voorhoeve, M. (1988). Executable specifications for
discrete event systems. (Computing science notes; Vol. 8817). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8d25cc53-f911-427f-9270-00d80814b63e

Executable specifications for discrete
event systems

by

K.M. van Hee, G.J.Houben,
L.J.Somers, M.Voorhoeve

88/17

October, 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors:

EXECUTABLE SPECIFICATIONS FOR DISCRETE
EVENT SYSTEMS 1

by

K.M. van Bee, G.J. Bouben, L.J. Somers and M. Voorhoeve

ABSTRACT

A formal framework for the specification of discrete event systems is introduced. The
precise description of such a system, either for analysis or design, is a major problem

in systems engineering. The underlying theoretical model is based on automata theory,
and subsumes the Petri net approach. For modeling real systems one has to consider a
network of interacting components and therefore three aspects of a system have to be
specified: the structure of the state spaces of the components, the state transformations
of the components and the interaction structure. Within the framework a tool has been
developed with a language for an integrated specification of those three aspects of a
system. After the introduction of the language an example illustrates our approach.

IThis research is partly supported by IBM Nederland N.V.

2

1. INTRODUCTION

One of the major problems of systems engineering is the precise description of the
system under consideration. The need for such a description manifests itself in two
different situations: either one wants to analyse an existing system or one wants to
design a new system. In the first case one has to map a part of the physical world into
a description, in the second case one has to map concepts in our head into a descrip
tion. If we compare these aspects of systems engineering to architectural design then
we observe that the description language of the architect has an alphabet consisting
of line segments, the descriptions are drawings and their semantics are abstract three
dimensional objects. We all know that the abstract three dimensional objects are ide
alizations of the objects in the physical world they represent: there are no flat walls
and rectangular corners. However, the abstract objects are useful guidelines for the
building contractor to realize the physical object. The contractor may deviate from the
abstract object within some tolerance bounds: the implementor's freedom.
For the analysis and design of systems we are looking for similar tools: a description lan
guage with semantics such that the described objects are realizable within some bounds.

The systems that we consider are the ones that are called discrete event systems (des).
The characteristic of such systems is that they have a finite or countable state space
and their behaviour can be described by sequences of successive states. Hence, systems
that can be described by (partial) differential equations are out of scope.
The class of systems we focus on contains distributed information systems such as air
line reservation systems and production control systems. However, other systems such
as logistic systems fit also into the framework of des's. In mathematics and comput
ing science may formalisms to describe des's are developed, however, most of them
are only suitable to describe some aspects of a des, but the systems engineer needs a
formalism that covers all relevant aspects in an integrated way. A simple formalism
is given by automata theory. There a system is considered in combination with an
(unknown) environment that sends actions to the system and waits for reactions. An
automaton is usually characterized by a state space, input/output alphabet and a tran
sition function. However, often the model of one automaton exchanging information
with its environment is not adequate, for instance to describe a distributed database
of an airline-reservation system. Then one needs to consider a network of interacting
components and then one has to specify an interaction structure in addition.
In fact there are three major aspects of a des:

- the structure of the state spaces of components,

- the state transformations of components,

- the interaction structure.

We will review some formalisms for specifying these aspects; we do not claim to give a
com plete survey.
A state space is in fact a set and there are many ways to specify them: any language to
define data types provides one. For complex state spaces one often uses a data model
such as the entity-relationship model [Chen 76J or the relation model [Ullman 82J. A

3

database scheme specifies in fact a data type.
For the specification of state transformations we often use logic to define pre- and
postconditions, but functional languages are also used. The latter approach gives
a constructive specification: functions are specified by lambda expressions involving
more elementary functions, and in the end by primitive functions. Typed functional
languages have also facilities for specification of data types, so they cover the first two
aspects of a des. Two approaches for specification of state structure and transforma
tions, that cover both the functional way and the way of pre- and postconditions, are
the languages Z [Hayes 87J and VDM [Jones 86J. They are very suitable for specifying
the first two aspects of a des, however, at the moment they have no way to specify the
third one. Algebraic specifications [Goguen et al 77J, [Guttag, Horning 78J also allow
only to specify the first two aspects.
There are many formalisms to specify an interaction structure in a distributed system.
By interaction we mean the way components transfer data and the way they activate
(or trigger) each other. The first way of interaction is also called data flow and the
second way may be called control flow. Often it is not possible to distinguish both
types of interaction. There are two well-known algebraic process theories, CSP [Hoare
85J and CCS [Milner 80J. Closely related are trace theory [Rem 83], [Mazurkiewicz 84]
and process algebra [Bergstra, Klop 84J. In these approaches parallelism is modeled by
interleaving of actions and they are suitable to specify communication between com
ponents of a system. They are poor in their capabilities of specifying data structures
and data transformations. Another way to describe interaction structure is the use of
Petri nets [Petri 76] where conditions and events are modeled by bipartite graphs. A
generalization is found in predicate/transition nets [Genrich, Lautenbach 81J.
An approach based on finite state machines with a graphical language and formal se
mantics is called statecharts [Harel 86]. Petri nets and statecharts are not very well
suited to describe data structures and transformations.
There are several informal frameworks to describe data flow, using graphical languages.
In practice ISAC [Lundeberg 79], DFD [Ward, Mellor 85] and SADT [Ross 77] are used
frequently. Most of these frameworks have also methods for specifying data structures,
using the entity-relationship model or Bachman diagrams [Bachman 69J. However,
transformations are specified by sugared imperative languages.

We have developed a formal framework based on a mathematical model of discrete
event systems and a language to specify the components of a des. The model is related
to Petri nets. We use here Petri net terminology to explain our model. We have at
tached a value to each token. Each place has a type and values of tokens in a place
belong to that type. Transitions are endowed with a transformation that transforms
input tokens into output tokens. We do not require that all output places get a token
nor that an output place gets only one token. A transition may fire only if from all its
input places a token can be consumed. In our terminology a token is called a trigger, a
place a channel and a transition a processor. Besides a des we also consider a real-time
des where each token/trigger has besides the value a time stamp. The meaning of it
is that it cannot be consumed before that time. The real-time des is modeled as a des
with some additional properties. It is more powerful than the DEVS-model [Concep
cion, Zeigler 88]: the basic components of DEVS can be made easily from ours. In
Section 2 we introduce our model.
We introduce a language for the specification of a des. This language has been devel-

4

oped with the following aims in mind:

- it must be executable, and can thus be used for prototyping,

- it must allow the comparison of alternative specifications,

- it must encourage the reuse of specified components,

- it must have an open interface to allow the incorporation of external software.

Our language consists of two parts: a functional part and an dynamic part. The
functional part is used to define types and functions, in other words to define a many
sorted algebra. The type system consists of some primitive types and a few type
constructors to define new types. In this way one specifies a type for each channel.
A sugared version of lambda calculus is used to define new functions from a set of
primitive functions. In this way one specifies for each processor its transformation.
The dynamic part of the language is used to specify the network of processors and
channels and therefore the interaction structure.
The state of a des is the configuration of triggers in the channels. The structure of the
state space of a channel is characterized by its type: the set of all bags over this type.
In this way one is able to specify all three aspects of a des:

- the structure of state spaces of components is specified using the type·system,

- the state transformations are specified by functions using lambda calculus,

- the interaction structure is specified by the network structure.

The type system is specified by the network structure. The type system we use is simple
but more powerful than the relational data model because it allows nested structures.
To model a database one may define a channel that is connected to a processor both
as input channel and output channel, and that contains always exactly one trigger that
represents the database state. This way of modeling a database corresponds to SADT
and ISAC. The language is treated in Section 3.
The fact that our networks may be considered as Petri nets allows us to use Petri net
theory to verify structural properties [Genrich 81]. Since we use a typed-functional
language to specify types and functions we specify by high level construction. This has
two advantages:

- we have an existence proof for each specified system (it is, for instance, not possible
to specify a processor that computes the largest prime number),

- we are able to generate a simulation model or prototype of the specified system.

Having a prototype of a specified system is very important because potential end· users
are seldom able to check formal specifications, however, they may test the functionality
of the specified system by playing with the prototype. A simulation model of a specified
system can also be used to test performance. This can be done using the real· time
variant of the des· model: the throughput of triggers can be measured.

5

We have developed a software tool to support the specification process. It consists of a
type checker that verifies the rules of the type system and an interpreter that generates
a simulation of the specified system. We have specified many different systems such as:
a token ring, a distributed data base, an access control system, a distributed inventory
control system and a banking system. We have also done examples from [Shridar, Hoare
85J and [Hayes 87J and these comparisons give us the confidence that our framework is
powerful and not too complicated to apply. In Section 4 we treat an example.

6

2. FRAMEWORK

A very elementary notion of a system is a graph (S, T), called a basic system. Here S
is a finite or countable set, called the state space, and T is a binary relation over S,
called the transition relation. Elements of {s E S I ..., 3 t E S : (s, t) E T} are called
terminal states. Any finite sequence of states ending with a terminal state or any finite
sequence of states, such that each pair of successive states belongs to T is called a path
and any finite, serried subsequence of a path is called a trace. The set of all paths of a
basic system is called the process of the system.
Although it is, in principle, possible to map complex systems into the framework of
a basic system it is practically infeasible. Therefore we introduce a more structured
framework, called discrete event system (DES). It is much easier to map a complex
system into this framework. A discrete event system (des) has also a state space and a
transition relation and is therefore a basic system. Hence, concepts such as path and
process have a meaning for discrete event systems too. A des consists of two kinds of
components: processors and channels. (They correspond to transitions and places in
Petri nets.) A processor is connected to one or more input channels and one or more
output channels. With each channel a type is associated and with each processor a
function. The signature of the function of a processor corresponds with the types of in
and output channels. A channel may be shared by several processors as input or output
channel. At each moment the channels may contain triggers (tokens in Petri nets). A
trigger has a value that belongs to the type of the channel. There may be more than
one trigger with the same value. So a channel contains a bag over its type. At each mo
ment there may be a transition, which means that the configuration of triggers, called
the state, in the channels may change. Such a transition occurs instantaneously and
is executed by the processors. A processor may execute if it is able to select a trigger
in each of its input channels. A trigger can be selected by only one processor. The
execution of a processor means that the selected triggers are consumed (deleted) and
that new triggers for the output channels of the processor are produced. To represent
a des we use a diagram technique like for Petri nets.
Now we formalize the DES-framework. We use the following notations. If A is a set,
then lP(A) denotes the set of all finite subsets of A. If Y is a set of sets, then U Y
denotes the union of all elements of Y. For a set-valued function F, IIF denotes the
set of all (total) functions f over dom(F) and II* F the set of all partial functions f
over dom(F), both with 'Ix E dom(f) : f(x) E F(x). for set A, JB(A) denotes the
set of all multisets (bags) over A, i.e. the set of all functions from A to INo, the set of
nonnegative integers. INl denotes the set of all positive integers. For x E JB(A) and
a E A:

aEx iff x(a) > 0 .

For x E JB(A) and s E lP(A):

sex
x\s
x Us

iff Va E s
= >.aEA

= >.aEA

aEx
if a E s /I a E x then x(a) - 1 else x(a)
if a E s then x(a) + 1 else x(a) .

7

For x,y E lB(A):

xU y = >. a E A : x(a) + y(a) .

For notational clarity we often write the function application I(x) as Ix. We denote
function restriction by r and the set of all partial functions from A to B by ArB.

Definition l.
A discrete event system (des) is a four tuple (R,C,I,O) where R is a function· valued
function and C, I and ° are set-valued functions, such that

- dom(I) = dom(O) = dom(R), finite or countable sets,

- "Vi E dom(R) : I, C dom(C) /\ 0, C dom(C) /\ I, # 0/\ 0, # 0,

- "Vi E dom(R) : R, E II(C r I;) lB({(k,x) IkE 0, /\ x E Ck}),

- "V i E dom(C) : C, is finite or countable.

dom(R) is called the set of processor indices and is denoted by P.
dom(C) is called the set of channel indices and is denoted by K.

For i E P: Ii is called the set of input channels of i,
Oi is called the set of output channels of i,
R, is called the raction function of i.

For k E K: C k is called the type of channel k.

We will use these symbols strictly for the concepts defined. If we consider different
des's we distinguish them by super- or subscripts.

Definition 2.
Let a des be given. Then

Q:= {(k,x) IkE K /\ x E Ck}
S:= Q INo
E CPr W(C) such that"Ve E E:

"Vm E dom(e) : e(m) E II(C rIm).

Q is called the trigger set, S the state space and E the event set.

Note that a state is a bag over Q and that an event is an assignment of a set of
triggers to a processor such that for each input channel exactly one trigger is chosen.

Definition 3.
The event function F of a des is a function with

FE S - JP(E) and
'I s E S : 'I e E E : e E F(s) +-+

e ~ 0"
'1y E Q : L(m E dom(e) : ge,m(Y)) $ sty)

where:

g"m := >.(y E Q : if y E e(m) then 1 else 0) .

8

Hence e E F(s) holds only if s contains enough triggers to supply all the processors of
dom(e). Note that g"m is the characteristic function of the set e(m) as subset of Q.
It is easy to verify that

'1s,tES: sct-F(s)CF(t).

Next we define the transition function: it assigns to a state s and an event e E F(s) a
new state.

Definition 4.
The transition function T of a des satisfies:

TESxEr S

such that

'Is E S : 'Ie E F(s) : (s,e) E dom(T)"
T(s,e) = s+ L(m E dom(e) : R",(e(m))-ge,m)'

The transition relation of a des is:

{(s,t) E S x S 13e E F(s) : T(s,e) = t} .

We use the symbol T also to denote the transition relation. It is easy to verify that the
graph (S, T), where S is the state space and T the transition relation of a des, forms a
basic system. If we speak of path, trace or process of a DES we mean the path, trace
or process of the basic system induced by the des.
Note that we have 'true' parallellism in our model: processors may execute simulta
neously. However, it is always possible to split an event into other events such that
each of them triggers only one processor, and such that the successive execution of

9

these events, in any order, ends in the same state as the original compound event. This
property is a consequence of the following theorem, which we present here without proof.

Theorem 5.
Let a des be given and let s E Sand e, el, e2 E F(s) such that e = el Ue2 and el ne2 = 0.
Then e2 E F(T(s,el)) and T(T(s,el),e2) = T(s,e).

Note that Vs E S : Ve E F(s) : Vm E dom(e) : {(m,e(m))} E F(s). Hence
for some e E F(s) and some mE dom(e) : el := {(m,e(m))} and e2 := e \ el satisfy
the conditions of Theorem 5. In this way we may split e into a sequence of single·
processor events. Note that the characteristic of a single-processor event is that its
domain is a singleton.
Let

1':= {(s,t) E S X S 13e E F(s) : e is a singleton II T(s,e) = t} .

Then (S,1') forms also a basic system. It is easy to verify that the transitive closures
of l' and T are equal and therefore we may consider the system (S,1') as a simulation
of (S, T).

Now we introduce another framework to model also real· time aspects of discrete event
systems, we call it RTDES. This framework is closely related to DES: a real-time des
(rtdes) is a des with some mor~ structure and some extra restrictions on events. In a
des each trigger has a value and in an rtdes it has a time stamp in addition.

Definition 6.
A real-rime discrete event system (rtdes) is a des

(R, C,l, 0)

with the properties:

- there is a set· valued function V and an ordered set D such that: dom(V) = K and
VkEK: Ck=VkxD,

- Vm E P : Vc E ll(C) :
R".(c f/m)C {((k,(x,t)),n)lkEOmllxEVklltEDII
nE1VoII(n>O-->t~max{dEDI3IEIm: 3VEVm : (1,(v,d})EC tIm})}.

Hence, the time stamps of the produced triggers are at least as large as the time stamps
of the consumed triggers.
The trigger set, state space and event set of an rtdes are the same as of the correspond
ing des.
The events that may be used in a transition are more restricted than in a des. This is
because of the meaning of the time stamps. A time stamp of a trigger means that that
trigger may not be consumed before that time. Hence each event has an earliest time

10

it may be executed. This is expressed by the function h.

Definition 7.
For an rtdes the function h assigns an event time to each event, such that for e E E

h(e)=max{dED :3mEP: 3kE1m 3xEVk

(k,(x,d)) E e(m)}.

The chosen event must have the lowest possible event time. This expresses that pro
cessors are eager to start: as soon as they can get their triggers they execute. So for
each state we may define a transition time: it is the time the system will leave the state.

Definition 8.
For an rtdes the function H assigns to each state a transition lime, such that for s E S:

H(s) = min{h(e) : e E F(s)} .

Now we are able to define the event function for an rtdes, it is called the real-time event
function.

Definition 9.
For an rtdes the real-time event function FT satisfies:

- FT E S -+ JP(E),

'Is E S : 'Ie E FT(s) e E FT(s) +-+ e E F(s) Ah(e) = H(s).

This expresses that only events with lowest event time are allowable. Now we define
the real-time transition relation:

Definition 10.
For an rtdes the real-time transition relation T R satisfies:

TR = {(s,l) E S X S 13e E FT(s) : T(s,e) = I} .

We can prove that transition times of successive states on a path are ascending.

To specify an rtdes, one often specifies the computation of values and time stamps
of triggers separately. Then the values of produced triggers are independent of the
time stamps of the consumed triggers. Furthermore, the time stamps are computed by
a delay depending only on the values of the consumed triggers. This delay is added to
the event time to obtain the time stamps of the produced triggers.

11

Hence, one specifies also a des, namely by leaving the time stamps aside. The rtdes
realizes the des: each path of the rtdes is also a path of the des (note tha.t the opposite
does not hold).
Finally, we remark that a des or an rtdes may have starvation of triggers, i.e. some
trigger is never consumed. It is the responsibility of the designer to a.void this.

12

3. SPECIFICATION LANGUAGE

3.1. Functional part

As mentioned in the introd uction, our specification language (called EXSPECT) has
a functional and a dynamic part. The functional part is used to specify functions and
types. Functions and types together form a many-sorted algebra, i.e. a set of types
(or sorts) and functions operating on these sorts. The functions include the constants
(functions having no parameters, only a result).
Constructive specification of a many-sorted algebra means defining its types and func
tions by means of simpler types and functions; this process is continued until a basic
level is reached that is generally understood. How to choose the intermediate levels is
not clear; there exists a multitude of methods and heuristics for it. In this section we
concentrate on the construction of types and/or functions from simpler ones.
For the functions, We introduce variables, expressions and the lambda quantor. This
suffices (together with recursion) to define every function we need. For types we need
type constructors, like e.g. the army constructor in procedural languages. Type con
structors are accompanied by functions that go back and forth between the composite
type and its constituents, like e.g. array indexing. These functions are of a polymorphic
nature, i.e. they do not operate on individual types, but on classes of types.
From a set of types and type operators we can form type expressions that symbolize
new (composite) types. Vie can attach names to type expressions, thus defining new
types. The new type is a su btype of the type expression it is derived from and "inher
its" all functions that could be applied to the original type expression.
Summarizing, the ingredients of the functional part are as follows.

1. Basic types and type constructors.

2. Basic functions (often polymorphic).

3. A way to construct new functions from expressions (with variables).

4. A way to construct new types from type expressions.

In the remainder of this section we shall indicate how these ingredients are realized.

We start with defining objects. These objects provide a semantics for types and func
tions. Each EXSPECT type expression denotes a set of objects, whereas functions map
objects onto objects. Functions are not objects themselves, so EXSPECT is first-order.
We have the following recursive definition for objects.

1. The booleans, rational numbers and character strings are objects.

2. Finite sets of objects are objects.

3. Ordered pairs of objects are objects.

The set of objects corresponding to type expression A is denoted by s(A). The basic
types are void, bool, num and str. These correspond to the empty set, the booleans,

13

the rationals and the strings, respectively. The basic type operators are set (denoted
by a $ prefix) and cart (denoted by a >< infix). If A and B are type expressions, then
SA denotes the set of finite sets of objects in s(A) and A >< B denotes the set of pairs
of objects, the first in s(A), the second in s(B).
The type operator map (denoted by a -> infix) is derived from set and cart. The type
expression A -> B denotes the set of mappings from s(A) to s(B); a mapping is a finite
set of pairs with different first components.
In type expressions containing these operators, set takes precedence over the other two
and cart over map. Explicit precedence is indicated by "()" brackets.

We shall now define our set of basic functions. We indicate the signature of polymor
phic functions by means of type variables, represented in this paper by the identifiers
R, Sand T. The semantics of a type expression with type variables is a function from
assignments (functions of type variables to type expressions without variables) to sets
of objects. A function of signature

TEl X .•• X TEn TEo ,

where the T Ei are type expressions, possibly containing type variables, accepts nob
jects in sv(TEI), ... ,sv(TEn), respectively and returns an object in sv(TEo) for any
possible assignment v. Here sv(T E) is the semantics of T E derived from assignment v.
We indicate the basic constants and functions in EXSPECT by their signature and a
short explanation in words. A complete algebraic specification is omitted because of
its lengthy nature.

taIse, true boo I -- falsehood and truth
0,1,-1,... num -- integers (decimal notation)
' .. . ' str -- strings

-- between the above quotes any non-quote character is allowed
quote str -- the character ","
empty Svoid -- empty set
cond bool X TXT T -- if-then-else construction
eq TXT bool -- equality test
It num X num ---+ bool -- less-than comparison
sub num X num -+ num -- subtraction
div num X Dum -+ num -- rational division
cat str X str ---+ str -- string concatenation
head str -+ str - - first char of string
tail str ---+ str - - string with head removed
ins TX$T $T - - insertion in set
pick $T T - - "first" element of set
rest $T $T -- set with pick deleted
pi1 T >< 5 T -- projection first coordinate
pi2 T >< 5 5 - - projection second coordinate
prod TXS T>< 5 - - pair formation

14

The syntax of EXSPECT is denoted in BNF-like format. Terminals are in typewriter
font. Optional parts are enclosed in "[]" brackets; parts that can be repeated without
separator or with a comma" I'" separator are enclosed in "'{}" or "()" brackets, re
spectively.
The type definitions are represented as follows.

tdef
te

type id [trom tel
id I (te) I $ te I te >< te I te -> te

When a type A is defined from a type expression T E, A inherits all functions allowed
for T E. Similarly, A -> B inherits all functions allowed for $(A >< B).
Function (constant) definitions are represented as follows.

The defini tion

def
expr

id [[(id : te)]] := expr : te
id [((expr))] I [id: expr I expr]

f [x : TEl , y : T E2] : = e : TEo

defines a function of signature TEl X T E2 - TEo given bye. The expression e may
contain x and y as variables. The expression

g(a,b)

denotes the application of 9 onto the expressions a and b. The function 9 must be basic
or defined and of the correct signature. The expression

[t : S I e]

denotes the mapping with domain s (s must be an expression denoting a set) defined
bye. The expression e may contain t as a variable.

The set of basic functions can be extended with definitions for general-purpose func
tions, like addition, multiplication or deletion from a set. We shall give a few examples.

not [x:boo1] := - - logical inversion
eond (x. false, true) : bool:

e1t [x:T.y:$T] := -- test whether y contains x
cone! (eq(y.empty). talse.

cond (eq(x.pick(y». true.
e1t(x.rest(y»» boo1;

add [x:num.y:num] := sub (x. sub(O.y» : num; -- addition
sum [x: T->numJ : = - - sum quantor

cond (eq(x.empty). O. add(pi2(pick(x».sum(rest(x»» num;
dom [x:T->5] := -- domain of a mapping

cond (eq(x.empty). empty.
ins (pil(pick(x». dom(rest(x»» $T;

set [x: T->boo1] : = - - domain restriction
cond (eq(x.empty). empty.

cond (pi2(pick(x». ins(pil(pick(x».set(rest(x»).
set (rest(x»» $T

apply [x:T->5.y:T]:= -- application of mapping
cond (eq(pil(pick(x».y). pi2(pick(x».

app1y(rest(x).y»
inv [x: T->5. y: 5] : = - - inverse of mapping

set ([t:dom(x)leq(app1y(x.t).y)]): $T;
sditt [x:$T.y:$T] := -- set difference

set ([t:xlnot(e1t(t.y)]): $T;

5' •

15

The above notation for expressions and type expressions, though simple in structure,
is awkward for the human eye. The original syntax is sugared to allow a more readable
notation. In the list below we give some hints how this sugaring is done; the other
constructions are in the same vein and can be easily understood.

cond(a.b.c)
eq(a.b)
prod(a.b)
ins(al •.... ins(an.empty) ...)

empty
app1y<!.a)

it a then b else c ti
a=b
«a.b»
{al •...• an }

{}
f·a

3.2. Dynamic part

The complete language obeys the following syntax definition, where "expr" is defined
in the previous section.

sysdef .-
ppars .-
procdef .-
chdef .-
stat .-

sys id ppars :: = { (tdef I def I procdef I chdef) } end
[[in (id : tell [out (id : tell [val (id : tell]
proc id [(ppars)] := (stat)
channel id [tel [:= (expr))
id <- expr [: expr] I it expr then (stat) [elae (stat)] ti

16

The program parameters (ppars) specify the external interface of the system. They
consist of values (val) that must be specified when the system is started and input (in)
and output (out) channels for interactive communication.
The channel definitions (chdef) define the internal channels of the system. By default,
channels are initially empty, but an initialization can be given by providing a list of
expressions after the ":=" sign in the definition. Each expression in this list represents
an initial trigger value.
The processor definition consists of a processor name, followed by a list of input chan
nels. The activation of the processor requires a trigger in each input channel. These
triggers are consumed, while the processor executes a series of (conditional) assign
ments. An assignment of the form "a <- e" evaluates expression e and produces the
result for channel a (without delay). A delay can be specified by adding a numeric ex
pression after the":" sign. All expressions within a "procdef' may contain the names
of the input channels of the processor; while evaluating them, the consumed triggers
are substituted for these names.
A formal semantics definition in terms of Chapter 2 is omitted here. The above syntax
suffices for the specification of small systems. For larger systems it is possible to include
systems in each other, even with recursion.

17

4. AN EXAMPLE

In this section we illustrate the concepts of the previous chapters by specifying a sim
ple inventory control system. In short, this system accepts orders from customers and
schedules deliveries to these customers. Also it will generate replenishment orders for
goods which are out of stock and it will handle the incoming deliveries from the sup
plier.
The environment of the system consists of the customers and the supplier. Customers
have two interaction channels to the system: one for ordering products (cin) and one
for receiving deliveries (cout). In the same way there are two channels for the supplier:
one for the reception of replenishment orders (rout) and one for the delevery of prod
ucts (rin).
,Ve use three types for these channels,

type custid;
type prodidj
type qty trom numj

Here custid is the customer identification, prodid the name of a product and qty
denotes the quantity which is ordered or delivered. Therefore the channels are declared
as follows,

channel cin:
channel cout:
channel rout:
channel rin:

(custid><prodid)->qty;
(custid><prodid)->qty;
prodid><qty;
prodid><qtYi

We see that a customer order has as key the identification of customer and product.
Since we assume only one supplier per article we don't need a supplier identification
for replenishment orders.
For simplicity we assign each of the external channels to a dedicated processor. Pro
cessor pcin handles the incoming customer orders of cin; pcout schedules customer
deliveries on cout; prout orders replenishments on rout; prin handles the replenish
ments of rin.
The status of the inventory is stored in three storelike channels,

channel custorders:
channel stock:
channel replorders:

(custid><prodid)->qty;
prodid->qty;
prodid->qty;

Channel custorders holds the aggregated customer orders: we don't keep track of the
time at which an order has been made; stock is the physical stock; it only contains
entries for products for which the stock quantity is positive. Finally replorders holds
the aggregated quantity which has been ordered for each product. This quantity is
always non-zero.

We are now able to define the four processors. Processor pc in gets a customer order
and updates the 'store' custorders.

proe pcin[pcin, custorders] :=
custorders <- tupd (custorders, pil{cin), pi2(cin»;

The function tupd updates its first argument, which is a mapping, in the place denoted

18

rout rin

rp

cp

Figure 1: Inventory control system.

by the second argument by adding the third argument. Furthermore it will remove all
elements which are mapped upon 0 (this is not really necessary for custorders).

fupd[f:A->num, x:A, y:num] :=
clear([z: ins(x,dom(f»

I it zeIt dom(f) then f.z else 0 fi
+
it z = x then y else 0 til);

Here clear is a function which removes the kernel of a mapping: it restricts g to its
domain with all points which are mapped to 0 removed,

clear [g: A->num] := restrict(g,dom(g)\inv(g,O»;

The next processor we consider is prout, which generates orders to replenish the stock.
This processor periodically triggers itself to check whether there are any products out
of stock. It uses a channel rp of type selttrigger,

type; self trigger:
channel rp: self trigger;

If there are any products out of stock prout will order one such product. The other
products which are out of stock will be handled later. When we are using the real time
option it is possible to give the self trigger rp a short delay when there are any other
products out of stock and a long delay otherwise.

proe prout [rP. custorders. replorders. stock] :=
rp <- rp,
stock <- stock f
if repl != {} then

rout <- «pick(repl), -virtstock(pick(repl»»,
replorders <- fupd(replorders, pick(r.pl), -virtstock(pick(repl»»

else
rout
replorders

ti

<- rout.
<- replorders

19

Here we use a function which gives us the virtual stock of a product, that is the
quantity in stock plus the replenishment quantity already ordered from the supplier
min the quantity ordered by the customers.

virtstock[x:prodidJ :=

it x elt dom(stock) the stock.x else 0 ti
+
it x elt dom(replorders) then replorders.x else 0 1i

sum[y: $[z: dom(custorders) I pi2(z) = xJ I custorders.yJ

Replenishments are ordered in such a way that the virtual stock of a product will be
zero. repl is the set consisting of all products which should be replenished, pick(repl)
is the product for which a replenishment order will be made.

repl := $[p: pi2(custorders)) I virtstock(p) < oJ;

The processor prin handles the incoming deliveries from the supplier. It updates the
'stores' stock and replorders. Note that the quantity in replorders may become
negative if the supplier delivers more than has been ordered.

proc prin [replorders, stockJ :=
replorders <- fupd(replorders, pil(rin), -pi2(rin)),
stock <- tupd(stock, pil(rin), pi2(rin))

Finally we describe the processor pcout which handles the deliveries to the customers.
It works more or less the same as prout by using a self trigger channel

channel cpo selttrigger;

and handling one delivery at a time. This could lead to starvation of certain customer
orders and might be mended by numbering all incoming customer orders.

proe pcout [cPt custorders. stock] :=
cp <- cp,
it cust != {} then

cout <- «pick(cust,amount(pick(cust))»,
custorders <- fupd(custorders, pick(cust), -amount(pick(cust))),
stock <- tupd(stock, pi2(pick(cust)), -amount(pick(cust)))

else

ti

custorders
stock

<- eustorders.
<- stock

Here cust is the set of all customer orders which may be (partially) delivered; pick(cust)
is the order which will be handled and amount denotes the quantity which can be de
livered for such an order.

cust := $[p: dom(custorders) I pi2(p) elt dom(stock))J;
amount[p: custid><prodidJ:= min(stock.pi2(p), custorders.pJ

In cust we have used the fact that stock only holds products which are really in stock
(quantity positive).

LITERATURE

Bachman, C.W.: Data structure diagrams.
AC!ll SIGBDP, Data Base 1, no. 2 (1969).

Bergstra, J.A., J.W. Klop: The algebra of recursively defined processes and the
algebra of regular processes.
Proceedings 11th ICALP, Antwerpen 1984, Springer LNCS 172 (1984).

Chen, P.P.: The entity· relationship-model: toward a unified view of data.
ACM TODS, vol. 1, no. 1 (1976).

Concepcion, A.I., B.P. Zeigler: DEVS formalism: a framework for hierarchical mod
el development.
IEEE Transactions on Software Engineering, vol. 14, no. 2 (1988).

Genrich, H.J., K. Lautenbach: System Modelling with High-Level Petri Nets
TCS, vol. 13, North-Holland (1981).

Goguen, J.A., J.W. Thatcher, E.G. Wagner: An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types.
In: Yeh, R.T. (ed.), Current Trends in Programming Methodology, vol. IV, Data
Structuring, Prentice Hall (1977).

Guttag, J.V., J.J. Horning: The Algebraic Specification of Abstract Data Types.
Acta Informatica, vol. 10 (1978).

Harel, D.: Statcharts, a visual approach to complex systems.
Sci. Compo Progr. 8-3 (1987).

Hayes, I.: Specification case studies.
Prentice Hall (1987).

Hoare, C.A.R.: Communicating sequential processes.
Prentice Hall (1985).

Jones, C.B.: Systematic software development using VDM.
Prentice Hall (1986).

Lundeberg, M., G. Goldkuhl, A. Nilsson: A systematic approach to information
systems development.
Information Systems, vol. 4 (1979).

Mazurkiewicz, A.: Traces, histories, graphs: instances of a process monoid.
Math. Found. Compo Sci., Springer LNCS 176 (1984).

Milner, R.: A calculus of communicating systems.
Springer LNCS 92 (1980).

Petri, C.: Introduction to general net theory. Advanced course of general net theory
of processes and systems.
Springer LN CS (1980).

,.

Rem, M.: Partially ordered computations, with applications to VLSI design.
Proc. Found. of Compo Sci. 1V2, MC Tract 159 (1983).

Ross, D.T., M.E. Dickover, C. McGowan: Software design using SADT.
Auerbach Publishers Portfolio 35-05-03 (1977).

Shridhar, K.T., C.A.R. Hoare: JSD expressed in CSP.
Technical Monograph PRG-51, Oxford University Computing Laboratory, Eng
land (1985).

Ullman, J.D.: Principles of database systems (2nd edition).
Computer Science Press (1986).

Ward, D.T., S.J. Mellor: Structured development for real-time systems.
Yourdon press (1985).

" ..

In this series appeared :

No. Author(s) Title
85/01 RH. Mak The fonnal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M.J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R. Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for fonnal
K.M. vanHee specifications of infonnation
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an infonnation
J. Paredaens system in several parallel systems
K.M. vanHee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 R Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R Koymans Compositional semantics for
RK. Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&ControI1987)
R Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (IFIP86)

86/12 A. Boucher A timed failures model for
R.Gerth extended communicating processes

86/13 R Gerth
W.P. de Roever

86/14 R Koymans

87/01 R Gerth

87/02 Simon J. Klaver
Chris F.M. Verberne

87/03 G.J. Houben
J.Paredaens

87/04 T.Verhoeff

87/05 RKuiper

87/06 RKoymans

87/07 RKoymans

87/08 H.M.J.L. Schols

87/09 J. Kalisvaart
L.RA. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

Proving monitors revisited: a
fIrst step towards verifying
object oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to distri
buted information systems

Delay-insensitive codes -
An overview

Enforcing non-determinism via
linear time temporal logic specifIcation.

Temporele logica specifIcatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after
projection.

Language extensions to study structures
for raster graphics.

Three families of maximally nondeter
ministic automata.

Eldorado ins and outs.
SpecifIcations of a data base management
toolkit according to the functional model.

OR and AI approaches to decision support
systems.

Playing with patterns,
searching for strings.

A compositional proof system for an occam
like real-time language

/

87/15 C. Huizing A compositional semantics for statecharts
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas
J.C.P. Wilmont

87/17 K.M. vanHee Modelling of discrete dynamic systems
G.-J.Houben framework and examples
J.L.G. Dietz

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.J.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J. Houben The R2 -Algebra: An extension of an
J. Paredaens algebra for nested relations

87/21 R. Genh Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. vanHee Executable Specification for Information
G.J. Houben Systems
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle
J.Paredaens Structured Information
D.Tahon

88/05 K.M. vanHee
GJ. Houben

Executable Specifications for Information Systems

L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88/08 K.M. vanHee A Formal model for System Specification
G.J. Houben
L.J. Somers
M. V oorhoeve

88/09 A.T.M. Aens A Tutorial for Data Modelling
K.M. vanHee

88/10 I.C. Ebergen

88/11 G.I. Houben
I.Paredaens

88/12 A.E. Eiben

88/13 A. Bijlsma

88/14 H.M.M. ten Eikelder
R.H. Mak

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
I.P.Katoen

88/17 K.M. vanHee
G.I. Houben
LJ. Somers
M. V oorhoeve

A Formal Approach to Designing Delay Insensitive
Circuits

A graphical interface formalism: specifying nested
relational databases

Abstract theory of planning

A unified approach to sequences, bags, and trees

Language theory of a lambda-calculus with
recursive types

An introduction to the category theoretic solution
of recursive domain equations

Bottom-up tree acceptors

Executable specifications for discrete event
systems

	Abstract
	1. Introduction
	2. Framework
	3. Specification language
	3.1 Functional part
	3.2 Dynamic part
	4. An example
	Literature

