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Chapter 1

Introduction

1.1 Particle acceleration in plasma

Ever since the discovery of X-rays by W.C. R�ontgen in 1895 and the discovery
of the electron by J.J. Thompson in 1897, physicists have been striving to ac-
celerate charged particles to the highest energies possible. Along the road to
high-energy physics, one �nds such milestones as the Van de Graa� generator
(1929), the �rst cyclotron by E.O. Lawrence in 1931, the �rst betatron by D.
Kerst in 1940, and the �rst linear accelerator (linac) by W. Hansen in 1947. At
present, accelerator development has found its culmination in such superstruc-
tures as the Centre Europ�eenne des Recherches Nucl�eaires (CERN) in Geneva,
the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, and the Stanford
Linear Accelerator Center (SLAC) in Menlo Park, California.

The most de�ning characteristic of the accelerators operating at the forefront of
high-energy physics is the sheer size of the structures involved. The SLAC linac
measures 3.8 kms, the largest storage ring of DESY measures about 7 kms, and
the largest ring of CERN measures no less than 27 kms and stretches over two
countries. Building accelerators this size costs billions of euros, and not many
governments are willing to spend such amounts on fundamental research in high-
energy physics. A clear example of this is the termination of the Superconducting
Super Collider Project (SSC) by the US government in 1993.

Conventional accelerators need to be so large, because they accelerate particles
using electromagnetic (EM) �elds in vacuum. The largest electric �eld strength
that can be sustained in vacuum before breakdown occurs, is 10 MV/m continu-
ously or up to 100 MV/m pulsed. So in order to reach ultrahigh particle energies
in a conventional accelerator, one needs to increase the acceleration length, i.e.
the size of the apparatus. This does not only set a limit on the highest energy
that can be obtained ever, it also prevents an average university or research cen-
ter from building and operating an accelerator that reaches beyond say 1 GeV



8 Chapter 1. Introduction

because of sheer cost. Therefore, many results in highest-energy physics simply
cannot be reproduced because there are only a few accelerating structures in the
world operating in the necessary energy range. This situation is of course less
than satisfactory.

A remedy has been sought in replacing vacuum by plasma as a medium to ac-
celerate particles in [1{3]. Electric �elds in a plasma can reach values up to
100 GV/m, i.e. three to four orders of magnitude beyond what can be real-
ized in vacuum [4{6]. The basic idea behind plasma-based acceleration is that
a longitudinal EM wave is excited in the plasma, which is subsequently used to
accelerate electrons just as a radio-frequency (RF) wave accelerates particles in
a linac. Since the excitation of such a wave implies the occurrence of charge
separation in a plasma, this idea was hardly deemed feasible early on, but it
was found that a small but intense source propagating through the plasma could
indeed expel a signi�cant fraction of the plasma electrons from its path. If this
source moves fast enough, the much heavier ions will remain more or less im-
mobile, so directly behind the pulse there will be a spot having a positive total
charge. The strong restoring Coulomb forces push the electrons back quickly,
so quickly that behind the positive spot there appears a spot with too many
electrons, and thus a net negative charge. This process is repeated a number
of times, so an oscillation of the plasma electrons is induced that follows the
moving source. In other words, a plasma wave, also called the wake�eld, is re-
alized. The frequency of this wave is the electron plasma frequency !p, which
is the resonant frequency for unforced plasma electron oscillations. The plasma
frequency is given by !p =

p
e2n0=("0me), where e denotes the unit charge, n0

the background electron density, and me the electron rest mass. In this thesis,
the plasma electron density ranges between 1017 and 1019 cm�3, corresponding
to a plasma frequency from 3 � 1012 rad/s to 6 � 1013 rad/s. As the phase velocity
of the plasma wave is often close to the speed of light, the plasma wavelength �p
is de�ned as �p = 2�c=!p.

Various types of sources can be used to excite a wake�eld in a plasma. For ex-
ample, an electron bunch at relativistic speed can be used. In this scheme, two
electron bunches are injected into a plasma. The length of each bunch is shorter
than �p. The transverse Coulomb forces of the �rst drive the wake�eld that sub-
sequently accelerates the second. Alternatively, one can use a single bunch that
is longer than �p. In that case, the head of the bunch creates the wake�eld that
accelerates the tail. This method of plasma-based acceleration goes by the some-
what confusing name of plasma wake�eld acceleration (PWFA) [7{9]. The PWFA
scheme has been popular since the early days of plasma-based acceleration, be-
cause electron bunches of ultrahigh energy were readily available at that time.
PWFA is still studied today, most notably in the E-157 and E-162 experiments at
SLAC [10,11]. However, a major disadvantage of PWFA is that when the leading
bunch loses energy in driving the wake�eld, its velocity decreases. This means
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that the velocity of the wake�eld decreases as well. As a result, the maximum
energy of the trailing bunch cannot exceed twice the value of the energy of the
leading bunch.

To overcome this limitation, Tajima and Dawson proposed to use a laser pulse of
high intensity to drive the plasma wave, since laser pulses do not slow down when
losing energy to the plasma [12]. A laser pulse can propagate through a plasma
provided that its carrier frequency !0 is larger than the plasma frequency !p. If
the plasma has !p < !0 for a given laser pulse, the plasma is called underdense
to that pulse, otherwise it is called overdense. The pulse excites a plasma wave in
the following way. When a laser pulse propagates through a plasma, the leading
order response of the plasma electrons is a rapid quivering in the fast oscillating
EM �elds of the pulse. However, this response averages to zero in the long run.
After averaging, a net force on the electrons remains, called the ponderomotive
force Fp. For a laser pulse with electric �eld envelope E0, the ponderomotive
force is given by

Fp = � e2

2me!2
0

r(E2
0);

where me is the relativistic electron mass. Since the pulse's intensity, and thus
E2
0 , is usually highest at the centre of the pulse and decreases towards the sides,

the direction of the ponderomotive force is outwards. It thus pushes the plasma
electrons out of the path of the laser pulse, and excites a plasma wave. Note
that the laser pulse should be shorter than a plasma wavelength for this scheme
to work properly, since otherwise Fp is too small while the plasma has too much
time to adapt itself to the presence of the laser pulse. The parameter regime in
which this condition is satis�ed, i.e. excitation of the wake�eld is dominated by
the ponderomotive force, is called the ponderomotive regime.

As will be explained in Section 1.4, pulses longer than a plasma wavelength may
still excite a wake�eld. In that case however, the wake�eld is the result of an
instability called Raman forward scattering. This instability drives a fast plasma
wave that happens to have approximately the same frequency, wavelength and
phase velocity as a wake�eld excited by the ponderomotive force, even though
it originates from entirely di�erent processes. In this regime, the back-action of
the plasma on the pulse is very important, and one can say that the laser pulse
modulates itself while propagating through the plasma. Therefore, this regime is
called the self-modulated regime.

If a laser pulse loses energy to the plasma, its amplitude decreases rather than
its group velocity. This also decreases the amplitude of the wake�eld, which may
be problematic. However, the eÆciency of the energy transfer is fairly low for a
strongly underdense plasma, so this does not impose a severe limitation contrary
to the case of PWFA. The disadvantage of this is, though, that a very intense laser
pulse is needed to drive a decent plasma wave. In the early 1980's, suÆciently
strong lasers were not yet available. In order to drive a plasma wave of reasonable
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amplitude using laser pulses, the beat wave acceleration (BWA) scheme has been
invented [13,14]. In this scheme, two long, overlapping laser pulses are used
having frequencies that di�er by the plasma frequency !p. Once these are injected
into the plasma, a plasma oscillation is driven resonantly. This way, a large
amplitude plasma wave can be excited even with pulses of moderate intensity.
Research into BWA is carried out to this day, for example at UCLA [15,16].

The situation changed with the invention of chirped pulse ampli�cation (CPA)
in 1985 [17]. The CPA scheme is based on the fact that a short laser pulse has
a broad colour spectrum. In this scheme, a short, low-intensity laser pulse is
sent through a dispersive medium, causing the various colours in its spectrum
to be separated in time, and its duration to increase. Conservation of energy
dictates that its amplitude decreases. The stretched pulse is then sent through an
ampli�er, which can handle longer pulses much better than short ones. It is then
ampli�ed by a factor up to 107. After ampli�cation, the pulse is recompressed
using a double grating, all its colours are rejoined and its peak power rises skyhigh.
This way, a peak power of 1019 � 1020 W/cm2 can be reached for a pulse length
of only 50-100 fs. Laser systems capable of delivering such pulses are commonly
denoted as Table Top Terawatt or T3 lasers. A single pulse from such a laser
is suÆciently intense to drive a plasma wave with a decent amplitude, without
having to resort to beat-wave schemes. Particle acceleration in a plasma wave
driven by a single laser pulse is called laser wake�eld acceleration (LWFA) [1].

In this thesis, we will only concern ourselves with laser wake�eld acceleration, and
not with PWFA. This will be obvious in Chapters 5 and 6, where we deal with
instabilities typical for laser-plasma interaction. However, the sources driving
the wake�eld in Chapters 2 to 4 will also taken to be laser pulses rather than
bunches of particles, so we can safely assume that the wake�eld has a constant
phase velocity.

Once a plasma wave has been excited some way or another, the next step is to
inject a bunch of electrons into the wave and have the wave accelerate that bunch.
The dynamics underlying electron acceleration in a plasma wave are not unlike
those of a surf board that is accelerated by a big sea wave. Initially, the bunch
of electrons is injected into the plasma wave at a speed below the phase velocity
of the wave. Then they slip backwards against the wave, while the wave exerts
a forward force on the particles. When the initial electron velocity has been
suÆciently high, the bunch will acquire a velocity larger than that of the plasma
wave, and start to slip forwards with respect to the wave. As the plasma wave
has a velocity already close to the speed of light, the velocity of the bunch cannot
be much larger than that of the wave, and it may take a while before the bunch
outruns the wave. Until that happens, the wave exerts a strong accelerating force
on the bunch, so the electrons may reach very high �nal energies.

Electrons can be injected into the plasma in basically two ways: by external and
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by internal injection. In external injection, the bunch is produced outside the
plasma, e.g. by means of a photocathode, and subsequently injected into the
plasma. This has the advantage that the mean energy is well-de�ned and both
the energy spread and the transverse emittance are small. Unfortunately, it is
hard to control the transverse position of the bunch and its phase with respect
to the plasma wave, whereas the bunch tends to be too long with respect to
the plasma wavelength. In internal injection, the electrons are taken from the
plasma itself, either by wave breaking of the wake�eld [4,18{20], or by colliding
several laser pulses inside the plasma [21,22]. At the moment of collision in the
latter scheme, a fraction of the plasma electrons may receive a suÆcient kick
to inject them into the wake�eld excited by the biggest of the colliding pulses.
With internal injection, the transverse position and the phase with respect to
the plasma wave are easy to control, and bunches are often much shorter than
a plasma wavelength. A disadvantage of internal injection is, that often the
longitudinal energy spread is very large, up to 80% of the mean energy of the
bunch.

Due to the highly unstable nature both of the plasma and of the laser-plasma
interaction, there are many issues to be dealt with in LWFA, the most important
of which are discussed in the next few sections.

1.2 Important issues in laser wake�eld excita-

tion

As mentioned above, the immediate advantage of LWFA is that the maximum
attainable accelerating �eld in a plasma can be three to four orders of magnitude
larger than what can be obtained in vacuum. This means that the maximum
energy gain in a plasma-based accelerator is several orders of magnitude larger
than what can be obtained using a conventional accelerator of the same size. But
the price to pay is that plasma-based acceleration is a complicated a�air for a
number of reasons, which are discussed in this section. For more information, see
also Kruer [23], or Liu and Tripathi [24]

1.2.1 Geometric di�raction of the laser pulse

In order to generate a wake�eld with suÆcient amplitude, the laser pulse needs to
be focused down to a small spot to increase its peak intensity. Unfortunately, this
also leads to large geometrical di�raction of the pulse. In other words, the pulse
widens considerably over only a small distance behind its focus, and its intensity
drops accordingly. For this reason, the excitation of a wave in a homogeneous
plasma is e�ectively limited by the Rayleigh length zR = 2�r20=�0, where r0 is
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the focal spot radius and �0 the laser wavelength. For example, in the case of
a laser pulse having �0 = 800 nm which is focused down to r0 = 10 �m, we
have zR = 0:78 mm. On the other hand, the acceleration length needed for a
signi�cant energy gain is usually several centimeters or even tens of centimeters,
i.e. several tens or hundreds of Rayleigh lengths. So in order to sustain a decent
laser pulse intensity over the total acceleration length, the pulse has to be guided
in much the same way as light is guided in �ber optics. Several methods to do
this will be listed here.

Relativistic self-focusing When a very intense laser pulse interacts with a
plasma, the transverse quiver velocity of the plasma electrons approaches
the speed of light, and the electron mass increases locally, i.e. where the
pulse is. Now the plasma frequency decreases with increasing electron mass,
so a local depression in the plasma frequency is obtained. It can be shown
that the optical density of the plasma increases with decreasing plasma
frequency and thus increases with increasing pulse intensity. Therefore,
the optical density will be higher at the center of the pulse than at its
sides. Therefore, the path of the pulse starts to behave like a glass �ber,
nicely guiding the laser pulse and inhibiting di�raction. See, among others,
Refs. [24,25] for details.

Preformed plasma channel Since the plasma frequency decreases with de-
creasing plasma electron density, the optical density increases with decreas-
ing electron density. Therefore, a channel of lower density in an otherwise
homogeneous plasma also acts as a �ber, and can be used to guide a laser
pulse [26,27]. Such a preformed channel can for example be generated by
another laser pulse.

Capillary discharge wave guide This type of wave guide consists of a gas-
�lled capillary with metal walls. The gas is ionized by means of an elec-
trical discharge. If tuned properly, the plasma density is lowest at the
central axis and increases towards the walls, i.e. a pro�le similar to that
of a preformed channel. The pulse guiding is therefore based on the same
mechanisms [28{30].

Glass capillary tube The capillary is �lled with gas at low pressure. When a
laser pulse passes through, its head is supposed to ionize the gas and create
a suitable density pro�le to guide the tail [31{35].

Of these methods, the preformed plasma channel and the discharge waveguides
look the most promising for laser-plasma acceleration, since these are stable and
reproducible processes. Relativistic self-focusing is an inherently unstable process
with unpredictable outcome, whereas glass capillaries usually only last a single
pulse.
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1.2.2 Irregularities in the wake�eld

For controlled acceleration of an electron bunch, it is important that the excited
plasma wave provides a stable environment. This means that it should not contain
(too many) irregularities. Two important causes of irregularities that can still
occur when proper pulse guiding is employed are wave breaking and parametric
instabilities.

Wave breaking is a process during which the local electron velocity becomes larger
than the local phase velocity of the wave. In a regular wave, the plasma elec-
trons are slower than the wave, and only oscillate back and forth when the wave
passes. For intense plasma waves however, the plasma electrons may overtake the
wave itself during the oscillation. When this happens, a fraction of the plasma
electrons gets trapped in a crest of the wave, and is dragged along over many
plasma wavelengths. The trapping of electrons by a plasma wave may disturb the
structure of the plasma wave and therefore hurt the acceleration process. Wave
breaking will be treated extensively in Chapter 4.

Parametric instabilities are caused by the fact that if a laser pulse with character-
istic frequency !0 interacts with a plasma with characteristic frequency !p < !0,
electromagnetic radiation at the sum and di�erence frequencies is generated. This
process needs small disturbances in the plasma density to start from, and it is
said that the laser light scatters from such disturbances. As it happens, the
original laser light and the scattered radiation drive the density disturbances be-
tween them, and an instability is realized: the larger the density perturbations
the more scattering, and the more scattering the faster the perturbations grow.
An in-depth treatment of parametric instabilities can be found in Chapter 5.

Regularity of the plasma wave is especially important during the acceleration
stage, i.e. when the electron bunch already resides in the wake�eld and is being
accelerated to high energies. At this stage, the occurrence of irregularities needs
to be avoided. Fortunately, both wave breaking and parametric instabilities can
be prevented by taking the plasma density suÆciently low, such that the laser
frequency is much larger than the plasma frequency and the laser pulse is shorter
than one plasma wavelength. A plasma density of about 1017 cm�3 is commonly
employed for the acceleration stage. This has the added bene�t that the group
velocity of the laser pulse, and thus the phase velocity of its wake�eld, approaches
the speed of light c for decreasing density, leading to higher electron energies after
acceleration.

However, things are di�erent in case of internal electron injection, when the
interaction of the laser pulse with the plasma needs to result in the capture
and subsequent acceleration of plasma electrons. In case a single pulse is used,
the capture of plasma electrons is realized by pushing the pulse's wake�eld un-
til wave breaking is reached. As wave breaking becomes easier for decreasing
wave velocity, and the wave velocity decreases with increasing plasma density,
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the plasma density will be much higher here, in the range of 1019 � 1020 cm�3.
Since the plasma wavelength for such densities is about 5 �m, while the laser
pulse length can hardly be below 15 �m, these processes clearly take place in
the self-modulated regime. Since wake�eld excitation occurs through parametic
instabilities in this regime, these are to be stimulated rather than avoided. Also,
as we will see later, the amount of electrons obtained in internal injection can be
optimized through stimulation and/or suppression of speci�c instabilities, while
the inuence of laser and plasma parameters on the injection process mainly acts
through these instabilities.

1.3 Injection, acceleration, and extraction of the

electron bunch

1.3.1 Injecting the bunch into the plasma wave

In a conventional accelerator, the wavelength of the RF wave is several cm, while
in a plasma accelerator, this wavelength is of the order of 0.1 mm. Since in
acceleration physics, both the dimensions and the position of an electron bunch
should be viewed relative to the dimensions of the wavecrest in which the bunch is
to be trapped and accelerated, tuning these bunch parameters is much harder in
plasma-based than in conventional acceleration. This poses serious requirements
on timing and transverse position of the bunch, as well as on its longitudinal and
transverse dimensions.

As we will see in Chapter 3, the mean energy and relative energy spread of a
bunch of electrons after acceleration is very sensitive to changes in the injection
phase. Also, it is important that the bunch length does not exceed a single
plasma wavelength. Similar requirements apply to the transverse dimensions and
positioning of the bunch. The requirements on the tilt, i.e. the angle between the
directions of laser pulse and injected electron bunch, are not very lenient either.

There are several ways to get around the problem of injection accuracy. For
example, the electron bunch can precede the laser pulse instead of following it.
Since the bunch has only a moderate energy on injection, the laser pulse is able to
overtake the bunch, which is subsequently scooped up by the pulse's wake�eld. As
shown by A.G. Khachatryan [36], the bunch is greatly compressed in the process,
and the sensitivity to errors in the injection phase is reduced considerably.

Another option is to accelerate electrons taken from the plasma itself instead
of injecting electrons from the outside. This has the advantage that both the
injection phase and the bunch length are as desired by default, and controlling
these is no longer an issue. Breaking of the wake�eld may cause a considerable
fraction of the plasma electrons to get trapped and accelerated, as mentioned be-
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fore. Wave breaking and plasma electron trapping in the ponderomotive regime
is investigated in Chapter 4, while Chapter 6 deals with particle trapping in the
self-modulated regime. A disadvantage to wave breaking is, that it is not a very
controlled process, so the electrons thus accelerated exhibit a rather large energy
spread. To remedy this, several injection schemes involving multiple laser pulses
have been proposed (cf. Section 1.1). The basic idea is that the wake�eld is
excited by a strong pump pulse, and that a small probe pulse having a slightly
di�erent frequency is arranged to collide with the pump, either head-on or side-
ways. At the moment of collision, the laser pulses beat together to drive a slow
plasma oscillation, which is just suÆcient to inject a small amount of plasma
electrons into the wake�eld of the pump. For such colliding pulse schemes, the
resulting energy spread of the injected electrons is much lower than in a wave
breaking scheme.

1.3.2 Acceleration and extraction of the bunch

In conventional accelerators, the RF wave can be reasonably controlled, ensuring
\clean" acceleration. In addition, the waveguide for the RF wave is designed in
such a way that each time the bunch is (nearly) out of phase with the wave,
the wave undergoes a phase jump such that its phase again matches that of the
bunch. In plasma based acceleration, wave propagation is much less controlled,
and introducing phase jumps is not possible. Therefore, acceleration is limited
to a single so-called dephasing period, after which it is decelerated. This requires
proper extraction of the bunch at approximately the dephasing length. Extraction
at exactly the dephasing length is not an easy task, since the dephasing length
scales with the plasma density ne as n

�3=2
e , and ne is usually not known very

accurately.

Another problem is that for a moderately to strongly underdense plasma, the
dephasing length may be several tens of centimetres, so guiding of the pulse over
a single dephasing length may not be possible at all. As a result, the acceleration
length is often determined from entirely di�erent considerations than whether
dephasing is reached or not.

1.3.3 Controlling the bunch quality

Apart from the issues that arise while providing a proper environment for the
electrons to be accelerated in, there is also the issue of bunch quality. Bunch
quality is usually de�ned as its brightness: the total bunch charge divided by
the volume it \occupies" in six-dimensional phase space (three spatial and three
momentum dimensions). In other words, a bunch has good quality if it contains
much charge compressed in a small spatial volume with little spread in both
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longitudinal and transverse momenta. In many cases, it is not only required
that the accelerated bunch has a high mean energy, but also a good quality.
Controlling bunch quality in plasma-based acceleration is again much harder
than in conventional acceleration, since in the former case the dimensions of the
bunch are much larger with respect to the wavelength of the accelerating wave.
Therefore, di�erent bunch electrons may follow much di�erent paths through
phase space during acceleration, increasing the total volume occupied by the
bunch and deteriorating bunch quality.

1.4 Wake�eld excitation

As explained in Section 1.1, a laser pulse can excite a wake�eld in a plasma by
means of the ponderomotive force it exerts on the plasma electrons. However,
ponderomotive excitation does not work in all circumstances, and other mecha-
nisms contribute to wake�eld excitation as well. This depends on whether the
laser pulse is shorter or longer than a single plasma wavelength.

The regime for which the laser pulse length is shorter than the plasma wave length
is called the ponderomotive regime. In this regime, there is little or no coupling
between the fast laser oscillations at frequency !0 and the slow plasma response
at frequency !p, and the plasma wave is mostly driven by the ponderomotive
force of the laser pulse envelope. Also, since the energy transfer from the laser
pulse to the plasma is not very eÆcient in this regime, one can often neglect
any changes to the laser electromagnetic �elds while it traverses the plasma.
Numerical calculation of the plasma wave driven by the ponderomotive force of a
laser pulse shows that the wave is most eÆciently driven when the pulse length is
between one quarter and one half of the plasma wave length. For longer pulses,
the eÆciency of ponderomotive excitation quickly drops to zero.

Behaviour is di�erent if the laser pulse length is several times the plasma wave
length. This regime is called the self-modulating regime. In this regime, the e�ect
of the ponderomotive force on the plasma is small to negliglible. On the other
hand, there is a strong coupling between the frequencies !0 and !p. This coupling
leads to the excitation of parametric instabilities as introduced in Section 1.2.2
and treated in more detail in Chapter 5, such as stimulated Raman scattering
(SRS), stimulated Compton scattering (SCS), and stimulated Brillouin scattering
(SBS). Of these, SRS will be the most important when studying the interaction
between a laser pulse and a cold, underdense plasma. Through the strong per-
turbation of the plasma density, SRS also leads to strong modulation of the laser
pulse envelope, hence the name of the regime.

Even though there is hardly any ponderomotive excitation of a plasma wave in
the self-modulated regime, suÆciently intense laser pulses are observed to excite
plasma wake waves here. This can be attributed to the presence of the Raman
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forward scattering (RFS) instability. The plasma wave associated with RFS
happens to have frequency !p and wave number approximately !p=c. These are
similar to those of the wake wave excited ponderomotively by the laser pulse.
Therefore RFS and the wake wave enhance each other, and the latter reaches
an amplitude far beyond what could be obtained by ponderomotive excitation
alone. Under the right circumstances, the wake wave can even serve to trap
and accelerate plasma electrons in this regime as well. The way in which Raman
instabilities a�ect the excitation of the laser wake�eld and the trapping of plasma
electrons will be investigated in depth in Chapter 6.

1.5 After the acceleration

So far, we have concentrated on issues that relate directly to the behaviour of
the electron bunch when it is still inside the accelerator. However, what happens
to the bunch after it has left the accelerator is no less important. This �nal
stage consists of guiding the accelerated bunches to their �nal destination, by
means of a beam guiding system that takes the bunch from the accelerator to an
experimental setup, or a storage ring, where high-energy particles are stored for
many hours.

The guiding of charged particles is often done using purely magnetic �elds. These
are preferred over electric or electromagnetic �elds, since the guiding can be best
controlled if static �elds are used, and strong magnetostatic �elds are easier to
produce than strong electrostatic �elds. The magnetic �elds will not exert any
work on the particles during this stage, and as such the bunch guiding stage
is often regarded separately from the acceleration stage. However, the bunch
quality issues that come with this stage are the very same as those important
for the acceleration stage. Therefore, this last stage needs to be explored with
equal care: a poorly constructed beam guiding system can easily destroy the
bunch quality that the accelerator designers have taken so much pains to achieve.
Bunch quality control de�nitely does not stop the moment the bunch leaves the
accelerator.

Accelerated particle beams are usually guided using magnetic multipoles: a con-
�guration of alternating magnetic north and south poles, grouped evenly around
the beam pipe, pointing inward. A magnetic dipole is used for changing the di-
rection of propagation, a quadrupole (or usually a combination of quadrupoles of
opposite strength) for focusing the beam. Since the desired multipole symmetry
is only obtained in the middle of the multipole, and not at its entry and exit
faces, small sextupoles or octupoles are often used there to correct lower order
aberrations from this symmetry.

In order to tune the multipoles along the path of the beam for optimal perfor-
mance, it is vital to have knowledge not only of the central �eld, but also of the
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behaviour of the fringe �elds. Especially for the dipoles and quadrupoles, so the
corrective sextupoles and octupoles can be tuned. This is often done by devel-
oping the magnetic �elds near the fringes into powers of the transverse radius
r, and determining the coeÆcients. A major disadvantage of this is, that the
number of terms grows so explosively, that only lower order terms can be taken
into account. Higher order terms, which are usually insigni�cant if a beam guid-
ing element is passed once, but can become very important if it is passed many
times, as happens in a storage ring, are often neglected because taking these into
account would complicate matters too much.

As it happens, the �elds of magnetic or electric multipoles display a remarkable
amount of symmetry, which can be exploited to give a full yet compact description
of these �elds without having to resort to a power series expansion at all. Such
a description will be presented in Chapter 7.

1.6 Contents of this thesis

In this thesis, the following four topics are investigated. In Chapter 3 a study
on bunch quality control during acceleration is presented; in Chapter 4 wave
breaking and its role in plasma electron trapping are investigated; in Chapters
5 and 6 stimulated Raman scattering and its role in plasma electron trapping
are scrutinized, and in Chapter 7 the description of magnetic multipole �elds in
charged particle optics is given a thorough treatment. Each topic will be discussed
briey.

1.6.1 Bunch quality control

There are many aspects of controlled acceleration, i.e. acceleration while retain-
ing bunch quality, that are worth investigating: minimizing the energy spread,
transverse dimensions, or aperture angle, or maximizing the energy and the to-
tal charge. Of all these aspects, we decided to concentrate on the longitudinal
energy gain and spread as a function of acceleration length, injection and extrac-
tion phase, bunch length and plasma wavelength (plasma density). To this end,
simulations have been performed in which a bunch of charged particles is injected
at low energy into a prescribed linear plasma wave with phase velocity v' . c
and associated Lorentz factor ' = 1=

p
1� v2' = 100. The simulations were

continued until the particles were completely out of phase with the wave and the
mean particle energy started to decrease. The energy spread of the bunch was
continually monitored during acceleration. We aimed at minimizing the energy
spread, and tried to pinpoint which conditions would give a decent energy gain
in that case.
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As it turned out, there is more to controlled acceleration than simply aiming for
a large energy gain: a maximal energy gain is often only obtained at the expense
of a very large energy spread, while sacri�cing a small fraction of the energy gain
may bring us into a parameter regime where the energy spread is fairly small.
This shows that concentrating on energy gain alone, as was done in the early days
of plasma-based accelerator research, is too one-sided. Nevertheless, a parameter
window has been identi�ed for which a low energy spread can be combined with a
high energy gain. Unfortunately, both energy gain and spread are very sensitive
to small errors in the injection time of the bunch versus that of the laser pulse.
This is a motivation to investigate alternative bunch injection schemes in which
the bunch is injected at the correct phase by default, such as internal injection
by means of wave breaking.

1.6.2 Plasma wave breaking

Plasma wave breaking has been investigated as a mechanism for generating fast
electrons for our bunch in the ponderomotive regime. A 1-D analytical model for
plasma oscillations behind a driving source has been developed. The occurrence
of singularities in the model serves to determine the conditions under which a 1-D
plasma wave will start breaking. The model has been extended by including a
\sheet" of trapped electrons preceding the point of wave breaking at a very short
distance. The wake�eld of this sheet will decrease the amplitude of the laser
wake�eld (beam loading), and at a suÆciently high charge density of the sheet,
this beam loading will keep the wake�eld from any further breaking. Therefore
plasma electron trapping through wave breaking is a self-limiting process. The
model also allows to calculate the amount of charge that will be trapped at wave
breaking.

The extended model has been used to express the intensity threshold for trap-
ping and the amount of trapped electrons as a function of intensity and group
velocity of the pulse. Numerical calculations have been performed to support the
analytical results, and also to investigate the inuence of the pulse length and
envelope shape on fast electron production. As the amount of fast electrons can
be derived from the wake�eld amplitude, which is an easier quantity to evaluate
numerically, this amplitude has been calculated and used as a measure of the
amount of charge that can be extracted. It has been found that L � �p=2 is the
optimal pulse length for wake�eld excitation, and that ponderomotive excitation
hardly plays a role for L � �p. It has also been found that pulse envelopes hav-
ing long \tails" do not excite plasma waves eÆciently, while envelopes with steep
anks, especially a steep front, are much better suited for this purpose. In fact,
a steep pulse front, i.e. the pulse intensity increases from 0 to its peak value over
less than a plasma wavelength, is as essential to driving an intense plasma wave
as the peak pulse amplitude.
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1.6.3 Raman scattering and fast electron generation

In the self-modulated regime, i.e. when the laser pulse is longer than one plasma
wavelength, Raman scattering becomes very important in laser-plasma interac-
tion, while ponderomotive excitation fades into the background. Wake�eld excita-
tion, wave breaking, and fast electron generation still occur, but the mechanisms
behind them are fundamentally di�erent from those in the ponderomotive regime.
Research in this regime needs therefore to be approached from a di�erent angle.

Wave breaking and fast electron production in the self-modulated regime have
been investigated using the particle-in-cell (PIC) code XOOPIC [37]. This fully
relativistic code solves the full set of Maxwell equations in one spatial and three
velocity dimensions, and calculates the particle motion using the Lorentz force.
External electromagnetic �elds such as a laser pulse are introduced through
boundary conditions imposed at the boundaries of the simulation box. Using
this code, the e�ect of various laser and plasma parameters on fast electron pro-
duction has been investigated. Also, the role of Raman forward and backward
scatter has been explored.

In line with earlier results, it has been found that Raman forward scatter drives
the laser wake�eld, and that Raman backward scatter \heats" the plasma, causing
many slow plasma electrons to be injected into the wake�eld. At laser intensi-
ties slightly above the electron trapping threshold, such injection increases the
amount of high-energy electrons produced in laser-plasma interaction. However,
at intensities well beyond this threshold, RBS and the amount (charge) of in-
jected electrons increase to an extent, that the wake�eld is heavily damped, and
fast electron production su�ers. Therefore, suppression of RBS at higher laser
intensities is deemed favourable to the production of fast electrons.

Suppression of RBS can be achieved by enhancing RFS growth [38]. RFS can
be enhanced by adding a small satellite pulse at the Stokes frequency !0 � !p
to the main pulse. In addition, it has been found that a number of laser and
plasma parameters, such as plasma density pro�le, laser pulse shape, and laser
frequency chirp, inuence the balance between RBS and RFS, and thus indirectly
fast electron generation. These results can be used to predict the e�ect of such
parameters on the amount of fast electrons.

As an example, the �ndings from the previous paragraphs will be used to resolve
the \chirp controversy". Laser chirp (position dependent laser frequency) has
been found to inuence the amount of high-energy electrons generated in laser-
plasma interaction quite strongly, both in simulations [39], and experiments [40].
Chirp is usually induced by detuning the double grating compressor in the CPA
scheme (cf. Section 1.1). This not only causes the laser frequency to become
position-dependent, but it also increases the pulse length. In the simulations as
well as the experiments, positive chirp (frequency increases from front to back)
seemed to cause a much higher fast electron yield than negative chirp. However,
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an incorrect de�nition of chirp was used in the simulations (the pulse length was
kept �xed when chirp was added to the pulse), while the inuence of chirp as
seen in the experiments has later been explained from modulations of the pulse
envelope caused by the laser optics [41], rather than from the position-dependent
carrier frequency. The inuence of chirp, in both the correct and incorrect imple-
mentation, and envelope modulation on RBS, RFS, and fast electron generation
has been studied with XOOPIC. From the results, it can be concluded that linear
laser chirp will not increase the yield of fast electrons, and that any previously
observed increase of this yield has to be attributed to other causes.

1.6.4 Charged particle optics

As mentioned above, the problem in describing the (magnetic) �elds of multipole
devices is that expansion to a few orders in the transverse coordinates already
involves more terms than one can keep track of. To overcome this problem, we
approached the issue from a di�erent angle. In our approach, we exploited many
of the inherent properties of a magnetic �eld in vacuum, and of its mathematical
description. We introduced a (harmonic) scalar potential for the �eld, and split
it up into multipole contributions; these are shown to be harmonic themselves.
Then we coupled this mathematical description to the boundary conditions pro-
vided by �eld measurements as they are done in practice. We wrote each multi-
pole contribution as a linear combination of spline-like harmonic functions, and
showed how the spline coeÆcients could be derived directly from the measured
values of the magnetic �eld. This allows us to write not only the magnetic �eld
in terms of these values, but also related quantities, like the multipole strength
and the magnetic vector potential.

The description of the vector potential in terms of �eld measurements can be ex-
tended to the description of the actual transfer map of a multipole device, i.e. the
function that maps the transverse phase space at the entry face to the transverse
phase space at the exit face, or a combination of those. There are various ways
to do this; one of them has been described in this thesis. Applications include
easy calculation of the transfer functions of single beam guiding elements or clus-
ters of such elements, as well as calculation of generalized �eld gradients for any
multipole contribution up to any order. There are also numerous applications in
low-energy electron optics.

Since there is a vast body of existing results on analytical particle optics, we will
also show that the methods developed in Chapter 7 can also be used to calculate
�eld related coeÆcients wherever they appear in literature on charged particle
optics. This way, the new results are an extension of existing ones, rather than
an attempt to replace them.
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Chapter 2

Fluid description of laser-plasma

interaction

In this chapter, the interaction of a laser pulse with an underdense plasma is
studied by means of a uid description. Equations for the evolution of the plasma
electron uid are derived, while the plasma ions are regarded as stationary. An
extension is made to include externally injected electrons in the model, which are
not covered by the standard uid description.

For a more elaborate treatment of the topics presented here, see Reitsma [1].

2.1 Plasma uid equations

In this chapter, we make the following assumptions about the plasma.

� The plasma is regarded as a cold electron uid, including the e�ects of
Debye shielding,

� The plasma is fully ionized,

� The ions are immobile with background density n0,

� The plasma is globally charge neutral.

The �rst assumption does not cover electrons that are externally injected into the
plasma. In general, their velocity will be too large for Debye shielding to work,
and their interaction with the plasma is governed by other mechanisms.

Under these assumptions, the relativistic equation of motion for the plasma elec-
tron uid reads:

@p

@t
+ (v � r)p = �e(E + v�B): (2.1)
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Here, E and B denote the electric and magnetic �elds within the plasma. The
symbols v and p denote the plasma electron uid velocity and momentum, re-
spectively. They are related according to

p = mev;  =
p
1 + p2=(mc)2 = 1=

p
1� v2=c2:

The EM �elds are governed by Maxwell's equations:

r �B = 0;

r �E = �="0;

@B

@t
+r� E = 0;

@E

@t
� c2r�B = �J="0:

Here, � and J denote the charge and current density within the plasma, given by
� = (n0 � n)e, J = �nev, with n the plasma electron density. These equations
already contain the continuity equation for n:

@n

@t
+r � (nv) = 0;

Using the identity

mec
2r = (v � r)p + v� (r� p);

we rewrite (2.1) as follows:

@p

@t
+ eE+mec

2r = v� (r� p� eB): (2.2)

Taking the curl of this equation gives

@


@t
�r� (v�
) = 0;

where 
 � r� p� eB is called the generalized vorticity. This equation implies
that if 
 is zero at t = 0, then it will remain zero for all t > 0. In laser plasma
interaction, if we assume that the plasma is neutral and at rest before the laser
pulse enters it, we have 
 = 0 at t = 0 and thus 
 = 0 for all t > 0.

We introduce scalar and vector potentials for the electromagnetic �elds in the
usual way:

E = �r�� @A

@t
; B = r�A:

In this thesis, the Coulomb gauge will be used for A, i.e. r � A = 0, unless
otherwise indicated. In terms of these potentials, 
 = 0 becomes r�(p�eA) =
0, and the equation of motion (2.2) can be written as

@

@t
(p� eA) = r(e�� mec

2):
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The term �mec
2r in this equation is known as the ponderomotive force.

We proceed to rendering all variables dimensionless through scaling. This will
allow us to better compare the order of magnitude of the various terms in the
equations. First, the time is scaled with some reference frequency !r, to be deter-
mined later: t! !rt. We then proceed to scale all other quantities: x! !rx=c,
v ! v=c, p ! p=(mec), E ! eE=(me!rc), B ! eB=(me!r), � ! e�=(mec

2),
A! eA=(mec), and n! n=n0. Then the dimensionless equations for the plasma
become:

r� (p�A) = 0; (2.3)

@

@t
(p�A) = r(�� ); (2.4)

�A� @2A

@t2
= "2

n


p+r@�

@t
; (2.5)

�� = "2(n� 1); (2.6)

@n

@t
+r(n


p) = 0: (2.7)

Here, " = !p=!r, where !p denotes the plasma frequency given by

!2

p = n0e
2=("0me):

Convenient choices for !r are !r = !p (" = 1), or !r = !0 (" � 1), where
!0 denotes the laser carrier frequency. Propagation in free space corresponds to
" = 0.

2.2 Separation of time scales

The set of equations (2.3)-(2.7) completely describes the behaviour of the cold
plasma electron uid under the inuence of electromagnetic �elds. So far, no
distinction has been made between EM �elds that originate from the plasma
itself, and those that originate from outside the plasma, such as the EM �elds of
a laser pulse that interacts with the plasma. In laser-plasma interaction, the laser
EM �elds usually operate on a much shorter time scale than those generated by
the plasma response. This allows one to treat the evolution of laser and plasma
EM �elds separately.

The separation of time scales works as follows. For a laser pulse having frequency
!0 to propagate through a plasma having plasma frequency !p, one must have
!0 > !p. For the pulse to propagate over a reasonable distance, one must have
!0 � !p, otherwise the pulse depletes too quickly through reection or parametric
instabilities. Under these circumstances, any quantity that evolves on the slow
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time scale, i.e. with !pt, can be considered constant on the fast time scale.
Conversely, any quantity that evolves on the fast time scale only, i.e. with !0t,
averages to 0 when observed on the slow time scale. This allows us to regard any
quantity Q as the sum of a fast and a slow contribution, i.e. Q = Qs+Qf , where
Qs is given by the average hQi of Q over the fast time scale. Then the equations
(2.3)-(2.7) can be rewritten as two sets of equations, one for the fast parts and
one for the slow parts.

In order to separate the evolution of fast and slow quantities, we set !r = !0
in (2.3)-(2.7) so " = !p=!0 � 1, and determine the order in powers of " of the
various derivatives of fast and slow quantities. We observe that the temporal and
some of the spatial derivatives of a fast quantity Qf will be much larger than
those of a slow quantity Qs. For a laser pulse that moves in the z-direction with
velocity ' c, and taking Qf , Qs both O(1), we have

@Qf

@t
= O(1); @Qf

@z
= O(1); r?Qf = O(");

@Qs

@t
= O("); @Qs

@z
= O("); r?Qs = O("):

Here, we have assumed that even fast quantities evolve slowly in a direction
perpendicular to that of the laser pulse.

It is worth noting that in the expression Q = Qf + Qs, Qf and Qs might be of
very di�erent order in " without this being obvious. For this reason, both Qs and
Qf will be taken to be O(1) and then multiplied by the correct power of ". For
example, in the expression Qf + "2Qs, the fast part is O(1) and the slow part is
O("2).
We proceed to determine the fast and slow contributions to the various �eld and
particle quantities. The scaling of the vector potentialA is considered �rst. From
r �Af = r �As = 0, we �nd that Af = A?;f + "Az;f êz. Assuming that As has
the same order in " as A?;f , we write

A = A?;f + "Az;f êz +As:

A consequence of this assumption is that the slow parts of E and B are one order
of " smaller than the fast parts.

The next two quantities to be treated are the electron uid momentum p and
Lorentz factor . We observe that the fast transverse electron motion consists
mainly of the electron quiver motion in the fast EM �elds, and set p?;f = A?;f+
O(")ê?. Then we �nd for :

2 = 1 + p2 = 1 + (A?;f + ps)
2 + 2pz;spz;f + p2z;f +O("):

For the slow part s of , we obtain:

2s = h2i = 1 + hA2

?;fi+ hp2z;fi+ p2s:
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We assume that the laser pulse is circularly polarized, so A2

?;f � hA2

?;fi = O(").
This basically means that the contributions of higher harmonics to the laser �eld
can be neglected. If a linear polarization were chosen, the contributions of higher
harmonics would be O(1), i.e. not negligible at all. As a result, we �nd that
@=@z = O("), and from (2.4) it is found that the fast part of pz is O(") as well.
We then obtain the following ordering for p and :

p = p?;f + "pz;f êz + ps;

 = s + "f ;

where s is given by

s =
p
1 + p2s + U; U = hA2

?;fi:
Inserting this in (2.4) yields �f = O(") or even smaller. This implies that the
plasma density oscillation will be mainly driven by the slow ponderomotive force
rather than the fast quiver motion. As a consequence, the plasma density is
ordered as n = ns + "nf . Inserting this into (2.6) yields � = �s + "3�f for the
ordering of the electrostatic potential.

At this point, we are ready to write down the slow part of the wake�eld equations
(2.3)-(2.7). We observe that n= = ns=s +O("), and obtain:

@

@t
(ps �As) = r(�s � s); (2.8)

�As � @2As

@t2
= "2

ns
s
ps +r

@�s
@t

; (2.9)

��s = "2(ns � 1): (2.10)

Included in these equations is the slow part of the continuity equation:

@ns
@t

+r(ns
s
p) = 0:

These equations describe the slow plasma response to a laser pulse with given
A?;f . It should be noted that the dependence of s on hA2

?;fi is the only way in
which the fast laser EM �elds couple to the slow wake�eld. Since the slow plasma
response is dominated by !p rather than !0, we set !r = !p, i.e. " = 1, for the
slow wake�eld equations (2.8)-(2.10) in this and the following two chapters.

Regarding the fast part of the wake�eld equations, it is found that the only
fast quantities of O(1) are the fast vector potential A?;f and the fast transverse
momentum p?;f . Using (2.4) to eliminate p?;f and neglecting all terms of higher
order in ", the fast wake�eld equations reduce to a single equation (non-linear
Klein-Gordon equation) for A?;f :�

�� @2

@t2
� "2

ns
s

�
A?;f = 0: (2.11)



30 Chapter 2. Fluid description. . .

For this equation, " = !p=!0 is retained. The evolution of the fast EM �elds
is coupled to the slow plasma response through the term "2(ns=s)A?;f . This
means that the systems of fast and slow equations can only be considered as
independent if " is small, i.e. when !p � !0.

Usually, one assumes A?;f = a(r; t) exp[i(t � z=v')], where a(r; t) denotes the
envelope of A?;f evolving on the slow time scale. Inserting this into (2.11) yields
an envelope equation for a and the dispersion relation 1�1=v2'�(!p=!0)2ns=s =
0. For 1-D calculations in the linear regime, the approximation ns � 1 is often

used. Then the dispersion relation reduces to v' = 1=
q
1� (!2

p=!
2
0)=s, i.e.

vg =
q
1� (!2

p=!
2
0)=s, and g = 

1=2
s !0=!p � 1. Here, vg and g are the pulse

group velocity and corresponding Lorentz factor. For pulses that propagate in
a plasma channel in 2-D or 3-D calculations, the �nite spot size and channel
width must be taken into account. This renders the dispersion relation more
complicated.

In previous research [3,4], it has been shown that the envelope of a short (L �
�p=2) laser pulse in the linear or weakly non-linear regime (a0 � 1) displays
very little evolution over very long distances, especially so when it propagates in
a matched parabolic plasma density channel. This implies that, while @ta? and
@za? are of O("), the evolution with respect to a frame moving at the same speed
as the laser pulse must be of higher order in ". In other words, (@t + vg@z)a? =
O("2). This ensures that the evolution of the pulse envelope after propagation
over its own length is negligible. For this reason, in this and the next two chapters,
the pulse envelope will not be calculated from (2.11), but prescribed directly as
a function of z � vgt, where vg is obtained from the above dispersion relation.
Of course, this approximation cannot and will not be made in Chapters 5 and 6,
where we operate in a regime in which Eq. (2.11) plays an important role.

2.3 Wake�eld potential

We consider the situation of a laser pulse propagating through a plasma with
a group velocity vgêz. We assume that the pulse is non-evolving, and that the
plasma background density does not depend on the longitudinal coordinate z.
Then it is convenient to change to a comoving coordinate system � = z � vgt,
� = t. Partial derivatives to � and � are given by

@

@z
=

@

@�
;

@

@t
=

@

@�
� vg

@

@�
:

For a laser pulse that is not too intense, so the wake�eld it excites is not too non-
linear, the evolution of both the laser pulse and the wake�eld in the comoving
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frame is on a timescale much larger than !�1p . In that case, all explicit � depen-
dence in the wake�eld equations can be neglected, i.e. @=@t = �vg@=@�. This
is called the quasi-static approximation. Under this assumption, the wake�eld
equations become (subscript \s" dropped):

�vg @
@�

(p? �A?) = �vgr?(pz � Az) = r?(�� ); (2.12)

�vg @
@�

(pz � Az) =
@

@�
(�� ); (2.13)

�A� v2g
@2A

@�2
= nv� vg

@

@�
r�; (2.14)

�� = n� 1: (2.15)

From (2.12) and (2.13) we �nd r( � vgpz) = r(� � vgAz), which yields on
integration

 � vgpz = 1 + �� vgAz: (2.16)

We de�ne the wake�eld potential 	 as 	 = 1+�� vgAz. This quantity plays an
important role in the description of plasma wake�elds. It can be shown that in the
quasistatic approximation, a regular plasma wake�eld can be described entirely
in terms of the wake�eld potential. Also, the dynamics of charged particles in
the wake�eld are governed by this wake�eld potential.

The remainder of this section shall be devoted to the derivation of simpli�ed
versions of the wake�eld equations that are entirely expressed in terms of 	, for
1-dimensional and 2-dimensional slab geometries.

1-D geometry In 1-D geometry, the Coulomb gauge reduces to @Az=@z = 0.
Without loss of generality, one can take Az = 0. From (2.12), we �nd that
p? = A?. The equation for A? then reads:

(1� v2g)
@2A?

@�2
=
n


A?:

The right-hand side of this equation is O(1), while the left-hand side is O(1�v2g),
where 1 � v2g = !2

p=!
2
0 � 1. Therefore, the only possible solution is A? = 0.

As a consequence, the slow 1-D wake�eld neither induces a magnetic �eld nor
transverse motion of the plasma uid. Then we have 	 = 1+� and the wake�eld
equations (2.12)-(2.15) simplify to

	 =  � vgpz; (2.17)

@2	

@�2
= n� 1; (2.18)

n(vg � vz) = vg: (2.19)
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Using  =
p
1 + p2z + U and (2.17), we express  and pz in terms of �:

 = 2g

�
	� vg

q
	2 � (1 + U)=2g

�
;

pz = 2g

�
vg	�

q
	2 � (1 + U)=2g

�
:

Since p is a real-valued quantity by de�nition, these relations are only valid for
	2 > (1 + U)=2g . This follows from the fact that @	=@pz = 0 at this point, and

there is a one-to-one correspondence between pz and 	 for pz < gvg
p
1 + U only.

This upper limit on pz, as derived from the equation of motion (2.17) will prove
important in Chapter 4, when wave breaking of plasma waves is investigated.

Equation (2.19) also contains a singularity, occurring when vz " vg, and thus
pz " gvg

p
1 + U . For a cold plasma, this singularity coincides with the singularity

in (2.17). In Chapter 4, we will see that in case of a warm plasma, the singularity
in (2.17) occurs already at lower pz, while that in (2.19) will remain at vz = vg,
meaning that both singularities will no longer coincide.

Using (2.19), we obtain the following equation for 	:

@2	

@�2
= 2g

0
@ vg	q

	2 � (1 + U)=2g

� 1

1
A : (2.20)

Several limit cases may be of interest. In the limit vg ! 1, Eq. (2.20) transforms
into

@2	

@�2
= �	2 � (1 + U)

2	2
:

In the limit of a small amplitude plasma wave, (2.20) can be linearized. We
substitute 	 = 1 + Æ	 and neglect terms of O(Æ	2) and all terms smaller than
O(1=2g) to obtain �

@2

@�2
+

1

v2g

�
Æ	 =

U

2v2g
: (2.21)

Green's function for this equation with the boundary condition lim�!1 Æ	(�) = 0
reads

G(�; � 0) = H(� 0 � �) sin[(� 0 � �)=vg];

where H(�) denotes the Heaviside step function. The solution to (2.21) reads:

Æ	(�) =
1

2v2g

Z 1

�1

U(� 0)G(�; � 0)d� 0:
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For a pulse of �nite size, e.g. located at �L < � < 0, the wake�eld behind the
pulse (� < L) is given by

Æ	(�) = Is cos(�=vg)� Ic sin(�=vg);

Is =
1

2v2g

Z
0

�L

U(� 0) sin(� 0=vg)d�
0;

Ic =
1

2v2g

Z 0

�L

U(� 0) cos(� 0=vg)d�
0:

In other words, a low-intensity laser pulse in a 1-D setting drives a sinusoidal
wake�eld, of which the amplitude depends on the integrals Is and Ic. The wake-
�eld will have maximum amplitude for L=vg � �, i.e. when the pulse length is
half a plasma wavelength. This is called resonant laser wake�eld excitation. Also,
the wake�eld amplitude tends to 0 for L=vg > 2�, since then U(�) is averaged
over multiple periods of the plasma oscillation and Is, Ic tend to 0. This means
that plasma wave excitation through the ponderomotive force r does not work
for pulses longer than the plasma wavelength. The fact that such pulses are still
found to excite plasma waves can almost entirely be ascribed to the action of
the Raman forward scattering instability together with bunching of the laser EM
�elds. These issues will be treated in detail in Chapters 5 and 6.

2-D geometry In 2-D slab geometry, we take x to be the transverse coordinate
and drop all y-dependence from (2.12)-(2.15). The resulting equations are still
quite complicated, so we simplify them further by taking the limit vg ! 1. Since
this comes down to assuming that (1 � v2g)@

2=@�2 = 0, this simpli�cation is
only valid for plasma waves that are far from breaking conditions. (Just before
breaking, a plasma wave displays large �-derivatives for which the assumption
does not hold; see Chapter 4.) In this limit, all wake�eld quantities can be
expressed in the wake�eld potential 	 as follows:

� � n


=

1

	

�
1 +

@	

@x

�
;

px =
1

�

@2	

@�@x
;

pz =
1

2	
(1 + p2x + U �	2);

 =
1

2	
(1 + p2x + U +	2):

Equations (2.12) and (2.13) have been used to eliminate A. The remaining
wake�eld equations reduce to a single equation for 	:

@2	

@�2
� @2	

@x2
� @2

@�@x

�
1

�

@2	

@�@x

�
+ �	 = � � @2

@x2
: (2.22)
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For small amplitude waves (	 � 1 + Æ	,  � 1 + U=2, � � 1), this equation can
be linearized as follows:�

1 +
@2

@�2

��
1� @2

@x2

�
Æ	 =

1

2

�
1� @2

@x2

�
U:

Green's function for this equation with boundary conditions lim�!1 Æ	(x; �) =
limjxj!1 Æ	(x; �) = 0 reads

G2(x; x
0; �; � 0) =

1

2
exp(�jx0 � xj)H(� 0 � �) sin(� 0 � �)

=
1

2
exp(�jx0 � xj)G(�; � 0; vg = 1):

We see that both the 2-D wake�eld equation and the corresponding function of
Green have the same longitudinal behaviour as in one dimension. This means
that the longitudinal e�ect of charged particles on the wake�eld can be described
correctly in 1-D, so the use of the 1-D approximation in the next chapter can
be justi�ed. However, as we will see in the next section, the mechanisms behind
wake�eld excitation in one and two dimensions are entirely di�erent.

2.4 Charged particles in the plasma

When charged particles are brought into the laser wake for acceleration, the wake
does not only govern the motion of these particles, but the presence of the par-
ticles inuences the evolution of the wake as well. In addition, the particles also
inuence each other, either through direct Coulomb interaction or through the
way each particle modi�es the wake behind itself. This section will be devoted
to the study of particle-wake and particle-particle interaction, and will give jus-
ti�cation to some common assumptions.

We start by studying the interaction between two particles, both having charge q
and moving with relativistic velocities v1êz and v2êz. From relativistic EM �eld
theory [2], we �nd that the potentials for particle 1 are given by

� =
kq1p

21(z � v1t)2 + x2 + y2
; A = v1�êz;

where k = e=(4�"0mec
3). Note that in this section only, the Lorenz gauge1 has

been employed. The electromagnetic �elds for this particle are given by

E = �
�
@�

@x
;
@�

@y
; (1� v21)

@�

@z

�
; B = v1

�
@�

@y
;�@�

@x
; 0

�
:

1Ludvig V. Lorenz, Phil. Mag. Ser. 3 34, 287 (1867).
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The Lorentz force2 on particle 2 due to the �elds of 1 is

Fz = �(1� v21)
@�

@z
; F? = (1� v1v2)r?�:

Now let particle 1 be an electron trapped in the laser wake with 1 � g =
1=
p
1� v2g . We then �nd that Fz = O(1=21), regardless of the velocity of particle

2. Things are di�erent for F?. If particle 2 is another electron trapped in the
wake with 2 � 1, then we have F? = O(1=1). However, if particle 2 is a plasma
electron having 2 < g � 1 (a necessary condition to avoid wave breaking),
we have F? = O(1(1 � v1v2)). The ratio of the magnitudes of these forces is
to leading order 222=

2
1 � 1. This means that both the longitudinal force by

particle 1 in general and the transverse force it exerts on other trapped particles
can be neglected with respect to the transverse force it exerts on particles in the
plasma uid, provided that the average distance between plasma particles is not
larger than the average distance between trapped particles. That is, the density
of trapped particles should not be larger than the plasma electron density.

Assuming the density condition to be satis�ed, we observe that trapped electrons
in the plasma wake�eld interact by modifying the wake which inuences other
trapped electrons, while direct Coulomb interaction can be neglected. This im-
plies that the interaction is not symmetric: a trapped electron can only inuence
electrons that follow it, not those that precede it.

The inuence of a bunch of trapped electrons on the wake�eld can be worked
into the wake�eld equations as follows. We assume that the bunch evolves slowly
with respect to the plasma oscillation while its velocity is approximately vg, so
the plasma response to any change in the bunch density and current is considered
to happen instantaneously. We also assume that the transverse bunch current
can be neglected with respect to the transverse current of the plasma uid. This
results in �b = �nb, Jb = (0; 0;�vgnb) for the charge and current density caused
by the bunch. These contributions are then added to Eqns. (2.12)-(2.15). They
result in a source term nb, to be added to the wake�eld equations (2.20) and
(2.22) and their linearized counterparts. The contribution of a unit charge at
� 0 or (x0; � 0) to the wake�eld is then G(�; � 0) or G2(x; x

0; �; � 0) for 1-D or 2-D
respectively. In this light, the choice of the boundary condition for � ! 1 is a
direct consequence of the requirement that trapped electrons (or laser pulses for
that matter) do not disturb the plasma in front of them.

We now take a closer look at how a trapped electron creates its wake. In 1-
D, a \particle" is actually an (x; y)-plane with a certain surface charge density.
Because of the surface charge, the Ez �eld experiences a jump in the z-direction.
This jump does not decrease with , but remains constant regardless of the speed
of the particle. The wake�eld excited by a 1-D particle is a direct consequence

2Hendrik A. Lorentz
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of the occurrence of this jump. In 2-D, a \particle" is a line in the y-direction
with a certain line charge density. It can be shown that the longitudinal �eld Ez

for such a line is of O(1=) and thus vanishes completely in the limit vg ! 1.
Therefore, the wake�eld for a particle in 2-D (or 3-D for that matter) needs to
be excited through a di�erent mechanism. As follows from Jackson [2] Section
11.10, the transverse force a charged particle at ultrarelativistic speed exerts on
the plasma uid takes the form of a short transverse kick, with intensity of O()
and duration of O(1=). Thus, its net e�ect tends to a nonzero constant for
vg ! 1, while its duration tends to 0. This in�nitesimal kick causes the sudden
onset of the wake�eld at the precise location of the particle, while leaving the
wake�eld in front of it undisturbed. So in 2-D or 3-D, the jump in the wake�eld
at the position of the particle in the longitudinal direction is actually caused by
the action of the transverse �elds.

Fortunately, the wake�elds for particles in 1-D or 2-D have the same longitudinal
�-dependence, even though they result from entirely di�erent mechanisms. This
justi�es the use of the 1-D approximation in the wake�eld calculations presented
in the next chapter. It should be noted that the x- and �-dependence of the 2-D
wake�eld can be decoupled only because the transverse motion of the particle has
been neglected when calculating the particle current Jb, and because the plasma
response is assumed to be instantaneous.
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Chapter 3

Energy spread in plasma-based

acceleration

Electron acceleration in a one-dimensional plasma wave has been simulated, with
emphasis on minimizing the energy spread of an accelerated electron bunch, while
keeping the mean energy gain at a reasonable level. Bunch length, beam loading
and the injection phase are tuned to reach this goal. The simulation results show
that in a wide range of initial bunch lengths and beam loading parameters an
optimum acceleration distance exists, which combines low energy spread and high
energy gain. The energy spread at the optimum is found to be weakly dependent
on bunch length and beam loading, while it is highly sensitive to deviations in
the injection phase.

The contents of this chapter have been published in part as the article \Energy
spread in plasma-based acceleration", A.J.W. Reitsma, R.M.G.M. Trines, and
V.V. Goloviznin, IEEE Trans. Plas. Sci. 28, 1165 (2000).

3.1 Introduction

The worldwide study of excitation of strong plasma waves by using high-intensity
lasers is directed towards the development of a compact laser-plasma accelerator
[1,2]. The idea for such an accelerator has originally been proposed by Tajima
and Dawson [3]. Until now, the emphasis, both in experimental work and simu-
lations, has been on the high acceleration gradients and energy gain provided by
such an accelerator. A very high acceleration gradient of 100 GeV/m has been
demonstrated by Modena et al. [4]. This is three to four orders of magnitude
higher than the acceleration gradients in conventional linacs. In this experiment,
the electrons to be accelerated originated from the bulk plasma as a result of
self-trapping in the plasma wave. For an externally injected electron bunch, an
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energy gain of several MeV in a few mm has been demonstrated by Dorchies et
al. [5]. Typically, the accelerated electrons come in a broad energy range from
practically zero to some maximum value. Wilks et al. [6] showed that, in gen-
eral, a low energy spread can be reached at the expense of energy gain. Van der
Meer [7] proposed a special shaping of the electron bunch that reduces the energy
spread considerably. Katsouleas et al. [8] developed a strategy for phasing and
beam loading that minimizes energy spread without special shaping. The present
work is an extension of the latter paper. In addition to the injection phase and
beam loading, the bunch length as a tunable parameter has been included.

The calculations on longitudinal energy spread presented in this chapter have
been performed in the one-dimensional approximation. Notwithstanding its lim-
itations, this approximation is relevant for linear wake waves in a plasma accel-
erator with a hollow channel, as proposed by Chiou et al. [9]. For small beams
(bunches) in a hollow channel, transverse beam emittance is well preserved and
the transverse beam dynamics has little e�ect on energy gain and energy spread
[10], so that we may consider the acceleration as a predominantly one-dimensional
process.

This chapter is organized as follows. First, the basic Hamiltonian system for a
particle in a linear wake�eld is explored. The structure of the phase space for a
single particle is investigated and those regions in which the particle is con�ned
to a single crest of the wake�eld are identi�ed. From the equations of motion,
the mean energy and energy spread of a short bunch of electrons are determined.
Then the e�ect of beam loading, i.e. the way a charged particle a�ects the wake-
�eld, is introduced. By combining the energy spread induced by the �nite length
of the bunch and the spread induced by beam loading, the acceleration length
at which a minimum in the energy spread occurs is estimated. Subsequently,
electron acceleration in a one-dimensional linear plasma wave is simulated. The
simulations serve to determine those values for the bunch parameters that com-
bine a large energy gain with a minimum energy spread. The acceleration length
for which minimum spread occurs will be determined, allowing us to verify the
analytical estimate of the optimal acceleration length. Finally, the sensitivity of
the minimum in energy spread to errors in the various bunch parameters will be
discussed.

3.2 Single electron dynamics

In this chapter, the dynamics of particles in a linearized 1-D wake�eld will be
investigated in the quasi-static approximation. As before, the wake�eld potential
is written as 	 = 1 + Æ	, and the linearized equation (2.21) for Æ	 behind the
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laser pulse (U = 0) reduces to�
@2

@�2
+ k2

�
Æ	 = 0; (3.1)

where k = 1=vg denotes the wave number of the plasma wave. The solution can
always be written in the form

Æ	 = �	0 sin(k�);

where z has been chosen for the longitudinal coordinate, � = z � vgt, and vg de-
notes the velocity of the comoving frame of reference. The corresponding electric
�eld is purely electrostatic and is given by

E = �@Æ	
@�

= e0 cos(k�); (3.2)

where e0 = k	0 is the amplitude of the wake�eld. For vg � 1, we have k �
1+1=(22g), where g = 1=

p
1� v2g . In the calculations presented in this chapter,

g = 100 will be taken, so we can safely use the approximation k = 1. This
means that in scaled coordinates, one plasma wavelength equals 2�.

The equations of motion for a single electron with position � and momentum p
are

d�

dt
=

p


� vg; (3.3)

dp

dt
= �e0 cos(�) = @Æ	

@�
; (3.4)

where  =
p
1 + p2 as usual. Together with the Hamiltonian

H =  � vgp� Æ	 =  � vgp + e0 sin �; (3.5)

these equations constitue a Hamiltonian system.

We take a closer look at the Hamiltonian H. The momentum dependent partp
1 + p2 � vgp reaches its minimum of 1=g at p = gvg, whereas the position

dependent part e0 sin � reaches its minimum of �e0 at � = ��=2+n�2�, n integer.
The points � = ��=2 + n � 2�, p = gvg are local mimima for H, and are called
O-points. At these points, H equals 1=g � e0. At the points � = �=2 + n � 2�,
p = gvg (n integer), the position dependent part reaches its maximum while
the momentum dependent part is still minimum. These points are saddle points
for H and are called X-points. A contour plot of H(�; p), i.e. a plot of curves
along which H is constant, is given in Fig. 3.1; an O-point and an X-point are
indicated. The driving laser pulse is to the right of the region depicted in the
graph.
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A single particle obeying the equations of motion (3.3) and (3.4) is con�ned to the
curves H(�; p) = C in phase space, where C is some constant. SinceH � 1=g�e0
for all � and p, we necessarily have C � 1=g � e0. The equation H(�; p) = C
can be solved for p to obtain:

p(�) = 2g

h
vg(C � e0 sin �)�

q
(C � e0 sin �)2 � 1=2g

i
: (3.6)

We denote the roots by p� and p+ where p� � p+. Note that one always has
p� � gvg � p+, so if the roots coincide, they coincide at gvg.
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Figure 3.1: Contour plot of the Hamiltonian H(�; p). Particle orbits are de�ned
by the curves of constant H. The solid curves denote the separatrices; the dashed
curves denote other orbits. An O-point and an X-point are indicated. The points
L and H denote the points of lowest and highest energy along a closed electron
orbit in phase space. (Picture courtesy of A. Reitsma.)

We discern two cases: (i) C > 1=g + e0, and (ii) 1=g � e0 < C < 1=g + e0.
These will be treated separately.

(i) In this case, (3.6) yields two distinct solutions p+ and p� for any value of
�. This implies that the curves H = C in phase space are \open" curves that
extend from � = �1 to � = 1. In Fig. 3.1, these curves are near the bottom
or top of the graph. A particle moving along the curve (�; p�(�)) always has
a lower velocity than the wake�eld, and is called untrapped. A particle moving
along the curve (�; p+(�)) always has a higher velocity than the wake�eld, and is
called detrapped. Since such particles are not con�ned to a de�nite region of the
wake�eld, they are not considered useful for controlled acceleration.

(ii) In this case, (3.6) yields two distinct solutions p+ and p� only for � such
that C > 1=g + e0 sin �, i.e. �1 � sin � < (C � 1=)=e0 < 1. This is true for
� in non-overlapping �nite intervals with length 2LC < 2� around the points
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��=2 + n � 2�, n integer. For � = ��=2� LC , we have C � e0 sin � = 1=g, and
thus p� = p+ = gvg. This means that the curves H = C are closed orbits in
phase space centered around the O-points (��=2; gvg), having maximum width
2LC at p = gvg. See also Fig. 3.1. For C = 1=g � e0, the curve H = C
reduces to a single point: the O-point itself. A particle moving along such a
closed orbit is actually oscillating back and forth within a single period or wave
crest of the wake�eld, a process called synchrotron oscillation, and is therefore
called trapped. The points � = ��=2�LC , p = gvg are called the turning points
of the oscillation, since one has d�=dt = @H=@p = 0 there. A special case is that
of a particle positioned precisely at the O-point, since such a particle does not
move at all with respect to the wake�eld. Trapped particles can be accelerated
by the wake in a controlled way. For this reason, when injecting particles into a
given wake�eld, the aim is to inject as many particles as possible into the regions
of closed orbits in phase space, i.e. the regions where they will get trapped.

In case C = 1=g + e0, the curves (�; p�(�)) and (�; p+(�)) meet at the points
� = �=2 + n � 2�, i.e. the X-points, but are distinct for all other �. These curves
are called the lower and upper separatrix, since they separate the regions in phase
space containing untrapped or detrapped particles from the regions containing
trapped particles. The solid curves in Fig. 3.1 denote these separatrices.

Acceleration of a single particle in a wake�eld works as follows. The aim is to
inject a particle on a closed orbit in phase space, on a point with low p. After
some time, the particle will have progressed to a point on the orbit with high
p, and then the particle needs to be extracted before it has a chance to reach
parts of the orbit at which p is low again. In other words, a particle should
be injected near point L in Fig. 3.1, and extracted near point H. Usually, it is
not bene�cial to have a particle perform multiple synchrotron oscillations, so
it should be extracted already after half an oscillation. It is also important to
inject a particle on the right orbit. Orbits close to the O-point only have a small
di�erence between lowest and highest momentum, and a particle on such an orbit
will not gain much energy. Orbits that are close to the separatrices can provide a
large energy gain, but a particle on such an orbit runs the risk to end up on the
wrong side of the separatrix, i.e. getting un- or detrapped. This may be caused
by beam loading (see below) or other e�ects not included in the Hamiltonian
system (3.3)-(3.5).

The maximum possible energy gain along a given closed orbit can be calculated
as follows. For �xed C, the functions p+(�) and p�(�) reach their extrema for
cos(�) = 0, i.e. at � = ��=2+n�2�. At such �, a maximum for p+ and a minimum
of p� occur simultaneously, and taking into account that the points (��=2; p�)
and (��=2; p+) lie on the same orbit H = C, we obtain for the energy gain E :

E = + � � = vg(p+ � p�) = 22gvg

q
(C + e0)2 � 1=2g :
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We observe that the energy gain is zero forC = 1=g�e0 (particle on the O-point),
while it is maximum for C = 1=g + e0, i.e. the particle's orbit is in�nitesimally
close to the separatrices. For ge0 � 1, we obtain for the maximum possible
energy gain: � � 42ge0.

A closer look at the dynamics of a trapped particle reveals that if  < g at
injection, the time needed to reach the �rst turning point at  = g is much
shorter than the time needed to reach its maximum energy at the top of its orbit.
This means that  � g along most of the particle's trajectory. The derivations
in this and the following section will be done for that part of the particle orbit
for which  � g holds.

For a particle injected at an energy in � g and � = �in, and extracted at
� = �ex, the energy gain is calculated from (3.5) and (3.6) to obtain [11]:

E = ex�in = vg(pex�pin)+e0(sin �in� sin �ex) � 22ge0(sin �in� sin �ex): (3.7)

The acceleration distance La can be estimated from the injection and extraction
phases as follows. For  � g � 1, we have v � vg � 1=(22g), so

La =
�ex � �in
v � vg

� 22g(�ex � �in): (3.8)

The distance necessary to obtain �ex � �in = �, so the particle is completely out
of phase with the wave, is called the dephasing length and is given by

Ld = 2�2g :

As stated in the introduction, the goal of this work is to minimize the energy
spread of a bunch of electrons after acceleration, while keeping the energy gain
at a reasonable level. The energy spread can be estimated as the sum of two
contributions. The �rst one results from the �nite length of the bunch, causing
di�erent particles to have di�erent injection and extraction phases, and thus
di�erent energy gains. The second one is caused by the fact that leading particles
modify the wake�eld as seen by the trailing particles, a topic that will be treated
in the next section.

In order to estimate the length-dependent contribution to the energy spread, a
simple two-particle model is used [8]. At t = 0 a bunch with uniform density and
length L < � is located between � = �in � L=2. During the acceleration process,
the distance between the electrons is assumed not to change signi�cantly, so
that, at extraction, the bunch is located between � = �ex � L=2. From (3.7)
the di�erence in energy gain between a particle at the head of the bunch and a
particle at the tail of the bunch reads:

�E = 42ge0 sin(L=2)(cos �in � cos �ex): (3.9)
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From this equation, it is obvious that the use of short bunches reduces this
contribution to the energy spread. Observe that this contribution may have
either positive or negative sign, depending on �in and �ex. This can be explained
as follows. At the beginning of the acceleration, i.e. � close to the X-point at �=2,
the head of the bunch is accelerated more than the tail, while head and tail are
accelerated equally halfway, and the tail is accelerated more than the head near
the end of the acceleration, i.e. � close to 3�=2. So depending on the injection and
extraction phases, the compensation for the positive energy di�erence obtained
at the beginning may be too little, just right, or too much. As we shall see in
the next section, the contribution by the beam loading always has positive sign,
since the close-range particle interaction is always repulsive. This means that by
proper tuning, both contributions can be made to cancel each other, leading to
a reduced energy spread.

3.3 Beam loading

As discussed above, a charged particle in a plasma wake�eld provides its own
contribution to the wake�eld and therefore inuences all particles that follow it.
In this section, the inuence of a bunch of electrons with bunch density nb will
be studied. The wake�eld equation (3.1) is extended to include nb(�) as a source
term to read �

@2

@�2
+ 1

�
Æ	 = nb(�):

The wake electric �eld caused by this bunch is given by

Eb(�) = �@Æ	
@�

=

Z 1

�

nb(�
0) cos(� 0 � �)d� 0: (3.10)

For a short symmetric bunch located in the region �b � L=2 < � < �b + L=2, the
wake�eld behind the bunch is given by

Eb(�) = cos(� � �b)

Z L=2

�L=2

nb(�b + � 0) cos � 0d� 0

� cos(� � �b)

Z L=2

�L=2

nb(�b + � 0)d� 0;

where the approximation is valid if L� � only. The total charge Q of the bunch
is de�ned as

�Q =

Z L=2

�L=2

nb(�b + � 0)d� 0:

The beam loading factor � is de�ned as the ratio of the amplitudes of the laser
wake�eld and the bunch wake�eld, i.e. � = �Q=e0 for a short bunch. Then
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the bunch wake�eld may cancel out the laser wake�eld as � approaches unity,
which sets a natural upper limit on the beam loading. A beam loading larger
than 1 would mean that the wake�eld is dominated by the �elds of the bunch
rather than by those of the laser. Therefore, only � < 1 will be considered in this
chapter.

For a uniform bunch located between � = �in � L=2, the bunch wake�eld can be
calculated from (3.10) to obtain [8]:

E(�) = �e0 �

8>>>>>><
>>>>>>:

0; � � �in > L=2;

�sin(� � �in � L=2)

2 sin(L=2)
; �L=2 < � � �in < L=2;

cos(� � �in); � � �in < �L=2;

(3.11)

with beam loading factor

� = 2 sin(L=2)
nb
e0
: (3.12)

In order to calculate the average energy gain and spread of the electrons in the
bunch, it is more convenient to switch to coordinates s = z � t and t, since the
bunch electrons are approximately static in these coordinates, so the beam loading
forces will be constant during the acceleration. Then we have � = s+(1� vg)t �
s+ t=(22g). From (3.7) and (3.11), the energy gain of an in�nitesimal slice of the
bunch of width ds is given by

dE(s; t) = �22ge0[sin(s)� sin(s+ t=(22g))]� t � nb sin(sin + L=2� s)
	
ds;
(3.13)

where sin = �in, since we inject at t = 0. The average energy gain for the bunch
is given by

Eav(La) =
1

L

Z sin+L=2

sin�L=2

dE(s; La)

= 22ge0
sin(L=2)

L=2

�
sin(sin)� sin(sin + �La=Ld)� �La

Ld

�

2

�
;

where La is given by (3.8) and � by (3.12). It is obvious that both the �nite
bunch length and the beam loading contribute to a reduction of Eav. For both
L = 0 and � = 0, the single particle result (3.7) is returned.

The contribution to the energy spread induced by beam loading is a consequence
of the constant retarding force on an electron at the tail of the bunch due to the
bunch's wake�eld. This induces an energy di�erence between the head and the
tail of the bunch. From (3.13), we �nd for the energy di�erence between the head
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and the tail of the bunch:

�E = 42ge0 sin(L=2)(cos(sin)� cos(sin + �La=Ld)) + Lanb sin(L)

= 22ge0[2 sin(L=2)(cos �in � cos �ex) + � cos(L=2)(�ex � �in)]:

Note that the �rst contribution to �E matches the one given in (3.9). Under
certain circumstances, the contributions of �nite bunch length and beam loading
to �E can compensate each other, leading to a minimized energy di�erence be-
tween the head and the tail of the bunch. The acceleration distance at which this
minimum in energy spread occurs is denoted by Lopt. Using Eq. (3.8) and taking
�in, �ex close to �, i.e. halfway the X-point at �=2 and the O-point at 3�=2, the
distance at which �E = 0 can be estimated as

�Lopt

Ld
=

�

tan(L=2)
+ 2(� � �in): (3.14)

As we will see, Eq. (3.14) gives a correct scaling for Lopt in terms of L, � and �in,
apart from a constant o�set.

3.4 Numerical analysis

The evolution of the energy spread of a bunch of macroparticles (virtual particles
that each represent a large number of electrons) in a linear wake�eld as given
by (3.2) has been studied in 1-D numerical simulations. The behaviour of both
energy gain and energy spread has been investigated as a function of injection
phase, acceleration length, bunch length, and beam loading fraction.

In the simulations, the electron bunch is represented by N macroparticles, each
having charge �Q, massM , momentum pn and phase �n (n = 1 : : : N). Mass and
charge are chosen such that Q=M = e=me (electron charge-to-mass ratio). One
should think of these one-dimensional particles as charged sheets with uniform
electron density in the transverse direction and in�nitesimally thin in the longi-
tudinal direction (wide-beam limit). The wake�eld of the n-th macroparticle is
then given by

En(�) =

8>>>>>><
>>>>>>:

� �

N
e0 cos(� � �n); � < �n;

� �

2N
e0; � = �n;

0; � > �n:

(3.15)

The number � is a measure for the charge of a macroparticle, related to the beam
loading fraction as

� =
sin(L=2)

L=2
�:
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With this de�nition, taking the limit N !1 in Eq. (3.15) correctly reproduces
the wake�eld of the continuous bunch, as given in (3.11). At the phases of
the macroparticles, the electric �eld is non-continuous (see Fig. 3.2), because the
macroparticle is taken to be in�nitely thin. The choice of En(�n) = ��e0=(2N) is
motivated by the fact that a macroparticle should represent a cluster of plasma
electrons, which obviously also su�ers from beam loading induced by its own
charge, regardless of how short it is. This �eld is called the self �eld of the
macroparticle.
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Figure 3.2: Example of electric �eld as a function of phase with only 7 macropar-
ticles in the bunch, visible in the inset as discontinuities in E. Beam loading
fraction: � = 0.5.

From (3.3)-(3.4), the equations of motion for the n-th macroparticle, n = 1 : : :N ,
are:

d�n
dt

=
pnp
1 + p2n

� vg; (3.16)

dpn
dt

= �e0 cos �n �
NX

m=1

Em(�n): (3.17)

In the simulations, a leap-frog algorithm is used to integrate (3.16)-(3.17). For
the electric �eld, the analytic expressions (3.2) and (3.15), are used, in which at
every timestep all macroparticle phases are inserted. At the start of a simulation,
all macroparticles have the same energy 0 and are uniformly distributed around
the injection phase �in:

�n = �in + L

�
n� 1

N � 1
� 1

2

�
;

pn = p0 �
q
20 � 1:

At every time step of the simulation, the mean energy hEi and the energy spread
�E of the macroparticles are calculated. For the energy spread, the standard



3.4. Numerical analysis 47

deviation of the particle energy rather than the energy di�erence between the
head and tail of the bunch has been used. The reason for this is that during the
simulation, the head and tail of the bunch may have the same energy, while the
middle of the bunch has a higher energy. This renders the di�erence between head
and tail a poor measure of the actual energy spread of the bunch. The initial
energy spread is zero, because all macroparticles have the same initial energy.
The evolution of the bunch has been calculated until the �rst local minimum in
the relative energy spread �E=hEi is encountered. It has been veri�ed that the
�rst minimum is the lowest: continuing the simulation after the �rst minimum
means that the particles in the bunch perform multiple synchrotron oscillations.
Since the duration of a synchrotron oscillation is di�erent for each particle, this
implies that the particles will be spread across the wave crest while the bunch
loses its coherence, resulting in a poor energy spread.

The following parameters are the same for all simulations presented in this chap-
ter:

� g = 100, i.e. the plasma is very underdense,

� e0 = 0:1, i.e. the wake�eld is linear,

� 0 = g=3,

� Number of macroparticles: 100.

We have chosen the above set of parameters with a realistic case in mind: plasma
electron density � 1017 cm�3, laser wavelength 1 �m, wake wavelength 100 �m,
electrons of initially 17 MeV. The choice of 0 = g=3 implies that the assumption
 � g is not applicable to the early stages of the acceleration. As a result, the
simulated values for the energy gain and spread may deviate from the estimates
made above. Also, the expression La = 22g(� � �in) for the acceleration length is
no longer applicable. Instead, the acceleration length needs to be calculated from
the (simulation) time t as La = vg�pt=(2�) � �pt=(2�). For a more elaborate
discussion on the e�ects of injection at 0 < g, see Andreev et al. [13], who used
test electrons without beam loading e�ects, and Reitsma [14], who did include
beam loading e�ects.

The results of a sample simulation are displayed in Fig. 3.3. The parameters for
this simulation are: injection phase �in = �, bunch length L = �=3, and beam
loading fraction � = 0:8. Graph (a) shows the mean energy hEi in GeV, the
relative energy spread �E=hEi, the standard deviation �� of the phase, and the
longitudinal root mean sqare (r.m.s.) emittance � of the bunch, all as a function
of the acceleration length La. Here, the r.m.s. emittance is de�ned as

�2 = h(E � hEi)2ih(� � h�i)2i � h(E � hEi)(� � h�i)i2:
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The parameters have been chosen such that a minimum of �E=hEi = 0:02, a
minimum of � = 0:03, and a maximum of hEi = 640 MeV all coincide at an
acceleration length of d � 45 cm. This result is a good representation of the aim
of this work: tuning the bunch parameters such that a large energy gain and a
minimum energy spread are obtained simultaneously.

In the course of the simulation, some macroparticles may lose so much veloc-
ity due to beam loading forces that they become untrapped. These are mostly
macroparticles in the tail of the bunch having a phase too close to �=2, the
edge of the wave crest. After acceleration, these particles will lag so far behind
the bunch that they are no longer regarded as being part of the bunch. For
this reason, we wish to exclude any untrapped particles from the simulation. In
practice, this means that only those macroparticles that are not more than one
wavelength behind the crest in which the bunch was originally injected are taken
into account. As soon as a particle violates this condition, it is discarded from
the simulation. The fraction of discarded particles should not become too high,
but a small fraction may be sacri�ced in order to improve energy gain and/or
spread. The conditions of the simulations presented here are such, that only a
small fraction, i.e. less than 5%, of the particles is lost on the way.

In the next section, the results of our simulations will be presented. The minimum
relative energy spread and the acceleration length at which this minimum occurs
will be determined, as well as the energy gain corresponding to the minimum
energy spread. A parameter window will be determined for which an energy gain
of hundreds of MeV coincides with a relative energy spread of only a few percent.
The sensitivity of the energy spread to errors in the various bunch parameters
will also be discussed.

3.5 Simulation results

In the simulations, the mean energy hEi and the relative energy spread �E=hEi
have been calculated as functions of the injection phase �in, the beam loading
fraction � and the bunch length L. We have performed three series of simulations;
in each series one of the input parameters is kept �xed, while the other two
are varied. This has resulted in the identi�cation of an optimal combination of
parameters: �in = �, � = 0:8, and L = �=3 i.e. 17 �m for �p = 100 �m. This
case has been studied in more detail.

It is instructive to start with the optimal case. In Fig. 3.3(a), the mean energy
hEi and the relative energy spread �E=hEi are displayed for this case, as well
as the standard deviation of the phase �� and the r.m.s emittance �, all as
a function of the acceleration length La. Snapshots of particle phase space at
various acceleration lengths for the same simulation are displayed in Fig. 3.3(b).
The mean energy can be seen to increase as a function of La until it saturates
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at La � 48 cm. Given a dephasing length of Ld = 2g�p � 100 cm, we �nd
that saturation already sets in at less than half the dephasing length. This is
caused by the fact that the dephasing length has been calculated for electrons on
orbits that are very close to the separatrix in phase space (cf. Fig. 3.1), whereas
electrons on orbits closer to the O-point dephase much quicker and start losing
energy after that. Given the bunch length of �=3, it is inevitable that the head
of the bunch lies on an orbit much closer to the O-point than the tail. As can
be seen from the phase space snapshots, the head is already past � = 3�=2 and
therefore losing energy while the tail is still at � = � and thus a long way from
dephasing. Hence the early saturation of the mean energy.

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6 hEi (GeV)

�E=hEi

La(cm)

�� (unit �)

� (�m MeV)
0.6 0.8 1.2 1.4 1.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hEi (GeV)

La = 0 cmLa = 10 cm
La = 20 cm

La = 30 cm

La = 40 cm

La = 50 cm

� (unit �)
(a) (b)

Figure 3.3: (a) Mean energy hEi, relative energy spread �E=hEi, phase spread
�� and longitudinal r.m.s. emittance � as functions of acceleration distance La.
Injection phase �in = �, bunch length L = �=6, beam loading fraction � = 0:8. (b)
Phase space snapshots for various acceleration distances for the same simulation.

The relative energy spread increases quickly in the early stages of the acceleration
because, as can be seen from the phase space graph, the head of the bunch is
already accelerated while the tail is still busy slipping backward in the wake�eld
without gaining energy. When the tail also starts gaining energy, the absolute
energy di�erence between head and tail saturates, while the relative energy spread
decreases because of the increase in mean energy. For La between 40 and 50 cm,
the head and tail of the bunch have comparable energies, and a minimum relative
energy spread of only 2.6% is reached at La = 48 cm. Beyond that point, the
tail continues to gain energy while the head starts losing energy. Since the mean
energy saturates at this length, this causes the relative energy spread to increase
again. Therefore, the simulation has been stopped at 50 cm acceleration length.

From both the plot of �� versus La and the phase space plots, it can be found
that the bunch length increases in the early stages of the acceleration, but stays
more or less constant later. Not surprisingly, this coincides with  � g for all
particles in the bunch. This justi�es our earlier assumption that the bunch length
does not change if the electron energy is much higher than g. As for the r.m.s.
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emittance �, we �nd that it does not reach very large values at any moment.
This is caused by the absence of momentum spread at injection, which causes
the bunch to be line-like in phase space. To see a more realistic behaviour of �,
a �nite momentum spread should have been used at injection.

For the same values of beam loading and bunch length, i.e. � = 0:8 and L = �=3,
the relation (3.14) between the optimal acceleration distance Lopt and the injec-
tion phase �in has been veri�ed. The result is displayed in Fig. 3.4. The lower
curve (straight line) represents the analytical prediction, while the upper curve de-
notes Lopt as taken from the simulations. It can be seen that for 0:7 < �in=� < 1:1,
the analytical prediction of Lopt is correct apart from a constant o�set. However,
for larger �, the predictions tend to be too low, while for � > 1:22 � �, Eq. (3.14)
predicts a negative value for Lopt, which is obviously invalid. However, the gen-
eral trend that Lopt decreases with increasing �in is reproduced very well. This
trend stems from the fact that the larger �in, the closer to the O-point the bunch
is injected and the shorther the time needed to reach dephasing. As we have seen
above, the onset of dephasing usually de�nes the moment of minimum energy
spread, and thus Lopt. The o�set between the analytical prediction and the sim-
ulation results originates from the fact that the prediction does not take the �rst
stage of the acceleration into account, during which the condition  � � is not
satis�ed. The o�set as found in Fig. 3.4 more or less agrees with the additional
time needed to pass through this stage. For �in > 1:1 � �, Lopt does not decrease
to zero but saturates to some small but non-zero value. This region corresponds
to bunches injected close to the O-point, which dephase quickly and gain little
energy during their acceleration. The predicted value of Lopt is grossly o� here as
�in, �ex are no longer close to �, but this region is not interesting for acceleration
anyway.
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Figure 3.4: Optimal distance Lopt as a function of injection phase �in. Upper
curve: simulation result, lower curve: solution of Eq. (3.14).

We proceed to the series of simulations in which one of the parameters �in, �,
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or L is kept �xed, while the other two are varied. For each combination of
parameters, the simulation has been continued until the �rst minimum in �E=hEi
was encountered; at that instant both �E=hEi and hEi have been determined.
It should be noted that this procedure may be diÆcult to follow in experiments,
since guiding a laser pulse over a distance of say 50 cm and sustaining a wake�eld
of reasonable amplitude and structure at the same time is a formidable task.
Therefore, the acceleration length in laser wake�eld acceleration experiments is
usually much shorter than Lopt, and determined on di�erent grounds.

In the �rst series, the bunch length L is �xed at �=3. Figure 3.5 displays the
relative energy spread and mean energy respectively, as functions of �in and �. In
Fig. 3.5(a), the region to the left of line A displays a large relative energy spread,
which is more due to the small energy gain in this region than due to a large
absolute energy spread, as is con�rmed by Fig. 3.5(b). This region corresponds
to injection close to the O-point, and is therefore not suitable for acceleration.
The region between line A and line B displays a reasonably small energy spread,
while the mean energy increases towards line B. The neighbourhood of line B looks
especially suited for acceleration, since a small energy spread is accompanied by
a large energy gain, with the comparatively large beam loading of at least 0.5 as
an added bonus. In this region, it has been found that the acceleration lengths
corresponding to maximum energy gain and minimum spread coincide. For the
region to the right of line B, the mean energy is already beyond its optimum
before a minimum in spread is reached. As a result, the acceleration length
increases without any signi�cant improvement in either energy gain or spread.
This renders this region less suitable for acceleration than the neighbourhood of
line B.
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Figure 3.5: (a) Relative energy spread and (b) mean energy, both as a function
of beam loading fraction and injection phase at L = �=3.

In the second series of simulations, the beam loading � is �xed at 0.2. In Fig. 3.6
the relative energy spread and mean energy are plotted as functions of bunch
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length and injection phase. The region of �in > � corresponds again to injection
close to the O-point, and displays a small energy gain and consequently a large
relative energy spread. The region of �in < � corresponds to injection close to an
X-point, which results in a large energy gain. However, injection too close to the
X-point results in particle loss, as found from the behaviour at the front corner
of Fig. 3.6(a). This loss saturates the energy gain, whereas the decrease in the
energy spread results from the fact that precisely those particles that contribute
most to the spread have been discarded. The energy spread is seen to increase
for L > 0:1 � �, as could be expected. However, the lowest energy spread is not
reached for L = 0, but for L � 0:1 � �. This is due to the fact that in the
early stages of the acceleration, very short bunches tend to explode while slightly
longer bunches are compressed, so the shortest bunches display a comparatively
large energy spread. In practice, bunches are usually not that short (0:1 � � ' 5
�m), but Fig. 3.6(a) shows that a low energy spread can be maintained up to
L = 0:4 � � ' 20 �m, at the expense of a decreasing range of suitable injection
phases. In general, it is concluded that for �in . � and L < 0:4 � �, a decent
energy gain can be obtained while the energy spread is kept at a reasonable level.
For the given plasma density, this corresponds to a bunch length of about 20 �m,
or 70 fs, which is problematic if the bunch is to be obtained from an external
source.
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Figure 3.6: (a) Relative energy spread and (b) mean energy, both as a function
of bunch length and injection phase at � = 0:2.

In the third series of simulations, the e�ect of changing both bunch length and
beam loading at a �xed injection phase �in = � is considered. This corresponds
to injection halfway the O-point and the X-point. Figure 3.7 shows the relative
energy spread and mean energy as functions of beam loading fraction and bunch
length. Figure 3.7(a) demonstrates that a low energy spread can be reached for
nearly every value of � between 0 and 1, as long as one does not attempt to put
too much charge in a short bunch. If a bunch is overloaded, the tail of the bunch
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will hardly feel any accelerating �eld due to beam loading by the bunch's head.
Then the tail will be accelerated much less than the head, resulting in a large
energy spread. Also, the assumption that the bunch length does not change will
not be valid in this case, and as a consequence the value of Lopt in the simulations
does not match the prediction of Eq. (3.14). For the regime corresponding to
the front part of the graph, i.e. for L > 0:4� � �, Lopt has been found to be in
agreement with Eq. (3.14). Regarding the energy gain, Fig. 3.7(b) shows that for
suÆciently large L (in order to keep the energy spread under control), the mean
energy reached at Lopt actually increases with beam loading. This is caused by
the following mechanism. If a bunch were to be accelerated without the e�ect of
beam loading on the wake�eld, its tail would overtake its head during the later
stages of the acceleration, resulting in a large energy spread. This would require
the acceleration to be stopped fairly soon in order to keep the energy spread low,
at the expense of the energy gain. Because of beam loading however, a backward
force is exerted on the tail of the bunch, preventing it from overtaking the head
and thus postponing the optimal moment for extraction. Of course, the increased
acceleration length leads to an increased mean energy while the energy spread
remains low.
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Figure 3.7: (a) Relative energy spread and (b) mean energy, both as a function
of beam loading fraction and bunch length at �in = �.

In general, the bunch parameters should obey the following conditions:

� Injection phase closer to an X-point than to an O-point: �in . �,

� Bunch length not too small for the given beam loading, i.e. L > 0:4� � �,
but not too large either, L < 0:4 � �.

The special case presented at the beginning of this section, �in = �, L = �=3,
� = 0:8, obeys these conditions well, and thus displays both a large energy gain
together with a small energy spread. However, this case may be diÆcult to
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realize experimentally, since the requirements on both bunch length and optimal
acceleration distance are very hard to meet. A more detailed discussion on these
and other requirements on the experimental parameters will be presented in the
next section.

3.6 Accuracy requirements

In the previous section, it has been shown that for the parameter combination
�in = �, L = �=3, and � = 0:8, an electron bunch can be accelerated to high
energies, while its energy spread is kept low. The practical value of this result,
however, can only be determined if its sensitivity to errors in the input param-
eters is known. To this end, we have performed simulations in which one of the
parameters �in, L, and � has been deviated from its optimal value, while the other
two have been kept �xed. The (unscaled) acceleration length has been �xed at
48 cm for all simulations, which is the optimal length for �in = �, L = �=3,
� = 0:8, and a plasma wavelength of 100 �m. The reason to keep La �xed is that
in experiments this is also a �xed length.

In Fig. 3.8, the sensitivity of energy spread (left) and mean energy (right) to errors
in the injection phase is displayed. Already for �in = �opt � 0:08 � �, the energy
spread has increased from 2% to 12%, while the mean energy ranges between
450 and 800 MeV. To keep both the energy spread and gain within reasonable
bounds, one should take |�in��optj < 0:04 ��. For a 100 �m plasma wavelength,
this corresponds to a maximum tolerance of 2 �m, or about 7 fs, for the timing
of the electron bunch with respect to the laser pulse. This requirement will be
very hard to meet.
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Figure 3.8: E�ect of small errors in the injection phase �in on (a) energy spread
and (b) mean energy. Optimal value is �in = �. Both energy spread and gain are
highly sensitive to errors in �in.
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Note that decreasing the plasma density in order to increase the plasma wave-
length will not improve matters much, since this will also increase the necessary
acceleration length, which is already hard to attain. As seen from Fig. 3.6(a),
reducing the bunch length increases the window for �in for which the energy
spread remains reasonable. However, as stated above, producing a bunch with a
duration of 70 fs is already diÆcult, leave alone reducing its length even further.

In Fig. 3.9, the sensitivity of energy spread (left) and mean energy (right) to
errors in the bunch length is displayed. For L = Lopt�0:2, i.e. an error of 20% in
the bunch length, the energy spread increases from 2% to 10%, while the change
in mean energy is insigni�cant. Considering the fact that Lopt = �=3, which
corresponds to 17 �m or 55 fs for a 100 �m plasma wavelength, the real issue
here is the production of very short bunches. Once this has been accomplished,
a reasonable relative error in the bunch length can be tolerated.
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Figure 3.9: E�ect of small errors in the bunch length L on (a) energy spread and
(b) mean energy (right). Optimal value is L = 1:04. The energy spread is less
sensitive to errors in L than to errors in the injection phase, and the energy gain
is nearly una�ected.

In Fig. 3.10, the sensitivity of energy spread (left) and mean energy (right) to
errors in the beam loading is displayed. For 0:7 < � < 0:85, where �opt = 0:8,
there is hardly any change in the energy spread, while the energy gain decreases
from 700 to 620 MeV for increasing �. The decrease in mean energy is a result
of the self-retarding forces the bunch experiences due to beam loading. The
anomalies seen for � > 0:85 are the result of putting too much charge in a short
bunch. All in all, the beam loading can vary over a rather wide range of values,
as long as its value is not taken too high, without signi�cant adverse e�ects on
energy spread or mean energy. Its value will usually be determined by the amount
of charge one whishes to accelerate and the energy one wishes to reach.
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Figure 3.10: E�ect of small errors in the beam loading fraction � on (a) energy
spread and (b) mean energy. Optimal value is � = 0:8. The energy spread is
nearly insensitive to errors in �, while the mean energy is a�ected to some degree.
The anomalies for � > 0:85 are the result of putting too much charge in a short
bunch.

It is concluded that the electron bunch needs to meet very strict requirements
on its absolute length and the accuracy of its timing, while the requirements on
the accuracy of length and beam loading are much more lenient. The situation
is aggravated by the fact that the plasma wavelength should be much lower than
the 100 �m used in our simulations in order to bring down the acceleration
length. This renders the external production and injection of suitable bunches a
very demanding task. A way to get out of this predicament is to use electrons
provided by the plasma itself for acceleration, instead of injecting them from the
outside. This method of electron injection is called internal injection. Plasma
electrons can be injected into a plasma wave by pushing that wave until wave
breaking sets in. Wave breaking means that part of the electrons in the plasma
obtain a longitudinal velocity larger than the phase velocity of the plasma wave,
so they are actually injected into the wave. These electrons are injected in the
form of a bunch much shorter than the plasma wavelength, located at the end
of a plasma wave crest, i.e. near an X-point, so both the timing and the bunch
length issues are solved simultaneously. Unfortunately, the electrons injected by
wave breaking usually display a large initial energy spread, so the �nal energy
spread may be hard to control in such schemes. Internal injection of electrons by
means of plasma wave breaking will be investigated in Chapters 4 and 6.

3.7 Summary and conclusions

The dynamics of electron acceleration in a one-dimensional plasma wave has
been studied, with emphasis on the minimization of the energy spread. The two
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major mechanisms that contribute to the energy spread, i.e. �nite bunch length
and beam loading, have been shown to counterbalance each other at a certain
acceleration distance Lopt. An analytical estimate for Lopt has been obtained in
terms of beam loading �, bunch length L, and injection phase �in. This estimate
has been found to be in agreement with 1-D simulations. Using a particle code,
we have demonstrated that a low energy spread and high energy gain can be
achieved simultaneously if the parameters �, L and �in are properly tuned. An
optimum has been identi�ed for �in = �, L = �=3, and � = 0:8. The sensitivity
of this optimum to errors in the input parameters has been investigated. Here,
it has been found that the optimum is very sensitive to errors in the injection
phase, while the sensitivity to errors in the bunch length or beam loading factor
is much lower. The most important requirements on the bunch are therefore
that it be very short, i.e. below 100 fs, and that the timing of its injection is
very demanding, i.e. within 10 fs. Since these requirements are hard to meet for
externally injected bunches, internal injection of electrons may be needed. This
method will be the topic of the following three chapters.
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Chapter 4

Fast electron generation through

breaking of a plasma wave

A 1-D model for fast electron generation by a short, intense, non-evolving laser
pulse propagating through an underdense plasma has been developed. This is
done for pulses shorter than the plasma wavelength, so parametric instabilities
can be neglected and plasma wave breaking is the dominant mechanism behind
this process. First, an overview of wave breaking theory is given for both cold
and warm plasmas. Next, plasma wave excitation by a laser pulse and breaking
both in front of and behind the pulse are discussed. Simulations have been
performed to determine the wave breaking conditions for several di�erent pulse
shapes. Fast electrons emerge as a short bunch, and the electrostatic �eld of this
bunch is shown to limit self-consistently the amount of generated fast electrons.

Sections 4.1, 4.5-4.7 and 4.9-4.10 have been published as the article \Generation
of fast electrons by breaking of a laser-induced plasma wave", R.M.G.M. Trines,
V.V. Goloviznin, L.P.J. Kamp, T.J. Schep, Phys. Rev. E 63, 026406 (2001).
These sections and Section 4.8 have also appeared in the Proceedings of the In-
ternational Conference on Lasers 2000, Albuquerque NM, Editors V. J. Corcoran
and T. A. Corcoran (STS Press, McLean VA, 2001).

4.1 Introduction

Fast particle generation, the production of multi-MeV electrons during the prop-
agation of an intense (1019 W=cm2) laser pulse through an underdense plasma,
is an aspect of laser-plasma interaction that has recently attracted a lot of atten-
tion, in both theoretical and experimental circles. The e�ect has been observed
in many experiments, [1{6] as well as in numerical simulations [7,8].

At the heart of this phenomenon lies the trapping of plasma electrons by the
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laser-induced wake wave. Once captured, these electrons are accelerated by the
wake�eld, just like in a laser wake�eld accelerator. As for the mechanism behind
such electron capture, one has to distinguish between the ponderomotive regime,
in which the laser pulse is shorter than one plasma wavelenghth and there is
little or no back-action of the plasma on the pulse [9,10], and the self-modulated
regime, in which the pulse is (much) longer than one plasma wave period and the
back-action of the plasma on the pulse is very important. In the ponderomotive
regime, electron capture can be explained through breaking of the wake wave,
occurring when the laser pulse intensity is strong enough to push the longitudinal
electric �eld beyond the wave breaking threshold [2,11,12]. As we shall see in
Chapter 6, wave breaking is also important in the self-modulated regime, although
its role is entirely di�erent and there are more waves involved than just the
wake�eld. Closer investigations of electron trapping due to wave breaking have
been conducted by, among others, Bulanov et al. [11,12]. Electron capture in a
plasma wave induced by a relativistic electron bunch has been studied by Schep
et al. [13].

In this chapter, the behaviour of plasma waves driven by the ponderomotive
force of a short (L < �p), intense laser pulse with a non-evolving envelope will
be investigated. First, an overview of wave breaking theory will be given with
emphasis on plasma waves, and wave breaking of cold and warm plasma waves
in the quasi-static approximation will be discussed. Since both cold and warm
plasma cases can be dealt with using the same methods, only the case of a rela-
tivistic wave in a cold plasma will be investigated in depth. For non-relativistic
waves or warm plasmas, only the results will be given. Next, the excitation of a
plasma wave by a non-evolving laser pulse will be investigated. Several scenarios
will be explored that lead to the breaking of the plasma wave, and the necessary
conditions will be derived for this to happen. These conditions have been com-
pared to the results of simulations, in which the amplitude of the excited plasma
wave has been calculated as a function of pulse intensity and shape. Finally, we
show that the fast electrons emerge as a very short bunch, whose electric �eld
will limit the amount of generated fast electrons in a self-consistent way. From
this, we derive the maximal charge density of the bunch as a function of laser
pulse intensity.

In order to simplify the equations, all quantities in the equations governing the
laser plasma interaction will be scaled as in Section 2.1 with !r = !p: t

0 = !pt,
z0 = (!p=c)z, v

0 = v=c, p0 = p=(mec), E
0 = eE=(me!pc), �

0
s = e�s=(mec

2),
A0? = eA?=(mec), n

0 = n=n0. Here, !2
p = e2n0=("0me) denotes the electron

plasma frequency, and other symbols have their usual meaning. For convenience,
the primes will be dropped from this point on.
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4.2 Wave breaking in one dimension

Wave breaking is a non-linearity occurring in the evolution of a wave that causes
a wave front to steepen, until a singularity is reached. At that point, parts of the
wave that started out from di�erent wave phases collide with each other, caus-
ing the wave function to become multiple-valued. Wave breaking is a dynamical
process in which an initially regular wave will develop a singularity as it propa-
gates. The best-known form is wave breaking in the direction of propagation of
the wave, which is basically a 1-dimensional phenomenon.

In the literature, there is no unambiguous de�nition for 1-D wave breaking in
a plasma (or uid). Di�erent de�nitions apply to a cold and a warm plasma.
In a cold plasma, there is a single well-de�ned plasma velocity for each phase
� = z� vt, and the wave's advection equation does not contain pressure or di�u-
sion terms. In that case, wave breaking can be described in terms of the charac-
teristic curves of the advection equation. Also, the singularity in the advection
equation coincides with a singularity in the continuity equation. In the case of
a warm plasma, the presence of pressure terms in the advection equation causes
the singularities in this equation and the continuity equation not to coincide any
more, while the presence of dispersion terms inhibits the use of characteristics.

The use of the quasi-static approximation, i.e. the wave is considered static with
respect to some comoving frame of reference, again changes the de�nition of wave
breaking. However, in this approximation the treatment is similar for cold and
warm plasma.

4.2.1 Wave breaking in a cold plasma

For waves in a cold plasma (no pressure or di�usion terms), there are several
ways to de�ne 1-D wave breaking, all equivalent:

1. Intersection of characteristics of the wave equation,

2. Singularity of the transformation between Eulerian and Lagrangian coordi-
nates,

3. Intersection of the trajectories of plasma uid elements,

4. Occurrence of singularities in the plasma density.

Each will be discussed briey in this section. An extensive treatment on the
subject can be found in, among others, Whitham [14].
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The behaviour of a 1-D cold plasma is governed by the following equations:

@p

@t
+ v(z; t)

@p

@z
= �E; (4.1)

@E

@z
= 1� n; (4.2)

@n

@t
+

@

@z
(nv) = 0: (4.3)

For the analytical description of a travelling wave, it often pays to express every-
thing in so-called Lagrangian coordinates z0 and � . These coordinates are chosen
such that they follow the wave, in contrast to the usual Eulerian coordinates z
and t, also known as the laboratory coordinates. The Lagrangian coordinates for
the wave described by the advection equation (4.1) are given by

t � �; z � z0 + �(z0; �) = z0 +
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As a result, the advection equation (4.1) reduces to

@p

@�
= �E;

and it is obvious that the Lagrangian coordinates are comoving with the wave.

With these coordinates, we are well equipped to discuss the various de�nitions of
wave breaking. We start with the �rst one: wave breaking occurs at the intersec-
tion of characteristics of the wave equation. This can best be understood from
the advection equation (4.1). From the theory of �rst-order partial di�erential
equations, the characteristic curves for this equation are given by

dz

dt
= v(z; t);

dp

dt
= �E: (4.5)

Combining this with an initial condition p(z0; 0) = p0(z0), we �nd that the char-
acteristic curves in (t; z; p)-space are given by

z(t) = z0 +

Z t

0

dt0 v(z(t0); t0); p(t) = p0(z0)�
Z t

0

dt0E(z(t0); t0): (4.6)
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The expression for z(t) is actually the inverse from (4.4). To state it di�erently,
the transformation (4.4) is chosen such that the solution to (4.1) propagates along
the curves z0 = C, and from (4.6) it follows that the solution propagates along
the characteristic curves. This means that the characteristic curves of (4.1) are
equivalent to the curves z0 = C. The transformation of Lagrangian coordinates
(z0; �) to Euler coordinates (z; t) is therefore similar to tracing a characteristic
from its starting point z0 at t = 0 to a point z(t) at some later time t.

Rewriting the above in terms of Lagrangian coordinates reveals that the �rst
de�nition of wave breaking actually means that the curves (z01; �) and (z02; �)
with z01 6= z02 map to the same point in Eulerian coordinates for some � > 0.
This implies that the transformation from Lagrangian to Eulerian coordinates is
no longer one-to-one, i.e. the second de�nition of wave breaking.

Singularity of the coordinate transformation can also be expressed in terms of its
Jacobian J(z0; �), given by

J(z0; �) = det(@z=@z0) = det(1 + @�=@z0):

Observe that if two intersecting characteristics have a �nite di�erence in z0, all
intermediate characteristics must have intersected before, so at the earliest pos-
sible time that wave breaking occurs, it concerns characteristics having an in-
�nitesimal di�erence in z0. In other words, wave breaking occurs as soon as
@z=@z0 = J(z0; �) vanishes at some point.

To see that the third de�nition for wave breaking, i.e. the intersection of the
trajectories of plasma uid elements, is equivalent to the other two, one only
needs to consider that the advection equation (4.1) also describes the trajectories
of the uid elements, so intersection of characteristics is equivalent to intersection
of uid element trajectories.

The last de�nition of wave breaking to be studied is the one equating wave
breaking to the occurrence of singularities in the uid density. Consider the
continuity equation (4.3). In Lagrangian coordinates, this equation reads

@n(z0; �)

@�
+ n(z0; �)

@z0
@z

@v(z0; �)

@z0
= 0:

Provided @z0=@z is nonzero, this leads to

@

@�

�
n(z0; �)

@z

@z0

�
= 0; n(z0; �) =

n(z0; 0)

@z=@z0
:

This relation expresses that the amount of uid particles in a uid element is
conserved along the ow of the element. The local uid density is then determined
by the change in volume of the uid element, expressed by @z0=@z. We �nd that
the density becomes singular if and only if @z0=@z vanishes. So, a singularity in
n(z0; �) occurs if and only if there is wave breaking.
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Consider two coordinates z01 and z02 with z01 < z02, and corresponding charac-
teristics z1(t), z2(t), i.e. z1;2(0) = z01;2. Let us assume that v(z1(t); t) > v(z2(t); t)
for t > 0. Then we �nd that these characteristics intersect at t = ti, where ti is
de�ned by

Z ti

0

(v(z1(t); t)� v(z2(t); t)dt = z02 � z01:

From the de�nition of the characteristics, we know that each characteristic in
(t; z; p)-space is embedded in the curved surface (z; t; p(z; t)). So at the inter-
section of two characteristics, we �nd that p(z; t) becomes multiple-valued. The
physical meaning of wave breaking is therefore, that two wavelets starting at dif-
ferent locations at t = 0 collide at some later time since the trailing wavelet has a
larger local phase velocity than the leading one. At that point the solution may
develop in two di�erent ways. If the physical variable associated with the wave
cannot take multiple values for a single (z; t)-pair, as in the case of the density
of a uid, a shock front (a sudden jump in an otherwise continuous solution) is
formed, which travels with the wave. On the other hand, if the associated variable
can be multiple-valued, as in the case of the plasma uid momentum p(z; t), the
continuous curve representing the solution p(z; t) at some �xed t will be \folded
over" to represent a true multiple-valued solution. An extensive treatment of
the behaviour of a cold plasma wave after breaking, involving a multistream
approach, is given by Wang, Payne, and Nicholson [15].

Breaking of an unforced wave occurs if the local phase velocity increases with the
value of the displacement, so a local maximum can overtake a local minimum.

Several mechanisms may prevent wave breaking from occurring. Di�usion for
example dampens the short-wavelength components of the wave, thus inhibiting
the formation of a steep front. Also, the concept of characteristics does not
apply in the presence of di�usion, so wave breaking cannot be de�ned in terms of
characteristics. The Burgers equation is an example of this. Dispersion usually
leads to a broadening of wave packets, also preventing the steepening of wave
fronts. This can be seen in the Korteweg-de Vries equation. Mechanisms like
di�usion and dispersion infer the presence of higher order z-derivatives of p in
the advection equation (4.1). In terms of characteristic curves, such mechanisms
work by dulling any peaks in the \density" of characteristics in the (z; t)-plane,
thus preventing intersection of characteristics.

A few remarks should be made concerning waves in a cold plasma. Consider
a plasma wave having initial electron density n(z0; 0) and local uid velocity
v(z0; 0). Then the condition that the density be nonnegative initially requires
only that n(z0; 0) � 0 everywhere. However, as derived by Davidson [16], the
requirement that the density remain nonnegative and �nite for all time gives the
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more restrictive conditions

n(z0; 0) >
1

2
; (4.7)����@v(z0; 0)@z0

���� <
p
2n(z0; 0)� 1: (4.8)

These will be used later when dealing with the quasi-static approximation.

4.2.2 Wave breaking in a warm plasma

Wave breaking in a warm plasma is considerably harder to describe. For one
thing, the advection equation for a warm plasma contains pressure terms, and
may also contain di�usion terms that inhibit the description of wave breaking in
terms of characteristics. Also, the presence of pressure terms prevents the plasma
density from reaching arbitrarily large values, since in the adiabatic approxima-
tion, an in�nite amount of energy would be necessary to compress the plasma.
Furthermore, electron-ion collisions which have been neglected so far, become
important, leading to viscosity terms in the advection equation. Therefore, a
de�nition di�erent from those presented in the previous section is needed. To
date, there are three di�erent but partially overlapping de�nitions for \warm"
wave breaking.

1. Wave breaking occurs when the plasma density reaches the Co�ey limit [17].
The Co�ey limit is an upper bound to the plasma density, beyond which
thermal pressure inhibits further compression. As a result, plasma uid
elements will be reected from the plasma wave if the density reaches the
Co�ey limit at some point, which is considered wave breaking. A more
extensive treatment will be given later.

2. Wave breaking occurs when plasma electrons become trapped in the wave.
This de�nition is often used together with waterbag models (see below)
for the plasma electron thermal distribution. The onset of wavebreaking is
then taken to be the moment that the upper waterbag surface gets trapped.
However, several authors argue that there is no one-to-one correspondence
between plasma electron trapping and wave breaking, especially if only a
few very hot electrons are trapped while the structure of the plasma wave is
preserved. See for example Bezzerides and Gitmore [18] or Bergmann and
Mulser [19].

3. Wave breaking occurs when at least one of the macroscopically observ-
able quantities, such as the density or the longitudinal uid velocity, loses
its periodicity. In a Vlasov approach, this is accompanied by trapping of



66 Chapter 4. Fast electron generation. . .

the \bulk" of the plasma electrons and loss of the periodic structure of
the distribution function f(t; x; v). This de�nition is treated in depth by
Bergmann and Mulser [19]. Unfortunately, it is diÆcult to derive quanti-
tative thresholds for wave breaking from it.

As it happens, most of the work on wave breaking makes use of the Co�ey cri-
terion to calculate �eld or density thresholds for wave breaking. Several authors
(Katsouleas and Mori [20], Rosenzweig [26,27]) use particle trapping arguments
to derive such thresholds. However, these thresholds can usually also be obtained
by applying Co�ey-type arguments to their analysis. The de�nition of Bergmann
and Mulser is rarely seen in literature, even though the results of their Vlasov
simulations [19] clearly show that neither the Co�ey criterion nor particle trap-
ping arguments give a complete description of the phenomenon of warm plasma
wave breaking.

4.3 Wave breaking in two or three dimensions

Wave breaking in two or three dimensions is partly an extension of the same
phenomenon in one dimension, but it also has aspects that are entirely alien to
1-D wave breaking. To understand how 2-D breaking can be an extension of
1-D breaking, we have to reconsider the meaning of characteristic curves �rst.
A characteristic curve is actually a curve of constant wave phase in (z; t)-space,
de�ned by the equation z0(z; t) = Z0 for some constant Z0. Wave breaking occurs
if two such curves given by Z0(z; t) = Z1 and z0(z; t) = Z2 intersect. This concept
is easily extended to two or three dimensions. For example, in two dimensions,
the characteristic curves are replaced by characteristic \surfaces", surfaces in,
say, (x; y; t)-space de�ned by the equation x0(x; y; t) = X0. The solution to the
wave equation propagates along these surfaces, and wave breaking occurs if two
such surfaces having di�erent values X1 and X2 at t = 0 intersect for some t > 0.
For such intersection to take place, the wave fronts, i.e. the intersections of the
characteristic planes with the planes of constant t, have to move in the direction
of propagation for the wave. Therefore, this type of wave breaking will be referred
to as longitudinal wave breaking.

In plasma uid dynamics, longitudinal wave breaking in two or three dimensions
is often dealt with through a simple 1-D description. Such treatment is justi�ed
if the uid elements oscillate mostly in the direction of propagation of the wave,
and if the transverse derivatives are small compared to the longitudinal ones, i.e.
the wave resembles a plane wave to some extent, especially along its central axis
of propagation.

It is obvious that for a wave with fronts that do not resemble planes at all, the 1-D
approximation is bound to fail. This is particularly true for a wave propagating
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through a plasma channel, such as is often employed in laser wake�eld acceleration
to keep the laser pulse from diverging. In this case, a di�erent form of wave-
breaking, namely transverse wave breaking [11], can occur. This works as follows.
It can be shown that in a more or less parabolic channel, the wave front of a
laser-induced wake�eld becomes strongly curved, with maximum curvature on
the axis of the channel and proportional to the distance behind the laser pulse.
This implies that at a suÆcient distance behind the laser pulse the curvature
radius will become smaller than the amplitude of the displacement of the plasma
electron uid. In that case, wave breaking occurs not because two di�erent
characteristic surfaces intersect, but because the two halves of a single surface
meet. Contrary to longitudinal breaking, which usually occurs within the �rst
few plasma oscillations behind the laser pulse, transverse breaking may very
well occur many plasma periods behind the pulse. Also, a transverse break can
occur at much lower intensities than a longitudinal break, since the decrease of
the curvature radius of the wave fronts also takes place for low-amplitude wake
waves. Transverse wave breaking can be responsible for the injection of electrons
in the wake�eld in the transverse direction, many periods behind the pulse, and
may be an eÆcient mechanism for the trapping and acceleration of a relatively
small fraction of the plasma electrons.

Transverse wave breaking can happen in any situation for which the electron
plasma frequency has a transverse pro�le with a minimum on axis. This situation
occurs for example in preformed plasma channels, capillaries, and laser formed
plasma channels, but also when the plasma frequency decreases due to relativistic
electron mass increase. This frequency decrease increases with increasing laser
intensity, so the desired frequency minimum occurs at the centre of the pulse.

Transverse wave breaking may be important in channel-guided laser-plasma in-
teraction, since it limits the number of regular wave crests in the wake�eld behind
the driving pulse. In the remainder of this chapter though, wave breaking as a
means of generating large quantities of fast electrons will be investigated. Since
the contribution of transverse wave breaking to the number of plasma electrons
injected into the wave is small according to Ref. [11], the focus will be on longi-
tudinal wave breaking in the following sections.

4.4 Wave breaking in the quasi-static approxi-

mation

We consider the case of a wave in an in�nitely extended (quasi-)homogeneous
plasma, driven by a source moving with a constant group velocity vg, such as a
laser pulse or a driving bunch of particles. To study this particular case, it is
often convenient to transform to the comoving coordinate system (�; �), where
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� = z � vgt, � = t. Note the similarities with the transformation to Lagrangian
coordinates (4.4). It is assumed that the evolution of the source in this frame
happens on a much slower time scale than the plasma response, in which case
the phase velocity of the driven plasma wave is taken to be equal to the group
velocity of the source [21]. In the (�; �)-system, the advection equation (4.1) with
additional non-evolving source term f(�) reads

@p

@�
+ (v � vg)

@p

@�
+ E = f(�); (4.9)

Since the right-hand side of this equation does not depend on � , its solution is
often taken to be more or less static with respect to the comoving frame. In
that case, application of the quasi-static approximation (QSA), as introduced
in Chapter 2, is justi�ed: the @p=@� term will often be dropped entirely from
the advection equation, and resulting solutions will depend on � only. This
approximation has been used to describe plasma waves already in the work of
Akhiezer and Polovin [22].

To study wave breaking in the QSA, one cannot simply apply the above de�ni-
tions for wave breaking for the following reason. Translating the approximation
@p=@� = 0 back to (z; t) coordinates, we �nd

@p

@t
+ vg

@p

@z
= 0: (4.10)

This is an advection equation in itself, which actually replaces the original ad-
vection equation (4.1), while (4.9) without the @p=@� term is transformed into
an initial condition for (4.10). For this new advection equation, the local phase
velocity is a constant, so all its characteristic curves are parallel. Under these
conditions, a solution p to (4.10) cannot evolve to wave breaking conditions start-
ing from a non-breaking situation. Therefore, most of the literature on plasma
waves uses an alternative de�nition for wave breaking that does not match that of
Whitham [14]. First note that a solution to (4.10) can be obtained by integrating
(4.9) and applying an appropriate boundary condition for � ! 1. However, it
can be shown that such integration will fail if the intensity of the source is too
high, such that v reaches vg at some point. The alternative de�nition of wave
breaking states, that a wave is non-broken as long as (4.9) can be integrated, and
that wave breaking occurs at the moment that such integration fails.

A disadvantage of the quasi-static approximation is that it may not accurately
describe the behaviour of a cold plasma wave close to the threshold at which
integration of (4.9) fails. Such a wave typically displays sharp spikes in the
electron density at which @n=@� = 0 fails. Also, plasma electrons that were
initially at rest will be \reected" by the accumulation of charge around the
break, causing @p=@� = 0 to fail. In other words, the wave may be quasi-static
before and after it has broken, but not while wave breaking is in progress.



4.4. Wave breaking in the quasi-static approximation 69

There are also arguments that speak in favour of the QSA though. The �rst
argument is that for a cold plasma, the density for a regular wave in the QSA
satis�es the conditions (4.7) and (4.8) (the latter at least for a non-relativistic
wave), while a non-regular wave in the QSA violates them. This means that
the QSA correctly predicts the limit for 1-D wave breaking, even though it may
not correctly describe the wave's behaviour when it is breaking. The second
argument is, that in case of a warm plasma, the presence of pressure terms
in the advection equation inhibits the characteristics from intersecting or even
from getting close to each other, so taking them to be parallel in the QSA is a
reasonable approximation there.

Notwithstanding its limitations, the QSA has been used on many occasions to
predict the electric �eld threshold at which wave breaking sets in. We denote
this threshold by Ewb.

In the remainder of this section, we describe the procedure to obtain the wave
breaking threshold for the electric �eld Ewb, using the quasi-static approximation,
for the case of a relativistic wave in a cold plasma. Then it will be shown that
three other cases, namely cold non-relativistic, warm non-relativistic, and warm
relativistic, are just variations on the same theme. We start with expressing the
equations for the plasma electron uid in the wake�eld potential 	 = 1+�, with
� the electrostatic potential, as we did in Chapter 2. We rewrite (4.3) in the
QSA to obtain:

@(n(v � vg))

@�
= 0; n =

vg
vg � v

:

The wake�eld equations then read

@	

@�
= �E; (4.11)

@2	

@�2
=

v

vg � v
: (4.12)

The advection equation for the plasma wave can then be used to express 	 in
terms of either p or v. In this case (cold relativistic), we have v = p=

p
1 + p2

and the advection equation (4.9) behind the driving source (f(�) = 0) reads 
pp
1 + p2

� vg

!
@p

@�
= �E =

@	

@�
; (4.13)

from which 	 is found to be

	 =
p
1 + p2 � vgp: (4.14)

Since @	=@p 6= 0 for p = 0, this expression de�nes a one-to-one relationship
between 	 and p for not too large p. Inversion of (4.14) yields v = v(	) or
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p = p(	); insertion of this into (4.12) yields an oscillatory equation for 	. Any
oscillatory solution for 	 to this equation represents a quasi-static relativistic
longitudinal plasma wave, provided the amplitude is small enough such that
@	=@p 6= 0 everywhere. For p = gvg, (4.14) yields that @	=@p = 0, which sets
an upper limit on the amplitude of regular oscillations of 	.

Multiplying Poisson's equation (4.12) by (4.13) and using @=@� = v@p=@� yields
the energy equation for the wake�eld:

@

@�

�
1

2
E2 +

p
1 + p2

�
= 0: (4.15)

We observe that p reaches its maximum value pm for E = 0, while E2 reaches its
maximum value for p = 0. Then integration of (4.15) yields:

1

2
E2 =

p
1 + p2m �

p
1 + p2: (4.16)

As it happens, there are two singularities hidden in the system (4.11)-(4.13),
which may both be responsible for \wave breaking", that is the breakdown of
the quasi-static solution. The �rst singularity occurs for v " vg. The second
singularity occurs when @	=@p = 0 while @p=@� 6= 0. From the energy equation
(4.15), we �nd that in that case @E2=@� = 0 while @=@� 6= 0, so conservation
of energy is violated. Obviously, the wave solution cannot progress beyond this
point.

The second singularity is often expressed as an upper limit for the density n, and
is known as the Co�ey criterion or Co�ey limit. As a matter of fact, it is an
equivalent formulation of the amplitude limit for n found by Co�ey for thermal
plasmas [17]. For a cold plasma, the Co�ey limit translates to v = vg or 1=n = 0,
i.e. it coincides with the singularity in the plasma density. For a warm plasma
however, an enthalpy term is added to (4.15), and the Co�ey limit already occurs
for n equals some nmax < 1. As we will see later, this is the reason that wave
breaking in a warm plasma happens at lower electric �eld amplitudes than in a
cold plasma. See Bergmann and Schnabl [24] for details.

Since for a regular plasma wave, there exist one-to-one relations between p, v,
and n, the Co�ey criterion can also be expressed as @	=@v = 0 or @	=@n = 0.

We have seen before that in the cold relativistic case, the Co�ey limit is reached
for p = gvg. In other words, a plasma wave with momentum amplitude pm �
gvg will break sooner or later. From this, we can derive the electric �eld threshold
for wave breaking Ewb. Setting p = 0 and pm = gvg in (4.16) yields the well-
known result Ewb =

p
2(g � 1).

We proceed to discussing wave breaking in three additional cases: cold non-
relativistic, warm non-relativistic, and warm relativistic. These cases only di�er
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in the advection equation used for p or v, and thus the relation between 	 and p
or v. Wave breaking thresholds have been derived from Co�ey's criterion.

Cold non-relativistic. This result was �rst obtained by Dawson [23]. In this
case, the advection equation reads:

(v � vg)
@v

@�
= �E; (4.17)

from which we derive the wake�eld potential

	(v) =
1

2
v2 � vvg:

Combining (4.17) with the Poisson equation (4.12) yields

@

@�

�
1

2
E2 +

1

2
v2
�
= 0: (4.18)

Using Co�ey's criterion, we �nd that a singularity occurs for v = vg, i.e. coinci-
dent with a singularity in n. A wave on the verge of breaking reaches v = vg at
E = 0. From (4.18) it is then found that Ewb = vg. Note that this matches the
cold relativistic result in the limit vg � c.

Warm non-relativistic. The warm non-relativistic result was �rst obtained
by Co�ey [17]. It is derived from the 1-D Vlasov equation using a waterbag
velocity distribution: the density function f(t; x; v) is initially constant and equal
to n0=2v0 for �v0 < v < v0 where v0 =

p
3kT=m, and zero otherwise. The value

of v0 is chosen such that
R
v2fdv is the same as for a Maxwellian distribution.

It then follows that the value of f will always equal n0=2v0, and the evolution
of the Vlasov uid can be described in terms of its lower and upper velocity
boundaries denoted by v�(z). Then the mean uid velocity V (z) is found to equal
(v+(z)+v�(z))=2, and the bag boundaries are given by v�(z) = V (z)�v0n(z)=n0.
The wake�eld equations are then derived by taking moments of the Vlasov equa-
tion. The zeroth moment (

R
dv) of the Vlasov equation yields the continuity

equation n(vg � V ) = vg, while the �rst moment (
R
dv v) yields the momentum

equation, i.e. the advection equation for V . In the QSA, the advection equation
reads

(V � vg)
@V

@�
+
�v2g
2

@

@�
n2 = �E; (4.19)

and the wake�eld potential is given by

	(V ) =
1

2
V 2 � V vg +

�v4g
2(vg � V )2

:



72 Chapter 4. Fast electron generation. . .

Here, � � 3kT=(mv2g) denotes the temperature coeÆcient. Application of Cof-

fey's criterion yields that @	=@V = 0 for V = vg(1 � �1=4) < vg, i.e. before a
singularity in n is reached. As before, multiplying Poisson's equation (4.12) by
(4.19) yields the energy equation for the wake�eld:

@

@�

�
1

2
E2 +

1

2
V 2 + �v4g

�
1

2(vg � V )2
� 1

3(vg � V )3

��
= 0: (4.20)

A wave on the verge of breaking has velocity amplitude Vm = vg(1��1=4), reached
when E = 0, and �eld amplitude Ewb, reached when V = 0. Then Ewb can be
obtained from (4.20) to yield:

Ewb = vg

�
1� 8

3
�1=4 + 2�1=2 � 1

3
�

�1=2

:

A similar result has been derived by Aleshin, Drofa, and Kuz'menkov [25] through
slightly di�erent methods. They also integrate the equations describing the warm
plasma uid to obtain 	, E and n as functions of �, for both warm and cold
plasmas. For a wave having an amplitude larger than the wave breaking limit,
they claim that the wave period diverges, leading to the propagation of a time-
independent solitary wave.

Note that for � # 0, Dawson's result is reproduced.
Warm relativistic. The warm relativistic result has been investigated by vari-
ous groups. The advection equation for the mean plasma velocity, denoted by v,
can be derived from the relativistic Vlasov equation as before. Katsouleas and
Mori [20] used a waterbag model (bag boundaries at p = �p3kT=(mc2) ) to
derive the following wake�eld potential:

	KM =
1� vvgp
1� v2

�
1 + �

1� v2

(1� v=vg)2

�1=2

;

where � � 3kT=(mc2) for the relativistic case. Then @	KM=@v = 0 for v �
vg � 2

p
�=g. Since the use of 	KM rendered integration of Poisson's equation

somewhat diÆcult, the wave-breaking electric �eld was determined using

~	KM = lim
vg!1

	KM =
p
x2 + �;

where x2 � (1� v)=(1 + v). This yields for Ewb:

Ewb = ��1=4
q
ln(2

1=2
g �1=4):

From the way Ewb is calculated, its value is inherently too high, and the above
expression is only expected to be valid in the limit g

p
� � 1.
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Rosenzweig [26] starts from a di�erent wake�eld potential given by (in the limit
vg ! 1): 	R = x + �=x where x is de�ned as before. Application of the Co�ey
criterion yields @	=@v = 0 for v = (1�p�)=(1 +p�), and Ewb is found to be

Ewb =

�
4

9�

�1=4

:

In a later paper [27], Rosenzweig employs a three-uid model to obtain the fol-
lowing wave breaking threshold:

Ewb =

�
g
9�

�1=4

:

In this model, particle trapping arguments are used to determine Ewb instead of
@	=@v = 0.

Finally, Sheng and Meyer-ter-Vehn [28] start from the warm relativistic electron
uid theory proposed by Newcomb [29], and proceed to derive a very compli-
cated expression for the wake�eld potential. In the limit vg ! 1, they �nd that
@	=@v = 0 for v � 1 � 2� + 1

3
�3=2 � : : :, and derive Ewb = (4=(9�))1=4, similar

to Rosenzweig's �rst result. They also claim that if their methods (actually a
variant on the Co�ey criterion) are applied to 	KM as given above, then wave
breaking in the limit vg ! 1 occurs at v = (1��)=(1+�) and Ewb = (2=(9�))1=4.
This is actually quite remarkable, since their method and that of Katsouleas and
Mori are mathematically equivalent and should therefore yield the same results.

It is interesting to note that the threshold of Katsouleas and Mori and the second
threshold of Rosenzweig increase with g, while the �rst threshold of Rosenzweig
and those of Sheng and Meyer-ter-Vehn do not. In the latter case, a wave with
vg = 1 can still break due to thermal e�ects. This corresponds to the notion that
such a wave may still be able to trap particles, even though these particles will
never be able to keep up with the wave. This works as follows. We refer to the
linear plasma wave of which the phase space is depicted in Fig. 3.1. If the limit
vg ! 1 is taken for this wave, then the momentum gvg of the X-points and the
O-points tends to in�nity, but the minimum momentum necessary for trapping
(point L in the graph) tends to the �nite value (1� 4e20)=(4e0), where e0 denotes
the �eld amplitude. Once a particle has been trapped, it will slip back with
respect to the wave for all time, but the total distance along which it slips will
be �nite, and the particle will not leave the wave crest in which it has initially
been trapped. Note that in a cold plasma, a particle needs to pass through an
X-point in order to get trapped, for which an in�nite amount of energy is needed.
So in the limit vg ! 1, a �nite amplitude wave cannot trap particles having �nite
energy. In a warm plasma however, the �nite width of the particle distribution
function in phase space may cause particles to get trapped beneath an X-point,
where the separatrices lie very close together, requiring less energy. So in the
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limit vg ! 1, a �nite amplitude wave may still trap particles having �nite energy.
In short, Ewb may or may not reach arbitrarily large values in the limit vg ! 1.
Deciding which view is the correct one lies beyond the scope of this thesis.

In summary, all the results on wave breaking presented above were derived
through the same method, even if their respective authors claimed otherwise.
The only thing in which they di�er is the expression for the wake�eld potential
	 derived from the advection equation. These di�erences arise from (i) di�erent
initial energy distributions in the Vlasov equation, (ii) di�erent pressure terms
and/or thermal contributions to the internal energy, and (iii) di�erent approx-
imations in the limits vg ! 1 and � � 1. Especially in the warm relativistic
case, methods and results diverge considerably. Moreover, there are serious indi-
cations that the QSA is not �t to model a complicated phenomenon as plasma
wave breaking.

In the remainder of this chapter, the cold relativistic case will be explored in more
depth. The excitation of a non-linear plasma wave by the ponderomotive force
of a laser pulse will be investigated, conditions for wave breaking will be derived,
and predictions of the extracted charge versus laser intensity will be given. It is
stressed that the methods developed are applicable to all four of the above cases,
even though they are only applied to a relativistic wave in a cold plasma.

4.5 Non-linear waves in a cold plasma

We start from an in�nitely extended, homogeneous plasma, through which a laser
pulse propagates in the z-direction. The laser and plasma frequencies are denoted
by ! and !p respectively, and the plasma is assumed to be underdense: !p < !.
We denote the group velocity of the laser pulse, which is at the same time the
phase velocity of the wake wave, by vg, and the corresponding Lorentz factor by
g.

The following model assumptions concerning the plasma are made: the plasma is
cold and temperature e�ects are neglected, the plasma electrons are initially at
rest, and the plasma background density n0 changes on a very large length scale
so n0 will be considered a constant. Concerning the laser pulse, we assume that it
is one-dimensional and circularly polarized, and that its envelope does not change
as it propagates through the plasma. As a consequence, instabilities in the pulse
evolution due to Raman scattering are not investigated here. Furthermore, we
assume that g is suÆciently large, so all the terms of O(1=2g) or smaller can be
neglected.

We separate fast and slow timescales, transform to the coordinates � = z � vgt,
� = t, and apply the QSA: @=@� = 0. Then the slow, longitudinal motion of the
electron uid is governed by a modi�ed version of the system (4.11)-(4.13). In the
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presence of a laser pulse having envelope U(�) = hjA?j2i(�), the electron Lorentz
factor is given by  =

p
1 + p2 + U (cf. Chapter 2), while the plasma electrons

are not only driven by the electrostatic force �E, but also by the ponderomotive
force (1=2)@U=@�. Then the wake�eld equations become

@2	

@�2
=

p

vg � p
; (4.21)�

p


� vg

�
@p

@�
=

@	

@�
� 1

2

@U

@�
: (4.22)

Integrating (4.22) yields 	 in terms of p and U(�):

	 =
p
1 + p2 + U(�)� vgp:

It follows that 	 has a U -dependent lower bound: 	 � 	0(U) := (
p
1 + U)=g,

with 	 = 	0(U) for p = pcr := gvg
p
1 + U , i.e. v = vg and  = g

p
1 + U . As a

result, the mapping 	 7! p is double-valued:

p� = 2g

�
vg	�

q
	2 � (1 + U)=2g

�
; (4.23)

where p� < pcr and p+ > pcr. Since we wish to study regular plasma waves �rst,
for which the plasma uid velocity is below the wave velocity, p = p� is taken as
an initial condition for the momentum oscillation.

Using (4.21), (4.23), and  = 	+ vgp, the wake�eld equations can be reduced to
a single equation for 	:

d2	

d�2
= � @

@	
V (	; U);

V (	; U) =  = 2g

�
	� vg

q
	2 � (1 + U)=2g

�
:

(4.24)

This di�erential equation describes anharmonic oscillations of the variable 	.
(See Umstadter et al. [30] for a similar equation, although with a slightly di�erent
V (	; U), or Bulanov et al. [31] for a similar equation, with ion motion included.)
It is analogous to the Newton equation for a virtual particle with \coordinate" 	,
moving in a 1-D \potential well" V (	; U), where � is the \time" and U(�) acts as
a \time"-dependent parameter. Continuing this analogy, we de�ne the \velocity"
of the virtual particle as d	=d�, and its \kinetic energy" as 1

2
(d	=d�)2.

It should be noted that a maximum (minimum) of 	 corresponds to a minimum
(maximum) of the local electron density, with minimal (maximal) electron uid
momentum p and zero electric �eld. The minimum of V (	; U) as a function of
	 corresponds to a point with maximal j@	=@�j, i.e. maximal electric �eld, zero
electron uid momentum p, and n = 1.
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When 	 # 	0(U), we have @V=@	 ! �1, n ! 1, and p� = p+ = pcr. It
is possible that, after passing this point, p = p+ for some plasma electrons, so
	 = 	0(U) is a bifurcation point. These electrons then overtake the wake wave,
which is called wave breaking [20,23]. It can be concluded from the equations of
motion that wave breaking is bound to happen if a suÆciently large oscillation
is excited in the plasma.

4.6 Excitation of 1-D plasma waves

Following the approach of the previous section, longitudinal plasma waves are
described as oscillations of a virtual particle with \coordinate" 	(�), in a potential
well V (	; U). The mechanism behind the excitation of such oscillations by strong
laser pulses will be considered below.

Multiplying (4.24) by @	=@� yields the energy equation for the virtual particle:

@

@�

 
1

2

�
@	

@�

�2

+ V (	; U)

!
= 0: (4.25)

As a matter of fact, this is Eq. (4.15) with the addition of the ponderomotive
pressure of a laser pulse. We employ this equation to describe plasma oscillations.
For simplicity, we assume that the laser intensity envelope U(�) is rectangular
with (scaled) length L: U(�) = U0 for �L � � � 0, and 0 otherwise. Then
V (	; U) can be seen as a function of 	 alone in two parameter regimes: U = 0
and U = U0. Oscillations are excited by moving the virtual particle away from
the bottom of the \potential well", located at 	 = 	m :=

p
1 + U . This will be

done as follows (Roman numbers correspond to those in Fig. 4.1).

(I) In front of the pulse, the plasma is at rest, so we start at 	 = 1 = 	m for
U = 0.

(II) At � = 0, U increases to U0, while 	 remains constant. Since the minimum
of V (	; U0) is at 	 =

p
1 + U0 > 1, the virtual particle will start to oscillate

between 	 = 1 and 	 = 	III(U) > 1, where 	III(U) denotes the other solution
to V (	; U) = V (1; U) (cf. Fig. 4.1), and is given by

	III(U) = 2g

�
2� 1

2g
� 2vg

q
1� (1 + U)=2g

�
: (4.26)

(III) When the laser intensity drops back to zero at � = �L, the potential energy
of the virtual particle drops from V (	(�L); U0) to V (	(�L); 0).
(IV-V) Since (@	=@�)2 > 0 and 	 > 1, an oscillation in the potential well for
U = 0 has been excited.
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The total \energy" of the oscillation equals V (1; U0)�V (1; 0)� (V (	(�L); U0)�
V (	(�L); 0)), and since V (	; U0)� V (	; 0) decreases for increasing 	, we �nd
that the total oscillatory \energy" at a given pulse intensity U0 is maximal for
	(�L) = 	III. For 	(�L) < 	III, the total \energy" di�ers from the maximal
\energy" as �E � O((	III � 	(�L))2).
One must note that, whereas the front edge of the laser pulse increases the poten-
tial energy of the virtual particle, the back edge decreases it. In the special case
that 	(�L) = 1, the �nal energy of the virtual particle will be zero, and there
will be no wake behind the pulse. For this reason, we de�ne the pulse length L to
be optimal, if the excited plasma oscillation has the maximal possible energy for
the pulse intensity U0. For the remainder of this chapter, L is always assumed to
be optimal.
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Figure 4.1: Excitation of a plasma oscillation by a rectangular pulse with n=ncr =
0:02 and U0 = 10:0, depicted in (�; E)-space (a) and (	; V )-space (b).

If the total \energy" level of the oscillation after passage of the pulse exceeds
V (	0(0); 0) = g, then we will have 	(�) = 	0(0) for some �, while j@	=@�j >
0. (This means that, in �gure 4.1, the endpoint 	0(0) will be reached.) As
mentioned above, the wave breaks at this point. For the maximal electrostatic
�eld associated with a wave on the verge of breaking, we recover, using (4.25),
the well-known result of Akhiezer and Polovin [22]:

Emax =
q
2(g � 1): (4.27)

For a complete algebraic description for the relativistic wake�eld excited by a
square pulse, see Teychenn�e, Bonnaud and Bobin [32].

4.7 Fast particle generation as wave breaking

From the previous section, we know that the wake wave driven by the laser pulse
breaks if 	(�) = 	0(U0) at some point, causing the production of electrons with
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speed v > vg. These electrons may be captured and accelerated by the wake
wave itself, attaining a �nal energy up to 22g � 1 as shown in Section 4.9. This
mechanism is believed to be responsible for fast particle generation by a single
intense laser pulse [2].

We are going to investigate two possible scenarios for reaching the wave breaking
point: (i) wave breaking at the front edge of the laser pulse, and (ii) wave breaking
during the �rst plasma oscillation behind the pulse.

In the �rst scenario, the envelope U(�) increases from 0 to its maximum value
U0, while at the same time 	 stays at its original value of 1. (See steps I
and II in �gure 4.1.) The corresponding value of 	0(U) increases from 1=g
to (

p
1 + U0)=g. If 	0(U) reaches the initial value of 	 = 1 on the way, the sin-

gularity at 	 = 	0(U), will be encountered right at the front edge of the pulse.
The threshold for this mechanism of wave breaking is

U0 = 2g � 1: (4.28)

This scenario could dominate fast electron generation at high laser intensities, but
it does not explain the intensity thresholds found in experiments and simulations,
which are commonly one order of magnitude lower than predicted by (4.28).

In the second scenario, U0 is assumed to be below 2g�1, so there will be no wave
breaking at the front edge of the pulse. Instead, a plasma wave will be excited
that is strong enough to break behind the pulse. As shown in the previous section,
this will happen as soon as the total energy of the oscillation exceeds g. This
situation can be reached as follows. De�ne 	1 as the other solution for 	 of
V (	; 0) = V (	0(0); 0):

	1 = 2g(2� 1=2g)	0(0) = g(2� 1=2g): (4.29)

Then the energy of the system will reach the wave breaking threshold if at point
III in Figure 4.1, 	(�L) � 	1.

Since L is optimal, wave breaking will occur if 	III(U0) � 	1, or

U0 � 2(g � 1)� g � 1

42g(g + 1)
� 2(g � 1): (4.30)

For any g > 1, we �nd that the wave breaking limit for U0 in the second scenario
is smaller than in the �rst scenario, so this second scenario is at least partly
responsible for fast electron generation at intensities below 2g � 1. The above
limit de�nes an upper limit to the laser intensity threshold for wave breaking.
It is also in agreement with earlier theoretical results [32]. It can be expected
that thermal e�ects will lower this intensity threshold, just as they lowered the
corresponding threshold for the electric �eld.
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As an example, we see that for n0=ncr = 0:02 and laser wavelength �0 = 800 nm,
the �rst scenario predicts wave breaking for U0 � 49, corresponding to a power
threshold of 1:1 � 1020 W=cm2. The second scenario predicts a power threshold
of 2:6 � 1019 W=cm2. Simulations by Nagashima et al. [33] predict a threshold of
approximately 1019 W=cm2 for this case. Malka et al. [4] conducted simulations
with n0=ncr = 0:05 and �0 = 1 �m, and found an intensity threshold of 1018 �
1019 W=cm2, where our �rst scenario predicts P = 2:7 � 1019 W=cm2, and the
second predicts P = 1:0 � 1019 W=cm2.

One should note that these thresholds are only valid for the case of a cold plasma
and a regime for which ponderomotive excitation of the plasma wave is the dom-
inant mechanism. Thermal e�ects (see above) or the presence of Raman insta-
bilities (see Chapters 5 and 6) may lower these thresholds considerably.

4.8 Simulations

In the previous sections, it has been assumed that the laser pulse had a rectan-
gular envelope, and expressions for thresholds for U or upper boundaries for 	
have been derived under this assumption. Since in reality, the envelope of a laser
pulse is not rectangular but rather smooth, with low-intensity tails at the front
and back of the pulse, simulations have been conducted to study the inuence of
the pulse shape on the excitation of the plasma wave.

The idea behind the simulations is, that the electric �eld excited behind the
laser pulse has at least one minimum behind the pulse, even in the case of wave
breaking. From this minimum, the amplitude of the �eld can be determined.
If this amplitude is below the Akhiezer-Polovin limit of

p
2(g � 1), the plasma

wave will not break. If on the other hand the amplitude is above the limit,
the wave will break soon after the �rst minimum in the �eld. This way, wave
breaking can be diagnosed without integrating near the location of the break,
where gradients are steep and numerical integration becomes unstable.

In the simulations, the equations @	=@� = �E and @E=@� = �@V (	; U)=@	
(see (4.24)) have been integrated with respect to �, to obtain the amplitude
of the electrostatic �eld E behind the laser pulse. The second order Adams
Bashforth method has been used, with step size �� = 0:002. The simulations
have been conducted using three di�erent pulse shapes: rectangular with width
2b and height U0, polynomial with envelope U(�) = U0(1�(�=b)2)3, and Gaussian
with envelope: U(�) = U0 exp(�1

2
(3�=b)2). This way, all pulses satisfy L = 2b.

Two di�erent plasma densities have been used: n=ncr = 0:02; 0:05. For each
combination of pulse shape and density, the amplitude of the electric �eld behind
the pulse has been determined for a range of values for both U0 and b.
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Figure 4.2: Amplitude of the electric wake�eld for a pulse with (a) a rectangular
envelope, (b) a polynomial envelope, and (c) a Gaussian envelope, as a function
of pulse width and height. The heavy black curves denote the Akhiezer-Polovin
�eld limit for wave breaking.
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The results are shown in Figure 4.2. In the �gures, the amplitude of the excited
wake�eld is shown as a function of length b and peak intensity U0. Note that
all lengths are normalized, i.e. the plasma wavelength �p = 2�. Bright areas
correspond to a high amplitude, while dark areas correspond to a low amplitude.
The heavy black curve in each graph corresponds to the Akhiezer-Polovin limit,
which separates the wave-breaking region (high amplitude, bright area above the
curve) from the non-wave-breaking region (low amplitude, dark area below the
curve). The black areas at the top of the �gures 4.2(a) and at the top left corner
of the �gures 4.2(b) and (c) correspond to wave breaking at the front of the pulse.
In that case, calculation of neither the wake�eld nor the amplitude is possible.

From the results, it immediately follows that the minimum scaled laser intensity
necessary to reach the Akhiezer-Polovin limit decreases with increasing plasma
density. The main cause for this is the decrease of g, and thus of this limit, with
increasing plasma density, since the (scaled) electric �eld amplitude does not
change considerably. For the same reason, intensity thresholds for wave breaking
at the front of the pulse decrease as well. It is also obvious that short pulses
with high intensity excite large wake�elds, while long pulses with low amplitude
hardly excite anything.

Regarding pulse envelope shape, there is a clear distinction between excitation
by a rectangular pulse and by a pulse with a smooth envelope: excitation by
a rectangular pulse is much more eÆcient. This follows from the fact that a
rectangular pulse has in�nite derivatives at the front and the back, regardless
of the length of the pulse. For this reason, the behaviour of the �eld amplitude
for constant U0 is periodic with respect to b. The period is half a non-linear
plasma wavelength, which can be considerably larger than �p for large U0. The
\trenches" of low amplitude that can be seen in the graphs correspond to pulses
having a length that is an integral multiple of the non-linear plasma wavelength.
As mentioned before, such pulses have 	(2b) = 	(0) = 1 and as a consequence
they hardly excite any wake�eld at all, while slightly longer or shorter pulses may
excite a considerable wake�eld. Note that because of the in�nitely steep front of
the pulse, wave breaking at the front is inevitable for U0 � 2g � 1, regardless of
the pulse length.

Things are di�erent for the pulses with smooth polynomial or Gaussian envelope.
Such pulses have �nite derivatives that decrease with increasing pulse length. It
can be shown that the amplitude of the excited plasma wave depends mostly on
the magnitude of these derivatives, rather than on the total energy carried by the
pulse. Therefore, for a smooth pulse, the plasma wave amplitude decreases con-
siderably for increasing pulse length, contrary to the case of a rectangular pulse.
As soon as the pulse intensity increases from 0 to its peak value over more than
a plasma wavelength, the pulse excites hardly any wake�eld, i.e. ponderomotive
excitation becomes extremely ineÆcient. Also, the conditions for wave breaking
at the front of the pulse are diÆcult to attain for a smooth pulse. In addition, it



82 Chapter 4. Fast electron generation. . .

can be seen that plasma wave excitation by a polynomial pulse is slightly more
eÆcient than excitation by a Gaussian pulse. This is caused by the Gaussian
pulse having longer \tails" at the front and back, which decrease eÆciency. But
this di�erence is only minor, since the qualitative di�erence between these two
envelope shapes is small.

In experiments, plasma waves will commonly be excited by a laser pulse having a
more or less �xed length, intensity, and envelope shape. On the other hand, the
plasma density n0 may vary over a wide range of values, so it comes naturally to
investigate the inuence of a change in n0 leaving all other parameters constant.
As observed above, the Akhiezer and Polovin threshold scales approximately with
1=2g � n�1=40 for g � 1, but this is not the most important contribution. Far
more important is the fact that for a pulse with �xed unscaled length L, the
scaled length L=�p = !pL=(2�c) scales with n

1=2
0 , while its scaled intensity does

not change with n0 at all. From the �gures, it can be seen that for L=�p > 1,
there is a very rapid increase of the laser intensity needed to excite a breaking
plasma wave, i.e. the eÆciency of the laser-plasma energy transfer drops down to
(almost) zero. If we assume for the moment that for �xed n0 the critical intensity
for wave breaking Ucr scales with (L=�p)

2 (it is probably even worse than that)
while according to (4.30), we �nd that for �xed (L=�p)

2, Ucr scales with g, we

�nd that for �xed L, Ucr � g(L=�p)
2 � n

1=2
0 or worse. In other words, the higher

the plasma density, the less eÆcient the ponderomotive excitation scheme. It has
been shown that eÆciency is maximum for L in the neighbourhood of �p=2, the
so-called resonant excitation. This is supported by our own results which show
a maximum eÆciency for 0 < L < �p=2, a rapid decline in eÆciency for L > �p,
and a negligible contribution to the plasma wave for L > 2�p.

As it happens, laser pulses with L > �p are perfectly capable of exciting a wake
wave in a plasma, only not through ponderomotive excitation as described in this
chapter. The main mechanism in such cases is excitation of a fast plasma wave
in the plasma through so-called parametric instabilities, most notably stimulated
Raman scattering, which do not play a role for L < �p. Excitation by means of
stimulated Raman scattering will be investigated in Chapter 6.

4.9 Behaviour of the broken wave

The simple one-uid model discussed here is suitable for the description of the
plasma wave only until it breaks. For the description of the plasma after wave
breaking, the model needs to be extended as follows. The plasma electrons
captured by the wake wave have a velocity v obeying vg < v < 1. Since
v�vg . O(1=2g), captured plasma electrons will remain virtually immobile with
respect to the wake�eld, and bunch up just in front of the wave breaking point.
This bunch of fast electrons will be approximated by a \sheet" of charge, located
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at � = �0, just in front of the wave breaking point. As we shall see, the charge
density in the sheet will increase until a certain limit has been reached; after
that the charge density will remain constant. The resulting stationary situation
is depicted in Figure 4.3.

This line of reasoning is supported by the simulation results of Nagashima et
al., [33] which show a sharp spike in the electron density leaving the plasma and
staying closely behind the laser pulse.

The �nal energy of plasma electrons that are captured and accelerated as a result
of wave breaking can be calculated as follows. It is assumed that in the process
of wave breaking, plasma particles are actually reected by the break in the
wake�eld. In a Lorentz frame moving with the pulse, plasma particles in front
of the pulse have originally a velocity �vg. After reection by the break, they
eventually obtain a velocity vg with respect to the comoving Lorentz frame. From
relativistic addition of velocities, the �nal velocity vf is found to equal 2vg=(1+v

2
g),

and the corresponding f equals (1 + v2g)=(1� v2g) = 22g � 1.

We proceed to study the behaviour of an already broken wake�eld with an accu-
mulation of charge just in front of the break. With the additional contribution
of the charge sheet, the di�erential equation for 	 becomes:

@2	

@�2
= � @

@	
V (	; U) +QÆ(� � �0); (4.31)

where Q represents the saturated surface charge density of the sheet. We �nd
that for both � > �0 and � < �0, the energy equation (4.25) still holds, while
the presence of the sheet causes a jump in @	=@� at � = �0, i.e. a jump in the
electrostatic �eld. Note that the electric �eld of the sheet is cancelled by that of
the background ions for � > �0.

The scenario of plasma wave excitation is depicted in Figure 4.3.

(I-V) A plasma oscillation is excited similarly to the scenario without the charge
sheet. Its energy level is higher than the energy V (1=g; 0) = g of the end point
of the potential well.

(VI) After passage of the charge sheet at � = �0, @	=@� has decreased by Q,
and since @	=@� > 0 for � > �0, we �nd that the \kinetic energy" of the virtual
particle has also decreased. Since 	 � 	0(0) at � = �0, the \kinetic energy"
just before passage of the charge sheet is given by 1

2
(@	=@�)2 = V (	III(U); 0)�

V (	0(0); 0). As long as Q is small, one still has @	=@� > 0, and \kinetic energy"
larger than 	0(0) after passage of the charge sheet, and the growth of Q will
continue. However, as soon as Q2 = 2(V (	III(U); 0) � V (	0; 0)), fast electron
generation, i.e. increase of Q, will stop.

(VI-VII) In the stable situation where the charge sheet prevents further wave
breaking, there is a regular plasma oscillation behind the sheet.
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Figure 4.3: The evolution of 	 and the total energy level of the system in the
case of wave breaking and subsequent plasma electron capture, depicted in (�; E)-
space (a) and (	; V )-space (b). The laser and plasma parameters are n=ncr = 0:02
and U0 = 15.

From Q2 � 2(V (	III(U); 0)� V (	0; 0)) and

V (	0(0); 0) = g; (4.32)

V (	III(U); 0) = 4g

�
X � vg

q
X2 � 1=6g

�
; (4.33)

where

X :=
	III

2g
= 2� 1

2g
� 2vg

s
1� 1 + U

2g
; (4.34)

we �nd that Q will saturate as soon as

Q �
s
(U � Ucr) +

2(U � Ucr)

2 + Ucr
+
(U � Ucr)2

(2 + Ucr)2
; (4.35)

de�ning the �nal charge density of the sheet for U � U0. The total surface charge
density of the generated fast electrons will be (n0 e c=!p)Q. (See �gure 4.4.)

The behaviour of Q vs. U0 in �gure 4.4 is in good qualitative agreement with
simulation results by Nagashima et al. [33].

Note that U=2g should remain suÆciently small, otherwise wave breaking at the
front of the pulse occurs, and the approximations made in the above equations
are no longer valid.

4.10 Conclusions

In this chapter, plasma wave breaking and its role in fast electron production
have been investigated. At wave breaking, plasma electrons get trapped in the
wave itself, and bunch up just in front of the wave breaking point. There they get
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accelerated and emerge as fast electrons from the plasma. In general, a laser pulse
moving with velocity vg . 1 and corresponding Lorentz factor g can generate
fast electrons with energies up to 22g�1, which corresponds to about 1:0�ncr=n0
MeV. For example, from a plasma with n0 = 0:02ncr, electrons with an energy of
up to 50 MeV can be generated, simply by injecting an intense laser pulse into
it.

An overview of existing de�nitions for wave breaking in both cold and warm
plasmas has been given, and the electric �eld threshold for wave breaking has
been calculated in both cases for both relativistic and non-relativistic waves. It
has been found that existing literature uses a number of di�erent de�nitions for
the phenomenon denoted as wave breaking. For a cold plasma, wave breaking is
de�ned as intersection of the characteristic curves or planes along which the wave
propagates, or equivalently the occurrence of a singularity in the plasma density.
In a warm plasma, the plasma density cannot even approach a singularity because
of diverging pressure terms in the advection equation. As a consequence, there
is no unambiguous de�nition of wave breaking in this case, and the minimum
value of the electrostatic �eld necessary for wave breaking may vary considerably
depending on the de�nition used in its derivation.

The case of a cold relativistic wave excited by the ponderomotive force of a non-
evolving laser pulse has been investigated more closely. A 1-D model has been
developed to describe such excitation, from which laser intensity thresholds for the
occurrence of wave breaking have been derived, both analytically and numerically.
The model has then been extended to include, in a self-consistent way, the capture
and acceleration of plasma electrons during wave breaking. This resulted in an
analytical expression predicting the total extracted charge as a function of laser
intensity. The analytical prediction for the amount of fast electrons as a function
of laser intensity is found to be in qualitative agreement with the results of recent
particle-in-cell simulations [33]. With only small modi�cations, the model can
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also be used to study breaking of non-relativistic waves, or waves in a warm
plasma.

The laser intensity thresholds for wave breaking as predicted by the model de-
veloped in this chapter agree with earlier results obtained through a di�erent
method [32]. The numerical simulations of wake�eld excitation show that pon-
deromotive excitation works best for pulses with length L . �p=2 while its ef-
�ciency decreases sharply for L > �p, and there is hardly any excitation left
for L > 2�p. Plasma wave excitation in this regime is bound to originate from
di�erent processes, such as stimulated Raman scattering.
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Chapter 5

Stimulated Raman scattering

5.1 Introduction

When a strong electromagnetic pump wave (frequency !0, wave vector k0) in-
teracts with an underdense plasma, it drives various longitudinal plasma waves
having frequencies di�erent from !0. Nonlinear interaction between the pump
and density perturbations in the plasma results in the excitation of electromag-
netic sidebands in the EM spectrum located at the sum and di�erence of the
pump and plasma wave frequencies. When the interaction is such, that exci-
tation of the EM sideband excites/enhances a plasma wave, while the presence
of the plasma wave enhances sideband growth in turn, the interaction process
becomes unstable. Such an instability is called a parametric instability [1{4].

There are various types of parametric instabilities, classi�ed according to the
relation between the phase velocity v' of the plasma wave and the electron and
ion thermal velocities vth;e and vth;i. When the incident pump scatters o� a
Langmuir wave (v' � vth;e so the electrons are adiabatic and the ions immobile),
the instability is called stimulated Raman scattering (SRS). If the plasma wave
satis�es v' � vth;e, it will be strongly Landau damped on electrons. Then the
plasma wave is no longer an eigenmode but a driven oscillation, and scattering o�
it is called stimulated Compton scattering. Finally, when the pump scatters o� an
ion-acoustic wave (vth;i � v' � vth;e, so the electrons are isothermic and the ions
adiabatic), it is called stimulated Brillouin scattering (SBS). 1 In laser wake�eld
acceleration, the plasma is usually cold and the timescales involved are so short
that ion motion can be neglected. Therefore, stimulated Raman scattering is by
far the most important parametric instability in laser wake�eld research, and the
only one that will be dealt with in this chapter.

1The terms Raman and Brillouin scattering have been borrowed from photon-phonon inter-
actions in solid-state physics that show similar spectral behaviour.



90 Chapter 5. Stimulated Raman scattering

In SRS, the incident pump (!0;k0) scatters o� a Langmuir wave (!;k), generating
two EM sideband waves (!0�!;k0�k) in the process. The frequency downshifted
wave is called the Stokes wave, and the upshifted wave is called the anti-Stokes
wave.2 Since all the EM waves involved need to be able to propagate through
the plasma, SRS can only occur if !0�!p > !p, or n0 < ncr=4. This requirement
will easily be met in underdense plasmas for which normally n0=ncr � 1 holds.

There are various types of SRS, named after the direction of the scattered EM
wave with respect to the incident EM wave. One discerns Raman backscattering
(RBS), side scattering (RSS), near-forward scattering (RFSS) and forward scat-
tering (RFS). The frequencies of the associated Langmuir waves are all in the
vicinity of !p, while the wave numbers of these waves range from about 2k0 for
RBS to about !p=c for RFS. Consequently, the Langmuir wave phase velocity is
lowest for RBS and highest for RFS. This means that if thermal e�ects come into
play, the RBS Langmuir wave will feel them �rst. Also, the wave breaking am-
plitude is lowest for the RBS Langmuir wave, and highest for the RFS Langmuir
wave.

In order for Raman scattering to occur in laser-plasma interaction, the incident
laser pulse needs to be longer than one plasma period. This corresponds to
the regime in which ponderomotive excitation of a laser wake by the laser pulse
envelope ceases to play a role. However, a laser pulse can still excite a wake in
this regime. The reason for that is that the role of the wake is taken over by the
(fast) RFS Langmuir wave. When excited to suÆcient amplitudes, this fast wave
is as suitable for particle acceleration as a ponderomotively excited wake.

In this chapter, an introduction to Raman scattering theory will be given. From
the dispersion relation for the coupled EM and plasma waves, the various types
of Raman scattering will be derived, with their frequencies and wave numbers.
Also, expressions for the growth rates of the various types will be given. Note that
(almost) all the results below are taken from basic Raman theory, which implies
a very long low intensity pump laser beam propagating through an in�nitely
extended homogeneous plasma.

5.2 Dispersion relation

From EM wave theory, the dispersion relation for the coupled EM and plasma
waves can be derived using perturbation methods. Modes that are at or near
a resonance in the dispersion relation will display a large growth rate and are
called \resonant". Modes that are far from such a resonance have a small growth
rate and are called \non-resonant". In our analysis we will neglect non-resonant

2The terms Stokes and anti-Stokes have been borrowed from uorescence and Raman spec-
troscopy, and bear no relation to the (anti-)Stokes lines in the theory of asymptotic series.
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modes, such as higher order coupled modes (!0 � l!;k0 � lk), l > 1 and integer,
or modes with electrostatic sidebands, which are non-resonant in an underdense
plasma.

We follow the approach of Sakharov and Kirsanov [5] to derive the dispersion
relation for the ensemble of a pump laser wave and two EM sideband waves.
Note that, in line with the standard practice, only the vector potentials will be
normalized, while other quantities like t, r, and n, are not normalized. The
respective vector potentials A0 and A� of pump and sidebands are given by

A0 = a0(r; t) exp[i(k0 � r� !0t)];

A� = a�(r; t) exp[i(k� � r� !�t)]:

Here, !� = !0 � ! and k� = k0 � k, where ! and k denote the frequency and
wave vector of the Langmuir wave excited by the beating of the pump and one
of the sidebands. We set A? = A0 + A+ + A�, and insert this into the wave
equation for the fast part of the vector potential as derived in Chapter 2:�

�� 1

c2
@2

@t2
� !2

p

s

ns
n0

�
A? = 0: (5.1)

For a circularly polarized laser pulse, we have s =
p
1 + A2

?. We further assume
that the density perturbations are initially small, i.e. ns = n0+ ~ne with ~ne � n0.
It is also assumed that jA�j � jA0j, so s � 0(1 +A0 � (A+ +A�)=

2
0) where

0 �
p
1 + A2

0. An eikonal approximation will be used for the vector potentials,
meaning that jr �aj � jk0 �aj. Expanding (5.1) produces the following equations
for leading order terms and �rst order perturbations respectively:�
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@t2
� 
2

p

c2

�
A0 = 0; (5.2)�
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@t2
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2
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c2

�
A� =


2
p

c2

�
~ne
n0
� A0 �A�

20

�
A0: (5.3)

Here, 
p = !p=
p
0 is the plasma frequency after correction for the transverse

electron quiver motion in the EM �eld of the pump. Note that the A0 � A�

contribution at the right-hand side of (5.3) does not occur in a non-relativistic
SRS analysis. This term arises from the relativistic shift in the plasma frequency
due to the combined action of the pump and sideband waves. The term has the
same magnitude as the �rst term at the right-hand side and does not vanish in
the low-pump limit. Since such frequency shifts do not arise in a non-relativistic
treatment, this implies that the relativistic case in the low-pump limit di�ers
from the non-relativistic case.

The density perturbation is driven by the ponderomotive force,�
@2

@t2
+ 
2

p

�
~ne =

n0c
2

20
�(A0 �A+ +A0 �A�); (5.4)
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where it has been assumed that the rA2
0 contribution can be neglected, i.e. the

pump has in�nite length and constant amplitude.

From (5.2), the well-known dispersion relation !2
0 � 
2

p = c2k20 for the EM pump
is derived. Combining (5.3) and (5.4) and retaining only the leading order terms
yields the joint dispersion relation for the �rst order sideband waves and the
density perturbation (subscript \e" dropped):


2

p � !2 =
1

2

2

p(c
2k2 � !2 + 
2

p)
A2
0

20

�
1

D�
+

1

D+

�
; (5.5)

where D� are given by D� = c2jk0�kj2�(!0�!)2+
2
p. Resonant modes of (5.5)

occur when either D� = 0 (Stokes) or D+ = 0 (anti-Stokes). These relations will
be used below to analyze the various possible types of SRS.

It should be noted that the dispersion relation (5.5) has been derived under the
implicit assumption that the pump and scattered EM waves are polarized in
the same direction and scattering occurs out of the plane of polarization, i.e.
k� �A0 = 0. The reason for this is that in this case, the instability growth rate
is maximum and the intensity threshold is minimum. It can also be shown that
maximum growth occurs if <(!) = 
p, < denoting the real part of an expression,
which we assume to be the case from now on.

5.3 Scattering o� electron modes

Having derived the dispersion relation (5.5), we are now ready to discuss the
various possible modes of SRS o� a cold electron plasma. We will treat the
Stokes and anti-Stokes modes separately. For convenience, we will also express
D� in terms of the angle # between the wave vectors k0 and k of the EM pump
and the Langmuir wave respectively: D� = c2(k2 � 2kk0 cos #)� 2!!0 � !2:

Stokes wave The Stokes EM wave has frequency !� = !0 � 
p, wave vector
k� = k0 � k, and satis�es D� = 0, i.e.

c2(k2 � 2kk0 cos#) + 2
p!0 � 
2
p = 0:

This equation can be solved for k to obtain

k = k0 cos#�
q
k20 cos

2 #� (2
p!0 � 
2
p)=c

2: (5.6)

For k to have at least one positive real solution, one must have

cos2 # > cos2 #� =
2
p!0 � 
2

p

c2k20
= 1� 1� 2
p=!0

1� (
p=!0)2
:
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In practice, this means that there can be scattering o� the Stokes wave for 0 �
# � #� only, since for � � #� � # � �, both solutions for k are negative. Also
note that there are no real solutions for k if 
p=!0 >

1

2
, which con�rms that SRS

cannot exist for n0 > ncr=4. In the next chapter, we will use !p=!0 � 0:15, for
which cos2 #� � 0:28, i.e. #� � 58Æ. This guarantees that in the paraxial region,
� will be suÆciently removed from #�.

We discern the following cases:

(i) # = 0. In this case, we have

k = k0 �
q
k20 � (2
p!0 � 
2

p)=c
2

� k0(1� (1� 
p=!0 + (
p=!0)
2));

leading to either k � 2k0 � 
p=c or k � 
p=c(1 � 
p=(2!0)). In the �rst case,
the Stokes EM wave has wave number �(k0 � 
p=c), i.e. it propagates back-
wards with respect to the pump wave. For this reason, this case is called Raman
backscattering (RBS). In the second case, the Stokes EM wave has approximate
wave number k0�
p=c and propagates in the exact same direction as the pump.
This case is called Raman forward scattering (RFS). We shall see later that RFS
also has an anti-Stokes component scattering o� nearly the same Langmuir wave,
while RBS only has the above Stokes component.

(ii) 0 < # < #�. In this case, we also have two solutions for k, one with
k > k0 cos# and one with k < k0 cos#. The direction of the Stokes EM wave as-
sociated with the �rst solution goes from backward to backward-sideways to side-
ways to forward-sideways as # increases. This type of scattering is called Raman
side scattering (RSS). The direction of the Stokes EM wave associated with the
second solution is always forward-sideways, and this case is usually disregarded as
being non-resonant. However, for #� #� such that k20 cos

2 #� (2
p!0�
2
p)=c

2,
we will show that both the Stokes and the anti-Stokes EM waves scatter from
nearly the same Langmuir wave, and therefore reinforce each other. In that case
(5.6) reduces to

k � 2
p!0 � 
2
p

2c2k0 cos#
� 
p=c

cos#

�
1� 
p

2!0

�
:

Since k � k0, we �nd that the associated EM wave propagates nearly in the
forward direction, and has approximate wave number k0 � 
p=(c cos#). Due to
its similarity with Raman forward scattering, this type of scattering is called
Raman near-forward scattering (RFSS).

(iii) # = #�. In this case, both solutions for k coincide at k = k0 cos#� =q
(2!0
p � 
2

p)=c
2 � k0, i.e. side scattering and near-forward scattering meet.

The Langmuir wave propagates nearly sideways, and the Stokes EM wave forward-
sideways.
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Anti-Stokes wave The anti-Stokes EM wave has frequency !+ = !0 + 
p,
wave vector k+ = k0 + k, and satis�es D+ = 0, i.e.

c2(k2 + 2kk0 cos#)� 2
p!0 � 
2

p = 0:

This equation can be solved for k to obtain

k = �k0 cos# +
q
k20 cos

2 # + (2
p!0 + 
2
p)=c

2:

Note that there is only one solution for k here, since the other solution has k < 0.
The remaining solution exists for all values of #, but is only considered resonant
for #� #�. We discern two cases:

(i) # = 0. In this case, one has k � 
p=c(1 + 
p=(2!0)), which is nearly equal to
the wave number of the Langmuir wave for the Stokes component of RFS. The
associated anti-Stokes EM wave has approximate wave number k0 + 
p=c and
propagates in the forward direction as well. This is the anti-Stokes component of
Raman forward scattering. For 
p=!0 � 1, both Stokes and anti-Stokes RFS are
approximately resonant, and they are usually observed together, accompanied by
a single Langmuir wave at (
p;
p=c).

(ii) 0 < #� #�. In this case, we have

k � 2
p!0 + 
2
p

2c2k0 cos#
� 
p=c

cos#

�
1 +


p

2!0

�
:

As in the case of RFS, this nearly coincides with the k corresponding to the Stokes
component of RFSS for the same value of #. The corresponding EM wave will
also be scattered nearly forward at approximately the same angle as the Stokes
EM wave for the same value of #. This is the anti-Stokes component of Raman
near-forward scattering. As with RFSS, both Stokes and anti-Stokes components
of RFSS are approximately resonant (and can thus be observed) for 
p=!0 � 1
and #� #�.

5.4 Growth rates

As stated above, SRS is an instability, which implies that the dispersion relation
(5.5) must yield complex values for !, where the imaginary part represents growth
or damping in time of the EM and Langmuir waves. As the time dependence of
both waves scales to leading order as exp(�i!t), we �nd that growth (damping)
occurs if =(!) is positive (negative). This will be done by setting ! = 
p + Æ!
where jÆ!j � 
p, and inserting this into (5.5).

For back- and sidescatter, the dispersion relation without dissipation terms and
without the anti-Stokes terms reads:

(
2

p � !2)
�
c2jk� k0j2 � (! � !0)

2 + 
2

p

�
=

1

2

2

p(c
2k2 � !2 + 
2

p)
A2
0

1 + A2
0

: (5.7)
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We note that maximum growth occurs when the scattered EM wave is also reso-
nant, i.e. when

(
p � !0)
2 � c2jk� k0j2 � 
2

p = 0:

Combining this condition with (5.7) yields Æ! = i as noted before, where the
(positive real) growth rate  is given by (note that 
2

p = !2
p=
p
1 + A2

0)

 =
ck

2
p
2

A0p
1 + A2

0

s

p

(!0 � 
p)
� ck

2
p
2

r
!p

(!0 � 
p)

A0

(1 + A2
0)

3=4
: (5.8)

From (5.6), it is found that  is largest for backscattering and decreases with
increasing #. It is also obvious that for �xed #, the mode with the larger k
is clearly dominant over the mode with the smaller k, which is why the latter
is usually considered non-resonant. Also note that  reaches a maximum for
A0 =

p
2 and decreases as A

�1=2
0 for large A0, as opposed to the non-relativistic

growth rate which can reach arbitrarily large values.

Growth rates for (near-)forward scattering need to be calculated in a di�erent
way from those for back- and side scattering. For the Stokes component of (near-)
forward scattering, the growth rate as given by (5.8) reads  = 
pA0=(2

p
20)�p


p=(!0 � 
p), which is rather small compared to that for back- or side scat-
tering. However, for a suÆciently underdense plasma, both the Stokes and anti-
Stokes components of RFS are resonant simultaneously, and must both be taken
into account. Then the RFS growth rate becomes:

 =

2
p

2!0

A0p
1 + A2

0

� !2
p

2!0

A0

1 + A2
0

: (5.9)

This growth rate reaches its maximum for A0 = 1 and decreases as A�10 for large
A0, again di�erent from its non-relativistic counterpart.

Lastly, McKinstrie and Bingham [6] showed that for RFS in a not very underdense
plasma, the dispersion coeÆcient D+ in (5.5) should be corrected for phase mis-
match between the Stokes and anti-Stokes scattering processes. Using a weakly
relativistic analysis, they obtain:

D+ � 2(!0 + !p)(! � !p � c2(k � ke)(k0 + ke)=(!0 + !p)� Æ+);

where cke =
q
!2
0 � !2

p �
q
(!0 � !p)2 � !2

p is the resonant Langmuir wave num-

ber, and Æ+ � !4
p=!

3
0 is the phase mismatch coeÆcient. This generally leads to

higher growth rates than predicted by (5.9).
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5.5 Extensions

5.5.1 Thermal plasma

All the results so far have been derived under the assumption that the plasma is
cold and ions are immobile. In the case of a warm plasma however, the dispersion
relation (5.5) is usually derived from the Vlasov-Maxwell equations. The non-
relativistic thermal dispersion relation then reads:

1

�e(k; !)
+

1

1 + �i(k; !)
= c2k2A2

0

�
1

D�
+

1

D+

�
: (5.10)

Here, �e and �i are the electron and ion magnetic susceptibility given by (a
similar expression holds for �i)

�e(k; !) =
2!2

pe

k2v2th;e

�
1 +

!

kvth;e
Z

�
!

kvth;e

��
� �!

2
pe

!2

�
1 +

3k2v2th;e
2!2

�
+ i � =(�e);

using !=k � vth;e =
p
2Te=me for SRS. The function Z(�) is called the plasma

dispersion function, and it is described in detail in Ref. [7]. The term i � =(�e) is
the contribution of Landau damping [8] to the dispersion relation. This disper-
sion relation is particularly useful when studying the transition from stimulated
Raman scattering to stimulated Compton or Brillouin scattering, but less so for
studying SRS in the cold plasma limit.

The dispersion relation (5.10) is often simpli�ed by taking the ions to be immo-
bile, so !pi, vth;i and �i all vanish. As for the inuence of Landau damping, we
note that =(�e) = 2

p
�(!2

pe=!
2)�3 exp(��2) where � = !=(kvth;e). In the case of

SRS, the pump EM wave scatters of a Langmuir wave, i.e. � � 1 and the Lan-
dau contribution is negligible. With these simpli�cations, the dispersion relation
reads:

!2

k � !2 =
!2
pc

2k2A2
0

2

�
1

D�
+

1

D+

�
;

where !2
k = !2

p + (3=2)k2v2th is the Bohm-Gross frequency. Note that in the cold
plasma limit this relation is similar to Eq. (5.5).

5.5.2 Finite pulse length

The previous results are all obtained in the case that the incident pump pulse
is much longer than anything else, so the spatial and temporal dependence of
its envelope can be neglected. With the advent of ultrashort laser pulses, this
assumption need not be valid any longer. For that reason the RBS and RFS
growth rates for �nite pulses are considered here.
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Since we are dealing with a pulse of �nite length, it makes more sense to use the
term growth instead of growth rate (which is essentially the growth per unit of
time or length). We de�ne the comoving coordinate � = x� ct and assume that
the pulse envelope depends only on �: a0 = a0(�). An analysis by Sakharov and
Kirsanov [5] yields that starting from a seed perturbation n1, the RBS Langmuir
wave grows according to n(�) = n1 exp[

R1
�
q(�)d�]. In the low intensity limit,

q(�) = <(
q
(!0
p=(8c2))(a20=

2
0)��2(�)=4);

�(�) = (k � 2k0(�) + 
p=c)=2:

For very long pulses with (nearly) constant amplitude, the �-dependence vanishes
from the above expressions. In that case, they reduce to the familiar expression
for RBS growth: n(�) � exp(��=c) � exp(t), where  denotes the long pump
growth rate given by (5.8). Also note that in case of a �-dependent pump wave
number k0(�), RBS does not continue to grow inde�nitely, but saturates as soon
as the pump and RBS Stokes waves move out of the region of interaction.

For RFS, the picture is di�erent. Again starting from a seed n1, the RFS Lang-
muir wave grows as

n(�; t) = n1 exp[(4(� + ct)=c2
Z 1

�

�20(�
0)d�0)1=2] / exp[�(�)t1=2];

which is fundamentally di�erent from the exp(t) growth seen in the long pump
limit. Also note that, since the pump and the (anti-)Stokes waves move in
the same direction at approximately the same speed and beat continuously, the
growth at a given value of � is also a function of time. Far behind the pulse, where
a0(�) = 0, the RFS instability growth behaves as exp[(4t=c

R1
�1

�20(�
0)d�0)1=2]. In

both expressions, �20 is given by �20(�) = (
4
p=(8!

2
0))(A

2
0=

2
0).

5.5.3 Frequency mismatch

In standard SRS analysis, one starts from the assumption that the pump is
monochromatic and the plasma homogeneous. As a result, there is perfect match-
ing of the frequencies and wave numbers of the pump, (anti-)Stokes, and Lang-
muir waves. In more general circumstances, this does not need to be the case at
all. More often, the frequencies of the waves involved match only in a region close
to the location at which the (anti-)Stokes and Langmuir waves are created. This
happens, for example, for SRS in a region of non-homogeneous plasma density,
or if the pulse carrier frequency changes along the pulse. Thus, while the pump
generates (anti-)Stokes and Langmuir waves along all of its length, the growth
of a particular combination of EM and Langmuir waves is con�ned to the region
of (approximate) frequency matching. The instability growth stops as soon as
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the waves move out of this region. Therefore, frequency mismatch limits the
growth of SRS by a long pump pulse. It should be noted though, that frequency
mismatch plays a lesser role for (very) short pulses, since in that case the inter-
action region may well be limited by the pulse length itself instead of the region
of frequency matching.

The e�ect of frequency mismatch on RBS has been examined in the WKB ap-
proximation by Liu, Rosenbluth, and White [9]. Following their approach, we
de�ne the wavenumber mismatch

K(�) = k0(�)� k�(�)� k(�):

Then the peak ampli�cation of an RBS seed ~n0 is given by

~n = ~n0 exp

�
2�2

vv�jK 0j
�
;

where v and v� are the group velocities of the Langmuir wave and the Stokes wave
respectively,  is the standard RBS growth rate given by (5.8), and K 0 = @K=@�.
Intuitively, this corresponds to an interaction length of 2�=(vv�jK 0j), i.e. the
length necessary for the frequency mismatch to become larger than the growth
rate . Since the bandwidth of the scattered EM wave is roughly equal to ,
RBS growth stops as soon as the frequency mismatch is larger than . We also
see that the RBS growth tends to in�nity when K 0 ! 0, since this implies that
the length of the interaction region becomes in�nite again.

We treat two instances of frequency mismatch in more detail. The �rst case is
that of a non-homogeneous plasma density. Suppose the plasma density is given
by n(x) = n0(1+x=L). Then the frequency mismatch occurs because the plasma
frequency !p changes, while the pump frequency !0 does not. The frequency
detuning K 0 is given by

K 0 � !2
p0

6Lk0v2th
;

and the total RBS growth of a seed As along the whole pump is given by

A� = As exp(A
2

0k0L=2);

where A0 denotes the pump pulse intensity. The threshold for RBS growth is
then given by A2

0k0L > 1. This suggests that RBS growth for a long pulse can
be suppressed by a steep density gradient. See Ref. [9] for details.

It should be noted that the above method for calculating RBS growth in the
presence of a plasma density gradient only works for pulses that are long compared
to the scale length L. In the next chapter, simulation results will be presented for
which the pulse length is much shorter than L, so the density can be considered
constant along the pulse and RBS growth is restricted by the pulse length rather
than by frequency mismatch.
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The second case is that of a pulse having a non-constant carrier frequency !0(�)
and wavenumber k0(�), which is called chirp. For constant j@k0=@�j and constant
plasma density (plasma frequency), it can be derived [5] that RBS grows as

A� � exp

 
1

2

����@k0@�
����
�1
!0
p

c2
A2
0

20

!
:

The threshold for RBS growth is then given by����@k0@�
���� < 1

2

!0
p

c2
A2
0

20
=

1

2

!0!p
c2

A2
0

(1 + A2
0)

3=2
;

which suggests that RBS growth can also be suppressed by chirping the laser
pulse's carrier frequency. The role of chirp in RBS and RFS growth rates will
receive an extensive treatment in the next chapter, especially its role in enhancing
and/or suppressing RBS.
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Chapter 6

Enhancing fast electron

production through suppression

of Raman backscattering

The e�ect of Raman instabilities on the production of fast electrons in laser-
plasma interaction has been investigated for laser intensities well above the elec-
tron trapping threshold. The results of one-dimensional particle-in-cell simu-
lations show that in this regime the presence of Raman backscattering (RBS)
hampers fast electron production, and that its suppression increases the yield
of high-energy electrons (> 15 MeV). Such suppression has been realized either
through deletion of all backscattered radiation from the simulations or through
direct stimulation of Raman forward scattering (RFS). An increased high-energy
electron yield has been observed for both methods. In addition, the inuence
of various laser and plasma parameters on the production of highly energetic
electrons has been investigated. For each parameter, its inuence on the yield
of high-energy electrons can be explained from the way it a�ects the balance
between RBS and RFS excitation in laser-plasma interaction.

This chapter will be published under the same title, by R.M.G.M Trines, L.P.J.
Kamp, T.J. Schep, F.W. Sluijter, W.P. Leemans, and E.H. Esarey.

6.1 Introduction

Several recent experiments [1{7] on the interaction of intense laser pulses with
underdense plasmas have demonstrated the production of energetic electrons in
the self-modulated regime of the laser wake�eld accelerator (LWFA) [8]. The
resulting electron bunches are characterized by high charge (up to 10 nC), sub-ps
duration, and an exponential energy distribution with a mean energy of tens of
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MeV, and have a wide range of applications [9{12].

In this chapter, we investigate the role of RBS in high-energy electron produc-
tion and the interplay between RBS and RFS in the high-intensity regime of a
self-modulated LWFA [13]. In previous work [5,14{16] it has been demonstrated
that the presence of RBS leads to the production of mildly energetic electrons.
Since these electrons are easily trapped and accelerated by the laser wake, it has
been argued that their presence, and therefore the presence of RBS, improves
the yield of high-energy electrons. This has been con�rmed for laser intensities
slightly above the threshold for plasma electron trapping. In contrast to this,
we will show that for laser intensities well above the trapping threshold, the
converse is true: the presence of RBS can be detrimental to high-energy elec-
tron production. It will be demonstrated that for high laser intensities the level
of RBS-induced electron trapping increases to the extent that the laser wake is
severely damped. This decreases the number of electrons that are accelerated to
truly high energies, even though the yield of mildly energetic electrons increases.
Consequently, suppressing RBS in the high-intensity regime results in a larger
plasma wake and a larger yield of highly energetic electrons. Suppression of RBS
has been achieved either by periodically removing all backward-going electromag-
netic waves from the simulation, or by stimulating the growth of RFS. We propose
and demonstrate, via one-dimensional (1-D) particle-in-cell (PIC) simulations, an
experimentally realizable RBS suppression method that uses stimulated growth
of RFS by seeding the RFS Stokes wave. This results in a higher level of RFS,
a larger fast wake, a lower level of RBS, and a larger amount of high-energy
electrons.

In addition we investigate the way in which various laser and plasma parameters
such as plasma density pro�le, pulse envelope shape, and laser frequency chirp,
inuence the production of energetic electrons. From our simulation results, it will
be shown that the e�ect of each parameter on fast electron yield can be explained
from the way it inuences the balance between RBS and RFS excitation in laser-
plasma interaction. Any parameter that favours RFS growth and/or suppresses
RBS growth will also increase the yield of high-energy electrons. Conversely, a
parameter that enhances RBS growth and/or hampers RFS growth will decrease
the production of highly energetic electrons. This allows us to predict or explain
the e�ect of a number of laser and plasma parameters on high-energy electron
yield.

6.2 E�ect of Raman scattering on electron yield

According to basic Raman scattering theory [17{20], RBS is a three-wave inter-
action, in which the incoming laser light (carrier frequency !0, wave number k0,
peak amplitude E0 = (me!0c=e)a0) decays into a backscattered electromagnetic
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(EM) wave (!0�!p;�(k0� kp)) and a slow Langmuir wave (!p; 2k0� kp). Here,
!p =

p
n0e2=("0me), kp = !p=c, and n0 is the unperturbed plasma electron den-

sity. The Langmuir wave phase velocity is approximately !pc=(2!0) � c for an
underdense plasma. RBS is characterized by a large growth rate. RFS on the
other hand has a much smaller growth rate and involves four waves: the laser
light decays in two forward-scattered EM waves, a Stokes wave (!0�!p; k0� kp)
and an anti-Stokes wave (!0+!p; k0+kp), and a fast Langmuir wave (!p; kp) with
phase velocity � c provided that !p � !0. Because of its high phase velocity, the
RFS Langmuir wave is well suited for accelerating trapped electrons to high en-
ergy [21]. At suÆciently high laser intensities, breaking of this wave contributes
heavily to the trapping and acceleration to high energies of background plasma
electrons [3,21,22]. The RBS Langmuir wave has a much lower wave breaking
amplitude because of its low phase velocity, and thus requires a much lower laser
intensity to break. Also, its high growth rate ensures that it is repeatedly pushed
to breaking conditions. Breaking of this wave only yields low-energy electrons (up
to several 100 keV). When injected into the RFS Langmuir wave, part of these
electrons may be accelerated to higher energies through an RBS-RFS two-stage
acceleration mechanism [5,14{16]. This leads to an improved yield of energetic
electrons at lower laser intensities and a decrease of the intensity threshold for
electron trapping.

When the laser intensity is increased well beyond the trapping threshold, the
following phenomena occur: (i) the laser intensity is such that the plasma wake
(i.e. the fast RFS plasma wave) itself starts to break, resulting in large scale
particle trapping even in case RBS were absent, (ii) RFS growth is suÆciently
large to cause RBS and RFS to overlap in space and time even for femtosecond
pulses, and (iii) RBS growth is suÆciently large to cause excessive amounts of
plasma electrons to be trapped by the wake. Once trapped, these electrons
will cause moderate to heavy beam loading and damping of the wake. Note
that if RBS and RFS do not overlap, electron injection into the laser wake can
only occur through a multi-stage acceleration mechanism involving backscatter,
sidescatter, near-forward and forward scatter [15,23]. In a 1-D setting, sidescatter
and near-forward scatter are absent and wake damping as a result of massive
electron injection can only be observed if RBS and RFS overlap in space and time.
For this reason, we have made sure that such overlap does occur in the regime
under investiagtion. The ultimate e�ect of wake damping on high energy electron
production is a marked decrease in the number of electrons that get accelerated to
truly high energies, even though the total number of trapped electrons increases.
This leads us to the speculation that the yield of high-energy particles in laser-
plasma interaction can be improved if we can somehow suppress the increase in
RBS that comes with an increased pump pulse intensity.

We achieve such suppression using two di�erent methods. The �rst is a purely
numerical method in which all backward-going radiation is removed periodically
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from the simulation during a limited period while leaving the forward-going ra-
diation untouched. This method has speci�cally been employed to isolate the
e�ect of RBS on high-energy electron production. The second is RFS seeding of
the pulse, which has been inspired by the notion that stimulation of RFS growth
leads to a decrease in RBS through mode coupling between the RBS and RFS
Langmuir waves [24]. In addition, such stimulation will lead to a larger amplitude
laser wake that will be less inuenced by RBS-induced beam loading.

An experimentally realizable method for RFS stimulation consists of adding a
\Stokes satellite" to the main laser pulse [25], i.e. a laser pulse having the same
duration and a similar envelope as the main pulse, but at the Stokes frequency
!0�!p, and peak amplitude of several percent of the peak amplitude of the laser
EM �eld. The initial level of plasma wake excited by this method is similar to
that of beat-wave excitation [21]. However, now the level of the Stokes wave is
greatly below that of the pump and the laser-plasma interaction is dominated
by RFS. This has the advantage over beat wave excitation that the accuracy
requirements on the pump, seed, and plasma frequencies are less stringent. Also,
a small level of Stokes laser seed is easier to realize experimentally than a pulse
with two spectral lines of equal intensity. As we will show below, the amount of
RBS found in our simulations decreases with increasing satellite amplitude.

Everett et al. [24] have presented numerical and experimental results on how a
fast phase velocity plasma wave can suppress a slow plasma wave, as well as
a theoretical explanation in which the amplitudes of the waves are assumed to
be slowly varying compared to the plasma period. In the linear regime, the
amplitude Æns=n0 of the normalized density perturbation of the slow (e.g. RBS)
plasma wave is reduced by the factor 1 � (Ænf=n0)

2(!0=!p)
2, where Ænf=n0 is

the normalized density perturbation associated with the fast (e.g. RFS) plasma
wave. This predicts suppression of the RBS wave when Ænf=n0 ' !p=!0. In
seeded RFS, the initial amplitude of the RFS plasma wave is given approximately
by beat wave theory [21], which gives in the linear regime Ænf=n0 ' a0a1!p�=4,
where c� = ct� x is the distance behind the head of the laser pulses, and a0, a1
are the scaled peak amplitudes of the pump and seed pulse, respectively. This
predicts RBS suppression for a0a1 ' 4=(!0�). If RBS is to be suppressed within
a single plasma period, i.e. c� = �p, this requires a wave amplitude product of
a0a1 ' (2=�)(!p=!0). Below, we will present simulations in which complete RBS
suppression is reached for a0a1 � 0:1 at !p=!0 � 0:15, in approximate agreement
with this analytical prediction.

It is stressed that RBS suppression by RFS works for both lower (a0 . 1:0) and
higher (a0 & 1:5) laser intensities but is only advantageous at higher intensities
for the following reason. In a regime of low laser intensity, the growth of both
RBS and RFS is also rather low. One consequence of this is that the laser wake
(RFS Langmuir wave) will no longer break, so it will only accelerate electrons that
are injected into it by the RBS Langmuir wave. Another consequence is that the
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amount of electrons injected into the wake by RBS is too low to cause considerable
wake damping. Suppression of RBS in the low-intensity regime will not lead to
a signi�cantly larger wake, but will decrease the number of plasma electrons
eligible for acceleration by the wake. The net result is that RBS suppression at
lower laser intensities hurts fast electron production, in agreement with earlier
results [5,14{16] and fully supported by our simulation results below.

After having established that RBS reduces the production of high-energy elec-
trons for laser pulse intensities well above the trapping threshold, while RFS
improves it by both enhancing the laser wake and suppressing RBS, we are now
ready to investigate the role of various laser and plasma parameters on both RBS
and RFS growth, and the consequences of this inuence for high energy electron
yield. This will be done in the next section.

6.3 E�ects of laser and plasma parameters on

RBS and RFS

As known from previous research, a number of laser and plasma parameters
inuence the growth of RBS and/or RFS. For example, the e�ect of plasma
inhomogeneity on RBS has been studied by Liu et al. [26]. They found that for a
very long pump pulse moving up a slope in the density pro�le, the RBS growth
rate calculated in the WKB limit decreases with increasing slope. However,
this result has been derived under the assumption that the pump pulse is very
long, and cannot be applied to RBS produced by ultrashort pulses. The e�ect of
asymmetric pulse envelopes on RBS has been studied by Coverdale et al. [27], who
showed that an asymmetric pulse leads to an asymmetric frequency spectrum,
thus shifting the balance between RBS and RFS growth.

A parameter that recently received a lot of attention as a means for controlling
both the growth of Raman instabilities and the yield of high-energy electrons is
laser chirp, i.e. change of carrier frequency through the laser pulse. The chirp
is called positive if the carrier frequency increases from front to back, negative
otherwise. In experiments, chirp is usually introduced by detuning the double-
pass compressor grating in the Chirped Pulse Ampli�cation process [28]. The
inuence of laser chirp on RBS growth has been studied analytically by Sakharov
and Kirsanov [20], and both analytically and experimentally by Faure et al. [29].
Both investigations yielded that the RBS growth depends on the magnitude, but
not the sign, of the chirp. In addition, Sakharov and Kirsanov found that RBS
is suppressed by the chirp if !�10 j@!0=@xj > 1

2
!p=(c

p
0)a

2
0=

2
0 , where @!0=@t =

�(!0=k0)@!0=@x represents the chirp and 0 =
p
1 + a20. The inuence of chirp

on RFS has also been investigated by Mori [32] and Schroeder et al., [33]. In both
cases it has been found that a positive (negative) chirp enhances (reduces) RFS
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growth. At this point, it should be stressed that the e�ect of chirp on both RBS
and RFS depends on the quantity @!0=@x, rather than on the relative frequency
change Æ!=!0 along the whole pulse length.

Starting from an unchirped pulse with a given length and bandwidth, linear
laser chirp can be applied in essentially two ways: pulse length preserving and
bandwidth preserving. If the pulse length is preserved, then the fast phase  at
x = 0 of the laser EM wave is given by  (t) = !0t + at2=(2t2p), where tp denotes
the root-mean-square duration of the pulse. It then follows that the bandwidth
of the pulse increases by a factor

p
1 + a2. If the bandwidth is preserved, then

 at x = 0 is given by  (t) = !0t + (a=(1 + a2))t2=(2t2p). This causes the pulse

duration to increase by a factor
p
1 + a2. Confusingly, the quantity a=t2p is often

referred to as \chirp" in both cases. If we compare the gradient of the carrier
frequency for both cases, we �nd that @!=@t = @2 =@t2 = a=t2p for pulse length
preserving chirp, while this rate equals (a=(1 + a2))=t2p for bandwidth preserving
chirp. This means that in the �rst case, the gradient can reach arbitrarily large
values, while in the second case, the rate reaches its maximum (minimum) value
of �1=(2t2p) for a = �1, and quickly drops o� to 0 for jaj > 1. For a more detailed
discussion on laser chirp, see for example Malinovsky and Krause [31].

Since the two types of chirp have such di�erent characteristics, they can also be
expected to have very di�erent e�ects on RBS and RFS growth. Pulse length
preserving chirp is characterized by a large value for @!0=@x, which leads to
a signi�cant reduction or even total suppression of RBS growth and a marked
increase (decrease) of RFS growth for positive (negative) chirp. Bandwidth pre-
serving chirp on the other hand displays only a small value for @!0=@x and is
mainly characterized by pulse length increase, especially for large jaj. Due to the
longer pulse-plasma interaction length, this results in a much increased level of
RBS growth for this type of chirp, regardless of sign. This e�ect dwarfs any e�ect
of the carrier frequency gradient, and as a result, the main e�ect of bandwidth
preserving chirp is an increase in RBS growth independent of the sign of the
chirp.

We wish to stress the point that in experiments, a laser pulse is virtually always
chirped by passing it through an appropriate set of dispersive optics, so its power
spectrum and thus its bandwidth are more or less preserved. This way, chirping
a pulse is more a method to increase the pulse length than a method to induce
a carrier frequency gradient inside the pulse. As a consequence, this gradient is
nearly always small for chirped pulses in experimental situations.

The e�ect of chirp on fast electron yield is as follows. Since pulse length preserving
chirp suppresses RBS, its e�ect on fast electron yield relies completely on its
e�ect on RFS. Therefore, a positive (negative) chirp of this type is predicted to
enhance (reduce) fast electron yield. The predicted e�ects on both RFS and fast
electron yield have been observed in simulations by Dodd and Umstadter [30]
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focusing on the e�ects of this type of chirp. Bandwidth preserving chirp on
the other hand has an entirely di�erent inuence on fast electron yield. As the
sign of this type of chirp hardly has an e�ect on either RBS or RFS, it is not
expected to inuence fast electron yield either. Earlier experimental results [11]
seemed to indicate that a positive bandwidth preserving chirp would increase
the electron yield, while a negative chirp would decrease it. However, a recent
paper by Leemans et al., [7] shows that any experimentally observed variation in
electron yield previously attibuted to chirp, is mainly the result of asymmetric
pulse envelope modi�cation occurring in the optics that also cause the chirp in
the pulse. It is further presumed that (the sign of) bandwidth preserving chirp
has hardly any e�ect because of the small carrier frequency gradient for this type
of chirp, in agreement with theoretical predictions.

In conclusion, the following can be said about the e�ect of chirp on fast elec-
tron yield. Pulse length preserving chirp does have a signi�cant e�ect on fast
electron yield, but this type of chirp is usually not used in experiments. There-
fore, the claims by Dodd and Umstadter [30] (who used pulse length preserving
chirp) that their results are in agreement with experiments are unfounded. On
the other hand, bandwidth preserving chirp as used in experiments does neither
signi�cantly suppress RBS nor signi�cantly inuence RFS. Its only important
e�ect is an increase of RBS, and thus a decrease of fast electron yield, with the
magnitude of the chirp. All in all, chirping a laser pulse should not be expected
to increase fast electron yield in experiments.

In the next section, simulation results will be presented that focus on the con-
nection between the inuence of a parameter on RBS or RFS growth for laser
intensities well beyond the electron trapping threshold, and the inuence of that
parameter on energetic electron production. We have investigated the e�ects
of plasma density pro�le, pulse envelope modi�cation, and both bandwidth and
pulse length preserving chirp. In each case, we shall show that if a parameter
increases RFS and/or decreases RBS, this will increase the electron yield, while if
a parameter decreases RFS and/or increases RBS, this will decrease the electron
yield.

6.4 Simulations

This section is organized as follows. First, the setup of our simulations is ex-
plained. In the next two subsections, the respective roles of RBS and RFS in the
production of high-energy electrons for higher pulse intensities are investigated.
In the case of RFS, we will concentrate mostly on its role in the suppression of
RBS, since its role in enhancing the wake�eld is already well-known [21,25]. In
the remainder of this section, the e�ect of plasma density pro�le, laser envelope
shape, and laser chirp (both pulse length and bandwidth preserving chirp) on
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fast electron production are investigated. It is argued that the e�ect of each
parameter on fast electron yield can be explained from their inuence [27,29]
on the balance between RBS and RFS growth during pulse-plasma interaction.
This knowledge can be used to tune those parameters such that RBS growth is
minimized and fast electron production is maximized.

6.4.1 Simulation setup

For our simulations, the 1-D version of the code XOOPIC [34] has been used.
(For a detailed description, see Appendix A.) This code uses Yee's method to
integrate the time-dependent Maxwell equations [35]. In the simulations, a laser
pulse has been launched onto a slab of underdense plasma. For the simulations
with pulse length preserving chirp (see below), we have used a constant plasma
density n0 = 1:116 � 1019 cm�3 = 0:01ncr, to match earlier simulations [30] using
this type of chirp. For the other simulations, laser and plasma parameters have
been chosen to match those used in experiments by Leemans et al. [7]. In those,
two di�erent plasma electron density pro�les have been employed. The �rst
is a rather at-top pro�le given by n(x) = n0 exp(�x6=l6) where l = 539 �m
and n0 = 0:022ncr = 3:8 � 1019 cm�3. The second pro�le is Gaussian, n(x) =
n0 exp(�x2=(2l2)) where l = 530 �m and n0 = 0:017ncr = 2:9 � 1019 cm�3. For
both pro�les, x denotes the longitudinal coordinate, and ncr = "0me!

2
0=e

2 is the
critical density for the propagation of an EM wave having carrier frequency !0.
The ions are treated as an immobile, charge neutralizing background.

Laser pulses are brought into the simulation through a time-dependent boundary
condition for the electric �eld at the left edge of the simulation window, and
move from left to right. The laser pulse has a carrier wavelength �0 = 800
nm, and linear polarization with Ez = 0. A number of envelope shapes has
been used, all derived from a standard Gaussian envelope which we will refer to
as a type 0 envelope. This type of envelope is described by E0 exp(�t2=(2t2p)),
where E0 = (me!0c=e)a0 denotes the peak amplitude, and tp the pulse time.
The standard envelope has tp = 30 fs, so the pulse has a full width at half
maximum (FWHM) of 50 fs. We either use this evelope as it is, or modify it
by adding either bandwidth preserving chirp, pulse length preserving chirp, or
\skew" (non-symmetric deformation) to it. This results in the following three
types of time-dependent boundary conditions, applied at a time when the left
edge of the simulation window corresponds to a large negative value of x (<
denotes the real part of an expression).

(i) Chirped Gaussian pulse with constant bandwidth:
Ey(t) = <(E0=

4
p
1 + a2 exp[�(1 + ia)t2=(2(1 + a2)t2p)] exp(�i!0t)), where a=t2p

denotes the group velocity dispersion. Note that the pulse length increases with
a factor

p
1 + a2.
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(ii) Chirped Gaussian pulse with constant pulse length:
Ey(t) = <(E0 exp[�(1+ ia)t2=(2t2p)] exp(�i!0t)), where a has the same de�nition
as before. In this case the bandwidth increases with a factor

p
1 + a2.

(iii) Unchirped pulse with deviation from Gaussian envelope:
Ey(t) = <(E0 exp[�t2=(t2p(1 + bt=

p
t20 + t2))] exp(�i!0t)), where t0 = 1 �m=c by

de�nition, and b is a dimensionless parameter to control the \skewness" of the
pulse, jbj < 1. For b < 0, the pulse has a steep front and a gentle back, for b > 0
it is the other way around. Sample envelopes for tp = 50 fs and b = �0:8 are
shown in Fig. 6.1.

Steep front (b < 0) Gentle front (b > 0)

�!

Figure 6.1: Sample \skewed" pulse envelopes for negative/positive b. The arrow
denotes the direction of propagation.

For all envelope types, a0 takes values between 0.5 and 3.0. Other parameters
are tp = 30 fs and a = 0;�1;�5:9 for the type (i) pulse, and tp = 80 fs and
a = 0;�15:4 for the type (ii) pulse (to match the pulse in Ref. [30]). For the type
(iii) pulses used in [7], one has tp = 50 fs, b = �0:52 for the steep-front pulse and
tp = 52 fs, b = 0:58 for the gentle front pulse. For a = 0 (b = 0) all envelope
shapes reduce to the standard type 0 (Gaussian) envelope.

One should note that the total energy in a type (iii) pulse varies with b as (1 �
0:12b2), whereas the total energy in type (i) or (ii) pulses is independent of a.
However, for b = 0:58 (-0.52), the pulse energy is only 4.5% (3.5%) lower than
for b = 0, so the di�erences are well within the accuracy of the values for a0 as
taken from the experiments.

A moving window has been used to follow the pulse. The simulation has been
continued for either 5.33 ps or 12 ps depending on the width of the plasma
slab, to allow the pulse to completely traverse the plasma. A simulation box
of 0.2 mm with 5120 cells has been used (cell size 39 nm, i.e. 20-25 cells per
laser wavelength), and 32 particles per cell at peak density. At the boundaries,
absorbing boundary conditions have been applied, so no reected radiation will
interfere with the simulation.

The numerical removal of all left-going, i.e. backward-going, radiation mentioned
above has been implemented as follows. In 1-D, the transverse EM �elds can
be separated into left-going (El;Bl) and right-going (Er;Br) parts, provided
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the plasma density changes on a length scale much longer than the laser or
plasma wavelength. One then has E? = El + Er and B? = Bl + Br, where
El =

1

2
(0; Ey � cBz; Ez + cBy), Er =

1

2
(0; Ey + cBz; Ez � cBy), Bl =

1

2
(0; By +

Ez=c; Bz � Ey=c), and Br = 1

2
(0; By � Ez=c; Bz + Ey=c). This separation is

accurate up to O(!2
p=!

2
0), which is suÆcient to achieve a near-complete RBS

suppression while leaving the right-going �elds virtually una�ected. In those
simulations where �eld suppression has been used, the transverse EM �elds have
been replaced by their right-going parts once every 100 time steps during the �rst
2 ps. After 2 ps, �eld suppression has been discontinued since RBS is negligible
at that stage and continuation of the suppression may eventually a�ect the right-
going �elds. This is because the transverse components of E and B are known at
di�erent points of the Yee mesh [35] and have to be interpolated for the calculation
of the right-going �elds, which introduces numerical errors.

Absent in our simulations are 2-D e�ects such as Raman side scatter, self-focusing,
and direct laser acceleration [36], which could play an important role in certain
regimes. Also note that the longitudinal beam loading of a particle in 1-D does
not depend on its Lorentz factor , whereas its beam loading scales with 1=2 in
3-D [37]. However, our simulations show that the wake damping is mainly caused
by slow particles (2 < 2), so this issue does not a�ect the validity of our results.

Several benchmarks have been performed to establish the reliability of the code
XOOPIC. In the weakly non-linear regime a0 . 1, both the laser pulse and the
scattered EM waves have to satisfy the dispersion relation !2�
2

p = c2k2, where


2
p = !2

p=
p
1 + a20 is the relativistically corrected plasma frequency. Furthermore,

the backscattered wave needs to satisfy j!��!0j = 
p and jk��k0j = 
p=c. The
RBS Langmuir wave needs to satisfy ! = 
p and k = 2k0 � 
p. A simulation
involving a pulse with a0 = 0:5 and a plasma n0 = 3:8 � 1019 cm�3 has been
peformed, and the results satisfy all of the above relations within accuracy limits.

We have also performed benchmarks to reproduce results on RFS stimulation
in beat-wave experiments [21], RFS stimulation through direct RFS seeding [25],
and suppression of RBS by RFS in beat-wave experiments [24], all obtained in the
linear regime. Simulations have been performed with a0 = 0:2 for the RFS seeding
case and a0 = 0:1 for both pulses in the beat-wave case. The e�ects described in
the papers mentioned have all been reproduced. Therefore, we consider the code
to be suÆciently reliable for our needs.

6.4.2 E�ect of Raman backward scattering

As explained in Section 6.2, in the regime of high laser intensities the presence
of RBS is expected to decrease the number of generated high-energy electrons,
while its suppression is predicted to improve fast electron production. In order
to isolate the e�ect of RBS suppression on the number of high-energy particles
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we have performed two simulations for a type 0 pulse having amplitude a0 = 1:5,
one full simulation and one with suppression of left-going �elds, as described
above. The amplitude has been chosen such that the nonlinear RBS growth
rate is maximum, while the nonlinear RFS growth rate is only slightly below its
maximum [20]. The laser pulse has an FWHM of 50 fs, and the plasma has the
at-top density pro�le described above with n0 = 3:8 �1019 cm�3. The results are
displayed in Figs. 6.2 and 6.3. In both �gures, the laser pulse is located roughly
between kp(x� ct) = 120 to 180.

Simulation results are as follows. Figure 6.2 displays plots of the transverse left-
going �eld El;y for the full simulation and the wake electric �eld Ex for both
simulations, at t = 1:6 ps, i.e. when the pulse is in a region of increasing plasma
density, and the RBS growth is at its peak. The corresponding detail plots of
electron phase space are displayed in Fig. 6.3. The plots of El;y and Ex, show that
RBS and RFS are both present in the simulation at t = 1:6 ps, and overlap in
space and time, making the RBS-RFS two stage acceleration possible. The laser
wake visible in the plot of Ex is actually the RFS Langmuir wave. Ponderomotive
excitation does not play a role here since the pulse length is several times the
plasma wavelength. The plot of Ex clearly shows that the suppression of RBS in
a simulation leads to a much higher wake�eld amplitude, in agreement with our
earlier prediction.

The phase space plots indicate that RBS-induced plasma heating is dominant in
the full simulation, meaning that a large number of particles is available to be
trapped by the wake wave. As a result, the laser wake is heavily beamloaded
and has hardly any structure. In contrast, plasma heating is much less important
in the simulation with suppression of left-going �elds, and the laser wake has a
well-de�ned structure, con�rming our earlier speculation. It was also found that
the peaks in phase space, which consist of electrons trapped in the wake, extend
to much higher momenta for the simulation with suppression than for the full
simulation (not shown in the phase space plots). This too points to a higher
wake amplitude at wave breaking.

For both simulations particle energy spectra have been determined at t = 2 ps
when the pulse enters the \plateau" of maximum plasma density and the amount
of trapped particles begins to saturate, and at t = 4 ps when the pulse leaves
this plateau. At 2 ps it has been found that the simulation with suppression of
left-going �elds contains about 15 times as many electrons having an energy of
5 MeV or more than the full simulation. Also, the simulation with suppression
displays a peak particle energy of 38 MeV, compared to 19 MeV for the full
simulation. Cumulative electron energy spectra are displayed in Figure 6.4b.
The simulation with suppression is labelled \no El". At later times, the particle
energies have increased for both simulations, especially for the full simulation.
Nevertheless, the simulation without left-going �elds shows 50% more electrons
having an energy above 5 MeV and 6 times as many electrons having an energy
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above 25 MeV than the full simulation.
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Figure 6.2: Simulation results for a0 = 1:5, at t = 1:6 ps. The pulse is located
between kp(x � ct) = 120 and 180. (a) Left (i.e. backward) going transverse
electric �eld for a full simulation. (b) Longitudinal electric (wake) �eld (RFS
Langmuir wave) for a full simulation (solid line) and one with suppression of
left-going �elds (dashed line). In the full simulation, RBS and RFS overlap in
space and time. Absence of RBS-induced beam loading in the other simulation
leads to a higher amplitude wake �eld.
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Figure 6.3: Simulation results for a0 = 1:5, at t = 1:6 ps. Particle phase space for
(a) a full simulation, and (b) one with suppression of left-going �elds. Absence
of RBS-induced beam loading in the latter leads to a clearer structure in phase
space, which is also related to the clearer wake�eld structure visible in Fig. 6.2b.

At lower laser intensities, the regime under consideration is lost. At a0 = 1:0 and
for the given plasma density, simulation results show that RBS growth is limited
and there is little RBS-induced heating. As a result, few particles are trapped by
the wake even though RBS and RFS overlapped in space, and the e�ect of beam
loading of the wake can be neglected. Therefore, the suppression of RBS will not
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lead to a larger wake amplitude but only result in a lower fast particle yield, in
line with earlier results [5,14{16].

Although the direct removal of all left-going �elds is a useful tool for demon-
strating the e�ect of RBS on high-energy electron yield, RBS suppression in
experiments needs to be achieved in other ways. One way, as presented in the
previous section, is stimulation of RFS in laser-plasma interaction. This can be
achieved by injecting into the plasma simultaneously two laser pulses having car-
rier frequencies that di�er by !p [21,25]. This method will be investigated in the
next subsection.

6.4.3 E�ect of Raman forward scattering

In the second series of simulations, the e�ect of RFS on plasma wave forma-
tion and fast particle production has been investigated. Initially, the laser pulse
beats with the RFS-associated Langmuir wave (!p; kp), to produce Stokes and
anti-Stokes sidebands at !� = !0 � !p in the Fourier spectrum of the forward-
going transverse �elds, which are commonly used to identify RFS [2,23]. In turn,
the beating between these side bands and the laser pulse resonantly drives the
plasma wave, since their frequency di�erence is !p, driving it to much higher
amplitudes than can be expected from ponderomotive excitation alone [16,21].
This is accompanied by the excitation of higher order (anti-)Stokes EM waves,
i.e. resonance peaks at !n = !0+n!p, n integer. As the sidebands gain intensity,
their mutual non-linear interaction causes sidebands at non-integer values of n
to appear. This process eventually leads to the breakup of the spectrum and the
laser pulse.

In order to investigate the e�ects of RFS more closely, simulations have been
performed in which RFS has been stimulated by adding a Stokes satellite pulse
to the main laser pulse, a small pulse with frequency !1 = !0 � !p and the
same length and envelope shape as the main pulse. Such a satellite is expected
to enhance the e�ect of RFS in terms of sideband growth and plasma wave
excitation [21,25]. The RFS stimulation is best observed at a0 � 0:5, since
non-linear interaction occurring for larger a0 quickly obscures the emergence of
(anti-)Stokes peaks in the �eld spectra. Two simulations have been performed,
one with a pulse with a0 = 0:5 and a seed with a1 = 0:05, and one without
seed and a pulse with a0 = 0:55, so the peak amplitudes are initially equal. The
simulations have been continued for 5.33 ps, allowing the pulse to complete its
transition through the plasma slab.

Since the e�ect of RFS seeding on (anti-)Stokes sideband growth and RFS Lang-
muir wave excitation has already been investigated in detail in Ref. [25], we will
just summarize our results on those topics here. In both simulations, the follow-
ing chain of events can be observed: emergence of the lowest order (anti-)Stokes
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peaks in the spectrum and of the RFS Langmuir wave behind the pulse, emer-
gence of higher order (anti-)Stokes peaks and further growth of the Langmuir
wave, energy cascading from the main laser peak to the various (anti-)Stokes
peaks, emergence of non-integer (anti-)Stokes peaks due to non-linear interaction
between the various peaks, and �nally loss of all structure of the transverse �elds,
their spectrum, and the Langmuir wave as a result of this non-linear interaction.
The main di�erence between the two simulations is, that all these processes hap-
pen more intensely and on a much shorter timescale in the simulation with seed,
than in the one without.
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Figure 6.4: Simulation results for a0 = 1:5, and a Stokes satellite of 0, 1, 2, and
5%, at t = 2 ps. (a) Fourier spectrum of the left-going transverse electric �eld,
showing the decrease in RBS. (b) Cumulative particle energy spectra, showing
the increase in high-energy particle yield. The curves labelled \full" and \no El"
correspond to the same simulations as displayed in Figs. 6.2 and 6.3.

To investigate the e�ect of direct RFS stimulation on RBS growth and fast elec-
tron production, we have repeated the full simulation discussed in Section 6.4.2,
with a Stokes satellite pulse added to the main laser pulse. The results are dis-
played in Fig. 6.4. Comparing simulation results at t = 2 ps for a0 = 1:5 and
satellite levels of 0, 1, 2 and 5% of a0, we �nd that the number of high-energy
electrons increases with satellite amplitude, while RBS growth decreases. For the
50 fs pulse used here, a 5% satellite is suÆcient to achieve near-complete RBS
suppression. Simulation results indicate that a longer pulse leads to a higher RBS
level, but also that this can be compensated using a higher seed. Therefore, we
conclude that adding a Stokes satellite to the main pulse is a possible way to con-
trol the amount of RBS in laser-plasma interaction experiments. Comparing the
electron energy spectra of these simulations with those of the simulation without
left-going �elds from Section 6.4.2 (black curve in Fig. 6.4b), we �nd that the
simulation without left-going �elds produces more high-energy particles than a
full simulation with 2% seed, but less than one with 5% seed. This is explained by
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the fact that the seed does not only suppress RBS, but also resonantly drives the
wake�eld, causing a larger amplitude wake�eld and therefore a larger high-energy
particle yield than RBS removal alone.

Summarizing these results, we conclude that the presence of the satellite enhances
the growth of RFS in the simulation, and thus the growth of the (RFS-driven)
plasma wave, in agreement with earlier results [21,25]. The RFS enhancement
also leads to RBS suppression, in agreement with results by Everett et al. [24],
thus preventing heavy beam loading of the laser wake and leading to an even
larger wake amplitude. Both e�ects ultimately lead to an increase in the yield of
high-energy electrons, rendering the Stokes satellite a very e�ective, experimen-
tally feasible way to stimulate fast electron production.

In the following sections, it will be investigated how the RFS/RBS growth is
a�ected by the plasma density pro�le, the pulse envelope shape, and both types
of laser chirp, and what the consequences are for the inuence of such parameters
on high energy electron production.

6.4.4 Plasma density pro�le

The �rst parameter to be investigated is the plasma density pro�le. As mentioned
above, for a long pump moving along a plasma density ramp, the RBS growth
decreases with increasing slope [26]. Unfortunately, this result cannot be applied
to the case of a short pulse, i.e. much shorter than the typical length scale on
which the plasma density changes. In such cases, it is expected that the RBS and
RFS growth rates are determined by the local plasma density itself at the location
of the pulse rather than by the slope of the density pro�le at that location. The
total growth is then obtained by integrating the growth rate along the pro�le.

To investigate the inuence of the plasma density pro�le on both RBS/RFS
growth and fast electron production, we have performed two simulations in which
the same laser pulse (50 fs duration, a0 = 1:5) impinges upon a plasma having a
piecewise linear density pro�le that ramps up from n = 0 to n = 3:8 � 1019 cm�3

and then remains at that density. In the �rst simulation the ramp occurs over a
distance of 0.6 mm, while in the second it occurs over 1.8 mm. The simulations
have been continued until the pulses reached the plateau of maximum density in
both cases, and particle trapping saturated.

Simulation results are displayed in Figs. 6.5 and 6.6. For both simulations, the
Fourier spectrum of the backward going �elds have been determined just after
the onset of plasma electron trapping, since at this time the inuence of RBS on
particle trapping is maximum. For the steep slope case, this happens just after
the pulse has reached maximum density (t = 2:2 ps), while for the gentle slope
this happens when the pulse is at 65% of the maximum density (t = 4 ps). The
spectra are shown in Figure 6.5(a): it is clear that the steep slope case exhibits
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a lot more RBS than the gentle slope case. Particle energy spectra have been
taken at the end of the simulations (t = 6 ps). They are displayed in �gure
6.5b: it is obvious that once particle trapping has saturated, the pulse moving
along the gentle ramp has produced much more high-energy electrons than the
pulse moving along the steep ramp. It is true that the total number of trapped
electrons is higher for the steep ramp case; however, nearly all of them are at the
low end of the spectrum.
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Figure 6.5: Fourier spectrum of the transverse electric �eld (a) and electron
energy spectrum (b) for a plasma density pro�le with a steep ramp (red) and a
gentle ramp (green). The gentle ramp case displays a higher fast particle yield
than the steep ramp case. This di�erence is related to the lower RBS growth for
a gentle ramp.
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Figure 6.6: Detail plots of electron phase space for a plasma density pro�le with
a steep ramp (a) and a gentle ramp (b). Phase space has more structure for a
gentle ramp than for a steep ramp, and is less burdened by RBS-induced heating.

In Figure 6.6, detail plots of electron phase space are shown for both simulations.
The steep slope case clearly displays a higher level of RBS-induced plasma heating
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than the gentle slope case. This agrees with the above observation that there is
more RBS excitation for the steep slope case than for the gentle slope case.

In general, it can be said that early in the simulations, the steep slope case
displays a larger level of RBS than the gentle slope case, while the level of RFS
is low for both cases due to the small RFS growth rate. Later in the simulations,
when RFS becomes dominant and RBS has mostly disappeared, the steep slope
case exhibits a higher level of RFS than the gentle slope case. The fact that
the growth rates for both RBS and RFS increase with increasing plasma density
may explain this: for any x between 0 and 1.8 mm, the steep slope pro�le has a
higher local density than the gentle slope pro�le. Next to that, the \history" of
the pulse, i.e. the pro�le already traversed before arriving at a certain density,
is probably also important. The larger amount of highly energetic electrons seen
in the gentle slope case is probably due to the fact that in both simulations,
electron capture happens when RBS is still dominant. Consequently, the highest
electron energy is reached in the simulation that exhibits the lowest RBS level.
The di�erence in RFS at later times, which should work in favour of the steep
slope case, seems to be much less important.

6.4.5 Laser pulse envelope

As found in experiments by Leemans et al. [7], the use of laser pulses with a
\skew" envelope inuences the yield of high-energy electrons. Experimental re-
sults presented in this paper show that a pulse with a steep front and gentle
back traps more electrons than one with a gentle front and steep back. Simu-
lations have been performed using the type (iii) laser pulse envelopes given in
Section 6.4.1. Pulse parameters have been chosen to match those obtained in
the experiments: tp = 50 fs, b = �0:52 for the steep front pulse, and tp = 52
fs, b = 0:58 for the gentle front pulse. Pulse amplitude is a0 = 2:6 for both
simulations. The plasma density pro�le is the at-top pro�le from Section 6.4.1.

Simulation results are as follows. Figure 6.7 displays the cumulative electron
energy spectra (a) and the Fourier spectra for the backward-going EM �elds
(b), both taken at t = 2 ps. From the energy spectra, we �nd that the steep
front pulse generates more high-energy electrons than the gentle front pulse. The
Fourier spectra reveal that the steep front pulse generates less RBS than the
gentle front pulse. Figure 6.8 displays detail plots of the electron phase space at
t = 2 ps, for a steep front pulse (a) and a gentle front pulse (b). It is clear from
these plots that there is less RBS-induced plasma heating for a steep-front pulse.

The role of RFS in this case cannot readily be deduced from the simulation
results. This is due to the high peak intensity of the pulses, which is well in the
non-linear regime. As a result, the (anti-)Stokes peaks of RFS do not emerge
clearly from the Fourier k-spectra of the forward going EM �elds, and cannot
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be studied. However, a linear analysis by Schroeder et al. [33] predicts that the
steep front pulse causes a larger RFS growth than the gentle front pulse. This is
supported by simulation results at low laser intensity by Fisher and Tajima [25]
that indicate that a sharp leading pulse edge indeed favours RFS excitation. As
a result, the steep front pulse excites a larger wake than the gentle front pule,
which also contributes to an increased fast electron yield.
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Figure 6.7: Particle energy spectrum (a) and Fourier k-spectrum of El;y (b) for
a pulse with a steep (red) and a gentle (green) front (a0 = 2:6), at t = 2 ps.
The steep front pulse generates less RBS and more high-energy particles than
the gentle front pulse.
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Figure 6.8: Detail plots of particle phase space for a pulse with a steep front (a)
and a gentle front (b), for a0 = 2:6, at t = 2 ps. The plot for the steep front pulse
clearly exhibits more structure and less electron heating than that for the gentle
front pulse.

Based on our simulation results and the theory presented in Sections 6.2 and
6.4.2, we propose the following scheme for the e�ect of pulse envelope shape on
energetic electron yield. (i) A steep front pulse favours RFS growth, while a
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gentle front pulse does the opposite; (ii) enhanced RFS growth leads to both a
larger laser wake and suppression of RBS; (iii) RBS suppression leads to less beam
loading of the wake and thus to an even larger wake; (iv) the combined e�ect of
all this is a marked increase in high energy electrons for the steep front pulse as
compared to the gentle front pulse, in agreement with experimental results [7].

6.4.6 Pulse length preserving chirp

As shown by Dodd and Umstadter [30], pulse length preserving laser chirp has a
clear e�ect on both RFS growth and fast electron production. This type of chirp
is characterized by its large carrier frequency gradient. In this section the e�ect
of this type of chirp on both RBS and RFS is investigated, in order to determine
whether RBS also plays a role in this case.

Several simulations with pulse length preserving chirp have been performed. For
the plasma, n0 = 1:1 � 1019cm�3 has been used, and either a constant density or a
at-top plasma slab as speci�ed above. A type (ii) pulse envelope has been used
with a0 = 1:0, �0 = 1 �m, 80 fs FWHM, and a chirp factor a = �15:4.
Simulation results are as follows. First, the pulse with positive chirp displays a
lot of erosion at the front, where its frequency is low. This causes the pulse to
obtain a steep front, which is presumed to favour RFS excitation. Second, the
pulse undergoes the type of breakup of its �eld and spectrum that points to a
large RFS growth. Third, a large amplitude plasma wave is excited as a result of
the high level of RFS present. Even at the moderate peak amplitude used here,
some fast electron trapping can be observed.
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Figure 6.9: Transverse electric �eld at t = 6 ps for pulses with pulse length pre-
serving chirp: (a) positive chirp, and (b) negative chirp. The pulse with positive
chirp undergoes strong depletion at its front, while the pulse with negative chirp
is hardly a�ected. In both cases, complete RBS suppression can be observed.
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All these e�ects are much less visible, if at all, for the pulse with negative chirp.
There is hardly any erosion at front or back of the pulse, pulse breakup or RFS.
The absence of RFS also results in a small plasma wake; neither wave breaking
nor particle trapping can be observed here. See Figs. 6.10 to 6.11.

Note that the results on both RFS growth and fast electron yield are in agreement
with those from earlier simulations [30]. They can be explained from the large
carrier frequency gradient, as discussed in Section 6.3.
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Figure 6.10: Fourier spectrum of transverse electric �eld for pulses with length
preserving chirp: (a) positive chirp and (b) negative chirp. The spectra for
positive chirp display a large RFS growth, while there is hardly a trace of RFS
for negative chirp.
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Figure 6.11: Electron energy spectrum at t = 6 ps for pulses with positive (red)
and negative (green) pulse length preserving chirp. It is clear that positive chirp
enhances fast electron yield, while negative chirp suppresses it.

As can be seen in Figure 6.9, there is hardly any RBS to be observed for either
positive or negative chirp, something that is accompanied by a total absence of
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any RBS-induced plasma heating. This is in agreement with the prediction by
Sakharov and Kirsanov [20], that RBS will be suppressed if the gradient of the
carrier frequency is suÆciently large, regardless of its sign. The absence of RBS
allows us to study the e�ect of RFS on the plasma wave growth, without being
bothered by the disturbing e�ects of RBS.

6.4.7 Bandwidth preserving chirp

The last parameter to be discussed is bandwidth preserving laser chirp. For this
type of chirp, the Fourier power spectrum is conserved, causing the pulse duration
to increase and the amplitude to decrease with chirp. As discussed in Section 6.3,
the dominant characteristic of this type of chirp is the increase in pulse length,
not the carrier frequency gradient. Therefore, we expect the amount of RBS,
and hence the particle yield, to depend on the magnitude rather than the sign of
this type of chirp. To investigate this, we have performed simulations involving
pulses having a type (i) envelope with a = �1:0 and a = �5:9. In both cases,
a0 = 3:0 and FWHM= 50 fs. The plasma density pro�le was again Gaussian,
with n0 = 1:1 � 1019 cm�3.

The following results have been obtained. In Figs. 6.12 and 6.13, the Fourier
spectra of the left- and right-going transverse electric �eld at t = 6 ps are shown
for both small and large chirp. We see that the spectra for pulses with small
chirp (a = �1:0) are dominated by RFS in the right-going �elds and show little
RBS in the left-going �elds, while those for large chirp (a = �5:9) hardly show
any RFS, but display a signi�cant amount of RBS. This behaviour agrees with
the predictions made above for long pulses with a low carrier frequency gradient.
Also, we observe that there is no qualitative change in the spectra when the sign
of the chirp is changed while its magnitude is not. This is in agreement with
the �ndings of Faure et al. [29]. In Figure 6.14, the corresponding cumulative
particle energy spectra are displayed. It is clear from these spectra that particle
numbers increase and particle energies decrease rapidly with increasing chirp
magnitude, while they are nearly insensitive to its sign. This can be explained
from the observations that RBS growth increases for increasing pulse length, i.e.
increasing chirp magnitude, while the neither RBS nor RFS growth is a�ected
by the sign of bandwidth preserving chirp. As explained before, an increase
in the level of RBS rises the amount of trapped particles but strongly lowers
their average energy. Also note that the number of trapped electrons naturally
increases with increasing pulse-plasma interaction length.
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Figure 6.12: Fourier spectrum of the transverse electric �eld for pulses with small
bandwidth preserving chirp (a = �1:0), at t = 6 ps, for the backward-going (a)
and forward-going (b) �elds. RBS growth is limited because the pulse is still very
short (� 70 fs). The inuence of the sign of the chirp on both RBS and RFS
growth is small.
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Figure 6.13: Fourier spectrum of the transverse electric �eld for pulses with large
bandwidth preserving chirp (a = �5:9), at t = 6 ps, for the left-going (a) and
right-going (b) �elds. RBS growth is larger in this case because of increased pulse
length (� 300 fs). Again, the inuence of the sign of the chirp on both RBS and
RFS growth is small.
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Figure 6.14: Cumulative particle energy spectrum for pulses with bandwidth
preserving chirp at t = 6 ps, for a = �1:0 (a) and a = �5:9 (b). The average
particle energy decreases strongly with increasing chirp magnitude, while the sign
of the chirp has hardly any inuence.
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6.5 Summary and conclusions

A new regime for the e�ect of Raman instabilities on the production of fast elec-
trons in laser-plasma interaction has been identi�ed. The regime is characterized
by laser intensities well above the threshold for electron trapping, large growth
rates of the Raman instabilities, and spatial and temporal overlap of RBS and
RFS. It has been demonstrated that in this regime the presence of RBS hurts the
production of fast (over 15 MeV) electrons, whereas RBS suppression enhances
this production. RBS suppression can be obtained by stimulating RFS growth.
An experimentally feasible way to do this, is adding, to the main laser pulse,
a satellite pulse at the Stokes frequency. The e�ect of a number of pulse and
plasma parameters on fast electron production has also been investigated. It
has been found that parameters that favour RFS growth and/or suppress RBS
growth, ultimaltly lead to an increased yield of fast electrons.

In the new regime, RBS-induced plasma heating strongly increases the number of
electrons that get trapped in the wake. This results in strong beam loading which
reduces the wake amplitude. Although the total number of trapped electrons
increases, the number of high-energy electrons decreases in this case. Under
these circumstances, suppression of RBS leads to enhanced wake wave growth,
and an increase of both the number of fast electrons and their energy. This is in
contrast to earlier results at lower laser intensities, where RBS has been found to
improve fast electron production [5,14{16].

Adding a Stokes satellite to the main laser pulse is an eÆcient way to enhance
fast electron production. The satellite acts in two ways: it enhances the laser
wake, and also causes RBS suppression. Depending on the circumstances, a
satellite having 5% of the �eld amplitude (0.2% of the intensity) of the main
pulse may already be suÆcient to reach a near-complete suppression of RBS. This
suppression has been explained from the fact that the seed enhances the growth
of RFS, which in turn reduces the growth of RBS. Enhancing RFS through other
means, such as tuning various laser and plasma parameters, gives similar results.
In the simulations, a high yield of fast electrons is always accompanied by a high
level of RFS and a low level of RBS.

The inuence of various laser and plasma parameters on fast electron yield can
be explained through their inuence on RFS and RBS growth. For the plasma
density pro�le, it has been found that a pulse climbing a gentle density increase
initially excites less RBS than one meeting a steep density increase. As a result,
the number of high-energy electrons generated by the pulse is higher in case of a
gentle increase than that of a steep increase. Later in the simulations, the level
of RFS, and thus the laser wake, is larger for a steep than for a gentle density
increase. This does not seem to have a substantial inuence on the �nal electron
energy though.
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The results of the simulations focusing on the e�ect of the shape of the pulse
envelope demonstrate that an envelope with a steep front produces less RBS
than an envelope with a gentle front. Although the inuence of envelope shape
on RFS cannot be determined from the simulations, due to the dominance of
nonlinear e�ects at the laser intensities employed here, analytical calculations
indicate that the steep front pulse excites more RFS than the gentle front pulse.
Together with the fact that enhancing RFS suppresses RBS, this may well explain
the di�erence in RBS between the pulses. The net result is a higher number of
high-energy electrons produced by the steep front pulse than by the gentle front
pulse, in line with experimental results [7].

The investigations on the role of chirp reveal that in order to avoid confusion,
a distinction needs to be made between bandwidth preserving chirp and pulse
length preserving chirp. Regarding the e�ect of pulse length preserving chirp,
pulses with a large chirp of this type are found to generate hardly any RBS
regardless of the sign of the chirp. RFS growth, and thus fast electron production,
is di�erent for pulses with positive or negative chirp, in agreement with earlier
results [30,32]. For bandwidth preserving chirp, the sign of this type of chirp does
not have any substantial e�ect on RBS or RFS growth, and thus on fast electron
yield. This is in contradiction with earlier conjectures [11,30], but in agreement
with recent experimental results [7] showing that di�erences in electron yield are
likely the result of a di�erence in pulse envelope rather than chirp. Furthermore,
RBS growth increases with the magnitude of the chirp, since the pulse length,
and thus the pulse-plasma interaction region, also increases with this magnitude.
This results in increased beam loading of the generated plasma wave and a drop
in the yield of truly fast electrons (energy over 15 MeV). Since laser chirp as used
in experiments is bandwidth preserving by nature, it is unlikely that chirping a
pulse will ever increase fast electron yield in experiments.
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Chapter 7

Magnetic �eld modelling in

particle optical devices

So far, we have only concerned ourselves with with bunch quality control during
the acceleration stage. But the issue does not stop there by any means. After
being accelerated, the bunch needs to be brought to its destination, which may be
many metres and as many nasty turns removed from the accelerator apparatus.
Or, one may wish to store the accelerated bunch in a storage ring for later use.
In any case, bunch quality control is as important in this stage as it is during
the acceleration stage. Therefore, the bunch guiding or storage facilities need to
be designed with care: a poorly designed guiding system can easily destroy the
quality that accelerator designers have taken so much pains to achieve.

As mentioned in Chapter 1, the guiding of a bunch of charged particles is done
by means of magnetostatic lenses. The behaviour of a bunch of particles in such
a lens can be described using the same math as used to describe the behaviour of
a ray of light in an optical lens, hence the name. In order to evaluate the action
of such a lens on a bunch, one needs knowledge of the magnetic �eld of the lens.
The �eld is commonly described in terms of a power series expansion with respect
to the transverse radius. From this expansion, the action of the lens is usually
only calculated to leading order, since the inclusion of higher order contributions
would lead to very complicated and unmanageable expressions. The resulting
expressions are then only valid in the paraxial region, i.e. close to the central
axis of the lens, while its strength is taken to be constant along its length, even
though it is obvious that the strength decreases smoothly to zero at the entry
and exit faces.

In this chapter, a new method for the calculation of the magnetic �elds of beam
guiding elements is presented. The method relates the calculation to measure-
ment data of the magnetic �eld in a direct way. It can be applied to single
beam guiding elements as well as to clusters of elements. The presented descrip-
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tion of the magnetic �eld di�ers from the classical approach in that it does not
rely on power series approximations. It is also both divergence free and curl-
free, and takes fringe �eld e�ects up to any desired order into account. In the
�eld description, pseudo-di�erential operators described by Bessel functions are
used to obtain the various multipole contributions. Magnetic �eld data on a
2-dimensional surface, e.g. a cylindrical surface or a median plane, serves as in-
put for the calculation of the 3-dimensional magnetic �eld. A boundary element
method is presented to �t the �elds to a discrete set of �eld data, obtained, for
instance, from �eld measurements, on the 2-dimensional surface. Relative errors
in the �eld approximation do not exceed the maximal relative errors in the in-
put data. Methods for incorporating the obtained �eld in both analytical and
numerical computation of transfer functions are outlined. Applications include
easy calculation of the transfer functions of clusters of beam guiding elements,
and of generalized �eld gradients for any multipole contribution up to any order.

This chapter has been published as the article \Modelling the �elds of magneto-
optical devices, including fringe �eld e�ects and higher order multipole contri-
butions. Application to charged particle optics", R.M.G.M. Trines, S.J.L. van
Eijndhoven, J.I.M. Botman, T.J. Schep, and H.L. Hagedoorn, Phys. Rev. ST 4,
062401 (2001).

7.1 Introduction

The transport of charged particle beams through particle optical devices, such as
beam-transport lines, particle accelerators, and spectrometer equipment, depends
strongly on the shape of their electric and magnetic �elds. For this reason, a lot of
e�ort has been put in the derivation of analytical expressions for both these �elds
and the trajectories of charged particles that pass through said �elds. A thorough
study on axisymmetric electrostatic and magnetostatic lenses has been performed
by El-Kareh & El-Kareh [1]. Analytical studies on the trajectory equations for
magnetic quadrupole lenses and their solutions have been performed by, among
others, D. L. Smith [2] (with corrections by G. E. Lee-Whiting [3]), G. E. Lee-
Whiting [4], H. Matsuda & H. Wollnik [5], H. Nakabushi & T. Matsuo [6]. A
derivation of these equations using Hamilton theory has been given by H. L.
Hagedoorn et al. [7], R. de Leeuw et al. [8].

The solution to the trajectory equations for a beam guiding element is generally
presented as a function, called the tranfer map of the element, that maps the
initial location of a charged particle in phase space on its �nal location. Three
di�erent methods for the calculation of such maps can be distinguished. First,
the map can be calculated using aberration coeÆcients (see G. W. Grime et
al. [9] or G. W. Grime & F. Watt [10] for their de�nition). This method has
been employed in most of the analytical work mentioned above, and has also
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been used in various computer codes, e.g. TRANSPORT [11] and TURTLE [12].
Second, the map can be calculated using di�erential algebra, a tool developed
by M. Berz [13], who implemented it in his code COSY INFINITY [14]. Finally,
Lie methods can be used to calculate the map in such a way that it is always
symplectic (i.e. preserving the volume occupied in phase space), regardless of
the way it is truncated. These methods have been developed by A. Dragt et
al. [15,16], who also implemented them in their code MaryLie [16,17].

For the calculation of the transfer map of a magneto-optical element, an accurate
description of the magnetic �eld of the element is essential. This is often done
by expanding the scalar potential of the �eld in a Taylor-Fourier series, as given
by, among others, M. Szilagyi [18], for straight elements having their design
orbit along the z-axis. The accuracy of this description depends critically on
the accuracy at which the z-dependent Taylor coeÆcients in the expansion, the
generalized gradients, can be provided, especially for the so-called fringe �elds
near the ends of the element, where the z-dependence of the generalized gradients
is the most obvious. Direct calculation of these gradients using the Biot-Savart
law or on-axis �eld gradients is possible but not very accurate; a more accurate
analytical method has been derived by M. Venturini & A. Dragt [19].

There are several disadvantages to the Taylor-Fourier expansion mentioned above.
First, it leads to a culmination of power series terms in the transfer map cal-
culations, which proves diÆcult to handle. Moreover, the divergence-free and
curl-free nature of the magnetic �eld is not preserved once the power series is
truncated [20]. Transfer map computation using series expansions in the mag-
netic �eld description usually means a trade-o� between accuracy of the result
and a reasonable number of terms in the expressions.

In this chapter, we formulate a di�erent approach to the description of the �elds
of particle optical devices. A more detailed treatment of the work presented here
can be found in the master's thesis of the author [21]. Parts of it have already
been presented at the EPAC '98 [22] and PAC '99 [23] conferences. The aim of
this approach is to overcome the above mentioned diÆculties by using a magnetic
�eld description that is not based on power series expansions. This way, we do
not have to deal with an explosively growing number of higher order terms, which
is usually the case in higher order perturbative methods.

As a �rst step, we give a general description of the magnetic �eld inside a beam
guiding element and its harmonic scalar and vector potentials. This description
treats each multipole contribution to the �eld separately, and gives the total �eld
as a superposition of multipole contributions.

This done, we assume the magnetic �eld to be known on a cylindrical surface, that
has the same axis as the element. We apply the above-mentioned �eld description
to this case, in order to express the magnetic �eld and its potentials within the
cylinder entirely in terms of the boundary values of the �eld on the surface. As
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we do not use power series approximations here, and are able to take multipole
contributions of any order into account, the accuracy of the �eld description is
only limited by that of the boundary values. This is true for both the central �eld
and the fringe �eld region of the device, since this method does not discriminate
between z-dependent and z-independent �elds.

Since the boundary conditions will usually arise from measurements, the next
step is to give expressions for the �eld, given a series of measurements on ei-
ther a cylindrical surface, or a median plane, taking the discrete nature of these
measurements into account. The resulting �eld description will be shown to be
insensitive to statistical noise in the measurements. Moreover, the �eld will be
a superposition of divergence-free and curl-free terms, so it is always divergence-
free and curl-free, regardless of truncation. As an example, the magnetic �eld of
an existing quadrupole will be reconstructed from magnetic �eld data. It will be
shown that only a fraction of the available data is needed to calculate all of the
�eld.

This method of expressing a magnetic �eld in terms of measurements knows a
wide range of possible applications.

One example is the reconstruction of the �eld of beam guiding elements (appli-
cation to an existing magnetic quadrupole is presented in Section 7.3.3). Our
method can also be used on clusters of elements with overlapping fringe �elds,
which are in fact to be treated as single elements, and can even be extended
to obtain the transfer functions for a complete beam-line setup or storage ring.
There are also numerous applications in low-energy electron optics.

Once the magnetic vector potential has been described in terms of �eld measure-
ments, we can use it in particle optics. For this reason, we insert this vector
potential in the Hamiltonian equations of motion for a charged particle in a mag-
netic �eld, and use a �nite di�erence method to solve the system of equations
numerically, in such a way that the steps in the �nite di�erence method match
the steps between the measurements. As a consequence, we have developed a
tool to express the transfer function entirely in terms of these measurements.

The methods presented in this chapter are equally suitable for the calculation
of generalized gradients of any order, directly from �eld measurements. This
provides an elegant way to combine the results of this chapter with existing
analytical results.

It should be noted that, although all methods have been devided to describe
the �elds of magneto-optical devices, they are equally applicable to electrostatic
optical devices, since in the absence of free charges or currents in the interior
of the device, the electrostatic potential can be expressed in the same form as
the scalar potential of a magneto-optical device. Once the electrostatic scalar
potential has been obtained, it can be introduced into the description of the
transfer function of the device, much in the same way as the magnetic vector
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potential.

7.2 General �eld description

7.2.1 Basic equations

From Maxwell's equations for the static electromagnetic �eld, a scalar potential
u, and a vector potential A exist for a magnetic �eld B in a simply-connected
region without free charges or currents, satisfying:

ru = B = r�A; (7.1)

�u = 0; (7.2)

r� (r�A) = 0: (7.3)

The vector potential A will be chosen such that divA = 0 (Coulomb gauge).
Then A is harmonic: �A = 0.

These equations are applied to the magnetic �eld of a magnetic multipole device,
within a cylindrical surface. Cylindrical coordinates (r; '; z) are chosen in such a
way that the z-axis coincides with the central axis of the device. We assume the
scalar potential u to be known at the cylindrical surface r = R, and introduce
dimensionless coordinates r� = r=R; z� = z=R. Then the potential problem for
the scalar potential u reads (we drop the stars for convenience):

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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@u

@z
(r; '; z) = 0; 0 � r � 1; �� < ' � �:

(7.4)

Here, C+ and C� are constants and U('; z) satis�es both limz!�1U('; z) = C�
and limz!�1 Uz('; z) = 0 for all '. If the Fourier series expansion with respect to
' of the potential is known to contain no solenoidal ('-independent) term, we set
C� = 0. The above potential problem has a unique solution for u [24]; from this
solution we can derive general expressions for both B and A. These expressions
can be used to compute B and A directly from magnetic �eld measurements,
without the need to derive u �rst.
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7.2.2 Harmonic potentials

Since we use cylindrical coordinates, we can expand a solution u(r; '; z) of (7.4)
into a Fourier series:

u(r; '; z) = a0(r; z) +
1X

m=1

(am(r; z) cos(m') + bm(r; z) sin(m')):

The terms corresponding to a certain value of m represent the 2m-pole contri-
bution to u: m = 0 corresponds to a solenoid, m = 1 to a dipole, m = 2 to a
quadrupole, etc. For convenience, we adopt the following notation for this Fourier
series:

u(r; '; z) = (am(r; z); bm(r; z))
1
m=0

;

using the dummy coeÆcient b0(r; z) = 0.

Having inserted this expansion into the Laplace equation for u, we �nd second
order partial di�erential equations for the coeÆcients am(r; z) and bm(r; z). As u
needs to be �nite for r = 0, their formal solutions are given by:

am(r; z) = Jm(r
d

dz
)Am(z); m = 0; 1; 2; : : :

bm(r; z) = Jm(r
d

dz
)Bm(z); m = 1; 2; : : :

The pseudo-di�erential operator Jm(r
d
dz
) is de�ned as [25]:

Jm(r
d

dz
)Am(z) := F�1 [Jm(i!r)� (FAm)(!)] (z);

where Jm denotes the Bessel function of the �rst kind of order m and F denotes
the classical Fourier integral transformation with respect to z:

(Ff)(!) :=
Z 1

�1

f(z)e�i!zdz:

Note that the solutions for am(r; z) and bm(r; z) can be expressed in this form
because of the boundary conditions for jzj ! 1 in (7.4).

In the next section, the smooth (i.e. arbitrarily often di�erentiable) functions
Am(z) and Bm(z) will be determined from the boundary condition u(1; '; z) =
U('; z). For convenience, we write Jm for Jm(r

d
dz
), and introduce the dummy

coeÆcient B0 = 0. Then the general solution for u(r; '; z) reads:

u = (JmAm;JmBm)
1
m=0

: (7.5)

As follows from Fourier integral theory, this general solution will automatically
obey the boundary conditions for jzj ! 1.
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Next, we determine a harmonic vector potential A for the magnetic �eld B using
(7.1). This vector potential will be expressed solely in terms of the coeÆcients Am

and Bm that �x the scalar potential u for B. The vector potential is not unique:
adding the gradient of any harmonic scalar �eld to a harmonic vector potential
for B yields another harmonic vector potential. As long as r�A = B, there is
no physical reason to prefer one choice for A over another. For convenience, we
choose (expressed in cylindrical coordinates)

Ar = (Jm+1Bm;�Jm+1Am)
1
m=1

;

A' = (Jm+1Am;Jm+1Bm)
1
m=0

;

Az = (�JmBm;JmAm)
1
m=1

:

From the expressions for the scalar and vector potentials, we �nd that both u
and A are completely determined by the functions Am and Bm, which are in turn
uniquely determined by the boundary conditions at r = 1.

One should note that we used the gauge freedom to derive a harmonic vector
potential. In some cases, however, a di�erent (non-harmonic) vector potential is
more convenient. For example, the Hamiltonian equations of motion for a charged
particle in a magnetic �eld, contain, when expressed in cylindrical coordinates,
a larger number of terms containing A'. A vector potential A with A' = 0 is
usually employed here to get rid of these terms. Although this vector potential
is not harmonic, its Fourier coeÆcients can nevertheless be expressed in terms of
the coeÆcients JmAm and JmBm (see Ref. [19]).

7.2.3 Introducing boundary conditions

In this section, we will show how to calculate the Fourier coeÆcients of u, B
and A for which we derived formal expressions in the previous section, and their
various derivatives, directly from given boundary values at the cylindrical surface
r = 1. Such boundary values result e.g. from direct magnetic �eld measurements,
calculations using the Biot-Savart law, or spinning coil measurements.

The function U('; z), from the remaining boundary condition u(1; '; z) = U('; z),
can be expanded into a Fourier series:

U('; z) = (Vm(z);Wm(z))
1
m=0

:

Since limz!�1 u(r; '; z) = C�, we �nd that necessarily limz!�1 V0(z) = C�,
while limz!�1 Vm(z) = limz!�1Wm(z) = 0 for m > 0. Inserting the general
solution (7.5) into this boundary condition yields the equations

(JmAm)(1; z) = Vm(z);

(JmBm)(1; z) = Wm(z):
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This allows one to express the coeÆcient (JmAm)(r; z) in terms of Vm:

(JmAm)(r; z) = F�1

�
Im(!r)

Im(!)
(FVm)

�
(z): (7.6)

Note that Jm(i!r) = imIm(!r) with Im the modi�ed Bessel function of the �rst
kind of order m.

The right hand side of (7.6) is a convolution product:

(JmAm)(r; z) = (gm(r; �) � Vm)(z) =
Z 1

�1

gm(r; z � �)Vm(�)d�; (7.7)

where the basic function gm(r; z) is given by

gm(r; z) =
1

�

Z 1

0

Im(!r)

Im(!)
cos(!z)d!:

The notation gm(r; �) indicates that evaluation of gm for some value of z is post-
poned until after the convolution product is taken. Results similar to (7.7) hold
for (JmBm)(1; z).

For �xed �, the function gm(r; z � �) is the solution to (7.6) in the case that
Vm(z) = Æ(z��), and in this sense, it is a fundamental solution. This fundamental
property of gm(r; z) will be used to full extent in the next section.

The basic result (7.7) is also obtained in Ref. [19], through slightly di�erent
methods, and used in a di�erent context. An expansion of (7.7) into powers
of r is derived in that paper in order to obtain power series expansions of the
coeÆcients am(r; z) and bm(r; z). Expressions similar to (7.7) describing the �eld
of axisymmetric lenses (m = 0) can also be found in Ref. [1]

It can be shown that gm(r; z) is strictly positive [21,26], soZ 1

�1

jgm(r; z)jdz =
Z 1

�1

gm(r; z)dz =
Im(!r)

Im(!)

����
!=0

= rm: (7.8)

Since JmAm depends linearly on Vm, this allows one to calculate the e�ect of
errors in Vm on the calculation of JmAm. We �nd, using (7.8),

jÆ(JmAm)(r; �)j � rmjÆVmj; (7.9)

where Æ(JmAm)(r; �) and ÆVm denote the maximum errors in JmAm(r; �) (as a
function of r) and Vm respectively on the interval �1 < z < 1 (see also
Ref. [21]). This result will prove useful in the next section, where we show how
to obtain Vm from measurements.

The coeÆcients JkAm and JkBm with k di�erent from m, that occur in the
transverse components of A, and their partial derivatives with respect to r and
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' can be calculated in the same way as JmAm and JmBm. This will prove useful
in Section 7.4.2, where the components of A and their derivatives will occur in
the Hamiltonian equations of motion for a charged particle in a magnetic �eld.
In general, we write for k � m� 1:

(JkAm)(r; z) = (gkm(r; �) � Vm)(z); (7.10)

where

gkm(r; z) =

8>>>><
>>>>:

(�1)l
2�

Z 1

�1

Ik(!r)

Im(!)
cos(!z)d!; k �m = 2l;

(�1)l+1
2�

Z 1

�1

Ik(!r)

Im(!)
sin(!z)d!; k �m = 2l + 1:

It should be noted that the de�nition of gkm contains no physical parameters,
since the input of magnetic �eld data is performed completely via the boundary
values Vm and Wm. Therefore, the values of gkm can be calculated in advance,
which simpli�es the calculation of JkAm for a given Vm greatly.

As has been done previously for gm, it can be shown that
R1
�1

jgkm(r; z)jdz <1
for 0 � r < 1 and k > m. Analogous to (7.9), we �nd that

jÆ(JkAm)(r; �)j � Ck(r)jÆVmj; (7.11)

thus relating the accuracy of JkAm, k > m, to that of Vm. There are indications
that Ck(r) � O(rk), although this has not been proven yet. For k = m � 1
however, it can be shown that gkm is not integrable on �1 < z <1, so equation
(7.11) does not apply to this case.

In the case that the �eld description given in this section is used in charged par-
ticle optics, knowledge of both the partial derivatives (occurring in the trajectory
equations) and the integrals (occurring in the solutions to these equations) of
JkAm is vital. (See also Section 7.4.3.) Their calculation is rather straightfor-
ward. The partial derivatives of JkAm are given by the convolution product of
the corresponding derivative of gkm(r; �) with Vm. Integration of JkAm with re-
spect to z can also be done by integrating either gkm or Vm with respect to z.
Moreover, since for m > 0, Vm(z) tends to 0 for jzj ! 1, integration by parts of
the right hand side of (7.10) yields:

(JkAm)(r; z) = (Gk
m(r; �) � V 0

m)(z); (7.12)

where

Gk
m(r; z) =

8>>>><
>>>>:

(�1)l
2�

Z 1

�1

Ik(!r)

Im(!)

sin(!z)

!
d!; k �m = 2l;

(�1)l+1
2�

Z 1

�1

Ik(!r)

Im(!)

1� cos(!z)

!
d!; k �m = 2l + 1:
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Using the basic functions gmm and gm+1
m , one can calculate the components of A

and their derivatives directly from the boundary values Vm andWm, without need
to calculate the magnetic �eld B or the scalar potential u �rst. In fact, since the
functions Am and Bm are fully determined by Vm and Wm, any quantity related
to u can be calculated directly from the boundary values, if the appropriate basic
function is used.

In practice, boundary values either originate from the potential u (e.g. when
produced by a three-dimensional code), or from quantities like the magnetic �eld
B (e.g. when obtained from measurements). Determining Vm and Wm in the
second case takes a little extra work as compared to the �rst. As an example,
we show how to determine the functions Vm and Wm from measured values of (a
component of) B. We have:

Brjr=1 =
1

R

@u

@r

����
r=1

=

�
1

R

@gm
@r

(1; �) � Vm; 1
R

@gm
@r

(1; �) �Wm

�1
m=0

;(7.13)

B'jr=1 =
1

R

@u

@'

����
r=1

=
�m
R
Wm;�m

R
Vm
�1
m=1

; (7.14)

Bzjr=1 =
1

R

@u

@z

����
r=1

=

�
1

R
V 0
m;

1

R
W 0

m

�1
m=0

; (7.15)

where the components of B are given in dimensional (unscaled) form. Using the
boundary condition

B�(1; '; z) =
�
Bc
�;m(z); B

s
�;m(z)

�1
m=0

;

where � = r; '; z, we �nd for m = 0; 1; 2; : : :,

F(Vm;Wm) = R
Im(!)

!I 0m(!)
F(Bc

r;m; B
s
r;m);

(Vm;Wm) =
R

m
(�Bs

';m; B
c
';m);

(V 0
m;W

0
m) = R(Bc

z;m; B
s
z;m):

These relations, combined with (7.10), allow one to calculate JkAm and JkBm

for 0 � r < 1 and all z if one component of B is known at r = 1. Note that, in
the case of Bz being known, one needs to replace g

k
m by its primitive Gk

m, like in
(7.12), while in the case of Br being known, we obtain the correct basic function
using (7.6), where the denominator Im(!) has to be replaced by !I

0
m(!), resulting

in a di�erent basic function.

In general, many �eld-related quantities can be calculated directly by taking the
convolution product of (the Fourier coeÆcients of) the boundary values at r = 1
with an appropriate basic function. This will prove to be a powerful tool. In
the next section, we will treat the case of discrete boundary values at r = 1, and
we will show how to reconstruct these boundary values if the available magnetic
�eld data originates from another surface than r = 1, e.g. a median plane.



7.3. Calculating the �eld from measurements 137

7.3 Calculating the �eld from measurements

7.3.1 Using measurements at the boundary

In practice, we can measure (the components of) B at r = 1 for a discrete set
of '- and z-values, and approximate them by interpolating the measurements.
Measurements of B' and Bz are more convenient than measurements of Br, since
the former provide direct approximations of (Vm;Wm) and (V

0
m;W

0
m) respectively,

while the latter do not. Since piecewise constant or piecewise linear interpolations
are almost always employed, the special cases of Vm being piecewise constant or
linear will be considered. As the measured values for B will be negligible for
suÆciently large z, we assume that, for m > 0, Vm(z) = 0 for z suÆciently large.
On the other hand, since limz!�1 V0(z) = C�, a solenoidal contribution to u
should rather be treated by �tting Bz = @u=@z than by �tting u. Using (7.15),
Bz can be calculated from V 0

0 , which is considered to be zero for suÆciently large
z.

If we assume that Vm is piecewise constant, there are pairs (�i; zi), with
P

i �i = 0,
such that V 0

m(z) =
P

i �iÆ(z � zi). Using (7.12), we �nd:

(JkAm)(r; z) =
X
i

�iG
k
m(r; z � zi); (7.16)

where Gk
m(r; z) is de�ned in the previous section.

If on the other hand, we assume that Vm is piecewise linear, then V 0
m is piecewise

constant, and V 00
m =

P
i �iÆ(z � zi), where both

P
i �i = 0 and

P
i �izi = 0. In

this case we have
(JkAm)(r; z) =

X
i

�i ~G
k
m(r; z � zi); (7.17)

where ~Gk
m(r; z) =

R z
0
Gk
m(r; �)d�.

Following from the conditions for the �i in the above cases, we �nd that the terms
at the right hand side of both (7.16) and (7.17) cancel each other for jzj ! 1,
so JkAm tends to 0 for jzj ! 1 in both cases.

Since expressions like (7.16) and (7.17) are derived in a straightforward fashion
from Eq. (7.10) for speci�c instances of Vm, the accuracy of JkAm is completely
determined by that of Vm through Eq. (7.11), and convergence of JkAm with
increasing number of z-subdivisions is directly related to that of Vm.

From the integral expressions in the previous section, we �nd that related quan-
tities can be derived by replacing the functions Gm and ~Gm by basic functions
corresponding to these quantities, while retaining the pairs (�i; zi). In fact, these
pairs determine the corresponding multipole contribution completely.

At this point, we show how to determine the various multipole contributions to
the magnetic �eld from the values of Bz at r = 1, as given by (7.15). Assume
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Bzjr=1 has been measured at the points with coordinates ('; z) = ('j; wi). Since
V 0
m is the Fourier coeÆcient of cos(m') in the Fourier series representation of Bz,
V 0
m(wi) is obtained from (\

:
=" denotes a numerical approximation):

V 0
m(wi) =

1

�

Z �

��

Bz(1; '; wi) cos(m')d'

:
=

1

2�

X
j

Bz(1; 'j; wi)('j+1 � 'j�1) cos(m'j);

where
P

j('j+1 � 'j) = 2�. (Note that the simple midpoint scheme used in this
example can always be replaced by a more sophisticated scheme, if so desired.) We
choose the piecewise constant approximation for V 0

m(z), i.e. V
00
m(z)

:
=
P

i �iÆ(z �
zi), with zi =

1

2
(wi + wi+1) and �i = V 0

m(wi+1) � V 0
m(wi). Then (JkAm)(r; z) is

determined by (7.17). Since Bz(z) � 0 for jzj suÆciently large, so is V 0
m(z).

Since ~Gk
m(r; z) is a known function, we see that (JkAm)(r; z) can directly be

related to the �eld measurements at r = 1. This provides a convenient and
exible way to calculate the magnetic �eld and related quantities from the �eld
measurements of any desired particle optical device. The nature of the methods
outlined in this section also allows for the calculation of the �eld of a cluster of
devices, i.e. multipoles, which can in fact be treated as a single device.

It should be noted that one needs measurements performed at 2m di�erent angles
'i at least in order to determine the 2m-pole contribution. In other words,
the number of di�erent angles at which measurements are taken determines the
highest order multipole contributions that can be approximated from a given set
of measurements.

7.3.2 Using measurements not at the boundary

In the previous sections, the multipole coeÆcients JkAm were calculated under
the assumption that the values of the magnetic �eld or the magnetic scalar poten-
tial at the surface r = 1 were available. In many cases however, the measurements
have not been performed at the surface r = 1, but at a plane containing the z-
axis or on the z-axis itself instead. We will show that it is possible to obtain the
various multipole contributions to the magnetic �eld in such cases, by means of
a least squares method, which will be outlined below.

We will treat the case that measurements of B'(r; '; z) were taken in P (P �
2) planes containing the z-axis, i.e. at the points (rk; 'i; wj), k = 1; : : : ;M ,
i = 1; : : : ; P , j = 1; : : : ; N . In this case, we are able to �t at most M di�erent
multipole contributions; in most cases, the 2m-pole contributions corresponding
to m = 1; : : : ;M , will be �tted. If less than M multipole coeÆcients are �tted,
the remaining data can be used to improve the statistical properties of the �t.
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We assume that 0 < rk < 1, k = 1; : : : ;M ; if this is not the case, then the values
rk and zj should be suitably scaled.

As an example, we assume that B' originates from the �eld of a realistic magnetic
quadrupole, where the quadrupole and sextupole contributions are dominant, and
other contributions are negligible. In this case, B' is approximated by

B'(r; '; z) = � 2

Rr
a2(r; z) sin(2')� 3

Rr
a3(r; z) sin(3'):

The coeÆcients a2 and a3 are then approximated by

a2(r; z;�)
:
=

NX
l=1

�lG2(r; z � zl);

a3(r; z;�)
:
=

NX
l=1

�lG3(r; z � zl);

where zl =
1

2
(wl+wl+1). This corresponds to a piecewise constant approximation

of the multipole coeÆcients of B' at r = 1. We denote the measured value of B'

at (rk; 'i; wj) by fkij, and de�ne the quantity M(�; �) by:

M(�; �) =
MX
k=1

PX
i=1

NX
l=1

(fkij � B'(rk; 'i; wj))
2:

In order for B'(r; '; z) to vanish for jzj ! 1, �; � must satisfy

NX
l=1

�l =
NX
l=1

�l = 0: (7.18)

The optimal values for �; � are then obtained by minimizing M(�; �) under the
conditions (7.18).

There are a few remarks to be made concerning this example:

� In the above example, the assumption was made that the multipole con-
tributions were all normal-oriented, i.e. B' did not contain any cos(m')
terms. In this case, it is suÆcient to have measurements for one angle '1.
In general, the orientation of the multipole contributions will be unknown,
so B' should contain both sin(m') and cos(m') terms, and we need at
least two di�erent angles '1 and '2, which are such that mj'2 � '1j=(2�)
is not an integer for any 2m-pole contribution that is assumed to occur in
the magnetic �eld.
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� In the case that the �l and �l are obtained directly from boundary values,
as in the previous section, the resulting solution automatically satis�es the
boundary conditions for jzj ! 1 in (7.4). However, this is not true for
the least squares method presented in this section; for this reason, the
condition (7.18) has to be imposed explicitly. More generally, if a piecewise
n-th degree polynomial approximation is employed at the boundary, the
conditions

NX
l=1

�lz
k
l =

NX
l=1

�lz
k
l = 0; k = 0; : : : ; n;

have to be imposed.

� In theory, one can determine the various multipole contributions from mea-
surements taken at only two di�erent angles, but in practice one can use
measurements at more angles in order to reduce the inuence of random
errors. The same can be said about the number of di�erent values rk, if
there are M di�erent values r1; : : : ; rM available, and one wishes to �t the
coeÆcients of less than M multipole contributions.

As for the di�erent z-values: one could use a smaller number of pairs (�i; zi)
for the �tting process than the number of available values wj, but this
reduces the z-range where B'(1; '; z) is assumed to be nonzero. For this
reason, one should use all pairs (�i; zi) corresponding to the values zi where
B'(1; '; z) is assumed to be nonzero, and use the remaining data (at the
z-values where statistical noise is assumed to be dominant) to improve on
statistics.

� Further improvement on the statistics can be obtained by using a weighted
average for the sum of squares in the de�nition of M(�; �), instead of the
unweighted arithmetic mean used in the example. The inverse square of
the relative error in the measurement fkij can be used as the weight for the
term (fkij � B'(rk; 'i; wj))

2.

As shown in the previous section, the pairs (�l; zl) fully determine the correspond-
ing Fourier coeÆcient of any �eld-related quantity, e.g. u or B'. Knowledge of
these pairs allows one therefore to �t the corresponding multipole contribution to
any �eld-related quantity, using the corresponding basic function. The method
presented in this section allows one to obtain these pairs from measurements on
the z-axis or in the plane ' = '1, instead of on the surface r = 1. This will be
very useful in cases where it is not possible to measure on a cylindrical surface.

Comparing the methods developed in this and the previous section, we �nd that
the method of the previous section gives better approximations for the individual
multipole coeÆcients, while the method of this section gives a better overall
approximation for the total magnetic �eld. This e�ect is caused by the way these
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methods deal with higher order multipole contributions, that are assumed to be
zero, but, in fact, are not. The method of the previous section yields accurate
approximations of the lower order multipole coeÆcients, and completely neglects
any higher order multipole contributions that might exist in the �eld; the method
of this section, however, \distributes" the total contribution of higher order terms
among the lower order coeÆcients. Although this decreases the accuracy of the
approximation of the lower order coeÆcients, it improves the accuracy of the
overall approximation of the magnetic �eld. For this reason, the latter method
for �eld approximation might be preferred when using this approximation for
calculating a transfer function numerically, as described in Section 7.4.2.

7.3.3 Experimental test of the presented theory

The theory developed in the previous sections has been veri�ed using actual
�eld measurements for a magnetic quadrupole, performed by G. Brooijmans [27].
Part of the measurements have been used as input for the calculation of the
complete quadrupole �eld, and the outcome has been compared to the remaining
measurements.
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Figure 7.1: Comparison of the measured and calculated By as a function of
z for various values of x. The dots represent the measurements, the curves the
calculated �eld. The top row of measurements served as input for the calculations.

The quadrupole used for the measurements was normal-orientated (i.e. antisym-
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metric with respect to the planes x = 0 and y = 0), and the component By

on the plane y = 0 was measured, for a number of equidistant x- and z-values.
Since in the center of the quadrupole, By turned out to depend linearly on x, it
has been assumed at �rst, that any higher order multipole contributions could
be neglected with respect to the quadrupole �eld. Therefore, By has been �tted
using basic functions for m = 2 only. Since By = B' for x > 0 and By = �B'

for x < 0, the basic function

Ĝ2(r; z) =
1

r
G2(r; z) =

1

�r

Z 1

0

I2(!r)

I2(!)

sin(!z)

!
d! +

1

2
r

has been employed. Furthermore, the method of Section 7.3.1 (measurements at
the boundary) has been used to �t By; the outermost row of measurements pro-
vided a piecewise constant approximation of V2(z). This resulted in the following
expression for By at y = 0 and �R < x < R:

By(x; z) =
X
k

(Bk+1 �Bk)Ĝ2(x; z � zk+1=2);

where Bk denotes the measured value for By at (x; z) = (x1; zk), and zk+1=2 =
(zk + zk+1)=2. Finally, By has been calculated for all x-values at which measure-
ments have been taken, except for the outermost one. The results are shown in
Fig. 7.1.

From this �gure, we �nd that there is a good agreement between measured and
calculated values of By. The small di�erences between calculations and measure-
ments, most obvious around the physical ends of the quadrupole at z = 155 and
z = 455, arise either from parasitic dipole and/or sextupole contributions to the
magnetic �eld, or from misalignment of the device's design orbit with respect to
the grid followed by the Hall probe. A more thorough �eld calculation, in which
these e�ects are included from the beginning, will take care of this.

In short, the above example shows that the methods developed here can be used
to calculate the complete magnetic �eld of a multipole device, while only a limited
amount of measurements is needed as input. By the same methods, other �eld
related quantities, such as the vector potential A, can be calculated easily from
the same measurements.

7.4 Application to charged particle optics

In this section, we derive the Hamiltonian for the motion of a charged particle
in a magnetic �eld, with z as the independent coordinate instead of the time
t, and insert the expressions for A obtained in Section 7.2.3. We outline a nu-
merical method for solving the resulting system of �rst order non-linear ordinary
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di�erential equations. This method will take both the Hamiltonian nature of the
equations and the special nature of the components of A, which are superposi-
tions of shifted basic functions, into account. We will use this method to show
that the total transfer function of the beam guiding device under consideration,
can completely be expressed in terms of the �eld measurements at r = R.

Finally, we show how to incorporate the given �eld description in existing analyti-
cal methods that express the transfer function in terms of aberration coeÆcients.
We outline how these coeÆcients can be obtained, up to any desired degree,
directly from �eld measurements.

7.4.1 Charged particle Hamiltonian

The motion of a particle with mass m0 and charge Q in the �eld of a magnetic
multipole is governed by the following Hamiltonian:

H =
q
m2

0c
4 + c2((pr �QAr)2 + (p'=r �QA')2 + (pz �QAz)2):

Since the location of the particle in the z-direction is well de�ned, while the
location in the t-direction is not, it is often desirable to make z the independent
variable, instead of t. This is possible for all parts of the particle trajectory
where dz=dt 6= 0. To obtain a Hamiltonian system for which z is the independent
variable, a new canonical momentum pt is introduced, and the Hamiltonian K
for this system is chosen such that the action integral remains invariant:Z

(pkdq
k + pzdz �Hdt) =

Z
(pkdq

k + ptdt�Kdz):

This way, the canonical form of the equations of motion is preserved. The new
HamiltonianK(qk; pk; t; pt; z) is then obtained by solving the equation pt+H = 0
for pz:

K = �pz = �QAz �
q
p2t=c

2 �m2
0c

2 � (pr �QAr)2 � (p'=r �QA')2; (7.19)

where the sign of the square root has been chosen such that dt=dz > 0. Note
that in the case that @H=@t = 0, the order of the system has decreased by two
as a result of the exchange. A complete treatise on this method can be found in,
among others, Refs. [15,28].

From the Hamiltonian K, the equations of motion for a charged particle in a
magnetic �eld can be derived, with z as the independent variable. The magnetic
�eld description presented in this chapter enters the equations through the vector
potential A. Methods for solving these equations will be presented below.
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7.4.2 Calculating transfer functions

In this section, we show how to obtain the transfer function from numerical
integration of the equations of motion. The system of equations derived from the
Hamiltonian (7.19) will take the following form:

(q0; p0)(z) = f(q; p;A(z; q);
@A

@x
(z; q)): (7.20)

Here, q = (r; '; t), p = (pr; p'; pz), x = (r; '; z), and f is a given function. The
prime (0) denotes total di�erentiation with respect to z.

Note that if A does not explicitly depend on t, pt is a constant of motion, and
the particle trajectories can be calculated without solving the equations for t and
pt.

As derived in Section 7.2.3, the components of A and their partial derivatives all
take the form X

i

�ig
k
m(r; z � zi)�

�
cos(m')
sin(m')

:

The �i originate from measurements at the points z = wi. The zi were de�ned by
zi =

1

2
(wi + wi+1). This provides good approximations for A and its derivatives

in the region 0 � r < 1; �� < ' < �; w0 < z < wn.

Now we proceed to solving the system (7.20) by means of a �nite di�erence
method. The discrete version of (7.20) is given by

(q; p)(wi+1) = (q; p)(wi�1)

+ (wi+1 � wi�1)f(q(wi); p(wi);A(wi; q(wi));
@A

@x
(wi; q(wi))):

(7.21)

We apply the initial condition (q; p)(w0) = (q
0
; p

0
), and calculate (q; p)(w1) from

(q; p)(w1) = (q; p)(w0) + (w1 � w0)f(q
0
; p

0
;A(w0; q

0
);
@A

@x
(w0; q

0
)):

We then �nd (q
f
; p

f
) = (q; p)(wn) by repeated application of (7.21). Through

repeating this procedure for a number of initial locations, and interpolating be-
tween the corresponding �nal locations, the complete transfer function can be
obtained.

It should be noted that the description for A used in the di�erential equations,
is accurate for all r � 1, and not only for small r, as in the case of a Taylor
expansion. Therefore, a transfer function obtained using the above method is
accurate for all r � 1, and its use is not limited to the paraxial region.
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Since the steps of the �nite di�erence method are located precisely at the points
z = wi, where the �eld measurements were performed, we �nd that there are no
interpolation errors in the values forA used in the calculations. By optimizing the
interpolation of the boundary values at r = 1, such that not only the boundary
values, but also their z-derivatives are matched at the points z = wi, we can also
remove interpolation errors from the values of the partial derivatives of A for
better results.

A comparison between the method presented in this section, and common per-
turbative methods reveals the following. For small to moderate values of r, a
perturbative method produces an accurate result with less e�ort than is needed
when using our method. It is in situations where non-linear terms dominate the
�eld description where the present method is most useful, e.g. for large values
of r, or close to the edge of a multipole device, or in a cluster of devices, where
there may be non-linear coupling of overlapping �elds. In such cases, the number
of terms needed in a perturbative method, and hence its complexity, increases
considerably, while our method can be applied just as easily as to a paraxial case.
Also, our method does not have any restrictions on the size of the radius r, where
a perturbative method of a given order is usually only applicable at radii smaller
than a well-de�ned maximum.

However, even in cases where a perturbative method is the most logical choice, the
�eld description presented in this chapter can be used to obtain the coeÆcients
of the power series terms. This will be demonstrated in the next section.

7.4.3 Incorporating the �eld description into existing re-

sults

As mentioned in Section 7.1, many methods have been developed to obtain an-
alytical expressions for the transfer function of a given magneto-optical device.
They usually start from the Hamiltonian for the motion for a charged particle
in the magnetic �eld of the device; then both the magnetic vector potential and
the Hamiltonian are approximated by a truncated power series. The truncated
Hamiltonian is then used to derive approximated, but still Hamiltonian, equa-
tions of motion, for which solutions are obtained using successive substitution.
These solutions are mostly given in the form of power series approximations with
respect to the transverse coordinates x and y, and the coeÆcients of the var-
ious terms, the so-called aberration coeÆcients, are expressed in terms of the
generalized gradients of the vector potential.

These generalized gradients are in fact the on-axis radial derivatives of A, which
can hardly be obtained from direct measurements, but can, on the other hand,
easily be obtained by expanding the basic functions in the description of A into
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powers of r (see also Ref. [19]):

gkm(r; z) =
1X
l=0

gkml(z)r
k+2l;

gkml(z) =

8>>>><
>>>>:

(�1)n
2k+2ll!(k + l)!2�

Z 1

�1

!k+2l

Im(!)
cos(!z)d!; k �m = 2n;

(�1)n+1
2k+2ll!(k + l)!2�

Z 1

�1

!k+2l

Im(!)
sin(!z)d!; k �m = 2n+ 1:

The expansion of gkm into powers of r is then inserted into (7.10), in order to obtain
expansions of JkAm, and �nally of A, into powers of r. From (7.16), we �nd that
the z-dependent coeÆcients in this expansion, i.e. the generalized gradients, are
obtained in the same way as the coeÆcients JkAm. In other words, we can easily
derive accurate approximations for the desired generalized gradients, in term of
measurements far from the axis, up to any desired order. This provides a very
convenient way to incorporate the �eld descriptions outlined in this chapter into
existing analytical work.

7.5 Conclusions

In this chapter, we have developed a new way of describing the magnetic �elds
of beam guiding elements. The new description provides a way to describe these
�elds, and thus the action of beam guiding elements on charged particles, more
accurately than can be reached by means of a common power series expansion.
Eventually, this will result in a more accurate control over the quality of a bunch
of charged particles after acceleration.

The magnetic �eld inside a magneto-optical device, and its harmonic scalar and
vector potentials, have been explored in the area 0 � r < R; �1 < z <1. The
various multipole contributions to these quantities have been �tted using �eld
measurements at the boundary r = R and shifted basic functions. The same set
of measurements and shifts can be used to �t various �eld-related quantities. The
developed procedure is independent of the exact form of the boundary conditions
and can be used to �t the �eld of one device or a cluster of various consecutive
devices.

All the approximations of the �eld and its scalar and vector potentials satisfy
Maxwell's equations; the approximated potentials are harmonic, which allows
one to apply harmonic potential theory whenever necessary.

As the de�nitions of the basic functions corresponding to the quantities to be
�tted do not contain any physical parameters, these functions can be calculated
in advance to the desired accuracy, which greatly simpli�es the �tting procedure.



7.5. Conclusions 147

The procedure works for any order multipole contribution, but will be the most
useful for lower order contributions, since higher order contributions are more
diÆcult to obtain from measurements, while their e�ect on particle trajectories
will often be small.

Once the vector potential A for the �eld of a multipole device has been calcu-
lated, it can be inserted in the Hamiltonian equations of motion for a charged
particle passing through the device. The description of A in terms of z-shiftings
of basic functions can conveniently be combined with the numerical integration
of these equations. Furthermore, by expanding A into powers of r, descriptions
of the z-dependent generalized gradients in terms of z-shifts of basic functions are
obtained. These descriptions are much more accurate than descriptions in terms
of on-axis �eld derivative measurements, and are an excellent way of combining
the methods presented in this chapter with a lot of existing analytical work on
particle optics.

The methods developed in this chapter can also be used for the calculation of
the �elds and transfer functions of static electro-optical devices, since the electric
�eld of such a device can be written in the same form that was used for the �eld
of a magneto-optical device, and the calculation of the transfer function is similar
to the magneto-optical case.
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Appendix A

The code XOOPIC

For the simulations in Chapter 6, the 1-D version of the particle-in-cell (PIC) code
XOOPIC has been used. This code is a combination of the XGra�x graphical
package by V. Vahedi and J.P. Verboncooeur [1] and the PIC code OOPIC by J.P.
Verboncoeur, A.B. Langdon, and N.T. Gladd [2]. The code OOPIC is originally
a 2-D code, from which a 1-D version has been derived by J. Wurtele and H.-J.
Lee. The copyright resides with the Regents of the University of California. The
code can be freely used and modi�ed for scienti�c, non-commercial purposes,
provided Ref. [2] is cited in every resulting publication. In this appendix, a short
description of the algorithms in OOPIC will be given, as well as an overview
of the benchmarks we have performed on it. A recent version can be obtained
from either Tech-X Corporation (http://www.techxhome.com), which has taken
over most of the development of the code, or the Plasma Theory and Simulation
Group of UC Berkeley (http://ptsg.eecs.berkeley.edu).

A.1 Description of the code

A particle-in-cell code is a type of code for simulation of plasma motion, in which
the plasma is represented by a large number of so-called macroparticles. Each
macroparticle in turn represents a very large number of actual plasma particles
(electrons or ions). The electromagnetic �elds are known on the points of a
(usually rectangular) mesh only, whereas the particles are not con�ned to the
mesh points, but can move freely with respect to the mesh. A space enclosed
by neighbouring mesh points is called a cell. The charge and current densities,
needed to calculate the �elds, are obtained by distributing the charge q and
current qv of each particle over the mesh points that de�ne the cell in which the
particle resides, hence the name particle-in-cell.

XOOPIC is an object-oriented code, written in C++. The choice of this language
over Fortran has been motivated by the much greater exibility of C++. A major



152 Appendix A. The code XOOPIC

drawback of C++ compared to Fortran is that automatic optimization of Fortran
code produces better results, i.e. a Fortran program will often run faster than a
similar program written in C++, if no special measures are taken. To overcome
this problem, XOOPIC has been hand-optimized for the most part while it was
being written.

XOOPIC is a fully relativistic electromagnetic particle-in-cell code that solves
the time-dependent Maxwell equations using Yee's algorithm [3], a second-order
leap-frog algorithm. Particle motion is governed by the Lorentz force. It supports
a number of boundary conditions for incoming and outgoing waves, dielectric
surfaces that also absorb particles, and particle emitters. It also contains routines
for Monte Carlo collisions (MCC) and Monte Carlo tunneling ionization (MCTI)
in the presence of a neutral gas. A moving simulation window can be employed
e.g. to follow a laser pulse, which often saves a lot of time.

In this section, the inner workings of XOOPIC will be described, with the ex-
ception of the MCC and MCTI routines, since they have not been used in the
simulations presented in this thesis.

A.1.1 General outline

The code consists of two stages: the initialization stage and the simulation stage.
In the initialization stage, an input �le containing the details of the simulation
setup is read and parsed. Then the simulation is initialized in the following steps:

1. Build a list of all species of particles (electrons, ions) speci�ed in the input
�le,

2. Create a rectangular mesh for the simulation box. The x-coordinate is the
longitudinal coordinate,

3. Create the objects that will impose the boundary conditions (BCs) during
the simulation,

4. Initialize the �elds to zero,

5. Initialize the MCC and MCTI routines, if necessary,

6. Load the particles into the cells,

7. Initialize the charge and current densities, including contributions from
dielectric boundaries,

8. If applicable, add initial values for the �elds to the current �elds.
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After the initialization has been completed, the simulation loop is started. This
loop is repeated as often as necessary, and consists of the following steps:

1. Advance the �elds one timestep dt and apply the appropriate �eld BCs,

2. Advance the particles one timestep and apply the appropriate particle BCs,

3. Project charge and current densities on the mesh,

4. Emit and/or absorb particles at the boundaries,

5. Invoke MCC and MCTI routines, if necessary,

6. In case of a moving window simulation, shift the contents of the simulation
box (�elds and particles) one cell to the left, initialize the �elds at the
rightmost mesh node, and load a fresh batch of particles into the rightmost
cell.

In the following subsections, the advance of �elds and particles, and the applica-
tion of boundary conditions, will be described in greater detail.

A.1.2 Fields

XOOPIC calculates the electromagnetic �elds from the charge and current den-
sities from the time-dependent Maxwell equations:

d

dt

Z
D � dS =

I
H � dl�

Z
J � dS; (A.1)

d

dt

Z
B � dS = �

I
E � dl; (A.2)

where the line integrals are along cell sides, and the surface integrals are across
cell faces. Here, E = C�1 �D and H = L�1 �B, where C�1 and L�1 are diagonal
matrices with the dimensionality of capacitance and inductance, respectively.
Projection of charges and currents on the grid are done in such a way that the
continuity equation is always satis�ed:

@�

@t
+r � J = 0: (A.3)

The following two equations are then satis�ed by default:

@

@t
(r �B) = 0;

@

@t
(r �D� �) = 0:

So if the conditions r � B = 0 and r � E = � are satis�ed from the start, they
will be satis�ed during the whole course of the simulation automatically. For
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the simulations performed for this thesis, the conditions on E and B have been
satis�ed by setting B = E = 0 and � = 0 at the start of the simulation.

The mesh on which the �elds and charge and current densities are known is
a Yee mesh [3], meaning that the transverse electric �eld and current density,
the longitudinal magnetic �eld, and the charge density are known on integer grid
points, while the longitudinal electric �eld and current density and the transverse
magnetic �eld are known on half-integer grid points.

The �elds are advanced in time as follows:

1. Advance B over dt=2, using (A.2) and an Euler forwards algorithm,

2. Advance E over dt, using (A.1) and an Euler forwards algorithm,

3. Advance B for another time step dt=2.

The resulting leap-frog scheme ensures that the calculation of the �elds is second
order in dt. The advance of B takes two stages to ensure that both E and B are
known at the same time, and not at alternating times.

A.1.3 Particles

Particle motion is calculated using the equations

dx

dt
= v; (A.4)

du

dt
=

q

m
(E + v�B); (A.5)

where u = v=
p
1� v2. In the numerical implementation, the position x is known

at time t at which the �elds are also known, while the \momentum" u is known
at time t � dt=2. This way, integration of (A.4)-(A.5) is done through a second
order leap-frog algorithm.

The integration of (A.5) works as follows:

1. First, the particle is accelerated over dt=2 by the electric �eld only, ut =
ut�1=2 + qdt=(2m) �E(xt),

2. Then the particle's velocity is rotated by the magnetic �eld through Boris'
algorithm [4]:

w =
qdt

2m
p
1 + (ut=c)2

B(xt); s =
2w

1 + w2
; u0t = ut+(ut+ut�w)�s;
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3. Finally, the particle is again accelerated over dt=2 by the electric �eld only:
ut+1=2 = u0t + qdt=(2m) �E(xt).

This integration scheme is based on the notion that the force exerted by the
magnetic �eld does not change the magnitude of u while at the same time, it
does depend on that magnitude. Therefore, the rotation of u by B needs to
happen halfway the acceleration by E to ensure that integration is of second
order in dt.

Since the �elds are only known on (integer or half-integer) mesh points while the
position xt can be anything, the �elds need to be interpolated to obtain E(xt) etc.
In XOOPIC, a linear interpolation of the �elds between the mesh points nearest
to xt has been employed. This interpolation is also called bilinear weighting.

Integration of (A.4) is then quite straightforward:

xt+1 = xt +
dt

1 + (ut+1=2=c)2
ut+1=2:

Following the update of particle positions and momenta, the charge and current
of each particle need to be projected onto the mesh in order to obtain the charge
and current density. The projection of the charge density uses bilinear weighting,
as does the current projection in a direction perpendicular to u. In the direction
of u, the current by that particle is allotted entirely to the nearest grid point.
The reason for this is, that the projection of charge and current density needs to
satisfy the continuity equation (A.3), and a completely bilinear projection would
fail to do so.

When a particle moves across a cell edge, its motion is split up, to ensure that each
cell receives an appropriate fraction of the charge and current of that particle.

A.1.4 Boundary conditions

The boundary conditions (BCs) in XOOPIC can roughly be divided into two
groups: dielectric BCs and port BCs. A dielectric BC corresponds to a wall
of dielectric or conducting material, while a port BC corresponds to an open
end. A dielectric BC can also be used to emit particles into the simulation box,
while a port BC can be used to introduce EM waves, e.g. a laser pulse, into the
simulation.

A particle that collides into a boundary is always removed from the simulation.
In case of a port BC, which represents an open end, the particle is merely deleted.
In case of a dielectric BC, the particle's charge will be collected on the dielectric's
surface, and the particle may even be reected back into the simulation box.

An EM wave hitting a dielectric BC is reected back into the box. A port BC
on the other hand absorbs any incident EM waves. This is done by separating
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the EM waves one cell away from the boundary into ingoing and outgoing parts.
The outgoing part is then stored for two time steps, and subsequently used to
remove the reected outgoing (now ingoing) �elds from the EM �elds directly at
the boundary.

XOOPIC contains a number of port BCs designed to launch EM waves. The BC
that is used to introduce laser pulses into the simulation is one of them. They
work by imposing a time-dependent value for the electric �eld only at the location
of the boundary. It is then left to the routine that solves the EM �eld equations to
pull the wave farther into the simulation box. The polarization is always linear,
on the simple grounds that circular polarization has not been implemented to
date.

A.2 Benchmarks

Several benchmarks have been performed on XOOPIC to determine the reliability
of its results. The focus has been on the behaviour of Raman instabilities. The
following areas of interest are discerned: (i) dispersion relations, (ii) RFS seeding
and beat-wave excitation, and (iii) growth rates.

For all simulations, the plasma density is either homogeneous or has the at-top
pro�le as described in Chapter 6. The peak density is 3:8 � 1019 cm�3 and the
number of particles per cell is 32 at peak density. We found that for a lower
number of particles per cell the (anti-)Stokes peaks in both the frequency and
the wavenumber spectrum tend to be too close to the main laser peak. This is
possibly caused by the rather crude way in which XOOPIC projects the particles
on the grid to obtain charge and current densities. On the other hand, using
more particles per cell together with a homogeneous plasma density reduces the
noise to an extent that the RBS instability does not have enough to grow on.
This does not a�ect inhomogeneous density pro�les though.

The laser pulse has a central wavelength of 800 nm and a Gaussian pro�le with
a FWHM of 50-100 fs. It has a (scaled) peak amplitude a0 of 0.1-0.5, and is
linearly polarized.

A.2.1 Dispersion relations

An EM wave in a homogeneous plasma satis�es the dispersion relation !2 =
!2
p + c2k2 where ! and k are the frequency and wave number of the EM wave

and !p denotes the plasma frequency. This relation holds for the main laser wave
(!0; k0) as well as for the (anti-)Stokes satellite waves (!�; k�) where !� = !0�!p
and k� = k0 � !p=c.
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From the given values for the laser wavelength and the plasma density it can
be inferred that the laser frequency and wavelength satisfy ck0 � 0:99!0. To
verify this, a simulation has been performed in which the laser pulse (50 fs,
a0 = 0:5) traverses a plasma of constant density. During the simulation, the
transverse electric �eld has been recorded versus time at a �xed position, and
versus position at a �xed time. From these, a frequency and a wavenumber
spectrum have been determined, and the predicted relation between k0 and !0
has indeed been recovered.

Similarly, the backward-going RBS EM wave (!�; k�) needs to satisfy ck� �
0:985!� and j!� � !0j � 0:9!p, where the factor 0.9 stems from relativistic
detuning of the plasma frequency due to the transverse quiver motion of the
plasma electrons. From the spectra, we found that ck� � !� and that j!��!0j �
(0:8� 0:1)!p. More accurate results could not be obtained due to the amount of
noise in the RBS �elds and spectra.

The Langmuir wave associated with RBS should theoretically have frequency
0:9!p and wavenumber kL � 2k0 � 0:9!p=c. From the phase space plots of
the plasma electrons, we found that �L � 20 � 2 fs and �L � (430 � 5) nm.
Together with !p = 3:48 � 1014 s�1 and �0 = 808 nm (in plasma), we �nd that
!L � (0:9�0:1)!p and jkL�2k0j � (0:9�0:1)!p=c. These values are in agreement
with theoretical predictions, but it should be noted that the accuracy is low due
to lack of a regular structure in the Langmuir wave (much noise, wave breaking
at every wave tip, etc.).

In general, it looks like the frequencies and wave numbers of the EM and Lang-
muir waves we encounter in a simulation in the weakly nonlinear regime satisfy
the dispersion relations for Raman backscattering. However, the value for the
actual plasma frequency we found in the simulations tends to be below the theo-
retically predicted value of 0:9!p, an e�ect that decreases with increasing number
of particles per cell. This supports the conjecture that the code could do with
better routines for the projection of the charge and current densities on the grid
and the Lorentz force on the particles.

A.2.2 RFS seeding and beat-wave excitation

Beat wave excitation, i.e. using a dual-frequency laser pulse with frequency dif-
ference !p and equal amplitudes for both frequencies, has been shown to increase
the wake�eld amplitude through enhancement of RFS already by Joshi et al. [5].
RFS seeding, i.e. adding a small amount of Stokes wave to the main laser pulse,
has been shown to boost RFS by Fisher and Tajima [6]. Suppression of RBS
by RFS through mode coupling has been proposed by Everett et al. [7], who
demonstrated this through PIC-simulations and a beat-wave experiment.

All these results have been obtained in the linear regime and their reproduction
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is viewed to be a good benchmark for the code.

To reproduce the results on seeding, we performed simulations using a 100 fs laser
pulse having a0 = 0:2 and �0 = 800 nm to which a 2% or 5% seed (frequency
downshifted by !p) has been added. Note that Fisher and Tajima used a 3%
seed. For the plasma, a non-constant at-top pro�le has been used, to ensure
that there would be suÆcient RFS growth. In line with the results of Fisher and
Tajima, we found that seeding led to an increased RFS growth, a larger and more
regular wake�eld, and pulse envelope modulation on the scale of �p, as compared
to the unseeded case. At later simulation times, we also found that (anti-)Stokes
peaks emerge that are shifted by non-integer multiples of !p with respect to the
main laser frequency. Their presence leads to depletion of the laser pulse and
eventual degradation of the wake�eld, an e�ect also shown in Ref. [6]. We also
found that all the e�ects of seeding increased with increasing seed amplitude.

Side note: Our simulations also showed that seeding leads to a decrease in RBS,
already in the linear regime considered here. This can probably be explained by
the mode coupling mechanism of Everett et al. [7].

To reproduce the results of the beat-wave experiment of Everett et al, a simulation
has been performed using two laser pulses both having a0 = 0:1, one at 800 nm
and one downshifted by !p. The plasma slab was identical to that of the seeded
simulations. The e�ects observed were similar to the e�ects of seeding, only
stronger: a very quick growth of RFS and of the wake�eld, rapid suppression
of any RBS, severe pulse envelope modulation, and soon after that the onset of
non-integer (anti-)Stokes peaks, resulting in the complete degradation of both
pulse and wake�eld. These phenomena are similar to what has been observed
experimentally by Everett et al.

Side note: A very small fraction of the plasma electrons has been found to get
trapped in and accelerated to about 7.5 MeV by the wake�eld, an e�ect not seen
in normal or seeded simulations at this low laser intensity.

A.2.3 Growth rates

A proper investigation of the growth rates of SRS in XOOPIC simulations turned
out to be beyond the scope of this thesis. To date, the only result obtained so
far is the agreement between analytical and numerical values for the seed ampli-
tude necessary to suppress RBS in an RFS-seeded simulation (cf. Section 6.2).
However, there are strong indications that a quantitative reproduction of theo-
retical growth rates will be quite diÆcult, since these are usually derived under
circumstances (long pump pulses, long plasmas) that are hard to reproduce in
simulations because of sheer simulation time. What can and should be veri�ed
in the future is how the RFS and RBS growth rates scale with quantities such as
the laser intensity and the plasma density. This should be done for single pulse



A.2. Benchmarks 159

cases �rst, and subsequently extended to seeded pulse and beat-wave cases. The
amount of RFS necessary to suppress RBS should also be determined for these
cases.

We also feel that recovering how the growth rates scale with laser and plasma
parameters rather than trying to obtain a quantitative agreement between theory
and simulations, is in character with the results presented in Chapter 6, which
do not provide any \hard numbers" but are mostly about qualitative behaviour
anyway.
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Samenvatting

Het onderwerp van dit proefschrift is het versnellen van elektronen in een plas-
magolf, en dan vooral de productie van snelle elektronen door een laserpuls van
hoge intensiteit op een plasma af te vuren. Voor een beter begrip van dit onder-
werp is een inleiding tot plasma's en plasmaversnelling op zijn plaats.

Hoog-energetische geladen deeltjes hebben zeer veel toepassingen. Ze worden
bijvoorbeeld gebruikt in R�ontgenbuizen, lineaire versnellers voor radiotherapie,
voor de productie van radio-isotopen voor medische diagnostiek, enzovoorts. In
fundamenteel onderzoek naar de structuur van alle materie om ons heen laat men
sterk versnelde deeltjes op elkaar botsen, om uit de brokstukken gegevens over
die structuur af te leiden.

Conventionele deeltjesversnellers werken met elektromagnetische velden in va-
cu�um. Een probleem hierbij is dat er in vacu�um vrij snel doorslag optreedt als de
velden te sterk worden. Om dan toch tot zeer hoge energie�en te komen moeten
de deeltjes over afstanden tot tientallen kilometers versneld worden. Dat het
bouwen van een kilometerslange structuur om deeltjes te versnellen kapitalen kost
behoeft geen betoog. Als gevolg hiervan zijn er slechts enkele deeltjesversnellers
in de wereld die werkelijk aan het front van de versnelfysica kunnen opereren. In
de nabije toekomst zullen er niet meer van dergelijke versnellers bij komen, laat
staan versnellers met een nog groter energiebereik. Hierdoor treedt er ernstige
stagnatie op in het onderzoek in de ultrahoge-energiefysica.

Om dit probleem te omzeilen hebben onderzoekers gezocht naar een medium
dat sterkere elektromagnetische velden kan tolereren dan vacu�um. Versnelling in
zo'n medium kan dan over veel kortere afstanden plaatsvinden. Al snel kwam
men terecht bij een plasma, niet te verwarren met bloedplasma, als medium.
Een plasma is een gas dat wordt verhit tot enkele tienduizenden graden Celsius.
Bij zulke temperaturen gaan de buitenste elektronen van de gasatomen loslaten.
Er ontstaat dan een mengsel van losse elektronen (negatief geladen) en atomen
die een elektron missen (ionen, positief geladen): het plasma. De negatieve en
positieve ladingen in het plasma trekken elkaar zeer sterk aan, wat het plasma
bij elkaar houdt en zorgt dat het lokaal ongeladen blijft. Het is gebleken dat de
velden die in een plasma kunnen worden opgewekt duizend tot tienduizend keer
zo sterk kunnen zijn als in vacu�um voordat er doorslag optreedt, waardoor het
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een veelbelovend medium voor de nieuwe generatie deeltjesversnellers is.

Om dergelijke sterke velden op te wekken in het plasma moeten lokaal de positieve
en negatieve ladingen van elkaar gescheiden worden. Dit is niet eenvoudig omdat
deze ladingen elkaar zo sterk aantrekken. Het is echter mogelijk gebleken om
de ladingen uit elkaar te drijven met behulp van een bijzonder sterke en korte
laserpuls. Als een dergelijke puls zich door een plasma beweegt, worden de relatief
lichte elektronen door de laserpuls opzij geduwd, terwijl de veel zwaardere ionen
nauwelijks reageren. Hierdoor ontstaat er vlak achter de puls een gebiedje met
een netto positieve lading. Na passage van de laserpuls proberen de elektronen zo
snel mogelijk dit \gat" weer op te vullen, en klotsen nog een paar keer na alvorens
tot rust te komen. Hierdoor ontstaat er achter de puls een hekgolf als van een
speedboot, waarin geladen deeltjes kunnen worden versneld. De frequentie van
deze golf is de eigenfrequentie van het plasma, de zogenaamde plasmafrequentie.

Het versnellen van een kluitje geladen deeltjes, meestal elektronen, in de hekgolf
van een laserpuls gaat een beetje als surfen op de golven bij Hawaii. Nadat de
hekgolf is opgewekt wordt het kluitje elektronen in de golf ingeschoten. Als de
snelheid van de elektronen te laag is zal de golf langs het kluitje spoelen zonder
het mee te nemen, en als de snelheid te hoog is zal de golf niet veel kracht op
de elektronen uit kunnen oefenen. Als het kluitje precies de goede snelheid heeft
wordt het door de golf meegesleurd en kan het tot zeer hoge energie�en worden
versneld. Ook het moment van inschieten is van belang: als de elektronen op
het verkeerde moment worden ingeschoten zal de golf ze afremmen in plaats van
versnellen. Verder moet het kluitje elektronen bij voorkeur korter zijn dan de
golengte van de hekgolf, omdat het anders in stukken breekt, wat meestal niet
de bedoeling is.

In dit proefschrift zijn een aantal aspecten van de hier beschreven laser-plasma-
versnelling onderzocht. Het onderzoek is theoretisch van aard: voor de dynamica
van zowel de plasma-elektronen als de te versnellen elektronen zijn vergelijkingen
opgesteld die deels analytisch, deels numeriek zijn opgelost. Het zwaartepunt ligt
bij de injectie van te versnellen elektronen in de hekgolf van de laserpuls, maar er
zijn ook aspecten van het gedrag van het kluitje tijdens de versnelling bekeken.
Ook is onderzocht hoe het kluitje na versnelling zonder al teveel kwaliteitsverlies
bij zijn bestemming kan worden afgeleverd.

Het proefschrift is als volgt opgebouwd. Na een meer uitgebreide inleiding in
hoofdstuk 1 en de behandeling van de basistheorie in hoofdstuk 2 is in hoofdstuk
3 onderzocht in hoeverre de energiespreiding van de elektronen in het kluitje onder
controle kan worden gehouden tijdens het versnelproces. Omdat het kluitje in
het algemeen toch nog vrij groot zal zijn ten opzichte van de golengte van de
hekgolf, en omdat de elektronen elkaar be��nvloeden tijdens het versnelproces,
kan de energiewinst per elektron nogal vari�eren. Door middel van simulaties is
bekeken hoe de energiespreiding na versnelling afhangt van parameters als het
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moment van inschieten, de lengte van het kluitje elektronen en de hoeveelheid
lading in het kluitje. Hierbij is geprobeerd de energiewinst van de elektronen zo
groot mogelijk te krijgen onder de voorwaarde dat de energiespreiding minimaal
bleef. Het blijkt dat de parameters van de kluit zo te kiezen zijn dat een hoge
energiewinst (1 GeV) te behalen is bij een lage energiespreiding (1%). Helaas
bleek ook dat de energiespreiding erg gevoelig is voor afwijkingen in met name
het moment van inschieten, de zogenaamde inschietfase.

In het algemeen wordt de kluit te versnellen elektronen buiten het plasma gemaakt
en daarna pas in het plasma ingebracht. Bij deze methode is het amper mogelijk
de inschietfase met voldoende nauwkeurigheid in te stellen. Daarom is er gekeken
naar een alternatieve methode van injectie. Het is namelijk ook mogelijk de te
versnellen elektronen uit het plasma zelf te halen d.m.v. breking van de hek-
golf. Dit proces, interne injectie genaamd, lijkt wel wat op de breking van golven
aan het strand. Het voordeel hierbij is dat op deze wijze ingevangen elektronen
vanzelf de juiste fase t.o.v. de plasmagolf hebben. Deze methode is bestudeerd in
twee afzonderlijke regimes. In het ene regime is de laserpuls korter dan een enkele
golengte van de hekgolf, in het andere is de laserpuls enkele \hekgolengten"
lang.

In hoofdstuk 4 zijn golfbreking en interne injectie bestudeerd voor een laserpuls
korter dan een hekgolengte. Eerst is er een overzicht gegeven van bestaande
theorie�en over golfbreking in een plasma. Het blijkt dat eenieder zo zijn eigen
de�nitie van golfbreking hanteert, wat niet tot een beter begrip van de materie
leidt. Vervolgens is er een model ontwikkeld voor golfbreking in een koud plasma,
waaruit kan worden voorspeld onder welke omstandigheden de hekgolf breekt en
hoeveel plasma-elektronen hierbij in de hekgolf worden ge��njecteerd. Het blijkt
dat het golfbrekingsproces zich achter de laserpuls afspeelt. Hierdoor hebben
vorm en intensiteit van de puls wel invloed op de amplitude van de hekgolf en
daardoor indirect ook op de hoeveelheid ingevangen elektronen, maar niet op het
golfbrekingsproces zelf. De kluit aldus ingevangen elektronen heeft dan globaal
steeds dezelfde eigenschappen: een zeer goede inschietfase voor versnelling, erg
kort ten opzichte van de hekgolengte, maar ook een grote energiespreiding, tot
80% van zijn gemiddelde energie.

In hoofdstuk 6 zijn golfbreking en interne injectie bestudeerd voor laserpulsen
die enkele hekgolengten lang zijn. In dit regime blijkt de wisselwerking tussen
puls en plasma geheel te worden gedomineerd door de zogenoemde Ramanver-
strooiing, beschreven in hoofdstuk 5. Ramanverstrooiing is een gevolg van het
feit dat de frequentie van het gebruikte laserlicht meestal nogal verschilt van de
plasmafrequentie. Hierdoor ontstaan er zwevingen tussen deze beide frequenties.
Het gevolg is dat invallend laserlicht verstrooid wordt aan het plasma, waarbij
het verstrooide licht een andere frequentie heeft dan het invallende. Deze zwe-
vingen komen alleen goed tot uiting als de laserpuls langer is dan �e�en golengte
van de hekgolf. Hierdoor treden ze in het regime beschreven in hoofdstuk 4 niet
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op. Afhankelijk van de richting van het verstrooide licht ten opzichte van het
invallende licht spreken we van terugwaartse, zijwaartse en voorwaartse Raman-
verstrooiing.

In het door Ramanverstrooiing gedomineerde regime is de invloed van diverse
laser- en plasmaparameters zoals vorm en amplitude van de laserpuls, dicht-
heidspro�el van het plasma en \chirp" (frequentieverloop binnen de laserpuls)
op het golfbrekingsproces en de elektronenopbrengst numeriek onderzocht, deels
in samenwerking met het Lawrence Berkeley Laboratory in Berkeley, Californi�e.
Het blijkt dat de rol die deze parameters spelen grotendeels kan worden ver-
klaard uit hun invloed op beide typen verstrooiing. Dit hangt samen met het
feit dat zowel de Ramanverstrooiing als de golfbreking en elektronenvangst zich
afspelen binnen de laserpuls zelf, waardoor deze processen elkaar sterk kunnen
be��nvloeden. Bij onderzoek naar de rol van terugwaartse Ramanverstrooiing is
een nieuw parameter-regime gevonden waarin dit type verstrooiing de productie
van hoog-energetisch elektronen vermindert. Dit in tegenstelling tot de gang-
bare opvatting dat terugwaartse Ramanverstrooiing juist leidt tot meer hoog-
energetische elektronen. Verder is gevonden dat voorwaartse Ramanverstrooiing
kan worden ingezet om terugwaartse Raman verstrooiing te onderdrukken en zo
de elektronenopbrengst te vergroten.

Nadat het kluitje elektronen de versneller heeft verlaten moet het op de plaats van
bestemming worden afgeleverd door middel van een zogenoemd bundelgeleidings-
systeem. Hoewel dit stadium in principe losstaat van het versnelstadium verdient
het toch de nodige aandacht. Tijdens het versnellen probeert men namelijk het
kluitje niet alleen een hoge energie maar ook een goede kwaliteit (d.w.z. beperkte
spreiding in alle richtingen) mee te geven. Een slordig geconstrueerd bundelge-
leidingssysteem kan deze kwaliteit sterk verminderen en dus alle inspanningen
teniet doen.

Op grond van deze overwegingen is besloten het laatste hoofdstuk van dit proef-
schrift te wijden aan een studie van de magnetische lenzen die worden gebruikt in
een bundelgeleidingssysteem. Hierbij is vooral aandacht besteed aan een goede
beschrijving van de magnetische velden van zulke lenzen. De gangbare aanpak,
waarbij deze velden worden ontwikkeld in een machtreeks, heeft als nadeel dat
het aantal termen in de veldbeschrijving explosief toeneemt en de resulterende
uitdrukkingen nauwelijks meer hanteerbaar zijn. Daarom is gezocht naar een
alternatieve beschrijving die geen gebruik maakt van machtreeksen. Dit heeft
geleid tot een algemene analytische beschrijving voor het veld van een magneti-
sche lens. Deze beschrijving stelt ons in staat om een scala aan veldgrootheden
uit te drukken in uit metingen afkomstige randwaarden van het magnetisch veld,
zonder eerst het magnetisch veld uit te hoeven rekenen. Ook het e�ect van een
multipool op elektronenbanen kan op deze manier worden berekend. Dit alles is
mogelijk zonder gebruik te maken van machtreeksen, waardoor de uitdrukkingen
hanteerbaar blijven.
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