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We define nonconforming finite elements of arbitrary order kEN over
triangles, generalizing the well-known Crouzeix-Raviart element when k = 1.
To date, finite elements of this sort have only been discussed when k =2 and
k = 3 in the literature. The elements of this paper satisfy the patch test and,
with the right formulation, they provide discretizations with consistency error
of the same magnitude as the interpolation error.

1. INTRODUCTION

This paper is devoted to the construction of nonconforming triangu­
lar finite elements of arbitrary order kEN, generalizing the well-known
Crouzeix-Raviart [3] element when k = 1, with nodes at the middle of the
edges. Curiously, even though a cubic element (enriched by three quartics)
was already described in [3], the construction of other higher order non­
conforming triangular elements has remained very limited. We can only
refer to Fortin and Soulie [7] (quadratic + quartic) (see also Fortin [5] for
tetrahedra) Farhloul and Fortin [6] (elaborating on [7]) and Knobloch and
Tobiska [10] (linear + cubic). Apparently, in spite of some other construc­
tions over rectangles or parallelepipeds, no successful attempt has been
made to construct general families.

Originally, nonconforming triangular elements were found to be particu­
larly attractive in the numerical treatment of the Stokes and Navier-Stokes
systems, but they have since been used in various other problems; see for
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instance Hua and Thomasset [8] (shallow water equations), Arnold and
Falk [1] (plate problems), John, Maubach and Tobiska [9] and Matthies
and Tobiska [13] (convection-diffusion problems), among others. Further­
more, because of the limited interaction of their basis functions, the linear
Crouzeix-Raviart elements have major advantages over their conforming
counterparts in devising massively parallel algorithms ([11], [12]). The
higher order elements of this paper preserve all the properties relevant to
parallelism.

Recall that with nonconforming elements, the error between the contin­
uous and numerical solutions of a variational problem depends upon more
than just the local interpolation error and the "nondegeneracy" of the mesh,
as it does in the conforming case. In practice, the discontinuities across
the inter-element boundaries require calculating the numerical solution by
using a discretized variational formulation, different from the formulation
of the continuous problem. This introduces a "consistency" error between
the two formulations, which must be accounted for in the final error esti­
mate (see Ciarlet [2]). In turn, the consistency error often depends upon
the validity of a so-called "patch-test" demanding, for elements of order k,
that the jumps across the edges are L2-orthogonal to the polynomials of
degree up to k - 1 along those edges.

While empirical, this patch-test criterion highlights a problem-independent
feature that a nonconforming element of order k should possess to be of
any broad value. Of course, in a given problem, it should not be taken for
granted that the patch test suffices to guarantee the desired consistency
error, which also depends upon the choice of the discretized variational
formulation and thus must be checked on a case by case basis. In other
words, the patch test is a virtually necessary but not always sufficient con­
dition for the existence of discretized variational formulations producing
consistency errors comparable with the interpolation error.

Let Pk denote the space ofreal-valued polynomials on R 2
• Recall that a

set S C R 2 is said to be Pk-unisolvent if there is one and only one p E Pk
assuming arbitrarily prescribed values at all points of 8. It is well known
and trivial that if 8 is Pk-unisolvent, then #8 = dim Pk = (k+2~(k+ll. It is
equally trivial that the converse is not true and hence that Pk-unisolvence
embodies a geometric property of the set 8. Incidentally, this geometric
property is by no means self-evident if k > 1 : A simple glance at a set
8 of (k+

2
lJk+l l points in R 2 will generally not reveal whether or not 8 is

Pk-unisolvent.
We now briefly explain our construction of higher-order nonconforming

elements. We assume that the given triangular mesh possesses the usual
regularity properties involved in finite element discussions. Also, we confine
attention to the case when the basis functions of the finite element space
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are characterized by nodes in the simplest possible way: Each node defines
a unique basis function whose value is 1 at that node and 0 at the others.

The first remark is that, for a piecewise Pk nonconforming finite element
space on the triangular mesh, the patch test holds if the nodes lying on
the boundary of the elements are exactly the Gauss points of order k on
each edge. Indeed, the jump across an edge e of a function in the finite
element space is a polynomial of degree at most k on e vanishing at the
Gauss points of e and hence L2-orthogonal to all the polynomials of degree
less than k on e. (For the definition and the classical properties of the
Gauss points used in this paper, we refer to Engels [4]' Stroud and Secrest
[14] or Szeg6 [15] .)

The above shows how to specify 3k nodes on the boundary of each el­
ement T of the triangulation by choosing the Gauss points of order k on
each edge. Now, since dimPk - 3k = (k-l)lk-2) ~ 0, the question arises

whether these 3k nodes can be complemented by a set :E(T) of (k-l~k-2)
o

nodes in T in such a way that the full set S(T) of nodes is Pk-unisolvent.
As is well known, Pk -unisolvence is crucial to obtain optimal interpolation
error ([2]). Incidentally, it will be of importance that (k-l)lk-2) is exactly
the dimension dimPk - 3 , where P- 2 = P- I := {O} for consistency.

The answer to the above question is obviously yes if k = 1 and (a little
less obviously) no if k = 2. More generally, when the answer is positive for
all the triangles T of the triangulation, then the basis functions associated
with the set of nodes UTS(T) generate a nonconforming finite element
space of order k that passes the patch test.

The key property used in our construction and expressed by a more
general criterion than just needed above (Theorem 2.1) is that the answer
is always positive if k is odd and always negative if k is even (Corollary 2.1).
Furthermore, when k is odd, a suitable set of nodes :E(T) can be obtained
by affine equivalence, that is, by affine transformation of the problem to a
single reference triangle.

When k is even, the fact that the answer is negative does not mean that
nonconforming elements of order k do not exist in this case, but the con­
struction becomes more subtle. In Section 3, we show how a nonconforming
space of even order k can be constructed after enriching the space Pk with
three suitable polynomials of PHI'

As an example, we use these new elements in Section 4 to discretize a
general second order elliptic problem with Dirichlet boundary condition.
The salient point (Theorem 4.1) is that the procedure yields a consistency
error of the same magnitude as the interpolation error. This has been
corroborated by several numerical tests in special cases, although the detail
of these numerical experiments is not reproduced here.
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2. A CONSTRUCTION OF UNISOLVENT SETS

Motivated by the discussion in the Introduction, we consider a (nonde­
generate) triangle T C R 2 with vertices ai and for each 1 ::; i ::; 3 a set
{~il, ... ,~id of k ~ 1 distinct points on the edge ei of T opposite ai. In

what follows, the points ~ij are assumed to lie on the relative interior ~i of
ei, that is, ~ij i ae for 1 ::; i, f ::; 3 and 1 ::; j ::; k.

In Theorem 2.1 below, we give a very simple necessary and sufficient
condition for the set ek (aT) := {~ij : 1 ::; i ::; 3, 1 ::; j ::; k} to be
contained in a Pk-unisolvent subset of R 2 .

THEOREM 2.1. For 1 ::; i ::; 3, let 7fi be a nonzero polynomial of degree
k on ei vanishing at the points ~ij, 1 ::; j ::; k, so that 7fi is unique to within
a nonzero constant multiple.
(i) The set ek(aT) := {~ij : 1 ::; i ::; 3, 1 ::; j ::; k} is contained in a
Pk-unisolvent subset of R 2 if and only if 1

(1)

o 0

(ii) More precisely, if (1) holds and ~k-3(T) CT is any Pk_3-unisolvent
subset 2, then ~k-3(aT) U ek(aT) is Pk -unisolvent.

Proof. Clearly, the hypothesis and the conclusion of the theorem are
unaffected by affine change of coordinates. Thus, we henceforth assume
that T is the "reference" triangle with vertices

al = (0,1), a2 = (1,0), a3 = (0,0).

If so, the points ~ij have the form

(2)

(3)

with Xj, Yj, Zj E (0,1) and 1 ::; j ::; k. Also, the polynomials 7fl, 7f2 and 7f3

become polynomials PI, P2 and P3, respectively, of degree k in one variable
and given by

and hence satisfying

(5)

1This condition is obviously unchanged if 11"i is replaced by a nonzero constant multiple.
2With once again P-2 = P-l := {O}.
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With this, condition (1) becomes

5

(6)

For future use, observe that since PI, P2 and P3 are nonzero polynomials of
degree k vanishing at k points of (0, 1), we have

(7)

The main part of the proof consists in finding a suitable expression for
a polynomial f E Pk vanishing at all the points ~ij in (3 ). Specifically, we
claim that if (6) holds and f E Pk satisfies f(~ij) = 0 for 1 :::; i :::; 3 and
1 :::; j :::; k, (i.e. f vanishes on 8k(8T)), then

f(x,y) = xy(x + y -l)r(x,y), (8)

for some polynomial r E Pk-3 (hence r = 0 if k = 1 or 2 since P-2 =
P- I = {O}).

To see this, we begin with the remark that since f has degree at most
k and f(xj, 0) = 0, 1 :::; j :::; k, there is a constant al E R such that
f(x,O) = alPI (x) for all x E R. Hence,

f(x,y) = aIPI(x) +yg(x,y), (9)

for some 9 E Pk-l.
Next, by using f(O, yj) = 0,1 :::; j :::; k, and by the same argument as

above, there is a constant a2 E R such that f(O, y) = a2P2(y) for all y E R.
Thus, by letting x = 0 in (9), we obtain

and, in particular,

yg(O,y) = a2P2(y) - aIPI(O) (10)

(11)

Since g(x, y) = g(O, y) + xh(x, y) with h E Pk - 2, it follows from (9) and
(10) that

f(x, y) = alPI (x) + a2P2(y) - alPI (0) + xyh(x, y). (12)

By writing h(x, y) = h(x, 1- x) + (x + y -l)r(x, y) for some r E Pk - 3, this
becomes

f(x, y) = aIPI(x) + a2P2(Y) - aIPI(O) + xyh(x, 1 - x)+
xy(x + y -l)r(x,y).

(13)
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Now, we use f(zj, 1- Zj) = 0 for 1 ::; j ::; k to get f(x, 1- x) = a3P3(x)
for some constant a3 E R and all x E R. Then, by (12),

whence

(15)

and, for x E R,x =F 1,

By substitution into (13), we obtain, for x =F 1,

f(x,y) = aIPI(x) + azP2(Y) - aIPI(O)+
6 (a3P3(X) - aIPI(X) - azpz(l- x) + aIPI(O)) + (17)

xy(x + y - l)r(x, y).

By (11) and (15) and owing to (7), we find az = al :~f~l and a3 = az ::gl =
Pl(O)P2(1) Th 'f .../. 1 . r 11 fr (17) hal P2(O)P3(O)' us, I x -r- ,It 10 ows om t at

f(x,y) = al (PI (x) + :~f~lpz(Y) - PI (0)) +
(~~~) [:~~~l::glp3(X) - PI (x) - :~f~lpz(l- x) + PI (0)] + (18)

xy(x + y - l)r(x, y).

Since f is a polynomial, the above equality can hold only if al = 0 or
if the bracketed term in the right-hand side vanishes at x = 1. But the
latter happens if and only if PI(0)Pz(I)P3(1) - Pl(I)Pz(0)p3(0) = 0, in
contradiction with (6). Thus, al = 0 if (6) holds and, if so, (18) reduces
to the desired form (8).

With (8) now established (when (6) holds) for every f E Pk vanishing on
o 0

0k(8T), let l":k-3(T) CT be any Pk_3-unisolvent set. If f E Pk vanishes on
o 0

l":k-3(T)U0k(8T), then (8) holds and r E Pk- 3 vanishes on l":k-3(T) since
o

the product xy(x + y - 1) is everywhere nonzero in T. Thus, r = 0 since
o 0

l":k-3(T) is Pk_3-unisolvent, whence f = O. Since #l":k-3(T) U 0 k(8T) =
o

dimPk, it follows that l":k-3(T)U0k(8T) is Pk-unisolvent. This proves (ii)
of the theorem and also the "if' part in (i).

To complete the proof, we establish the "only if" part in (i). Suppose
that (6) does not hold, so that PI (1)P2 (0)p3 (0) = PI (0)Pz(l)p3(1) and hence
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the right-hand side of (18) defines a polynomial 1 E Pk for every choice of
a1 E Rand r E Pk - 3 . Furthermore, 1 vanishes at all the points ~ij, Le. at
the points of 8 k (aT).

By contradiction, suppose that there is a Pk-unisolvent set Sk containing
8 k(aT). The set Sk \8k(aT) has (k- 1W- 2

) elements and 1 above depends

linearly upon a1 E Rand r E Pk - 3 and hence upon (k- llr-2
) + 1 real

variables. As a result, there is at least one pair (a1' r) =I- (0,0) yielding
an 1 in (18) vanishing at all the points of Sk \8k(aT) and hence at all the
points of Sk. But, as we shall verify below, 1 =I- 0, which contradicts the
hypothesis that Sk is Pk-unisolvent.

To see that indeed 1 in (18) is nonzero whenever (a1, r) =I- (0,0), suppose
first that a1 = O. Then, r =I- 0 and hence I(x, y) = xy(x+y-l)r(x, y) is not
the 0 polynomial. Ifnow a1 =I- 0, then, 1(0,0) = a1P1 (0) =I- 0 by (7), so that

once again 1 =I- O. This completes the proof. I

COROLLARY 2.1. For 1:::; i :::; 3, let ~ij denote the Gauss points of order
k on ei. The set 8 k(aT) := {~ij : 1 :::; i :::; 3, 1 :::; j :::; k} is contained
in a Pk-unisolvent subset of R 2 if and only il k is odd. More precisely, if

o 0 0

~k-3(T) CT is any Pk_3-unisolvent subset such that ~k-3(T) naT = 0,
o

then ~k-3(T) U 8 k(aT) is Pk-unisolvent.

Proof. The Gauss points of order k on ei are obtained from the cor­
responding Gauss points on [-1,1] by an affine transformation and hence
the polynomials 71"1,71"2 and 71"3 are all obtained from the kth Legendre poly­
nomial via a linear change of variable.

Since the k th Legendre polynomial is odd (resp. even) when k is odd
(resp. even) and does not vanish at =Fl, it follows that 71"1 (a2) = -71"1 (a3) =I­
0,7I"2(ad = -71"2 (a3) =I- 0 and 7I"3(a2) = -7I"3(ad =I- 0 if k is odd while
7I"1(a2) = 71"1 (a3), 71"2 (a1) = 7I"2(a3) and 7I"3(a2) = 7I"3(a1) if k is even. Thus,
7I"1(a2)7I"2(a3)7I"3(a1) = -7I"1(a3)7I"2(ad7l"3(a2) =I- 7I"1(a3)7I"2(ad7l"3(a2) in the
first case and 71"1 (a2)71"2 (a3)71"3 (ad = 71"1 (a3) 71"2 (a1)71"3(a2) in the second. The

conclusion now follows from Theorem 2.1. I

3. NONCONFORMING FINITE ELEMENTS OF ODD AND
EVEN ORDER

Corollary 2.1 makes it obvious how to construct a piecewise Pk non­
conforming finite element space passing the patch test when k is an odd
integer: Given a regular triangulation T of some polygonal domain n C R 2 ,

choose the boundary nodes to coincide with the Gauss points of order k
along all the edges of the triangles and complement this set by choosing
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o 0

a Pk- 3-unisolvent subset ~k-3(T) CT for every triangle T E T. Then,
o

by Corollary 2.1 the set Sk(T) of nodes in T (that is, ~k-3(T) plus the
Gauss points on the edges of T) is Pk-unisolvent. The desired nonconform­
ing space Vy is the space generated by the basis functions (piecewise Pk

functions vanishing at all but one node of UTEySk(T)).
Note that, if desired, Sk(T) and the restrictions of the basis functions to

T can be obtained from a single reference triangle via affine transformation
since such a transformation preserves Gauss points on the edges.

Remark 3. 1. When k = 1, our construction gives again the Crouzeix­
Raviart linear element. When k = 3,our nonconforming cubic element is
fundamentally different from the one constructed by Crouzeix and Raviart
in [3]: The latter has 12 degrees of freedom (instead of 10 in our approach)
and requires enriching the pace P3 with three quartic polynomials.

Corollary 2.1 also shows that the same procedure cannot be used when k
is even. For completeness, we now describe a modification of the approach
yielding a nonconforming finite element space of even order k.

LEMMA 3.1. Let k 2:: 2 be an even integer and let -1 < WI < ... <
Wk+l < 1 be the Gauss points of order k + 1 in [-1,1]' so that Wk+2-j =
-wj,I S j S k + 1. Let Ak+l denote the corresponding (normalized)

Legendre polynomial, that is, Ak+dx) = n~~i(x - Wj) and set ql(X) =
n

k ( ) - Ak±l(X) d () nk+l( ) ~ T'h Ij=1 x - Wj - (X-Wk±l) an q2 x = j=2 X - Wj = (x-wd' en, Jor
every choice of £i E {I,2},I sis 3, we have qe1 (-I)qe2 (-I)qeg (-I) -:j:.
qe1 (I)q(2(I)qeg (1).

Proof. By symmetry, it suffices to consider the case £1 = £2 = £3 = 1
and the case £1 = £2 = 1, £3 = 2.

Case £1 = £2 = £3 = 1. Since k + 1 is odd, Ak+l(-I) = -Ak+l(I) and
the desired result is equivalent to 1 + Wk+l -:j:. 1 - Wk+l, i.e., to Wk+l -:j:. 0.
But if Wk+l = 0, then also WI = -Wk+l = 0, so that k + 1 = 1, I.e., k = 0,
which contradicts k 2:: 2.

Case £1 = £2 = 1, £3 = 2. Since k + 1 is odd, Ak+d-1) = -Ak+l (1) and
the desired result is equivalent to (1 +Wk+l)2(1 +Wl) -:j:. (I-Wk+d2(I-Wl)'

But since I-WI = 1+Wk+l and 1+Wl = I-Wk+l, this reduces once again to

the condition Wk+l -:j:. °established above. I
As in the previous section, let T C R 2 be a triangle with vertices ai and

let ei denote the edge of T opposite ai, 1 SiS 3. Given an even integer
k 2:: 2, choose a consecutive numbering of the Gauss points ~ij, 1 S j S
k + 1 of order k + 1 on e. In particular, the set {~il, ~ik+d of the first
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and last Gauss points on ei are unambiguously defined irrespective of the
consecutive numbering (although which one is the first point depends of
course upon the ordering). For 1 ::; i ::; 3, we let 'Yi denote either ~il or

~ik+l'
Since k + 1 is odd, it follows from Corollary 2.1 that the set

(19)

o
can be complemented by a Pk_2-unisolvent subset L;k-2 (oT) CT in such a
way that

o
Sk+l(T) := L;k-2(T) U 6 k+l(8T) (20)

is Pk+l-unisolvent. From now on, we denote by tPi E Pk+l, 1 ::; i ::; 3, the
corresponding basis function associated with the node 'Yi (= ~il or ~ik+d

and the Pk+l -unisolvent set Sk+l (T) in (20). In other words,

(21)

A nonzero polynomial 'lri of degree k on the edge ei that vanishes at
the k points ~ij for 1 ::; j ::; k + 1 and either j "# 1 or j "# k + 1 can be
obtained from the polynomial ql or q2 of Lemma 3.1 by a linear change
of variable. As a result, we may arrange things so that 'lrl (a2) = q£l (-1)
and 'lrl(a3) = q£l(l), that 'lr2(a3) = %(-1) and 'lr2(ad = %(1) and that
'lr3(a1) = q£s(-l) and 'lr1(a3) = q£s(1) for some integers £1,£2,£3 E {1,2}.
(The choice £i = 1 or £i = 2 depends upon whether the Gauss point ~ij not
included corresponds to j = 1 or to j = k + 1.)

From Lemma 3.1, 'lr1 (a2)'lr2 (a3)'lr3(a1) = q£l (-1)q£2(-1)Q£s (-1) "#
q£l(l)%(l)q£s(l) = 'lr1(a3)'lr2(ad'lr3(a2) and hence, it follows from The­
orem 2.1 that, if

(22)

o 0

and if L;k-3(T) CT is a Pk_3-unisolvent subset, then

(23)

is Pk-unisolvent. Since k and k + 1 have different parities, the definitions
(22) and (23) are compatible with (19) and (20).

o
Observe that since L;k-2 (T) is Pk_2-unisolvent, it contains at least one

Pk- 3-unisolvent subset (This easily follows from standard properties of
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o
determinants.) Thus, we may and will henceforth assume that Ek - 3 (T) c

o
Ek- 2(T). If so, Sk(T) c Sk+l(T)\bi} and it follows from (21) that

(24)

As a result, every linear combination of (P1, 4>2 and 4>3 vanishes on Sk (T), so
that Pk nspan{4>1l4>2,4>3} = {O} since Sk(T) is Pk-unisolvent. Therefore,
the space

(25)

has dimension dim A = (k+2~k+l) + 3 equal to the number of points in
(compare with Sk(T) in (23))

(26)

LEMMA 3.2. The set Sk(T) is i\-unisolvent.

Proof. Since dimPk = #Sk(T), it suffices to show that if f E Pk and
f = 0 on Sk(T), then f = O. Write f = g+(XI4>1 + (X24>2 + (X34>3 with g E Pk
and (Xi E R, 1 ~ i ~ 3. It follows from (24) and the assumption that f = 0
on Sk(T) :::J Sk(T) that g vanishes on SkCT). Thus, g = 0 since Sk(T) is Pk­
unisolvent and f = (X14>1 +(X24>2+(X34>3' Now, 4>tbi) = 8li (Kronecker delta)
for 1 ~ i, e~ 3 and fbi) = 0 since 1'i E Sk(T), so that (Xi = 0, 1 ~ i ~ 3. I

It is now a simple matter to define a triangular nonconforming element
of even order k -enriched by three polynomials of PHI on each triangle­
based upon the above results. Given a regular triangulation T of some
polygonal domain n, plot all the Gauss points of order k + 1 on the edges
of the triangles. For each edge e, choose a Gauss point 1'e which is the
first (or last) Gauss point on e relative to some orientation of e. Given any
triangle T E T, the three points Ie corresponding to the edges of T become
the points 1'1, 1'2 and 13 above.

The construction of the nonconforming finite element space Vy can then
proceed along the same line as in the case when k is odd, just using (see (25)
and (26)) the polynomial space Pk and the associated set of nodes Sk(T)
over each triangle T instead of Pk and Sk(T). Elementwise, i.e., restricted
to an arbitrary triangle T E T, "the" finite element basis of the spaceyy
consists of the three polynomials 4>1, 4>2, 4>3 plus dim Pk polynomials in Pk ­

hence of degree k + 1 in general - equal to one at a different point of Sk (T)
and 0 at the other points of Sk(T).
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Observe that Sk(T) and the corresponding basis functions can be ob­
tained from one of six reference triangles via an affine transformation. The
six reference triangles correspond to the six possible diagrams for the lo­
cation of the "special" Gauss points ')'1, ')'2 and ')'3. However, it is readily
checked that these six diagrams split in two affine equivalence classes, so
that only two reference configurations instead of six need to be used in
practice.

Remark 3. 2. If the mesh is two-colorable, then every triangle may be
oriented (clockwise or counterclockwise) in such a way that any two adja­
cent triangles have opposite orientation. This produces an orientation of
every edge e of the triangulation independent of the triangle T containing
e. As a result, it may be decided that ')'e above is always the first (or always
the last) Gauss point on e relative to this orientation. If so, it is straight­
forward to check that every triangle T along with the three selected Gauss
points on its edges is affine equivalent to the same reference configuration
independent of T.

Lastly, note that the above finite element space satisfies the desired patch
test (and more). Indeed, the jump across an edge e of a function in the
finite element space is a polynomial of degree at most k+ 1 on e and vanishes
at the Gauss points of order k + 1 on e. Therefore, this jump is orthogonal
to thepolynomials of degree at most k (not merely k -1) on e. Of course,
since Pk :> Pk , the local interpolation error is as good as with polynomials
of degree k.

4. AN EXAMPLE

We now discuss the discretization of an elliptic problem using the non­
conforming elements of the previous section. Specifically, we consider the
problem of finding u E HJ (0) solving

-\7. (A\7u) + b· \7u + cu = f E £2(0), (27)

where 0 C R 2 is a polygonal domain, A = A(x) is a symmetric positive
definite 2 x 2 matrix function, b = b(x) E R 2 and c = c(x) E R. We shall
assume throughout that A and b are in ek(D) for some integer k 2: 1, that
C E £00(0) and that

1 -
C - - \7 . b > 0: > 0 on 02 - , (28)

where 0: > 0 is a constant. Since A(x) is symmetric positive definite for ev­
ery x E IT, it is not restrictive to assume, after shrinking 0: > 0 if necessary,
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(29)

The weak formulation of (27) characterizes u as a solution to the varia­
tional equation

where

and

a(u,v) = £(v), \Iv E HJ(D),

a(u, v) := In A\7u· \7v + ! In(vb. \7u - ub· \7v)+
In(c -!\7. b)uv

£(v) := In Iv.

(30)

(31)

(32)

Observe that (31) is simply obtained by multiplying the left-hand side of
(27) by v and by using In vb· \7u = - In ub· \7v- In (\7 ·b)uv to modify the
first order term. While this "skew-symmetrization" is immaterial in the
continuous problem and gives only a different formula for a(u, v) without
changing its value, it will be essential to derive a discretized variational
formulation with a "good" consistency error.

By (28) and (29) and the Lax-Milgram theorem, the variational problem
(30) has a unique solution u E HJ(D).

Now, consider a regular triangulation ~ of D depending upon the real
parameter h > 0, representing the maximum diameter of the triangles. As
is customary, we assume that the smallest angle in all the triangles of Th
is bounded away from below by a constant independent of h.

Assume that k is odd and let Vh (rather than VTh ) denote the finite
element space associated with ~ at the beginning of Section 3. We call
VhO the subspace of Vh of those functions vanishing at the nodes lying on
aD and equip Vh (and VhO) with the norm

(33)

In analogy with (31), we now introduce the bilinear form
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well defined on (HJ (0) + VhO)2 and satisfying

ah(U,v) = a(u,v), Vu,v E H6(0).

Furthermore, ah is continuous and coercive on VhO' More precisely,

13

(35)

for some constant M > 0 depending only upon A, band c (but not h) and

(37)

Once again by the Lax-Milgram theorem (and since the linear form eis
well defined on VhO), we obtain the existence and uniqueness of a solution
Uh E VhO of the problem

(38)

From [2, Theorem 4.2.2, p.210], there is a constant C > 0 independent of
h such that

Above, the term infvhEvho Ilu - vhllh is just the interpolation error. As
in the conforming case and by the standard a priori estimates (see e.g.
[2]), this term is O(hk ) if u E Hk+l (0) n HJ (0) and kEN. The term
SUPVhEVhO lah(uilvh:l~l(Vh)1 is the consistency error, typical of nonconforming
methods, which we investigate below. The following lemma is useful in this
investigation.

LEMMA 4.1. ([3, Lemma 3]) Given an edge e of the triangulation Th,
let II~-l denote the orthogonal projection from L 2 (e) onto the space of
polynomials of degree at most k - 1 on e. Then, there is a constant C > 0
independent of e and of h such that

(40)

for every T E Th containing e, every v E H 1 (T) and every w E Hk(T).

Although this will not be used, the parity of k is irelevant in Lemma 4.1,
which remains valid if k 2: 2 is even.
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THEOREM 4.1. If U E Hk+l (D) n HJ (D) solves (27), there is a constant
C > 0 such that

(41)

Proof. Since e(Vh) = In fVh = 2:TET
h

IT fVh and U solves (27), an
integration by parts yields

e(Vh) = 2: r (-V'. (AV'U)Vh+Vhb,V'u+CUVh) =
TETh iT

- 2: 1VhAV'U' nT + 2: r (AV'UV'Vh + Vh b · V'u + CUVh) ,
TETh eT TETh iT

where nT denotes the outward unit normal vector along aT. The boundary
terms are well defined since U E Hk+l (D) and k 2: 1. From (34),

ah(U, Vh) - e(Vh) = 2:TE7i IeT VhAV'U' nT
-~ 2:TET

h
IT (Vh b . ~u + ub· V'Vh + UVh V'. b). (42)

Now, IT ub· V'Vh = - IT(vhb· V'u + UVh V' . b) + IeT uVhb· nT, whence

The right-hand side of (43) can thus be written as a sum of integrals over
the edges of the triangulation Th. Such an edge e is either common to
exactly two triangles T1 and Tz or contained in the boundary aD. In the
first case, since nT2 = -nT" the total contribution of e to the right-hand
side of (43) is

(44)

where [Vh] denotes the jump of Vh across e (from T1 to Tz). Since [Vh]
vanishes at the Gauss points of order k on e, it is LZ-orthogonal to the
polynomials of degree less than k on e and hence

(45)

for every w E LZ(e) and every Vh E VhO' In particular, it follows from
Lemma 4.1 that there is a constant C > 0 independent of e and h such
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for every w E H k(n) and every vh E VhO ' With the choice w = (A \7u - !ub).
nTl and since nT2 = -nT

l
and both A and b are in Ck(n), it is clear that

Iwlk,Ti :::; Kllullk+l,Ti for i = 1,2, where K > 0 is a constant depending
only upon A, band k (but independent of hand u). Thus, altogether, after
modifying C in (46),

IJe[Vh] (A\7u - ~ub) . nT11 :::;
Chk(llullk+l,T1Ivhll,T1 + Ilullk+l,T2Ivhll,T2)·

(47)

If now e is an edge contained in em, then e is contained in a single triangle
T E T" and since Vh vanishes at the Gauss points of e (since Vh E VhO ),
similar arguments yield

11 Vh (A\7U - ~Ub) . nTI :::; Chkllullk+l,Tlvhll,T. (48)

Clearly, (43), (47) and (48) yield the desired inequality (41) after another

modification of C. I
Theorem 4.1 shows that the consistency error is of the same magnitude

as the interpolation error and hence that the nonconforming nature of the
finite element space does not alter the accuracy of the approximation.

Virtually nothing has to be changed if kEN is even and Vh denotes
the corresponding finite element space constructed in Section 3. In fact,
since now both the jumps across the edges and the restrictions to an of the
functions in VhO vanish at the Gauss points of order k+1 (instead of k), not
only Theorem 4.1 remains valid but also sup jah(U,Vh)-f(Vh)1 < Chk+l

vhEVhO Ilvhllh -
if u E Hk+2(n). In other words, if u E Hk+2(n), the consistency error is
negligible compared with the (theoretical) interpolation error.
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