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1. INTRODUCTION

1.1. On the history of reliability theory and risk analysis

The expressions "to be reliable” and '"to be available" have been used

in daily life for a long time. "To be reliable" as a person may mean,

for instance, that for at least a period one is considered, based on ex-
perience, as someone who does not abuse confidential information supplied.
A saying like "you can depend on this person', shows a clear relation
with "to be reliable'". Something similar holds for '"to be available".

"To be available" as a person means that a claim is laid on the person

in question at every moment. For example, domestics must always be avail-
able for their employer.

The same reasoning can be applied to man-made equipment. A car, for ex-
ample, is called "reliable" if it has no defects during a sufficiently
long time. The same car is called "available" not only when it is there
but if, in addition, one can start it and drive it the moment one wants
to use it.

Obviously, "reliability" has something to do with undisturbed functioning
during a certain period, whereas "availability' tells something about the
state at a certain instant.

At the beginning of this century the need arose to describe such intu-
itive notions like reliability and availability in a more precise manner.
As technological developments progressed in many fields it became important
to predict the behaviour of materials, in particular in order to predict
the "lifetime" (the time of undisturbed functioning) of a component. There-
fore, the reliability of a component was mathematically defined in terms
of a probability, i.e. "the reliability at instant t" was formulated as
"the probability that the component does not fail in service during at
least a period t'. Often the so-called "lifetime distribution" is used
instead of the reliability function. The "lifetime distribution" is com-
plementary to the reliability, i.e. it gives the probability that the
component fails within a period t. Examples of lifetime distributions

are the "Weibull distribution” (suggested by Weibull in the late 1930’s)
for the life length of materials and the "negative exponential distri-

bution" (in the early 1950's) for electronic components.

During and after the Second World War many technological systems (e.g.

military systems and missile systems) have become much more complex. On
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the one hand such complex systems lead to higher investments, on the
other hand they tend to become less reliable. But, for instance, mili-
tary equipment, must be highly reliable and accurate on demand as well
as during operation to be successful (e.g. intercontinental ballistic
missiles with nuclear war heads). But also complex equipment for civil
applications has to be very reliable in order to prevent damage to human
beings as well as to invested capital (e.g. missile and computer systems
for manned space flights and safety systems for nuclear power plants).
Because of bothkfactors, viz. higher investment cost and less reliable
systems, much attention has been given ﬁo the "system reliability" (the
probability of undisturbed system operation during a time period) and
the "system availability" (the probability that the system is available
at an instant), in addition to component reliability and availability.
In the early days of system reliability studies, in the late 1950's and
early 1960's, system reliability was analysed mainly by means of so-
called "reliability block diagrams™. Such a reliability block diagram
represents the functional working scheme of a system by means of blocks
that are connected by lines. Each block represents a subsystem.. The re-
liability of\each block (subsystem) is calculated and after that the
system reliability is determined on the basis of the reliabilities of
the different blocks. But the increasing complexity of the systems made
the reliability block diagrams extremely complex too. Because these large
and complex block diagrams were no longer manageable new techniques had
to be developed to treat system reliability characteristics. One of the
teéhniques that was developed is fault tree analysis. It was invented

by H.A, Watson (1961) of Bell Telephone Laboratories. He used this tech-
nique for the evaluation of the Minuteman Launch Control System. Lateron,
employees of the Boeing Company extended the method and made it suitable
for computer implementation.

Fault tree analysis (FTA) is a technique directed to the analysis of a
specific system failure. The construction of the fault tree for the con~
cerned system failure, called the "TOP~event", proceeds as follows.

The TOP-event (system failure) is connected to subsystem failures, which
possibly may lead to the system failure, by means of a logical "OR" or:
"AND". Next, each subsystem failure is connected to failures of the next
lower system level, etc. This development stops when component failures
(the lowest system level) are reached. The whole structure, starting at

the TOP-event and terminating at component level, is called a "fault tree



—21-

for the system failure concerned".

Qualitative as well as quantitative characteristics for the concerned
system failure can be calculated by means of FTA. Qualitative charac-
teristics are, for instance, the possible failure modes which lead to

the system failure. These failure modes are called minimal cut sets.

Each minimal cut set consists of a combination of components, which
cause, if they all fail, the system failure. Other qualitative charac-
teristics are the so-called minimal paths. They are combinations of com-
ponents that guarantee that the system functions: if eack component of
such a minimal path functions then the system functions. Quantitative
characteristics are among other things the "system unavailability" and
the "lifetime distribution'" of the system. These two quantities are com-—
plementary to the "system availability" and the "system reliability",
respectively. But since in principle FTA is an analysis of a system fail-
ure and not of the system functioning, as a rule it are the first men-
tioned quantities that are calculated. The calculations of the unavail-
ability and the lifetime distribution are based on the minimal cut sets.
Therefore, such calculations can only take place after the minimal cut
sets have been calculated. Maintenance can also be taken into account

but it increases the complexity in calculating the quantitive charac-
teristics considerably. During the last twenty years FTA has proved to

be one of the most powerful tools to analyse large and/or complex systems.
Although FTA in the early days was only applied to space flight techno-
logy, it was rather soon recognized that the technique could be applied
to other technological fields. In 1965 at a safety system symposium in
Seattle, it was concluded that reliability techniques, amoung which FTA,
could be successfully applied to other areas, such as chemical industry
and nuclear engineering. Since then, FTA has become a basic technique for
analyzing complex systems within the framework of risk studies for nuclear

power plants. Such risk studies have started in the early 1970's.

In every day life risk is a well known phenomenon. In former days the risk
of a person to be injured by disease or war operations was much greater
than the risk to be injured due to the faulty operation of a technical in-
stallation. Nowadays this situation has changed. Several technological
systems are considered to give more risk than many once heavily feared
diseases. It is a natural requirement that the risk involved in operating

such technological systems should be so small that it is acceptable from
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the social as well as the economical point of view. For this reason risk
assessment has become an important tool in the design of technological
systems and scheduling of their operational characteristics.

Risky situations are caused by so-called hZazards, which may give rise to
casualties. For instance, in case of a nuclear power plant the hazard is
radiation and release of radioactivity, whereas in case of chemical plants
the hazards may be release of toxical material, explosions, etc. For tech—
nological systems a hazard occurs in case of an accident within such a
system. This accident is often called the Znitiating event. An initiating
event in a nuclear power plant is, for example, the rupture of a pipe that
transports water to cool the core of the nuclear reactor. As a rule the
initiating event does not create the hazard itself, this being due to safe-
ty functions of the total system, which are in general available. There—
fore, after the initiating event has occurred, the hazardous situation is
only created if one or more safety systems fail or have failed. In the

case that all safety systems perform their intended functions, the hazard
does not occur. In the case that all safety functions fail the hazard
occurs completely. Between these extremes a large number of different con—
sequences, i.e. nuances concerning the occurrence of the hazard, are pos-
sible. Obviously, a consequence depends on which safety systems have failed
and which safety systems are functioning. Such a sequence, which starts
with the initiating event and is followed by the functioning and/or failure
of the different safety systems, is often called an accident sequence.
Actually, accident sequences are represented by means of event trees.

Such an event tree is a logical scheme that starts with the initiating
event. For the first safety system a branch point is introduced, i.e. the
first safety system can be in one of two states, viz. the function state

or the fail state. The event tree, therefore, consists from this first
safety system of two branches. For the second safety system two branch
points occur, namely, one for the branch that represents the function state
of the first safety system and one for the branch where the first safety
system is assumed to be failed. So from the second safety system the event
tree consists of four branches, etc. In fact, each of these branches re-
presents an accident sequence, as described before.

For the analysis of a risky (hazardous) situation it is important to assess
for a possible accident the amount of release of energy or toxic material.
In addition it is necessary to assess the frequency of occurrence of such

a release. Therefore, within the framework of risk analysis Henley and

Kumamoto [29] formulate the following points which should be considered:
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( i ) search for possible hazards which cause the dangerous situation;

(ii ) if one or more hazards are detected then identify the corresponding
initiating events;

(iii) identify the accident sequences which may give rise to the hazards;

(iv ) search for each failed system of the accident sequence of step (iii)
their respective failure modes (minimal cut sets);

( v ) calculate for each accident sequence the probability of occurrence
by means of the results of step (iv);

(vi) calculate for each accident sequence its consequence in terms of the

identified hazard(s).

In the late 1960's some risk studies concerning nuclear power plants were
performed for insurance companies in the USA. These studies were mainly
concerned with step (i). The first large-scale risk study has been the
Reactor Safety Study (WASH-1400) [16] in the USA; its final report appear-—
ed in 1975. The study concentrates on the potential risk for society caused
by radioactive release from nuclear power plants. All steps, (i),....,(vi),
are fully treated in WASH-1400, its basic techniques being event tree .
methodology and fault tree analysis. Most of the risk studies which are
performed nowadays (for example the Dutch RASIN study [40] (1975) and the
German risk study [41] (1980) both concerned with risk from nuclear energy)
apply the methodology initiated by the WASH~1400 study.

From step (v) it is seen that for risk analysis often not only the analysis
of a single system, but of a number of systems is needed.

In the latter case the systems do not operate at the same time, but one
after the other. Furthermore, such systems are often connected by physical
(e.g. thermo-hydraulic) processes. This means that these systems are not
necessarily mutually independent. One of the dependencies may be a compo-—
nent (e.g. a pump) shared by two or more systems. Because of these depen—

dencies the complexity of the calculations increases considerably.

In modern space flight we also meet dependent systems, for instance, in a
missile system. As a rule a missile consists of several stages, i.e. sev-
eral subsystems. During the flight each of these stages operates during

a period of time and then stops working, after which the next stage is
initiated. Often a general control system is present for all stages. For
such a missile flight (the so-called mission of the missile) the most in-

teresting quantity is the probability of a successful flight.
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In literature a flight is described by the notion of a phased mission.
Obviously, a phased mission is a task for a complex system to be per-
formed in parts (phases), one part after the other. Each part (subtask)

is carried out by a subsystem of the total system. For the execution of
each subtask a certain period of time is needed. The complete task (mis-
sion) is successful only if each subtask is successful, i.e. each phase

is survived. The mission fails if at least one subtask fails, i.e. when

a subsystem failure occurs during the performance of its subtask. The
characteristic quantity is the probability of the successful execution

of the mission, or its complement, the probability of mission failure.

In the first case one might speak of the total system reliability.

Studies concerning phased mission analysis and based on FTA occur later
in literature than risk studies carried out by means of FTA. However,
there exists a strong similarity between the models of both problem areas.
It is easily seen that the branch of the event tree where each safety
system successfully performs its intended function, can be considered as
a phased mission. This correspondence has never been invented or discussed
in literature. The present study proceeds by defining each branch of an

event tree (accident sequence) as a phased mission.

The above mentioned Reactor Safety Study has aroused much criticism. This
criticism does not concern the methodology applied in the study (step
(1)54..5(vi)), but is mainly concerned with the quantification of system
parameters such as the probability of system failure, the probability of
the occurrence of an accident sequence, the failure probability of a vessel
and of piping, etc. (see for instance the Lewis report [45]). We shall

mention here two objections concerning the probability calculations.

(a) The uncertainties in the input data (e.g. failure rates).
In the Reactor Safety Study probability calculations are performed
with mean failure rates, mean repairtimes, etc. They are obtained
from field data and enter the probability distribution with which
the calculations are performed. The inaccuracies in these input para-
meters may cause large deviations in several probabilities of interest,
particularly if events with small probabilities are concerned. Because
the field data as used in the Reactor Safety Study are not the outcome
of long term measurements the operational value of the calculations

based on it are rather questiomable.
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(b) The system dependencies that are not correctly taken into account
within the accident sequences.
In the Reactor Safety Study these dependencies are treated by engi-
neering judgement and not by means of exhaustive analytical methods
(cf. Barlow et al [32]). This implies that the effect of partial
failures of one system cannot be fully taken into account in rela-
tion with following systems of the same accident sequence. This
may lead to an under—estimation of the probabilities of occurrence
of accident sequences and therefore to an under—estimation of the

total risk.

The present study is devoted to system reliability and is mainly direct-
ed to the quantitative evaluation of accident sequences. Event tree .
methodology and fault tree analysis are applied as basic techniques, It
introduces a new methodology for the calculation of the probability of
occurrence of an accident sequence. This new methodology takes correctly
into account shared equipment dependencies between the different systems
present in an accident sequence. Since large and/or complex systems may
contain a large number of minimal cut sets {(sometimes millions of it), it
is not possible as a rule to obtain the exact analytical solution. There-
fore, upper and lowerbounds for the probability of occurrence of an acci-
dent sequence are presented. Calculation results show that this probabi=-
lity is under—estimated if system dependencies are not fully taken into
account. The new methodology also offers the possibility to get insight
into the degree of dependency between systems based on quantitative cal-
culations,

To make the methodology manageable for complex systems, it is implemented
in the reliability computer progam PHAMISS. This program is written in
FORTRAN-IV for the CDC-Cyber 175. PHAMISS is users friendly and has proven

to be a fast and efficient program.

In the sequel of this chapter an elementary treatment of the principles
of fault tree analysis, event tree methodology and phased mission ana-
lysis is given, together with an outline of the new approach presented

in this study.

Finally we review some literature of the different problem areas here.
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In the 1960's several books treating reliability theory were produced to-
gether with many journals that focussed their attention to the same subject.

(For a bibliography see Henley and Kumamoto [29], Historical perspective,
references). For the basic concepts of reliability we refer to Barlow and
Proschan [17] and [42].

Vesely [21] seems to be the first one who published a systematic study of
fault tree analysis. Also several new techniques were introduced to treat
the reliability of large and/or complex systems. They are reviewed by
Barlow and Proschan [31] and recently by Hwang et al [30].

An introduction to phased mission analysis is given by Esary and Ziehms [8].
For an extensive treatment of the steps (i),...,{(vi), to be executed in the
framework of a risk study, see Henley and Kumamoto [29], whose book seems
to be the first general textbook in this area. They also show the relation
between the frequency of occurrence of the amount of release and the con-
sequences by means of the Farmer curve.

For other methods used in risk analysis, like cause-consequence diagrams,
decision tables, failure mode and effect analysis (FMEA), etc. the reader
is also referred to their book.

An important publication in risk analysis has been the appearance of the
Probabilistic Risk Analysis Procedure Guide [38] in April 1982. This guide
presents those methods which during the last ten years have turned out to

be appropriate in the risk analysis concerning nuclear power plants.

1.2. Basic concepts of fault tree analysis, event tree methodology and

phased mission analysis

1,2.1, Fault tree analysis

Fault tree analysis (FTA) is the analysis of a system failure rather than
the analysis of system functioning. A system failure is present if the
system is not able to perform its intended function. In this situation the
system is said to be in the fazZl state. Otherwise the system is in the
function state. A system consists of components (the smallest units within
the system) and their logical relationship. By means of a logical scheme,
called the fault tree, a system failure is linked to the various compo-
nent failures. If for a system failure such a fault tree is present, then
by means of FTA several characteristic quantities for such a system

failure can be calculated.



FTA consists of two major steps:

(1) the construction of the fault tree ;

(2) the analysis of the fault tree, i.e. the calculation of the

different characteristic quantities.

Before treating each of these steps a number of basic assumptions con-
cerning systems and components are summarized. In the present study it

is assumed that:

(A1) a number of components together with their functional relatiomship

define a system;

(A2) a component is assumed to be the smallest unit that can occur within

a system;

(A3) a component as well as a system behaves binary, i.e. the component
or the system can be only in one of two states: the function state
or the fail state. If the component (or the system) is in the
funetion state, it is able to perform its required function; if on
the other hand the component (or the system) is in the fail state

it is not able to perform its intended function;

(A4) components behave independently.

Fault tree construction

For a single functional series-parallel system S] consisting of the
components A, B and C the corresponding functional block diagram (a logi-
cal working scheme) is shown in fig. !.1. and the associated fault tree

is depicted in fig. 1.2.

A fault tree always starts with a defined system failure called the 70P-
event. Such a TOP-event may be caused by a number of other events (e.g.
subsystem failures). They form the input for the TOP-event. If one event
alone can cause the TOP-event the occurrence in the fault tree is repre-
sented by an OR-gate; if all the input events are needed to occur in order
to cause the TOP~event then this occurrence 1is represented by an AND-gate.
The same reasoning can be applied for other compound events (subsystem
failures) in the fault tree. The construction of the fault tree stops if
the input of a gate stems from components only. Because fault tree analysis
is the basic technique for the present study we shall not further treat

here the possibilities of block diagrams.
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FIG. 1.1. FUNCTIONAL BLOCK DIAGRAM OF SYSTEM Sy.

TOP-EVENT
SYSTEM S RECTANGLE
FAILED
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NENT C
FAILED

FIG. 1.2, FAULT TREE FOR SYSTEM Sy.
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Analysis of the fault tree

Fault tree analysis is a deductive analysis, i.e. for a defined system
failure called the TOP-¢vent of the fault tree all possible failure modes
for the system failure are searched for in a systematic manner.

A failure mode for a system failure consists of one or more components

that are in the faZl state and by their joint fail states they introduce
the system failure. Generally we look for the smallest groups of components
that can introduce the system failure, i.e. the smallest failure modes.
Those smallest failure modes are called minimal cut sets of the corre-

sponding fault tree. In our example of system S, it is easily seen from

1
the fault tree in fig. 1.2. that there are two minimal cut sets, viz.

minimal cut set M] which consists only of component A and minimal cut set

M2 that contains both the components B and C. We shall denote these two

minimal cut sets by:

M,

¥,

{a};
(1.1)

{B,C};

Obviously, the cut set {A,B,C} is also a failure mode for system S] but

it is not the smallest one that can be created from the combination of

A, B and C. Namely, we can delete A so that {B,C} remains; {B,C} in turn
being a failure mode itself. The same is true when we delete component B
or component C or both from {A,B,C}. So {A,B,C} is not a minimal cut set.
A group of components that assures the function state of a system is
called a path set; a minimal path set exists if the deletion of any one

of the compoments of that set implies that system functioning is no longer
assured. From the block diagram in fig. 1.1, it is seen that the minimal

path sets for system S, are given by:

1

P

1 {A,B};
(1.2)
P, {A,C}.

il

Till now we have been concerned with the so-called qualitative FTA, i.e.
the calculation of the minimal cut sets (and minimal path sets). The
qualitative FTA is followed by the quantitative FTA, that calculates
probabilistic quantities. For this quantitative FTA we need the concepts

of availability and reliability. In the following we shall give their
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definitions, some relations between them and discuss some techniques for

their evaluation (cf. chapter 5).

Denote by R(t) the reliability of a component (or a system) at instant t,
by F(t) its lifetime distribution or failure distribution and by A(t) its
availability. Then the definitions of R(t), F(t) and A(t) are given by:

R(t) : the probability that the component (or the system)

survives the interval [0,t], t=0; (1.3)
F(t) : the probability that the component (or the system)

fails within the interval [0,t], t=0; (1.4)
A(t) : the probability that the component (or the system)

is in the function state at instant t, t=0. (1.5)

Since FTA is directed to the analysis of a system failure, frequently in
the present study the components unavailability q(t) and the system un-—
avatlability Q(t) shall be used:

q(t) = 1-A(t), t20 ; Q(t) = 1-A(t), t=0. (1.6)

From (1.3) and (1.4) it is seen that the reliability function and the
lifetime distribution of a component or a system are complementary to

each other. So the following relation holds:
R(t) = 1-F{(t), t=0. (1.7)

As a rule the availability of a component and of a system as well as the
reliability of a system are dependent of the maintenance applied to them.
If no inspection nor fepair is applied to a component or a system the
availability and the reliability are identical and simple to calculate
(cf. chapter 3):

A(t) = R(t) = 1-F(t), t=0. (1.8)

However, if a component or a system is subjected to maintenance then the
calculation of the availability and reliability increases considerably

in complexity, especially for large and/or complex systems. Applying FTA,
upper~ and lowerbounds for the system reliability (or the system lifetime

distribution) are calculated if inspection and repair are applied to the
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system. By using the theory of Markov chains the lifetime distribution
may in fact be calculated exactly. The numerical evaluation, however, is
then restricted to rather small systems, i.e. systems with a rather small
number of components (see Somma [25]). In the following we shall charac-
terize shortly the calculation of the system's lifetime distribution by
means of fault tree analysis; they do not lead to exact calculations but

yield upperbounds for F(t).

(B1) For rather small component uravailabilities a sharp upperbound for
F(t) seems to be the expected number of system failures in the time
interval [0,t]. But for large time intervals this approximation may
give rise to large deviations, it may even become greater than the

value one !

(B2) Several systems reach after some time the steady state condition.
Lambert [11] introduced for such systems an upperbound for the
system's lifetime distribution F(t), the so-called steady state

upperbound.

(B3) Combination of the methods sub (B1) and (B2) leads to the so~called
T*-method: for small t the upperbound is defined by the expected
rnumber of system failures and for large t by the steady state upper-—
bound; here T* is the instant at which the deviation of the expected
number of system failures becomes greater than that of the steady

state upperbound (cf. Lambert [11]).

(B4) Several authors (cf. Vesely [21], Barlow and Proschan [22], Calda-
rola [24]) suggest upperbounds for the system's lifetime distribution
F(t) by means of fault tree analysis., From these the approach taken
by Caldarola [24] is the more attractive ome in the author's opinion

(cf. chapter 5).

Next we review the calculation of the system availability.

Because a fault tree is a fault oriented graph the system unavazilability
Q(t)=1-A(t) is usually calculated instead of the system availability A(t).
Although an exact calculation of Q(t) is in principle possible, mostly
upper— and lowerbounds are calculated for Q(t). This because complex
systems often contain a large number of minimal cut sets which implies
that an exact calculation is very laborious if practically not impossible.

We summarize below the basic ideas in deriving the approximations.
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(C1) Minimal cut upperbound

Assume that the system (in fact the associated fault tree) has two
minimal cut sets M1 and Mz, respectively. The defined system failure

(TOP~event) occurs if at least one of the two minimal cut sets M] or

M, occurs. Denote by A1 the event "minimal cut set M, occurred at

instant t" and by Az the event "minimal cut set M2 occurred at in-
stant t". Then the probability Q(t) of system failure at instant t

is defined by:
Q(t) = Pria U Al (1.9)

An upperbound for Q(t) can be derived as follows. First note that
for the present case Pr{AIﬂAZ} > Pr{AI}Pr{AZ}, because both minimal
cut sets may share at least one basic event, whereas if they do not

Al and A2 are independent. Hence

i

Q(t) Pr{Al} + Pr{Az} - Pr{AlﬂAz}

A

Pr{Al} + Pr{Az} - Pr{Al}Pr{Az}

1 - (l-Pr{ﬁz})(l~Pr{A2}) = Qu(t), (1.10)

where Qu(t) is called the minimal cut upperbound.

Note that Q(t)=Qu(t) in the case that the minimal cut sets Ml and
M2 are mutually independent, i.e. if they do not share components.
By means of the minimal path sets a lowerbound for the system un-

availability can be obtained.

(C2) The inclusion-exclusion principle

The probability in the right hand side of (1.9) can be developed into:

Q(t) = Pr{A]} + Pr{Az} - Pr{A]ﬂAz}, (1.11)

from which it follows that:

Q,(t) = Pr{AI} + Pr{Az} > Q(t).

If rather small component unavailabilities are used, the upperbound
Qu(t) for the system unavailability Q(t) will in general be a good

M_ and

approximation. In the case that three minimal cut sets M], 2
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M3 are present in the system and Ai denotes the event "minimal cut
set Mi occurred at instant t" then the system unavailability Q(t)

is given by:

i

Q(t) Pr{AIUAZUAB}

I

Pr{A]}+Pr{A2}+PI{A3}-Pr{A1ﬂA2}-Pr{AIﬂA3} (1.12)

Pr{AzﬂA3}+Pr{A1ﬂAzﬂA3}

An upperbound Qu(t) and a lowerbound Qi(t} for the system unavail-
ability Q(t) are obtained using inequalities that are described in

Fréchet [28]:

Qu(t) Pr{A1}+Pr{A2}+Pr{A3} > Q(t)

Ql(t) Qu(t) - Pr{AlﬂAz}—Pr{AlﬂA3}*Pr{A2ﬂA3} s Q(t)

This procedure 1s called the Znelusion—exclusion principle.

In the present study this inclusion-exclusion principle is the

technique used in deriving upper— and lowerbounds.

1.2.2. Event tree methodology

An event tree is an inductive logic diagram. The diagram starts with a
given initiating event and shows various sequences of events leading to
multiple-outcome states (cf. step (iii) in section 1.1.2.).

With each state is associated a particular consequence (ef. step (vi)

in section 1.1.2.).

The event tree methodology is a very useful tool in identifying signif-
icant accident sequences, such as for instance those which are associated
with nuclear power plant accidents. It also provides the necessary frame-—

work for the overall risk assessment by (cf. Lambert [11]):

( i ) providing a basis in defining accident scenarios for each initiating

event,

(ii ) by depicting the relationship of success and failure of safety

related systems associated with various accident consequences,

(iii) providing a means defining TOP-events for system fault trees.
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A simple event tree for a given initiating event is depicted in fig. 1.3.
i and 82 are involved
2 has to become operational after system S]. If the
systems S1 and 82 are asked to become operational and to perform their
intended functions, they may succeed (S) in performing that function or

With respect to the accident sequence two systems S

such that system S

they may fail (F). The probability that system S1 fails is denoted by q;-

This implies that the probability that system S, succeeds equals l—ql.

1

SYSTEM SYSTEM PROBABILITY OF
S S, OCCURRENCE
1~q2
N ~ 1-q -
1-q, S CONSEQUENCE 1 1-q,-q,
S F
- CONSEQUENCE 2~ gq
INITIATING 9 2
EVENT ] 1-q
2
. . CONSEQUENCE3  ~ q,
99 F
= CONSEQUENCE 4 9195
2

FIG.1.3. SIMPLE EVENT TREE.

In general a failure of system S, 1s dependent on the state of system S

2
because of system dependencies. If system §

1

I does not fail the probability

is denoted by Ay and if system 5, fails it is

are independent

of failure of system 82

given by q.. In the case that system and system
i b é In th h S, and S

1
(do not share components) then qé equals qy-

2

In fig. 1.3. the probability of occurrence is denoted behind each accident
sequence. The consequences are not explicitly given but only numbered.

The probability of occurrence of each branch, i.e. each accident sequence,
is simply obtained by multiplying the failure or success probabilities of
the systems in that branch. For instance the probability of occurrence of
consequence ! is given by (l-ql)(l—qz)md-ql-qz, if the probabilities q,
and q, are sufficiently small,

Note that the calculated probabilities in the example of fig. 1.3. are

conditional probabilities with respect to the initiating event.
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For a risk assessment the absolute probabilities have to be calculated,
i.e. the conditional probability of each branch has to be multiplied
with the probability of occurrence of the initiating event (like an
explosion, a fire, etc.).

Assume that system S1 in fig. 1.3. is the system of fig. 1.1. and the

system S, is given by the functional block diagram of fig. 1.4.

2
Fig. 1.5. represents the fault tree belonging to the system of fig. 1.4.
Note that system S1 and 82 have common components, viz. A and B. It is

obvious that system S, fails if at least one of the two components A or

2
B fails.
A B
—+—1 TOP_EVENT
SYSTEM S;

FIG. 14. FUNCTIONAL BLOCK- FAILED

DIAGRAM OF SYSTEM S .

+

COMPO -
NENT A
FAILED

FAILED

FIG.1.5. FAULTTREE FOR SYSTEM S».

Therefore the minimal cut sets N] and N2 of the fault tree of system 82

are given by:

N, = {Al,
(1.13)

N, = {B}.
From the minimal cut sets of system S, in (1.1) and of system §_ in (1.13)

1 2
it is seen that there is a strong dependence between the two systems.

For example, if the minimal cut set M, of system S  occurs, it introduces

1 1

the occurrence of minimal cut set NI of system 82 because both cut sets



-3 6=

are identical: M =NI={A}. The same is true for M, with respect to N

] 2 2°

Here Mz contains a minimal cut set of system 82, i.e. N2={B}. So in this

special case a failure of system S, leads with certainty to a failure

1

of system S,. Therefore branch 3 of the event tree in fig. 1.3. can not

ocour in this special example. We have just treated the case that a total
system failure of one system can lead to a total system failure of a sub-
sequent system. But also a partial system failure, e.g. a failure of a part
of the system which does not hamper the system performapnce, can introduce
this phenomenon. In our example of the two systems S, and S, it is clear

i 2

from the minimal cut sets M] and M, that if the components A and C do not

2

fail during the operational time interval of system S, but component B

1
does fail then minimal cut set N, of system S, is introduced which means

that system 82 is failed. ? :

In the past the analysis of total or partial system failure of one system

caused by total or partial system failure of another system has been based
mainly on engineering judgement. The methodology developed in the present

study analyzes these phenomena exhaustively.

Up to now only static event trees have been developed. This means that
within the event tree no instants at which the several systems are demanded
for operation, and neither time intervals during which the several systems
have to perform their intended functions are incorporated. Only functional
sequential arrangement is taken into account. However, the need for dynamic
event trees, i.e. event trees which contain the mentioned time dependent
aspects, is still growing, especially after the incident at Three Miles
Island.

The methodology of the present study can treat both types of event trees,

1.e. 1t 18 able to treat static as well as dynamic event trees.

1.2.3. Phased mission analysis

A first formal mathematical description of the phased mission problem is
given by Ziehms [15]. Because that description is clear and contains also
some model assumptions we present it here:

"A system consists of several components. The components perform indepen—
dently of each other, and each of them can be in one of two states,

functioning or failed. No component can be repaired or replaced, and each

component has a life. The system performs a mission which can be divided
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into consecutive time periods, or phases. During each phase it has to

acecomplish a specified task. From the system configuration (a subset of

the components and their functional organization which can be represented,
for imnstance, by a block diagram or a fault tree) changes from phase to
phase. As 1s the case with individual components, only two states of the
system are recognized, functioning or failed.

With this situation in mind, the problem <tself can be stated as:

Given the survival characteristics of the components, the relevant system
configuration in each phase, and the duration of the phases, what is the
probability that the system will function throughout the mission, Z.e.

the misston reliability for the system 77

Now assume that a system S has to perform a phased mission that consists

of two phases, a phase 1 during which subsystem S, (a subset of components

1
of system S with their logical relationship) has to perform its intended

function and a phase 2 during which subsystem S, has to carry out its in~

2
tended function. Then the time schedule for this phased mission is as

depicted in fig. 1.6. The mission starts at instant t=0. The first phase

ends at instant Tl at which the second phase starts. The second phase

terminates at instant TZ' So the duration times of phase 1 and phase 2

are Tl and Tz-TI, respectively.

t
: SYSTEM S OPERATIONAL SYSTEM S, OPERATIONAL :

IL"—'_— PHASE 1 - PHASE 2——————-}
| ! |
0 | T, T,

TIME =i

i

FIG.16. PHASED MISSION TIME SCHEDULE FOR A PHASED MISSION WITH
TWO PHASES.

The main characteristic of the methodology provided by Ziehms [15] is that
it transforms a multi-phase mission to a single phase mission, i.e. the
several subsystems of each phase are transferred into one functional series
of systems. Speaking in terms of fault trees it transforms the separate
fault trees of the different phases into one fault tree of which the TOP-
event is an OR-gate with the TOP-events of the different fault trees as

inputs.
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To obtain such a transformation from several systems to one system a
component transformation has to be accomplished. With the assumption that
no repair of a component is allowed, so that its life in phase 2 is de-
pendent on the state of the component at the end of phase 1, such a trans-
formation is realised as follows.

Assume that component ¢ is present in subsystem 52’ that operates during
phase 2. Then replace component c in phase 2 by a series system of pseudo-
components ¢, and c¢,. Pseudo~component ¢

1 2 1
tribution of component ¢ and pseudo-component <, has a lifetime distribution

has the original lifetime dis-

that is conditional to the survival of component ¢ of phase 1, i.e. <y
possesses the residual lifetime distribution of component c.

Ziehms proves that the thus constructed single phase system has the same
reliability as the multi-phase mission. Further he derives an upper- and

a lowerbound for the mission reliability by means of this methodology.

In a later paper (cf. Ziehms [14]) he derives new upper- and lowerbounds

by means of "cut set cancellation'" and the so-called "hazard transform'.
Bell [1] is the first one who treats phased missions of maintained systems,
although inspection and repair is only permitted during the operational
readiness phase (OR-phase), which is the time between the installation of
the system and the start of the phased mission. For the probability cal~-
culations during the phased mission itself he applies the methodology
suggested by Ziehms and therefore the only difference with respect to the
method of Ziehms is that the probability that a component is in the function
state at the start of the mission at instant T0 (see fig. 1.7.) is not by
definition one but may be smaller than one.

On the other hand Bell [1] treats in his study phased missions with mul-
tiple objectives (see chapter 8).

f 5 S1 ' S2 f

| |
he———0R PHASE »le— PHASE 1 --——{-- PHASE 2 —-—{

L | |
0 To T T

TIME =t

FIG. 1.7 PHASED MISSION TIME SCHEDULE FOR A PHASED MISSION WITH TWO
PHASES AND AN OPERATIONAL READINESS PHASE.
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Concerning the methodology suggested by Ziehms the following remarks

can be made:

(1)

(D2)

(D3)

if the correct input data for the components are available then the
mission reliability can be calculated by standard methods that are

available for single system analysis (see section 1.2.1.):

the introduction of pseudo-components gives rise to a substantial
growth in the number of components, especially in the case of large
systems., This large number of created components can lead to practical
intractable problems, despite reduction methods such like cut set

cancellation;

the method is only applicable for systems that consist during the
mission of non-repairable components. We shall demonstrate this by
the following argument: assume that a component is repairable during
the phased mission. Assume further that the component fails in phase
j}, that the failure of the component is detected and that repair
finishes within phase jz, j2>j]. So the component starts a new life
somewhere in phase jz. If the component is also present in the later
phase k, k>j2>j1, then it should have been replaced in the kth phase
by k pseudo-components in case of no repair. But in our situatiom
(repair applied) it has to be replaced by k—j2+1 pseudo-components.
This argument shows that the number of pseudo—components for a phase
in case of a repair procedure is no longer a fixed number. Therefore,
the component transformation as suggested by Ziehms can no longer

be easily applied.

Clarotti et al [26] treat phased missions with repairable components by

means of the theory of Markov chains as well as by applying fault tree
analysis. In their model on—-line repair is allowed during the OR-phase

and during the mission itself. They point out that for their model the

analysis by means of Markov chains leads to an exact solution with respect

to the probability of mission success, whereas by the application of fault

tree analysis an upperbound is obtained for the probability of mission

failure. Some aspects of their model give rise to the following remarks.

(D4)

By means of fault tree analysis an upperbound for the probability
of mission failure is obtained, but they do not produce a lowerbound

for the same quantity. This implies that no insight can be obtained
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. . e+, .
in the deviation with respect to the exact solution.

(D5) * A number of conditional probabilities are very roughly approximated
by one.
* Tt is assumed that in some cases the mean repairtime is small when
compared to the phase duration times. This is not always the case.
For instance in case of a LOCA for a BWR (see chapter 2) the first

phase lasts half an hour whereas the mean repairtimes are longer.

(D6) From their model description it is not clear which inspection proce-

dures are applied during the phased mission itself.

Fussell [27] treats in his report the availability, the reliability, the
expected number of failures and importance eriteria for a phased mission
that contains systems with repairable components. As in the model of
Clarotti et al [26] it is assumed that on~line repair is possible. Con-

cerning his approach we make the following remarks.

(D7) Only upperbounds are provided for the unavailability during the
mission and for the probability of mission failure; therefore no

. . . . . P
calculation is possible with respect to the deviation .

(D8) The methods used for the approximations in (D7) are rather rough and

the dependencies between the systems are not fully taken into account.

(D9) The calculation of the expected number of failures of the whole sys-
tem during the mission, which implies probability calculations at
epochs at which phases terminate and start, is very laborious.
Further, minimal cut sets as well as minimal path sets are required

for the calculation.

Other authors that have treated phased mission analysis are Cambell [33]
and Montague [34]. Their model assumptions and results are presented in
the report of Fussell [27].

Furthermore we mention the papers by Esary [6], Burdick et al [2] and
Pedar and Sarma [35].

Finally, we like to make a remark that holds for the models of all the

mentioned authors that have discussed phased mission analysis:

+ . .
deviation means the difference between the upper- and lowerbound for the

probability of mission failure (or success).
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(D10) The definition of a phased mission as given by Ziehms at the be-
ginning of section 1.2.3. is directed to phased mission reliability.
With respect to risk analysis this means that only the probability
of the occurrence of the upperbranch of an event tree (see fig. 1.3.)
is treated.
The other branches can not be evaluated by the analysis presented

by the authors mentioned above.

1.3. The present study

1.3.1. The motivation_for_ the present study

Fussell and Arendt [36] discuss in their paper on system reliability a
number of problem areas in engineering methodology. From their paper we
cite the following concerning dependencies in event trees, with regard

to our example of the event tree in fig. 1.3.:

(E1) "Usually only one fault tree is developed for a given system failure,
but sometimes more than one fault tree is needed. In the example

shown in fig. 1.3., 1f system S, succeeds, the fault tree for system

1
S2 could be different than that for the case when system S] fails™".

With respect to repair calculation we quote from the same paper:

(E2) "... therefore the techniques for treating components with other

than constant repair rules are tedious and theovetically unknown".

A final quotation of their paper concerns phased mission analysis:

(E3) "Present theoretical methods for analyzing phased missions are
limited. The need to be able to treat repairable systems undergoing

a phased mission is a problem that needs attention'.

A remark by Vesely and Levine from their paper "Prospects and
problems in risk analysis" which is contained in Fussell and Burdick

[37] reads:

(E4) "Reliability analysis is generally concerned with system operability
or unavailability. The question of functionability, t.e. whether the
system performs its requirved function when it operates, 1s generally

not treated probabilistically in such analyses. It is possible that,
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in some cases, functional analyses could show the likelihood of

functionability failure to be higher than operability failure, thus
invalidating a comventionally done reliability analysis.
Fortunately, most functionability analyses are done very conservati-
vely so that this is not likely to happen”.

These quotations lead to the following remarks.

(F1)

(F2)

(F3)

(F4)

(F5)

There are difficulties in treating the probability of occurrence

of every branch of an event tree (cf. (El)).

The available models in literature concerning phased mission analysis
need to be extended to systems that may be repaired during the mission
(cf. (E3)).

The correspondence between the branch of an event tree where every
subsystem successfully performs its required function and a

phased mission is not noticed in literature (cf. (E1) and (E3)).

There is a need for component models with unspecified lifetime and
repairtime distributions, i.e. a model not especially based only on
negative exponential distributed lifetimes and repairtimes (cf.

(E2)).

There exists a feeling that system reliability calculations in the
past have been performed in such a way that the results were nearly

in all cases conservative (cf. E4)).

The motivation for the present study stems from the remarks (Fl1),...,(F5).

The present study is mainly concerned with points (Fl1),...,{(F4). By the

results so obtained a discussion of point (F5) will be given.

1.3.2, The goals of the present study

The goals of the present study are strongly related to the problems that

are treated in the remarks (Fl),...,(F4). These goals are formulated as

follows:

(G1)

develop a general theory that treats the probability of occurrence
of each branch of an event tree and that takes correctly into account

the dependencies between systems;
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(G3)

(G4)
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incorporate within the general theory the solution of the problem
of phased mission analysis as it has been indicated in section

1.2.3.;

include in the general model components, that may or may not be
repairable, with general lifetime and repairtime distribution, i.e.

in the model repairable systems should be taken into account;

develop a computer program that is based on this general theory,
i.e. a computer program that is able to perform fully the proba-
bilistic calculations of a risk analysis and that can handle in a

correct way phased mission analysis of repairable systems.

1.3.3. The model and the applied methodology

1.3.3.1. Model assumptions concerning systems and components

Before discussing the methodology we shall first treat a more general

definition of a phased mission (cf. chapter 2). To state this general

definition we first need the model assumptions concerning systems and

components.

The model assumptions for a system are:

(H1)

(H2)

(H3)

it 1s assumed that each system is coherent, i.e. every component
is relevant to the system and a failing component does not lead to

a better system performance;

a system can be in one of two states; i.e. the fail state or the

function state;

no repair is allowed to a system when it is operational, i.e. no
on—-line repair is allowed. If during certain time intervals the

system is not operational then repair may be applied.

For components the following model assumptions are introduced:

(H4)

the successive lifetimes of a component, which occur in the case
that a component is subjected to a repair policy, are assumed to be
independent identically distributed variables. The same is valid

with respect to the successive repairtimes of the component;
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(H5) the lifetimes of the different components of a system are assumed
to be mutually independent stochastic variables. The same holds for
the repairtimes of the different components. Lifetimes and repair-—

times are assumed to be independent;

(H6) each component can be in one of two states, i.e. the faZl state or

the function state;

(H7) it is assumed that when repair of a component has been completed

the component is as good as new and starts a new life.

1.3.3.2. The extended definition of a phased mission

According to assumption (H2) it is seen in fig. 1.3. that within an event
tree both states, i.e. the function state and the fail state, of a system
may occur and each of them give rise to another branch. For instance, the

function state of system S, in fig. 1.3. provides branch 1 and 3 whereas

2
the fail state initiates bramch 2 and 4. From fig. 1.3. it is clear that

branch 1 occurs if system S, as well as system S, succeed, whereas branch 2

1 2
occurs if system S] succeeds and system 82 fails., If we assign to each

system Sj a binary variable uj such that:

u., = 1, if gystem Sj succeeds,
(1.14)

0, if system Sj fails,

then each branch of the event tree in fig. 1.3. can be described by means

of the two variables u, and Uys e.g. branch 1 is defined by u1=1 and u2=1

and branch 3 by u1=0 and u2=1, which will be denoted in the following by

{u]=1,u2=l} and {u1=0,u2=1}, respectively.
Assume that the initiating event of the event tree in fig. 1.3. occurs

at instant TO and that in order to handle the consequences of this initial

event system S1 has to function from TO to T] and system S2

from Tl to T2. In fact we now have identified branch 1 (system Sl and sys—

subsequently

tem 82 survive) as a phased mission with the time schedule of fig. 1.7.,
i.e. the time interval [O,TO] can be considered as the OR-phase and the
time intervals [TO’Tl] and [TI’TZ] can be defined to be phase 1 and phase 2.
Branch 2 of the event tree in fig. 1.3. is obtained if system S1 survives

the interval [TO’TI] and system S, is in the fail state at instant T,
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or functions at instant Tl and fails during the time interval (TI’TZ]'
Because there is a strong correspondence between branch 1 and branch 2

it is reasonable to define branch 2 also as a phased misgion. Since the
definition of a phased mission as given in literature (see section 1.2.3.)
does not cover this special situation, we have extended it. This extension
is mainly concerned with the task of a system, viz. system Sj survives 1its
phase or fails during its phase. The survival of system Sj is indicated by
uj=1, whereas its failure is denoted by uj=0. Because each branch of an
event tree can be characterized by such a sequence of u%'s as

defined by (1.14), the general definition of a phased mission can be for-

milated as:

a sequence of uj's, J=1,2,...,K, K being the number of phases
and uj being a binary variable that indicates whether system (1.15)

Sj survives or fails during its phase, is called a phased mission.

With definition (1.15) every branch of an event tree is now defined to
be a phased mission. In our example of the event tree in fig. 1.3. four
phased missions can be identified, i.e. {u1=1,u2=1} (branch 1), {u

(branch 2), {u1=0,u2=1} {(branch 3) and {ui=0,u2=0} (branch 4).

1=1,u2=0}

phased mission

Denote by:

Sj(Tj) : the event that system Sj survives the time interval

IT Tj]’ i.e. system Sj survives phase j;

j-1’

(1.15)

S.(T.) : the event that system Sj is failed at instant Tj—]

or that system Sj functions at instant Tj—l and fails
during the time interval (Tj—l’Tj]’ i=1,...,K;
K being the number of systems that occur in the phased

mission.

As an example we take the event tree of fig. 1.3. with system S1 given

by the fault tree of fig. 1.2. and system S, by the fault tree of fig. 1.5.

2
The minimal cut sets of the systems S] and 82 are given by (1.1) and (1.13),

respectively.
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The calculation of the probability of mission success for the phased
mission {u1=1,u2=1}, i.e. the probability of occurrence of the upper-
branch of the event tree, is identical to the calculation of the prob-

ability that system S1 as well as S, survive their respective phases.

2
With (1.15) we get for the probability MO(TO) of the occurrence of the

upperbranch of the event tree:
MO(TO) = Pr{u1=1,u2=l}

= Pr{SI(Tl) n SZ(TZ)}
(1.16)

I - Pr{SZ(TI) U SZ(TZ)}

[

1 - [Pr{S]ZT15} + Pr{SZZT25} - Pr{gliTli n §22T25}].

The probability MO(TO) of mission success in (1.16) is expressed by the
probabilities of single system failure and the probability of joint system
failure. Because no repair is applied to a system when it is operational
(assumption (H3)) the Pr{Sl(Tl)} is simply the system availability of sys-
tem S, at instant T,, and therefore its complement Pr(§ITT;T} is the system
unavailability at instant T, Also Pr{@ETTET} is the system unavailability
5 at instant T2. Denote the occurrence of the fail state of the

) by A(TI)’ B(Tl) and C(T]), respectively.

components A, B and C at instant T
The single system unavailability is treated insection 1.2.1. It then follows

of system S

by the use of (1.1) that:

Pr{SIiTIS}

H]

Pr{A(TI)U(B(Tl)ﬂC(Tl))}

Pr{A(Tl)}+Pr{B(T1)ﬂC(T1)}*Pr{A(Tl)ﬂB(T])QC(TI)}

(1.17)

Pr{A(Tl)}+Pr{B(T1)}Pr{C(T1)}

- Pr{A(Tl)}Pr{B(Tl)}Pr{C(TI)} s

the second equality sign based on the mutual independencies of the compo-
nents. Denote by qA(t), qB(t) and qc(t) the unavailabilities of the com-

ponents A, B and C at instant t. Then relation (1.17) becomes:

Pr{SI(T15} = qA(Tl)+qB(T1)qC(T1)-qA(Tl)qB(TI)qC(Tl) . (1.18)
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In the same way we get:
Pr{sthzj} = 9, (T,)+q(T,)~q, (T,)q (T,) . (1.19)

Remains to develop in (1.16) the probability of joint system failure,

i.e. Pr{S](TI) n SZ(TZ)}. Because of assumption (H3) we obtain with (1.1)
and (1.13):

[

Pr{Sl(Tj) N SZ(TZ)} Pr{(MIUM2)n(NIUN2)}’

]

Pr{(Mlan)U(MinNZ)U(Manl}U(MZONZ)}’ (1.20)

with the occurrence of Ml and MZ related to instant TI and that of N1

and N2 related to instant TZ' The development of (1.20) leads to

(cf. (1.10})):

Pr{Sl(Tl)ﬂSZ(Tz)} = Pr{MlﬂN :+Pr{MlﬂN2}+Pr{MzﬂNl}+Pr{M20N2}

1

= e Pr{MlanﬂNlnNZ} s (1.21)

with the terms containing the two~fold and three-~fold intersections not
explicitly written down because no further information concerning the

applied method is gained from them,

Because the minimal cut sets Nl and N2 appear in a later phase, i.e.

phase 2, than the minimal cut sets Ml and M2 which occur in phase 1, the

probabilities in (1.21) are conditioned to minimal cut sets that appear

in phase 1:

Pr{s (T NS, (T )} = Pr{Nl1M1}Pr{M1}+Pr{N2|M1}Pr{Ml}
+ Pr{Nl[MZ}Pr{MZ}+Pr{N2IMZ}Pr{Mz}— e

- Pr{NlnN2[MlﬂM2}Pr{MIQM2} . (1.22)

The next step is the replacement of the minimal cut sets in (1.22) by
the components which are contained in them. Therefore we get with (1.1)
and (1.13):
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Pr{S TT N5, (TJ} = Pr{A(T,) |A(T ) JPr{A(T )}

+ Pr{B(Tz)lA(T])}Pr{A(Tl)}

+

Pr{A(Tz)IB(TI)HC(TI)}Pr{B(Tl)nC(Tl)}

+

Pr{B(Tz)}B(T])nc(T])}Pr{B(T])HC(TI)}

Pr{A(Tz)ﬂB(Tz)]A(Tl)ﬂB(TI)OC(Tl)}

. Pr{A(Tl)ﬂB(T])ﬂC(Tl)} . (1.23)

Because of the mutual independence of the components and with qA(T]) =
Pr{A(Tl)}, etc. we obtain finally for the probability of the joint failure

of system S, and system S

1 2°

Pr{S (T NS, (TJ} = Pr{A(Tz)iA(Tl)}qA(T1)+qA(TI)qB(T2)
+ q, (T ap(T )q(T))
+ Pr{B(Tz)]B(Tl)}qB(Tl)qC(Tl) - ...
- Pr{A(T,) |A(T ) }Pr{B(T,) |B(T )}

- 4, (TPap(T 2 (T (1.24)
with Pr{A(TZ)]A(Tl)} being the conditional probability that component A
is in the fail state at instant T, whenever that component A was in the

2
fail state at instant T..

1
From the relations (1.16), (1.18), (1.19) and (1.24) it is seen that the
probability MQ(TO) has been completely reduced from system unavailabilities
to absolute and conditional component unavailabilities. This implies that
if the component unavailabilities arve calculated the probability Mb(TGJ
of mission success for the phased mission {uzzz,ugrz} is completely

determined.



-4 G-

Note that the applied method reduces system dependencies (e.g. at the

phase boundaries) to component dependencies. This means that the probability
calculations for complex system behaviour are reduced to probability calcu-
lations of single compoment behaviour, although intricate component models

are needed to calculate single component behaviour (cf. section 1.3.3.4.).

The probability Mz(To) of mission success for the phased mission {u1=1,u2=0},

i.e. the probability of occurrence of the second branch is given by:

n

MZ(TO) Pr{Sl(Tl)nSZZTZS}

Pr{SziTzi} - Pr{sl(Tl)nSZ(TZ)} . (1.25)

From (1.25) it is seen that Mé(Tg} 18 obtained by a relation which con-
ststs of a number of terms that also occur in (1.16). This implies that
if T, and T2 ave the same for (1.18) and (1.25) then the probability
Mg(To) of mission success for branch 2 and Mj(T0) ean be calculated

simultaneously.

By the same method as applied to M2<T0) we obtain for the probability

MB(TO) of occurrence of branch 3:

M3(TO) = Pr{SliTli} - Pr{SI(Tl)nSZ(TZ)} s (1.26)

whereas Mﬁ(To) = Pr{SI(Tlfﬂsz(Tz)}. In practical situations, i.e. for
large systems, the technique of calculating the various branch probabil-
ities is too laborious, Therefore upper— and lowerbounds are needed for
the probability of mission success. They are obtained by the inclusion-

exclusion principle (see section 1.2.1.(C2)).

As a final remark we can state that with the extended definition of a

phased mission the probability of mission success for every phased mission
as defined in existing literature as well as the probability of occurrence
of every branch of an event tree can be obtained by the application of the
above mentioned methodology which takes fully into account existing system

dependencies.
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1.3.3.4. Component behaviour during a phased mission

As it has been shown in section 1.3.3.3. the component unavailabilities
are basic for the calculation of the probability of phased mission success.
Component models are developed in the present study in order to obtain the

component unavailabilities during the mission.

Consider a phased mission that consists of four phases. The mission starts
at instant TO and the endpoints of the phases 1, 2, 3, and 4, are marked
by the instants Tl’ T2’ T3 and Tg‘

During each phase a system is operational, i.e. system S] is operational
during phase 1, etc. Now assume that a component is part of the systems
SI’ S3 and 54 and does not belong to system SZ' This means that the com~
ponent has to be operational during phase 1, phase 3 and phase 4 and is
dormant during the OR-phase and phase 2. So the time schedule of the
component contains a first dormant part (OR-phase), a first operational
part (phase 1), a second dormant part (phase 2) and a second operational

part (phase 3 and phase 4). This situation is shown in fig. 1.8.

1T PERIOD . 2"PperiD

OPERATIONAL . T :
1 t | |

DORMANT ' — ! !
TIME ——

FIG.1.8. COMPONENT OPERATIONAL DURING THE FIRST, THIRD AND
FOURTH PHASE.

Because a dormant part and its subsequent operational part together form
a recurrent phenomenon we introduce the notion a perzod of a component,
i.e. starting at the instant t=0 the first period consists of the first
dormant part together with the following operational part, etc. (see
fig. 1.6.). From assumption (H3) it is obvious that during the dormant
part of a period of a component that component may be repaired if it is
in the fail state, but that during an operational part of a period no

repair may be applied to the component.
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The notion "period of a component” is basic for the treatment of the
component unavailability during a phased mission.
With respect to maintenance procedures to which a component may be sub-

jected the following classes of components are considered in this study:

class 1 : components that are not inspected and therefore

they may be considered as non-repairable;

class 2 : monitored components, i.e. compoments that are

continuously inspected;
class 3 : components that are inspected at random times;

class 4 : periodically inspected compoments.

For each of these classes of components formulas have been developed for
the component's unavailability for the case of unspecified lifetime and
repairtime distributions.

Because the component models for a phased mission are rather complicated
they are not further discussed here. For a detailed treatment see chapter

4 of the present study.

1.3.3.5. The reliability computer program PHAMISS

For the general theory as presented in this study the reliability computer
program PHAMISS is developed. Single systems as well as phased missions can
be treated by PHAMISS.

PHAMISS consists of several program sections, viz.:

FAULTTREE (minimal cut set determination)

PROBCAL (availability calculations for a single system

as well as for phased missions)

i

TMPCAL (importance calculations)

COMMODE (common cause determination)

The program section FAULTTREE is basic for further calculations by PHAMISS.
FAULTTREE generates the minimal cut sets of a single tree or, in case of

a phased mission, the minimal cut sets of several trees (up to 10).
FAULTTREE is based on bit manipulatiomn, i.e. for each basic event and each
gate one bit is needed to represent the event. For each fault tree the
basic event failure data (if available) and the minimal cut sets of the

fault tree are automatically stored on a permanent device by FAULTTREE.
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From this "save" file further qualitative and/or quantitative analyses

can be perfprmed. Each of the program sections PROBCAL, IMPCAL and COMMODE
can be handled together with FAULTTREE or separately. In the last case a
"save' file produced by FAULTTREE must be available. As a speciale feature
for each of the program sections the used CP and I0 times are printed in
the output.

The limiting number of basic events and gates together is 4095; there is

no limit on the number or size of the minimal cut sets.

The following classes of components are accepted by PROBCAL:

non-reparaible;

monitored;

randomly inspected;

periodically inspected EXSTTU (not accessible during inspection);
periodically inspected INSITU (accessible during inspection);

constant unavailability}

* ¥ ¥k ¥ ¥ x ¥

constant unavailability during the dormant phase and non-repairable

during the operational phase of the mission.

PHAMISS calculates for a single system the time dependent unavailability
and for a phased mission an upperbound for the probability of mission
success and (optional) the deviation in the upperbound. The input for
PHAMISS is free formatted and user friendly. An exclusive error checking
is performed on the input and throughout the whole program.

The program is written in the language FORTRAN-IV for a CDC Cyber—175
computer system. For the program segmented loading is applied. The reli~
ability computer program PHAMISS is developed at ECN (Netherlands Energy

Research Foundation).

1.3.3.6. The results of the present study

The main results are:

(I1) the introduction of a general model for the treatment of phased
missions as well as for every branch of an event tree and as such

the model may have its applications in the following fields:

* risk analysis (probabilistic treatment of event trees);

* gpace travel (each space vehicle performs a phased mission);
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* aircraft industry (each aircraft performs during a flight a
phased mission, e.g. with take-off, cruise flight and landing
as possible phases);

* comparison studies for alternative technical systems that have
to perform complex tasks;

* efficiency and reliability testing of rescue scenarios which
in fact are phased missions;

* economic planning;

* warfare (battle strategies can be considered as phased missions).

(I2) an effective analytical technique that allows the calculation of
the probability of phased mission success of the model in (I1).
The presented approach shows, within the model assumptions (H1),...,

(H7), that:

* in principle an exact solution can be obtained for the probability
of phased mission success;

* each branch of an event tree can be considered as a phased mission
and therefore it can be treated as such;

* partial system failures, i.e. failures within the system that do
not introduce the TOP-event, are correctly taken into account within
the calculation of the probability of mission success;

* if the probability of occurrence of the upperbranch of an event
tree (the branch where every system succeeds) is calculated, and
if all the phase duratiom times are the same for every branch, then
the probabilities of occurrence of all the other branches can be
caleulated simultaneously. If an upperbound for the probability of
occurrence of the upperbranch is only needed the latter statement
is partially true; then the probabilities of occurrence for branches

with exactly one failed system are calculated too.

(I3) a reliability computer program called PHAMISS has been developed on

the basis of a general model.

Chapter 1 serves as an introduction to the problem area of phased mission
analysis. Starting with a brief review of reliability and risk analysis
(the frame work for the present study), the basic concepts of system reli-

ability, fault tree analysis and phased mission analysis are presented in
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so far as the present study deals with such notions and concepts.

The last section of this chapter presents an overview of the present

study, its results and its fields of application.

Chapter 2 is fully devoted to the description of the phased mission model
that is treated in the present study. The motivation for and the description
of the model assumptions are treated in detail. The basic notion a period
of a component is introduced as well as the extended definition of a phased
migssion. The possibility of several maintenance strategies leads to the
introduction of four compcneht classes, i.e. non-~repairable components,
continuously inspected components, randomly inspected components and
periodically inspected components.

Chapter 3 treats the availability of each of the four classes of components
during the OR-phase, i.e. during the time between t=0 and the start of the
phased mission. The obtained results are general, in so far as the lifetime
and repairtime distributions need no specification. A new model is intro-
duced for components subjected to periodical inspection. This model differs
from the other models in literature because of its repairtime distribution.
In this new model it is assumed that the repairtime is a stochastic vari-
able. In former models it is assumed to be a constant. For a number of
specified lifetime and repairtime distributions the component availabilities
are explicitly calculated (see table 3.1.). These calculations are described
in appendix B.

Chapter 4 is an extension of chapter 3 in so far that it discusses for each
of the four classes of components the availability during the phased missiomn.
The results of this chapter are new. Basic for the component's availability
calculation is the period of a component. General formulas are obtained for
the components availability, the most intricate one being that for a con-
tinuously inspected component. The unavailability of such a component can be
calculated by means of a recursive relation.

For the case of a negative exponential distributed lifetime and repairtime

a general analytical solution is obtained from this recursive relation.
Because in general no analytical solution can be obtained for this recur-
sive expression a procedure is suggested in section 4.3.4.2.2.(c). by

which the availability of the component can be calculated for the kth period.
This procedure can be applied for a component with an Erlang-2 lifetime
distribution and a negative exponential distributed repairtime.

For components that are randomly inspected and also for those that are



-5 5m

periodically inspected some special assumptions are introduced to avoid
unrealistic situations. For each of these two classes of components ex-
plicit analytical solutions are obtained, in both cases illustrated for

a negative exponential distributed lifetime.

Chapter 5 concerns fault tree analysis. It treats the qualitative part,
i.e. the construction of the fault tree and the determination of minimal
cut sets and minimal path sets, further the quantitative part concerning
the system unavailability, the lifetime distribution and several measures
of importance are considered.

Chapter 6 deals with a general theory of phased missions, the results of
this chapter are new. As an introduction to the general theory first a

very simple system performing a phased mission is treated. For this example
the methodology is completely written out. An exact solution and upper-
bound with associated deviation are obtained for the probability of mission
success (mission failure for the upperbranch of the event tree) of each
branch of the constructed event tree. The discussion terminates with a
numerical evaluation. The second part of this chapter treats the general
methodology for phased mission analysis as suggested by this study.

The methodology is based on fault tree analysis (see chapter 5). The
probabilistic treatment of a phased mission (branch of an event tree )

is carried out by means of the following steps:

( 1 ) the probability of mission success is reduced to a simple expression
that contains all probabilities of single system failures and of

all joint system failures;

(i1 ) the probabilities in step (i) are reduced to the probabilities of
occurrence of the minimal cut sets of these single and joint system

failures;

(iii) based on the assumptions that the component's state variables are
mutually independent random variables the probabilities of the
occurrence of one or more minimal cut sets {from one or from more
systems) are reduced to the absolute and conditional component un-—

availabilities;

(iv ) by applying the results of chapter 4, i.e. the calculation of the
component unavailabilities, the probability of mission success

can be obtained.
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The last part of this chapter treats as an example a loss of coolant
accident for a Boiling Water Reactor. The example is taken from Burdick
et al [2].

In chapter 7 a short description is given of the reliability computer
program PHAMISS that has been developed on the basis of the general
methodology as described in the present study. For a detailed descrip-
tion of PHAMISS see Terpstra and Dekker [39].

Chapter 8 contains the conclusions of the present study and recommenda-
tions for further work in the field of System Reliability with respect
to Phased Mission Analysis.

Appendix A treats the renewal function and residual lifetime distribu-
tion of a renewal process without repair in the case of the general Erlang-
lifetime distribution and Appendix B contains specifications for several
lifetime and repairtime distributions of the quantities discussed in

chapter 3.
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2, THE MODEL

2.1. Introduction

A set of components together with a functional organization (relation-
ship) of these components shall be called a system, a specific functional
organization of these components will be denoted as a configuration.

This functional organization of the components may be represented by a
reliability network diagram or a fault tree, see Lambert [11]. (In this
report we shall only use fault trees, see chapter 5).

The system is said to perform a mission if during a determined time period
the system has to carry out a task. Suppose that the time period can be
divided into consecutive time intervals, such that the system has to
accomplish a specific task and its configuration does not change during
such an interval. Then such an interval will be called a phase of the
mission; the components and their specifiec functional organization present
during a phase will be referred to as a subsystem. Missions of this type
are known in literature as phased missions.

Actually, Phased Missions are encountered in many fields; the classical
example being the voyage of a space vehicle, and recently a theory of
Phased Missions has been developed for missions in space travel. The
theory may also be used for predicting the behaviour of technical systems
which have to perform a complex task. Other important fields are e.g.
testing the efficiency and reliability (performance ability) of scenarios
for rescue plans to control the effects of disasters such as the outbreak
of dangerous epidemics, earthquakes, large fires and water floods, and

in particular possible disasters connected with man made systems such as
nuclear power plants. Further it may be expected that the theory may have
its applications in economic planning, warfare and election campaigns.

It may be expected that the theory of Phased Missions will become an im~
portant tool in risk analysis, see e.g. chapter 6. Because the Phased
Mission problems are generally of a rather complex nature, we shall first
discuss a few examples. The first example considers a technical safety
system of a nuclear power plant, it is taken from Fussell [2]. The second
example treats a scenario for rescue organization in the case of water

floods, whereas the third example stems from analysis of military operations.
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Example 1: "Loss of Coolant" accident in a nuclear power plant.

For a Boiling Water Reactor (BWR) of a nuclear power plant a simplified
working scheme is sketched in fig. 2.1. Water is pumped via the condensor
through pipe B into the pressure vessel. The water flow passing the heat-

generating core vaporises

PRESSURE VESSEL TURBINE GENERATOR
PIPE A |/|
STEAM - @
S e W oY
CORE CONDENSOR
WATER
N D
— 3 ok
PUMP

FIG. 2.1. WORKING SCHEME OF A BOILING WATER REACTOR (BWR).

and steam leaving the vessel through pipe A drives the turbine; the
generator is powered by the turbine. The steam leaving the turbine is
cooled by the condensor (heat exchanger) and pumped back to the pressure
vessel.

A so-called "large' Loss of Coolant Accident (LOCA) occurs if suddenly

a hole appears in the pressurized system, e.g. due to a heavy pipebreak
of pipe B or A, The effect is that the cooling of the core is interrupted,
the temperature of the core becomes too high, and it may melt. Such an
event leads to very potentially dangerous consequences. A safety system
is needed. The mission of the safety system is to prevent overheating

of the core and escape of radio active material into the air. Such a
system for the BWR is sketched in fig. 2.2. This scheme is oversimplified
since we want to illustrate Phased Mission performance and not to discuss
a very complex system in detail. The safety system consists of the
Emergency Core Cooling System (ECCS), the Suppression Pool Cooling System
(SPCS) and the Residual Heat Removal System (RHRS).
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FIG. 2.2. THE SAFETY SYSTEM OF A BWR IN CASE OF A LARGE LOCA.

The first task is to prevent excessive heating of the fuel rods within

the reactor vessel immediately after the occurrence of a large LOCA.
Therefore the ECCS high and low pressure injection pumps pump water into
the vessel. By the very hot core a lot of this water is converted to
steam. This steam partially escapes from the reactor vessel. In that case
it is led to the suppression pool where it condensates. So the water in
the suppression pool is heated by steam. The second task in the mission

is now to cool the water in the suppression pool. The SPCS is the designed
system to carry out this task. It pumps the water through a heat exchanger
and then back to the suppression pool. Because the reactor supplies heat,
even when it has stopped generating power, the last task in the mission

is to remove this residual heat. It is done by the RHRS, that circulates
the water through the core, the suppression pool and the heat exchanger.
So each of the mentioned three steps is performed by parts of the total

safety system.
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So the mission consists of three successive phases:

Phase 1: Initial core cooling by the ECCS;

Phase 2: Suppression pool cooling by the SPCS;
Phase 3: Residual heat removal by the RHRS.

The mission is successful if every phase is successful, i.e. every
subsystem survives its appropriate phase. The three subsystems ECCS, SPCS
and RHRS are not disjoint. They share a number of components. Because this
example is treated extensively in chapter 6 we shall not discuss it further

here.

Example 2: Rescue scenario for a waterflood

When a serious flood appears the local population as well as the authorities,
the civil servants, the medical service, and so on, have to be alarmed.
The first concern is the rescue of lives and evacuation of livestock. This
means availability of communication facilities and organization of trans—
port. Also emergency provisions from further damage have to be initiated,
and the waterworks for the control of the waterlevel in the area have to
be adapted to the emergency situation.

In this example the "disaster plan" i.e. the mission, consists of pro-
tecting the lives of people in danger and to restore the inundated area.
The system configuration is here the scenario describing the actions to
be taken, their timing and the responsibilities and tasks of the various
"components" involved, in short the organization of the disaster plan.
During the mission we may distinguish roughly the following successive

phases:

- Phase 1: Alarming;
- Phase 2: Transport of people and material to the inundated area;
- Phase 3: Evacuation of people in danger and emergency provisions;

~ Phase 4: Restoring the inundated area.

For the phases mentioned above a subsystem is needed. Obviously no two
subsequent subsystems are identical. For instance, the subsystem function~-
ing during phase 3 does not contain pumps, as it is the case of the
subsystem treating phase 4. The mission carried out by the system is con-
sidered to be successful if all phases are terminated successfully, which

implies that every subsystem survives its phase.
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Example 3: Attack of an army group

Consider an army group composed of artillery, cavalry and infantry, each
of these sections formed by several smaller army units. The instruction
of the army group is to conquer a well defined goal in a fixed time periocd.
To conquer the goal two barriers defended by the enemy have to be taken.

The commander of the army group plans the following scheme to succeed:

- First transportation of his army group to a base from which
the operation should start;
- Next artillary fire on the first barrier of the enemy during
a certain time;
- Then cavalry and infantry should go forward to beat enemy
troops and take the first barrier;
— Subsequently artillery and part of the cavalry should open
fire on the second barrier;
- After this cannonade the whole infantry and part of the
cavalry must storm and beat the enemy resulting in the conquest

of the second barrier, the goal is reached.

Obviously the mission is here the conquest of the goal in a planned

time period. The components of the system are the commander, the various
army units of artillery, cavalry, infantry and the military equipment.
The system configuration consists roughly of the military organisation
and the strategy. Obviously, the plan described leads to a system with

five phases:

- Phase 1: Transportation of the army group to the base from which
the attack will start. The whole army group takes part
in this action;

~ Phase 2: The cannonade by the whole artillery on the first barrier
of the enemy;

~ Phase 3: The attack of cavalry and infantry on the first barrier.
This phase should be split up into more other phases if
not the whole of the cavalry and infantry attacks, but
combinations of parts of them (e.g. in order to get

a continuous strength of the attack);
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'~ Phase 4: Artillery and a part of cavalry together bomb the
second barrier of the enemy;

~ Phase 5: That part of cavalry that has not fired in the foregoing
phase and the whole infantry attack the second barrier

to beat the enemy and to occupy the goal.

For each phase the commander of the army group plans a time period so
that within the time he got, the operation has succeeded if all phases
are successful. Obviously, not every '"component” is operational in every
phase and the subsystems belonging to each of the phases can now be

easily described.

2.2. System and phase modelling

We consider a system S consisting of a number of components ci,i=1,...,N.
A subset of this set of components with the relevant components united

in a functional relationship so that it can carry out a well defined
task, will be called a subsystem of system §. The functional relationship
between the components of this subsystem will be called the configuration
of this subsystem.

Henceforth the subsystems will be indicated by Sj,j=l,...,K. It should

be noted that the sets of components of different subsystems are not
necessarily disjoint sets of components. The system S has been designed
to perform a task, that consists of K subtasks to be performed in a
prescribed order. Each of these subtasks is looked after by a subsysten
Sj of S. The time period a subsystem has to operate in order to perform
its task is called a phase. So phase j is the time interval needed by
subsystem Sj to execute part j of the task of system S,j=1,...,K. Let
system S be installed at time t=0, and suppose that S has to start its task
at t=TO,T0>0. Tj shall denote the end of the phase j, j=0,...,K. Instead
of the word task the term mission is often used and the time needed to
execute the mission is called mission time. So a mission is a task per-
formed by system S during a certain time interval. Because of the fact
that the time interval needed to perform the mission is split up into

a number of phases such a type of mission is called a phased mission.

Schematically the phased mission is sketched in the next figure.
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FiIG. 23. PHASED MISSION CONSISTING OF K PHASES.

During the time interval (O,TO) the system is in a dormant state.
This interval is often called the operational readiness-phase (OR-phase).
In the sequel it will be called phase 0. With this phase we associate

by definition the subsystem § {There is no need to specify components

0
and configuration of SO).

A change from phase j to the next one j+! is caused by the fact that
there 1s a change in the configuration of system S, i.e. the subsystems

4] are nmot identical. Such a change may be caused by alterations

of the hardware and/or of the working mode of one or more components.

S. and S.
3 J

Changes in the hardware means removing or adding components, whereas
changes in the functional relationship of the component means alterations
of their working mode. An extreme example for the first case occurs if the

subsystems Sj and Sj have no identical components. A simple example of

+1
a change in functional relationship is for instance the situation where

subsystem Sj and Sj+ differ only by another positioning of a certain

1
switch.

Remark

It is common practice to distinguish components into passive components
like vessels, pipes, wiring etec. and active components like pumps,
switches etc. The criterion for a component to belong to a subsystem is
the following: "'failure of the component affects the functioning of the
subsystem', No misunderstanding arises for passive components but,
possibly, for active components. It is therefore emphasized that for
active components the working mode may be either passive or active,

provided of course that the component is relevant.
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Phase transition has to be treated carefully in the planning of the

phased mission. Therefore we introduce the following definition:

Definition 2.1.

Every change in the hardware configuration and/or components working

mode marks the transition from one phase to another phase.

2.3. The period of a component

Consider at time t,te[Tj_l,Tj), component c, - If component cy is

element of Sj we call component c; operational at time t; if s is not
element of Sj it is called dormant at time t. When component c; is
operational at all time instants of [t,t+t],t20, it will be said to be
operational during that time interval. Also the component is called
dormant during a time interval if the component is dormant at every

time instant of that interval. From section 2.2. it follows that every
component of system S is dormant during the OR-phase (phase 0). Since,
by definition, every component is relevant for system 8, it is relevant
for at least one subsystem of system S, hence the component is operational
during at least one phase. So, for every component, the initial dormant
time interval is followed by an interval during which the component

has to be operational. The first dormant interval together with the
subsequent operational interval of component cs will be called the first
period of component c;. The second and following periods are defined
similarly if they are present. Obviously a period consists of a "dormant
part” followed by an "operational part”.

The period of a component is fundamental for the calculation of the
availability of the component during the mission, see chapter 4.

For instance, we may have the situation in fig. 2.4. where we see a
component with two periods, the component being operational during the

first phase and also during the third and fourth phase.

15T PERIOD 1o 2"OPERIOD

OPERATIONAL : 1T ;
I

DORMANT ' — ' ‘

0 To T T 3 T

TIME =

FIG. 2.4. COMPONENT OPERATIONAL DURING THE FIRST, THIRD AND
FOURTH PHASE.



-65-

2.4, The detailed description of a Phased Mission

Before stating the detailed definition of a phased mission, we shall
illustrate the idea behind it by means of an example from risk analysis,
although other examples may be given (see for instance example 3 in

section 2.1.).

Risk analysis has to deal with two factors, i.e. the probability of
occurrence of an accident and the consequences of the accident. When we
consider a LOCA (see example ! in sectiomn 2.1.), its immediate consequences
may be measured by the amount of radioactive release into the air. To
measure the amount of release efficiently, one has to construct an event
tree; as an example a simple event tree for a large LOCA is sketched in
fig. 2.5. The initial acecident, i.e. pipe break, is the starting point

of the event tree. After the accident has occurred, several subsystems

have to operate sequentially in order to control the accident. The state

of those subsystems is described in terms of available or not—available, if
subsystem operation is required. The sequencing of the subsystems in the
event tree depends on their dependency. For instance, if there is no elec-
trical power after pipe break, no other system is able to operate, so elec—
trical power 1s the first entry in the event tree. In fig. 2.5. the event
tree for a LOCA is shown. It consists of a number of branches, for instance,
the upper branch describes the situation where after a pipe break elec~—
trical power is available and the ECCS is available as soon as electrical
power has become available. Similarly, the subsystems taking care of fission
product removal and containment integrity are available at the moment they
are needed. If electrical power is available but the ECCS fails whereas
fission product removal is available, we get that branch of the event tree
which ends at large release. In the figure all possible branches in the
event tree lead to a certain amount of radiocactive release. In the last
column of the event tree intensities of the radioactive release are
gualitatively indicated for every branch of the tree. If all the subsystems
function and perform their tasks adequately, the release is very small;

in the case that there is no electrical power, the release is very large.
From a safety standpoint it is very important to know the probability of
occurrence of the various branches, in particular of those which lead to

medium, to large and to very large release.
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FIG. 2.5 SIMPLIFIED EVEN TREE FOR A LOCA IN A
NUCLEAR FOWER PLANT

In this example the upper branch of the event tree can actually be
described as a phased mission in the sense as mentioned in the preceding
section. Actually, this branch consists of four subsystems: electrical
power, ECCS, fission product removal and containment integrity. However,
we can easily describe any other branch of the event tree as a phased

mission. To do this we introduce for every subsystem two tasks, viz.

(i) subsystem accomplishes its intended function, i.e. survives its
phase (task 1);

(ii) subsystem fails at the start of its phase or fails during its
phase (task 0).

So, for instance, the branch ending at large release may be characterized
as the three-phase mission for which electrical power fulfills its "first"
task, the ECCS its "zero" task and fission product removal its "first"
task. For a complete description of the phased mission we need also to

specify the duration of the phases.
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Next we introduce the binary variables uj, where uj=1 shall denote that
subsystem Sj performs its "first" task and u.,=0 that it performs its
"zero' task. With every branch of the event tree we can now associate a
sequence U;,Ujsee. « Each sequence uj,j=],..., characterizes a branch
of the event tree, and conversely; the sequence uj will be called the

phased mission for that branch.

2.5. Component fault detection and repair policies

For the description of the availability of a component it is necessary
to have a detailed knowledge of the behaviour of that component. The

behaviour of a component is determined by two factors:

(i) the life characteristics of the component, i.e. its failure data
and its lifetime distribution;
(ii) the inspection and/or repair policies to which the component

is subjected.

First we shall give a detailed description of the concept of the lifetime
of a component. The epoch between the installation of the component and
the time of its first failure will be called the first lifetime of the
component. It does not matter whether it is an active or a passive
component (see remark, § 2,2), If the maintenance policy for this com-
ponent is such that no repair is incorporated, then this component has
only one life. If repair is incorporated, then the time between the moment
at which the first repair has been completed and the moment the next
failure occurs will be called the second lifetime of the component, etc.
In general a maintained component can be in one of the following states
at time t: function state, fail state, repair state or test state.
Because we do not know with certainty in which state the component is

at time t, the time behaviour of the component has to be described by a
stochastic process. To describe this stochastic process we have to know
its probabilistic structure. This depends on the maintenance policy to
which the component is subjected as well as on the component's structure.
We shall first describe the various characteristics of the maintenance
policies. Essential for maintenance is fault detection. Concerning detection

four possibilities have to be distinguished:
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-~ there is no detection on component failure at all;

- there is a continuous detection on component failure, for instance
by means of an alarmlamp as sensor;

-~ detection is performed at random times. For instance at random moments
the system is subjected to a test program. In this category of fault
detection of a component we shall also include the fault detectiom
which occurs if a not-active system is demanded to become active. As
a rule such a demand is initiated by level crossings of processes within
the active systems. Therefore, such demands occur randomly and the compo-
nents present in the not-active system are considered to be subjected
to a random test.

- tests at prescribed times, for instance periodical testing.

Detection of a failed component activates the repair program for the com~
ponent, but its realisation may be sometimes overruled, see below.

If it is not overruled two cases should be distinguished here, viz. the
repair is initiated immediately, as it is the case with continuous de-
tection and at random times, or it is delayed. The latter situation occurs
for detection at prescribed times because this detection procedure requires
a certain time interval and only at the end of such intervals the required
repair can be effectuated,

During a phased mission sometimes the initiating of the repair program
can be overruled. Such overruling is due to the fact that during the
operational part of a period of a component no repair is permitted.
Suppose the repair program is overruled and consider the case of continuous
detection: if during the operational part of a period a component failure
is detected, then its repair starts immediately at the end of the opera-
tional time iﬁterval; if a component is in a state of repair at the be-
ginning of its operational time interval, then this repair is interrupted
and resumed at the end of its operational time interval.

For components subjected to random testing and components inspected at
prescribed times it is always assumed that such tests are not made during
the mission. Therefore, no repair is applied to these components during
the mission, however, with one exception: if such a component is tested

or being repaired at the start of the mission at instant T, and its first

0

operational part starts at instant t{ > TO then inspection or repair may be

continued during {To,ti)-
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Assumption 2.5.1.: It is assumed that when the repair has been finished

the component is as good as new and starts a new life.

On account of the detection and maintenance procedures discussed above

four classes of components should be considered.

Class 1:

Class 2:

Class 3:

Class 4:

components belonging to this class are not tested;

they may be considered as non-repairable components.

components which are continuously inspected: if the
component is in a dormant part of one of its periods and
fails, then repair starts immediately; if it fails during
an operational part of a period repair starts immediately

after termination of that operational part.

components which are inspected at random times.
For this class of components the same procedures as stated

for class 4 components are valid.

components which are inspected at prescribed times.
Inspection only takes place during the OR-phase (see
section 2.2.). Each inspection takes a prescribed time,
called Znspection time., 1f during the inspection time

it turns out that the component is in the fail state, then
repair starts immediately after termination of this in-
spection time.

Inspection nor repair are carried out during the phased
mission, i.e. after the start of the mission at instant TO'

However, there is one exception: if the component is in-—

spected or being repaired at instant T, , and its first

O’
operational part starts at instant t; > TO’ then inspection

or repair may be continued during [To’ti)‘

Above it has been mentioned that the time behaviour of a component should

be described by means of a stochastic process. This will be done in

chapter 3, but we shall make here some introductory remarks.

Assumption 2.5.2.: The successive lifetimes of a component c, are

assumed to be independent identically distributed

variables with distribution Fi(')'
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Indicating by éi such a lifetime:

F,(t) = Prid,<t}, t=20;
1 -1

=0 s £<0.

Assumption 2.5.3.: The variables gi,i=1,...,N are assumed to be

mutually independent variables.

Subsystem Sj,j=1,...,K and similarly component ci,i=l,...,N can be available
or not available at time t.
Define by zj(t) the state variable of subsystem Sj and by gi(t) the state

variable of component c, at instant t.

Zj(t) = 1, if subsystem Sj is not available at time t:

(2.1)

= (0, if subsystem Sj is available at time t.

x.(t) = 1, if component c; is not availlable at time t;

—t : : , . (2.2)
= 0, if component c; 1s available at time t.

Assumption 2.5.4.: The variables gi(t),iWI,...,N are assumed to be

independent variables for every t. (The variables
Xj(t),j=1,...,K are not independent variables,

because subsystems may share components).

Assumption 2.5.5.: It is assumed that the subsystems Sj,j=1,...,K are

coherent (see chapter 5).
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3. RENEWAL THEQRY, AVAILABILITY AND RESIDUAL LIFETIME DISTRIBUITON
OF A COMPONENT DURING THE OR-~PHASE

3.1. Introduction

To describe the stochastic behaviour of the various types of components

we need results from renewal theory. For a discussion of the first
principles of renewal theory the reader is referred to the literature

on stochastic processes, see e.g. Cox and Miller [5] and Feller [9].
Renewal theory is needed here because for the description of the compo-
ment behaviour we need information concerning the availability of a
component, concerning the number of replacements and/or repairs during

a given time interval and concerning the residual lifetime distribution

of a component.

An important quantity in renewal theory is the renewal function. This
renewal function gives the average number of renewals in an observed time
interval. If the behaviour of a component can be described by a renewal
process (i.e. a class 2 of class 3 component), then the renewal function
is needed to determine the availability and the residual lifetime dis-—
tribution of the component at instant t. The availability of a component
at instant t is the probability that the component is in the function
state at time t. The residual lifetime distribution of a component at

time t describes the probability that the component fails within the next
time interval T after t. Both these quantities are necessary in calculating
the availability of the component during the phased mission.

Also the availability of a class 4 component is calculated in this chapter.
A special feature in this case is that it is assumed that if during the
test the component is not in the fail state, after the test the component
proceeds with its functioning, i.e. it is then not assumed that after the
test the component is as good as new.

In section 3.2. the remnewal function for a component subjected to immediate
replacement is determined, whereas in section 3.3. the renewal function
for class 2 and class 3 components is calculated. In section 3.4. the
availability of a component is determined and in section 3.5. the residual
lifetimeAdistribution is derived. In section 3.6. several results of the

theory treated in this chapter are represented, see table 3.1.
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3.2. The simple renewal process

Suppose that at time t=0 or earlier a component is installed. The compo-
nent functions during a certain time %, and then it fails. Instantaneously,
a new component with the same characteristics is replaced instead of the
old one and functions during a time &2, and so on. Every replacement is

called a renewal.

g
If—
L8]
"—
[¥3]

FIG.3.1. REPLACEMENT PROCESS OF COMPONENTS

Denote by 21, 22,..., a series of independent, non-negative stochastic

variables with &2,

functions are denoted by

§3,..., identically distributed. Their distribution

Fl(t) def Pr{§]<t}, t>0;

F(r) 9t Pri.<t}, £20, i=2,3,... .

The distribution function Fl(t) of the first component may in general
differ from that of the following components, since the first component
may have been installed previous to t=0. Generally, the distribution of

the residual lifetime of a component differs from its lifetime distribution.

It will be assumed that
FI(O+) = 0 and F(0+) = 0.
Introduce the wvariables

z, def 0, z def %1 + ...+ &n’ n=1,2,... .

So, z, is the sum of the first n renewal times (see fig. 3.1.).
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Definition 3.1.

The stochastic process {v(t), te[0,»)} with

v(t) def max {n:§n<t}, v(0) def

0,

will be called a general renewal process if Fl(t) and F(t) are not identical;
if F](t) = F(t) the process is called a renewal process. F(t) will be called
the renewal distribution, and Fl(t) the distribution of the fivst renewal
time. As can be seen from its definition, v(t) is the number of replace-
ments of components in (0,t), i.e. the number of renewals in (0,t). From

the definition it follows immediately that for t>0,

{v(t) = 0} = {51 = t}, (3.1
{v(t) = n} = {%n <tz = t}, n=1,2,... ,
{v(e) <} ={z > tl, n=1,2,...

The renewal function m(t), t20, is defined by

m(e) &% g {v(t)}, t20,
and represents the average number of renewals in (0,t).

From (3.1) it follows that

m(t) = I Pr{v(t)zn} = X F1 (t) = F
n=1 n=0

@)y, (3.2)

where F<n*)(t) denotes the n-fold convolution of F(t) with itself,
n=1,2,...3 F(O*)(t) is by definition the probability distribution

degenerated at t=0, i.e.

FO ¢y = 0, t<o,

It can be proved easily that m(t) is finite for every finite t, see Feller
[9]. From (3.2) it follows that
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t
m(t) = F, (t) + [ F(t-1) dm(t), t 2 0. (3.3)
0
It may be proved that (3.3) considered as an integral equation for
m(t) has a unique solution, which is bounded on finite intervals, and

is given by (3.2) [9].
Introducing the Laplace-Stieltjes transforms
def T -pt def T -
£,00) € [T ar (0); £(p) °FF [ T ar(t), Rep 2 0,
0 0

we obtain from (3.3) that

fl(p)

def
h 1-£(p) ’

oo
h(p) [ et am(e) = Rep > 0. (3.4)
0
Relation (3.4) is a very useful relation for the determination of m(t).

3.3. More complicated renewal processes

In this section we describe some more complicated renewal processes.
The processes are generated by the various maintenance disciplines to
which components may be subjected. Various characteristics of these
processes are needed for the analysis of the influence of component
availability on system availability during the mission.

For these processes we first calculate the renewal functions, the

availabilities and the distribution of the residual lifetimes.

3.3.1. The renewal function for continuously inspected (class 2) components

Suppose that at time t=0 a component is or was installed and functions.
After a certain time it fails. Immediately repair is started. When the
component is repaired, it is considered to be new and starts a new life.
Denote by &1,§2,..., its successive lifetimes and by LsIgseees its
successive repairtimes. It will be assumed that IsIysee, are independent
non-negative stochastic variables with 52{33,..., identically distributed.
Similarly £y,%9,..., are independent non-negative stochastic variables

and &2,&3,...
Fi(')’ see assumption 2.5.2.

, identically distributed; their distribution defined by
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Denote the repairtime distribution functions of the component, by

Wj(t) dgf Pr {El <t} , t > 03

f .
w(t) el py {gi <t} , t >0, i=2,3,... .

It will be assumed that

W1(0+) = (0 and W(0O+) = O.

We have to distinguish two possible situations, viz. the function state

and the fail state of the component at t=0. Wl(t) only differs from W(t)

if at t=0 the component already is in the fail state.

To ihcorporate these two initial conditions we introduce the stochastic

variables g n=0,1,... . If the initial state is the function state, then
def def def

g = 0, g = %Ia gn = &n"’En_I, n=2,3,... .

If the initial state is the fail state then

def def def -
go =" 0, g - &l+£1’ gn = &n+§n’ n=2,3,... .

Actually the process {...,&n_l,gn_],&n,gn,...} is an alternating process

and the process &no n=0,1,..., just defined is an imbedded process of

this alternating process, see fig. 3.2.

4
Z : i /
22 [ .
1 I /
z4 ! |
ﬂ-————-—-—-—-——.—} ‘ ' .
94 ! g2 ! g3 ! /
Ly oy 1 | ry 13 L/
| { H
i % ! ; %ﬁ;
0 /

TIME ——

FIG.3.2. QUANTITIES IN THE ALTERNATING RENE WAL
PROCESS OF A COMPONENT.
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It is clear that the variables gn, n=1,2,..., are independent stochastic
variables and &, n=2,3,..., are identically distributed. Define the

distribution functions of g, n=1,2,..., by

gf

G, (t) d Pr{g, <t} = F, (t) , if the initial state is the

function state,

ef

Gl(t) dg Pr{&1+£1<t} = F(£)*W, (t), if the initial state is the

1 fail state,

def
G(e) 8% Prip +r _ <t} = Pr{g +r <t} = F(£)#W(t), p=2,3,... , (3.5)

agsumed that for n=2, L, is a complete repairtime.

Denote by

[a N
fio
th

g, teee g n=1,2,... . (see fig. 3.2.) (3.6)

Then, the process {yl(t), te[0,=)} with

yl(t) dgf max {n:5n<t}, 21(0) def 0,

is a renewal process.
The Laplace-Stieltjes transforms of G](t) and G(t) are denoted by
< t oo_t
g,(0) = J e % a6 (£)5 g(p) = [ e™" a6(t), Rep20.
0 0
Applying formula (3.4) to the renewal function m(l)(t) of the renewal

process {y](t), t20} now gives

gl(p) gl(p)

T2y - T=ECyw(p)® Ree?0.  (3.7)

o) € [ Pt D p) =
0

where
gl(p) = fl(p) , if the initial state is the function state;
= f(p)wl(p), if the initial state is the fail state,
with
W](O) dgf zbe_pt dW](t); wip) def Z e—pt dw{t), Repz0.
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The process of the behaviour of a component of class 3 may be described
by a sequence of stochastic varia ca .

v q variables &n-*l’?{n"]’gn—l’&n’yn’{n’ .
Here &n’ n=1,2,... , and similarly £ n=1,2, ..., have the same meaning
and the same stochastic properties as in the preceding section, they

represent the successive lifetimes and repairtimes.

, t .
v represents the time between the n h failure of the component and

the moment of detection of this failure, see fig. 3.3.

1 AW , 13 /
‘ ;
22 | l : /
Z1 I t | | /
ey [ | [ :
g1 ! gz | | 93 /
Ly bowy g 1o lwo d ra L3 g
"1 7 ! : 1 1 7
l { } } ! L
0 7

FIG.3.3 . REALISATION OF THE RANDOM TEST PROCESS
OF A COMPONENT.

The variables LA n=1,2,..., depend on the testprocedure and we shall
assume with Caldarola [3] that the moments at which the component is

tested form a Poisson process with parameter y so that

N

L5 e Yt k=0,1,... ; t > 0.

Pr {k tests in (0,t)} =

This implies that the times between the tests are negative exponentially

distributed with parameter vy, and are stochastically independent. Denote
. th th

by En’ n=1,2, ... , the time between the (n-1) and the n test.

Obviously, the distribution of En’ n=1,2,..., is

H(t) 9€% pr ft <th=1- e "ty >0, t>0, n=1,2, ... .
From the assumption that the testpoints are Poissonian distributed it
now follows that the non-negative stochastic variables W n=1,2,...,
are independent identically distributed variables, their distribution
being the negative exponential distribution with parameter vy; and
further that the families {yn,n=],2,...} and {&n’En’ n=1,2, ...} are

independent families.
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The assumption that the testmoments can be described by a Poisson process
seems to be a reasonable one for practical situations; moreover it sim-
plifies the calculations considerably. It is possible to work with a non-
Poissonian testprocess but then the required analysis will be very com-—
plicated. Further it should be noted that the random test processes for
various components should be independent of each other, otherwise the
assumption 2.5.4. might not be valid.

As in the preceding section, we also have to distinguish here the cases
whether the initial state is a function or a fail state. If the initial

state is the function state then

def def def _
g - 08 T gy 7AW ML, e 053

If the initial state is the fail state then

def dEf def
et o el ot tw el ey +r . n=2.3.... .
) > By =1 =1 =1’ gn “n -n -n’ ¥

The variables g.» n=1,2,..., are again independent, identically distrib-

uted variables. The distribution functions of g, n=1,2,..., are denoted by

Gl(t) def Pr{&1<t} , 1f the initial state is the

function state,

<t}, if the initial state is the

G, (£) def Prii +r
fail state, (3.8

+w

I =1

dgf

G(t) Pr{g +w . +r _ <t} = Pr{g +w +r <t}, n=2,3,...,

1

assumed that for n=2, w, is a complete waiting time.

1

Define
£ R
Z, de 0, z, def g + ...+ g, n=1,2, ... . (see fig. 3.3.) (3.9)

The process {yz(t), te[0,»)}} with

def def
32(t) =" max {n:§n<t}, 32(0) =" Q,
and z, as defined in (3.9), is a renewal process. Note that again a renewal
is defined to occur when the component terminates to function. Applying for-
mula (3.4) to the renewal function m(z)(t) of the above mentioned renewal

process, with gl(p) and g(p) the Laplace-Stieltjes transforms of the dis-
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tribution functions G](t) and G(t) in (3.8), the Laplace~Stieltjes

(2)

transforms of m (t) reads

gl(p) gl(p)
I-g(p)  1-f(p)w(p)v/(o+y)’

h(z)(o) =Ie-pt dm(z)(t) = Rep>0, (3.10)
0

where f(p) and w(p) are defined as in the foregoing sections, and

gl(p) = fl(p) y 1f the initial state is the function state;

f(p)w(p)y/(p+Y), if the initial state is the fail state,

with

o0
(7Pt = X -
é e dPr{§i<t} el Rep > =v.

3.4. The availability of a component

By definition

A(t) Pr{x(t) = 0}, t=0,

A(t)dr, t>0,

1
AI(t) r

O S, 1

x(t) being the state variable of a component as defined by (2.2).

A(t) is called the point availability of the component whereas AI(t) is
called its interval availability. The point availability A(t) of a compo-
nent at epoch t is thus the probability that the component is in the
function state at instant t whereas the interval availability is defined
as the expected fraction of time the componment is in the function state
during (0,t). In this study we deal only with the point availability A(t)
and in the following it will therefore be called "availability". From

now on it 1s assumed that
Fl(t) = F(t) and Wl(t) = W(t), (3.10a)

unless explicitly stated.
In sections 3.4.1. and 3.4.2. the availability for components of class
2 and 3 will be analysed whereas in section 3.4.3. the availability of

components of class 4 is discussed.
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3.4.1. The availability of a continuously inspected (class _2) component

The behaviour of a class 2 component has been described in section 3.3.1.

If the initial state of the component is the function state then

A(t) = Pr{x(t) = 0}

(o]

= Pr{g 2t} + X Pr{z +r <t, z_ . 2t}

-1 -n -n -n+l

n=1
© t

= Prig;2t} + I { Pr{f , >t-1} dPr{z +r <t}
n=1 1=0

=1-F(t) + {1 - F(e)} » W(t) * m(t), t=0.

Denote by

o0
a{p) dgf I e_pt d A(t), Rep=0,
0

then the Laplace-Stieltjes transforms for the availability of a continuously

detected component with x(0) = 0 is given by
a(p) = {1 = £(p)H1 + w(p)h(p)}, Rep>0,

with £(p), w(p) and h(p) as defined in section 3.3.1.

From now on the expression for the relevant quantities will be indexed
by an "0" or a "1"; the "0" will be used if the initial state of the
component is the function state whereas the "I" will be used if it is
the fail state.

So the above formulas for the Laplace-~Stieltjes transforms of the

availability in both cases read

l

ao(o) {1 = £(YH1 + w(p)h(p)}, Rep>0,

]

al(p) {1 + £()}Iw(p) {1 + h(p)}, Rep>0,

Substitution of (3.5) and (3.7) in the above mentioned formulas gives

- 1=£(p)
ao(p) = T:;zgjgfgj- s Rep>0, (3.11)

_ {-w(p) hw(p)
1-w(p)£(p)

al(p) s Rep>0. (3.12)
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Examples of the unavailability of continuously inspected (class 2) compo-

ments are shown in the figures 3.4. and 3.6.

till 3.9.

3.4.2. The availability of a randomly inspected (class 3) component

The behaviour of a class 3 component has been described in section 3.3.2.

Applying the same procedure as given in section 3.4.1,

ao(p)

al(p)

{1 - £()H1 + 5{;—w(p)ho<p>},

Rep>0,

{1 - £} w(e) {1+ h (p)], Reo>0,

we get

see section 3.3.2. Substitution of (3.8) and (3.10) in the above formulas

gives
- 1-£(p)
ay(e) = —EIw(p) v/ (pey) > "eP”0s
_ =€) Ju(@)y/ (p+y)
218 = ety w0 ReP7O-

-3

10

Lol tagid

UNAVAILABILITY

10

§ ol

10°

[N S

L s el

{ H

i

i

Q.0 0.1

0.2 0.3 0.4 0.5 0.6 0.7
TIME(years)

FIG. 3.4 UNAVAILABILITY OF A COMPONENT FOR

SEVERAL MAINTENANCE STRATEGIES

LIFETIME DISTRIBUTION :+ N.E, D,
REPAIRTIME DIS TRIBUTION IN CASE OF CONTINUOUS TES
REPAIRTIME DISTRIBUTION IN CASE OF RANDOM TESTING :

TING : N £.D.
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(3.14)

RANDOM TESTING I —
CONTINUOUS TESTING =-—--—~~~~
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FAILURE RATE
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MEAN REPAIRTIME 1
COMP 1 : . 0200
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In fig. 3.4. the ungvailability of a component subjected to random testing
is compared to the unavailability of similar components of which one is
non-repairable (class 1) and the other subjected to continuous testing

(class 2).

3.4.3. The availability of a periodically inspected (class 4) component

Preliminary we start with the treatment of a rather general inspection
procedure, i.e. inspection at prescribed times. After that we turn to
periodical inspection.

Suppose that a component is inspected at the times tl’tz""’tn""’

the so-called Znspection times. If such a component has failed before

or at inspection then it will be repaired. Repair starts immediately after
termination of the inspection. After the component has been repaired it

will be considered as new.

During the time the inspection is performed two strategies are possible,
i.e. the inspection can be performed EXSITU oxr INSITU. If the component
is inspected EXSITU, then the installation in which the component is in—
stalled has no access to the component during the inspection time; so
the component is unavailable during the time the inspection is performed.
If the component is inspected INSITU, there is no disturbance in the
behaviour of the component with respect to its availability, i.e. the
component remains accessible for the system.
It is assumed that the time interval needed to inspect the component is
a constant, so introduce

def th

en =" time required to inspect a component at the n

inspection, n=1,2,.., . (see fig. 3.4.)

It is further assumed that if the component is in the function state
after an inspection at tn+6n, n=1,2,..., the component life is still
going on. This in contradiction with Caldarola [3] and other authors who
assume that after inspection without repair the component starts a new
life. Another feature here is the assumption that the repairtime of the

component is a stochastic variable and not a constant.
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FIG. 3.5. PROCESS OF A COMPONENT SUBJECT TO
PERIODICAL INSPECTION.

Suppose that the initial state of the component is the function state

and consider the component behaviour during the time interval £ St<t

in case of EXSITU inspection. From the above it may be clear that

Ao(t) = 0, tnstStn+en. (3.15)

If t +6 <t<t it follows that
n n n+1

Ay(t) = Prix(t) = 0 | x(0) = 0}
n
= Prix(t) = 0, (N (x(r+0) = 0)) | x(0) = 0}
k=1
n n
+ Prix(0)=0, (U ( N (x(t +6.)=0)), x(tr, +6 )=1))|x(0)=0}.
k=1 j=k+l J

Denote by r the repairtime and by % the lifetime of the component. Since

in the present case the testmoments are not random it is natural to assume
. .. th . . .

that 1f repair is needed at the end of the n inspection time, then

r<t -(t +8 n=1,2,... i.e. we assume
. (n 1'1), 25 >

Pr{r < inf (

-(t +8 )}t =1,
k=0,1,... k 'k

tk+1

where

inf {t

-{t. +8.)} > ¢, ¢ > O.
k=0,1,... ok 'k

k+
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. . . e th ., .
Therefore we introduce the maximum reparriime for the k h inspection
P

interval with

Rk < inf {tm+1-(tmfem)}. (3.16)
w=0,1,...

Denote by F(t) = Pr{f<t} and W(t) = Pr{r<t}. From the above it is easily
seen that in the EXSITU case the availability for the repair interval, i.e.

+ +8 + i i :
te[tn en,tn en Rn]’ is given by

n-1 Rk
Ao(t) = 1-F(t) + kil{l—AO(tk+6k)}Tio{I-F(t-(tk+6k+T))}dW(T)
t—(tn+6n)

+ {I-Ao(tn+6n)} rio {I—F(t—(tn+8n+T))}dW(T), (3.17)

n=1,2,... 3

1,

and the availability for the residual interval, i.e. te[tn+8n+Rn,tn+l

is given by:

R

n
A(t) = 1-F(t) + T {1-A_(t +6 )} [ {1-F(t-(t, +6, +1))}dW (),
0 k=1 0 K K.l ko " (3.18)

n=1,2,...

(In (3.17) and (3.18) it is assumed that an empty sum equals zero).
In the case of equidistant testmoments, equal inspection times and equal

maximum repairtimes, so that

n def €5 M def ¢ ot , 6%t 6, R def

S LN Rn, n=1,2,000

we obtain when inspection is EXSITU performed from (3.15), (3.17) and

(3.18) for the nth inspection interval [n1+(n—l)n,n1+nn]:

Ao(t) = 0, n,+(n-Dnst<n, +(n-1)n+; (3.19)
n-1 R

Ao(t) = 1-F(t)+ ¥ {l—Ao(n1+(k—1)n+6)}J'{l-F(t-n]-(k—l)n-e-T)}dW(T)
k=1 =0

t-n]-(n-l)n-e

+ {1~A0(n1+(n—l)n+6) ] {I—F(t-nl—(n—l)n-e-r)}dW(T),
=0

n1+(n—1)n+egt5n1+(n-1)n+e+R; (3.20)
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n R
Ao(t) I-F{t)+ X {I-A (n +(k-1)n+6)} f {1~F(t-n -(k~1)n-8~1) }dW(t),

k=1 =0 (3.21)
n]+(n~1)n+6+RSt$n1+nn, n=1,2,...

Note that in the formulas (3.20) and (3.21) the time n, to the first
inspection not necessarily equals the time n between two successive test-
moments. This offers the possibility of sequential testing of two or more
components of a system.

If the initial state of the component is the fail state the availability

in case of inspection EXSITU can be obtained by the same method:

Al(t) = 0, tnﬁtStn+6n; (3.22)

n—1 Rk

Al(t) = ¥ {1- -A, (¢

+6,)} [ {1-F(t=-(t, +8, —1)) }dW (1)
k=1 k =0 k Tk
t—(t +6 )
n n
+ {I—Al(tn+en)} Ti@ {1-F(t-(tn+8n+T))}dW(T), (3.23)

t +6 <t<t +6 +R , n=1,2,... ;
n n n n n

a R
A(E) = T {1-A,(t +6,)} ] {1-F (t= (£, +6, +7)) }dW (1), (3.24)
k=1 =0

t +6 +R st<t , n=1,2,.
n n n n+i

In the case of equidistant testmoments, equal inspection times and

equal maximum repairtimes we get from (3.22),..., (3.24),

A](t) =0, n]+(n“l)nStSnl+(n-l)n+9; (3.25)
n-1 R

Al(t) = ¥ {1-A (n1+(k Dn+e)} [ {1-F(t- n,=(k=1)n=6-7) }dW (1)
k=1 =0

t=(n +(n=1)n+6)
+ {I—Al(n1+(n~l)n+8)} J {I—F(t-nl-(n—l)n—e-r)}dw(r),
=0 (3.26)
n]+(nw1)n+63tsn1+(nm1)n+e+R;
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n R
AR = Z {1-A (n +(k-1n+8)} [ {1-F(t-n - (k-1)n-0-1) }dW (1),
k=1 =0 (3.27)

n]+(n—1)n+8+Rﬁtsn +nn, n=1,2,... .

1
A special case is the interval [O,nll. Obviously the availabilities

Ao(t) and Al(t) during this interval are given by:
Ao(t) = |-F(t) and Al(t> = 0. (3.28)

The unconditional availability of the component at instant t reads

A(r) = Ao(t)A(O)"'Ax (e){1-AC0)}, (3.29)
Ao(t) and Al(t) as determined above and A(0) = Pr{x(0)=0}.

Note: In the derivation above the possibility that the component switches

to the fail state during the test interval 6 , k=1,2,..., has not

k’
been excluded.

If the inspection is performed INSITU, then the behaviour of the component
with respect to its availability during the interval [tn+8n,tn+1],
n=1,2,..., 1s the same as it is to EXSITU inspection, i.e. in case of
INSITU inspection the availabilities Ao(t) and A1(t) during the interval

[tn+en’tn+l] are given by (3.17) and (3.18) resp. (3.23) and (3.24).

However, the availabilities Ao(t) and Al(t) during the interval [tn,tn+en],
n=1,2,..., in case of INSITU inspection are different from that in case of
EXSITU inspection, because if INSITU inspection is performed the component
is not by definition unavailable during inspection; the component behaves
during such an interval, for instance the interval [tn,tn+6n], as it does
during the foregoing interval [tn_1+6n_]+Rn_1,tn]. Therefore, the avail-
abilities Ao(t) and Al(t) of the component during the interval [tn,tn+en]
are given by (3.18) resp. (3.24).

In the figures 3.6 till 3.9 an illustration is given of the influence

by periodical testing on the unavailability of a component.
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The lifetime distribution of the component is negative exponential and
its repairtime is uniformly distributed or is a constant. The INSITU as
well as the EXSITU inspection procedures are shown and compared with the
unavailability of a similar but non-repairable (class [) component and

with a continuously inspected (class 2) component.

3.5. The functions Go(t,c) and Gl(t,g) of a component

The residual lifetime of 2 component at instant t is the time interval
between t and the next failure of the component (see fig. 3.10). We shall

denote by

z(t) dgf residual lifetime of component at instant t, t=20. (3.30)

In the following the functions Go(t,z) and Gl(t,g),
def
Gy(t,0) = Prix(©)=0, z(t)<¢ | x(0)=0}, 20, 0,
(3.31)
6, (t,2) €F Prix(t)=0, g()<c | x(0)=13, t20, z20,

will be derived for several repair policies of a component.

3.5.1. The function GO(t,Q) of a non-repairable component

Suppose a non-repairable (i.e. class 1) component has started life at
£=0, Then by (3.31)

Go(t>2) = Prix(£)=0, z(t)<z | x(0)=0}

Prie<g<t+g} = F(t+z) - F(t), t20, 20, (3.32)

where F(t) and £ as defined in section 3.1.

3.5.2. The functions GO(tii) agg_G](t,C) of a component subjected to a

renewal process

When a component is subjected to a renewal process (i.e. the processes

described in the sections 3.2. and 3.3.) the residual lifetime based on
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its definition (3.30) may be expressed as (see fig. 3.10):

Zy(ry+1 ~ B B0

1. i
vit)elw
i

IN
1<
o~

TIME ——»

FIG.3.10. THE RESIDUAL LIFE TIME OF A COMPONENT
SUBJECT TO A RENEWAL PROCESS.

Again a renewal is considered to occur at the start of a new repair of
the component. The interested quantities are again Go(t,g) and Gl(t,C)
as being defined by (3.31).

3.5.2.1. The function Go(t,ﬁ) of a component subjected to immediate

This renewal process has been described in section 3.2, It is clear from
(3.31) that

Gy(t,2) = Priz(t)<z, x(t)=0}
= ?r{ts§1<t+g} + nilPr{§n<t’ ts§n+&n+l<c+g}
t
= F(t+r) - F(t) + [ {F(t+z-1) - F(t~1)}my(1), (3.33)
0
t20, 20,

with mO(t) being defined by (3.4).
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3.5.2.2. The functions Go(t,C) and G](t,g) of a continuously inspected

The model for a continuously inspected (class 2) component is described
in section 3.3.1. First we treat the case that the initial state of the

component is functioning. So from (3.31) it follows that

Go(t,c) = Pr{tS&1<t+§} + nfl Pr{§n+£n<t, tSEn+1<t+C}
t
= F(t+) - F(t) + [ {F(t+z-1) - F(t+T)}d{mO(T)*W(T)}, (3.34)
0

mo(t) defined by (3.7) and t>0, >0.

If the initial state of the component is failed, then by the same pro-

cedure it follows that

t
G,(t,2) = [ {F(t+z-1) - F(t-1)}dW(1)
0
(3.35)
t

+ [ {P(t+z-1) - F(t-1) Ydim, (0)*W (1)},
0

ml(t) defined by (3.7) and t20, z20.

The process in case of random inspection is treated in section 3.3.2.
By the same procedure as above it follows that if the initial state of

the component is the function state, then

t
Gy(t,2) = F(t+g) - F(t) + J {F(t+z-1) = F(e-1) MW () *H(T) *m (1)},
0
t>0, =0, (3.36)
where H(t) is the distribution function of Wes i=1,2,... and mo(t) is

defined by (3.10).
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If the initial state of the component is the fail state then

t
G, (t,0) = [ {(F(t+z~1) - F(t=1)}d{W(T)*H(T)} +
0
(3.37)
t
[ {F(t+z-1) - F(t—T)}d{W(T)*H(T)*m](T)},
0

t20, £20,

where H(t) is the distribution function of Wes i=1,2,..., and ml(t)
is defined by (3.10).

3.5.3. The functions GO(t,i) and Gl(t,z) for periodically inspected

The behaviour of a periodically inspected (class 4) component has been

described in section 3.4.3. In this case the derivation of the functions
GO(t,g) and G](t,g) is identical to that of the availability in section
3.4.3. Assume that the instant t belongs to the nth inspection interval,

icul +8 +R . T
particularly te[tn Gn n,t 1. Then

n+1

6, (t>0) = Pr{x(t)=0, £(t)<z|x(0)=0}

n
Pr{x(£)=0, z(t)<c,( N (x(t,+6,)=0))|x(0)=0}
k=1

n n
+ Pr{x(£)=0,z(t)<z, (U (N (x(t,+0,)=0),x(t, +6, )=1))|x(0)=0}
k=1 j=k+] J

Pr{t<g<t+z|x(0)=0}

n
+ £ Prix(t,+8,)=1]x(0)=0}Pr{x(t)=0,z(t)<t,
k=1

n
. L= =]’ =
j=g+1(§(t3+83) 0|§(tk+6k) x(0)=0}

= Pr{t<g<t+g}

n Ry
+ I {1-A (t +6,)} {

Pr{t~(tk+e
k=1 =0

k+T)S§St+§~(tk+8k+T)}dW(T)
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F(t+z)-F(t)

n Rk

+ kil{I-AO(tk+8k)}Tio{F(t+C~(tk+ek+T))—F(t—tk+9k+T))}dw(T)

n Y

1-F(t)+k§1{1—Ao(tk+ek)}Tio{I—F(t—(tk+6k+7))}dW(T) (3.38)

n Y

- [1—F(t+§)+k§1{1—A0(tk+8k)}Tio{l—F(t+C—(tk+ek+T)}}dW(T)],

>
tel tn+8n+Rn’ tn_'.} ] »5=0.

From (3.18) it is seen that Go(t,g) in (3.38) can be written as the
difference of two availabilities, i.e. the availabilities at instant t
and at instant t+r, where both availabilities are connected to the nth
inspection interval. So from (3.38) it follows that

_ NS *
G0<t,§) = Ao(t) A, (t+z) , te[tn+8n+Rn,tn 1,z=20, (3.39)

+1

én)(t+§) both being calculated according to the

with AO(t) as well as A
right-hand side of (3.18). Applying the above procedure for all cases
occurring during the process for periodically inspected components, it

turns out that the functions Go(t,g) and Gl(t,g) can be written as:

(n)

Gy(t52) = A (8) = Al (), (3.40)
6,(6,0) = & (0) - Al (err), (3.41)

for te{tn,tn+1], n=1,2,...;z20.

Next we shall describe the functions Aén)(t+g} and Afn)(t+§) for te[O,tl]
Is

and for t belonging to each particular interval contained within [tn’tn+l

n=1,2,..., with £=0.
(0

1 (t+7)=0.

For te[O,tl] it is obvious that Aéo)(t+c)=l-F(t+c) and A

%
To Aén)

is related to t and not to t+f, i.e. n is the number of inspection inter-

(t+z) we have attached the index n to stress the fact that the n

vals in [0,t].
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Therefore, applying (3.40) and (3.41), it follows that:

Go(t,c) F(t+2)-F(t), te[o,tll, £20;

(3.42)

i
o

Gl(t,c) = . te[O,tl], r=0.

Each interval [tn,t 1,n=1,2,..., contains three distinct intervals,

n+l
i.e. i + + +6 + +0 +
i.e. the intervals [tn,tn en], [tn en,tn en Rn] and [tn Sn Rn’tn+1]’

respectively. For each of these intervals the functions Aén)(t+;) and
Agn)(t+g) are defined by the same formulas as the functions AO(t) and

Ad(t), respectively, for that particular interval. This means that if

(n)

1 (t+7)=0 if the inspection is

telt_,t +6_I, by definition Aén)(t+c)=A
EXSITU performed.

If the inspection is INSITU performed then Aén)(t+¢) and A(n)

1
defined by (3.18) and (3.24) respectively, but not for the nth period

(t+r) are

but for the (n—I)th period (see section 3.4.3.).

1if te[tn+8n,tn+6n+Rn], then both Ao(t) and Aén)(t+§) are defined by (3.17),

where Aén)(t+c) is obtained by replacing t by t+f, except in the upper-

bound of the integral of the last term in (3.17); this upperbound remains

gn)(t+§) with respect to (3.23).

For the last interval, i.e. telt +6 +R ,t 1, A (t) and A(n)(t+c) are
n n n ntl 0 (n) 0

defined by (3.18), (cf. 3.38), whereas Al(t) and A] (t+z) are defined

by (3.24).

t_(tn+en)° The same is true for Al(t} and A

3.6. Applications

The formulas derived above for the availabilities Ao(t), Al(t), the renewal
functions mo(t) and ml(t) and for the functions Go(t,g) and G}(t,c) have
been calculated for several lifetime and repairtime distributions. The
explicit expressions thus obtained for these quantities have been listed

in appendix B. In table 3.1 a review is given of the contents of appendix B.



TABLE 3.1 Summary of typical calculated variables in relation
to several lifetime distributions and repair policies

._g6._

) . LIFE TIME REPAIR TIME
PROCESS T t . t,Z N
© prstrrsurion | CRPER | prgrripurron | Mo(E) | mp(8) o AglE) A (E) Gy (E,0) G (e,
. - . . irr. irr.
NO REPATR n.e.d. n-2 n-a n-2 X LT X
‘rla 2 - L2 .a : irr. % LTY.
NO REPLACEMENT Erlang = 2 .S x L % L
Erlang 3 - n.a n.a x® irr. X irr.
e.d. .4 - irr. irr. irr.
DMMEDIATE n.e.d n-a X X
- irr. irr. irr.
REPLACEMENT Erlang 2 x frr .
Erlang 3 - X irr. irr. x irr.
n.e.d n.a n.e.d. X X X b4 % X
ALTERNATING T : .
RENEWAL constan XX XX XX XX XX XX
PROCESS e.d. 3 b b,
070 Erlang 2 n.e.d X % X X X X
constant XX XX XK XX xxX ®X
n.e.d. X X X X X x
RANDOM TEST n.e.d. n-a
constant XX XX XX XX XX XX
PROCESS d
Erlang 9 n.e.d. XX XX XX XX XX XX
constant XX XX xR XX xX KX
PERIODICAL d a uniform irr. irr. X x x X
TESTING n.e.d. o ; ;
constant 1rr. 1rr. bid x < %
n.e.d : negative exponential distribution
n.a : not applicable
irr : irrelevant
X : see appendix B
XX : available from the author on request
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4, THE AVATLABILITY OF A COMPONENT DURING A PHASED MISSION

4,1. Introduction

In this chapter component behaviour during the mission is discussed.

Each class of components is extensively treated, because component
behaviour during the mission is fundamental for the probability of

mission success.

During the mission component behaviour is determined by so-called dormant
parts and operational parts. A dormant part for a component is a half-open
time interval during which the component is not asked to become opera-—
tional, whereas an operational part consists of a half-open time interval
during which the component has to be continuously operational. A dormant
part as well as an operational part may consist of several phases. Each
closed time interval which consists of a dormant part followed by an opera-—
tional part will be called a period of the component (see section 2.3.).
The first period of each component consists of the OR-phase and the first
operational part. These periods play an important role for the behaviour
of components that are continuously inspected. For randomly tested compo-
nents and for periodically inspected components only the first period is
of interest because components belonging to these classes are not being
tested after the mission has been started., Therefore no repair is applied
to these components during the mission, however, with one exception:

if such a component is tested or being repaired at the start of the mission
at instant TO and its first operational part starts at instant t;>T0

then testing or repair may be continued during [Tosti)o

In section 4.2, the availability of non~repairable components is treated.
Their availability is identical to the reliability.

In section 4.3. the availability of continuously inspected components
during the mission is treated. The behaviour of such a component is rather
complicated. Repair is only permitted during the dormant part of a period.
So no repair can take place during the operational parts. Therefore, the
original renewal process which starts at t=0 is disturbed during the first
operational part, i.e. the component has to survive that time interval and
therefore only one realisation of the renewal process is permitted during

that operational part.
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To overcome this difficulty a so-called derived renewal process is intro-
duced. This derived renewal process starts at the beginning of the second
period at instant t2’ see fig. 4.1, It only differs from the original
renewal process with respect to the first renewal time. The distribution

of this first renewal time is dependent on the renewal process of the
foregoing period. This procedure can be repeated for the third and follow-
ing periods if the component has more than two periods. So at the beginning
of each period a derived renewal process starts. The distribution of the
first renewal time of the renewal process for the kth period is completely
determined by the derived renewal process of the (k—l)th period. The
availability of the component during the kth period is then obtained by
applying the kth derived renewal process. Obviously this approach deter-
mines the availability of the component during the mission; it will be
expressed by means of a recurrence relation. Since, in general, no ana-
lytical solution can be obtained from this recurrence relation, a procedure
is suggested in section 4.3.4.2.2(c) by which the availability of the
component can be calculated for the kth period. As an example this proce-
dure has been applied to a component with an Erlang-2 lifetime distribution
and a negative exponentially distributed repairtime.

The availability of randomly tested components during the mission is
treated in section 4.4. A randomly tested component is subjected to ran—
dom tests during the OR-phase (the time interval between the instant t=0
and the start of the mission at instant TO). However, it is assumed that

no random tests are performed after the start of the mission. Therefore,

no repair is applied to such a component if it is failed during the mission,
with one exception: if the component is tested or being repaired at the
start of the mission at instant T, and the start of the first operational

0

! for the component is mot equal to the start of the

i

mission, i.e. t;> 0’ then this particular test or repair may be continued.

After the start of the first operational part no repair is permitted any-

part at instant t

more. An example is discussed for the determination of the availability
of a randomly tested component with negative exponentially distributed
lifetime and repairtime.

In section 4.5. the availability of a periodically inspected component
during the mission is discussed. Such a component is subjected to period-
ical inspections during the OR-phase. It is assumed that after the start

of the mission no inspections are performed and no repair is effectuated,
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with the same exception as described for randomly inspected components,
i.e. if the component is inspected or being repaired at the start of the
mission, then the appropriate action may be continued, but after the

start of the first operational part no imnspections nor repair is permitted
anymore.

The two figures 4.7 and 4.8 show the unavailability of the component during
the mission for different situations, viz. the component is being repaired
at the start of the mission and the component is not inspected nor being
repaired at the start of the mission.

The last section of this chapter, i.e. section 4.6., is devoted to a
subject that perhaps should be better treated in chapter 6, which describes
phased mission theory. However, to be complete in treating just component
behaviour and not system behaviour, the discussion of conditional avail-
ability of a component during the mission is added to this chapter.

Such a conditional availability arises for a component during the mission
when the component is present in more than one system. For instance,
suppose that the component belongs to system Sj and system Sl where phase

j occurs earlier than phase 2. Suppose further that we want to calculate
the probability of the event "'system Sj failed at instant Tj and system

82 failed at instant t , t>Tj and t in phase . In developing this prob-
ability it appears that we have to calculate among others the availability
of the component at instant t with respect to its fail state at instant

Tj (see chapter 6). For a further detailed description of these conditional
availabilities the reader is referred to chapter 6. In section 4.6. of

this chapter the conditional availabilities are treated for all classes

of components.

4.2. The availability of a non-repairable component during the mission

A class 1 component is assumed to be non-repairable (see section 2.5.).
Therefore the event "the component is available at instant t" is equi-
valent to the event "the component has survived the interval [0,t)". The
probability of the latter event is simply the component's reliability at
instant t, no matter whether the instant t belongs to the "OR-phase" or

to the mission itself. So

Ai(t) = 1-F(t), t=0. 4.1)
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4.3. The availability of continuously inspected components during

the mission

In this section the availability of class 2 components during the mission
will be discussed. In section 4.3.1. a derived renewal process is intro-
duced for each period of the component. This derived renewal process
arises due to the fact that during the operational part of the first period
of the component the original renewal process is interrupted, because no
repair is permitted during the operational part of a period.

As an introduction in section 4.3.2. the availability of a component will
be calculated for the case that the component is in its first period.
Limitation to the first period provides a clear demonstration of the tech-
nique used to calculate the availability in general.

In section 4.3.3. the general formula for the availability of a component

is derived and after that some applications are treated in section 4.3.4.

4.3.1. The derived remewal process

During the dormant part of the first period (see fig. 4.1) the component
is subjected to the altermating renewal process formed by successive life-
times and repairtimes, i.e. during the dormant time interval this renewal
process is not disturbed, but during the following operational part this
renewal process is interrupted because no repair is permitted during an
operational part of a period.

If there exists a second period for the component, then at the start £,
of the second period, again a renewal process starts at the beginning of
that period. This renewal process lasts till the instant t!, i.e. the
start of the operational part of the second period. At that instant it is
interrupted like the renewal process in the first period.

The renewal process starting at the beginning of the second period at

t, differs from the renewal process of the first period only by its first

2
renewal time. Therefore we shall call it a derived renewal process.
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FIG.4.1. SECOND PERIOD OF A COMPONENT

Three different realizations are possible for the first renewal time of

this derived renewal process for the second period:

( 1 ) the component survives the operational part of the first period.
The first renewal time of the derived renewal process is the
residual lifetime of the component at the start of the second
period at t2;

(ii ) the component fails before t; (the start of the operational part
of the first period) and repair is not yet finished at t;. The

first renewal time of the derived renewal process is the sum of

t

1 and the following

the residual repairtime of the component at t

lifetime;

(iii) the component fails during the operational part of the first period
which starts at ti, so no repair has been taken place at the end
of the operational part at tz.
Therefore the first renewal time is the sum of a complete repair-

time and the following lifetime.

The residual lifetime and repairtime, mentioned in (i) and (ii), are
dependent of the renewal process of the first period. The same reasoning
can be applied in the case that a component possesses more than two periods.
Then the component's behaviour during the dormant part of each of these
periods is subjected to a derived renewal process. The several renewal
processes only differ by their first renewal times. The first renewal

time of the derived renewal process starting at the beginning of the kth
period is only dependent of the derived renewal process starting at the

beginning of the (k—l)th period.
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A period of component ¢ 1is characterized by three time points, i.e. the
time at which the period starts, the time at which the operatiomal part of
the period starts and the time at which that period ends. In general the
last mentioned time is the starting time for the next component's period
except for its last period. It is therefore that the following variables

are introduced:

tk def starting time of period k of component ¢ , (4.2)
, def . . . ,
tk =" gtarting time of the operational part of period k
of component ¢ , (4.3)
k=1,2,... ,
where t dgf 0.

1

The assumed behaviour of the component is shown in fig. 4.2., see also
fig. 4.3. The component has to be dormant from t=0 up to t=t;, when
the component has to become operational.

15T PERIOD

Y

OPERATIONAL

/
DORMANT ' /L

tq (=0) To T / /' ti

- ——— e sond

e/

TIME =i

FIG. 4.2. THE FIRST PERIOD OF A COMPONENT.

Denote by

A(t) def availability of component ¢ at time t, t=0. (4.5)
So

A(t) = Pri{x(t)=0}, (4.6)

x(t) defined by (2.2).
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During the dormant part of the first period (the OR-phase) the component's
behaviour is determined by the original renewal process that has started
at t=t, with the initial state the function state or the fail state.

1
So for te[tl,ti) the availability A(t) becomes

A(t) = Pr{x(t)=0}
= Prix(£)=0, x(t,)=0} + Pr{x(t)=0, x(t )=1}
= Prix(t)=0|x(t,)=0} Pr{x(t )=0}
+ Pr{x(t)=0|x(t D=1} Prix(t D=1},  telt ,t]). (4.7)
Define:
Ay k(t) = Pr{x(t)=0 | given at instant t, component c is in
the function state}; (4.8)
A, k(t) = Pr{x(t)=0 | given at instant t, component c is in
the fail state}, (4.9)
k=1,2,...

From the above definitions the availability in (4.7) can be written as

A(L) = AO,I(t)AO,I(tl) + A],l(t)AI,I(tl)
- - 1
= Ao’l(t)Ao,l(tl) + AI,I(t){I AO’l(ti)}, te[tl,tl), (4.10)
. . e .. . def ,
with AO,I(tl) as the initial condition, i.e. AO,I(tl) = AO,ICO) is the

probability that component ¢ is in the function state at the start of
the first renewal process.

In calculating the availability of the continuously inspected component
at instant t in the operational part of the period, i.e. te[t;,tz), two

conditions have to be fulfilled:

- the component has to be available at instant t!;

'
.

- the component has to survive the time interval t-t,

So the availability at instant t depends on the availability at instant
t;, which in turn dépends on the state of the component at the start of
its renewal process. Since no repair is permitted during the operational
part of a period of component ¢ (see section 2.5.), obviously the compo-

nent is in the fail state at instant t, te[t;,tz), if it is in the fail
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state at instant ti, i.e. Pri{x(t)=0, g(t;)=l}=0. So the next result is

obtained:

A(t)

Pr{x(e)=0, x(t])=0}

]

Pr{x(t)=0, x(t)=0, x(t )=0} + Prix(t)=0, x(t})=0, x(t )=1}

fl

Prix(t)=0, §(t;)=0]§(t1)=0} Pr{g(t1)=0} (4.11)
+ Prix(6)=0, x(t)=0|x(t )=1} [1-Pr{x(t)=0}],

té[ti,tz).

Define the functions

]

(t,t!

X the probability that component ¢ 1is available

By sty

during the whole interval [ti,t], given at instant

t the component is in the function state,

t2t£>tk; (4.12)

H, k(t’téstk) = the probability that compoment ¢ 1is available
3

1
k
t the component is in the fail state,

t2t£>tk, (4.13)

during the whole interval [t',t], given at instant

t and tﬁ defined by (4.2) and (4.3), respectively.
Applying the definitions (4.6), (4.12) and (4.13) to (4.11) we get for

the availability

— 1. 1. —_
AlE) = HO,I(t,tl,tl) Ao,l(tl) + H (t,tl,tl){l Ao,l(tl)}’ (4.14)

1,1

Y
te[tl,tz).

The next step concerns the derivation of expressions for the functions

HO (t,t;;tl) and H l(t,t;;tl). By definition (4.12)

’] 1’

HO 1(t,t’;tl) = Pr{x(t)=0, §(t;)=0|§(t})20}. (4.15)

Because no repair is permitted during the operational part of a period
the event "x(t)=0, §(ti)=0" is equal to the event "the residual lifetime

of component ¢ at t; exceeds t*t;, g(t;)=0". So define:
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g (t) regidual lifetime of component ¢ at instant t; (4.16)

GO k(t,r) = Priz(t)<rt, x(t)=0 [ given at instant t, component c
>

k
is in the function state}; 4.17)

component ¢

k
is in the fail statel. (4.18)

Gl k(t,T) = Pr{g(t)<T, §(t)=0 [ given at instant t

Applying (4.16) and (4.17) to (4.15) we get

T, = t et 1Y =
Hy y(etp5e)) = Priz(ep)>e-t), x(e) 0|x(t)=0}

= Pr{g(t;)=0[§(t])=0} - Pr{g(e))<t-t}, g(t{=0l§(t1)=0}

L — f .. e T [}
AO,I(tl t]) G (tI £, ,t tl), te[tl,tz). (4.19)

0,1 1?

By the same procedure the function H (t,t;;tl) reads

1,1

t-ti), te[t',tz). (4.20)

i 1?

1. = -
By j(etgse) = A, o (e-ty

- L.
)] Gl,l(tl t

The functions Gi,.("') and the availabilities A.,‘(.) of the component
are extensively treated in chapter 3.

If the initial conditions, i.e. A.,I(tl)’ are known, then by (4.10),
(4.14), (4.19) and (4.20) the availability of the component at time t

during the first period is completely determined.

4.3.3. The availability of a continuously inspected component during

its kth period

This general case is sketched in fig. 4.3.

15TPERIOD _, 2NDPERIOD |, s+ KTHPERIOD _,
-t= -l A -+
OPERATIONAL : o ; /—: . i
. t .
DORMANT b t-—-// ' I ! 7
TIME —>

FIG.4.3 KTHPERIOD OF A COMPONENT
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Denote by

Pk(t) def availability of component ¢ at instant t,
t belonging to period k; (4.21)

f

de
Polt)) "= Ay

(tl). (4.22)

From (4.21) it follows for the availability Pk(t) of the component at

. . t .
instant t during the k h period that

Pk(t) Pri{x(t)=0},

]

Prix()=0, x(t )=0 U x(t )=1}

i

Pr{x(t)=0|x(t, )=0} Pr{x(r,)=0}

+ Pr{g(t)=0{§(tk)=l} [1-Pr{x(t, )=011, telt ,t -
Applying (4.21) to the right—hand side of the above mentioned expression,

we get the recurrence relation

P, (£) = Pr{x(t)=0|x(t,)=0} P, _ (£ )

1"k
+ Prix(e)=0|x(t =1} [1-?, _ (¢)], telt .t

(4.23)
k+1)'
We know from section 4.3.1., that a derived renewal process starts at
t=tk’ the beginning of the kth period. The first probability in the right~-
hand side of (4.23) is conditioned with respect to the event "g(tk)=0”,
so the initial state of the derived renewal process is the function state,
whereas the probability in the second term is conditioned to the event
"§(tk)=]", i.e. the initial state of the derived renewal process is the

fail state. The availability of component ¢ at time t during the dormant

part of the kth period follows directly from (4.23):

P, () = AO,k(t)Pk-l(tk) + Al’k(t) {1-p, _, (g 0%,

v
te[tk,tk), (4.24)

where the availabilities A k(.) are determined by the derived renewal
*

process starting at tk'
The availability of component ¢ at time t during the operational part

depends on the availability at time t'. So we get from (4.23)

¥
k.
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P, () = Prix(t)=0, x(£/)=0|x(t,)=0} P, _, (£ ) +
+ Pr{x(t)=0, x(t))=0[x(t )=1} [1-p, _, (£ )], (4.25)

te[tk, Ceep)

Along the same lines as in section 4.3.2. we get for (4.25) with (4.12)
and (4.13):

= 1. ', -
Pk(t) HO,k(t tes tk)Pk 1(tk) + Hl,k(t’tk’tk)[l Pk—l(tk)]’
{(4.26)
¥
te[tk,tk+1),
with
== L -t !
(4.27)
A = 1 - ]
PALCTLVELR ,k(tk) -G, k(tk,t te)s teleg,t, ))s

where the availabilities A k(.) and the functions G k(.,.) are
.s .

determined by the derived renewal process starting at tk.
The availabilities Pk(t) in the relations (4.23) and (4.26) both depend
on the availabilities at each endpoint of the foregoing periods and on

the initial condition P (t )= AO i

in order to determine P (t

(t ). Therefore, we shall first solve

relation (4.26) for t‘t ), k=0,1,...

k+1 k+1
So define '
P = Pk(tk+l)’
a = (tk+1’t' t)s (4.28)
F L
by Hl,k(tk+1’t LRE
Substitution of (4.28) into (4.26) for t=tk+1 gives
P = Py ¥ b U-py )
= (a~b )p, | * bys k=1,2,... . (4.29)

with the initial condition

P = A, (£
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The solution of the recurrence relation (4.29) reads

k k k
p, = TM(a.-b)p+Z { T (a,-b )}b., k=1,2,... . (4.30)
SRR B R e

Applying (4.28) to (4.30), it follows that

k
P (t = e, Lthie)- .(t. tit,
RO, jzl{ﬂﬁ’l(t3+1 Ei3ty) Tl (e sttt ) IR (e )
k k
. - L 1
+ § [ _Tj {Ho,z(tg,ﬂ’tg’tg) Hl,g(tg_’_l,tk,tR)J] (4.31)
3=1 &=3+1

T, =
; H]’j(tj+1,tj,tj), k=1,2, ...

It is seen from (4.24), (4.26) and (4.31) that if the functions A k(.)
.
and H k(.,.;.) are determined and the initial condition PO(t]) is known,
.
then the availability Pk(t) is completely determined for the dormant part

as well as for the operational part of the kth period.

In this section two examples shall be treated for the determination of the
availability of a class 2 component during the mission. The first example
treats the case that both the lifetime and the repairtime of the component
are negative exponentially distributed. The second example treats the
situation where the component has a negative exponentially distributed
repairtime and an Erlang-2 distributed lifetime. In both cases exact ana-

lytical solutions are obtained.

th . . . . . . —
k — period with negative exponential lifetime and repairtime

distribution

Because the negative exponential distribution is memoryless, the residual
lifetime and repairtime, mentioned in section 4.3.2., have the same dis~-
tribution as the original lifetime and repairtime, respectively. Therefore,
all the derived renewal processes are identical to the renewal process

that starts at the beginning of the first period.
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The lifetime distribution F(t) and the repairtime distribution W(t) of

component ¢ are defined by

l-e_kt, A>0,t20;

]

F(t)
(4.32)
_Ut

]

W(t) l-e , u>0,t=0,

From the definitions (4.8) and (4.9) and from appendix B, where AO 1(t),
2

A1 1(t), GO 1(t,Q) and G1 ](t,C) have been calculated (cf. (B32),...,{(B35)),
b b ]
it follows for k=1,2,..., that for t st<t’,

k

NP CENICE

AO’k(t) =1 - ;’t—'HI {1‘—e }, (4.33)
. () (et )
A] ,k(t) = m {i-e }, (4.35)
G (t,o) = (1= %) A (¢) (4.35)
0,k 0,k ’ ‘
¢, (t,z) = (1-e %) A, (0 (4.36)
1,k C? 1,k :

Because the residual lifetime is independent of the history of the renewal

process it follows from (4.27) that

L - . (. |
H.,k(t’tk’tk) A.,k(tk) G.,k(tk’t £
w— —'

At tk)

= t ¥
e A_’k(tk), te[t!, e, ). (4.37)

k+1

Substitution of (4.33) and (4.34) into (4.37), and then by substituting
the result into (4.31) gives

k
= - — — T
Pk(tk+1) exp { l&(tk_H tl) uji;(tj tj)}PO(tl)
" k k
+— T oexp {-A(t, ., ,~t!) - u I (tl-t)) (4.38)
A+u j=1 k+l 73 g=j+1 2 7R

. [l-exp{—(k+u)(tj~tj)}],

PO(tI) being the initial condition.
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Applying (4.33) and (4.34) to (4.24) results in the availability of

component ¢ at instant t during the dormant part of the kth period:

=(A+u) (e-t, ) -(k+u)(t-tk)

(t)‘*’m‘*{]e },

_ Ky
Pk(t)

(4.39)

f

te[tk,tk),
with Pk_l(tk) given by (4.38).

Using (4.33), (4.34) and (4.37) we get from (4.26) the availability of

. . . t .
component ¢ at instant t during the operational part of the k h period:

—(A+u)(t£-tk)}1 -A{t—tﬁ)

P (tk) + 2 {1-e e

k-1 A+u | >

-+ (-t )
Pk(t) [ k 'k

te[té,t (4.40)

k+1)'
In fig. 4.4. an illustration is given for the unavazlability of a con-
tinuously inspected component during the mission as described in this
section with the initial availability Po(t1)=l. We have taken the wnavail-—
ability instead of the gqvailability, since the latter function is in
practical situations, i.e. for reliable components, near to the value one,

and therefore difficult to represent as a curve.

b
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Three curves are shown, i.e.

( i) curve 1: the component is non-repairable (class 1 component);

(ii ) curve 2: the component is continuously inspected (class 2 component)
and fulfills a migsions

(iii) curve 3: The component is continuously inspected (class 2 component)
and does not fulfill a mission. (So the unavailability is
continuously governed by the original renewal process

and therefore not disturbed).

The determination of the figure has been realized as follows. To calculate
the curve 2 we start with an initial availability Po(tl)”l.

For given t first k is determined. Then P (tk) is calculated by means of

(4.38). After that the availability Pk(t§ ;s determined by (4.39) or (4.40)
depending on whether the instant t belongs to the dormant part of the
period or to the operational part. The determination of the curve 1 is
effectuated by (4.1) and (4.32), whereas the curve 3 is determined by

(4.39) with k=1 and PO(tl)=l'

In fig. 4.4, component ¢ has five periods in case of the mission (curve 2).
The failure rate is 10—3/hr and its mean repairtime is 10~2 hr. {(These
figures are fictitious and possess no practical meaning). It is seen that
during the OR-phase curve 2 and curve 3 are identical, which could be
expected. After that curve 2 is between curve 1 and curve 3, as it should
be; because curve 1 shows the unavailability of component c; in the case
that the component is not inspected, so no repair is possible at all, while
curve 3 shows the unavailability in the case of the most optimal detection

and repair policy (continuous inspection).

its'kth period with Erlang-2 lifetime distribution and a negative

exponential repairtime distribution

The Erlang~2 lifetime distribution F{t) and the negative exponential

repairtime distribution W(t) are defined by:

t

F(t) I"(1+At)e_k s A>0,t20;

I

Lt (4.41)

w(t) I-e

i

, u>0, t=20,
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If a continuously inspected component has an Erlang-2 lifetime distribution
and a negative exponentially distributed repairtime, then the derived re-
newal processes with initial state the fazl state are identical to the
original renewal process that starts at t=t, with initial state the fail
state. However, the derived renewal processes starting with iwnitial state
the function state are not identical. This because the Erlang-2 distribu-
tion has a memory. Therefore these derived renewal processes differ with
respect to their first renewal time distribution (see section 4.3.2.(1)).
Because the availability during the first period has been discussed in
section 3.4.1. concerning the dormant part and in section 3.5.2.2. with
respect to the operational part of this period, we shall start here with
deriving the first renewal time distribution for the second period of the
component with initial state the function state. Subsequently the avail-
ability of the component during the dormant part as well as during the
operational part shall be calculated for this period.

The advantage in calculating the relevant functions for the second period
is to demonstrate the method and to get insight into the formulas obtained,
since the formulas for the kth period are more complicated.

The last section will be devoted to the derivation of the characteristics

for the kth period.

(1
2
for the second period of component ¢ with initial state the function

The first renewal time distribution F (t) of the derived renewal process

state is defined by:

Fél)(t) = Pr{&§1)<t | x(t,)=0}, t>0, (4.42)
with
(1) def . . . . .
§2 =" the first lifetime of component ¢ during the derived

renewal process in the second period.
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(1)
2

The distribution function F, “(t) is in fact the residual lifetime
distribution of the renewal process of the first period of the component
at instant t2’ conditioned to the event that the residual lifetime has
Z—ti]. So in (4.42) the event "g(t2)=0"
is similar to the event "§(t;)=0,§(t;)2t2—ti" » 5(t]) being ‘the residual

lifetime of component ¢ at t; as defined by (4.16).

survived the time interval [0,t

Therefore (4.42) becomes:

(I) L. Ty~ 47
5 <t | x(e))=0, g(t})zt,~t}}

o (e) = pri

Pr{&§1)<t, x(t)=0 | x(t])=0, g(tzt,—t}}

[

+ Pr{&§1)<t, x(t)=1 | x(£1)=0, r(t))zt,~t)}

Pr{&§1)<t, x(£])=0, g(t])=t, -t} | x(t)=0}
) = PEy - Prix(t)=0}
Prix(t})=0, r(t})=t,~t] [ x(c)=07 x(t,
(4.43)

Pr{g(l)<t, x(t")=0, z(tH=2t -t! | x(t,)=1}
2 - L2 2t U [i-prix(t,)=0}]
Pr{x(t))=0, g(t))=t,~t] | x(t,)=1] 2h ’

where t; is the length of the dormant part and t.,-t! the length of the

2 71
operational part of the first period.

In {(4.43) the event ”g;l)<t, g(t;)ztz—t;" is similar to the event
e gt 1 P Rt
t, tlsg(t1)<t+t2 t,"- So

Pr{t2~t3$5(t;)<t+t2—t;, §(t;)=0 ] §(t1)=0} Pr{§(tl)=0}
Pr{g(t;)=0 ] §(t1)=0}-Pr{g(t;)<t2—t;, §(ti)=0 | g(tl)zO}

r{ (o) =

Prit,~t)sg(t])<t+t,~t),x(t])=0]x(t )=1}1-Prix(t;)=0}] (4.44)
Pr{}_i(t:;)=o\;_<(t;1)=1}-Pr{;(t;)qz-t;,;_<(t;)=0‘§<tl)=}}~

<t<t ~t. .
D_t_tB t2

Applying (4.8), (4.9), (4.17), (4.18) and (4.22) to (4.44) we get:

1 -t 8N ] -t
(D ey = Gg,1(ErEHEyE "Gy (Ey5Eytp) B (r.)
2 AO 1(t;) - GG l(t‘,tz-t;) 0 1
3 3
(4.45)
1 ety ' et

. G (Epetrty mt =G, (t], 6,7t ) (=P (e}

A ](t;) - G, 1(t;,tz—t;) 017
Ost5t3~t2.
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From appendix B, (cf. (B38), (B39) and (B40)), three distinct cases can
be considered with respect to the functions A 1(.) and G 1(.,.).
. .s

3

This distinction depends on the values of the parameters A and u, viz.
(i) uo> bh,

(ii) 4x,
(iii) W< 42,

o
]

For each of these different situations the functions A_’](.) and G.,l("')
are calculated in section B3.2., of appendix B. Here we shall only treat
case (i), i.e. u>»4x, because this assumption is the most practical one.
The reason for this is that p>4) implies 1/p < 1/4), i.e. the mean
repairtime is smaller than a quarter of the mean lifetime, which is mostly
the case for components used in technical installations.

So from appendix B, formulas (B45), (B46), (B49) and (B51), it follows

that the availabilities A 1(.) and the functions G _(.,.) of the first

1
» b ]
period are given by:

A (£) =1 - l-{v +v ep]t— epgt.l telt,,thH {4.46)
0,1 w1, 2,1 V3,1 Ik 1’1 .
| 1 /2
SR Sy (u+2)) t 5 Yu =-4Au, u>bi, (4.47)
bl
2 2 2
A uA uA
v, | = , v, = —y v, = —;  (4.48)
1,1 00, 2,1 ol(pl 02) 3,1 02(91 92)
p,+2X p.t  p,+t22 p,t
T O B B T et e S S
te[tl,ti); (4.49)
G (') = g (£N{I-(1+r)e Cleh. . (£D)A(1-e 20y
0,1 71’ 0,1°"1 0,1 g
OSCStz-tI, (4.50)
| . L
) 22, e"l(tl £y epz(tl ty)
g, (t}) = + o { - }, (4.51)
0,171 M pyme, e (e FA) 0,(p,*2)
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1 1
) qu ep](t] tl) epz(t1 t])
h, .(t!) = + { - }; (4.52)
1 A(A - ’

-A -A
¢ (th,D) =g, (ED{I-(1#a)e “Cl+h,  (£DA(1-e D),
1,171 1,171 1,1°71

0<z<t —ti, (4.53)

2

v _ _
pl(tl tl) p?_(t1 tl)
e e

Al :
£') = £ & - .
e,1(50) = T PPy {pl(pl+u)(ol+k) pz(p2+u)(p2+x)}’ (4.54)
T |
12 ep](tl t,) epz(tl £,)
by ](t;) - X:;u "o 1-lp { 7" 2}, (4.55)
’ 172 o,(p ) (p +2) PP, tu) (o) *+A)

with 0 and 0y in (4.48),...,(4.55) as defined by (4.47).

Next define:

P (t.)
def 01 .
VO,](t’T) ol € N CRO L t>0,1t>0; (4.56)
0,1 0,1
1-P_(t,)
v, (6,1 def 0_1 £>0,750, (4.57)
b

— b
Al’l(t) Gl’l(t,T)

PO(t]) defined by (4.22) and AO 1(t), A] 1(t), G0 l(t,T) and G] 1(t,T)
by (4.46), (4.49), (4.50) and (4.53), respectively.

Substitution of (4.50), (4.53), (4.56) and (4.57) into (4.45) gives

after some elementary calculations;

. @, |V
(1) ¥1,1%2,1%0,171,1%2,1Y1,1 At
F (£) = (b, v, 4. v [1-(1 + 2 2 2 2 2 21— At)e 1,
2 1,1%0,171,171,1 AR
OStStB—tz, (4.58)

with V0.1 and v, as defined by (4.56) and (4.57), respectively, and
b b
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Vi1 T g, (e {TRA e =E ) + Ahy 1(ti); (4.59)
by = go’](t;)/wlal; (4.60)
€= glsl(t;}{1+%(t2~ti)} + Ahl’l(t;); (4.61)
©, 1= gl’](t;)/wl,]; (4.62)

8o I(t} and h (t) defined by (4.51) and (4.52), respectively, and
g 4 (t) and h (t) by (4.54) and (4.55), respectively.
) ’

If we define

(4.63)

2 7 Yi1Y2,1%0,1  Pr,1%,0Y

then it follows from (4.58) that

44
P70 = 8, 01-(1 % 22 a0, k0. (4.64)

By
Taking the limit z-+e in (4.50) and (4.53) we get:

AO,I(t) = 11—: Go,l(t,C)’
z (4.65)
A, () = lim G, ,(t,7).

e 151

),

Applying (4.65) to (4.45) we obtain the limiting function F2

L) def (1)

2 1im

Lo

(t) = 1. (4.66)

From (4.64) and (4.66) it is obvious that 82=1. Therefore, the first
renewal time distribution in the second period of component ¢ when the
initial state is the function state has the form:

(l>(t) = ] - (l+a At)e t, £>0,2>0, (4.67)

a, being defined by (4.63).
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4,3.4,2,1(b) The availability and the function GO z(g,g) of the derived
»

renewal process during the second period with initial state

the function state

(1)

The derived renewal process considered is a renewal process with F2 (t)

as the distribution funection of the first renewal time, F(t) as the life-
time distribution and W(t) as repairtime distribution, F;I)(t), F(t) and
W(t) being defined by (4.67) and (4.41), respectively. The Laplace-Stieltjes

transforms of these functions are:

o A{(1=a,)p+r}

fél)(p) def J e Pt dFél)(t) = 22 » Re(p)>0; (4.68)
0 {p+xr)
. 2

£(p) def f e Pt dr(t) = ( A )2 , Re(p)>0; (4.69)
0 p+A

def T -pt _

w(p) £t [ e dw(t) = prit Re(p)>0. (4.70)

0

From section 3.3.1. it follows that the Laplace-Stieltjes transform

2, 2(p) of the availability of this renewal process is expressed by:
>

1-£(0) 51 (0)w(p)

1-£(p)w(p)

(1
1 - f2 (p) +

U-w()S" (o)
1-£(p)w(p) ’

Re(p)>0. 4.71)

Substitution of (4.68), (4.69) and (4.70) into (&4.71) gives

A{x+(l—a2)p}
G ICE I N

ay,2(0) =1 Re(p)>0, (4.72)

CH and 0, being defined by (4.47) and e, by (4.63). By inversion of (4.72),
and taking into account that the start of the renewal process is shifted

over a time t,s we get for the availability AO 2(t):
s
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o, (t=t.) p,(t=-t,)
1 | 2 2 2
By o) = 1 = Ivy o4y, e 3,28 1,
1
t25t<t2, (4.73)
v = AZU ;
- o ]
1,2 PP
Au{k+(1~a2)pl}
_ : 4.
2,2 P (o P (4.74)
ku{k+(l-a2)pz}
V3,2 7 0,(p,m0,)

To determine the function G0 Z(t,C) as defined by (3.25) note that

d oyt Pyt
aE-{mz(t)*W(t)} = v1,2+v2’2e -V, € , t=20, (4.75)

Py and 0, being defined by (4.47) and v1,2, v2,2’ v3’2 by (4.74).

From the definition of G0 2(t,l;), cf. (3.25), and from (4.75) it
b

follows that

=x(tl-t )
' - [1- -\ 2 72
GO,Z(tZ,C) {1 (1+a2K€)e te

- L. | .
A(t2 t2) 01(t2 tz)

+ { (-8 de +62,2e

81,27781 2785 2*%3 5

p,(tl-t,) -
~55 5 2772 T _aepe M (4.76)

-x(tl-t)
2 2
8 )(té-tz)e

vy preym8) oy

2,27%3,2

p. (tl~-t.) p.(tr-t.) -x(et-t.)
o V22 22722 e 20T

Yo o Y3,2°

s
st
O<zst,-t),

with
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s o o1s2 . = V1,2,
1,2 X s 1,2 2 ’
A
_ V2,2 Vo9
S92 5 +x * Y2,2°7 2 (4.77)
s p] 5 (DI_‘_A) L4
v v
s =32 L __"3,2
3,2 7,4 3,2 (92+A)2
v]’Z, V2,2 and v3,2 being defined by (4.74).

4.3.4.2.1(c) The availability of the component during the second period

Because the repairtime distribution is negative exponential and therefore
memoryless, it is obvious that the availability Al 2(t) and the function
s
G] 2(t) for the renewal process of the second period of the component are
b4

identical to those of the first period, so

= - ¥
and (4.78)
f = LI < I |
Gl,Z(tZ’C) Gl,l(tz tz,C), Oszst,-t,.
Using (4.73), (4.76) and (4.78) it is clear that the function HO z(t’té;tg)
3
and H],z(t,té;tz) given by (4.27) are completely determined, and therefore

the availability Pz(t) given by (4.26) can be calculated during the dor-—

mant part of the second period as well as during the operational part.

4.3.4.2.2. The_availability of a continuously inspected component during

its kth period

4,3.4.2.2(a) The availability AO,k 0,k =222-0L_ERE

. . t . . T,
derived renewal process during the k= period with initial

(t)_and_the function G

state_the function state

With the first remnewal time distribution F “(t) of the derived renewal

M
k

process during the kth period and the lifetime and repairtime distributions
F(t) and W(t) being defined by (4.41) and applying the same methodology

as used in section 4.3.4.2.1(b) it is seen that A (.) and G (.,.) are

0,k 0,k

given by (4.79) and (4.80), respectively:
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p,(t-t ) p,(t-t )
_ 1 1 k' 2 k
A ,kCt) 1+ " {v]’k+v2’ke V3 ® }, (4.79)
tkst<té,
-a{tr-t )
' = k 'k - '-}u':
k(tk,z;) e {1 (1+aklc)e
-2 (e -t) p,(t!-t )
_ k Tk 1V "k Tk
A8y F(=8y 78y POy e 9y k8
o (t -t )
_ k _ -AZ
63,ke Hi-(1+xg)e "7} (4. 80)
“x(t'=-t. )
k k
vy g a8y 7, 8y (g de
» 0 (tk tk)-y ( ty tk)}}\(1 -XE)
2,x° 3,k ’
|
03;5tk+] tk'

It remains to determine the quantities uk, al,k’ 62,k’ 63,k’ Yl,k’ Y2,k’

Y s V s V and v . The expressions for these quantities are obtained
3,k 1,k 2,k 3,k
by the same methodology as used for the case of k=2, cf. section 4.3.4.2.1(b).

We present in the next section the relations for general k.

4.3.4.2.2(b) The distribution of the first renewal time of the derived

th . . . e
renewal process_in_the k period with initial state the

(D

The first renewal time distribution Fk (t) of the derived renewal process
th . . C e , . . .
for the k™ period if the initial state 1s the function state is derived

completely similarly of that for the second period in section 4.3.4.2.1(a):

t ¥
(1) GO,k-l(t D L L l’tk -1
F (0) = (t' )-G (t' t, - ) P (O
A0 =1 1780 et Prmy 2 B By
1
Gy k1 Epem 2 B e B )78 (B ) (4.81)
1 1 ] .
Ay 1 e 12760 et Epmp 2 B By

A1-p, _ (O],
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with AO,k-l(')’ A!,k—l(')’ GO,k—I("') and Gl,k—l(”') and Pk~1(') being

defined by (4.8), (4.9), (4.17), (4.18) and (4.26), respectively.

From (4.46) and (4.73) it is clear that the function A_ _(t) is identical

0,2

to the functionm A, _(t). Also the function G, .(t,z) is similar to the

0,1 0,2

function GO ](t,c), i.e. each of these two functions is a sum of products
b

where each product consists of two terms, one term being a function of t
and the other term being a function of Z.

(1)

Because of this property and because F3 (t) only depends on the charac-

teristics of the second period, it may be expected that F(l)(t) has the

same form as Fél)(t) By induction it can be shown that
Ff{l)(t) =1 - (1+akxt)e"‘t, A>0,t20,k=1,2,... , (4.82)
with
def
oy = 1,
def (4.83)
O = ¥ e-1Y2,k-170,k-1 T @1, k-192,k-171, k=17 K52035--0 5
Yik-1 T X1, k-13, k-1
(4.84)
Yo k-1 = X km1X2, ke 1 X3, k=14, k=10 V1 k-1
-a(t, -t )
K tK-1
= e 1
X1, k-1 {1+ak A(tk 3‘1)} s
= —
X2, k-1 = Op—p/ T M (B -t DT,
. > (4.85)
X = [{1+x(t, -t lg +ih ]e_)\(tk—tk ])
3,k-1 K Tk—-17780,k-1"""0, k-1 ,
X4 k=1 = 80, k-1 /TR =t) Dy by L 1
-x{t, -t! )
_ K k-1
= [{1
Cp k-1 = TGt gy by e ,
(4.86)
= -t ! :
©o k-1 = B/ LU~y DYy *ahy T



. ~ P2 y)
— - 1 — - 1 - -t 1 s
Ok=1 Ag 4 178178 oy pm ™ Em o B B )
_ (4.87)
y _ Py
-1 [ — A T s
T L A D L R L G R LD
with A k_1(.} being defined by (4.79) and (4.49) and G k—l("°) being
. )

defined by (4.80) and (4.53). In (4.83),...,(4.87) the argument tﬁ—l

for the different functions is dropped in order to make the formulas more

transparent.

The functions gO k=1 and h in (4.85) and (4.86) are given by:

0,k-1
-A(t! -t )
_ _ _ k=1 k-1
80,k-1 = S1, k=178 k1780 k1193 1100 *
t - t —
s DT P e (4.38)
2,k-1 3,k-1 ’ :
-2 (t! -t )
k-1 k-1
h = + - -
0, k=1 = V1, km1" 178 11780 k103 1m0 *
1 — 1 -
L1 e RPAC SRR N
T2, k-1 ¥3,k-1
with
5 _ kel _ Y2,k 5 _ U3,k-1
1,k-1 X * "2,k-1 T o A > O3,k-1 " oM
(4.90)
y _ Y1,k . _ Y2,k _V3,k-1
1,k~1 p) > Yo k-1 2 Y3,k-1 2
’ A (0, +1) (0,*1)
Ve V2k and V3 B (4.90) being defined as:
s .

lu{k+(l-ak_1)p]}
V) 4oy _ , (4.91)
s pl(pl pz)

| ) A+ (I=ay _ D0y}
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0y and Py being defined by (4.47) and % being defined by (4.83).

The functions 8) -1 and h are given by (4.54) and (4.55) with t;
b4

1,k~1
and t replaced by té—l and tk-l’ respectively.
From (4.83) it is seen that A is only dependent of characteristics of

(1)
k
determined if the characteristics of the foregoing period are calculated.

the foregoing (k-l)th period and therefore F, “(t) in (4.82) is completely

4.3.4.2.2(c) The availability of the component during the kth period

As it has already been mentioned in section 4.3.4.2.1(c), we recall that
the derived renewal processes starting with initial state the fail state
and with a negative exponentially distributed repairtime are identical
to the original renewal process that starts at t1 with initial state the
fail state.

So

A] k(t) = A] l(t-tk) , té[tk,t&),k=l,2,... 3 (4.92)
» b

G, k(té,c) G, I(té—tk,c), OSCStk+l“t' k=1,2,... . (4.93)
3 s

k,

With (4.79), (4.80), (4.92) and (4.93) all functions characterizing the

availability of the component during the renewal process of the k0 period
t
k

H] k(t,tl'{;tk) being defined by (4.27) can be calculated. So the avail-
3

ability Pk(t) as given by (4.24) and (4.26) is completely determined.

are completely determined. Therefore the functions HO k(t,t ;tk) and
b

They will be calculated by a recursive scheme, i.e. by the following

procedure:

( i ) calculate the numerical values for the functions

aj, i=1,2,...,k;

H j(tj+],tJ!;tj), 3=1,2,...,k~1,
* 2

aj being defined by (4.81) and H j(.,.;.) by (4.27);

>
(1ii ) calculate recursively the functions
Pj(tj+1)’ j=1,2,...,k-1,

Pj(.) being defined by (4.31), using the functions

. caleculated in step (i);



UNAVAILABILITY

(i11ii) with the results of the foregoing steps (i) and (ii) calculate

Pk(t), tk$t<tk+l,

as defined by (4.24), (availability during the dormant part of
the kth period) and (4.26), (availability during the operational

part of the kth period).

In fig. 4.5. an example is shown of a phased mission for a class 2 compo-
nent with Erlang-2 lifetime distribution and negative exponential repair-—
time distribution, and with the same input numbers and the same mission

as shown in the example of section 4.3.4.1.2.

Three curves are shown:

(1) curve 1: the component is non-repairable (class 1 component);

(ii ) curve 2: the compoment is continuously inspected (class 2 compo-
nent), and fulfills a mission;

(iii) curve 3: the component is repairable (class 2 component) and does
not fulfill a mission. (So the unavailability is con-
tinuously governed by the original renewal process and

therefore not disturbed).

1-5

? nd
?o-
-]
] h L
- i 13 i i
& : , I . .
] d : ' P Vo PHASED MISSION =
T i3 1 i i : H +
=F o : P P MON] TORED = e 3
- i 1 | ' 1] : + ]
b oo : o b NON-REPAIRABLE i |
-4 ¥ 1] [} t + i ] t
: i } : : P b INITIAL AVAILABILITY = 1.0000
“1 [l 1 H ' [ 1 H
N roor ! P o FAILURE RATE 1 = .0010
9: : 1 ! : lv t : s
pe 1 4 5
4 M: : : N: : ,.,); :v: : ’«fl: MEAN RfPAiR—T/MEy = L8100
: Q:'x 3 tk" 1 %‘a :ft: : “{"
1. S < I SR el
N T R ¥ L t L "t‘ t
 ——————— | I ]
@ |
| | |
L ¥ 1 H T
0.0 0.2 0.4 0.6 08 1.0 1.2 1.4 1.6 1.8 2.0
TIME(years)

FIG.L.5 UNAVAILABILITY FOR A CONTINUOUSLY INSPECTED

COMPONENT DURING A PHASED M!S SION
ERLANG-2 LIFETIME DISTRIBUTION
N.E.0. REPAIRTIME DISTRIBUTION

Comparison of fig. 4.4. and fig. 4.5. shows that in case of an Erlang-2

lifetime distribution the unavailability is considerably decreased.
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4.4, The availability of a randomly inspected component during the

mission

A randomly inspected component is subjected to random testing during the
OR-phase, however, random testing is stopped at the moment that the mission
starts, i.e. at t=T0. So if the component is in the fail state during the
mission, this fail state 18 not detected and therefore no repair can be
applied to the component during the phased mission.

However, there is one exception to this rule: If the component is being
repaired at the start of the mission at t=TO, and the first operational
phase of the component starts at t;>T0, then repair may be continued.
Therefore, there exists the possibility that repair has been finished
before the instant t;, i.e. the component is in the funection state at the
start of its first operational phase whereas it was in the fail state at
the start of the mission.

So, three distinct intervals can be considered for the behaviour of a

randomly inspected component performing a mission:

- the OR~-phase,

- the interval [To,t;), i.e. the interval between the start of the
mission and the start of the first operational part of the component,

- the interval {t;,TK], i.e. the interval between the start of the first

operational part for the component and the end of the mission.

In the next sections the availability of a randomly inspected component
during each of the mentioned intervals will be treated. As an application,
explicit formulas will be derived in the case of negative exponentially

distributed lifetime and repairtime.

4.4.1. The availability of a randomly inspected component during the

. e e e e ot

During the OR-phase the component is subjected to the original renewal
process that starts at t=t,, and therefore the availability Pl(t) is
defined by:

Pl(t) = Ao,l(t)PO(tl) + Al,l(t) {I-Po(tl)}, ost<TD. (4.94)

with Aj (£) and A, (t) defined by (4.8) and (4.9) and P (t) def 4 0y,
s

0,1
t dgf 0. The availabilities AO 1(t) and A] ](t) are determined by (3.13)
3 k]

and (3.14).
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4.4.2. The availability of a randomly inspected component during the

1
11 Ty

being the start of the first opera-

The availability P](t) of the component during the interval [To,t

1

being the start of the mission and t

tional part, is determined by:

il

P (£) = Prix(t)=0}

= Pr{§(t)=0[§(t1)=O}Pr{§(t1)=O}+Pr{§(t)=OI§(tl)=1}Pr{g(t1)=l}
= [Prix(£)=0,x(T)=0]x(t )=01+Pr{x(t)=0,x(T )=1|x(t )=0}]

- Prix(t,)=0}

+[Pr{x(£)=0,%(7)=0]x(t )=1HPr{x(t)=0,x(T)=1]x(t)=1}]

. Pr{x(t D=1}

= [Hy | (6,736 )+Prix(e)=0,x(T)=1|x(c)=0}]p ()

0

+[H

],1(t,TO;tl)+Pr{§(t)=0,§(T0)=f|§(t])=l}]{1-PO(t1)}a

1
te[TO,tl), (4.95)

H.,l("';') defined by (4.19) and (4.20), and PO(tl) being the initial
condition, i.e. PO(tl) = A(0).

In order to calculate Pl(t} in (4.95) we have to develop the expressions

for the probabilities of the events "§(t)=0,§(TO)=1[§(t1)=.”, i.e. the
events "the component is in the fail state at instant TO and in the function
state at instant t>TO|§(t1)=.".

If the component is in the fail state at instant TO’ two distinct situations

are possible:

- the component is in the fail state at instant TO and the fail state has

not yet been detected; so no test has been performed till TO after the

state transition of the component form the function state to the fail

state;

— the component is in the fail state at instant T, and is being repaired.

0
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In the first situation the fail state of the component is not detected

at instant TO. Since no test is performed after the instant TO’ the fail
state of the component will not be detected at all. Therefore, it is
obvious that the probability of the event "§(t)=0,§(TO)=1]§(t1)=. and the

fail state of the component not yet detected at T.'" equals zero.

0
In the other situation, i.e. the event "the component is in the fail state
at instant TO and is being repaired", there exists a non-zero probability

of the occurrence of this event. Therefore define

Xo(t,TO) = Pr{§(t)=0,§(TO)=1, component ¢ being under repair

at instant Tg|x(t )=0}, telT ,t]);
(4.96)

Xl(t,TO) = Pr{§(t)=0,§(TO)=l, component ¢ being under repair
. _ '
at instant Tolg(ti) 1}, te[TO,tl).

In the next figure a realisation is shown for the event "§(t)=0,§(T0)=1,

component ¢ 1is under repair at instant Tolg(t1)=0".

OPERATIONAL

—————

,‘_001

T
| |

U, S ——————————

DORMANT

-
—
N
o
—d
Q
.
o

TIME ———3

(For an explanation of the variables %, z, w and r see section 3.3.2.) .
It follows that

(=]

= W < < + > "
Xo(t,Ty) = I Priz +w <T,T <z +w +r <t,z . >t|x(t,)=0}

n=1 -
o T0 t-u
= 2 Py
r I/ Prif ,,2t-u-vld Pr{z +w <u}d Pr{r <v}

n=1 u=0 v=T0~u
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TO t-u

= f [ {1-F(t-u-v) }d m_(u)*H(u)d_W(v), telT ,t!), (4.97)
’ _ u 0 v 071

u=Q v=T -u

0

with F(.), W(.), H(.) the lifetime, the repairtime and the interinspection
time distribution of the component, respectively, and mo(.) its renewal
function with initial state the function state (see section 3.3.2.).
In the next figure a realisation is sketched in the case that the initial

state of the renewal process is the fuil state.

! \ ] : i ] ; . OPERATIONAL
ERERER I
{«4-—;--:—14-—-1 H } : }
: i : : Zn ‘Egm_u_!not_!‘ aoe
- 1 1 L B ot 1
1 | ) 1 i i i |
—_l ' L ' - DORMANT
f.](:O) TO t ‘ta
TIME
Obviously
o
(8T = niopr{gnﬂgnﬂ<T0’T035n+yn+l+fn+1<t’5n+12tl§(t1)zl}
TO t-u
= J J {1-F (t-u-v) }d H(u)d_W(v) (4.98)
u=0 v=T _-u
0
T0 t-u

+ [ {1-F(t-u-v) }d m (u)*H(w)d W(v), ts[TO,tI),
u=0 v=T _ -u u v

0
with F{(.), W(.) and H(.) as being defined in (4.97) and ml(t) the renewal
function with initial state the fail state.
To summarize the obtained results of this section, it follows that the

availability Pl(t) in (4.95) of the component during the interval [To,t;)

can be expressed by
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Pl(t) = {Ho,l(t,TO;t]) + Xo(t:TO)} PO(tl)
(4.99)

+ {H1 (t, 0,t ) + X, (t,T )}{1~P (t )}, Tost<t;,

H ( ,+3.) being defined by (4.19) and (4.20), X ( ) and X (.) being
deflned by (4.97) and (4.98) and P (t ) being the 1n1t131 avallablllty.

4.4.3, The availability of a randomly inspected compoment during the

interval [t TKl

The expression for the availability Pj(t) during the interval [t;,TK]
differs from the expression for the availability during the interval
[TO,t;) because of the repair policy.

For the availability calculation at instant t during the interval {To,tf),
repair was permitted during the whole interval [TO,t;]. However, during
the interval [t;,TK] no repair ig permitted. So, from (4.97) and (4.98),

it follows that for t>t; the functions Xo(t,TO) and Xl(t’To) are given

by:
TO t{—u
X (6,T) = u£0 v=TJ _u{l—F(t—u-v)}dumO(u)*H(u)dVW(v), (4.100)
0
tﬁ[t{’TK],
TO t;-u
X, (6,T,) = | J {1-F(t-u-v)}d H(u)d W(v)

u=0 v=TO~u

TO t{-u (4.101)
+ f {I-F(t—u—v)}dum](u)*H(u)dVW(V),

u=0 v=T0*u

te{t;,TK],

the functiomns F(.), W(.), E(.), mo(.) and ml(.) being defined by (4.97)

and (4.98). Note that functioning at t>ti implies that the repair is com—

pleted before ti.
The availability P](t) of the component during [ti,TK] is given by (4.99),
but in this case the functions Xo(t,TO) and Xl(t’TO) are defined by (4.100)

and (4.101), respectively.
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with negative expomentially distributed lifetime and repairtime

In this application we shall derive explicit expressions for the avail-
ability of a randomly inspected component for each of the three intervals
which may occur during a phased mission of such a component.

The lifetime distribution F(t) and the repairtime distribution W(t) are

negative exponentially distributed and defined by (4.32):

[
|
o

F(t) R A>0,t20,

(4.32)

W(t) u>0,t20.

]

!

o}
-

The interinspection time distribution H(t) is also negative exponential

(see section 3.3.2.).

H(E) = 1-e Y5, v>0,€20. (4.102)

From appendix B, chapter B4 it follows that three distinct cases for
the calculation of the component's availability Pl(t) have to be dis—

tinguished, they depend on the values of the parameters A, p and y, viz:

(i) 0<y<A+u-2vAp and  y>A+p+2/ay,
(ii) y=r+p=2/Ap and  y=A+u+2/, (4.103)
(iii) A+p=2VAp<y <A+p+2vAn .

The most usual situation in practice is the one where the inspection rate
v is far larger than the sum of the failure rate A and the repair rate i,
because then a random inspection procedure may be acceptable. In case of

a low test frequency a random test procedure is of little use. Therefore,
the most practical situation for random testing is given in case (i) by
y>k+ﬁ+2f§§.

Because all three cases can be treated similarly by using the relevant
formulas from appendix B, see chapter B4, only case (i) shall be discussed

in this section.
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4.4.4.1, The availability during the OR-phase

The availability Pl(t) is given by (4.94):

P (t) = A (t)P (t ) + AI 1(t) {I-Po(tl)}, t=0,

Po(tl) being the initial availability.

For this interval it follows from appendix B, formulas (B67) and (B68)

for t1 def 0, that:

(pl+u)(pl+v) Pt (pz+u)(pz+v) Pyt
¢ Ty ¢
PatP 7Py

wy
A t) = +
,1( ) AU+AYHUY o](ol~02)

te[O,TO), (4.104)

with
1 1 ¢/ 2
019 = 75 Qxury) £ 57/ Qtuty) ™ = 4Qudy+uy) s (4.105)
b
and
t t
A (t) = —BY Y epl HY p2
1,1 Au+dy+uy pl(pl-pz) pylp =P ) i

te[O,TO}, (4.106)

with oy and Py being defined by (4.105).

With (4.104) and (4.106) and the initial availability P (t ) the avail-
ability P (t) during the interval [O T ] is completely determlned Note
that (4. 103)(1) implies that (O+u+y) —&(ku+A¥+py)>0.

4.4.4.2, The availability during the interval [TO&F;Q

During the interval [To,t;) the availability P](t) is described by (4.99):

t.) + X, (t,T )}P (t )

P](t) = {Ho,l(t TO’

(4.99)
+ {H]’l(t,TO;tl) + X1<t,T0)}{1-P0(t1)}, te[TO,t;),

H ( s+3.) being defined by (4.19) and (4.20), X (.,.) and X (.,.) being
deflned by (4.97) and (4.98), respectively.
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From appendix B, expressions (B71) and (B75), it follows that

o.T p,T
170 270 -x (£=T )
[_uy Ay { e e 0
G T ,t=T = + - {l-e b, (4.107)
O,l( 0 0) [plp2 PPy 01(01+l) 02(02+ﬁ)jj (
T
2 P10
Y A Cuy) {
T.,t=T.) = +
G],I( 0 0’ [p]p2 P70y Loyl 2 (o) (o *y)
engo 1. HETY
- 1= s 4.108
02(92+A)(92+u)(02+y)}J{ ¢ ) ( )

0, and Py being defined by (4.105).
From its definition
- = — - 1]
H',l(t,TO,O) A.’](TO) G.,I(To,t TO), te[TO,tl).
From (4.104) and (4.107) it is seen that HO l(t,TO;O} is completely
3
determined. The same holds for Hl ](t,TO;O) by applying (4.106) and (4.108).
The Laplace~Stieltjes transforms z(p) and ho(p) of the functions H{t)
and mo(t), respectively, are defined by the expressions (B54) and (B61)

from appendix B:

Z(p) = E{? s Re(p)>-~{, (4‘109)
= _Ae+rw) (p+y)
hO( ) p(o—pl)(p—pz) ’ Re(p)>0, (4.110)

0 and Py being defined by (4.105). Denoting by LS{.} the Laplace-Stieltjes
operator, it follows from (4.109) and (4.110) that

a4 % - _ ry(ptu)
LS{dt<m0(t) H{t))} (9—01)(9—92) . Re{p)>0.

Applying the inverse Laplace transform vields:

(4.111)

p*U Pyt potu Pt
é%e{mo(t)*ﬁ(t)} BTSN i M R M }, t20.

0Py PP, L Py Py
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Substitution of (4.32) and (4.111) into (4.97) gives after integration
for the function Xo(t,TO):

-u(t-T.) =x(t-T,.)
= Auy 0" _ 0
Xo(t,TO) P {e e }
(4.112)
[ 1 1 ep]TO epzTO
+ —— { - - }], te[T.,t"),
PPy, PyTP, Py 0 0’1

Py and Py being defined by (4.105).
Using the same technique we obtain for the function Xl(t’TO) as given
by (4.98):

—u(e-T )
Xl(t’TO) = Ay {e 0 -e

—A(t—TO)}
A=y

(4.113)

p,T p,T
[ 1 2 170 e 2°0 ]

+ ARY { e - }
oo, pymp, o G ) (ot 0, (o t) (oY) |

t

P and Py being defined by (4.105).

Since the functions H 1(t,TO;G) and X (t,TO) can be calculated by (4.104),
s .
(4.106), (4.107) and (4.108) and by (4.112) and (4.113) respectively, the
availability Pl(t) of the component as defined by (4.99) is completely

determined for the interval [To,t;).

4.4.4.3. The availability during the interval [tia?Kl

In this section we shall present the explicit expressions for the functions
Xo(t,TO) and X](t,TO) in the interval [t;,TK], without derivation, since
the results are obtained by the same technique as applied in the foregoing
section.

During this interval the availability Pl(t) is given by (4.99) and the
functions H.,I(t’TO;O) are determined by (4.104), (4.106),...,(4.108).

The expressions for the functions X.(t,TO) during the interval [t',TK]

read:
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N —A(t—t;)—u(t;—TO} —A(t-TO)
X (£, T ) = ARY {e —e }
0 0 A=u
[ i l eplTO epzTO
| + — { - }], (4.114)
Y
te[tl,TK],
=2 (t=t)-u(t;-T.) =A(t-T,)
X, (6,7 = %%% {e ! 1o, 0 } (4.115)
p,T 0., T
[_1 + ?\uYz ( e ' 0 _ e 20 }
leye, 0170, o G G+ e, (e, m ) (o) ]

]
te[tI,TK],
P, and ey being defined by (4.105).
In fig. 4.6. an example is shown for the unavailability of a randomly

inspected component with negative exponentially distributed lifetime and

repairtime during the mission.
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Three curves are shown in fig. 4.6.:

(i) curve 1: the component is non-repairable (class 1 component);

{ii ) curve 2: the component is randomly inspected (class 3 component)
and fulfills a mission;

(iii) curve 3: the component is continuously inspected (class 2 compo-

nent) and does not fulfill a mission.

4.5. The availability of a periodically inspected component during

the mission

The availability of a periodically inspected component during the OR-
phase is described in section 3.4.3. Furthermore, it is assumed that

after the start of the mission at instant T, neither inspections nor

0
repair are applied to the component. However, if at the start of the

migssion the component is being inspected or being repaired, it is
assumed that this inspection or repair may be continued. Whether this

inspection or repair can be finished before the start of the first ope-

t

rational part of the component at instant £

depends on the length of

the time interval [TO,ti).

Because of this exception (the same as made for randomly inspected com-
ponents, see section 4.4.), the availability of a periodically inspected
component at an instant t during the mission depends on whether the start
of the mission at instant TO and the start of the first operational part

at instant ti belong to the same inspection interval or not.

. . ’ t
Suppose that the start of the mission at instant TO belongs to the n h
1, T being the start

inspection interval, n=1,2,..., i.e. T e[rn,r

0 n+l
th | . — : ; .
of the n™ inspection. Then two distinct situations are possible:

-4 1
(i) trelr 7 41
4,.116)
(ii) ti>T (
1" 'n+l?

this separation motivated by the assumption that after the start of the
mission at instant TO no new inspection is initiated. For calculating the
availability at instant t for case (i) of (4.116) we should distinguish

the interval [O,t;) during which inspection and repair are performed and
the interval [t;,TK] during which neither inspection nor repair are allowed.

The availability during the interval [O,ti) is treated in section 3.4.3.,
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whereas the availability Pl(t)’ te[t{,TK] is defined by:

P (£) = Prix(t)=0}

Pr{g(t)=0,§(ti)=0}

1Yy 1 | 1
Pr{g(tl)-ﬂ,g(tl)>t tl}, te[tl,TK], (4.117)

' L)
1
Treating the availability at instant t for the second situation (ii) of

E(ti) being the residual lifetime of the component at instant t

(4.116), it is clear that there are also two different intervals that have
to be considered, viz. the interval [O,Tn+1) during which inspection and

repair is performed and the interval [t TK] during which neither in-

n+l’
spection nor repair is allowed. The availability during the interval
[O,Tn+1) is treated in section 3.4.3. The availability P!{t) for case (ii)

during the interval [t TK] is obtained by:

n+l’

P, (t) = Prix(t)=0}

I

Pr{x(£)=0,x(r_,  )=0}

}s telr 1, (4.118)

Pr{§(rn+]=0,§(fn+])>t-rn

+1 n+1’TK

E(Tn+1) being the residual lifetime of the component at instant Tn+1.

From (4.117) and (4.118) it is seen that the availabilities Pl(t) during

the interval [t;,TK] in case (i) and during the interval [Tn+],TK] in

case (ii) only differ with respect to the instants at which these intervals

start. So these availabilities can be treated in a similar way.

Therefore we introduce the instant t' such that

t! 1,

t! . if T t’e[Tn,T

01 n+l
(4.119)

- 3 [ -
- Tn+]’ 1f TOE[Tn’Tn‘f‘,I] and t1>Tn+13n 1,2,.». .

The availabilities P](t) as defined by (4.117) and (4.118) are now

obtained by the following derivation:
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P (&) = Pr{x(t')=0,z(t")>t-t"'},

z(t') being the residual lifetime of the component at inmstant t'. It

follows that

P (1) Prix(t')=0,z(t')>t-t' [x(0)=0}Pr{x(0)=0}

+ Pr{x(t")=0,z(t")>t-t"'|x(0)=1}[1-Pr{x(0)=0}]

]

[Pr{x(t")=0|x(0)=0}-Pr{x(t')=0,z(t")<t~t'|x(0)=0}IPr{x(0)=0}
+[Pr{x(t')=0|x(0)=1}-Pr{x(t')=0,z(t")<t-t' [x(0)=1}]
. [1-Pr{x(0)=1}]

= {Ao’l(t')—GO,I(t',t—t')}A(O)

+ {Al,l(t')"’Gl,l(t',t-t')}{I“A(O)}, t€[t',TK], (4.120)

with AO,I(') and Al.l

(3.26) respectively; for G

(.) being defined by (3.18),...,(3.20) and (3.24),...,

0 1(.,.) see {3.38) and for G (.,.) see (3.39).
b4

Applying (3.38) and (3.39) to (4.120) we obtain:

1,1

- Ty o !_(n)'_l
P (¢) = [AO,I(t ) {AO,I(t ) Ao’l(t +t-t") }]A(0)

#0a, (eD=(A [ (£)-a0") (et ot 1 1{1-4(0)}

A (04 + 4™ (0 (1-a0)3, tele',T .1,  (4.121)

. (n) (
with AO,I(') and A]

periodical inspection process (see section 3.5.3.), and with t' defined
by (4.119).

ni(.) related to the interval [0,t'] for the component's
3

In the figures 4.7. and 4.8. examples are shown for the unavailability

of a periodically inspected component during a phased mission (drawn line).
In fig. 4.7. the start of the mission is contained in the inspection in-
terval and the start of the first operational part in the repair interval,
whereas in fig. 4.8. the start of the first operational part lies outside

the repair interval.
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In each figure three curves are shown:

( 1) curve l: the component is non-repairable (class 1 component);

(ii ) curve 2: the component is periodically inspected (class 4 component)
and fulfills a mission, its repairtime is uniformly dis-
tributed;

(iii) curve 3: the component is continuously inspected (class 2 component)

and does not fulfill a mission. Its repairtime is n.e.d.

4.6. The conditional availability of a component during the mission

In calculating phased mission success often the availability of a compo-
nent has to be calculated at instant t with respect to (conditioned to)
the fail state of the component at an earlier instant T.<t. Therefore

we introduce the conditional availability»A(t|Tj) of .a. component:

A(tlTj) = Pr{§(t)=0|§(Tj)=l}, e T, (4.122)
Tj being the end of an operational phase of the component (see chapter 6).
The reason why and in what manner these conditional probabilities arise

in phased mission analysis is fully treated in chapter 6.

4.6.1, The conditional availability of non-repairable, randomly inspected

and periodically inspected components during the mission

If a non-repairable, randomly inspected or periodically inspected component
has become operational, them it is supposed (see chapter 2) that for such a
component no repair is permitted during the continuation of the mission.
Therefore, if such a component is in the fail state at the start of its
first operational part or switches during the mission to the fail state,
then it remains in the fail state till the end of the mission. So for these
classes of components, the conditional availability ﬁ(tlTj) is obviously

given by:

A(tlrj)=0, £>T>T(20. (4.123)
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during the mission

During a phased mission repair is permitted for a continuously inspected
component during the time intervals the component needs not to be opera-
tional, i.e. repair is permitted during the dormant part of the periods
of that component. No repair is permitted during the operational part of
the periods of the component. So two distinct situations can be distin-
guished, viz. (i) the instants t and Tj, t>Tj, belong to the same period
or (ii) the instants t and T. do not belong to the same period of the
component. In case (i) the instants t and Tj belong to the same opera~-
tional part of a period of the component, so if the component is in the
fail state at instant Tj it is in the fail state at instant t with cer-

tainty. Therefore

A(t]Tj)=0, if t and Tj, t>Tj, belong to the same
operational part of a continuously detected (4.124)

component.

If instant t and instant Tj do not belong to the same period (case (ii))
then they belong to different periods, say instant Tj belongs to period

k] and instant t belongs to period kz, k2>k , of the component. (Note

that Tj is the end of an operational phase ;n period kl)' The end of
period k1 is marked by the instant tkl. From the above it is clear that
if the component is in the fail state at instant Tj’ it 1s in the fail
state at instant tkl (Tj and tkl

At instant tk] a derived renewal process starts with the initial state

the fail state in this case (see section 4.3.2.). If we call the dormant

belong to the same operational part).

t . .
part of the (k1+1) h period the OR-phase, then the calculation of the
conditional availability A(t!Tj) is reduced to the calculation of the

absolute availability P (t-t +1) with initial condition PO(O)=O.

kp=ki™ ki

So the conditional availability of a continuously inspected component for
the original mission has changed into the calculation of an absolute
availability of this component for another mission with initial state the
fail state. Suppose the original mission for the component is characterized

by the instants:
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tl,t;,tz,té,...,tk ,té seeast

VEL BB yqaeees (4.125)
1 1

ky ky' kg

with tk and té, k=1,2,..., as defined by (4.2) and (4.3), respectively,

being the start of the kth period and the kth operational part. To be able
to calculate the conditional availability A(t]Tj), we consider a new

mission characterized by the instants:

' - - . - L
O,tk1+1 tkl'!‘}’tk]‘*'?- tk +1,...,tk tk +1,tk

-t e »
1 2 1 9 +] "k, +1

t .t
ky*17 7k, i

(4.126)

The renewal process that starts at instant t=0 in the new mission is the

derived renewal process that starts in the mission of (4.125) at instant

tk +1 with initial state the fail state., During the other periods of the

1

mission of (4.126) we have to deal with the derived renewal processes

described by the original mission of (4.125). So the derived renewal pro-
. . . . R . _

cesses starting during the mission of (4.126) at instants tk1+n tk1+1’

n=1,2,..., are identical to those starting during the original mission

of (4.121) at the instants tk1+n’n=1’2"" .

Summarizing the above mentioned, we obtain for the conditional availability

A(t]Tj) of a continuously inspected {(class 2) component during the mission

with t and Tj not belonging to the same period:

A(tlTj) =P St 4 ) s (4.127)

(t-t ), telt
kol ky" kg

]3 T-E[t' » L
k2 k] ] k] kl+l

k2>k],

, . . . . '
with Pk(t) defined by (4.24) if te[tk,tk) and by (4.26) ;f te[tk,tk+1).

The mission within the time interval [0,t-t +1] is described by (4.126)

ki
and derived from the original mission as described by (4.125).
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5. FAULT TREE ANALYSIS

5.1. Introduction

In the past decade fault tree analysis has become an important tool in
system reliability. Fault tree analysis is a formalized deductive
technique that provides a systematic approach to investigate the possible
modes of occurrence of a defined system state, in particular undesired
states. Fault tree analysis was first conceived by H.A. Watson of Bell
Telephone Laboratories in connection with an Air Force contract to study
the Minuteman missile launch-control systemn.

Boeing Company analysts have extended the techmique and developed computer
programs for both qualitative and quantitative analysis. In 1965 at a
system safety symposium in Seattle, Washington, it was recognized that
aerospace technology could be successfully extended to nuclear reactor
safety technology and to various other civil systems.

In 1967 Garrick et al recommended implementation of aerospace techniques
in quantifying system reliability and safety, and in establishing the
relative importance of various components to system operation. In the

mid 60's Farmer from the United Kingdom Atomic Energy Agency analysed a
spectrum of reactor accidents in order to estimate the overall risk from
nuclear power plant operation. Risk in this case was defined to be the
product of two factors namely the probability of occurrence of the
accident and its consequences. Based on these considerations an elaborate
risk assessment of nuclear power plant operation was completed in 1974

by the United States Atomic Energy Commission, known as the RASMUSSEN study.
Also in Germany a risk study directed to the impact of nuclear power plants
on society has been performed. It started in 1976 and its first phase was
finished in 1979.

In the early 1970's system safety and reliability techniques were also
applied in the chemical industry. So far for a brief review of the origin
of fault tree analysis. For further details the reader is referred to
Lambert [11].

The technique of fault tree analysis will be used in the present study

of Phased Missions. It is therefore, that we give in this chapter a brief
description of fault tree analysis. For an extensive treatment of its

principles and its use the reader is again referred to Lambert [11].
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The objectives of Fault Tree Analysis are:

- to find systematically all possible failure modes of the occurrence

of the "top" event (i.e. the considered undesirable system failure);

- to give a clear and graphical representation of all possible modes of

operation of the system;

- to have a foundation to judge alternatives of design, maintenance and

inspection.

Fault Tree Analysis consists of two important phases:

- the construction of the fault tree;

- the evaluation of the fault tree.

In section 5.2. the construction of the fault tree and the determination
of all failure modes leading to the top event will be treated (qualita-
tive fault tree analysis). In section 5.3. the evaluation of the fault
tree will be discussed; it is based on a probabilistic approach (quanti-

tative fault tree analysis).

5.2. Qualitative Fault Tree Analysis

5.2.1. Basic elements of the fault tree

For the evaluation of system performance it is necessary to have an in-
sight in the possibilities of the occurrences of '"undesired" states or
events (so-called "top" events). Once a top event (in generally a highly
undesired event) has been defined, its possibility (and probability) of
occurrence has to be analysed. Fault tree analysis is a technique for a
systematic investigation of the possible failure modes resulting in the
top event. Obviously, for such an analysis a highly detailed description
of the top event is required. For the analysis of the top event a number

of concepts are needed. These concepts and their "symbol" representations

will be now firstly discussed.

- A primary event (failure) or a basic event is an event that will not
be described by more detailed events: such a description not being
possible at all, or because of a lack of data, or not being relevant

for the analysis.
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A compound event is an event which can be described by the conjunction
and/or disjunction of primary events. The conjunction and disjunction

operations will be represented by "AND" and "OR" gates.

- An undeveloped event is a compound event of which the performance

evaluation is not possible. Therefore, it is not further investigated.

- A normal event is an event that does occur with probability zeroc or

one.

- An "OR" gate is a logical relation between the input events and the
output event: the output event occurs i1f at least one of the imput

events occurs.

- An "AND" gate is a logical relation between the input events and the

output event: the output event occurs if and only if all input events

oceur.

For the events introduced above a symbolic notation is used in the graphical
representation of fault trees. In fig. 5.1. the symbolic notation is illus-

trated.

Large fault trees often contain compound events which appear at several
places in the fault tree. It is convenient to describe such branches once.
To indicate where such a branch occurs in the tree and which branch is
meant, special transfer labels are used. At each place where a branch is
inserted in the tree it is represented by a ""transfer—-in” label, whereas
that branch itself is represented by a "transfer—out"” label, each of the
labels carrying the same name. In fig. 5.2. the symbol representation of

these labels is shown.

Concerning the behaviour of the basic elements of a fault tree it is once

and for all assumed that every event has only two possible outcomes:

(i) the event occurs,

(ii) the event does not cccur.



-144-

If the event occurs, this means that the element under consideration

(for instance a component like a switch, a valve, wiring or a relay or

a human element like an operator or a driver) is in the fail state; on

the other hand if the event does not occur, the element is in the function

atate.

An element is in the function state if it performs its prescribed

behaviour, otherwise it is in the fail state.

COMPOUND EVENT PRIMARY EVENT UNDEVELOPED EVENT NORMAL EVENT

OUTPUT EVENT QUTPUT EVENT

s & » . & @
INPUT EVENTS INPUT EVENTS
“OR" GATE “AND” GATE

FIG. 5.1. SYMBOLS USED IN FAULT TREE ANALYSIS.
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LABEL “A " REPRESENTS THE BY MEANS OF LABEL “A" THE
BRANCH WITH EVENT "E" AS BRANCH WITH EVENT "E" IS
TOP INSERTED IN THE TREE

FiG.52. TRANSFER LABELS IN
A FAULT TREE

2.2.2. Some_cxamples concerning the description of the "fail" state

and_the "function” state

In practice it is often not so obvious how to define for a component the
fail state and the function state, since most components do not behave
binarily, as it has been assumed in the foregoing. On the basis of some

examples definition of fail state and function state will be illustrated.

Example 1: a wire

As a first example we take a wire that connects two points A and B
galvanically. The basic event in this case is: "defect of the wire in
circuit AB". When we are only interested in current or no current through
the wire it behaves as a binary component. The fail state is defined by
"no current through the wire from A to B"; if there exists a voltage
between A and B, the function state is defined by "current through the
wire from A to B". If we are not only interested in current or no current,
but also in partial current, the fail state and the function state have to
be defined more carefully, i.e. when the current is less than I the wire
is in the fail state and when the current is greater than I the wire is

in the function state.
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Example 2: a valve

In hydraulic and pneumatic systems usually the components have more than
two states. For example, a valve in a pipe has infinitely many positions.
The event 'the valve is closed" formally means: no flow is possible through
the pipe. But sometimes in practical situations the effect of the closure
of 90 percent of the pipe flow area is the same as that of a 100 percent
closure. This means that in this case the event 'valve is closed" can be
described by "the valve is closed for more than 90 percent of the pipe

flow area'. If the valve is commanded to open but stays closed, then the
fail state is characterized by "the valve does not open more than 10
percent of the pipe flow area" (basic event) and the function state by

"the valve opens for more than 10 percent of the pipe flow area'.

Example 3: a two-position switch

The switch can be in two positions, i.e. "open' and "closed". But there

are four possible states for the switch.

~ switch is open ; when commanded to close, it closes,
- switch is open ; when commanded to close, it fails to close,
- switch is closed; when commanded to open, it opens,

- switch is closed; when commanded to open, it fails to open.

If in a fault tree the event "ecircuit C fails" occurs, we must know what
the intended function of circuit C is. In the case that circuit C has to
be closed, then it means that the occurrence of the event "eircuit C

fails" includes that switch S fails to close. It is obvious that the fail
state of switch S now is "switch S fails to close', which is a basic event,
and that the function state is "switch S is in the position "open' and
functions". If on the other hand the circuit has to be opened, the occur-

rence of the event "circuit C fails" means that switch S "fails to open"
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(basic event) and the function state is that "switch S is in the position
"closed" and functions'. It is clear that the fail states "switch § fails
to open' and "switch S fails to close'" exclude each other at the same

epoch. In constructing the fault tree one has to take care of this phenomenon.

5.2.3. Classification of events

Two main groups of events can be distinguished in comstructing fault

trees:

(a) events that can be predicted with certainty (normal events),

(b) events that cannot be predicted with certainty.

Ad (a):

As a matter of fact these are planned events, for example:

- removal of a battery for maintenance during system operationj

- control rods are inserted when an operator pushes a scram bar.
This is an example from operation of a nuclear reactor. In such a
reactor fission of Uranium takes place. This fission is caused by
neutrons and at each fission new neutrons are created. Reactor power
is proportional to the fission rate, which in turn depends on the
neutron flux density in the reactor core. So, to control reactor power,
the neutron flux has to be controlled. This is done by the so-called
"control rods", which contain neutron absorbing materials such as Cadmium.
By slowly moving the control rods into and out of the core the neutron
flux is controlled. However, to stop the reactor all control rods have

to be inserted at once. This last action is called a "scram'.

Ad (b):

Such events can be divided into two classes:

Class 1: a system element fails to perform an "intended" function,
for instance,
- pump fails to start when switch is closed.

Class 2: a system element performs an "inadvertent" function such as
- spurious scram of a reactor during operation.

This means that the reactor is stopped by insertion of the

control rods for no reason. {(For "scram” see ad (a)).
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5.2.4. Classification of system failures

If a system failure occurs, the question is always whether the failure
is caused by a subsystem or by a component. In the first case the event
has to be developed further. In the second case there are three failure

mechanisms that may cause the component to be in the fail state:

- a primary failure : that is a failure due to the intermal character=-
istics of the component; such a failure is corrected
by repairing the component or by replacing the

component by a new one;

- a secondary failure : that is a failure due to excessive environmental

or operational stress placed on the component;

- a command fault ¢ here the component functions in a proper way,
but it is activated by a command that should not

have been occurred.

5.2.5. The construction of the fault tree

The construction of a fault tree will be demonstrated on the basis of the

passive electrical network in fig. 5.3.

R2

FIG. 5.3 PASSIVE ELECTRICAL NETWORK.

As a possible TOP event we take in this case the event 'no current through
the network" or '"no current through A-B". For this top event (Gl) we shall
construct the fault tree (see fig. 5.4.). The top event may be caused by
the event '"mo current through A-C" (event G2) or by the event "no current

through C-B" (event G3), or by both of them.
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NO CURRENT
THROUGH A-B (TOP EVENT)
G1
| |
NO CURRENT NO CURRENT
THROUGH A-C THROUGH C- B
62 G3
[ H
FALDAE NO CURRENT NO CURRENT
> THROUGH C-D THROUGH C - E
P1 G G5
Q
SEC.
FAILURE
Rg
PS5 S5
| ]
NO CURRENT NO CURRENT
THROUGH F- D THROUGH C-F
G6 67
+
l |
SEC.
NO CURRENT NO CURRENT FAILURE FALURE
THROUGH Ry THROUGH R, R, R,
G8 P2 52
{ + ] ( + )
SEC. SEC.
FAILURE FAILURE
P3 S3 P S4

FIG. 5.4 . FAULT TREE OF THE PASSIVE ELECTRICAL NETWORK.
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G1

olodoNo;

FIG. 5.5. REDUCED FAULT TREE OF THE ELECTRICAL NETWORK.
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So in fig. 5.4. the output event Gl 1s obtained by means of an OR gate
from the input events G2 and G3. The event G2 "no current through A-B"

is caused by a failure of component R, (if we neglect wiring), i.e. a

primary failure (Pl) or a secondary f;ilure (S1). Since gate event G2
has been developed to basic elements, the development of the fault tree
for this branch stops. Event G3 is caused by the events G4, '"mo current
through C-D", and G5, "no current through C~E". So the output event G3
is represented by an AND gate. Going on in this way the whole fault

tree of the system in fig. 5.3. is constructed and depicted in fig. 5.4.
If we remove all secondary failures of this fault tree, we get the so-
called "reduced'” fault tree of fig. 5.5.

Secondary failures are incorporated in the fault tree for reasons of
completeness. Often they will not be considered because they are diffi-
cult to specify and, if so, they have a very small probability of occur-

rence, when compared to failure probabilities of other basic events.

5.2.6. Minimal cut sets and minimal path sets

The identification of those components or those groups of components
that can cause system failure is necessary for the system reliability
analysis. For this purpose the following concepts are introduced:

cut set, minimal cut set, path set and minimal path set.
Cut set
A cut set is any specific combination of basic events whose combined

occurrence causes the top event to occur.

Minimal cut set

A minimal cut set is a cut set that does not remain a cut set if it is

reduced.
Path set
A path set is any specific combination of basic events whose combined

non-occurrence assures the non-occurrence of the top event.

Minimal path set

A minimal path set is a path set that does not remain a path set if it

1s reduced.
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Cut sets and path sets are dual concepts. Changing OR gates into AND
gates and vice versa and complementing every event of the original fault
tree we get the dual fault tree. The cut sets of the original fault tree
are the path sets of the dual fault tree and vice versa.

Cut sets or path sets may be used in principle to obtain quantitative
system characteristies. Very often they are used to obtain bounds on

the system unreliability or unavailability, see Barlow and Proschan [15].

In table 5.1. the minimal cut sets and minimal path sets, obtained from

the reduced fault tree in fig. 5.5. of the system in fig. 5.3., are tabulated.
Complex systems contain many minimal cut sets, sometimes hundreds of thou-
sands. Therefore, its analysis can only be realized by making use of a
computer. Nowadays many computer programs are available to obtain the mini-
mal cut sets, see Henley and Kumamoto [29]. In treating complex systems,

even today with big and fast computers, it takes a lot of time and money

to determine all the minimal cut sets.

TABLE 5.1.

MINIMAL CUT SETS OF THE ELECTRICAL NETWORK

Nr. Order* Minimal cut sets
K, 1 {P1}

K, 2 {P2,P5}

K3 3 {P3,P4,P5}

MINIMAL PATH SETS OF THE ELECTRICAL NETWORK

Nr. Order* Minimal path sets
Q, 2 {P1,P5}

Q, 3 {P1,P2,P3}

Qq 3 {P1,P2,P4}

*¥"Order"” means the number of basic events contained in a minimal

cut set or a minimal path set.
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5.3. Quantitative fault tree analysis

Quantitative fault tree analysis can be divided into the following steps:

- construction of the structure function of the system;

- applying probability theory to the system.

Characterize the state of the system (top event) at time t by the binary

stochastic variable

y(tr) dsf state of the system at time t; (5.1)

y(t) = 0, the system is available at time t,

1, the system is not available at time t,

and further the state of a component ci,i=1,...,N, as defined in (2.2) by

§i(t) = gtate of component ci,i=l,...,N, at time t,

i

gi(t) 1, if component s is not available at time t;

= (0, if component c. is available at time t,

N being the number of components in the system. The state of the system

is dependent on the state of the components, i.e.

(0 € 30 (0, x,(0), 000, xg(0). (5.2)

Now suppose that the fault tree has a coherent structure; this means
that:

i ) every component of the system is relevant to the system, this includes

that every component has an influence on y(t),

and that

ii) the function y(t) is non-decreasing in each of its arguments, i.e.
that the occurrence of a basic event cannot transfer the system from

y(t)=1 to y(t)=0.

Define

x(6) = (2,(6), 5,(),.00, xy(0)) (5.3)
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and denote by
> def . .
z(li,§(t)) =  gtate of the system at time t with component c;
in the fail state; i=1,...,N; t=0;
(5.4)
> def . .
X(Oi’§(t)) =" state of the system at time t with component c,

in the function state; i=l,...,N; t=0.
Now consider

def x<11»§<t>) - Z(Oi,g(t)), i=1,...,N; t=0. (5.5)

Lt
Azl( )
If azi(t)=1, then component c; is called eritical for the
system at time t, because agi(t)=1 implies that y(li,g(t))=l and
X(Oi’g(t))=0‘ Hence from (5.5) it is seen that

Azi(t)=l

implies that the system fails if component ¢, fails and the system

functions if component c; functions.
Next we introduce (cf. section 5.2.6.)

def -
Nc £ number of minimal cut sets of the system;

def (5.6)
N_ % number of minimal path sets of the system.

b
Since a minimal cut set occurs if every basic event of the cut set
occurs, and the top event occurs if at least one minimal cut set occurs,
the structure function for the fault tree (system) reads

N
c

y&E® = 11 1 ox.(0), (5.7)

2=1 16M2

where i passes through all basic events of minimal cut set MQ and

N
n
I
| Ji=s =

(l—zg). (5.8)
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It is also possible to give the structure function of the system in
terms of minimal path sets. Since the occurrence of a minimal path set
is caused by at least one occurrence of the basic events contained in it
and the top event occurs if gl minimal path sets occur, the structure

function now reads

N

N D

y&@®) = n 11 x.(), (5.9)
=1 .—-P 1
r le r

where i1 passes through all basic events of minimal path set Pr.

5.3.2. System unavailability (the probability of the top_event)

Denoting by Fi(t) the lifetime distribution of component ci,i=1,...,N,
and by Ai(t) its availability (see chapter 3), then the unavailability
qi(t)dePr{gi(t)=l} at time t is given by

qi(t) Fi(t) , if component c. is non-repairable,

(5.10)

l—Ai(t) , i1f component c; is repairable, t20,i=1,...,N.

The unavailability of the system is denoted by

g(G(0) € PriyG(e)=1},
(5.11)

a0 = {q(8),.en,qy(0)3,

Because complex systems may contain a very large number of minimal cut
sets it is often not possible to calculate the probability of the top
event exactly, this due to the fact that the calculation is too lengthy,
i.e. too much computer time is needed. Therefore the system unavailability
has to be approximated. Two methods may be used here, i.e. (i) the method
of the minimal cut upperbound and minimal path lowerbound for g(g(t)) and
(ii) the procedure of inclusion and exclusion. The first method provides

a quick calculation whereas the second method is slower but more accurate.
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5.3.2.1. The minimal cut upperbound and the minimal path lowerbound

Since
g(q(£)) = Ely&E()},

and because (5.9) and (5.7) imply

N N
p P
E@un=E{n uéga}zn U Ex (0},
r=1 1eP r=1 ieP
r T
N N
[ 1 by
E{y(t)} = E 1 m 1l x (t)f < ] E{x. ()},
2=1 ieM L=1 ieM *
2 2
it follows that
N N
m 11 q.(t) < g(q(t) < 11 T q. ().
. i . i
r=] 1ePr =1 1€M2

(For a proof of (5.12) see Barlow and Proschan [17]).

(5.12)

Obviously, the lowerbound in (5.12) is obtained by considering the minimal

paths for the top event, whereas the upperbound stems from the minimal

cuts for the same top event.

For so—-called "reliable systems', that are systems with a rather long mean

time between failures (MIBF), the unavailability g(g(t)) of the system

appears to be rather close to its upperbound; a result which stems from

experience with models for which g(a(t)) in (5.12) can be calculated

exactly (cf. Lambert [11]).

5.3.2.2. The inclusion—exclusion principle

Denote by

gj(t) the state variable of minimal cut set Mj of the system at

time t, t=0; j=1,...,Nc; NC is the number of minimal cut

sets of the system,

(5.13)
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<
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N
I

= 1, if the minimal cut set Mj occurs at time t,

0, otherwise.

The probability of the top event is defined by

N
c
g(t) = Priy(t)=1} = Pr{ U (gj(t)=1)}. (5.14)
i=1
From (5.14) it follows that
N N -1 N
c c c
g(t) = T Pr{y.(t)=1} - £ z Pr{y. (t)=1,yj (B)=1}+...
=1 FPESIE IS IS 1 2

(5.15)

Introduce the variables Sk, k=1,...,Nc, by

N -k+1 N -k+2 N
def € ¢ - ¢
S, = z z z Pr{yj (t)‘—:l,yj (B)=1,...,
Jl=1 32=J]+1 Jk=3k_1+1 1 2

v, (£)=1}, k=1,...,N . (5.16)
3y c

Substitution of (5.16) into (5.15) gives

g(£) =8, = 5, + S5~ ... . (5.17)

As

it follows for the probability of the top event that

A

g(t) Sl’ often called the "rare event" approximation,

\%

g(t) 2 5, - 32, (5.18)

IA

— + .
g(t) 5, 52 33, ete
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When Sl is used as an approximation for g(t) it is usually called the
"rare event approximation".

So, by the above procedure, the system unavailability can be bounded from
above and from below as accurate as desired. In this study the inclusion~

exclusion principle as described above will be applied.

5.3.3. The lifetime distribution of a system (system unreliability)

For complex systems it is in general very difficult to determine the exact
lifetime distribution. In principle it is possible, but even in simple
cases the numerical evaluation is hardly possible. Even if the stochastic
behaviour of the system can be modelled by a Markov process with discrete
state space, for instance if all lifetime and repairtime distributions

are negative exponential, it is hardly possible to calculate the system
lifetime distribution. To get some insight in the lifetime distribution

of the system we therefore have to use approximations. In the next sub-
sections we shall discuss some of these approximation techniques.

For some special cases it is possible to determine the exact system life-
time distribution by using fault tree analysis, viz. for systems with only
non-repairable components and also for systems for which all minimal cut
sets are mutually independent. For a system consisting of only non-
repairable components the unavailability at time t is equal to the prob-
ability that the lifetime of a system is less than t, so that the life-
time distribution can be determined by (5.17). In the case of mutual in-
dependent minimal cut sets (with or without repairable components) the
lifetime distribution Fs(t) of the system at time t is fully determined

by the lifetime (time to occurrence) distributions Dj(t), j=1,...,NC, of

the minimal cut sets of the system. Because (cf. (5.15))

il

I-Fs(t) Pr{system lifetime is greater than t}

N
c

Pr{ N (the lifetime of minimal cut set Mj is greater

i=! than t)}

=4

c
Pr{the lifetime of minimal cut set Mj is greater

than t},

1]
i

j=1



-159~

the last equality sign being based on the assumed mutual independence of

all minimal cut sets. So

N

I—FS(t) =
]

="

{1-D.(t)}. (5.19)
1 ]

Because in practical situations the total number of components in a mini-
mal cut set is usually rather limited, it is possible to calculate Dj(t)
with reasonable computer time.

In general, when repairable components are allowed and minimal cut sets
are not necessarily independent, fault tree analysis is not able to pro-
duce an exact solution for the system lifetime distribution (see Clarotti
[18]1 and Parry [19]).

Finally, it is noted that at present attempts are made to calculate the
system lifetime distribution by applying the theory of Markov processes.
If all lifetime and repairtime distributions of the component are negative
exponential, then the stochastic behaviour of the system can be described
by a discrete state space, continuous time parameter Markov process. The
lifetime distribution is now actually an entrance distribution for this
Markov process and it can be calculated in principle. The construction of
feasible computer programs for this entrance distribution is actually the

crucial point, see Somma [25].

In this section we discuss the expected number of system failures in [0,t]
because this function occurs in the approximations for the system lifetime
distribution, to be discussed in the next sections. The expected number of
system failures in [0,t] will be indicated by ms(t).

Since the state variables §i(t),i=1,...,N, are binary variables, the
structure function y(t) = y(g(t)) is linear in all its arguments. From
g(g(t))=E{X(t)} and qi(t)=E{§i(t)} it is now readily seen that g(a(t))

is also linear in all its arguments, because it has been assumed that

all §i(t)'s are independent (see assumption 2.5.4.). From this property
and from (5.4) and (5.5) we get the probability that component c; is

critical at time t
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W

prisy; (£)=1} = E{ay, ()} = E{y(1_,X(£)} = E{y(0,,%()}

]

- -
g(li,q(t)) - g(Oi,q(t))

o
_ 98(q(t)) . ]
Sqi(t) s i=1,...,N;t=20, (5.20)

with

g(1;,a(8)) = Priy(1,,x(£))=1},8(0;,d(t)) = Pr{y(0;,x(t))=1].

So for a system consisting of repairable and/or non-repairable components

and for dt very small, the event

"system failure in (t,t+dt)"

N
= U '"component c; causes system failure in (t,t+dt)"
(5.21)

N
= U '"component c; critical at time t and component c; fails

in (t,t+dt)".

With respect to the calculation of Pr{system failure in (t,t+dt)} from
(5.21), it is first noted that the event 'component c; critical at time t"
is independent from the event "component c, fails in (t,t+dt)" because

the function y(g(t)) is linear in all its arguments so that the right hand
side of (5.5) does not contain §i(t)' Secondly, it will be assumed that
the probability that two components will fail simultaneously is negligibly
small. Note that this assumption requires that components do not fail by

common causes.

Taking the probability of both sides of (5.21) it follows that

Pr{system failure in (t,t+dt)}

]
M=z

Pr{component c; critical at time t}
1=1 . Pr{component c; fails in (t,t+dt)}. (5.22)
Since it has been assumed that the probability of more than one compo-
nent failure in (t,t+dt) is negligible, we have for the density dms(t)

of the expected number of system failures in [0,t]
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[l

dms(t) 0.Pr{no system failure in (t,t+dt)}

+ 1.Pr{system failure in (t,t+dt)}

I

Pr{system failure in (t,t+dt)}. (5.23)

On the basis of (5.23), (5.22) and (5.20) we obtain for the density of

the expected number of system failures in [0,t]

Y 22((e))

d =
mS(t) - qu(t)

1

dmi(t), £20, (5.24)
mi(t) being the renewal function of component c, as defined in chapter 3.
From (5.24) the expected number of system failures in [0,t] is simply

calculated by integration.

5.3.3.2. Upper_and lowerbound for the system lifetime distribution

according to Murchland

The time dependent behaviour of a system composed of repairable and non-
repairable components is binary, i.e. the system can be in the function
state or in the fail state. Assume that the system is in the function
state at instant t=0. Denote by Fs(t) its first lifetime distribution

and by g(g(t)) its unavailability. Then it is easily seen that the system

availability at instant t is given by

l-g(g(t)) = Pr{no system failure in [0,t]}

- (5.25)
+ ¥ Pri{k system failures in [0,t], the system
k=1 functions at instant t}; t=0.
From (5.25) it is easily seen that
]—g(g(t)) > Pr{no system failure in [0,t]} = I—Fs(t),
or
g(q(t)) < F (t), t20. (5.26)

For the expected number of system failures in [0,t], denoted by ms(t),

the following identity can be written down:
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<0

T k Pr{k system failures in [0,t]}
k=1

ms(t)

o0
¥ Pr{k system failures in [O,t]}==FS(t),t20. (5.27)
k=1

v

On the basis of (5.26) and (5.27) the lower and upperbound for the system

lifetime distribution, introduced by Murchland [20], are obtained; i.e.

g(d(t)) = F(t) < m(e), t20. (5.28)
The upperbound in (5.28) for F(t) appears to be an excellent approximation

for small values of t. For large values of t, however, ms(t) behaves as

a linear function whereas FS(t) ultimately reaches the value one.

5.3.3.3. The steady state upperbound for the system lifetime distribution

suggested by Lambert

Assume that agll components have a constant failure rate and a constant
repair rate, and assume that the system is in steady state at instant t=0,
i.e. (cf. (5.10)) qi(t) = ui/(ui+ki), i=1,...,N; Ai the failure rate and
My the repair rate of component ¢ Based on these assumptions Lambert [11]
derives an upperbound for the system lifetime distribution in the steady
state, along the following lines.

The expected number of system failures m i(0,'{) in the time interval

S,
[0,1] caused by component cs is

T ->
- ( 38(qg(v))
mS,i(O’T) £ Eqi(V) dmi(v), t20. (5.29)

(For the derivation of relation (5.29) see section 5.3.3.1.).
From (5.29) it follows that

AN TTCI0))
;(0,7+e) - mg . (0,1) = cerqpyll dm, (v), 120,t20.  (5.30)
? T

s, 3q, (V)
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Introduce
A def 3g(q(t)) _ 3g(Q)
g; lim =50~ 3
i 100 93 43
with
T
> def e = 1
q = (ql’ °an)s qi =" lim qi(T) L T
T-H00 1 1
then
+t
T g (v) _ Tt (@)
T q v T qi v

(5.31)

(5.32)

ﬂgi} dmi(V)

+ Agi {mi(1+t) - mi(T)}.

From (5.31) it follows that for every e>0 there exists a number v(g)>0

such that if v>v(e)

Iég(é(v)) )

pe.| < e,
qu(v) glq &

with v(g) » e« if &0,
Therefore, for t>t(g)

T e

dq; (V) dg;} dm; (V)| <

with

1(e) + e if €, o,

€y = e{mi(T+t) - mi(r)} > 0.

I |

35(9(V)
9q; v)

Agi[idmi(v)l < E >

So taking the limit 1o of both sides of (5.30) and introducing

() dgf

m
8,1

lim [ms’
T-300

relation (5.30) becomes

i‘0,1+t) - mg

,i(O’T)]’
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mS,i(t) = Agi lim [mi(r+t) - mi(r)], t20, (5.33)
TR0
with
ALl )\2 -{(A,+u. )t
o iti i _ i i
mi(t) sy t o+ T (1-e Y, =0, (5.34)
i i iti

as defiped by relation (B28) of appendix B, supposed that component c;
is in the funection state at t=0.
Substitution of (5.34) into (5.33) and taking the limit shows the

following result

ms’i(t) = Agi t, t=0, i=1,...,N, (5.35)

Agi being the expected number of system failures caused by component s
in the time interval [0,1/?\i + I/pi].

If we denote by F i(t) the lifetime distribution of the system exclu-

S,

sively in connection with component css i.e. F i(t) is the probability

S,
that component c, causes exactly one system failure in [0,t], then from

(5.28) obviously

ms,i(t) 2 Fg i(t) . t=0. (5.36)

s

From (5.36) it follows that the probability that component s does not

cause system failure in [0,t] is bounded from below by

or, by substitution of (5.35)

ALH.
i'i

A,tu,
iHi

1 - Ag, t, t20. ' (5.37)

The result obtained in (5.37) is essentially a result applying for steady
state conditions, i.e. it is assumed that at time t=0 the steady state

is prevalent.

If we consider the special time interval [O,I/Ai+1/ui] we get from (5.37)

the next lowerbound for I-FS i(t)
b ]
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Ay

A.p. AL, £

i1 ii
- g .

Ty t =z (1 Agi) ,

1 1

- > —
1 FS,i(t) =z 1 Agi

OStSI/Ai+1/ui, (5.38)

since Agi <1,
Now assume that the event "component cys i=1,...,N, causes system failure"

is independent from the events ''component c, causes system failure",

k
k=1,...,N, k#i. Then the probability of no system failure in (0,t) is

MMy .

N N AL+,

I - F (t) = M{I-F, .(t)} = T (1-ag.) * *

S . 8,1 . 1
1=1] i=1
or
MYy .

N ALtu,

F(t) <1 - T (1-8g.) V% ost<1/A.+1/u,. (5.39)

S i=1 1 1 1

The upperbound in (5.39) is now suggested by Lambert [11] to be the
steady state upperbound %S(t) for the system lifetime distribution Fs(t),

Fg(e) = 1 - T (I-ag) © © ,  0stsI/h+1/u,. (5.40)

Remark 5.3.1.

We have restricted ourselves here to the time interval [O,l/ki+l/ui].
For reliable systems the mean lifetime of a component is as a rule
greater than 10 years while the mean repairtime is less than about

a month, i.e. A < IO-IXyear and 1/u < 0,1 year. Therefore, the time
interval under consideration is in general sufficiently long for

practical purposes.

Remark 5.3.2.

The assumption that the failures of the components are stochastically
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independent is in general not true. However, if the basic event
state variables gi(t) are "associated", the bound in (5.39) will
still hold. The random variables gi(t),;;.,§N(t) are "associated"
if cov[fl(g(t)),.fz(g(t))]zo for all pairs of increasing binary
functions fl’fz‘ It can be proved (cf. Barlow and Proschan [17])
that independent stochastic variables are associated.

5.3.3.4. Approximation of the system lifetime distribution by the
| T*-method

The expected number of system failures ms(t) appears to be a good approx-
imation for the system lifetime distribution Fs(t) for small Yalues of t,
as discussed in section 5.3.3.2. The steady state upperbound Fs(t) for
Fs(t), derived in the foregoing section is typically suited for large
values of t. Obviously there exists an instant T* such that for t<T¥,

mg (t) glves a better approximation for F,_ (t) than- F (t). does, whereas

for £>T*, F (t) gives the better approx1mat10n of the two quantities.

So the approx1mat10n of the system lifetime distribution by the T*-method

becomes

F.(t) £ m(t) , t<T*,
5 S (5.41)

Fs(t) < Fs(t) £>T*,

s

ms(t) determined by (5.24) and Fs(t) by (5.40).
The determination of the moment T* is a rather complicated matter, it is

discussed in Lambert [11].

5.3.3.5. An approximation for the system lifetime distribution_as

suggested by Vesely

Another approach is based on Vesely [21]. He defines a system failure
rate analogous to the failure rate of a component, the latter being

defined as

dFi(t)
IuFi(t) ’

f

xi(t)dt de Pr{gi<t+dt[gizt} = £203i=1,...,N; (5.42)

Fi(t) the distribution function of the lifetime &i of component c;.
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He introduces as the system failure rate K(t) the expression

dms(t)
Ty def ——-—-—-_%-t-:——-— , 20, (5.43)
1-g(q(t))

and then proposes to take for the system lifetime distribution %g(t):

t
?S(t) =1 - exp {~ f X(T)df}, t=0. (5.44)
0

Because mS(t) and g(g(t)) can be calculated for the system, the distri-
bution ?S(t) can be found.

In fact A(t) is not exact the system failure rate because A(t)dt means
"the probability of a failure in (t,t+dt) conditioned to no failure at
time t", while for the correct system failure rate A(t) the condition

has to be "no failure in the interval [0,t]”.

It is not possible to determine whether A(t) is an upperbound for the
real system failure rate A(t) or not. Namely from (5.27) it follows that
for every t, dms(t) > dFS(t) and from (5.26) that 1~g(a(t))21~FS(t).

This includes that the numerator as well as the denumerator of A(t) are
always greater than the corresponding values of A(t). However, for reliable
systems (cf. section 5.3.2.1.), it has been shown that %é(t) gives a good

approximation for the system lifetime distribution (see Lambert [11]).

We consider the following system. It is composed of two types of compo-

ments,

- non-repairable (class 1) components (cf. section 2.5.) having non-
decreasing failure rate lifetime distributions,
- continuously detected (class 2) .components, having negative exponential

lifetime distributions.

Concerning the repairtime distributions of continuously detected compo—
nents it is assumed that they have non-increasing repair rates. Further

it is assumed that at time zero all components are in the function state.
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For such a system the first lifetime distribution is of the NBU type.

(A distribution F(.) is NBU or New Better than Used if and only if
1=F(t+£)<{1-F(1)}{1-F(t)}). For a proof of this statement see Barlow

and Proschan [22].

Obviously the first lifetime distribution Fs(t) of a system composed of
components with negative exponential lifetime and repairtime distributions,
is NBU.

Define u, as the mean of the first system lifetime, and Eu as the mean

S
lifetime of the system in the steady state. Then it can be proved (cf.

Barlow and Proschan [22]) that for the system S introduced above

=z E

Hg = By (5.45)

when it is assumed that the system S possesses a steady state. (Note that
a system S in series with a non-repairable component does not possess a
steady state). For Fs(t) of type NBU and with mean Hgo the next bound is
obtained (cf. Marshall and Proschan [23]):

Fs(t) < t/uS, t<y .. (5.46)

S
From (5.45) and (5.46) it follows that

Fs(t) < t/Eu, t<u L. (5.47)

S

Since p_, is unknown, Fs(t) can be bounded from above by means of Eu’

S
which quantity can be calculated as will be shown in the following.

From (5.35) if follows that the expected number of system failures mg
b

caused by a continuously detected component c. in the steady state per

unit of time equals

LU,
m, ., = ——t Mg, » (5.48)

P gt
S,1 Al ul

supposing that the repairtime of component c; is negative exponentially
distributed. Barlow and Proschan [22] show that (5.48) also holds for
repairtime distributions with non-increasing repair rates.

The average number of system failures m, per unit of time in the steady

S
state becomes with (5.48)
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ALU,
i'i

ALy,

Ag. » (5.49)

N being the number of components in the system.

On the other hand (cf. Barlow and Proschan [22]),

me = lim ms(t) - 1
tho ot E +E, °
u d
(5.50)
Ed def the mean repairtime of the system in the steady state.

Since the limiting system unavailability g(a), (cf. (5.32)), equals

s (5.51)

it follows from (5.49), (5.50) and (5.51) that

AL,

1 1
T (5.52)
1 1

N N
E = (1-g(}/ T
i=1

Substitution of (5.52) into (5.47) results in the Barlow-Proschan upper-

bound for the first system lifetime distribution Fs(t)

t Ny
Ag. t<u ...
. P VIR
l—g(g) i=1 xl My L S

F_ (t) <

S (5.53)

Caldarola [24] suggests an upperbound for the first system lifetime dis-
tribution FS(t) based on the lifetime distribution of the minimal cut
sets of system S. So denote by Ej the first lifetime of minimal cut set
M., j=l,...,Nc, NC being the number of minimal cut sets in the system.

]

Let Dj(t) be the distribution function of Pj’ j=],...,NC.

The system survives the time interval [0,t] if each minimal cut set

survives this interval. Therefore the following relation holds
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'l—FS(t) = Pr{§1>t, §2>t,..., QNC>t}
N
C
= Pr{b >t} T Pr{b.>t|b >t,...,b, >t}
=1 . -] -1 =j-1
j=2
N N
C
> Pri{b.>t} = [1-D.(t)], £20. (5.54)
j=l =1 j=] J

The inequality sign in (5.54) is correct because the probability of
survival of [0,t] by minimal cut set M.j is the product of the survival
probabilities of each of the components contained in Mj; if Mj shares
components with Ml""’Mj—l’ then we know that these components survive
[0,t] with certainty. So the conditional probabilities in (5.54) are
greater or equal to the marginal probabilities.

Relation (5.54) can be written as

N
c

F.(t) <1 - 1 [1-D.(t)], t>0. (5.55)
S =1 1

From (5.55) we see that the system lifetime distribution is bounded from
above, and that the upperbound is completely determined by the lifetime
distribution Dj(t),j=l,...,Nc, of the minimal cut set Mj of the system.
By Caldarola [24] a method is introduced to calculate the distribution
function Dj(t) of minimal cut set Mj. His method exists in solving a set

of integral equations for the density functions dj(t) of Dj(t),

dD. (t)

— t20,j=1,...,N. (5.56)

dj(t) =
In the following we shall outline his idea for the calculation of dj(t),
from which by integration Dj(t) is determined.
Consider minimal cut set Mj (which may be considered as a parallel working
system) with structure function Ej (cf. (5.2)) and first lifetime distri-
bution Dj(t). Suppose that all components of Mj are in the function state
at t=0, however, this assumption is not essesntial but it simplifies the
analysis.

We can write for the unavailability of Mj at time t
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t
Pri{y.(t)=1} = [ Pr{y.(t)=1,1<b,<t+d7}
=] 0 =] =j
or
t
Pr{y.(t)=1} = [ Pr{y.(t)=1|b.=1}d, (t)dT , 20, (5.57)
-1 0 =] =1 ]

Ej the first lifetime of minimal cut set Mj'

Suppose system S, and therefore every minimal cut set of the system, con-
sists of class 1 components (cf. section 2.5.), class 2 components with
negative exponential repairtime distributions and/or components that are
characterized by an arbitrary lifetime distribution and that are inspected
at regular intervals; also it is assumed that these components are renewed
at the moment of inspection. If the above mentioned types of components

are present in Mj’ then Caldarola [24] proves

Pr{gj(t)=1l§j=f} = Pr{gj(t)=1{gj(f)=1} , t>120. (5.58)

Note that if relation (5.58) is fulfilled, the system behaviour at time t
is only dependent on the state of the system at time T<t and not dependent
on the history before instant 1, i.e. not dependent on the interval [0,t].
Therefore the unavailability vj(t) of minimal cut set Mj at time t in
(5.57) becomes with (5.58)

t .
vj(t) = é vl,j(T’t)dj(T)dT , £20, (5.59)
v, () def Priy, (0=1} £20, (5.60)
def
Vl’j(T,t) = Pr{yj(t)=1|gj(T)=1} , t>120. (5.61)

Caldarola [24] now calculates Vj(t) and Vl,j(T,t) and then solves the
integral equation (5.59) with respect to dj(t). After that Dj(t) is
determined from dj(t) by integration. So, for every minimal cut set N%
of the system, its first lifetime distribution Dj(t) is calculated, and
the upperbound for the system lifetime distribution Fs(t) in (5.55) is

calculated.
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5.3.4. Measures of importance of primary events and minimal cut sets

The total system unavailability is composed of the unavailabilities of the
components or of that of groups of components. From the design as well as
from the operational point of view it is important to know which compo-
nent or groups of components make the larger contribution to the system
unavailability. It is this question which will be discussed in the present
section., The influence of a component or of a group of components will

be indicated by a so-called "measure of importance"”. There are various
definitions possible for this measure, and the more important ones will

be discussed below. Usually such a measure of importance of a component

is based on the component's unavailability and on the component's function
in the total system behaviour. The knowledge of the measure of importance
is of great value in the design phase of the system as well as for the
maintenance of the system. Namely, knowledge of these measures may

give clues for improving the system design e.g. by eliminating components
or groups of components with a too high unavailability or by rearranging
them into a structure with a better measure of importance.

Maintenance schedules for systems can be optimized by constructing repair
checklists based on the measure of importance of components and/or sub-

systems.

Another application of the measure of importance arises in the field of
fault location. By means of the measure of importance for a component
those components can be detected whose locations are appropriate for
applying a passive sensor, which accelerates fault detection if a system

failure occurs, see Lambert [11].

Birnbaum (1969) seems to be the first investigator who introduced the
concept of measure of importance. After him Vesely (1971) defined another
concept of measure of importance, later also described by Fussell (1975).
In all these definitions the system is considered at one time moment,

its history is not explicitly incorporated. The first definition of a
measure of importance incorporating the behaviour of components which
fail sequentially in time is due to Barlow and Proschan (1974); also
Lambert (1975) developed such a definition. The ranking of components

by means of their measures of importance is from large values to small
values, i.e. a component which contributes more to system failure (has

higher measure of importance) is placed before a component that has a
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lower contribution to system failure (has smaller measure of importance).
In section 5.3.4.1. the measures of importance for components are dis-
cussed, whereas in section 5.3.4.2. a description is given of the measures
of importance for minimal cut sets. It is important to mention that both
measures of importance can be divided into two groups, i.e. (i) each measure
gives information about a component or minimal cut set at an instant of
time, which implies that these measures do not contain information about
the foregoing history of the system, and secondly {(ii) each measure con-
tains also information about the way system failure occurs sequentially

in time. In section 5.3.4.3. applications and use of measures of importance
are discussed, and suggestions are given about the use of the appropriate
measure of importance. Finally all measures of importance treated are
summarized in table 5.3. at the end of this chapter.

During the discussion of the measures of importance some applications are
shown in connection with the electrical system of fig. 5.3, a system with
continuously inspected components (see section 2.5.). The failure rates

and repair rates of the components of this system are tabulated in the
subjoined table 5.2. All these values are fictitious and no practical
meaning should be given to them. They are chosen in this way for the sake

of demonstration.

TABLE 5.2. Failure rates and repair rates of the components of the

electrical system in fig. 5.3.

Component Failure rate Repair rate
fponen (A/year) (u/year)
Rl 0.1 1.0
R2 O.}ll 1.5
R3 0.125 1.2
R4 0.143 2.0
R5 0.167 1.33
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5.3.4.1. Measures of importance for components

5.3.4.1.1, Birnbaum's measure of importance

Birnbaum (1969) seems to be the first investigator who introduced the
concept of "measure of importance”. As such he defined the "reliability

importance" Bi(t) of component e, For Bi(t) he took

def 3g(q(t)) _ o >
Bi(t) = %q; (D) g(li,q(t)) g(Oi,q(t)),

t20, i=1,...,N, (5.62)

with qi(t) defined by (5.10) and the right hand side of (5.62) defined
by (5.20).

R1

w0t L

RS

5 L
4L
3+
7 F
Io"r R
R3
5 L
4
3 =
2 F
072 i Bl i | i Lo i
Q 0z Q3 04 05 1 .2 3 & 5 10

TIME (YEARS)———w

FIG.5.6 BIRNBAUM ‘s MEASURE OF IMPORTANCE
B; (t) FOR COMPONENTS
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From this definition it is seen that Birmbaum's reliability importance

is the ratio of the change in system reliability versus the component
reliability, i.e. it is the probability that component s is eritical

at instant t.

Applying table 5.2. (see section 5.3.4.) Birnbaum's measure of importance

for the components Rl""’R of the system of fig. 5.3. are presented in

5

fig. 5.6. From this figure it is seen that component R] is the most

critical one in connection with system failure. This agrees with the
intuitive feeling that a single component in series with the rest of the
system must be an important component. Therefore this component deserves

special attention. The measure of importance for the components R2 and

R5 are about the same and are about a decade smaller than that of Rl'

Components R3 and R& are the least important ones.

Their measures of importance are about two decades smaller than that of R].

5.3.4.1.2. Vesely-Fussell's measure of importance

Denote by yi(g(t)) the structure function (see (5.7)) of the union of

all minimal cut sets of the system containing component c;- This means
that y, (%(£))=1 if and only if x,(£)=1 (x,(t) being the state variable
of component c; at instant t), i1.e. the union of all minimal cut sets
containing component ¢, occurs if and only if component c; is in the fail
state at epoch t. The probability that component c; contributes to system

failure is
> def >
g, (@) € Priy, G(t)=1} , 20, (5.63)

The contribution of component ¢, to system failure, given that the system
is in the fail state at instant t, the so-called '"Vesely-Fussell measure

of importance" Vi(t) for component cso is defined by

def . ,
Vi(t) £ Pr{component cy contributes to system failure at
instant t|the system is in the fail state at

instant t}

= Priy; (R(D)=1 | yE(©)=1}

Priy, G()=1} g, @(r)

Priyx(£))=1} g(q(t))

, t=0, i=1,...,N (5.64)
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FIG.5.7. VESELY-FUSSELL ‘s MEASURE OF
IMPORTANCE V;(t) FOR COMPONENTS

In fig. 5.7. the Vesely-Fussell's measures of importance for the components
R] . ’R5

taken from table 5.2. (see section 5.3.4.).

of the system in fig. 5.3. are shown; the numerical input is

5.3.4.1.3. Criticality importance

From Birnbaum's measure of importance it is possible to derive another
measure of importance, called "criticality importance". In fact criticality
importance for component s is the conditional probability that component
c, causes system failure at instant t, given that the system has failed

at epoch t, i.e. component c; is critical at instant t and component c.

has failed by time t given system failure at instant t.
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Denote by Ki(t) the criticality importance for component Css then it

follows that

def .. .
Ki(t) =" Pr{component c; critical at instant t, component c;

failed by instant t | system failed at instant t}.

Because the event "component c; critical at instant t, component c;
failed by time t" implies the event "system failed by time t'", the above

expression becomes

Pr{component c. critical at instant t, component c;

failed by time t}
Pr{system failed at instant t}

Ki(t>

{g(1.,q(t)) - g0,,q(t))} q.(t)
= 1 1 1 , t=0,i=1,...,N, (5.65)

2(q(t))

the numerator being the product of the probabilities of the events
"component c; critical at instant t" and "component c; failed by instant
t" (see section 5.3.3.1.).

In the case that component s is element of every minimal cut set of the

system Ki(t) = Vi(t), since in this case

2(0,,4(£)) = g,(0,,4() = 0,

#

-> > -
g(li,q(t)) gi(li,q(t>) qi(t) = gi(q(t)),

the Vesely-Fussell measure of importance

g; (a(t))
Vi(t) =0
g(q(t))

is obtained.
In fig. 5.8. the criticality importance for the components RI,...,RS,
of the system in fig. 5.3. are shown. The numerical input is taken from

table 5.2. (see section 5.3.4.).
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FIG. 5.8. CRITICALITY [IMPORTANCE K; (t)
FOR COMPONENTS

5.3.4.1.4. Barlow-Proschan's measure of importance

The foregoing measures of importance have been calculated at the instant

t without using any information about system performance before t in so

far this information can not be deducted from the fail state at instant t.
The present section and the following section treat measures of importance
for compoments such that component behaviour sequentially in time is in-
corporated, i.e. we consider the measure of importance for component

¢, at instant t by taking into account the behaviour of this component
during [0O,t].

The probability that component c; causes system failure in the small
interval (t,t+dt) is equal to the product of the probabilities that com-

ponent g is critical at instant t and that it fails in (t,t+dt):
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+ .
(g(1,,d(8)) = g(0,,q())} dmj(£) , €20,i=1,...,N, (5.66)
g(.) being the system unavailability and

mz(t) det ( 1 ) the lifetime distribution for non-repairable
components
(i1 ) the renewal function (see chapter 3) for con-
tinuously inspected and randomly inspected compo-—
nents; (5.67)
(iii) the residual lifetime distribution (see chapter 3)

for periodically inspected components.

In fact (5.66) expresses the average number of system failures in (t,t+dt)
caused by component s (see section 5.3.3.1.). The average number of system

failures in [0,t] caused by component c; then reads:
t > > + )
J {g(li,q(r))—g(oi,q(r))}dmi(T) , t20,i=1,...,N. (5.68)
=0

Because the expression in (5.68) may become greater than one, 1t is normed
to one by division through the average number of system failures {(not only
caused by component ci) in [0,t], ms(t) (see section 5.3.3.1.).

The result Pi(t) is called the "Barlow-Proschan measure of importance”

for component ci:

t

S 1g(1,,3(1))-g(0,,a()) Ydm] (v)
=0

P.(e) =

, t=20; i=l,...,N. (5.69)
mg (t)
Remark: If the system S contains only non-repairable components, then

Pi(t) represents the probability that component c; causes system

failure in [0,t] given system failure at instant t.

In fig. 5.9. Barlow-Proschan's measures of importance for the components
of the system in fig. 5.3. with input data from table 5.2. (see section

5.3.4.) are represented.
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5.3.4.1.5. Sequential contributory measure of importance

Passive sensors are sometimes introduced to detect the failure of a
component, say component c;s also if failure of c; not necessarily implies
system failure. Of course, when there is need for such a passive sensor

at instant t, it means that failure of c; brings system failure very close.
It is therefore of interest to consider the contribution of component ¢,

to system failure actually caused by component Cj' In this section a
measure for such a contribution is described.

The contribution of component c; to the average number of system failures
in (t,t+dt), when component c; is in the fail state and component cj causes

system failure reads:
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(80 ;>1,3(0) = g(1;,0,,4(e)} q;(0) dni(6) , €20,

+ . . .
where mj(t) is defined by (5.67). The contribution of component c, to
the average number of system failures in [0,t], when system failure is

caused by component Cj’ then becomes:

I[Ny

> > +
{g(]i’lj,q(?)) - g(liyojaq(T))} qi(T) dmj(T) , t=20.

=0

The contribution of component s to the average number of system failures

in [0,t], when system failure is not caused by component css is:

z
jeH. =t
jeit

| B X3

- -> -+
O{g(]isij’Q(T))“g<liaojsq(1—))} qi(T) dmj(T) s tZO, (5.?0)

here Hi is the set of all components appearing at least once in a minimal
cut set containing component cs.

Dividing the expression in (5.70) by the average number of system failures
ms(t) in [0,t] we get the so-called sequential contributory measure of

importance Qi(t) for component c

t
- > +
Tig{g(li,ijaQ(T))—g(li,Oj,q(T))}qi(T)dmj(T)

def
Q, (v S
jeH
j#i

ms(t) s (5.71)

£20; i=1,...,N.

Remark: If the system contains only non-repairable components, then Qi(t)
represents the probability that component c; is contributing to
system failure when another component causes the system to fail,

given that the system is failed at instant t.

5.3.4.1.6. Barlow-Proschan's steady state measure of importance

Suppose that the system is composed of only continuously detected compo~
nents. The stochastic process describing the reliability behaviour of
such a component may be in the long run, i.e. for large values of t, very

well approximated by a stationary process. It will be assumed that the
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reliability behaviour of all components and also for the total system

may be described by a stationary stochastic process. For this assumption

the unavailability for each component c; is then a comstant, i.e.
qi=Ai/(Ai+ui) (cf. (5.32)).

For this steady state situation it is possible to construct a time invariant
"measure of importance" for components. The average number of system failures

in (t,t+At) caused by component c; is (analogous to section 5.3.4.1.4.):

t+At
- >
mg ; (0> t+At)-mg . (0,t) = Tit {g(1;,4(r))-g(0;,9(1)) }dm, (1), (5.72)
t=0, 120,
mg i(O,t) being defined in section 5.3.3.3. and mi(t) being defined in
9y
section 3.3.1. Because of the steady state assumption qi(t) is indepen-

dent of t and dmi(t) = Ai dt/(Ai+ui) so that relation (5.72) becomes

AU,
iti

.tu,
Al i

- >
mg i(At) = {g(li,q)-g(O.,q)} At, At=20, i=1,...,N, (5.73)
s i
+ . .
q being defined by (5.32).
The average number of system failures mS(t,t+At) in the time interval
(t,t+At) is obtained by taking the sum over all components contained in

the system and hence

mS(At) def lim mS(t,t+At)
toco
N -> > Ajuj
= = 1{g(1,,9)-g(0;,q)} 5=== At, At=0. (5.74)

The ratio Ri of the average number of system failures caused by component
c. (cf. (5.73)) and the average number of system failures (cf. (5.74)),
is called the "steady state Barlow-Proschan measure of importance" for

component Ci H

{1, )80, DI/ (1/x;+1/u))
i N N N
z 1.,9)- - . .
j=1{g( 5297805/ /A1 u )

R

» i=1,...,N. (5.75)
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5.3.4.1.7. Lambert's measure of importance

For the calculation of each of the foregoing measures of importance for
components the "absolute' values of the failure rates of the components
are needed. These values are not always available, and if available only
known within a certain confidence interval. Lambert [11] has developed

a measure of importance which for its application does not need the
"absolute" values of the failure rate but their ratio's. Frequently these
ratio's are easier to obtain. Lambert claims that this measure of impor-
tance i1s more sensitive than the above mentioned measures of importance.
The method has a restriction viz. it can be applied only to systems that
are composed of non-repairable components with lifetime distributions
belonging to a certain class; the latter requirement implies that compo—
nent failure rates are proportional to each other (see below).

The requirement concerning the lifetime distribution means that for every

component s its lifetime distribution can be written as

—R(t)ai
F.(8) =1-e , i=1,...,N, (5.76)

with €i independent of t, t20.
From (5.76) it is seen that

EAA
i}
A g

A (t)dr/R(E), (5.77)
=0 *

with ki(t) the failure rate of Fi(t)’ i.e.

d
It Fi(0)

m" . (5.?8)
1

Ai(t) =

We now take some component, say j, as the reference component, and

note that it follows from (5.76):

/g,

SR {I—Fj(t)} I, =, (5.79)

It is seen because the Ei are time independent that
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Ai(T)dT/R(t)

pete

¥y

t
J
=0
t
J
=0

Aj(T)dT/R(t)

1n {1-F.(t)}
1

G ACHE (5.80)
This ratio will be denoted by X; i.e.
5
X3 = -, i=1,2,...,N. (5.81)
h
Hence we may write, see (5.80)
X
Fi(t) = 1—{1-Fj(t)} , i=1,2,...,N, (5.82)

X being the so-called proportional hazard.
Note that the proportional hazard for component Cj (the referent compo-

nent) equals one, i.e. xj=l.

Obviously the class of distribution functions as introduced by Lambert

is fully specified by the failure distribution of the reference component
and the proportional hazards Xl""’XN' .
Hence it follows that the system unavailability g(¥F(t)) can be written

as a function of the variables Fj(t) and XpoeweaXyt

g(F(1)) = g(Fj(t),§>, (5.83)

x def OtpaeeeoXyg) - (5.84)

Lambert's measure of importance Si(t), in Lambert [11] called the

upgrading function, is now defined by



g (F. (£),x 5
g(F.(t),x) X

i
S.(t) = _—
* g(F,(6) ) Xi
X3 ag(Fj(t),Q)
= - 5 , i=1,2,...,N; t=20. (5.85)
g(Fj(t),x) i

It obviously measures the change in the probability of the top event

relative to the change in the proportional hazard.

5.3.4.2. Measures of importance for minimal cut sets

5.3.4.2.1. Barlow—Proschan's measure of importance

A minimal cut set occurs at instant t if all but one component have been
failed before instant t and the component, that has not been failed by
instant t, fails in the small interval (t,t+dt).

Suppose that minimal cut set Kj of the system occurs at instant t and

suppose that component ciaKj is the last component that fails. Then the

(1)

elementary probability of occurrence pj (t) of minimal cut set Kj at
instant t reads:
(i) +
p. () = | M ql(t) dmi(t) , t20, (5.86)
J LeK,
g7i

m;(t) defined by (5.67).

The probability &kgi)(t) that minimal cut set Kj is critical at instant

t with respect to component s i.e. component e, fails as the last com—
ponent of minimal cut set Kj’ is defined analogous to that of a component
(cf. (5.5)):

) K, K.-{i} N
Akj () = g(1 3, q()) - g(0, ! J , q(t)) , t=0. (5.87)

K.
In (5.87) 1 J means that all components of minimal cut set Kj are in the

. . Ki={i} . .
fail state at instant t, whereas 1 J indicates that all components

except component c. of minimal cut set Kj are in the fail state at instant t.
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Obviously

K.
g(1 3, q(e) =1, (5.88)

because minimal cut set Kj occurs and by definition then the top event
cccurs with certainty.

The average number of system failures caused by minimal cut set Kj in
(t,t+dt) is the product of the probabilities of the events "minimal cut
set Kj is critical at instant t" and "minimal cut set Kj occurs in the
small time interval (t,t+dt)" (cf. (5.22) in the case of a single compo-
nent).

Therefore we obtain for the average number of system failures in (t,t+dt)

caused by minimal cut set Kj’ applying (5.86) and (5.87):

E: ak§i)(t) p§i)(t) . t20. (5.89)
1eK.j

It follows from (5.89) that the average number of system failures in

[0,t], caused by minimal cut set Kj’ equals

Y (i)
T M) pit(r) , t20. ~ (5.90)
ieKj =0 J J

Normalizing the expression in (5.90) by the average number of system
failures ms(t) in (0,t), i.e. dividing it by ms(t), and substituting (5.86),
(5.87) and (5.88) into (5.90), we get Barlow-Proschan's measure of cut

set importance BPj(t) for minimal cut set Kj:

t K.-{i} +
T fmg(0,1 Y, Qe T g (n) dm (D)
ieKj =0 ﬁeKj
= 2#1
BPj(t) = mS(t) » (5.91)

j=t,...,N ; 20,

Nc (cf. (5.6)) being the number of minimal cut sets of the system.

1’ K2 and
K3 (cf. table 5.1.) of the electrical network of fig. 5.3.; the input data

In fig. 5.10., BPj(t) is represented for the minimal cut sets K

for the components are taken from table 5.2. (see section 5.3.4.).
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It is seen from fig. 5.10. that there is a great difference in importance
between the minimal cut sets Kl, Kz and K3. Obviously KI is the most
important one between them. The second one in importance is minimal

cut set K_,. The least important one is minimal cut set K,. The reason

2 3°
for these differences is the different order of the cut set. Minimal cut
set K1 is identical to component Rl, i.e. K] is a cut set of order one.

Therefore if component R, fails then the system fails. Minimal cut set

1

K2 is composed of two components, i.e. component RZ 52

and is therefore a cut set of order two. System failure caused by minimal

and component R

cut set K2 means that both components Rz and RS have to be failed.
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Intuitively it is felt that the minimal cut set K] is more dangerous to

the system than minimal cut set K,. From fig. 5.10. it is seen that the

2
measure of importance confirms this feeling.

The same reasoning can be applied with respect to minimal cut set K3.

5.3.4.2.2. Vesely-Fussell's measure of importance

Taking the ratio VFj(t) of the probability of occurrence of minimal cut
set Kj at instant t and the system unavailability at instant t, we get

the so-called Vesely—-Fussell measure of importance for minimal cut set Kj:

i qi(t)
1eK,

VP (t) = —L—, 03 i=lh N (5.92)
3 g(q(t))

Note that g(g(t))>0 for t>0.
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The Vesely-Fussell measures of importance for the minimal cut sets K],
K2 and K3 of the electrical network in fig. 5.3. are shown in fig. 5.11;

the component input data is taken from table 5.3. (see section 5.3.4.).

5.3.4.3. The application and the use of measures of importance

The use of wmeasures of importance is two—fold, viz.
- to trace the weak points in a system {(design),

- to obtain indications for system (design) upgrading.

The use of measures of importance, as well for components as for minimal
cut sets, is in general not always simple. In each specific case it has

to be clear for which purpose the measure of importance should be applied.
In most cases the result will be the same irrespective of which measure

of importance is used.It is very difficult to point out according to
logical considerations which measure should be used for a particular
situation; therefore in most cases the choice is rather intuitive.
Nevertheless we shall discuss in the following a few particular situations
and we shall try to give some suggestions for the use of the appropriate

measure of importance.

5.3.4.3.1. Dormant_systems

When a system is dormant during a time interval (cf. section 2.3.), then
the measures, which are based on sequentially failing of the components

in time, are not appropriate. The measures based on an instant have to

be applied. The reason for this is that if a component fails (or a mini-
mal cut set occurs) and the system is dormant at that instant, this failure
will not be mnoticed. It will be noticed some instant later, i.e. the in-
stant at which the system has to change from the dormant situation to the
operating situation. So in this case we are not able to track the failures
of components in time and therefore it is appropriate to use for dormant

systems:

(i) for components ~ Birnbaum's measure of importance

(Section 5.3.4.1.1.);

Vesely-~Fussell's measure of importance

(section 5.3.4.1.2.);

Criticality importance (section 5.3.4.1.3.);
(ii) for minimal cut sets - Vesely-Fussell's measure of importance

(section 5.3.4.2.2.).
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5.3.4.3.2. Operating systems

For an operating system (cf. section 2.3.) it is possible to detect sys~
tem failure immediately, because this failure terminates the functioning
of the system. System failure occurs, assuming no common cause failures,
if a minimal cut set occurs. The last event is caused ultimately by the
failure of a component. Obviously the way the system fails in time does
play a role. Therefore the sequential measures in time are the more ap-
propriate ones to be used in this case, i.e. Barlow-Proschan's measure

of importance, as well for components (section 5.3.4.1.4.) as for minimal
cut sets (section 5.3.4.2.1.).

-

5.3.4.3.3. System design stage

During the phase that a system is in its design stage, changes in the
system configuration are easily carried out. Because the system is not

yet operational the measures of importance treated in section 5.3.4.3.1.
can be applied. But during the design stage of a system often the
characteristics of the components are not precisely known. On the other
hand during the design as a rule no account is taken of repair. So Lam-
bert's measure of component importance (section 5.3.4.1.7.) is appropriate
for this situation. Lambert [11] claims that this measure is more sensitive

than the other ones.

5.3.4.3.4. System in steady state conditions

If a system can be considered to be in the steady state, i.e. each compo-
nent of the system is a continuously inspected component, then Barlow-
Proschan's steady state measure of importance (section 5.3.4.1.6.) is

recommended.

5.3.4.3.5, Optimal location of passive sensors

As described in section 5.3.4.1.5. it is possible to determine which com-
ponents should be watched by a passive sensor. The ranking of the compo-
nents for this option is done by the sequential contributory measure of
importance (section 5.3.4.1.5.) for components. Note that this type of
sensors can only be applied to systems during their operational time in-

tervals.
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5.3.4.3.6. Other applications

So far we have treated applications of measures of importance for system
upgrading and location of passive sensors. Other applications can be found
in:

(i) generation of repair checklists, and

(ii) simulation of system failure, by means of fault tree analysis.

The last two applications will not be treated here. For a discussion of

these methods, see Lambert [11].
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TABLE 5. 3.

MEASURES OF IMPORTANCE OF COMPONENTS AND MINIMAL CUT SETS

Measures of importance of components

3g(q (£))

1. Birnbaum W

= g (1;,d(t))=g (0,,4())

{g (1,,4(8))-g (0,,3(t)) }q; (£)

2, Criticality

g (q(t))
X 3g(F,(£),X)
3. Lambert it g
B(Fj(t),)() Xi
g; (@ ()
4. Vesely~Fussell —_—
g (q(t))

t
g (g (1,,3(x)~g (0,,d())}dm; (7)

5. Barlow~Proschan ms(t)

{8 (li,q>-g (Oi,q)}/(l/zi+l/ui)

6. Barlow—~Proschan

tead 2
steady state £ {g (1@ 0,0 /A +1/u)
'__1 J J J J
J_
t > > +
J (8i.s1.,q(x))~g(,,0.,9(1)) }q, (1) dm, (1)
¥ 0 13 L 1 J
7. Sequential jeH,
contributory j¢11 mS(t}
Measures of importance of minimal cut sets
F » K:i~{i} + +
L {1-g (05,177, q ()} T g ()dm (1)
i€k, 0 2eK.
I. Barlow-P h ’ bzl
. Barlow-Proschan mS(t)
n
ieK, qi(t}

2. Vesely~Fussell =
g (q(t))
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6. PHASED MISSION ANALYSIS

6.1. Introduction

In this chapter we shall treat phased mission analysis of maintained
systems, i.e. we shall calculate the probability of mission success. The
underlying methodology is fault tree analysis (cf. chapter 5). The diffi-
culty in treating a phased mission in contrast with a single system mission
is the possibility that two or more systems are dependent of each other,
i.e. they share components (cf. chapter 2). In this study the dependencies
between systems are fully taken into account and an exact calculation of
the probability of mission success is posgsible, but in practical situa-
tions hampered. This is due to the large number of minimal cut sets that
are contained in large and/or complex systems, which imply for the exact
calculation of the probability of mission success (1) the need for an
extremely large computer memory and (ii) very time consuming calculations.
However, it is possible to obtain upper— and lowerbounds for the prob~
ability of mission success, with an accuracy which is sufficient for most
of the practical situations encountered.

The procedure to calculate the probability of mission success is the

following:

(S1) for each phase the fault tree of the associated subsystem is con-

structed and its minimal cut sets are determined;
(S2) the absolute and conditional component unavailabilities are evaluated;

(S3) the probability of mission success is calculated.

As stated before, upper~ and lowerbounds for the probability of mission
success are needed in practical situations., In this chapter, therefore,
we shall present an upperbound and a lowerbound (or the difference between

both bounds) for the probability of mission success.

The present model differs from the models that exist in literature. In
order to be able to discuss the various approaches to the problem of phased

mission analysis we summarize our model assumptions (cf. chapter 2):

(A1) it is assumed that each system is coherent, so that every component

is relevant to the system (cf. chapter 5);
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(A2) each system behaves binary, i.e. a system can be in one of two

states: the faill state or the function state;

(A3) no repair is allowed to a system when it is operational, i.e. no
on-line repair is allowed. If during certain time intervals the

system is not operational, then repair may be applied;

(A4) the successive lifetimes of a component, for the case that a com-
ponent is subjected to a repair policy, are assumed to be indepen-
dent identically distributed variables. The same assumption is made

for the successive repairtimes of a component;

(A5) the lifetimes of the various components of a system are assumed to
be mutually independent stochastic variables; the same holds for

the repairtimes of the various components;

(A6) each component can be in one of two states; i.e. the fail state or

the function state;

(A7) it is assumed that when repair has been finished for a component

the component is as good as new and starts a new life.

Note that assumption (A5) with respect to the different repairtimes of

the components implies that it is assumed that multiple repair is applied
to the components, i.e. if a component fails or is detected to be failed
then repair starts immediately for that component, despite the fact that

perhaps other components are also under repair.

In literature phased mission analysis models have been treated by Ziehms
[15] (and Esary), Bell [1], Clarotti et al [26] and Fussell [27]. We shall
now discuss these models concerning the assumptions made, the mutual differ-

ences and the capability of the models.

(B1) All the authors apply (implicitly or explicitly mentioned) the assump-
tions (Al),...,(A7). With respect to the repair policies, viz. assump-
tion (A3), the authors treat mutually different models:

Ziehms assumes that all components are class 1 (non-repairable) compo-
nents.

Bell treats class | (non-repairable) and class 2 (continuously inspected)
components during the OR-phase and assumes that during the mission
itself all components are non-repairable.

Clarotti applies component models during the OR-phase as well as during
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(83)

(B4)

(B5)
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the mission itself which are not clearly specified, i.e. class 1
(non-repairable) components and repairable components are mentioned,
but the nature of fault detection is not specified.

He assumes that repair is applied during the dormant time interval
of a component as well as during the operational part, i.e. on—line
repair.

Fussell, finally, treats class | (non-repairable) and class 2 {con-
tinuously inspected) components during the OR-phase as well as during
the mission itself, i.e. he also applies on-line repair. He also
introduces another class of components, viz. components that can be
instantaneously inspected and repaired at the phase~boundaries, i.e.
at the epochs Tj,j=l,...;K-1, (K being the number of phases) at which

the phase of subsystem Sj terminates and that of subsystem Sj+1 starts.

The present study as well as the other models assume fixed phase dura~
tion times, i.e. the times Tj-Tjwl’jzl""’K’ are deterministic
variables and not stochastic variables.

(For a discussion of this subject see chapter 8).

The present study as well as that of Ziehms present results, for
general lifetime (and repairtime) distributions. Bell, Clarotti and
Fussell use in their formulations negative exponentially distributed

lifetimes and repairtimes.

In contrast with the present study all the other models are fully
directed to the phased mission where every subsystem has to survive
its appropriate phase. In the case of an event tree this means that
their models can only treat the upperbranch of an event tree, whereas
the present model can treat every branch of an event tree and as such

can be applied for risk analysis.

The present study as well as the other models calculate the probability
of mission success. It is noted that Fussell also introduces the
expected number of system failures as well as measures of impovtance
for components and minimal cut sets during the phased mission.

Ziehms as well as Bell (who applies the theory developed by Ziehms)
obtain an exact solution for the probability of mission success for

the case that all components are non-repairable. They also derive
upper~ and lowerbounds for this probability. Clarotti and Fussell

only derive an upperbound for the probability of mission success
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within their respective models in which on-line repair is applied.
The present study leads also to an exact solution. For practical
situations, however, as it has been pointed out at the beginning of
this section, upperbounds and lowerbounds are derived for the prob-

ability of mission success.

(B6) A noticeable difference between the present and that of the other
approaches 1is that the methodology developed within this study does
not meet any problem with probability calculations at the phase~
boundary instants Tj,j=1,...,K—1; the other models need here intricate
reasoning to overcome the system dependendies that arise at such phase-
boundaries. Despite those intricate operations to be carried out when
applying the other models, the partial system failures are not fully
and correctly taken into account (with the exception of Ziehms).
The present study takes all dependencies between systems, also partial
fajlures, correctly into account without cumbersome operations at the

phase-boundary instants.

(B7) Bell is the only one who treats phased missions with multiple objec~
tives. However, the present study is also able to treat such problems

(see for a discussion chapter 8).

For more information about the models of Ziehms [15], Bell [1], Clarotti

et al [26] and Fussell [27], see section 1.2.3. of chapter 1.

In commenting the statements about the applicability of the models mentioned
it seems here to be appropriate to state explicitly that the methodology of

the present study is a very general approach because of its capability:

* to treat every branch of an event tree;

* to take correctly into account all partial system failures;

* to work with general lifetime- and repairtime distributions for the
components

* to take into account repair of a component when it is not operational
during the mission itself;

* to provide upper- and lowerbounds for the probability of mission success
(in principle the exact values can be obtained if computational effort

is not limited).



As an introduction into the methodology that will be developed in this
chapter a very simple example is extensively treated in section 6.2.

Exact solutions, upperbounds and lowerbounds are presented for the prob-
ability of system failure and mission success. A discussion concerning the
results concludes this section.

The general phased mission theory shall be developed in section 6.3. Here
exact solutions for the probabilities of mission success for the several
branches of an event tree with their respective upperbounds and lowerbounds
shall be presented and discussed afterwards.

Section 6.4. is devoted to an application, the example of a phased mission
of a BWR in case of a large LOCA (cf. example 1 of section 2.1.) is dis-

cussed here.

It is explicitly noted that the ratio between the numerical value of the
upperbound and its deviation (difference between upper- and lowerbound)
needs special attention. For a discussion of this subject see section
6.3.6. (v).

6.2. Demonstration of the algorithm for a simple case

The aim of this section is to give insight into the procedure for calcu-
lating the probability of mission success (failure) for a system perform—
ing a phased mission. The procedure is based on fault tree analysis and

consists in general of the following steps:

a detailed system description;

- description of the several phases;

~ discussion of the relevant phased missions (event tree);

- description of the failure mode of each component;

- construction of the fault tree for each phase;

- determination of the minimal cut sets for each phase;

- ¢lassification of the components, i.e. whether it is a non-repairable,
continuously detected, randomly detected or periodically inspected
component;

- calculation of the probability of mission success or mission failure.

To demonstrate this procedure a very simplified system performing a phased
mission consisting of four phases shall be treated in detail, in particular

with respect to the probability calculations. In connection with this special
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attention will be given to the mutual dependencies between subsystems

of distinct phases.

6.2.1. System description

The system concerned is a hydraulic heat removal system (HRS); it is

schematically depicted in fig. 6.1.

{ MCPS)

e i}
l CHECK {———EMERGENCY
| VAWVE DIESEL  VALVE DIESEL PUMP
I VD PUMP cvo | SYSTEM
l C (EDPS )
i
[ |
: DIESEL :
| MOTOR | EMERGENCY -
L N AND RESIDUAL
——————————— HEAT REMOVAL
/ PUMP SYSTEM
____________ { ERHPS)
| ]
I CHECK &//
VALVE ELECTRO VALVE
% VD PUMP cve |
|
' |
FROM COOLING : ELECTRO | TO HEAT
SYSTEM (CS) | MOTOR l EXCHANGER (HE)
e o e e e e — _J
[m T T M TS ST TS e oo o mmm o -
' MAIN CHECK l
W R OWE L L
| 1 1 CIRCULATION
PUMP SYSTEM
|

FIG. 6.1. HEAT REMOVAL SYSTEM (HRS).

In practice the system is somewhat more complicated but for the sake of.
illustration the system in fig. 6.1. is a simplified version.

The heat removal system (HRS) has to remove the heat from a heat exchanger
(HE). The HRS performs its task by transporting (pumping) water from a
source (used for cooling) of a relatively low temperature to the heat
exchanger (HE) where the water is heated up. The heated water is pumped

back to the cooling system (CS), for instance a channel, a river or a lake.



In fact the HRS consists of three pumping systems, i.e. the main circu-
lation pumpsystem (MCPS), the emergency- and residual heat removal pump-
system (ERHPS) and an emergency diesel pumpsystem (EDPS). Each of these
systems in the scheme of fig. 6.1. consists of a pump, a hand operated
valve upstream the pump, a checkvalve downstream the pump and piping.

The main circulation pump (MCP) is driven by off-site power, the electro
pump (EP) is driven by an emergency power supply and the diesel driven
pump (DP) is powered by a diesel motor.

The HRS has to perform its task during a certain fixed time period, say

24 days. During this period the MCPS has to function and the other two
pumpsystems are standby. After 24 days the main circulation pump (MCP)

is stopped and the ERHPS and EDPS have to take over the pumping function
to take care of the residual heat removal subject to the condition that
one of the two systems alone is sufficient to perform this task.

The procedure is now that both systems (ERHPS and EDPS) are initiated

at the moment that the MCP is stopped. But if after 20 seconds it appears
that the ERHPS functions then the diesel pump (DP) is stopped by means

of a signal that is produced by measurement armature on checkvalve CVE

in the ERHPS, the signal being based on the flow through checkvalve CVE.
If during the period of 24 days the functioning of pump MCP is stopped

by loss of off-gsite power or by a failure that occurs within the MCP then
the other two pumpsystems are immediately started to take over the pumping
function as described above. In the case of loss of off-site power the
emergency heat removal system has to function for half an hour after which
the MCPS is restored and takes over the cooling function. If the emergency
heat removal system is started after a failure of the MCPS, it has to
function during two hours and it is used to remove the residual heat, be-
cause the main system is stopped after a failure of the MCPS. The same
holds for the regular MCPS~stop after 24 days.

The structure of the heat removal system as described in this section is

applied in "big heat capacity" systems.

6.2.2. Description and definition of the phases during a phased mission

for the heat removal system (HRS)

As described in the foregoing section the HRS has to function during fixed
periods, in our case periods of 24 days. After such a period the residual

heat removal system has to function for 2 hours.
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To demonstrate the algorithm for calculating the probability of phased
mission success, we shall describe in this section a number of assumptions
concerning the modelling of system performance. These assumptions deviate
from the real system performance as described in section 6.2.1. These
deviations are introduced to allow a simple calculation, because calcu~
lation of the probability of mission success in case of real system per-—
formance is much more complicated. Since the aim of our phased mission
example concerning the Heat Removal System is to demonstrate the algorithm
rather than real system operation, we therefore allow ourselves some,
perhaps irrational, restrictions to and assumptions on real system per-
formance.

To construct a phased mission for the HRS the following model assumptions

are introduced:

( 1 ) suppose that the HRS, i.e. the MCPS, starts to function at

instant TO;

(ii) it is assumed that in the cycle of 24 days at the 10th day, i.e. at
instant TO + 240 hrs, a loss of off-site power appears. Such an
interruption lasts as a rule from some seconds to some minutes with

a certain frequency in daily life;

(iii) at the moment that a loss of off-site power occurs the MCPS is
stopped (a secondary failure) and the emergency pumping system
(ERHPS or EDPS) has to take over the pumping function for half an

hour;

(iv) it is assumed that in case of a loss of off-site power restoration
of the MCPS lasts half an hour. After that time interval the MCPS

is assumed to be able to perform again its intended function;

( v ) after 24 days from the start of the mission, i.e. at instant
TO + 576 hrs, the MCPS is stopped and the residual heat removal
gsystem (ERHPS or EDPS) is started and has to function for two hours;
(vi) it is assumed that in case of a failure of the MCPS (a primary failure)
the emergency cooling system is not started. This assumption is not

real but it is introduced to simplify the analysis;

(vii) if the HRS fails to cool for longer than half an hour it is assumed
that this interruption is catastrophic for the whole system, incl.

heat exchangers, vessels, etec.
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From the model assumptions (i),...,(vii) it follows that we can distinguish

four phases for the mission that starts at instant T,.. In table 6.1. these

0
phases together with their respective systems are listed.

Table 6.1. Phases for the HRS with their respective systems
PHASE PHASE INTERVAL (HRS) SYSTEM
MCPS
OR-phase [O,TO] ERHPS
EDPS
phase | [TO, Ty * 240] MCPS
ERHPS
phase 2 [TO + 240, TO + 240,5] EDPS
phase 3 [TO + 240,5, Ty + 5761 MCP$
( ERHPS
phase 4 [TO + 576,71?O + 578] EDPS
T0 ¢ instant at which the mission starts

OR-phase: Operational Readiness phase

For modelling assumptions concerning component behaviour see section
6.2.4,

In section 2.4. a detailed description is given of a phased mission. From
that description it is obvious that theoretically the total number of
phased missions that can be constructed with respect to the four phases
that are described in section 6.2.2. equals sixteen, i.e. 2&‘

But practically speaking the number of phases is less than sixteen, be-
cause not all of them can occur.

For the event tree that can be constructed for the HRS it is obvious that:

(i) if the first subsystem, i.e. the MCPS, fails during the first phase
no continuation of the succeeding branches is possible because of
severe damage (see assumptiom 6.2.2. (vii)). Therefore only one
branch remains from the original eight branches. The phased mission

for that branch consists only of one phase, i.e. phase 1;
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(ii ) the same reasoning for the branches where the MCPS fails during
phase 3 can be applied as it is done in (i). Then only the first
three phases are necessary for the calculations of the several

phased missions that remain;

(iii) if there is no heat removal during at most half an hour, it is
assumed that the damage to the whole system is repairable. There~
fore the branches where the subsystem of phase 2 has to perform
task "zero", i.e. the subsystem has to fail during its phase, can

be continued.

S S 53 S

1 2 4
(MCPS)  (ERHPS) (MCPS]  (ERHPS
} | | EDPS) PHASED MISSION
| I
i 1
| |
| | | | i el o T
| | i L
; | ' Fonetions. | | TP
! ! FUNCTIONS
} | FAILS au N AL L I
§ FUNCTIONS
n -
! FAILS 3t yog-
FUNCTIONS <lel1lol1]1
FUNCTIONS
FUNCTIONS
FAILS =|s|t|ejro
FAILS
FAILS aull A R B
PHASE 1, PHASE 2 , PHASE 3 , PHASE 4 |
Ty T T, T, T, ——s TIME

F1G.6.2. THE EVENT TREE AND THE ASSOCIATED PHASED
MISSIONS FOR THE HRS.
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Based on these considerations the event tree of fig. 6.2. is constructed.
Each branch of the event tree represents a phased mission. From the
theoretically sixteen possible missions only seven remain. Every phased
mission in fig. 6.2. is coded in a table by means of the task that each
subsystem has to fulfill during that specific mission. This task is defined

by a binary variable u (see section 2.4.), i.e.

ot
Il

I, subsystem Sj survives its phase,

0, subsystem Sj fails during its phase.

6.2.4, Description of the failure mode of the components

In this study it is supposed that each component behaves binary, i.e. the
component is in the fail state or in the function state.
Therefore it is necessary to define for each component what is meant by

the fail state and the function state.

Concerning the component behaviour it is assumed that:

( 1 ) the hand operated valves VD, VE and VM are definitely in open

position and do not fail during the mission;
(ii) the piping does not fail during the mission;

(iii) the diesel pump DP and the diesel motor DM are considered as one
component with two states, i.e. the function state and the fail

state;

(iv ) the electro pump EP and the electro motor EM are also considered

as one component with only two states.

So the system of fig. 6.1. can be further simplified to the system of

fig. 6.3. in which only six components are left.

We shall denote the components in fig. 6.3. by ci,i=1,...,6, with

cp ¢ MCP , main circulation pump;

<, : CVM , checkvalve CVM;
c3 : EPM , component (subsystem) consisting of the electro driven
pump and thé electro motor (emergency power);

¢, : CVE , checkvalve CVE;
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DPM CvD
O
EPM CVE
(O
FROM COOLING TO HEATEXCHANGER
MCP CWM

»—

FIG.6.3. OVERSIMPLIFIED HEAT REMOVAL SYSTEM.

Table 6.2. Failure modes of the components in the HRS

COoMP, | COMP,
No. IDENT. COMPONENT FAILURE MODE

the MCP is in the fail state if it does not transport

c MCP

1 any water when needed
checkvalve CVM is in the fail state if it is closed

c CM .

2 when it has to be open
the EPM system is in the fail state when it does not

c EPM transport any water when needed. This may be due to

3 the electro motor or to the electro driven pump or to
both

c CVE checkvalve CVE is in the fail state if it is closed

4 and remains closed when it has to open
the DPM system is in the fail state if it does not

c DPM transport any water when needed. This may be due to

5 the diesel motor, to the diesel driven pump or to
both

c CVD checkvalve CVD is in the fail state if it is closed

6 and remains closed when it has to open
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cg DPM , component (subsystem) consisting of diesel driven pump
and diesel motor;

¢, ¢ CVD , checkvalve CVD.

For each of the mentioned components their respective failure modes are

given in table 6.2.

6.2.5. The fault tree and minimal cut sets for each phase of the HRS

In the figures 6.4. and 6.5. the fault trees for the several phases of
the phased mission performed by the HRS are shown. Because the system
configurations in phase ! and phase 3 are identical (see table 6.1.) as
well as the system configurations during the phases 2 and 4, each figure
shows the fault tree of two phases, i.e. fig. 6.4. represents the fault
tree for phase 1 and phase 3, whereas fig. 6.5. consists of the fault
tree for the phases 2 and 4,

Denote by Mk(j),j,k=1,...,4, the kth minimal cut set of subsystem Sj.
Then it follows easily from the fault trees in figs. 6.4. and 6.5. that

the minimal cut sets for the several phases are defined by

phase 1 : M(I) {c .},

] 1
(6.1)
M§]> = {cz};
phase 2 : M§2) = {c3,c5},
Mgz) = {c3,c 1,
6
2y _ (6.2)
M3 - {C43C5}9
M(Z) -

s = legecgds

phase 3 : M§3) = {c, },

1

(3) _ ) (6.3)

MZ = {Cz}s
phase 4 : Mfa) = {c3,c5},
Mgé) = {c3,c },
6

%) _ (6.4)
M3 = {CQ,CS}Q

(4) _
Ma - {C&’Cé}‘
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FIG. 6.4. FAULT TREE FOR PHASE 1 AND PHASE 3
OF THE PHASED MISSION PERFORMED BY
THE HRS.
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FIG. 6.5. FAULTTREE FOR PHASE 2 AND 4 OF THE PHASED MISSION
PERFORMED BY THE HRS.
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6.2.6. The probability of mission success for the upperbranch of the

event tree for the Heat Removal System (HRS)

The upperbranch of the event tree in fig. 6.2. for the HRS occurs if each
of the subsystems Sj,j=1,...,4, survives its appropriate phase, i.e. the

mission with tasks u]=u2=u3zu4=1 is performed. The mission starts at in-

stant TO and phase ] terminates at instant Tj,j=1,...,4. From table 6.1.

(see section 6.2.2.) it is obvious that for our example:

T, = T + 240,

1 0
T, = T  + 240,5
2 0 b e ]
(6.5)
T, = Ty * 576,
T4 = TO + 578,

Since no repair is permitted to a system when it is in an operational
state, the system has gurvived its phase with certainty if it is in the
function state at the end of its phase, i.e. subsystem Sj has survived
phase j if Xj(Tj)=O, zj(,) being the state variable for subsystem Sj
(see section 2.5.). Therefore the probability of mission success MI(TO)
for the phased mission {u1=],...,u4=1} of the HRS, that starts at in-
stant TO’ can be defined by:

MI(TO) = Pr{zl(T])=O,22(T2)=O,X3(T3)=0,XQ(T4)=O} . TOZO. (6.6)

In (6.6) every system state is the function state. In order to apply
fault tree analysis we have to turn to the fail state for every system.
Therefore it follows from (6.6) if we take the complementary probability
of the right hand side:

M (1)) = 1 - Pr{y (T7=0,5,(T )=0,y,(T)=0,5,(T,)=0} ,

where the upperbar indicates complementation. It follows that:

M (T) = 1 - Pr{(F T =0V, (T =0 (T (T,0=0) U(y, (T, )=0) )

1= Priy, (T)=1U(y, (T )=DU(g,(T)=DU(y, (T,)=1)}
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[+ Pr{y](TI)=I}

+ Priy,(T,)=1}

+ Pr{gS(T3)=1}

+ Priy, (T,)=1}

- Priy (T)=1,7,(1,)=1}

- Pr{z](T1)=l,g3(T3)=1}

- Pr{y,(T)=1,y,(T,)=1}

- Priy,(T,)=1,y,(T5)=1} (6.7)
- Priy,(T,)=1,y,(T,)=1}

- Priyy(Ty)=1,5,(T,)=1}

+ Pr{gl(T1)=1,zz(T2)=1,23(T3)=1}
+ Priy, (T)=1,y,(T,)=1,y,(T,)=1}
+ Py, (T))=1,55(Ty)=1,y,(T,)=1}

- Pr{X](T])=l,22(T2)=1,23(T3)=1,24(T4}=;}], TOZO*

From the fault trees in the figures 6.4. and 6.5. it can be concluded

that subsystem S1 shares no components with subsystem S, nor subsystem S

2

1 behaves independent of the subsystems S2 and 84.

Hence the variables zl(t) and Zz(t) as well as Xl(t) and za(t) are

. é‘ )
Therefore, subsystem S

stochastically independent. The same is true for 23(t) with respect to

7,(t) and y,(t). Denote by:

Q,(£) = Priy (=13 , j=1,...,4;

.. st = P . . o=l,y, (¢, )=1}, 6.8
Q31’32<t1 2) r{zjl(tJl) sz( 32) } (6.8)

jl=1,...,3; j2=j]+1,...,4; tl,tzzo.
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Making use of the above mentioned independencies and applying (6.8) to

(6.7) it follows that the probability Ml(TO) of mission success can be

written as:
M (Tg) = 1= [Q (T )+Qy(T,)+Q,(T)+Q, (T,)
+ QT )T+, ,(T,,T,)+Q5(T1)Q,(T,)}
+1Q 4(T,,15)Q, (T )+Q (T )Q, ,(T,,T,)
+Q) 41,100, (T,)%Q, ,(T,,T,)0Q, (T} (6.9)

From (6.9) it is seen that for the calculation of mission success in
this particular case only the unavailabilities Q](Tl)’ QZ(TZ), Q3(T3),
Qg(T4)’ QI,B(TI’T3) and QQ,Q(TZ’T4) have to be developed.
Denote by

d}(j)(t> — th e f . » (j)

Yy = e state variable of minimal cut set Mk at

instant t (see definition (5.13)).

From section 5.3.1. it is clear that a system is in the fail state if

at least one minimal cut set of that system occurs. So from (6.1) it
follows that (cf. (5.15)):

0 1) = 2eit D p=nuei =)
= pety D =1l rp=n1-prs D ez =19 (@ -1

= Pr{§](T])=1}+Pr{§2(T])=1}-Pr{§](T])=1,§2(T1)=1},

§i(.) being the state variable of component c; (see definition (2.2)).
It is assumed (cf. section 2.5.) that the state variables of different

components are mutually independent stochastic variables. Therefore it

follows that:

QI(TI) = Pr{§1(T])=]}+Pr{§2(T])=l}—Pr{§1(T1)=1} Pr{gz(T1)=1}. (6,10)
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Denote by:

q () = Prix,(t) = 1}, (6.11)

then it follows from (6.10) and (6.11) that:
Q(T,) = q,(T)+q,(T )=q (T )q,(T ). (6.12)

Applying the same procedure to the probabilities QZ(TZ)’ Q3(T3) and
QA(TQ) the result reads:

pri(p{? ,)=0u? @)=00? @=nu, P a,p=n}

QZ(TZ)
= 45(T))q5(T))+q,(T,)q (T,)+q, (T,)q-(T,)+q, (T,)q,(T,)
- £a4(T))a5(T)ag(T))+a,(T,)q, (T,)q.(T,)
* 2a3(T)a, (T a5 (T dg(T))+a5(T,)q, (T,)q6(T,)
*+ 4, (T5)q5(T,)q (T,)} (6.13)
+ 4,(T,)q, (T))a (T,)q, (T,)
= {q3(T2)+q4(T2)}{qS(T2)+q6(T2)-q5(T2)q6(T2)}
- 45(1)q,(Tag(Ty) (1= (T)};
Qy(T3) = Q,(Ty); (6.14)
Q,(T,) = Q,(T,), (6.15)
where (6.14) and (6.15) are identities because phase 1 and phase 3 on
the one hand and phase 2 and phase 4 on the other hand are represented
by the same system configuration, respectively (see section 6.2.2.).
Next we shall calculate the probabilities Q1’3(T1,T3) and QZ,A(Tz’T&}'

These probabilities refer to dependent systems, for instance Q1 3(T1,T3)
s

is the probability that subsystem Sl has failed at instant T1 and sub-



system 83

has failed at instant T
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3

>T1, where both subsystems §

1 and 33

are identical in this particular case. So from (6.8) it follows that

for T

3>T120:

Q] ,3(T1 ,TB) = Pr{zl (’]_‘1):] ,23(1‘3):]}.

(6.16)

In the following, (6.16) will be developed into absolute and conditional

probabilities. The condition in the latter probabilities 1s a system

fatlure mode, i.e. a minimal cut set, and not a system state.

Therefore we get from (6.16) applying (6.1) and (6.3):

Q 51,1y = prla P ap=nugs a1, @ @p-nueP ap-n
= peiyp{Vr =14 -0
eyl =1, p=n

Pr{y
Priy
Pr{y

Pr{y

Priy

(

Pr{gl

+ Priy

+ Pri{y

(1
2

1

1

(1)
1

(1) R
P I=l,

(
2
(3)
1

()=
(g =1

(1) _1 .
(TI)_I )92

o

(T1)=}

3)(T3)=1|§§1}(T1)=1}Pr{y
3>(T3)=1]g§1)(T])=1}Pr{y

o1, (D
(Tg)=1]y, (T,

WS,
D
(T,

RERCH

])(Tl

Pr{ygl)(T])=l,§§3)(T3)=1}

)=1}
=1, (1 )=13
)=1,g§3)(T3)=1}

)=1,g§3)(T3)=1}

Pr{ggl)(T])=1,§§3)(T3)=1,g§3)(T3)=1}

(3

(3 )
)=1,0; 7 (T)=1,0,°) (1)=1)

(1) -
pTp=13

(1 -
; (T])-l}

)=I}Pr{y§§)(T])=I}
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(3)

TN ED) _ (1 -
5 (TB)—llgz (T)=13Pr{y, (T )=1}

2

+

Pr{y

- ety @p=1yiP ap=1,u{P =13

(1)

I (O PR
L=y, =1

. Priy

Pr{g§3)(T3)=1lgfl)(T1)=1,g§‘)(T])=l}

iy =1, =)

- ey @ )=1,p8P =114 ap=nieepV @ p-1)

peiy(® (1)=1,40 @p=11p{" (rp=3ertp =)

priy(® (r=1,p$> @ )=11y{V =198V (x =13

o+

. Pr{yf]}(T1)=1,ggl)(T])=1}
Prix, (T)=1]|x (T,=1}Pr{x, (T,)=1}

+ Prix,(T,)=1]x, (T )=13}Pr{x (T )=1}

+ Prix, (T)=1]x,(T)=1}Pr{x, (T )=1}

+ Prix, (T)=1]x, (T )=1}Pr{x,(T )=1}

= Prix, (Ty)=1|x (T)=1,%,(T )=1}Pr{x (T )=1,x,(T )=1}
= Prix, (T)=1|x, (T,)=1,%,(T,)=1}Pr{x (T,)=1,x,(T,)=1}
= Prix, (T5)=1,x,(T,)=1]x, (T,)=1}Pr{x, (T))=1}

= Prix, (T)=1,%,(T3)=1]x,(T,)=11Pr{x,(T,)=1}

+ Pr{§](T3)=1,§2(T3)=][gl(T])=l,§2(T1)=1}

» Prix (T)=1,x,(T,)=1}



Because the component state variables gi(.),i=l,.,‘,6, are mutually

independent stochastic variables it follows that:

Q]’3(T1,T3) = [Pr{gl(T3)=1’gl(T1}=1}+q2(T3)]ql(Tl)

+

[ql(T3)+Pr{§2(T3)=1[§2<T1)=1}]q2<T])

[Prix, (T3)=1]x,(T))=1}+Pr{x,(T,)=1]x,(T)=1}]
- (T g, (T ) (6.17)
- Pr{gl(T3)=11§1(T1)=1}q1(T1)q2(T3)

= Prix, (Ty)=1]x, (T )=1}q, (T)q,(T))

+

Prix (T5)=1]x, (T )=11Pr{x,(T,)=1]x, (T )=1}

qi(.) being defined by (6.11).

Define:
v, = Pr{gi(T3)=]'§i(T])=l} , 1=1,2;
(6.18)
= Prix (T,)=1]x,(T)=1} , i=3,...,6.
Applying (6.18) to (6.17) the result reads:
= {
Q1,3(T],T3) = \v1+q2(T3)}q](Tl}
+ {ql(T3)+v2}q2(T1)
= {v +v, 1q, (T )q (T.)
T 27711721 (6.19)

¢

qul(TI)qZ(TB)

- v,q, (T)q,(T,)

+

VIV2qI(T])q2(TI)’ T3>T]>0.
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Denote by:

v, = Pr(p\ @)}, =l ,b

i (6.20)
(

2 2 . .
ij = PI‘{Q:? >(T2)=]9Ek )(T2)=]} » J=1,2,3; k=j+1,...,4.

From (6.2) and (6.11) we get for wj and ij in (6.20):
wp o = q5(T,)q5(T,),
W, = q3(T2}q6(T2),
Wy = qé(Tz)qS(T2)’
w, = q,(T e (T,),
Wiy = q3(T2)q5(T2)q6(T2), (6.21)
W.. =

13 = 943(T09,(Ty)ag(Ty),
Wi = 5T, (T))ag(T))e (T,),

Y23 T Via

"

Was = 4, (T5)a5(T,)q ().

The probability of the simultaneous occurrence of more than two minimal

cut sets equals Viae

Applying the same method as used for the derivation of Q1 3(T1,T3) in
>
(6.19), we get as a result for Q2,4(T2’T4):

Q4 (T,oT,) = [vyvy(1=g, (T,)Hi~q (T,) bvyq () 1-q,(T,)}
*+ v5q, (T, ) 11-q,(T,) Mq, (T, )q, (T, ) v,
* [vgvell=q, (T, ) H1-q (T, ) }+v4q4 (T, ) {1-q,(T,)}
* Vg, (T, {1=qg(T, ) }+q, (T, )q5(T, ) v,
+ Lv,vsT1ma,(T,) =g (T,) b, q (T,){1-q,(T )}

+ v5q3(T4){1—q6(T4)}+q3(T4)q6(T4)]w3
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+

[V4V6{]’QB(T4)}{I-QS(TA)}+v4q5(T4){3-q3(T4)}

+ ey (T 1=q5 (T, ) 1+q,(T,)a, (T,) v,

[Cvgvgtvave—vaveved tl=q, (T )}
+ q4(T4){v6+v5(1-v6) }]w] 5
- [(V3v5+v4v5~v3v4v5){1—q6(T4)}

+ q6(T4){v4+v3(l—v4)}}w13 (6.22)

{

[Crgvetv vemvav, v ) 11-q5(T )]
+ qs(Ta){VB*va(l—VB)}}wzﬁ
- [(v4v5+v4v6-v4v5v6){1—q3(T4)}

*ag(T ) vgrve (1=v) Hwy,

+

[(v3v5+v4v5~v3v4v5)(1—v6)

* v lvgry, vy ) lw

qi(.), Vs Wj and w,, being defined by (6.11), (6.18) and (6.21), respec-

ik
tively.

With the component unavailabilities qi(.) and Vi i=1,...,6, given, the
variables w. and wjk’ as defined by (6.21), can be calculated and therefore
the functions Qj(.), j=ly...,4 are completely determined by (6.12) through
{(6.15) and Q],3(T1,T3) and Qz,a(Tz’T4) by (6.19) and (6.22), respectively.
So the probability ME{TOJ of mission success for the upperbranch of the
event tree of fig. 6.2. and given by (6.9) is completely determined.

6.2.7. Calculation of the probability of occurrence of the other branches

of the event tree

From the event tree of fig. 6.2. it is seen that there are another six
branches. Each of these branches can be defined as a phased mission.
However, in each of these branches one or more subsystems have failed.

In the following we shall show that by means of the results of the fore-
going section the probability Mk(TO), k=2,...,7, of branch k (cf. fig. 6.2.)
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»

can be calculated. Actually, this is an illustration of a general rule

that will be explained in section 6.3.6.

6.2.7.1. The occurrence probability MZC?O) for branch 2,

i.e. the phased mission {u1=13_u2=13_u3=33_u4=9i

The second branch in the event tree of fig. 6.2. is characterized by the

phased mission {u_=1,u. =1,u =l,u&=0}, i.e. the subsystems Sl’ S, and S

1 2 3 2 3

have to survive their respective phases and subsystem 84 has to fail

during its phase. So (cf. (6.6)),

MZ(TO) = Pr{zl (TI)=0’22(T2)=0’X3(T3)=0’24(T4)=1} s T(}ZO, (6.23)

with gj(.) being the state variable for subsystem Sj (cf. section 2.5.).

Applying simple probabilistic analysis we obtain from (6.23):

M, (T,) = Pr{za(T4)=1}-Pr{(X](Tl)=0,22(T2)=0,X3(T3)=0),24(T4)*1}

Pr{y, (T,)=1}-Pr{(y, (T )=1Uy,(T,)=1Uy (T )=1),y,(T,)=1}
= Priy, (T,)=11-[Pr{y, (T)=1,3,(T,)=1 HPriy, (T,)=1,y, (T,)=1}
+ Pr{XB(T3)=1,za(T4)=l}
- Pr{zl(T1}=1,22(T2)=1,24(T4)=1}
- Prly, (T))=1,5,(1,)=1,y,(T,)=1} (6.24)
- Priy, (T,)=1,y,(T,)=1,y,(1,)=1}
+ Priy (T )=1,y,(T,)=1,5,(T,)=1,,(T,)=1}]
= Q,(1,) - [Q,(T)Q,(T,)%0, ,(T,,T,)40,(T,)Q, (T,)
= QT 4 (T 7070y 5(T)5T5)Q,(T,)
= Qy 4Ty TPQ(T)+Qy (T, T)Q, ,(T,,T, )], T20,

where the independencies between the subsystems has been taken into
account and Qj(.), i=l,...,4 is given by (6.12) through (6.15), respec~
tively, and QI,B(TI’TS) and Q2,4(T2,T4) by (6.19) and (6.22), respectively.
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6.2.7.2. The occurrence probability M3§?O) for branch 3,

i.e. the phased mission {u1=lzu =lzu3=9i

2
Treating branch 3 in the same way as we have treated branch 2 in section

6.2.7.1., we get for the occurrence probability M3(TO):

M3(TO) = Pr{yl(T])=O,22(T2)=0,23(T3)=1}

= Pr{z3(T3)=1}-Pr{(yl(T])=0,22(T2)%0),23(T3)=1}
= Priy (Ty)=1}-Pr{(y, (T, )=1Uy, (T )=1),75(T)=1}
= Pr{z3(T3)=l}—[Pr{X](T])=],23(T3)=1}+Pr{22(T2)=1,23(T3)=1}

= Priy (T )=1,y,(T,)=1,y,(T;)=1}] (6.25)

I

Q3(T3)-[Q1,3(T],T3)+Q2(T2)Q3(T3)—Q],B(T],T3)Q2(T2)], T,=0,

Qj(.), j=1,2, being given by (6.13) and (6.14), respectively, and
Q1,3(T],T3) by (6.19).

6.2.7.3. The occurrence probability MAQ?O) for branch 4,

=1,u,=1}

i.e. the phased mission {u]=12u2=92u3 4

The treatment of this branch is identical to that of branch 2 (cf. section
6.2.7.1.). The occurrence probability Mﬁ(TO) for branch 4 is given by:

M, (Tg) = Q,y(T)=1Q, (70, (T,)+Q,(T,)0Qy (T,)+Q, ,(T,,T,)

- Q1,3(T1,TB)QZ(TZ)_QI(T])Q2,4(T2,T4)
- Q3(T3)Q2,4(T2’T4)

Qj(.), j=1,2,3, being given by (6.12), (6.13) and (6.14), respectively,
and QI,B(TI’TB) and Q2’4(T2,T4) being given by (6.19) and (6.22) respec—
tively.
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6.2.7.4. The occurrence probability MSQ?O) for branch 5,

i.e. the phased mission {u =1,u,=0,u,=1,u,=0}

In branch 5 two subsystems have to fail during their respective phases.
Therefore, the probability MS(TO) of mission success, i.e. the probability

of the occurrence of branch 5, is defined by:

M (T ) = Priy, (T))=0,y,(T,)=1,y,(T,)=0,y, (T,)=1}

Pr{zz(T2}=1,24(T4)=1}

- Pr{(F,(T)=0,7,(T;0=0),3,(T,)=1,3, (T, )=1}

1]

Pr{zz(T2)=l,zé(T4)=l}
+ Pr{Xg(T2)=1323(T3)=1a24(T4)=1}

- Pr{z](T])ml,yz(Tz)ml,ZB(T3)=1,24(T4)=1}]

Qy ,(T,pT,)=1Q (T )Q, ,(T,,T,)+Q,(T,)Q, ,(T,,T,)

il

1=, (T )-Qg(T)+Q) 4(T TN, ,(T),T,), Tg20,  (6.27)

Q](Tl) and Q3(T3) being given by (6.12) and (6.14), respectively, and
Q]’3(T1,T3) and Q2’4(T2,T4) by (6.19) and (6.22), respectively.

6.2.7.5. The occurrence probability M6§?0) for branch 6,

=0,u,=0}

i.e. the phased mission {u1=lzu2 3

The occurrence M6(TO) for branch 6 is given by:

M (T) = Pr{zl(T1)=0,Zz(T2)zl,23(T3)=1}

Priy,(T,)=1,y,(T)=1}-Priy (T )=1,y,(T,)=1,y,(T;)=1}
= QZ(TZ)Q3(T3)—Q]’3(T1,T3)Q2(T2), 1,20, (6.28)

Q2(T2) and Q3(T3) being given by (6.13) and (6.14), respectively, and
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6.2.7.6. The occurrence probability M.(T,)_for branch 7,

i.e._the phased mission {u =0}

The probability M7(T0) of occurrence of branch 7 is a very simple one,

i.e.

M},(TO) =Pr{zl(T])=1}=Ql(Tl), TOZO, (6.29)

Q(T,) being defined by (6.12).

In this section a numerical application for the HRS shall be given for

three different maintenance strategies, i.e.

( 1 ) the case in which every component is a class 1 component, e.g.
every component of the HRS is non-repairable (cf. input table 6.3);

(ii ) the components are maintained in different ways. Some are not
inspected (non-repairable) while others are inspected periodically
(cf. input table 6.4);

(iii) all components are inspected continuously (cf. input table 6.5).

The input data for the strategies (1), (ii) and (iii) are presented in
tables 6.3., 6.4., and 6.5., respectively. The input numbers are fictitious
and do not relate to practical situations. They are only used for the sake

of demomstration of the proposed technique for treating phased missions.

In this application all components have a negative exponentially distrib-
uted lifetime. The repairtime distribution for class 2 components (contin-
uously detected) is negative exponential, whereas in case of class 4 com—

ponents (periodically inspected) the repairtime is uniformly distributed.

For the three strategies (i), (ii) and (iii), respectively, calculations
have been performed for two different cases, viz. in the first case the
= 200 hrs) and in the other case the

= 1000 hrs). These different calcula~-

mission starts at instant 200 (TO

mission starts at instant 1000 (TO
tions offer the possibility to get insight into the behaviour of the
probabilities Mk(TO) of mission success as a function of the instant TO

at which the mission starts.
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Because the approach to phased mission analysis in this study is different
from the methods applied up till now we like to compare present results
with outcomes obtained by former methods. Therefore a calculation based

on a former method (see (Rl) and (R2) below) has been carried out for the
mission that starts at TO = 1000 hrs. Note that the probability calcu-
lations performed in the past have never correctly taken into account the

dependencies between subsystems that are a part of a phased mission.

As a former method we shall take here the special calculation method
which assumes no dependencies between subgystems. It is defined by the
following rules (R1) and (R2).

(R1) Calculate for each subsystem Sj,j=1,...,K, the probability Qj(Tj)
of system failure. The probability that the upperbranch of the

event tree does not occur is then bounded by PO(TO):

K
PO(TO) = 2_: Qj(Tj)-
i=1
(R2) Assume that branch j of the event tree is characterized by:

k subsystems, i.e. S.l,...,Sj , have to fail during their respective
phases and the other (K-k) subsystems have to survive their phases.
For this branch the probabilities QjZ(sz)’ =1,...,k, of system
failure are calculated and the probability of mission success (the
probability of occurrence of branch j) is bounded from above by
P.(T ):

K
P.(Tg) = LT Q. (T. ).

=1 Jg g

For the calculation of the probabilities Qj(Tj) performed in the steps
(R1) and (R2) the component models of chapter 3 are used. So the extended

component models for phased mission analysis of chapter 4 are not applied.

The results of the several calculations are presented in the following

tables:
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Table 6.6. = in this table the probabilities Mk(TO)’ k=1,...,7, of mission
success for each branch are shown for the three mentioned
maintenance strategies; the mission starts at TO = 200 hrs.
Two golutions are given, i.e. an exact solutionm and an
approximate solution (upperbound and the difference between
upper— and lowerbound). For the approximations see section

6.3.

Table 6.7. = this table shows for TO = 1000 hrs {(i.e. the mission starts
at instant 1000) the probabilities Mk(TO), k=1,...,7 of

mission success; the nomenclature is the same as table 6.6.

Table 6.8. =~ for each strategy this table presents the probabilities of
mission success obtained by:
* the exact solution;
* the upperbound calculated by the present study;
* the upperbound calculated by the former approach

(heading "Former Method").

The probability of mission success is obtained after several calculation

steps as it has been shown in this section 6.2.:

* first the calculation of the absolute and conditional component

unavailabilities, qj(.) and Vj, respectively;

* after that the calculation of the occurrence probabilities Wj and wjk

of the minimal cut sets;
* then the calculation of the system unavailabilities Qj(.) and Qj k(.,.);
s

* and finally the probabilities Mk(TO) of mission success.

For the missions that start at TO = 1000 hrs the following tables present
the results of the calculations for the several mentioned steps (except

for the probabilities Mk(TO) which are presented in table 6.7.).

Table 6.9. = this table shows the conditional component unavailabilities

vi, i=l,...,6, for each class of applied components;

Table 6.10. - this table shows the absolute component unavailabilities

qi(.) at the instants Tl’ TZ’ T3 and T4 (the endpoints of

phase 1, phase 2, phase 3 and phase 4, respectively) for



Table 6.11, -

Table 6.12., -
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each applied class of components;

a table showing the occurrence probabilities wj and ij
for the minimal cut sets of each phase at the instants
Tl’ TZ’ T3 and T4 for the three strategies mentioned in
(i), (ii) and (iii) of this sectionm;
this table contains the probabilities Qj(.) of single system
failure and Q1’3(T1,T3) and Qz,a(Tz’Ta) for joint system
failure for the three mentioned maintenance strategies.
The results of two calculations are presented for these
probabilities, viz.
* those according to the exact solution, and
* those according to the approximated solution, i.e.
an upperbound and the difference between upper— and
lowerbound.

For the approximate solution see section 6.3.

In order to show the influence of the specially developed component be-

haviour models for phased mission analysis a last table is added. This

table 6.13. presents the upperbounds of the probabilities of the top events

for the four subsystems S], 82’ 83 and 84. The present study applies the

specially developed component models of chapter 4, whereas the approach as

at present used in practice applies the component models of chapter 3.

Table 6.13. is described by:

Table 6.13. - the content of the table consists of upperbounds for the

probabilities Qj(.) of system failure for the subsystems

Sl’ 52’ 83 and S4

missions start at TO = 1000 hrs.
The upperbound beneath the heading "Present Study" is

, respectively, for all strategies; the

obtained by the use of component models of chapter 4,
whereas the upperbound beneath the heading "Former Method"

is obtained using component models of chapter 3.



Table 6.3. COMPONENT INPUT DATA FOR STRATEGY (i), i.e. INPUT DATA IN CASE THAT ALL
COMPONENTS ARE NON-REPAIRABLE (CLASS 1 COMPONENTS)
INITIAL FAILURE MEAN REPAIR | TIME TO FIRST | INSPECTION INSPECTION
COMPONENT | AVAILABILITY RATE / hr TIME (hrs) INSPECTION INTERVAL DURATION
{(hrs) (hrs) (hrs)

Nr. | CLASS ) A W n n 6
c 1 1. 5 % 10 - - - ~

! -6
c 1 1. 10 - - - -

z _5
c 1 1. 5 % 10 - - - -

3 -6
c 1 1. 10 - - - -

& -4
e, 1 0.98 3 % 10 - - - -
ce 1 1. 107° - - - -

-€C¢~




Table 6.4. COMPONENT INPUT DATA FOR STRATEGY (ii), i.e. INPUT DATA IN CASE OF
CLASS 1 (NON~REPATRABLE) COMPONENTS AND CLASS 4 (PERIODICALLY INSPECTED)
COMPONENTS
INITIAL FAILURE MEAN REPAIR | TIME TO FIRST | INSPECTION INSPECTION
compoNgNT | AVAILABILITY RATE / hr | TIME (hrs) [ INSPECTION INTERVAL DURATION
(hrs) (hrs) (hrs)
Nr. | CLASS 30 A H ny n 6
c, 4 1. 5 % 1070 24, 168 168 i.
c, 1. 1070 - - - -
c, 4 1. 5 % 1077 2. 192 168 p,
c, 1 1. 1070 - - - -
e 4 .98 3% 1074 2. 216 168 i,
cg 1 1. 1070 - - - -

b rAA



Table 6.5. COMPONENTS INPUT DATA FOR STRATEGY (iii), i.e. INPUT DATA IN CASE THAT ALL
COMPONENTS ARE CONTINUOUSLY INSPECTED (CLASS 2 COMPONENTS)
INITIAL FAILURE MEAN REPAIR | TIME TO FIRST | INSPECTION INSPECTION
COMPONENT AVAILABILITY RATE / hr TIME (hrs) INSPECTION INTERVAL DURATION
(hrs) (hrs) (hrs)
Nr. CLASS ) A H ! n ®
-5

¢, 2 1. 5 % 10 24, - - -
c, 2 1. 1076 2. - - -
¢ 2 1. 5 % 1072 24, - - -
c, 2 1. 1076 2. - - -
ce 2 .98 3 % 1072 24, - - -
cg 2 1. 1070 2. - - -

-GCC~



Table 6.6.

PROBABILITIES OF MISSION SUCCESS (To = 200 hrs)

PROBABILITY OF MISSION SUCCESS

STRATEGY (1)

STRATEGY (ii)

STRATEGY (iii)

ALL COMPONENTS

NON-REPAIRABLE (CLASS 1)

CoMP, €ys € AND c. ARE PERIODICALLY

3 5

INSPECTED (CLASS 4)

ALL COMPONENTS CONTINUQUSLY INSPECTED

COMP. c,,c, AND c, ARE NON-REPATRABLE (CLASS 2)
MISSION (CLASS 1)
No. CODE ExACT FIRST ORDER APPROXIMATION EXACT FIRST ORDER APPROXIMATION EXACT FIRST ORDER APPROXIMATION
ijuylu,|usfu,| SOLUTION UPPERBOUND | DEVIATION™ " SOLUTION UPPERBOUND | DEVIATION') SOLUTION UPPERBOUND | DEVIATION'
-t - - - - - - - -
vl ] ey 0T 7301072 | 2.62 %1072 | 400 %1072 | s.89 x 1072 | 101 1072 | 3,01« 102 432« 1072 |31 % 1072
sl |11 ]o] 593103 876 %107 | 3.70 %1070 | 468 x 107 | 6.65 % 107 | 2.5 %107 [ 9.79 % 107® | 1.0 % 1070 | 4.36 + 1077
slal ool =] 166102 ) 3.80 »1072 | 2,24+ 1072 | 167 % 1072 | 3.36 » 1072 | 1.70 % 1072 | 1.68 « 1072 | 2.98 » 1072 [ 1.31 % 1072
slalol 1)) o s« 10> | 335 %107 | o 1.80 x 107> | 1.90 % 107> | 8.66 « 10% |8.93 % 107% |3.85 % 1077
staolofl 1ol 3.02%1072 | 306102 | 2,08 %107 | 1.76 107> | 1.81 « 107> | 1.00 « 107% | 8.75 » 107" [ 9.03 « 107! | 3.90 « 10712
6l1lolol-] s.ozx10 | 1.22107% | 703107 | 3.00 »107° | 6.05 «107% | 3.05 % 107° | 1.50 » 1677 | 2.66 « 1077 |1.17 * 1077
2lol -] -]-] 222221072 | 2.22+10% | 9.59 x107% | 1.68 102 | 1.68 %102 | 7.22107% | 1.33 %1072 [1.33 41072 [3.7 %1078
*) For mission no. 1 (ul=u =u3=ué=l) the probability of migsion failure is presented
5 = 1, subsystem Sj survives phase j;

)

= (0, subsystem Sj fails during phase j, j=1,2,3,4.

Deviation: difference between upper- and lowerbound.

-9¢¢-



Table 6.7. PROBABILITIES OF MISSION SUCCESS (TO = 1000 hrs)

PROBABILITY OF MISSION SUCCESS

STRATEGY (i) STRATEGY (ii) STRATEGY (iii)
COMP. ¢ , ¢, AND ¢ ARE PERIODICALLY
ALL COMPONENTS NON-REPAIRABLE (CLASS 1) INSPECTED (CLASS 4) ALL COMPONENTS CONTINUOUSLY INSPECTED
COMP. c,, ¢, AND c, ARE NON-REPAIRABLE (CLASS 2)
MISSION (CLASS 1)

No. CODE EXACT FIRST ORDER APPROXIMATION EXACT FIRST ORDER APPROXIMATION EXACT FIRST ORDER APPROXIMATION
S RN PN B A SOLUTION UPPEREOUND | DEVIATTON' ™) SOLUTION UPPERBOUND | DEVIATION™) SOLUTION UPPERBOUND | DEVIATTON' )

1) . _ - - _ - - -

Pl ] os 107 ] vise x 107h | 8.90 % 1072 | 4.42 % 1072 | 6.75 % 1072 | 2,37 « 1072 | 3.01 % 107% [ 4.32 % 1075 | 1,31 « 1077
2l ol 949« 107 3.03 + 1072 2,44 x 1077 4.66 + 107> 6.86 % 1077 2.46 1070 [ 9.79 » 107° 1,01 % 107° 4.36 * 1077
st ool -] 1s7x10? | 7.7a %10 | 63221072 | 167 x 1072 ] 377 %1078 | zon x 1072 |68 % 1070 [ 2.98 %+ 1077 | 1.31 « 1072
sl lola ] o 2.00 » 1072 | 2,30« 1072 | o 2.00 1073 | 2.14 % 1072 | 8.66 « 10°° | 8.93 % 107% [3.85 1077

- - - - - - - - -
511 lo) 1o 1.8 %107 2.01 * 1072 3.02 1077 1.92 « 1073 2.02 % 1077 163« 107 875« 107" 903+ 107! | 390 « 10712
611 1olol-] 3191074 1.55 % 107> 1.26 x 1073 3,34 % 1077 7.55 % 107° 4,24 « 1070 | 1.50 % 1077 2.66 % 1077 117 1077

- - - - -7 - - - -

7ol =<1 -] sot3x102 | 63 %1072 ] 74501070 | 2,00 x 1072 | 2.00 %+ 1072 | 2.46 %+ 1077 | 1.33 % 1072 | 1.33 % 1072 | 3.17 « 1070

+) P s . . .
For mission no. ! (u1=u2=u3=u4=1) the probability of mission failure is presented
uj = |, subsystem Sj survives phase j;
= (, subsystem Sj fails during phase j, j=1,2,3,4.
++)

Deviation: difference between upper— and lowerbound.

-L2T~



Table 6.8.

PROBABILITIES OF MISSION SUCCESS FOR THE HRS
THE EXACT SOLUTION AND UPPERBQUNDS OBTAINED BY THE PRESENT STUDY AND A FORMER APPROACH
(T, = 1000 hrs)

0

PROBABILITY OF MISSION SUCCESS

STRATEGY (i)

STRATEGY (ii)

STRATEGY (iii)

COMP. ¢, o, AND c_ ARE PERIODICALLY
ALL COMPONENTS NON-REPATRABLE (CLASS 1) INSPECTED (CLASS 4) ALL COMPONENTS CONTINUOUSLY INSPECTED
COMP. ¢, c, AND c, ARE NON-REPATRABLE (CLASS 2)
MISSION (CLASS 1)
No. CODE FIRST ORDER APPROXIMATION FIRST ORDER APPROXIMATION FIRST ORDER APPROXIMATION
EXACT (UPPERBOUND) EXACT (UPPERBOUND) EXACT (UPPERBOUND)
e fuylugfu,| SOLUTION | pppepnt sTuDY | ForMER METHOD |  SCWUTION | pppcpnT STUDY | FORMER METHOD SOLUTION [ oepSENT STUDY | FORMER METHOD
-l - - - - - - - P
cla ]| ros e 0™ rse w07t | 2036 w107 | seaz w1072 6.75 % 1072 | 9.45 « 1073 |3.01 % 1072 | 432 % 1072 | 2.42 % 1073
2l il il o] 969107 | 303 %1072 | 3003« 1072 | 4.66 % 1073 6.86 % 1072 | 1,86« 1074 [9.79 % 1078 [ 1.0t % 107> | 8.59 x 1078
stal ool -] tos7 w102 | 7a w1072 | 7.7 %1072 | 167 %1072 377 % 1072 | 471+ 1073|168« 1072 | 2.98 x 1072 | 1.20 x 1072
sl alolil1] o 2.00 « 1072 | 2,00+ 1072 | 0 2,00 1072 | 1.81 % 107% |8.66 x 107® |8.93% 107 | s.59 % 1078
stafol t]o] 1.8«1072 | 2,00 #1072 | 6.06 « 1072 | 1.92 % 1073 2.02x 1070 | 3.33 %1078 [8.75 « 107! [ 9.03 % 1071 | 7.38 « 107!
6| 1] olol -] 309 %107 | 1551072 | 1.55x 1072 | 336« 1070 7.55 x 107 | 8.53 %1077 |1.50 % 1077 | 2.66 x 1077 | 1.03 % 1078
7ol -] -] -] 6.13x 1072 6.13 » 1072 6.14 « 1072 2.09 * 1072| 2.09 * 1072 £.37 « 1073 1.33 % 1072 1.33 = 1072 1.20 * 1072
) For mission no. 1 (ui=u2=u3=u4=l) the probability of mission failure is presented
uj = 1, subsystem Sj survives phase j;

= (0, subsystem Sj fails during phase j, j=1,2,3,4.

~8CC-



Table 6.9.

CONDITIONAL COMPONENT UNAVAILABILITIES

(TO = 1000 hrs)
NON- CONTINUOUS PERIODICAL
REPATRABLE INSPECTION INSPECTION
COMPONENT (CLASS 1) (CLASS 2) (CLASS 4)
c CALCULATED BY | CALCULATED BRY | CALCULATED BY
i Vi (4.123) (4.127) (4.123)
c, v, 1. 9.80 % 107! 1.
c v 1. 7.78 % 107} 1.
2 2 _3
c v 1. 1.30 % 10 1.
3 3 6
c v 1. 4.00 * 10 1.
4 4 6
c v 1. 7.75 %« 10 1.
5 5 6
ce ve 1. 4,00 * 10 1.




Table 6.10. ABSOLUTE COMPONENT UNAVAILABILITIES
(TO = 1000 hrs)

NHON-REPAIRARBLE CONTINUOUS INSPECTION PERIODICAL INSPECTION
(CLASS 1) (CLASS 2) (CLASS 4)
COMPONENT CALCULATED BY (4.1} CALCULATED BY (4.39) AND {4.40) . CALCULATED BY (4.121)
ey qi(.) T T, T3 T, T, T, T3 Ta Tl T, T3 TA
e 6.01x1072 | 6.01%1072 | 7.58%1072 | 7.50%1072| 1.31%1072 | 1.29«107% | 2.93¢1072 | 2.70%1072 | 1.97%1072 | 1.98%10" 2| 3.61%107% | 3.62¢10" 2
c a, | 1.2601073 | 12601073 | 1.58x1073 | 1.58%1073 | 2.42¢107% [ 1.89%107% | 5.24%107% | 1.94x107% -D - - -
2 2 -2 -2 -2 -2 -3 -3 -3 -3 -2 -2 -2 -2
¢y a5 | 6.001%1072] 6.01%107% | 7.58x107% [ 7.59w1072 | 1.204107% | 12201072 | 1.2041073 | 1.30%107% | 1.86%1072 | 1.86%1072| 3.49%107 | 3.50%10
c, q 12601073 | 1.24%1073 | 1.58%107> | 1.58%1073 | 2.00%107% | 2.50%1078 | 2.00%107¢ | 4.00%107® - - - -
o5 g 3.24%107" | 3.25%107" | 3.89%1071 | 39041071 | 7.15%1073 | 7.30%1073 | 7.15%1073 | 7.74%1073 | 9.96%1072 | 9.98%1072] 1.86%107" | 1.86%107"
cq 1 1.2651073 | 1.24%107 | 1.58%107° | 1.58x107> | 2.00%107% | 2.50%10°8 | 2.00%107 | 4.00x107C - - - -
1
not computed

T, = 1260 hrs

T2 = 1240.5 hrs

T3 = 1576 hrs

TA = 1578 hrs

-0€Z~




Table 6.11.
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1000 hrs)

OCCURRENCE PROBABILITIES OF THE MINIMAL CUT SETS
(T, =

STRATEGY (i)

STRATEGY (ii)

STRATEGY (1iii)

ALL COMPONENTS
NON-REPAIRABLE

COMPONENT S ¢ €
ARE PERIODICALLY INSPECTED
(CLASS 4)

3

AND ¢

5

ALL COMPONENTS
CONTINUOUSLY INSPECTED

(CLASS 1) COMPONENTS ¢, c, AND c, (CLASS 2)
MINIMAL ARE NON-REPAIRABLE
CUT SET (CLASS 1)
OCCURRENCE PROBABILITIES OF THE MINIMAL CUT SETS OF THE SUBSYSTEMS S, AND S,
(3H*

M, T, T, T, T, T, T,

M 6.00 « 1072 | 7.58 % 1072 | 1.97 « 1072 | 3,61 %1072 | 1.31 « 102 | 2.93 % 1072
' -3 -3 -3 -3 -4 -4
) 1.26 % 10 1.58 % 10 1.24 % 10 1.58 * 10 2,42 % 10 5.24 * 10

MM, 7.45 x 107° 1.20 « 10~ 2.44 % 107° 5.70 % 1072 3.17 % 107° I.54 % 107°

OCCURRENCE PROBABILITIES OF THE MINIMAL CUT SETS OF THE SUBSYSTEMS S, AND S,
(J)**
i T Ty T, T, T, Ty

M, 1.95 % 1072 2.96 % 1072 1.86 x 107> 6.51 % 107> 8.91 x 10°° 1,01 % 107°

M, 745 » 1070 | 1,20 % 1074 | 231 x 1077 | 553 %107 | 3.05 % 1077 | 5.20 % 1077

M, 4.03 « 10°% 6.16 % 10°% 1.24 % 1074 2.94 « 107% 1.83 x 108 3.10 * 1078

- - - - - ~11

M, 1.54 % 107° 2.50 % 1078 1.54 % 107° 2.50 % 1070 6.25 % 10712 | 1.60 * 10

MM, 242 % 1072 | 4.68%10° | 230« 1078 | 1,03« 1070 | 2.23 % 107" | 4,02 x 107!

MM, 2.42 % 107° 4.68 * 107° 2.30 * 107° 1.03 % 107> 2.23 % 107" {401 % 107!

MM, 3.00 * 1078 7.39 % 1078 2.85 « 1077 1.63 % 108 5.57 % 10007 | 1.61 % 10718

MM 3.00 % 1078 7.39 % 1078 2.85 x 1077 1.63 % 1070 5.57 « 1007 | 1,61 10710
23 -8 -7 -8 -8 -15 -14

MM, 9.24 % 10 1.89 % 10 2.86 * 10 8.74 % 10 7.63 * 10 2.08 * 10

MM, 5.00 x 107 | 9.76 % 1077 | 1.53 % 1077 | a.6h « 1077 | 4.56 x 1071 | 124 « 1073

w " | 3,00 108 739« 108 | 2,85« 107° | 1.63%x 108 | s.57 %1077 | 161« 10710

* M(l) = M(3)
i i
NG
1 1
) All threefold intersections are identical to M1M2M3; cf. (6.21)
T, = 1240  hrs
T, = 1240.5 hrs
T, = 1576  hrs
T, = 1578  hrs




Table 6.12.

(T0 = 1000 hrs)

PROBABILITY OF SYSTEM FAILURE

PROBABILITY OF SYSTEM FAILURE

STRATEGY (i)

STRATEGY (ii)

STRATEGY (iii)

ALL COMPONENTS NON-REPALRABLE (CLASS 1)

COMP. €yr C3

5

INSPECTED (CLASS 4)

AND c_ ARE PERIODICALLY

ALI, COMPONENTS CONTINUOUSLY INSPECTED

COMP. cy, c, AND ¢, ARE NON-REPATRABLE (CLASS 2)
(CLASS 1)
EXACT FIRST ORDER APPROXIMATION EXACT FIRST ORDER APPROXIMATION EXACT FIRST ORDER APPROXIMATION
PROBABILITY SOLUTION UPPERBOUND | DEVIATION') SOLUTION UPPERBOUND | DEVIATION'™’ SOLUTION UPPERBOUND | DEVIATION'®)
Q, (1, 613« 1072 | 6.13x 1072 | 7.5 % 1077 | 2.09 » 1072 [ 2.00 « 1072 | 244+ 1070 [ 1.33 % 1072 [ 1.33 %1072 3.7 %1078
Q,(T,) 2.00 + 1002 ] 2.00 % 1072 | 4.91 % 1070 | 2,00« 102 | 2.00 %1073 | 4.79 « 107% |8.93 %107 [8.93 % 107% [4.46 % 107"
Q,(1,) 773+ 1072 | 7.7 %1072 | 120« 107 | 3761072 | 377 %1072 | 5.70 1077 | 2.98 « 1072 | 2.98 % 1072 | 1.54 « 1070
Q,(1,) 3.02 + 1072 3.03 % 1072 | 9.49 + 1072 6.86 % 1072 | 9.86 x 1070 | 2.12 % 107° 1.01 % 107° .01 % 1072 8.06 1071
Q, 4(T,,T) | 6.13 1072 | 6as« 1072 | 338 1074 | 2,00« 1072 | 2.10% 1072 | .25« 107 |30 %1072 | 1.30 % 1072 [ 178 % 1070
4 - - - - s - - — -
Q, (T,,1) | 200 % 1072 | 2,01 % 1072 | 2.22 %+ 167 | 2.00 107 | 2.02 % 107 | 248 x 1077 [9.03 x 107" | 9,03 % 107 | 117 w1072
++)

Deviation: difference between the upper- and lowerbound.

AN A



Table 6.13. PROBABILITY OF SINGLE SYSTEM FAILURE FOR THE HRS

PROBABILITIES OF SINGLE SYSTEM FAILURE OBTAINED BY THE PRESENT STUDY AND THE FORMER APPROACH

(TO = 1000 hrs)
PROBABILITY OF SYSTEM FAILURE
STRATEGY (i) STRATEGY (ii) STRATEGY (iii)
COMP. ¢, ¢, AND c, ARE PERIODICALLY
AL COMPONENTS NON-REPATRABLE (CLASS 1) INSPECTED (CLASS 4) ALL COMPONENTS ARE CONTINUOUSLY INSPECTED
COMP. ¢,, ¢, AND c  ARE NON-REPATRABLE (CLASS 2)
(CLASS 1)
PRESENT STUDY FORMER METHOD PRESENT STUDY FORMER METHOD PRESENT STUDY FORMER METHOD
PROBABILITY | UPPERBOUND | DEVIATION?| UPPERBOUND | DEVIATION®| UPPERBOUND | DEVIATION®| UPPERBOUND |DEVIATION®| UPPERBOUND | DEVIATION®)| UPPERBOUND |DEVIATION®)
Q) 6.13x107% | 7.45%107° | 6.14%107% | 7.45%107° | 2.00%107% | 2.44%107° | 4.37%107> | 3.89%107% | 1.33x107% | 3.17%107% | 1.20%107 | 2.40¢107°
Q,(T,) 2.006107% | 4.91%107° | 2.00%107% | 4.90+107% | 2.00%10™3 | 4.79x107% | 1.810107% | 3.84%1077 | 8.93%107% | 4.46%107'" | 8.50%1078 | 3.434107"
Q,(1,) 77461072 | 1.20%107%| 7.74%1072 | 1.09%107% | 3.77%1072 | 5.70%107% | 4.71%107° | 4.04%107% | 2.98x107% | 1.54%107° | 1.20%107° | 2.40%107°
Q1) 3.03107% | 9.49x107° | 3.03%1072. | 9.45%107> | 6.86%1073 | 2.12%1077 | 1.84%107% | 4.73%1077 | 1.01%107° | 8.06x1071 1| 8.59%107 | 3.43%107"!
+)

Deviation: difference between upper- and lowerbound

-£eC~
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6.2.9. Some remarks concerning the outcome of the numerical calculations

In this section we shall give some comments on the results of the numer-
ical calculations. These comments will be divided into two parts, viz.

(i) those on the exact results and (ii) those on the approximate results.

6.2.9.1. Remarks concerning the exact probabilities for mission success

(1) Difference between the three strategies

(a) With respect to the upperbranch of the event tree of fig. 6.2.
(mission no. 1) it appears from table 6.6. and table 6.7. that strategy
(iii) shows a lower probability for mission failure than strategy (ii),
which in turn shows a lower probability for mission failure than strat-
egy (i). Therefore strategy (iii) is the best one with respect to the
probability of occurrence of the upperbranch. By applying strategy
(iii) the highest probability of mission success for mission no. |
is obtained.
This conclusion could be expected, because the procedure of contin-
uous testing (applied for all components for strategy (iii)) is the

optimal test procedure with respect to component behaviour.

(b) For mission no. 3 (u1=u =1,u3=0) strategy (i) shows the lowest prob-

ability of mission succiss, followed by strategy (ii). Strategy (iii)
shows the highest probability (see table 6.6. and table 6.7.).

The explanation for this is the following: the probability that the
subsystems Sl and 32 survive their respective phases is for strategy
(1) (all components non~repairable) smaller than it is for the other
two strategies where tests and repair are performed during the OR~-

phase. However, the probability that subsystem S, fails during its

phase is for strategy (i) greater than for the oiher two strategies.
These two factors lead to a higher probability when strategy (i) is
applied instead of strategy (ii) or strategy (iii). The same argument
explains the difference between strategy (i) and strategy (iii).

Here the fact that repair is possible during the mission with strategy

(iii) plays also a role.

(c) During the mission no repair is allowed in the case of strategy (i)
and in the case of strategy (ii). This implies that a subsystem that

fails during the mission, remains failed for the residual mission time.
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In our example subsystem 82 and subsystem S4 are identical. In mission

no. 4 (ul=],u2=0,u3=u4=l) subsystem 82 has to fail and subsystem S4
has to survive. This is physically impossible in case of the strategies
(i) and (ii). Therefore the probability of the occurrence of this
branch is zero for the first two strategies (see the tables 6.6. and
6.7.).

However, this conclusion is not true for strategy (iii). Here repair
for subsystem 82 is allowed during phase 3, and therefore the prob-

ability of mission success for mission no. 4 is positive.

(2) Comparison of the probabilities of mission success at different in-

Table 6.6. contains for all strategies the probabilities of mission success
for all missions that start at TO = 200 hrs, whereas table 6.7. shows the
same probabilities for all missions that start at T. = 1000 hrs.

Comparing the corresponding probabilities for stratzgy (i) it is noticed
that the probabilities for TO = 1000 hrs are greater than those for

TO = 200 hrs. The same is true for the corresponding probabilities for
strategy (ii), although less significant, due to testing and repair during
the OR-phase.

Comparing the corresponding probabilities in the tables 6.6. and 6.7. for
strategy (iii), it is seen that there is no difference between them. This
is caused by the fact that all components for strategy (iii) are contin-
uously inspected during the OR-phase, and therefore the component unavail-
ability approaches a constant value. It is then said that the component
has reached its steady state.

So, if all components are in the steady state at instant TO = 200 hrs they

are also in the steady state at instant T 1000 hrs, i.e. both missions

0=
start with the same initial conditions concerning the components unavail-
abilities. Therefore the corresponding probabilities of mission success

in the tables 6.6. and 6.7. do not differ for strategy (iii).
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6.2.9.2. Remarks concerning the upperbound approximation for the

probability of mission success

(a) Comparison of the corresponding upperbound approximations for the
probabilities of mission success in the case of the strategies (i)
and (ii) for T, = 200 hrs and T, = 1000 hrs (see tables 6.6. and

0 0
6.7.) shows that the approximation becomes less accurate when T

increases. In fact this is caused by the increasing component ug-
availabilities of class | components (non-repairable components).

No differences appear in the corresponding probabilities in the case
of strategy (iii). The explanation for this phenomenon is given in

6.2.9.1.(2).

(b) If the probability of occurrence of a branch from an event tree is
calculated by the assumption that all systems are mutually independent,
i.e. they have no components in common, then the approximation (see
the rules (R1) and (R2)) in section 6.2.8. yields often an under-

estimation of the exact probability of mission success.

In the case of the HRS this type of under-—estimation occurs for (see
table 6.8.):

strategy ( 1 ): mission no. 5;
strategy (ii ): mission no. 1, 2, 3, 5, 6, 7;

strategy (iii): all missions.

The difference between the true value of the probability of mission
success and the under-estimated value increases accordingly as the
system dependencies increase (as an example see section 6.4., table
6.19. with respect to the phased mission of a BWR).

It may therefore be concluded that application of the rules (R!) and
(R2) (see section 6.2.8.) in the case of a risk analysis may lead to
an under—estimation of the total calculated risk.

Obviously, the approach proposed in the present study indeed creates
upperbounds for the probabilities of mission success. Therefore, an
under—-estimation of the total risk in the case of a risk analysis

can not occur,

(c) The probability of mission success for mission no. 4 in case of the
strategies (i) and (ii) equals zero (see that table 6.6. and 6.7.).

However, the upperbound approximation produces a probability of
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mission success that is greater than zero with a maximal deviation

that is greater than the calculated upperbound. For such situations
where the upperbound for the probability of mission success is smaller
than the deviation it can sometimes be deduced that the exact proba-—
bility of mission success equals zero, assuming that the concerned
probabilities are rather small. On conditions this statement is proved
in section 6.3.6. The cases for which the probability of mission success
equals zero by definition are also treated in section 6.3.6.

In our example concerning mission no. 4 of the HRS it is obvious that

if subsystem S, has to fail during its phase, subsystem S4 (which is

2
identical to subsystem Sz) can not survive its phase in case of the

strategies (i) and (ii), because no repair during the mission is allowed.

6.3. Phased mission analysis

On the basis of a very simple system the methodology in treating a phased
mission has been illustrated in the foregoing section. In this section we
shall develop the general approach. It ultimately leads to an exact solution.
Another advantage of the method presented here is the treatment of phased
missions during which one or more subsystems have to be failed during the
mission, i.e. the introduction of task 1 and task 0 for a subsystem (cf.
section 2.4.). This means that in treating an event tree it is not necessary
to introduce special gates (like a NOT-gate).

Because complex systems contain a large number of minimal cut sets (some-
times millions), it is in practical situations preferable to calculate

an upperbound for the probability of mission success. From the exact
gsolution for the probability, as given in this study, it is possible to
derive such an upperbound together with a lowerbound.

Therefore we shall present in the next sections for the probability of

mission success:

- an upperbound for mission success;
- the difference between the upper— and lowerbound. In the

sequel we shall call this difference the deviation.

For the calculation of the upperbounds we shall often apply the inequal-
ities of Bonferroni (cf. Fréchet [28]). Therefore we shall first give a

brief description of these inequalities.
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Agssume that Al, A Ah are events and denote by:

2,—0',

Pri{A, 1},
1 |

<
]
nMg

i1
n-1 n
T z PriA. Ai .

sy s oot i
1]-1 12 11+1 1 2

<
I

Then with

the following upper— and lowerbound for the probability P can be deduced
(cf. Frechet [28]):

V1~V2 <P < Vl‘ (6.30)

6.3.1. The phased mission where system S has to survive every phase

The phased mission treated in this section can be characterized by '"system
S survives every phase". This event is equivalent to the event '"subsystem
Sj survives phase j, j=1,...,K", where K denotes the number of phases.
In fact we treat the upperbranch of an event tree (see for example fig.

2.5.). This means that the mission can be described by the sequence

{u, =1, u,=1,..., u, = 1} , (6.31)

2 K

where uj, j=l,...,K, is described in section 2.4. Denote by MO(TO) the
probability that the mission defined by expression (6.31) and starting
at instant TO is successful so that:

MO(TO) = Pr{subsystem Sj survives phase j, j=!,...,K} , TOZO.(6.32)

Because no repair is permitted to subsystem Sj during phase j, it is
clear that the event "subsystem Sj survives phase j" is equivalent to
the event "subsystem Sj is available at instant Tj"’ where Tj is the

instant at which phase j terminates (see section 2.2.).
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So relation (6.32) becomes

My (Ty) = Pr{z](Tl)=0,zz(T2)=O,---,XK(TK}=O} R (6.33)

where zj(t), j=1,...,K is the state variable of subsystem Sj at instant

t as defined by (2.1).

For reliable systems the probability MO(TO) is as a rule near to the
value one and in practice it is more usual to deal with the complementary
probability JO(TO)=]-MO(TO) of mission failure.

So in the following we shall deal with JO(TO).

From (6.33) it follows that:

3(Ty) = Pri(g (TI=0,5,(T,)=0, - 5y, (T)=0)}

K
Pr{ U (y.(T.)=1)} . (6.34)
j=1 A

i

From (6.30) it follows that an upperbound for JO(TO) is obtained by the
sum of the probabilities of single subsystem failure. The failure prob-
ability Qj of each subsystem Sj is bounded from above by Qg, being the
sum of the occurrence probabilities of its minimal cut sets (cf. section
5.3.2.2.). Therefore, the upperbound Jé(TO) of the probability JO(TO) of

mission failure, is given by

K
1 - 1
34Ty jil Q) > Jo(T) (6.35)

Next we will derive the deviation in the upperbound Jé(TO)' From (6.30)
it is seen that a lowerbound for JO(TO) in (6.34) is given by the differ-
ence of two terms, viz. the first term being the sum of the probabilities
of single system failure and the second term being the sum of the prob-

abilities of joint failure of two subsystems. So

K
JO(TO) > j=1Pr{yj(Tj)=1}

K-1 K
- Zz pX Pr{Z. (T. )=l,y. (T, Y=1}%. (6.36)
I S I S 1o 12
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If we denote by Lg the sum of the occurrence probabilities of the two-fold
intersections of the minimal cut sets of subsystem Sj at instant Tj’ and
by Qélsjz the "rare event" approximation (cf. section 5.3.2.2.) of the
probability of a joint failure of the subsystems Sj (at instant Tj]) and

sz (at instant sz), then it is easily deduced from (6.36) that

K~1 K
J(T)) =2 J(T.) - (L' + ¥ z Q! ., (6.37)
00 00 . . s .
J J]=1 32=Jl+l J1 I2

Jé(TO) being given by (6.35).
From {6.35) and (6.37) it is obvious that the deviation in Jé(TO) is

bounded from above by

K-1 K
ET,) =L + % pX Q: . . (6.38)
070 3 s f =2 Jq23
i 1 i, Jl+] 1772

6.3.2. The phased mission where exactly one subsystem has to fail during

the mission

" ——— ot o7 s . o S o o

The phased mission described in this section is characterized by the
following sequence of u's:

=1} , (6.39)

=1,...,uK

i.e. the event "every subsystem survives its phase, except subsystem Sj
which fails during its phase'.
The probability Mj(TO) of mission success for the mission in (6.39) is

given by the following identity:

K
Mj(TO) = Pr{(kglxk(Tk)=0),zj(Tj)=1} s J7l,...,K. (6.40)
k=]

zj(Tj) being the state variable of subsystem Sj’ From (6.40) we obtain
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K

M, (T = Pr{s_fj (Tj)=1} - Pr{ Sl(}_zk(Tk)=l,Xj (Tj)=l)} ,

K
K

j=1,...,K . (6.41)
An upperbound for Mj(TO) is obtained by the failure probability of sub-
system Sj at instant Tj, which in turn is bounded from above by Qj, being
the sum of the occurrence probabilities of its minimal cut sets. So, the

upperbound Mﬁ(To) for Mj(TO) is given by:
1 = 0f .
Mj(TO) Qj > 1=l,...,K . (6.42)

Applying the "inclusion-exclusion™ principle (cf. section 5.3.2.2.) and
(6.30) to the probabilities in the right hand side of (6.41), it is
easily seen that the deviation in the upperbound Mi(TO) for the probabil-

ity of mission success Mj(TO) is bounded from above by:

K

EI(T) =L!'+ £ Q' ., j=1,...,K. (6.43)
10 I p= ko3

k#j

Lj being the sum of the occurrence probabilities of the two-fold inter-

gsections of the minimal cut sets of subsystem Sj and Qé ; being the ''rare
3

event" approximation for the probability of a joint failure of the sub-

systems Sk (at instant Tk) and Sj {(at instant Tj).

The phased mission discussed in this section is characterized by

{u.=1,...,u. =],u, =0,u. =
1 b ] b Jl_’l > J] ’J1+1

|

=],u, =0,u, 1,...,uK=1} s

) )

u,

']2 ‘l'l_

-1

i.e. all subsystems survive their respective phases except the subsystems

Sj1 and sz that fail during phase jl and phase j2’ respectively. There-

fore, the probability Mj jg(TO) of mission success reads:
1
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K
(T)) = Pr{ N (y.(T.)=0),y, (T. )=1,y. (T, )=1}
0 j=1 1] I 1 I, 1y

M., .
Jyady

Priy. (T. )=l,y. (T, )=1}
r{zll( J]) Y5 ( f )

2 -2

K
- Pr{ U (y.(T.0=1),y. (T, )=1,y. (T, )=1} ,
j=1 3 SRR J2 32
ijl’.lz

jlajzalao'OsK;
jlzjg . (6.44)

Applying the same method as in the foregoing sections we obtain from

(6.44) for the upperbound Mil 5 (TO) of the probability of mission success

>4 2

M. . (T the following relation:
Jlajz( O) g
' =0t sz o "
Mj],j2(TO) le’jz ’ .}1932 ],...,K, lejz N (6.&5)

being the '"rare event' approximation of the probability of a joint

j!:jz

failure of the subsystems S, and sz.

The deviation E! . (T,.) in M! . (T.) is given by:

1519 O J1512° 0 & 7
K
E! . (T.)) =L! . + z Q! . . . J.si-=l,...,K;
J¢J1312 J]x:}z ’ (6-46)

L! . being the from above bounded deviation in Q! . and Q! . .
ipedg J1sdo J1sd9s]

being the "rare event' approximation of the probability of a joint failure
of the three subsystems Sj] (at instant le), sz (at instant T. ) and

12
Sj (at instant Tj).
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during the mission

In this section the general phased mission will be discussed. This general
rhased mission can be characterized by a sequence of u's denoting the
tasks for the several subsystems, i.e. u,=0 means subsystem $. has to fail
during the jth phase whereas uj=1 means %hat subsystem Sj hasjto survive
phase j. Therefore the phased mission where exactly k subsystems have to

fail during their appropriate phases can be characterized by:

{u.=1,3=1,..., K with j#j.,...,3. 3u. =u. =,..=u. =0} .
i s s s J 313 ’Jk’ J] JZ Jk

So the probability M, . (T.) of mission success reads:
Jpseeendy 0

M. . AT
Jlﬁ“‘i:jk( O)

il

Pr{subsystem Sj has to survive phase j,
j=i,...,K;j¢jI,...,jk; and subsystem SK
has to fail during phase %, anl,...,jk}

K
Pr{ n L(T.)=0 . (T.
¢ 0 (z;(T)=0),y; (T,
i=1 1
TSI

)=1’°~:Xj (T. )=1}

| kK Ik

il

Pri{y. (T. )=l,...,y. (T. )=l 6.47
rle(J]) XJk( Jk) } ( )

K
- Pr{ U (y.
j=1 ]
J5 e eendy

(T, D=1,...,y. (T. )=1,
1 1 e Ik

Zj(Tj)=l}

From (6.47) it can easily be deduced, by applying the "rare event"

()

approximation and the inequalities (6.30), that the upperbound Mﬁ ; TO
1sve-slk

for the probability of mission success and the deviation E3 ; TO
12+ s3]k

are given by the following relations:

Ml L (T) = Q! . (6.48)
Jl""’Jk 0 lea--osJk ’



Table 6.14.
FOR THE PROBABILITIES OF MISSION SUCCESS

UPPERBOUNDS AND DEVIATIONS TOGETHER WITH THEIR ASSOCIATED VARIABLES

NUMBER OF UPPERBOUND FOR
SYSTEMS TO THE PROBABILITY ASSOCTATED VARIABLES
BE FAILED OF MISSION DEVIATION IN UPPERBOUND ! .
DURING THE SUCCESS Jprenesdy
HESSTON M! . (Ty) E! . (1) ' .
Jl;--.’Jl Jl’.."‘]l Jl’...’JQ
N. (***)
J .
*) Q= % Pr{yij)(T.)=l}
K K k-1 K I = 3
0 Q! ILl+ = £ Q' .
3=1 1 =t =g Tt N, N
I Iy Gp Gy
tos o= X X Prly, (T, )=l C (T, )=1}
Jpsdy =1 g =1 1 3 2 32
1 2
K
1 Q! L! + Q! N.-1 N,
] 1 k=|QJ’k J J (j) (j)
k=i L= X I Priy “(T)=1,y ~(T.)=1}
J J n,=1 n,=n +1 1 J 2 3
1 2™
N. N. N,
B Gp (3, Gy
K Q! i3 BT % Priy, (T, )=l,y, ° (T, )=l,¢, ~ (T, )=1}
2 Q! . L' .+ ¥ Q . . 3p0dg2d =1 2,m1 2,1 1 N 2 J2 3 I3
_11932 JI’JZ j=1 ]15329.]
j*j"Jz (**)
! not explicitly given
Jl’JZ
N, N, N
K
k Q! . L! .+ = Bt d2 x
i seensd Jiseees] . ! .= I ... Iz
1 k 1 k j=1 Jl"--!Jk n.=! n_=1 =1
(k=3,...,K) 3§23 e endy M M
' w2 ) 9 e
32 aeensdy »i Pr{y T. )=1,¥ T, ¥=l,...,¥ T, )=
! k gy n, iy b I
! . not further developed
Jl,-..,_]k

(*) Probability JO(TO) of mission failure
(*¥*) Inserted in the reliability computer program PHAMISS

(FF*) Q(J)(t): state variable for minimal cut set M, of subsystem Sj’ considered at instant t

2
Nj: number of minimal cut sets of subsystem Sj

-7y
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K
E! . (T.) = 1L! .+ z Q! e e (6.49)
JI,.oo,Jk 0 Jl,;oo).]k j___l Jlg--.,Jk,J
323 s eady

with Q% ; being the "rare event" approximation of the probability
sy
of a joint failure of the subsystems S. ,...,S5. , L. .
i ik’ Tdrseeesdk
deviation in Q! . and Q! . . being the "rare event' approx-
J],...,Jk Jl:°‘°3Jk:J
imation of the probability of a joint failure of the subsystems S. ,...,

J1
S, and S,.
Jk ]

being the

In table 6.14., the results of the sections 6.3.1.,...,6.3.4, are summarized,
i.e. table 6.14. contains the upperbounds and deviations made in the upper—
bound calculation for mission failure in case that every subsystem has to
survive its appropriate phase and for mission success for all the other

phased missions.
Gyoeneady)
——————— Doyt

To calculate the probability of mission success Mj ; (TO
IEERREEN
failure JO(TO)) it is necessary to know the basic probabilities Z

defined by:

) (or mission
(Grseevsdr)

LIEERRFS 'S

Gyoeresdy) G (i)
zn = Pr{@n (T, )=1,...,¥ (T. )=1} , k=1,...,K, (6.50)
17000y 14 ok
with gij)(Tj) being the state variable of minimal cut set Mn of subsystem

(i)
n
components that are in the fail state. The state variables gi(t) of the

Sj at instant Tj' Each minimal cut set ¥ (Tj) consists of one or more

components are considered to be mutually independent, i.e.

N N
Pr{ 0 (x,(t)=1)} = T Pr{x.(t)=1} ,
i=1 ¢ i=1 r

N being the number of components in the system.

In the next sections we shall discuss the scheme for the calculation of

Z(Jl""’Jk). As an introduction Z(J)

shall be treated first.
N sess 0y n
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Next a sketch is given of the systematic calculation of ZEJIQJZ).
1:02
The last section of this paragraph will be devoted to the general case,
(G1seeesind '
nl,...,nk

i.e. Z for general k.

(i)

6.3.5.1. Calculation of the probability Z

As it has already been mentioned, a minimal cut set may consist of several
components, each component being in the fail state. Suppose that minimal
cut set Mn of subsystem Sj consists of m components, i.e. the components

C., 5 C. 54es5C. - 1t then follows that:
1) 12 Im

L)

priy ) (1)=1)

]

Pr{}_iil (Tj )=1,x. (Tj )=1,... ,n_cim(rj)-;l }

2

]
[ I =

Prix; (1)=1)

f=1

1
[

q; (Tj) ) (6.51)

=1 L

s (Tj)’ 2=1,...,m, being the state variable of component c, at instant
Tj’ and qig(Tj) being the unavailability of component c; at instant Tj
with

2
Aig(Tj) being the component's availability.
The calculation of the component's availability Ai (.) has been performed

in chapter 4. Four different cases have to be considered.

( 1) component c; is a class | component, i.e. a non-repairable compo-

nent. The calculation of Ai(Tj) is performed according to (4.1);

(ii ) component c; is a class 2 component (continuously inspected). Then
Ai(Tj) is calculated by either (4.24) or (4.26) depending on the

instant Tj’ i.e. whether instant Tj belongs to the dormant part or
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to the operational part of the period to which instant Tj belongs;

(1ii) component c; is a class 3 component (randomly inspected). Its

availability has to be calculated by (4.49);

(iv ) component c. is a class 4 component (periodically inspected). The

component's availability is given by (4.121).

6.3.5.2. Calculation of the probability Z
== ==~ n,,m, -
Suppose that T, < T, , then
I 2
(3,53,) Gy (G.,)
A RN DRI CRD Y
1’72 r 2 12
Gy Gp Gy
= priy, T ety g omnen, D 659

The last factor on the right hand side of relation (6.53) is the probabil-
ity of the occurrence of cut set Mnl of subsystem Sj at instant Tj] as
treated in section 6.3.5.1. The conditiomal probability in relation (6.53)
it not simply the probability of the occurrence of cut set an of sub-
system Sj at time sz. This is only the case if cut set Mh and cut set
Mn don't have components in common. Suppose this is not true, and that

for example cut set Mnz contains the components e e while cut

c.
12
set Mn contains the components Ci , C. and ci . Then it follows for

1 . 1 4
the conditional probability in relation (6.53) that

(i, G
?r{ynz (Tj2)=119n] (Tj]}zl}
= Prix. (T. )=l,x. (T. )=1,x. (T. )=l{ (6.54)
T3y Ty 3y T3 1y

x, (T, )=1,x, (T, )=l,x. (T )=1],
SRR Ty g 4 I

where gi(t) is the state variable of component c, at time t. Because the

families {gi(t),tzo},i=1,...,N are assumed to be independent families
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(see assumption 2.5.4.) (6.54) becomes

(i,

Priy
-1n
2

)

2 i _
(le)—l}

(
(Tj2)~llgn2

= Prix. (T, )=1]x,
=i, 7], -i

] (Tj )=1}Pr{x, (Tj2)=11§iz(le)=l}

1 1 2

. P . (T, )=1} . 6.
r{§13( 32) } (6.55)

Dependent on the maintenance policy applied to a component we have to
distinguish two cases, i.e. the component is non-repairable during the
mission or the component is a class 2 component (continuously inspected
and repairable during the dormant part of a period). Therefore we shall
assume in our eaxmple that component cil is non-repairable during the
mission and that component c, is a continuously inspected (class 2) com-
ponent. The first conditional probability in the right hand side of rela-

tion (6.55) becomes

Prix. (T, )=1|x, (T, )=1} =1, (6.56)
o1y TH

because component c; is non~repairable during the mission. So if it is
in the fail state at instant T, it will certainly be in the fail state
at instant Tj , since both insténts belong to the same mission.

The second conditional probability in (6.55) is more complicated to

evaluate. The result reads

Prix, (T. )=1|x., (T, )=1}=1 if T, and T. belon
“12( 12 l'lz( 31) ’ 12 jp oo
to the same operational
part of a period of
component c. ;
12

=I—Pk*(Tj2—T*), otherwise. (6.57)

In (6.57) k* denotes the number of periods of component ciz between

Tj and Tj , however, not included the period containing instant Tj]'
1 2
The instant T* is the beginning of the next period of component Ciz

after Tj . 1f Tj and Tj belong to the same operational part of a period
! 1 2
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of component ci the component remains failed at Tj if it was unavail-
able at le < sz, because no repair is permitted during an operational
part of the component. If T, and T. don't belong to the same operational
part the unavailability of tﬁe component can be calculated by means of
formula (4.24) or (4.26), its renewal process starting at T* and the
initial state of the component being the fail state, (cf. section 4.6.2.).
The Pr{§13(Tj2)=l} is simply the unavailability of component Ci3 at in-

stant T. see (6.52).
i9? ( )

Gyoeeendy)
6.3.5.3. Calculation of the probability Z
————————————————————————————————————— TNyl D
Assume that T. < T. < ... < T, , then
i ) I
(Giseeesi) G G.)
z 1 Kosprty V(T =1, B )=1d
Tyseseofy S e 3k
G, (i) (G,_;)
= prly K (T, )=1|y e )=1,. 00y k=1 (T, =1}
k 1 1 -1 Ik-1
G,_)
priy_ <1 (1, )=1|
-1 Jg-1
G, (G,_,)
v ! (T, )=1,...,0 k=2 (T. D=1}
1 I o g2
62 ek }
Priy (T. =1y (T. )=1
L ! |
{ Sy } (6.58)
. P T. )=1}. 6.58
T yn] ( 31)

If k=1 or k=2 we get the cases that are treated in sections 6.3.5.1. and
6.3.5.2., respectively. So suppose k > 2.
The conditional probabilities in (6.58) can be treated in a similar way

as it is done for the conditional probability of (6.54).
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As a first example assume that component c; only belongs to the minimal
cut sets Mn and Mn of the subsystems Sjr and Sj » respectively, with

r < k. We want to calculate the first conditional probability arising

in (6.58). This conditional probability is the product of the probabilities
that every component belonging to minimal cut set th is in the fail state

at instant T, . So one factor of this product is:

Ik
fx. (T, )=1] (jl)< )=1 (jk"‘)< )=1}
Prix.(T. )=li¢ T. )=1,...,¢ T. =
B L I - Jp—-1
= Pr{gi(Tj )=l|§i(Tj )=1} , (6.59)

k T

because component ¢, only belongs to the systems Sj and S.
From (6.57) and section 4.6.2. it follows for the conditional unavail-

ability in (6.59) that:

Pr{gi(Tj )=1[§1(Tj )=1}=1 , if T. and T, belong to
T
k r the same operational part;
=1-Pk*(Tjk—T*), otherwise. (6.60)

In (6.60) k* is the number of periods between T. and T, , not included

. . . k .
the period to which Tj belongs. T* is the start of the gext period after
r
T

ir’

As a second example we assume that component s belongs only to the
minimal cut sets Mnr1’ Mnr2 and Mnk of the subsystems Sjrl’ Sjrz
Sjk, respectively, with rl < r, < k. It now follows for the same condi-

2
tional probability as treated before that we get:

and

Prix.(T. )=1]y_~ (T. )=1,...,¥ (T, =1}
B S B -1 k-1
= (T, )=1]x, (T, )=1,x.(T, )=1}. 6.61
Prix, ( Jk) %, ( ;. )=1,x, ( j_ )=1} (6.61)
1 2

In (6.61) the event "gi(Tjk)xl" is conditioned by two events, viz.
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"§i(Tjr1)=]" and §i(Tjr2)=I“. We first consider the case that lifetimes

and repairtimes are negative exponentially distributed. Then the condi-

tional probability in (6.61) changes to:

Prix, (T, )=1]x.(T, )=1,x,(T, )=1}=Pr{x, (T,
-1 ] -1 ] -1 ] -1 ]

k r, T, k r2

which probability has been treated in (6.60).

If in general component c; belongs to the minimal cut sets

of the subsystems Sj , Sj ,...,Sj , respectively, with

ros rz,..., rs < k,

and T def max (Tj , Tj ,...,Tj ), then

2 rs

G G
Pr{gi(Tjk)=1]§nl (Tj )=1,...,0 (T, =1}

1 M1 Jg-1

[

Pr{gi(Tj )=1\§1(Tj )=1,...,§i(Tj )=1}

k T, rS

i

Pr{§i(Tjk)=1]§i(T)=l} ,

the latter probability treated in (6.60).

)=1]x.(T. )=1}, (6.62)
x; s

(6.63)

Next we consider the case that lifetimes and repairtimes have general

distribution functions. This means that the properties of the negative

exponential distribution as used in (6.62) and (6.63) are not valid

anymore. No problem arises for the calculation of the unavailability of

non-repairable, randomly inspected and periodically inspected components

because they are assumed to be non-repairable during the mission itself

(see chapter 2). But for continuously inspected (class 2) components the

conditional probability
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Pr{gi(Tjk)=1[§i(Tjr )*h...,gi(Tjr )=1}
1 s

has to be calculated by means of the methodology of the derived renewal

processes as described in section 4.3.

Those calculations are very complicated. Further it is seen from the

given examples (see fig. 4.4. and fig. 4.5.) that the unavailability in

the case of a negative exponentially distributed lifetime is an upper-

bound for the unavailability in the case that the lifetime has an Erlang-2

distribution. Therefore it seems reasonable to apply the negative expo-—

nential distribution because of two reasons, viz. (i) possibly it provides

an upperbound for the unavailability in the case of lifetime distributions

with an increasing failure rate and (ii) it saves a lot of complicated

calculations. \

AN

Each conditional probabilit;\;;\fﬁyi\l is treated in the way as described
(*]9°°-: kjﬁ

1,...,nk

in the foregoing. So the probability Z is calculated for

j1<j2<...<jk by the following steps:

Gpoenrady)
NlseeosDp
tional probabilities of which the general form is given by:

( i ) break the probability Z into the product of k-1 condi-

Gy G Gy )
Priy (T, )al@n (T, =l,e.ony (T, =1}, 2=2,...,k,

- Jo-
n, 3 1 i -1 2—1

and the probability

G
Priy, (T, )=1};
1 1

(ii ) search for those components in minimal cut set Mj (with state

2
(Jg)(Tj )) which are not present in any minimal cut set

variable Y
contained in the condition. We shall mention this group of compo-
nents group 1. The remaining components of minimal cut set Mj

shall be called group 2;

(iii) calculate the absolute unavailabilities for the components belong-

ing to group 1 (cf. section 6.3.5.1.);
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(iv ) calculate the conditional unavailabilities for the components

belonging to group 2, as it has been shown in this section;

( v ) the conditional probability in step (i) is now obtained by taking
the product of all calculated component unavailabilities that are

calculated in step (iii) and step (iv);

(vi) calculate Pr{gigl)(le)}, {(cf. section 6.3.5.1.);

(jls-'~3jk)
nl,...,nk
the obtained conditiomal probabilities calculated in step (v) and

Pr{g(j])

ny

(vii) the probability Z is obtained by the multiplication of

(Tj )=1} calculated in step (vi)
i

6.3.6. Remarks concerning the proposed method and its possibilities

In this section, i.e. section 6.3., it is demonstrated that for the
phased mission model as described in chapter 2 the exact solution
for the probability of mission success in principle can be obtained
by means of fault tree analysis.

Because complex systems contain in general a large number of mini-
mal cut sets, upperbound approximations for the probability of
mission success have to be applied for practical applicationms.
Within this study upperbounds for the probability of mission success

together with their associated deviations are obtained.

suitable for probabilistic risk analysis_ (PRA)

In chapter 2 the definition of a phased mission is given. This
definition is actually an extension of the present one used in
present day literature, The last mentioned definition only covers
phased missions that occur as upperbranches of event trees, i.e.
phased missions where each system has to survive its phase. The
definition of chapter 2 defines e¢very branch of the event tree as

a phased mission. For each branch of an event tree the probability
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“of mission success can be obtained by the methodology as developed
in this study (as a rule upperbounds for the probability of mission
success will be calculated). Therefore the proposed method is very

suitable for probabilistic risk analysis (PRA).

(iii) If the probability of the occurrence of the upperbranch of an event

tree is calculated, then the probabilities of occurrence of all the

other branches become also available

To calculate the probability of occurrence of the upperbranch of
an event tree all single system failure probabilities and all joint
(two by two, three by three, etc.) system failure probabilities
have to be calculated.
The probability of occurrence of each other branch is composed of
a mumber of the mentioned single and joint system failure prob~-
abilities.
In the case that an upperbound for the probability of occurrence
of the upperbranch is calculated together with its deviation, then
upperbounds for the probabilities of occurrence of the following
branches also become available:
* for each branch where exactly one subsystem has to fail;

in this case the associated deviation is calculated too;

¥ for each branch where exactly two subsystems have to fail.

Concerning the above mentioned it is assumed that the lengths of

j+l_Tj’ j=1,...,K, for each branch are the same
as they are for the upperbranch.

the phases, i.e. T

In the case that the length of a phase is shortened because system
failure during that phase is defined to occur within a smaller
time interval, a separate calculation has to be carried out for

that particular branch.

(iv ) The method takes partial system failures correctly into account

A partial system failure exists for a system if a number of compo-

nents, but not all, of a minimal cut set of that system are in the
fail state. So a partial system failure does not imply a total

system failure.
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If such a partial system failure exists for subsystemsj and this
partial failure mode contains a minimal cut set of the subsequent

subsystem Sj then subsystem Sj+ is in the fail state at the

+1°
moment that il has to become operalional. Therefore partial system
failures of subsystem Sj are important for the behaviour of the
subsystems that have to operate after subsystem Sj within a phased
mission. It may be strongly conjectured that partial system jailures
are hardly taken into account correctly in probabilistic calcula-
tions. The approach presented in this study does take these partial

system faillures correctly into account.

Detection of phased missions that are impossible to occur

Assume that:

(C1) subsystem Sj has to become operational before subsystem Sj

during a phased mission with K phases;

(C2) subsystem Sj has to fail during its phase (uj1=0) and sub-
1
system Sj has to survive its phase (uj =1);
2 2

(C3) both subsystems consist of non-repairable components during

the phased mission;

(C4) a system failure of subsystem Sj implies a system failure
i
of subsystem Sj s i.e. each minimal cut set of $§. introduces

J1
at least one minimal cut set of Sj 3

{(C5) the probabilities of single system failure and joint system

failure are rather small.

From the assumptions (Cl),...,(C4) it is directly seen that the
probability of mission success for a branch with {...,uj1=0,...,
uj2=l,...} equals zero. This because subsystem Sjl has to fail
during its phase and subsystem sz has to survive its phase.

But no repair is applied to both subsystems. With assumption (C4)

the mission is therefore impossible.

As a rule for complex systems this situation can not be seen before-
hand. At the same time it is practically impossible to realize an

exact calculation because of the large number of minimal cut sets
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-of the subsystems. Therefore upperbound approximations have to be
carried out.

In the following we shall show that by means of the upperbound
approximation for the probability of mission success and its asso-
ciated deviation sometimes it is possible to detect that the phased
mission can not occur.

For the sake of simplicity we assume that all subsystems have to
survive their phases, except subsystem Sjl.

An upperbound for the probability of mission success for the mission
{u1=1,...,uj1=0,...,u32=1,...,uK=1} is (cf. (6.42)):

M! (T.) =Q! , (6.64)
30 I

Q3 being an upperbound for the unavailability of subsystem SjI

1

The deviation E% (TO) in the upperbound Mﬁ (TO) is (cf. (6.43)):
1 1

K
E! (T,) =L! + £ Q! ,
-0 1 kel K
kzjl
L! and Qél K being described in section 6.3.2. From the assumptions

] s B
(C3) and (C4) it is deduced that:

Q! . =4Q .

Therefore the deviation Eg (TO) becomes
1

K
E! (T,) =L +Q + z Q! (6.65)
Iy 0 I k=1 Ik
k:J}’JZ

From (6.64) and (6.65) it is obvious that the following relation
holds:

E'. (T.) = M! (T.)) . (6.66)
i o ;0
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The inequality (6.66) is also true in case of large values for the
component unavailabilities, for instance values near to one. There-
fore, we assume that component unavailabilitieg are rather small,
which implies that system unavailabilities are rather small (as-
sumption (C5)). In that case the inequality (6.66) does not occur
if the assumptions (Cl),...,(C4) are not fulfilled.

We have proved that if the assumptions (Cl),...,(C4) are fulfilled,
then relation (6.66) holds. We can not prove the opposite case, but
if a calculation of upperbound and deviation shows relation (6.66),

we might have an indication.

Therefore, 1f assumption (C§5) is true and the caleculated deviation
18 greater than or equal to the calculated upperbound for the prob—
ability of mission success, 1t can sometimes be concluded that this
particular mission can not occur, L.e. the probability of mission

success QCZMCZZS ZEero.

6.4. An application: A phased mission within a Boiling Water Reactor

The example treated in this section is a phased mission that arises within
a Boiling Water Reactor (BWR, cf. chapter 2) when a large Loss of Coolant
Accident (LOCA) has occurred. The example is taken from Burdick et al [2]
and we shall follow mainly their system description. Our description will
be slightly different because we have incorporated some pipelines and
valves to the system. We need these incorporations to give a consistent
description of system behaviour through all phases. Fault trees and cal~-
culation results, however, are not affected by these alterations.

In chapter 2 a simplified description is given of the working state of a

BWR and the function of the related safety systems in the case of a LOCA.

The following nomenclature is used in the example of this chapter:

BWR boiling water reactor;
ECCS  emergency core cooling system;
LOCA loss of coolant accident;

HPCS high pressure core spray system;
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LPCS low pressure core spray system;
LPCI  low pressure core injection system;
ADS automatic depressurization system;

HX heat exchanger.

The ECCS used in this example consists of eight components (see for in-
stance fig. 6.6.): HPCS, LPCS, LPCI-A, LPCI-B, LPCI-C, ADS, HX-A and
HX~B. The name of the system is also used to denote the event of its
failure. As seen in fig. 6.6., HX-A and HX-B are in two of the three
LPCI loops. The difference between our ECCS and that of Burdick [2] is
the incorporation of the pipeline which includes valve V4 and that of
valve V5 (see fig. 6.6. until 6.8.).

Similar symmetric incorporations have been made in the right hand side
circuit, they are not shown in the relevant figures.

We consider the accident initiated by a break of the main feedwater pipe-
line at point A, see fig. 6.6.

One mission of the ECCS is to prevent excessive heating of the fuel rods
within the reactor vessel as soon as possible after a large LOCA and then
to keep water circulating to and from the reactor vessel until the rods
are cool (cf. chapter 2).

After a LOCA has occurred the phased mission of the ECCS consists for the

case under consideration of the following three phases:

phase | - initial core cooling;
phase 2 - suppression pool cooling;

phase 3 - residual heat removal.
Each phase will now be discussed briefly:

For phase | (initial core cooling) either the HPCS alone, or the ADS and
one of the LPCI's, or the ADS and the LPCS are needed, i.e. if all these
three functions fail the mission of phase 1 fails. The purpose of phase 1
is to reflood the core and cool the fuel rods as soon as possible after
the break. The valves V1 and V5 are open whereas the valves V2, V3 and

V4 are closed. Phase ! is assumed to last 0.5 hours.

For phase 2 (suppression pool cooling), the ADS is required to limit
pressure build-up in the reactor vessel. One HX and the corresponding LPCI
are needed to cool the water within the suppression pool. Also, one of the

two remaining LPCI's, or the LPCS, or the HPCS is needed to circulate the
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water from the suppression pool to the reactor vessel.

In phase 2, the valves V3 and V5 are open and the other valves are closed
(see fig. 6.8.). The length of phase 2 is 36 hours.

In the description of the present phased mission it will be assumed that
the system operates normally, i.e. the break has been repaired or is
isolated, at the start of phase 3. (If this assumption is not introduced
we have to consider a more complicated phased mission).

For phase 3 (residual heat removal) one of the HX and the corresponding
LPCI are needed. At the start of phase 3 it is supposed that the valves
V2 and V4 will be open and the valves VI, V3 and V5 will be closed (see
fig. 6.9. The complete flow loop is not shown). Phase 3 is assumed to
last 84 hours.

Note that in the case the component LPCI is used in fact the pump in the
LPCI loop is meant. As already mentioned the detailed ECCS is not shown

in the figures 6.6. until 6.9. It is assumed that all components, except
the eight components that are mentioned at the beginning of this section,
perform their required functions with certainty. In the figures 6.7.,...,
6.9. the heavy drawn parts indicate the most relevant part of the system

for the concerned phase.

WATER STORAGE TANK

@ HPCS g —— .o i ADS

= Q... D //—BREAK
o LPCI-A REACTOR ) LPCI- B
f” VESSEL

N

SUPPRESSION POOL

>\/\/§

uJﬁ\éE

A e T L.

FIG. 6.6. THE SIMPLIFIED ECCS OF A BWR.
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HPCS
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) LPCIA_| bEACTOR , LPCLB o
v-1 VESSEL
V-2 _3/ LPCI-C
- N g L
Hx ) == Hx
- X ~ X
.,>A SUPPRESSION POOL ;\/
$v.s
9 X » —oe—
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FIG. 6.9. THE ECCS DURING THE THIRD PHASE.

From the system description of the foregoing section we know that three
phases are present for the ECCS. During phase j, j=1,2,3, the subsystem
Sj of the ECCS has to perform its task. The several subsystems are com-
posed of the following components:

s, : {HPCS,LPCS,ADS,LPCI~A,LPCI-B,LPCI-C};

8, : {HPCS, LPCS,ADS,LPCI-A,LPCI-B,LPCI-C,HX-A,HX-B}; (6.67)

S, : {LPCI-A,LPCI~B,HX-A,HX-B}.

Suppose that the phased mission for the ECCS starts at instant TO’ then

the time schedule is given in table 6.15.

In the case that an event tree 1s constructed for the phased mission of

the ECCS which consists of three phases, 23 different branches are possible.
In practical situations a number of these branches do not occur so that

less than eight remain. In our example, however, we shall study each of

the theoretically possible eight branches. This because of the dependen-—
cies between the three subsystems.

In practical cases (see for example WASH-1400 [16]) event trees often

occur with branches that contain two or three failed systems.
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Table 6.15 Phases for the ECCS with their respective components

PHASE PHASE INTERVAL (hrs) SYSTEM

OR-phase [O,Tg) HPCS,LPCS,ADS,LPCI-A,
LPCI-B,LPCI-C,HX-A,HX-B

phase 1 [TO,TO+O.5) HPCS,LPCS,ADS,LPCI-A,
LPCI-B,LPCI-C

phase 2 [TO+O.5,TO+36.5) HPCS,LPCS,ADS,LPCI-A,
LPCI-B,LPCI-C,HX-A,HX-B

phase 3 [T0+36.5,T0+120.5] LPCI-A,LPCI-B,HX-A,HX-B

*TO : instant at which the mission starts.

Our approach shows that if partial or full system failures are not cor-
rectly taken into account it may give rise to an under—estimation of

the probability of occurrence of these branches of two or more failed
systems. As a rule such an under-estimation increases accordingly as the
dependencies between the involved systems increase.

In fig., 6.10. the event tree is depicted for the ECCS. Each branch is
defined as a phased mission by means of the tasks of each subsystem.

The fault trees for the subsystems Sl’ 82 and 83 are shown in the figures
6.11., 6.12, and 6.13., respectively.

Denote by Méj),j=l,2,3, the kth minimal cut set of subsystem Sj’ From
their respective fault trees the minimal cut sets of the systems are

easily deduced and given by:

for subsystem S, (phase 1):

I

i

Mf') {ADS ,HPCS};
(6.68)
(1)
M,

{#PCS,LPCS,LPCI~A,LPCI-B,LPCI-C};
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FIG.6.12. THE FAULT TREE FOR PHASE 2 OF THE ECCS AFTER A LARGE LOCA.
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FIG.6.13. THE FAULT TREE FOR PHASE 3 OF THE ECCS AFTER A LARGE LOCA.

Table 6.16. Component input data for the strategies (i)

and {ii) in the case of the phased mission

of the ECCS
INITIAL FATLURE MEAN REPATR

AVAILABILITY RATE/hr TIME (hrs)

COMPONENT 2 A H
—4

HPCS 1. 2.7 « 10 2.5
ADS 1. 1.4 % 107° 1.0
LPCI-A 1. 2.5 % 10°° 2.5
LPCI-B 1. 2.5 x 10°° 2.5
LPCI-C 1. 2.5 % 107° 2.5
LPCS 1. 2.6 % 107° 3.0
HX~A . 2.8 % 10°° 24
HX-B 1. 2.8 x 10°° 24
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for subsystem 82 (phase 2):

Mgz) = {ADS};

M§2) = {LPCI~A,LPCI-B};

M§2) = {LPCI-A,HX-B};

M£2) = {LPCI-B,HX-A}; (6.69)
Mgz) = {HX-A,HX-B};

Méz) = {HPCS,LPCI~C,LPCI-A,LPCS};

M§2) = {HPCS,LPCI~C,LPCI-B,LPCS};

for subsystem 83 (phase 3):

MfB) = {LPCI-A,LPCI-B};

"

M§3) {LPCI-A ,HX~-B};
(6.70)

M§3) = {LPCI-B,HX-A};

{HX-A,HX-B}.

W

6.4,3., Numerical results

In this section we shall present the numerical results for the phased
mission of the ECCS as depicted in the event tree of fig. 6.10.
Two strategies with respect to the inspection policy of the components

are considered, viz.

strategy (i): all components are class 1 (non-repairable) components;
strategy (ii): all components are class 2 (continuously inspected) com—

ponents.

The calculations are performed for two different values of the instant
TO at which the phased mission starts, i.e. for T0 = ( year and TO =1
year. The component input data for this numerical evaluation are shown

in table 6.16.
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The failure rates are taken from Burdick [2] whereas the mean repairtimes
have been assessed by the author. The calculation results of the numerical

evaluation are presented in the tables 6.17.,...,6.20.

Table 6.17. = This table shows for the probability Mk(TO) of mission
success for T0=0 the exact value, an upperbound and its
associated deviation calculated by the method presented

in this study both for the strategies (i) and (ii).

Table 6.18. - Figures of the corresponding variables from table 6.17. are

presented for the case that the mission starts at T =1 year.

0
Table 6.19. — For strategy (i) and (ii) the table shows for the probabil-

ity Mk(TO) of mission success for T, =0 vear the exact value

0
and an upperbound calculated by the method presented in this
study; alsco are shown the results obtained by the method
based on the rules (R1) and (R2) {(cf. section 6.2.8.).

This latter type of method has been used in applications.

Table 6.20. — This table contains the corresponding figures of table 6.19.
but for the case that each mission starts at instant T0=1

year.

Finally the probability JO(TO) of mission failure of the upperbranch of
the event tree of fig. 6.10. for strategy (i) is graphically shown in
fig. 6.14., whereas in fig. 6.15., for the same strategy (i) the system

unreliability during the mission is depicted for T =0, .25, | and 5 years,

respectively. °
The figures 6.14. and 6.15. present the ultimate results of our analysis
for the upperbranch of the event tree. In fig. 6.14. the probability of
mission failure of the ECCS is shown as a function of the starting in-
stant TO of the mission. (The broken line of the graph has been obtained
by interpclation between its exact calculated endpoints. Detailed calcu-
lation of it is costly and unnecessary). Fig. 6.15. shows for the same
strategy the system unreliability during the mission. The four graphs

shown correspond with four different starting instants of the mission.

The endpoints of these graphs correspond with the same points in fig. 6.14.
This fig. 6.15, therefore shows how these ultimate probabilities are

approached during the development of the mission.
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6.4.4. Discussion of the numerical results

In this section we shall make some remarks concerning the numerical results.

(D1)

(D2)

(D3)

From table 6.17. it is seen that in the case that the mission starts
at instant T0=0 no differences in the exact values for the probab~
ilities of mission success exist between strategy (i) and (ii).

This because there exists no OR-phase so that repair is not very
effective in the case of strategy (ii). If the mission starts at
instant TO=1 year, i.e. there exists an OR-phase of 1 year, then
inspection and repair play an important role (see the exact values

for the strategies (i) and (ii) in table 6.18.).

From the tables 6.17. and 6.18, it is seen that there is a strong in-
creagse of the probability of mission failure for mission no. 1 (the

upperbranch of the event tree) if T, changes from O to 1 year in the

case of strategy (i). Because the pgobability of mission failure for
the upperbranch equals the sum of the probabilities of mission success
for the remaining branches, these probabilities increase too.

In the case of strategy (ii) (all components continuously detected)
only a minor difference is noted with respect to the results of

table 6.17. and 6,18, This is due to the optimal inspection and

repair procedure for each of the components.

Comparison of the results for T0=O and T0=1 shows that not only the
exact values but also the relevant upperbounds and their associated
deviations increase for strategy (i). In other words, the upperbound
and the associated deviation both increase according as the mission
starts later.

For strategy (ii), however, the exact values as well as the associated

upperbound and deviation hardly change with T,. This shows clearly the

0
quality improvement by applying strategy (ii) instead of (i).

The phased missions no. 5 (u]=0,u2=u3=1) and no. 6 (u]=0,u2=],u3=0)
are physically not possible. This can be concluded from the tables
6.17. and 6.18. because it is seen that for those branches the

deviation is greater than or equal to the upperbound for the prob-

ability of mission success (cf. section 6.3.6.).
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(D5
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It is affirmed by checking the minimal cut sets of the subsystems.

For the missions no. 2 (ul=1,u =1,u

2 3
which start after ! year (see table 6.18,), the deviation is also

=0) and no. 3 (u1=1,u2=0,u3=1),

greater than the upperbound, but nevertheless these missions are
possible. For these missions assumption (C5) in section 6.3.6.(v)
is not fulfilled, i.e. the probability of occurrence of the minimal
cut sets are rather large. Therefore the first order approximation

of the system unavailability (upperbound) is not very accurate.

From the tables 6.19. and 6.20. it is seen that the approximation
performed by the method based on the rules (R1) and (R2), (cf.
section 6.2.8.) is no longer an upperbound for the probability of
mission success in the case that two or more systems have to be

failed, i.e. for the missions no. 4 (u1=1 =0}, no., 7 (u]=u2=0,

2Uy=Ug

=1) and no. 8 (u.=u =0). In some cases the under—estimation

=1
3 1 7273
of the probability of mission success may be considerable and may

u

lead to dangerous conclusions. In particular when the results for
the exact calculation show that the relevant probabilities of the
involved branches are relatively large and the contribution to the

overall risk is considerable.

From fig. 6.14., for the strategy (i) it is seen that the probability
of mission failure for the upperbranch of the event tree in fig. 6.10.

strongly increases with T.. If the mission starts after half a year

0
then it fails with a probability of at least 0.1.

From fig. 6.15., it is clear that the largest contribution to mission

failure comes from system 82. This is due to the component ADS which
appears to be a minimal cut set for system 82 with a large failure
rate, e.g. AADS=1.4*IO-5/hrs {(cf. table 6.16.). If no repair is

applied to the component its contribution to the failure probability

5*8760):1.15*10-1

after one year (8760 hrs) is roughly: 1~exp(—l.4*10-



Table 6.17.

PROBABILITIES OF MISSION SUCCESS FOR THE ECCS IN THE CASE OF A TARGE LOCA

(Ty =

0 hrs)

PROBABILITY OF MISSION SUCCESS

STRATEGY (i)

STRATEGY (ii)

ALL COMPONENTS NON-REPAIRABLE

ALL COMPONENTS CONTINUOUSLY INSPECTED

MISSION (CLASS 1) (CLASS 2)

No. CODE EXACT FIRST ORDER APPROX. EYACT FIRST ORDER APPROX.
i u u SOLUTION ++) SOLUTION ++)

1| %] Y UPPERBOUND DEVIATION UPPERBOUND DEVIATION

o] 5.22 ¢ 1047 | 503 %107 | 106 %1076 | s %107 | 5.23 % 1074 | 1.06 # 1076
2| 1|1 1.02 * 10> 1.12 % 107° 1.04 % 107° 1.02 % 107° .12 * 10°° 1.04 * 10 6
3 1 0 5.11 % 10°% 5.12 % 107 1.04 * 10 6 5.11 % 1072 5.12 % 107 1.06 % 1078
s 1] o 1.03 % 10°° 1.04 * 108 | 2.54 % 107° 1.03 * 107° 1.04 « 108 | 2.54 % 107°
5] 0 1 0 9.45 x 10710 | 945 x 10710 | o 9.45 * 10719 | 9.45 « 10710
6 | ol 1 0 1.06 « 10714 | 1.6 %1074 | o 1.06 * 10714 | 1,16 % 10714
71 o 9.45 » 1070 | 9.45 x 10710 | .25 % 107 | 9.45 % 10710 | 9,45 %+ 10710 | 1.25 % 10714
8 | o 1.06 * 10714 | 1.16 + 10714 | D 1.06 » 10714 | 1.6« 10714 | D

1) The program PHAMISS (see chapter

+)
+4)

Deviation: difference between upper- and lowerbound.

7) does not allow the evaluation of these values.

For mission no. 1 (u U, U= 1) the probability of mission failure is presented.

~0LZ-



Table 6.18.

PROBARILITIES OF MISSION SUCCESS FOR THE ECCS IN THE CASE OF A LARGE LOCA

(T, = 8760 hrs)

0

PROBABILITY OF MISSION SUCCESS

STRATEGY (i)

STRATEGY (ii)

ALL COMPONENTS NON-REPAIRABLE

ALL COMPONENTS CONTINUOUSLY INSPECTED

MISSION (CLASS 1) (CLASS 2)
No. CODE EXACT FIRST ORDER APPROX. EXACT FIRST ORDER APPROX.
e ; . SOLUTION ) SOLUTION )
1 2 3 UPPERBOUND DEVIATION UPPERBOUND DEVIATION
-] - — - —_ -
1 1 1 1 1.59 107 ) 3.21 % 107 1.86 % 107! 5.37 % 104 5.38 % 1077 1.34 % 107°
2 1 i 0 7.01 % 102 4.79 % 1072 6.51 « 1072 1.07 % 107° 1.21 % 10°° 1.31 % 1070
3 1 0 1 1.19 % 1072 1.59 107} 1.70 % 10°! 5.25 % 1074 5.26 * 10 1.33 * 1070
4 1 0 0 4.20 % 1072 5.97 % 102 3.47 % 1072 1.31 % 10°° 1.31 % 1070 4.27 * 1072
sl ol 1] 1] o 1.05 % 107! 1.16 % 10" 0 1.70 * 1078 1.70 * 1078
6 0 1 0 0 5.39 « 1072 1.17 % 1072 0 2.05 * 10713 2.27 * 10713
7 0 0 1 9.96 » 1072 1.10 « 107! 1.79 % 1072 1.70 * 1078 1.70 % 1078 2.50 * 10”13
8 0 0 5.14 % 1072 1.14 % 1072 - 2.05 % 1073 2.27 * 10713 -
+) For mission no. | (u1=u2=u3=1) the probability of mission failure is presented.
++)

Deviation: difference between upper— and lowerbound.

e A



Table 6.19.

PROBABILITIES OF MISSION SUCCESS FOR THE ECCS IN THE CASE OF A LARGE LOCA
THE EXACT SOLUTION AND UPPERBOUNDS OBTAINED BY THE PRESENT STUDY AND

A FORMER APPROAC

H (TO = 0 hrs)

PROBABILITY OF MISSION SUCCESS
STRATEGY (i) STRATEGY (ii)
ALL COMPONENTS NON-REPAIRABLE ALL COMPONENTS CONTINUOUSLY INSPECTED
(CLASS 1) (CLASS 2)
MISSION
FIRST ORDER APPROX. FIRST ORDER APPROX.
No. CODE EXACT (upperbound) EXACT (upperbound)
P IV B SOLUTION SOLUTION
1 2| "3 PRESENT STUDY | FORMER METHOD PRESENT STUDY| FORMER METHOD
1 1 i 1 5.22 * 10'4+) 5.23 « 107 5.23 % 107% 5.22 % 1072 5.23 % 107 1.40 % 107°
2 1 1 0 1.02 % 107° 1.12 % 107° 1.12 % 10 ° 1.02 * 107° 1.12 % 107° 1.67 * 1078
3 ] 0 1 5.11 % 1074 5.12 % 107 5.12 % 107 5.11 % 1072 5.12 = 1072 1,40 * 107°
41 1] o0 o 1.03%10° 1.04 x 107 | 5.73 % 1077 1.03 * 107° 1.04 x 1070 | 2.34 % 10713
s o] 1|1 (o0 9.45 » 10710 | 9.45 %+ 10710 | o 9.45 « 10770 | .74 « 10710
6| ol 1|]o0o]o 1.06 * 1071 | 1.06 « 10714 | o 1,06 * 1071 | 1,13 % 107V
71 0] o 1] 9.45% 10719 | 945 % 10710 | 484 % 1073 | 9.a5 « 10710 [ 9.45 % 10710 | 9.44 x 10717
8| o 0 | 1.06 x 107 | 1i16 % 107" | 5.2 %1078 | q06 % 1074 | 116+ 1074 | 1.58 « 10722
+) For mission no. | (u]=u =1) the probability of mission failure is presented.

2~ Y3

-CzLi~



Table 6.20. PROBABILITIES OF MISSION SUCCESS FOR THE ECCS IN THE CASE OF A LARGE LOCA
THE EXACT SOLUTION AND UPPERBOUNDS OBTAINED BY THE PRESENT STUDY AND
A TFORMER APPROACH (T, = 8760 hrs)

0
PROBABILITY OF MISSION SUCCESS
STRATEGY (i) STRATEGY (ii)
ALL COMPONENTS NON-REPAIRABLE ALL COMPONENTS CONTINUOUSLY INSPECTED
(CLASS 1) (CLASS 2)
MISSTON
FIRST ORDER APPROX. FIRST ORDER APPROX.
CODE EXACT (upperbound) EXACT (upperbound)
. N . SOLUTION SOLUTION
1 2 3 PRESENT STUDY | FORMER MERHOD PRESENT STUDY | FORMER METHOD
-1+) - - - - -
1 1 1 1.59 % 107! 3.21 107! 3.22 % 107} 5.37 % 10 % 5.38 * 102 1.40 % 107°
ol 1 | 1| o] 7.01 107" 4.79 % 10 2 5.00 % 102 1.07 * 107° 1.21 % 107° 1.68 * 1078
3 1 0 1 1.19 % 10”2 1.59 % 107! 1.67 % 107! 5.25 % 10°% 5.26 % 104 1.40 * 107°
4 1 0 0 4.20 « 1072 5.97 % 102 8.35 % 1073 1.31 % 107° 1.31 % 10°° 2.35 % 10713
5 0 1 1 0 1.05 * 107 1.05 % 10! 0 1.70 * 1078 9.44 * 1072
6 0 1 0 0 5.39 % 1073 5.25 % 102 0 2.05 * 1013 1.59 * 10 1©
7 0 0 1 9.96 % 1072 1.10 % 107! 1.75 % 1072 1.70 * 1078 1.70 * 1078 1.32 % 10”13
-3 -2 -4 -13 -13 -21
8 0 0 0 5.14 % 10 1.14 * 10 8.77 * 10 2.05 % 10 2.27 * 10 2.22 % 10

For mission no. I (ul=u2=u3=1) the probability of mission failure is presented.

~¢LC-
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7. THE RELIABILITY COMPUTER PROGRAM PHAMISS

7.1, Introduction

For large systems 1t is very laborious to obtain the probability of mission
success for a phased mission or even to calculate the system unavailability
of a single system. Therefore a new "reliability computer program' called
PHAMISS is developed to treat the problems of single system reliability

and unavailability as well as those of phased mission analysis.

The set-up of the program PHAMISS is based on the approach of phased mission
analysis as described in chapter 6. This has given rise to some special
difficulties in the organization of the program.

These difficulties concern two aspects, viz. (i) computer memory require-
ments and (ii) computer running time. In the following we shall briefly

discuss these aspects.

(i) Computer memory requirements

The methodology that has been developed in chapter 6 to obtain the
the probability of mission success is based on fault tree analysis.
As it has been pointed out in chapter 5, large fault trees may con-
tain a large number of minimal cut sets. In fact it is often impos-
sible to obtain all minimal cut sets of a single fault tree due to
a limited computer memory. For phased mission analysis we not only
need the minimal cut sets of a single system but of several systems

at the same time.

(ii) Computer_ running time

In many cases it requires much computer time to obtain the minimal
cut sets of large fault trees. In the case of a phased mission where
more than one fault tree has to be treated, the required computer
time then accumulates strongly.
'
To cope with the problems just mentioned the program PHAMISS has been
developed.

The reliability computer code PHAMISS is a fully dynamically written pro-
gram with segmented loading. The language is FORTRAN-IV and the program



=276~

is operational at a CDC Cyber-175. Its source consists of about 10000
FORTRAN statements.

In the sequel of this chapter we shall briefly discuss the set-up and
capabilities of the program PHAMISS. For a detailed description of PHAMISS
see Terpstra and Dekker [39].

In section 7.2. the program philosophy is discussed, whereas in section
7.3. the program sections FAULTTREE, PROBCAL, IMPCAL and COMMODE are
treated. In section 7.4. the set~up of the input deck for PHAMISS is shown

and its output is discussed.

7.2. The program philosophy

The reliability computer program PHAMISS consists of one main program and
several subroutines. After the main program PHAMISS the next level consists

of the following four program sections:

FAULTTREE (minimal cut set determination);

PROBCAL  (availability calculations for a single system

as well as for phased missions);

IMPCAL (importance calculations);

COMMODE (determination of common cause failure modes).

Each of these four program sections can be applied separately from each
other or combined. However, the program section FAULTTREE is basic for
further calculations by PROBCAL, IMPCAL or COMMODE, because each of these
three program sections needs as input minimal cut sets (generated by
FAULTTREE).

The program section FAULTTREE stores on a permanent device, called a

"save file", for each fault tree the component input data and the obtained
minimal cut sets of that fault tree. If such a "save file'" already exists
for that fault tree, then the program section FAULTTREE destroys the old
"save file" and creates a new one. This ''save file" option makes it possible
to perform so-called restart calculations. Such calculations can be per-
formed by each of the program sections PROBCAL, IMPCAL and COMMODE without
the use of the program section FAULTTREE. A restart calculation is only
possible if a "save file" exists for each fault tree and no changes are made
in that fault tree. The restart calculation procedure is schematically

depicted in the following diagram of fig. 7.1.
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SAVE"FILE
AVAILABLE?

NO

RESTART
CALCULATION
POSSIBLE

RESTART
CALCULATION
POSSIBLE

APPLY FAULTTREE
WITH INPUT FROM
INPUT DECK

APPLY PROBCAL,
IMPCAL, COMMODE
WITH INPUT FROM

SAVE FILE

o\

FIG.7.1. POSSIBLE OPTIONS TO APPLY PHAMISS WITH RESPECT
TO FAULTTREE (RESTART OPTION ).
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The input of the program PHAMISS is free-formatted and easy to understand
(see section 7.4.). An extensive error checking on the input and through-
out the whole program with clearly printed messages is available. There-

fore the program PHAMISS is users—friendly.

7.3. The program sections FAULTTREE, PROBCAL, IMPCAL and COMMODE

In this section we shall briefly discuss the special features of each of
the four program sections FAULTTREE, PROBCAL, IMPCAL and COMMODE. It is
not our intention to give here a detailed discussion of each calculation

procedure. For a more detailed discussion see Terpstra and Dekker [39].

7.3.1. The program section FAULTTREE

The program section FAULTTREE generates the minimal cut sets and/or path
sets of a single fault tree or in the case of a phased mission the minimal
cut sets of several trees (up to 10).

The input for the program section FAULTTREE consists of:

* the component identification and (optionally) its failure data;

¥ the description of one or more fault trees.
The program section FAULTTREE consists of three parts:

(A1) the input treatment of the fault tree;
(A2) the generation of the minimal cut sets of the fault tree;

(A3) the output representation.

In the following we shall make some remarks concerning the procedures
applied by FAULTTREE for each of the steps (Al), (A2) and (A3) pointwise.
For a description of the input data and output for FAULTTREE see section
7.4.

(A1) The input treatment of the fault tree

(Al.1) The minimal cut set generation by FAULTTREE is based on bit manip-
ulation. Each component and each gate are represented by one single
bit position instead of one computer word (one computer word on the
CDC Cyber-175 contains 60 bits) or one byte.

For the minimal cut set generation this means that if there are
Nc components and Ng gates in the fault tree a cut set needs
[(NC+Ng+w-l)/W]+l computer words (or bytes) if W is the number of
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bits of a computer word (or a byte), whereas a minimal cut set

is stored in [NC+W—1/W]+1 computer words.

If all minimal cut sets have to be determined, this procedure is
very profitable with respect to memory requirements, because the
order of a minimal cut set does not play any role with regard to
the maximal number of computer words needed to contain the largest

minimal cut sets.

We shall give here some definitions that are needed for the sequel.

(B1) A basic event (BE) is a primary event (see section 5.2.1.).

(B2) The domain of a gate-event is the set of BE's contained in
the subtree with that gate as TOP-event.

(B3) A super event (SE) 1is a gate event whose domain consists
of BE's that have only one successor.

(B4) A logical combined event (LCE) 1is an artificial gate whose
predecessors are a uniquely determined group of BE's and/or
SE's. Each BE or each SE that belongs to the LCE only occurs
in the fault tree in conjunction with all the other members
of the group.

(B5) An independent branch (IB) of the fault tree is a gate—event
whose domain has no intersection with the domain of the rest

of the tree.

In order to make the minimal cut set procedure faster and to
reduce the number of minimal cut sets, the following segquence of
actions is taken during the input treatment by the program section

FAULTTREE before it starts its calculation:

( 1 ) the determination of the SE's;

(ii) the determination of the largest IBR's;

(iii) all cascadeg are removed from the fault tree. A cascade
exists 1f two or more OR-gates (and AND-gates) are descendants.
Thig anti-cascade procedure may lead to a large number of
predecessors for some remaining gates in the fault tree;

(iv ) all LCE's are determined;

( v ) the gate-events are arranged by special criteria. The arrange-
ment of the gates determines the sequence of development of
the distinct gates. For the minimal cut set determination

SE's and LCE's are considered as BE's.



-280~

(A.2) The generation of the minimal cut sets of the fault tree

(A2.1) The minimal cut set generation procedure is from the top to the
bottom, i.e. the TOP-event is replaced by its predecessors etc.,
until all events in a cut set are BE's, SE's and/or LCE's.

The difficulties in generating minimal cut sets arise from the
AND-gates because in many cases such type of gates do increase
the number of minimal cut sets significantly. Therefore a special
procedure is implemented for those AND-gates with a large number
of cut sets (more than 10000). This special procedure determines
firstly the minimal cut sets of each predecessor of such an AND~
gate and secondly by combination of the minimal cut sets of its
predecessors the minimal cut sets of the AND-gate are formed.
After that the minimal cut sets of the AND-gate are correctly in-
serted into the minimal cut sets of the TOP-event. So the special
procedure of the determination of the minimal cut sets of such an
AND-gate is a bottom to top procedure. We found that this procedure

accelerated the calculation procedure significantly.

(A2.2) The calculation procedure for the determination of the minimal
cut sets is:

* the minimal cut sets of the TOP-event are expressed by basic
events (BE), super events (SE), logical combined events (LCE)
and independent branches (IB);

* each IB is considered as a TOP-event. Its minimal cut sets are
expressed in BE's, SE's and LCE's;

* subsequently the minimal cut sets of the IB's are inserted into
the minimal cut sets of the TOP-event of the fault tree. The
remaining elements of the minimal cut sets of the fault tree
are BE's, SE's and LCE's.

The "save—file" that is made by FAULTTREE contains the minimal
cut sets of the fault tree expressed in BE's, SE's and LCE's.
The reduction of the number of minimal cut sets when expressed
in BE's, SE's and LCE's with regard to the number of minimal cut
sets expressed in BE's is enormous for a great number of fault

trees.
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The output for the program section FAULTTREE is briefly described in
section 7.4. We already mention here a special feature of the program:
after each program (section) step the needed CP and IO times for that

step are printed in the output.

7.3.2. The program section PROBCAL

The program section PROBCAL performs probability caleulations concerning:

(C1) the single system unavailability;

(C2) the probability of mission success in the case of a phased mission.

The input of the program section PROBCAL consists of:
* the component failure date;
* the minimal cut sets of one or more trees (see section 7.4.);

* data that describes the mission.

In the input for PROBCAL one has to specify whether it concerns a single

system or a phased mission (see section 7.4.).

The system unavailability is calculated by PROBCAL by means of:
* the minimal cut set upperbound {(cf. (5.12)), or
* the upperbound obtained by the inclusion—exclusion principle

(cf. (5.18)).

The method to be chosen can be specified in the input. For the calcula-

tion of the system unavailability the component models of chapter 3 are

used.

If the svstem unavailability is calculated for more than one instant it

is possible to represent the system unavailability graphically by a plot

produced by PROBCAL.

The probability of mission success for a phased mission is obtained by

the approximations as shown in table 6.14. These calculations imply:

¥ an upperbound and a lowerbound for the probability of mission success;
The lowerbound calculation is optionally, because it may be very time

consuming.
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For a phased mission the probability calculations are performed at the

end points of the phases, i.e. at the instants Tj,j=1,2,...,K, if the
mission consists of K phases. However, for a phased mission where every
system has to survive its phase also calculations can be performed at

the starting points of each phase, i.e. at the instants Tj,j=0,1,...,K—1.
Therefore the possibility exists that for such a phased mission optionally
a plot can be produced of the system unreliability during the mission by

PROBCAL.

Presently PROBCAL accepts seven classes of components:
- class 1: components that are not inspected (non-repairable);
- class 2: components that are monitored (continuously inspected);

- class 3: components that are randomly inspected;

- class 4: components that are periodically EXSITU inspected;
- class 5: components that are periodically INSITU inspected;
- class 6: components with a constant unavailability (a failure prob-

ability per demand or per cycle);
- class 7: components with a constant unavailability during the dormant
phase and a non-repairable behaviour during the operational

phase,

The present version of the program contains these seven component classes
with a negative exponentially distributed lifetime and repairtime for the
component, except for the classes 4 and 5. Here the repairtime distribution
is the uniform distribution or the repairtime is a constant, which should
be specified in the input. It is not difficult to extend the program with
Erlang-2 distributed lifetimes for the components.

The maximal number of phases that can be treated by PROBCAL is presently
10, and the maximal number of systems that have to be failed during the
mission is restricted to 3. Lowerbound calculations in the case of a phased
mission can be performed for missions that comsist of less than 3 failed
systems. With the present state of affairs these restrictions do not seem
to be a serious barrier for practical applications. But PROBCAL can be

extended in this respect.
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The program section IMPCAL calculates measures of importance {(cf. section
5.3.4.) for components as well as for minimal cut sets. Presently the
program calculates Vesely-Fussell's measure of importance for components
by (5.64) and for minimal cut sets by (5.92).

IMPCAL calculates these measures for at most 5 distinct instants. For the
measure of importance of minimal cut sets a cut—off value a, 0 < a < 1,
is used to reduce the number of minimal cut sets in the list. If the
value of the minimal cut set(s) with the largest measure of importance
equals B then all minimal cut sets with a measure of importance smaller
than 0B are not taken into consideration.

The input of the program section IMPCAL consists of:

* the compenent failure date;

* the minimal cut sets of the fault tree

7.3.4. The program section COMMODE

The program section COMMODE performs qualitative calculations. It searches
for those minimal cut sets of a fault tree that can occur by a common cause,
such as a fire, too high pressure, too high humidity, etc. In fact such a
cause for the occurrence of a minimal cut set is a common secondary failure
for all components contained in the concerned cut set (cf. section 5.2.4.).
To identify such minimal cut sets, that are sensitive for a common cause
failure of the compoments, for each component its secondary failures are
denoted by a Zabel. Such a label may be for instance a "P" (for pressure),
a "T" (for temperature), etc. A label may also indicate the physical
position of the component such as "R1" (for room Rl), etc.

If all components of a minimal cut set share at least one label they have
something in common that may lead to system failure. The input for the
program section COMMODE consists of:

* the labels for each component;

* the minimal cut sets of the system.

7.4. The input philosophy for PHAMISS and its output

In fig. 7.2. the general set up of the input deck for PHAMISS is depicted.

Such an input deck consists of:
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(D1) the Znitial input unit;

(D2) input units for the program sections that are applied.

The ZnZtZial input unit contains general information, such as
* the problem description heading;
* the names of the program sections that will be used;

* the number of fault trees in the case of a phased mission, etc.

The cards containing such kind of information are called program control
cards. Alphanumeric names (keywords) on a program control card are put
between asterisks.

The initial unit as well as the program section input units contain a
number of such program control cards, that control the actions and the
print out of the program. In the initial unit as well as in the program
section input units program control cards are always kept together within
one section called the program control section of the unit. This program
control section always precedes the data input section of a unit.

It starts with the general problem heading card in the case of the initial
unit and with the program section name in the case of a program section
input unit. Each program control section is terminated with the program
control card: *GOONx. No fixed sequence exists concerning the program
control cards within a program control section, except that for the ini-
tial input unit the problem heading card is the first one, the *TREESx*
card (optional) must be the second card and for each other input unit the
program section name must be the first one.

In the case of a phased mission a *FAULTTREE* program section input unit
has to be constructed for each fault tree that exists for the mission.
Furthermore there exists no fixed sequence for the input units within

the general input deck for PHAMISS, except that the initial input unit
has to be the first one and if more than one *FAULTTREE* input unit
exists, then these input units should be kept together.

From what has been said it is clear that the initial input unit is fully
a program control section.

For a complete description of all existing program control cards,

see Terpstra and Dekker [39].
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INPUT DECK

Initial input

unit

/;PROBLEM HEADING CARD=*

*PROGRAM* *FAULTTREEx
*PROGRAM* +PROBCAL«
*PROGRAM* *xTMPCAL«
*PROGRAM* «COMMODE«
*GOON*

*FPAULTTREE Program control section
I
' for the program section
Input unit for the *GOON«* FAULTTREE
program section o e e e e e e
FAULTTREE Data 1nput section
for the program section
FAULTTREE
*PROBCAL* Program control section
X for PROBCAL
Input unit for the *CéON*
program section e e e
PROBCAL Data input sectilon
for PROBCAL
* IMPCALx Program control section
H
; for IMPCAL
Input unit for the *GOON«
program section - -
IMPCATL Data input section
for IMPCAL
*COMMODE* Program control section
: for COMMODE
Input unit for the *GOON¥

program section

COMMODE

Data input section

for COMMODE

for

the program PHAMISS

General structure of the input deck
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7.4.2, The structure of each of the program section input units

The general set—~up of a program section input unit is:
* firstly a program control section;

* secondly a data input sectiomn.

The program control sections are treated in section 7.4.1. Therefore we
shall now describe the set—up of the data inmput sections.

A data input section may consist of several parts. Each part starts with
a keyword for that special part and ends with in the last record of such
a part the name: END. Fach keyword is placed between asterisks.

The several distinct program section input units are shown in the
figures 7.3.,...,7.6.

The keywords for the several parts are listed in table 7.1,

7.4.3. The output of the program PHAMISS

The output of the program PHAMISS may consist of:
* printed output;

* plotted output.

If the plot option is used (by means of the program control card *PLOT*)
a plot can be produced for:

* the time dependent unavailability of a single system;

* the unreliability during the phased mission whére every system has

to survive its phase.

The printed output always consists of;
* the representation of the input (program control cards included);

* for each program step the used CP and IO times.

The printout of the different program units is listed below.
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Table 7,1. Keywords for the several paris of the
program section data input units.

PROGRAM
SECTION

*FAULTTREE*

*PROBCAL~#

*TMPCAL*

*COMMODE*

KEYWORD
(PART)

NOTES

*COMPONENT S*

*GATES*

*COMPONENT S+

*SYSUNAV*

*MISSION*

*COMPONENTS*
*IMPORTANCE*

*COMPONENT S*

*LABELS*

identifies the component input that consists
for each component of:

* component name

* component failure data (optional)

* component description (optional)

identifies the input part for the fault tree.
It describes for each gate its type and
its predecessors.

see under *FAULTTREEx*.

Applicable in the case that no component
failure data was added to the input unit
*FAULTTREEx or in the case of changes in
the component failure data.

marks the time dependent unavailability

of a single system.

The input consists of:

* the instants at which the considered
time interval begins and ends,

* the number of extra instants for the
calculation.

identifies a phased mission calculation.

The input consists of:

* the instant at which the mission starts
and the endpoints of each phase;

* the task that each system has to carry
out.

see *PROBCAL=*

identifies importance calculations.

The input consists of:

* the number of instants at which the calcu-
lation has to be performed;

* the cut off value (optional).

identifies common cause analysis.

The input consists of:

* for each component its name and the
attached labels.

identifies the list of labels.

The input consists of:

* the name of the label and its
description.
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*FAULLTREE*
Program
control
section
*GOON*
* COMPONENT S+
Component
input
part
END
*GATES*
Tree
input
part
END

Fig. 7.3. Structure of the
FAULTTREE input unit

*PROBCAL*

Program
control
section

*GOON*

*xSYSUNAV Input part for
the time dependent
unavailability

END _

*COMPONENTS*

Component

input part

(optional)
END

*IMPCAL*

Program
control
section

*GOON*

* IMPORTANCE *

‘ Input part

for importance
characteristics

END

*COMPONENT S *
Component
input part
(optional)

END

Fig. 7.4. Structure of the
IMPCAL input unit

Fig. 7.5.a. Structure of the
PROBCAL input unit
in the case of a
single system

*COMMODE*

Program
control
section

*GOON*

*LABELS* Label
input
part

END

*COMPONENTS
Component
input
part

END

Fig. 7.6. Structure of the
COMMODE input unit

*PROBCAL*

Program
control
section

*GOON=*

*MISSION* Input part for the
characteristics of
the phased mission

END

*COMPONENT Sx
Component
Input part
(optional)

END
Fig. 7.5b. Structure of the

PROBCAL input unit
in the case of a
phased mission



PROGRAM SECTION PRINTED OUTPUT

FAULTTREE * system characteristics such as the number of
basic events, gates, super events etc. of the
fault tree;

* the minimal cut sets (optional);
* a list with the number of minimal cut sets

of each order.

PROBCAL In the case of a single system:

* the unavailability at each desired instant;
the maximal and minimal unavailability at the
considered time interval;

* the interval unavailability.

In the case of a phased mission:

* an upperbound and (optionally) a lowerbound

for the probability of mission success.

IMPCAL * a list of component with their calculated
measures of importance, ranked from the high
to the low;

* a list of minimal cut sets with the same

characteristics as the components.

COMMODE * a list of minimal cut sets where the components
of each cut set share at least one label that

is printed too.

In Appendix C the input deck for PHAMISS and its output is given for the
example of a phased mission of the ECCS of the BWR as described in
section 6.4. All components are considered to be non-repairable (class 1).
The task for each system during the phased mission is to survive, i.e.
u1=u2=33=1.

Finally the program characteristics of PHAMISS are put together and

shown in table 7.2.



Table 7,2.

Characteristics of the reliability

computer program PHAMISS

X IMPORTANCE UNCERTAINTY TYPE OF COMPUTER LANGUAGE
CODE INPUT QUANTITATIVE CALCULATIONS CALCULATIONS ANALYSTS OTHER FEATURES AND AVAILABILITY
PHAMISS | Control information; For a single system: Yes, No Much attention has been CDC Cyber-175,

Basic event names;
Optional: basic event
description;

Basic event failure data;

For a single system ana-

lysis:

~ the fault tree descrip-
tion

For a phased mission ana—

lysis:

- the fault tree for each
phase

-~ the phase boundary times

~ the phased mission des-
cription

For common cause analysis:
- basic event labels

The ipput is users friendly.

An extensive error checking
is performed on the input
and throughout the whole
program nackage.

The input is free formatted.

time dependent system
unavailability

For a phased mission:

calculation of the upper-
bound of the occurrence
probability of every
branch of a time dependent
event tree

calculation of the maximal
error in the upperbound of
the occurrence probability
of a phased mission

The code accepts the follow~
ing classes of components:

*

*
*
*

non-repairable
monitored

random inspected
periodical inspected
EXSITU

periodical inspected
INSITU

constant unavailability
constant unavailability
during the dormant phase
and non~repairable during
the operational phase of
the mission

performed by
the program
section
IMPCAL

spent to the program sec~
tion FAULTTREE that gene~
rates minimal cut sets:

cut set generation is
based on bit manipula-
tion

the used method is from
top to bottom, but for
special intermediate
gates from bottom to top
the limiting number of
basic events and gates

is 4095

there is no limit om the
number or size of the cut
sets

from each intermediate
gate the cut sets can be
generated

AND, OR and K~of~N gates
are implemented

fault tree truncation can
be applied by cut set
order

the sets of each fault
tree are automatically
saved on a permanent file,
the '"save" file for
further qualitative and
quantitative analysis

A plot option is available
for

the time dependent unavail-
ability of a single system
the probability of mission
failure of the upperbranch
of an event tree (the
phased mission where every
system has to survive its
phase)

FORTRAN IV,

segmented loading,
available from ECN,
Holland

-067-



8. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

8.1. Introduction

The motivation for the present study is formulated as follows (cf.

section 1.3.1.).:

the need for a general methodology that analyses phased missions
and all branches of an event tree with the possibility to take
into account repair of the system during its mission and the
effects of component models with general distributed lifetimes

and repairtimes.,

In the chapters 2, 4 and 6 a methodology has been developed which meets
the requirements just described. A central point in the development of
this methodology is the introduction of the concept of period of a com-
ponent (cf. section 2.3.). The introduction of this concept makes it
possible to separate the analysis of the system behaviour from that of
the component behaviour. As a result the calculation of the probability
of mission success appears to be very simple (cf. table 6.14.). However,
that of the component unavailability becomes rather intricate, particu-
larly if no negative exponentially distributed lifetimes and repairtimes
are applied (cf. section 4.3.4.2.).

The results of the present study, its advantages and the possibilities
offered by the methodology presented here, are discussed in section 8.2,
In section 8.3. some recommendations for further work in the field of

phased mission analysis are given.

8.2. Results, advantages and possibilities of the present approach

8.2.1. Results

e e e i e e e, e e o W P e

The results of the present study are in fact two-fold:

(Al) A general methodology that
* can treat phased missions as well as every branch of an event tree
because each branch of an event tree can be defined as a phased
mission (cf. section 2.4.);
* takes correctly into account the system dependencies that occur

if systems have components in commomn;
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¥ is applicéble to a variety of problem areas of practical interest,
such as:
- risk analysis;
~ complex system behaviour as occurring in, e.g. space travel,
safety systems of nuclear power plants, off-ghore activities;
- efficiency and reliability testing of scenarios considered as
phased missions, e.g. rescue scenarios, tactical and strategic

battle scenarios in warfare.

(A2) A reliability computer program called PHAMISS that evaluates numer—

o . e

ically our approach when applied to real systems. It handles single
system behaviour as well as sequential system behaviour (phased

mission).

o oo s e e e ot . o L e e

The advantages of the present approach when compared with the present

approach in literature are:

(81)

(B2)

(B3)

(B4)

(B5)

(B6)

general lifetime and repairtime distributions for the components

can be taken into account;

a gseparate treatment of system behaviour and component behaviour
during the phased mission by the introduction of the notion period

of a component (cf. section 2.3.);

a variety of strategies for maintenance of components can be in-

corporated in the analysis;

if the exact values can not be calculated due to a too large computer
effort,with reasonable computer effort upperbounds and lowerbounds

can be obtained;
partial system failures are correctly taken into account;

for each phase within an event tree only one fault tree has to be
constructed in order to treat every branch of the event tree. Others
like Fussell and Arendt [36] think of different trees dependent whether

a foregoing system succeeds or fails.
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8.2.3. Possibilities

The methodology presented here is able to treat several problem areas
within the field of reliability theory. In the following we shall give a

brief survey of its possibilities.

(C1) The present approach can analyse phased missions with one objective

as it has been shown in chapter 6.

{C2) In some cases the present methodology can treat phased missions
with more than one objective as it will be illustrated below for
a problem as discussed by Bell [1].
In fig. 8.1. a situation is shown for a system S that has to perform
a phased mission with three objectives 0], 02 and 03. The objectives

O1 and 02 have to be carried out by the subsystems S1 : and S1 2
s 3

respectively; they do not have components in common. Each of the
two subsystems S1 1 and S1 5 iz also independent of the rest of
b b ]

the whole system S. At instant T, subsystem § starts its own

1 1,1

phased mission separately from the rest of the system. The same occurs

for subsystem S1 5 At instant T3. The phased mission for Sl | Possesses
» bl

two phases and that of S three phases.

1,2

| PHASE 11 , PHASE 12 | OBJECTIVE 0
1

[ 1.0 T11 T12 OF Si4

|

:73,0 T34 T32  T330F S12

l
I
I
OR-PHASE PHASE 1 | PHA
(I) TI | HASE 2 |pHASE 3 | PHASE 4 | PHASE 5 | OBJECTIVE 03
0 Ty T2 T3 Ty Ts OF S

|
I
f PHASE 31 | PHASE 32 | PHASE33, OBJECTIVE 05
!
!
I

TIME =t

FiG. 8.1 TIME SCHEDULE FOR A MULTIPLE OBJECTIVE PHASED MISSION.
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- By the present approach it is possible to calculate the probability

of mission success for each of the three objectives by defining for

each objective a distinct phased mission:

( i ) objective 0,: the phased mission consists of the OR-phase,

! and the phases 1, 11 and 12;

(ii ) objective 02: the phased mission consists of the OR-phase,
and the phases 1, 2, 3, 31, 32 and 33;

the phased mission consists of the OR-phase,

and the phases 1, 2, 3, 4 and 5.

(iii) objective 03:
For all phased missions each subsystem has to survive its phase.

(Other combinations of the tasks of the subsystems are also possible).

Some maintenance procedures give rise to a phased mission of a single
system, for instance the safety system of a nuclear power plant. Often
such a safety system contains two chains and it is initiated if both
chains ask for its function.

Such safety chains are periodically inspected, the one after the other.
If one of these chains is inspected its function is "shortened", so
that if the other chain asks for its function the safety system is
initiated.

During such an inspection the system configuration is changed, i.e.
one chain is no longer present in the system. Such a situation may be
considered as a phased mission and can be analysed by the present

approach.

Recommendations for further work

We shall briefly indicate some topics within the problem area of phased

mission analysis that are of interest for further investigation.

They concern:

(p1)
(D2)
(D3)
(D4)

phased missions with multistate components;
confidence intervals for the probability of mission success;
phased missions with multiple objectives;

phased migsions with stochastic phase duration times.

Ad (1): Single systems with multistate components have been studied

by Caldarola [43] and Barlow and Wu [44].
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LIST OF ABBREVIATIONS

ADS Automatic Depressurization System

BWR Boiling Water Reactor

Cs Cooling System

CVD Checkvalve (near diesel pump)

CVE Checkvalve (near electro pump)

M Checkvalve (near main circulation pump)

DM Diesel Motor

DP Diesel Pump

DPM Component (subsystem) consisting of the diesel driven

pump DP and the diesel motor DM

ECCS Emergency Core Cooling System

EDPS Emergency Diesel Pump System

EM Electro Motor

EP Electro Pump

EPM Component (subsystem) consisting of the electro driven

pump EP and the electro motor EM

ERHPS Emergency and Residual Heat Removal Pumping System
FTA Fault Tree Analysis

HE Heat Exchanger

HPCS High Pressure Core Spray system

HRS Heat Removal System

LOCA Loss of Coolant Accident

LPCI Low Pressure Core Injection system
LPCS Low Pressure Core Spray system

MCP Main Circulation Pump

MCPS Main Circulation Pump System

MIBF Mean Time Between Failures

NBU New Better than Used

OR-phase Operational Readiness phase

SPCS Suppression Pool Cooling System

VD Hand operated valve (near diesel pump)
VE Hand operated valve (near electro pump)

VM Hand operated valve (near main circulation pump)
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APPENDIX A

THE RENEWAL FUNCTION AND THE FUNCTION GO(t,é) OF A RENEWAL PROCESS
WITHOUT REPAIR IN THE CASE OF THE ERLANG LIFETIME DISTRIBUTION

Consider a renewal process where the time between two successive renewals

is defined by the Erlang distribution

F(t) = 1-e I S5, t20, A0 (A1)

A realisation of the above mentioned remewal process is the process

of an installed component starting its life at t=0, and immediately
replaced by an identical component when it fails, etc., with the Erlang
distribution as lifetime distribution.

The Laplace~Stieltjes transform of F(t) is

Rep > =~A. (A2)

From (3.4) (Chapter 3) it follows that the Laplace-Stieltjes transform

of the renewal function mo(t) reads

f 1
h(p) = I_Eig) = "
(14p/2) =1
k-1 a.
= Z————-L—_..
i=0 (1+p/1)-o7
k-1 a. 1
= ¥y —L r(1-67) ,
j=1 1-87 p+a(1-87)
where
271
g def o k| (A3)

The constants aj, j=0,1,...,k-1 are determined by
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h k|
. s-6 , 1 1 5]
a., = lim, = lim, — = —r—— = —— ,  §=0,1,..,,k-1.
I gl 1 oo ks kel Dk
So h{p) reads
k-1 _j iy
h(p) = ﬁL +'% g & AU-87) peoso.
p j=1 1-63 p+A(1-eJ)

By inverse transformation it follows for mo(t) that

At

At __=ie(d -6 )
m b

mO(t) = £20, A>0, (A4)

and 8 as defined by (A3).
From (3.22) and because of (3.37) the function G (t,z) for this

process reads
t
G, (ts2) = F(t+r) = F(£) + [ {(F(t+g~1) = F(t-1)}dmy(1), t20, £20,
=0

and by substituting (Al) and (A4) it follows that

[on* _ Dett ]
i:

G (t,z) = =Y
0 =0 i!
t i
. ) [ {{A(t—r)} D (tre-n)} e—a;} e-A(t—T>]
. il il
0 ti=0
k-1 . _ad
AT g ol Aameh ]y
k| .2
j=1
k
L [(At) {A(t+q)} e
0=0 lO 1. J
. k-1 i t . t+y . _
+<% e At b &T [eAt f vle Av dv - e)&“t f vie Av dv
i=0 t* v=0 v=
1 -AGJ

;\ﬁ'

k=1 . i,
+ 3 o {exe dv

j=1

. "
_ Qe g j;vx —Aer L

J il
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With
B . _ _ 1., k - i, k
vt e Wogy = e 5 i%-—E%E:T A i%“T%E:T » B>a,
a k=0 < A k=0 <7 At
and some reorganisation, the function Go(t,g) reads
ot K ool ooyt -
G (t,z) = e T — - — e +
0 v B i
1=0
LN Jon® e L 00 | DGern ™ oaern)
+ -1: z Ll“' z 1 (] e + T e - -———-—-—-————-——? e 5
i=0 n=0 \ ™ e e
- h] . .
e KOV opreTe i 1 0" 0 00" ol
+ e Z 1 .]-_ - Z Q (i—n) 1 T + 7 e
j=1 L gJ n=0 o7 ne o
D@t e+ 1]
- e 5k (A5)
27i

6= e X 20, £20, A50, k=1,2,... .

From (A5) it is immediately clear that

k-l i
6,(0,2) = lim G (e,0) = 1 - e Ay Q) 0, aso,
0 i=0

which means that at the start of the renewal process the function GO{O,C)
is simply the Erlang distribution itself, which is evident.

As an illustration we shall present the explicit expressions of the
renewal function and the function Go(t,C) for the cases that k=2 and

k=3, With some elementary calculations it is deduced from (A4) and

{A5) that

k=2 At 1" 2AE
mo‘(t) = —2— - A y 20, A»0; (A6)
Az 1. = -
G, (£,2) = I-e . 5 Aze L o (1+e sz)’ £20, 20, A>0 . (A7)
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k=3 3
' Ae-1 . 1 i , ] -7 At
mo(t) =—5—tg{3cos(z Y3 At) - ¥V3sin < Y3 At)}e , £20, A>0;  (A8)

. 2 1 2, =xg 1 2 -t
Go(tst) =1 = {1 +FAc+2 QDT e "+ 5 00" e

--;— [{Az + (O2)2} cos <—},_— /3 At) + V3 sin (%» /3 01,  (A9)

t20, z=0, A>0.
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APPENDIX B

SPECIFICATIONS FOR SEVERAL LIFETIME AND REPAIRTIME DISTRIBUTIONS OF
THE QUANTITIES DISCUSSED IN CHAPTER 3

In this section explicit formulas for the quantities AD(t), A1<t)’ mo(t),
ml(t), Go(t,g) and Gl(t,z) will be presented for special lifetime— and
repairtime distributions.

Its contents consists of:
page

Bl Components without repair and without replacement . . ., . . . 308
Bl.1 Lifetime distribution: negative exponential dis-
tribution . . . . . . . . . . . 4 4 v . e ... . . . 308

B!.2 Lifetime distribution: Erlang distribution . . . . . . . 308

B2 Components which are immediately replaced . . . . . . . . . . 309
B2.1 Lifetime distribution: negative exponential dis~-
tribution . . . v ¢ 4w h e h e e e e e e e e e ... 310
B2.2 Lifetime distribution: Erlang distribution with
k=2 and k=3 . . . . . v it e e e e e e e e e e e ... 310

B3 Components subjected to the alternating renewal process . . . 311
B3.1 Negative exponential lifetime distribution and negative
exponential repairtime distribution . . . . . . . . . . 311

B3.2 Erlang~2 lifetime distribution and negative exponential

repairtime distribution . . . . . . . .« . . . . .+ . . . 313
B4 Components subjected to the random test process . . . . . . . 316
B5 Components subjected to periodical inspectiom . . . . . . . . 320

B5.1 Negative exponential lifetime distribution and a uniform
distributed repairtime . . . . . . .+ + « + . . . . . . . 322
B5.1.1 The availability in the case of the time depen-

dent Process . . « « « « + 4 4 s o« e o« 4 o« . . . 322
B5.1.2 The availability in the case of the stationary

PEOCESS v o + o + o « o o + o o o o « o o o + o o 325
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page

B5.2 Negative exponential lifetime distribution and a
constant repairtime . . . . . . . . 4 4 ¢ 4 . ¢ . - . - 326
B5.2.1 The availability in the case of the time depen~
dent ProCESE + ¢« « » o o o s « o + o s s« + « « 326
B5.2.2 The availability in the case of the stationary
PTOCESSE & 4 & v v s + o o o « s o o o« o o o« « o o 327

B5.3 The functions Go(t,i) and G}(t,ﬁ) e e s e e e e e e e .. 327

Bl Components without repair and without replacement

The general expressions for the availability and the function Go(t,c)

are:

]

Ao(t) 1 - F(t), t=20; (B1)

i

Goct,c) F(t+z) - F(t), t=0, =0. (B2)

Bl.1 Lifetime distribution: negative exponential distribution

F(t) =1 - e-Xt, t>0, A>0; ' (B3)
-At
AO(t) = a , £20, A>0; (B4)
- -
Go(t,?;) =1-e "7, t20, 20, x>0. (B5)

Bl1.2 Lifetime distribution: Erlang distribution

Oe)!

=it
F(g) =1 - e {1+)\t+...‘+‘6{_—1—>':

}, t20, A>0, k=1,2,... . (B6)

Becausge of practical considerations only the cases where k=2 and

k=3 are treated.



k=2

For t20, z=0 and A>0 it follows that:

-At

F(t) =1 -e (1 + 2¢); (B7)

A =+ rye ME, (B8)

G (t,0) = 1 - e ML) o apye MERD) Lo L T 4 )
—{1-( + ]iit) e My (1eatye ME, (B9)

k=3

Fot t>0, £>0 and A>0 it follows that:

F(t) =1 - e_Xt{l + At + %(kt)z}; (B10)
A () = M A+ () ) (B11)
Go(t,E) =1 - e_k(t+C){1 + A(t+g) + %Az(t+c)2} -

[1 - e—kt{l + At + %(At)z}]

1 + A(e+g) + éxz(t+c)2

5 e-AC]{l + At + %(At)z} e—At. (B12)
1+ At + 1(t)

[1 -

The parameter A can be obtained from the relation:
E{4} = k/X, k=1,2,... , (B13)
so that in the cases of k=2 and k=3, respectively,

A = 2/E{2} and A = 3/E{L}.

B2 Components which are immediately replaced

Here we have to discuss components subject to the renewal process
described in section 3.2. It is supposed here that the distribution

of the lifetime of the first component is equal to the other lifetime
distributions, i.e. F](t) = F(t). So from section 3.4. it follows that

for every distribution of the lifetime:
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ap®) = 11 = £0)H1 + b ()} = {1 = £ + 1580y = 1,

so, for this process it is obvious that

Ao(t) = 1, t=20. (B14)

B2.1 Lifetime distribution: negative exponential distribution

-At

F(t) =1 - e , t=0, A>0;

Ao(t) = 1, t20 (see (Bl4)).

From section 3.4 it follows that for £(p) = A/(p+i):

_ () _ AMp+r) A
Bl = TEGy T TX/Geeny T o Re(P)705

so that the average number of remewals in [0,t] reads

mo(t) = At, t=0, A>0. (B15)

The renewal process appears to be the Poisson process.

From (3.33), (B15) the function Go(t,C) is obtained by:

t ~ -
S M) Ly A s TN D00

0

|
o

Go(tsz;) =
")\(;
=1 - e , t20, =20, X>0. (Bl16)

B2.2 Lifetime distribution: Erlang distribution with k=2 and k=3

k=2

1 - e M1+ ar), £20, A>03

"

F(t)

1
(1+p/2)

£(p) » Re(p) > =43 (B17)

|
—
.

AO(t) =
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From the expressions (A6) and (A7) in appendix A it follows for the

renewal function and the function Go(t,g):

|- o2
mO(t) = ixt - —— > t20, 3>03 (B18)
— —_ -
Go(t,a) =1-e s irze M(1 + e 2>‘t), t=0, 20, A>0. (B19)
k=3
F(t) =1 - eﬁkt{l + At + é(At)z};
1

fp) = » Re(p) > -X; (B20)

(1+p/2)
Ao(t) =1, t=0.

From the expressions (A8) and (A9) in appendix A it follows for mo(t)
and GO(t,C) that:

my(t) = ié%l +<é {3 cos (3V3xt) - V3 sin (3V3at)} e_BAt/z,
£20, A>0; (le)
Go(t,C) =1=-{1+ %-Ag + %-(A;)z} e"AC + %(lt)z M
--% [{hg + (Ag)z} cos (4V3xt) + V3 sin (4V3xt)1, (B22)

t20, zz0, A>0.

B3 Components subjected to the alternating renewal process

The alternating renewal process is described in section 3.3.1.

tial repairtime distribution

-2
F(t) = 1 - e "%, t20, A»0;
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W) =1 - e "%, 20, 1503
£(p) = —2— , Re(p) > —A;
o] p+A s Y s
w(o) = =5, Re(p) > -u.
p+u

From (3.7), (B24) and (B25):

- £(e) _ Ap+w) .
o) = TG ~ Pl * Rele) > 05
- _f@wl) _ Au
by (p) = 1-£(p)wlp)  p(p+r+u) ’ Re(e) > 0.

By inverse Laplace transformation it follows from (B26) and (B27)

that the renewal functions mo(t) and ml(t) are given by:

2
Au A (At t
m, (t) wenin X:;-{l + e },

“.

1

AL P B S AT I

ml(t) = Aty A+

t20, A>0, p>03

tz0, x>0, u>0.

(B23)

(B24)

(B25)

(B26)

(B27)

(B28)

(B29)

From (3.11), (3.12), (B24) and (B25), ao(p) and a](p) are given by:

_ _p+u _ .
ag(p) = Py Re(p) > =(h+u);
— H -
al(p) iy Re(p) > =(A+u).

By inverse tramnsformation we obtain from (B30) and (B31):

Ao(t) P e-(k+u)t}, t20, A>0, u>0;

A+

U -(A+p)t
K:E {1 - e }

Al(t) , £20, A>0, u>0.

(B30)

(B31)

(B32)

(B33)
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From (3.34), (3.35), (B28), (B29), (B32) and (B33) the functions Go(t,g)
and Gl(t,g) are derived:

Go(t,c) (1 - e-ha) AO(t), t20, =0, A>0; (B34)

(1 - e~AC) A (t,z), £20, 20, 2>0. (B35)
1

Ii

Gl(t,z;)

This result can also be obtained by remembering that the negative ex~

ponential distribution is memoryless.

B3.2 Erlang-2 lifetime distribution and negative exponential repair-

time distribution

F(t) = 1 = e—kt(l + At), £20, A>0
-yt
W) =1 - e , t20, u>0;
2

fp) = A 5 s Relp) > =X;

(p+2)

_ M

w(p) = » Re(p) > ~u.

ptu

The Laplace-Stieltjes transforms of mO(t), ml(t), Ao(t) and Al(t) all

have the same denominator (see (3.7), (3.11) and (3.12)), i.e.

Azu

] -
e+1) % (o+1)

"

1 = £(p)wip)

- p{pz+(u+2A)p+A2+2Ap}
(p+k)2(p+u)

The zero's of the expression above are:

= - 1(u+2)) %Vuz-éku, o3=0- (B36)

°1,2
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There are three cases for which the zero's are different, i.e.
2 .
uz—alu>0, u2-4ku=0 and y ~4Au<0. Define:

a = -4u20), B8 = Phaw, o = Vaa-y’, (B37)

Three cases are now:

case 1: Pp .9 = atf , 93=0; (B38)
b

case 2: 91’2 = g s 93=0; (B39)

case 3: Pl o= oatio, p3=0, (B40)
k-

where i2 = -1.
Because all the three cases can be treated in a similar way only case 1

is discussed here.

Case 1: p1 9 = atB, p339.
3

From (3.7) and the above mentioned it follows that:

2
f£(p) A7 (p+w)
- - R > 00
hO(p) 1-£(p)w(p) p(p-pl)(o-pz) » Re(p)
f- 3
ot o,t
mo(t} =0, + ot +age toe t20, (B41)
o, = Zakzu + Az(aZ—Bz) o = Azu
b b4
1 (m2—82)2 2 aZ_BZ
2
(D]+U)A (p2+u)A2 (B42)
o T mmm———— o = e
3 2 > 2 ’
2891 2802
Also from (3.7) it follows that:
b0y = —E@) _ 3Py Re(o) > 0
1 1-£(p)w(p) p(o-pl)(p'pz) ? :
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=
p]t th
ml(t) = a, + azt + aze + a,e , t20,
o, = 2ak2u o Azu
2 2 ’ c T ?
1 (o —82) 2 aZ—BZ
o = kzu o = - Azp
3 2 > Ty 2
ZBp] 2802
From (3.11) we get for ao(p):
2
1-£(p) A
=——P - R > 0.
%) 7 T Gyu() (oo ) Gmp ) > P
=
p.t oLt
Ao(t) = ] __2}3_2_%3{3_1__2__2_ , t20.
w8 B Le Py
From (3.12) it follows for al(p) that:
{1-£(p) Iw(p) u(p+2))
= = R > .
a; () 1-£(p)w(p) p(o-pl)(o~pz) » Re(p) > 0
= p]t pzt
A (t) = 22, 1 {(plﬂme _ogte , t20.
i 22 28 o, o,

From (B41) and W(t) as defined above it follows that:

4 plt p2t

Haa0 HOLP o
b
Pty 4 pz+u

By = 70y By =

with Cpy g and a, as defined by (B42).

(B43)

(B&44)

(B45)

(B46)

(B47)

(B48)
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From (3.34) and (B47) the function Go(t,a) is given by:

G (E,2) = v, (t) {1-(1+ar)e M%) + wO(t)A(1~e—A€), £20, £20, (B49)

p,t pLL
u AT e ! e 2
v, (t) = + _ { - } )
0 A+2u o, 0, p](pl+k) 92(92+A)
(B50)
) \2, eplt epzt
w. (t) = + { - } .
- 2 2
0 A(A+2y) ©17Ps pl(ol+A) 02(02+k)

Using the same procedure as for GO(t,C) we get from (3.35) for Gl(t,c):

G](t,c) = v](t) {1-(1+A§)e-xg} + wl(t)A(l—e-Ag), t=0, 720, (B51)
2 eyt Pyt
vi(6) = ag t e { G (. ) R S
u 01 02 Ql pl u DI 02 92 15 92
2 oyt Pyt
Au e e
w,(t) = LI - .
1 A+2p p.mp { 2 2}
172 pl(pl+u)(pl+k) 92(02+u)(02+k)

B4 Components subjected to the random test process

In this section the random test process as described in chapter 3 will
be treated. The lifetime and the repairtime are assumed to be negative
exponentially distributed, i.e.

e "t 20, 2503

]
—
!

F(t)

e-ut’ t20, u>g.

i
f

w(t)

The time between two demands (tests) is also negative exponentially

distributed with parameter y:

H{t) = Pr{§n<t} =1 - e-Yt, t=0, v>0, n=1,2, ... . (B53)

(B52)
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The Laplace-Stieltjes transforms of F(t), W(t) and H(t) are given by

£(p), w(p) and z(p), respectively:

f(p) = —= , Re(p) > -x;

w(p) B Re(p) > -u3

z(p) , Re(p) > -v.

(B54)

From (3.10), (3.13) and (3.14) it is clear that ho(p), h](p), ao(p)

and al(p) all possess the same nominator.

n(o) B 1 - £()we)z(p), Re(p) > 0.

Substitution of f(p), w(p) and z(p) in (B55) gives for n(p):

1 - A * L * Y
p+A  ptu pHy

n(e)

2
_ofe” + Ousydp + Ay + Ay + uy}
(p+1) (p+u) (p+y) » Re(p) > 0.

The zero's of n(p) in the above expression are given by:

- 1 O+p+po) = ¢§%+u+v)z - 4 (Qu+dy+uy),

°1,2
Py = 0.
Define:
o == 3(+u+y), B = %¢<k+u+v)2 - 4(ku+ky+uv)1

A

%/z(ku+kY+uy) - (A+u+Y)2.

Q
L]

There are three cases for which the zero's are different, i.e.

case 1: 91,2 = aff , p3 = 03
case 2: 91,2 = a > Py T 0;

case 3: 01 9 = otic, Pqy = 0.
3

where 12 = —1.

(B55)

(B56)

(B57)

(B58)
(B59)

(B60)
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Because all the three cases can be treated in a similar way only case 1

is discussed here.

Case 1: pl 2 = qtf, p3=0
*

o st

From (3.10) and the above mentioned it follows that:

£(p) _ Alp+) (p+y)

= = > 0. B61
Bo®) = TE Gy weIzt) T plomp,) (omayy * o) 7 O (B61)
=
p,t Pyt
mo(t) =0, *oa,t +aze e, t>0, (B62)
. A(u+¥)plpz + AUY(91+02) oy
¢ 7 2 2 2 0y T ST o2
PPy 172
2 2 (B63)
Ao T+ A(uﬂ')p1 + Auy APy + A(u+¥)pz + Auy
O, = o, =
3 2 A 2
o (pl pz) 0y (Py pl)
For hl(p) we get from (3.10):
f(p)wip)z(p) Apy
] = ,R_ .
B ®) = TERIw()z() ~ 5l oms ) * o) > O (B64)
=
ml(t) =a +a,t* age +oe , t20, (B65)
) AuY(pl+pz) oy
‘1T 22 %2 T o,
pl p2 172
(B66)
- Auy - Auy
O, T m—m—— s O, T ————
3 2 2
0y (p]-pz) 0, (pz-pl)
From (3.13) we get for aO(p):
2
1-£(p) p~ + (u+y)p + uy

0P = TEGw@Ize) T G0y
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(Dl+u)(pl+v) ot (pz+u)(02+Y) Pyt

£Y e ©, t20. (B67)

+ p—
Au+ry+uy ol(ol-pz) © pz(pl-pz)

Ao(t) =

From (3.14) it follows for al(o) that:

- 11-fp)w(p)z(p) _ Uy
al(p) 1-£(p)wip)z(p) (p-sl)(o—pz) » Re(p) > 0.
=
p,t pLt
_ uy wy [ uy 2
Al{t) Autdy+uy * 91(91'92) © 92(91-02) © > £20. (B6B)

From (B61) and the Laplace~Stieltjes transforms of W(t) and H{t) it
follows that:

1 e my (@ m) - SEESER S
= Ay Re(p) > O. (B69)
(o=p ) (o=p,) ’

-

a T L

e e

=5 Mo (E)¥H(E)*W (L) = 91?2 + plﬁgz TR L 0. (B70)

From (3.36) and (B70) we get for t=0 and z20:
Uy Apy eplt zzt ] -z
Go(Es2) = [9102 ¥ PP, {@](ol+l) - pz(p2+k)}J (1-e 7). (B71)

From (B64) and the Laplace-Stieltjes transforms of W(t) and H(t) it
follows that:

2
d - AQuyY)
LS e m (W0} = oSG G Gy » e () 7 0 (572
=5
p.t p,t - -
%mi(t)*W(t)*H(t) =gy +8pe |+ By 2", Be 't 4 et w20, (B73)
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g = Ay g = k(uv)z
0 p,p, ’ 1 Ql(pl-pz)(pl+u)(pl+Y) ?
o - 2w’ o - Gy’ (B70)
2 pz(pz-pl)(pz*u)(pz+Y) 73 u(o]+u)(oz+u)(U“Y) ?
g = X(uY)Z
4 Y(DI+Y)(QZ+Y)(Y‘U) ’
From (3.37), (B73) and
d _ MYy -yt _  -ut
3¢ W) (e) = = (e e ),
we get for t20 and 720:
2 oyt
ey oA { e
Gl(t’C) {plpz * PPy pl(pl+k)(pl+u)(pl+Y)
p.L
2
e 1 A
- }- .
92(02+k)(02+u)(02+v)}J( e ) (B75)

B5 Components subjected to periodical inspection

The model assumptions for components subjected to periodical inspection
are described in § 3.4.3. In this section we shall derive explicit results
for the availabilities Ao(t) and A](t) and the functions Go(t,c) and
Gl(t,c) in the case of EXSITU inspection of a class 4 component. Its

lifetime distribution is assumed to be negative exponential, i.e.

F(e) =1 - e_}‘t , 20, 2>0. (B76)

Two different repairtime distributions are considered, viz:

(i) the repairtime is uniformly distributed, i.e.

W{t) £ , Ostsy;
s (B77)

=1 , op 3

(ii) the repairtime is a constant, i.e.

W(t)

B
o
L2

Ostsu; (B78)
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Periodical inspection means (cf. § 3.4.3): equidistant test moments,
equal inspection times and equal maximal repairtimes. We recall here the

different parameters that describe such a process:

n : time to the first inspectiong
n : time between two successive inspections;

: time needed to inspect the component.

For the process of the periodical inspection the time interval [O,n]]
till the first inspection is a special interval. The availabilities

Ao(t) and Al(t) during [O,nl} are given by:

| - F(t) = e ME, Ostsn 3

i

A (t)
0 (B79)

Al(t) 0 , OStSnl.

Each of the other intervals between two successive inspections contain
three different intervals with respect to the calculation procedure of

the availabilities. These three different intervals for the nth inspection
interval {i.e. the ingpection interval that starts at the instant at

which the nth ingpection is performed) are {(see fig. below) for n=1,2,... :

interval T (the inspection interval):

[n*(-Dn, n +(-1n+o];
interval II (the repair interval):

[n,+(a=1n+6, n +(n-1)n+o+ul,

1 being the maximal length of the repairtime;
interval IITI (the interval where no inspection nor repair is

applied to the component):

[n1+(n—1)n+9+r, n1+nn].

/v x

nth iNsPECTION tn+ 111 INSPECTION
1 ] ! |
| | | |
| inspeCTION ! REPAR ' !
| TIME | TIME | l
/ Vintervat 1! ntervaLnm | INTERVAL TII I
| | | 1
| | |
+

/f' 111*(n-1h'| ’1'{1*(7\-1)’7]4»8 ‘l],}tr(n-ﬂ‘rpeqj, Nye07

/
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Below explicit formulas shall be derived for the availability of the

component in each of the intervals I, II and III.

B5.1 Negative exponential lifetime distribution and a uniform dis-

tributed repairtime

B5.1.1. The availability in the case of the timedependent process

In this section the lifetime distribution of the component is defined

by (B76) and its repairtime distribution by (B77).

(al) Interval I: [n1+(n-1)n, n1+(n-1)ﬂ+9]

Because the component is EXSITU inspected the availabilities AO(t) and

Al(t) during this interval are by definition given by:

A (t) = 0;
0 (B80)

0.

it

A (B)

(a2) Interval II: [n1+(n—1)n+8, n1+(n~l)n+6+u]

Substitution of (B76) and (B77) into (3.20) and (3.26) gives for the
availabilities AO(t) and Al(t):

-t n-1 A(n +(k=1)n+6)
Ag(t) = g [Hc1 pX {I~A0(n1+(k-1)n+9}e ]
k=1
(B81)
~A(t=n = (n=1)n-0)
+ ¢ {1-A_(n,+(n~1)n+6}{1i-e };
0 0 '1
=\t n-1 >\(nl"l'(kf"l)ﬁ"'e)
A(r) = c e b {1-A1(n1+(k—1)n+e)}e
k=1 (B82)
—A(t—nl”(n—l)n—e)
+ cO{I—Al(nl+(n-1)n+8)}{l-e 1,
with ¢y and ¢ in (B81) as well as in (B82) being defined by
=L = Au_
¢y = Xy s ¢ co(e . (B83)
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(B81) and (B82) are implicit expressions for the availabilities Ao(t)
and Al(t), respectively. To get the explicit solution we shall determine
first the explicit expression for Ao(t) in the case that t is the starting

instant of the repair interval, i.e. t=n1+nn+6. So define

.
n

n1+nn+8; and (B84)

k(n]+(n—1)n+8)
s, n=1,2,... (B85)

o
1

n " AO(nl+(n-1)n+8)e

Substitution of (B84) and (B85) into (B81) gives:

[o An +(k=1)n+6) n 1
a =143 Te -
n+1 o, e kS

i

i

h™Me

i+cl{fn-k ]ak}, n=1,2,... , (B86)

¢, being defined by (B83) and fn given by

AMn +0) (g rony

f = a —_— (B87)
n l-eAn

From (B86) it follows that:

- an = Cl(fn_fn—l) -c2

a
n+1 n

At = EE ) (Umepag, n=l,2, .00 (888)

From (B85) it is obvious that for n=1 we get

A(n, +8) =A(n,+8) A(n +6)
1 1 1
= AO(n1+6)e = e e

i}
|

= 1, (389)
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The solution of the recursive relation (B88) with initial condition (B89)

reads:

n-1
a = (1 c]) e kEl(fk fk—l)(l cl)

=ik 1,2, (B90)

Substitution of fk (see (B87)) into (B90) gives:

A(n,+0) {(1-c)"!-M(n7DMy
An

e , n=1,2,... . (B91)

a = (l-c )n-] + c
n 1 1

l-cl-e
From (B81), (B87) and (B91) we get for the availability AO(t):

Ay(e) = e {l+e (£ -8 )}

n—1
(B92)
-X(n]+(n-1)n+6)}{ -K(t-nl-(n-l)n-e)}
H{1-e 1]

+ co{l-ane

with ¢, and ¢, being defined by (B83), a_ by (B91) and 8 given by:

0 1
A(n, +8)
n 1—(1-c1)n ce 1 1—(]—c1)n l_eknn
A * X { c T } ’
- € 1-c e n 1 - "
n=1,2,...
Using the same solution method we get for A](t):
A](t) = Cle_xt{fn-]_hn—l}
(B94)
-%(n1+(n-1)n+6) -X(t-nl-(n—l)n-e)
+ co{l-bne Hi-e 1,

<, and ¢ being defined by (B83) and bn and hn being given by:

a_ - (1-c1)“”] ; (B95)

o
Il

1—(1—c])n

h =g - — (B96)

with a and 8, being defined by (B91) and (B92), respectively.



{a3) Interval III: [nlfggzl)n+e+p, n.+nn]

i
By the same method as used for the calculation of Ao(t) and Al(t)

for interval II we get for the availabilities in interval III:

WOE e My ¢ (f - ), (B97)

s fn and 8, being defined by (B83), (B87) and (B93), respectively.

A, () c]e‘*t(fn~hn), (B98)

s fn and hn being defined by (B83), (B87) and (BY96), respectively.

B5.1.2 The availability in the case of the stationary process

The availabilities Ao(t) and A](t) tend to a stationary behaviour after
a large number of inspections, i.e. there exists nearly a difference
between the values Ao(t) and Ao(t+n) for t»ee, In order to obtain this

stationary behaviour, define

A(t) = 1lim AO(nl+(n—1)n+r), 0<t<n. (B99)

b e

Note that instead of Ao(nl+(n—l)n+r) we can also take Al(n1+(n“1)n+1).
Calculating Ao(n1+(n“l)n+T) for (B92) and (B97) and taking the limit

for n»eo we get for the different intervals:

Interval I : A{t) = 0, 0<t<8 (by definition); (B100)
l_vle—A(T~8}
Interval II : A(7) = Au+l-v1 , BET=<8+u, (B101)
ith
wi oo M=)
V] = —_;\— M (B102)
I-e n
Interval IIT: A(z) = vze'A(T"e"“:’, g+u<t<n, (B103)
with RN
v . (B104)

M(l-e My 4+ (e Mo
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B5.2 Negative exponential lifetime distribution and a constant

repairtime

In this section the lifetime distribution of the component is given by
(B76) and its repairtime distribution by (B78).

We shall summarize the results for the time dependent process as well

as for the stationary situation because the derivation of the concerned
availabilities is done by the same method as for the case of the uniformly

distributed repairtime.

B5.2.1. The availability in the case of the time dependent process

(b1)_The interval I: [n,+(n-D)n, n,*(n=1n+e]

1]

Ao(t) 0;

0. (B105)

i

A (0)

(b2) The interval II: [n1+(n-1)n+e, nl+(n-1)n+9+u]

Ag(t) = e Flire (F_~g__ D}, (B106)

n-1

with fn-l and 8 .; 25 given by (B87) and (B93), respectively, with ¢
replaced by 33 Cq is defined by
ey = . (B107)
A(E) = coe MS(E -h ) (B108)
1 3 n-1 n-1"7

¢y being defined by (Bi07) and fn_ as given by (B87) and

(B96) with <, replaced by ¢

and h
n—-

1 1

3.

(b3) The interval III: [n1+(nel)n+e+u, n1+nn]

it

IWE) e“*t{1+c3(fn-gn)}, (8109)

1]

, ~-At
AT(t) e (fn—hn), (B110)

€3
cq in (B109) and (B110) being defined by (B107); fn, g, and hn are

given by (B87), (B93) and (B96) with ¢ replaced by Cqe
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B5,2.2 The availability in the case of the stationary process

For the definition of A{t), see (B99).

Interval I : A{t) = 0, 0<t<8 (by definition) {B111)
..;}\ -
Interval IT : A(t) = we (r e)’ 8<TLB+y, (B112)
with
w, = I (B113)

Interval II1I: A(t) = w (B114)

with

W, = — . / (B115)
1+(ehu-1)e An

B5.3 The functions Go(t,;) and G](t,g)

Because the lifetime distribution is negative exponential it is easy

understood that for t20 and =0:

...Az;

Go(t,a) Ao(t)(l—e )3 (B116)

AL

Gl(t,C) A](t)(l—e- ). (B117)
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APPENDIX C

A PHASED MISSION CALCULATION PERFORMED BY PHAMISS FOR THE ECCS OF A
BWR AS DESCRIBED IN CHAPTER 6

Cl Description of the input deck and the output

This appendix shows an input deck for PHAMISS and the associated output

as it is given by the computer program.

The example is taken from § 6.4. i.e. a phased mission for the Emergency
Core Cooling System (ECCS) of a Boiling Water Reactor (BWR). The mission

that is chosen is that one where every subsystem has to survive its phase.

The input deck

The input deck is shown in section C2. It consists of the following

"INPUT UNITS":

( 1) an "INITIAL INPUT UNIT"; followed by
(ii ) three "FAULTTREE INPUT UNITS", viz.
"FAULTTREE INPUT UNIT 1"
"FAULTTREE INPUT UNIT 2", and
"FAULTTREE INPUT UNIT 3"; and closed by
(iii) a "PROBCAL INPUT UNIT".

( 1 ) The "INITIAL INPUT UNIT"

The "INITTAL INPUT UNIT" starts with the problem title card,
followed by the *TREES* card. The *TREES* card indicates the
number of "FAULTTREE INPUT UNITS" that are present in the PHAMISS
input deck (in the present example this number is 3).

The next two program control cards indicate that the program
sections FAULTTREE (minimal cut set calculation) and PROBCAL
(probability calculations) are needed.

The "INITIAL INPUT UNIT" is closed by the *GOON* card.

After the "INITIAL INPUT UNIT" the three "FAULTTREE INPUT UNITS"
are inserted to the PHAMISS input deck. Each of them consists of
a "PROGRAM CONTROL SECTION" and a '"DATA INPUT SECTION".
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The "PROGRAM CONTROL SECTION"

Each "PROGRAM CONTROL SECTION" starts with the “FAULTTREE INPUT
UNIT HEADER NAME" «FAULTTREE* and contains the following program

control cards:

(a) the *HEADING* card for a special unit title which description
is given on the next card. For instance, each output page for
"FAULTTREE INPUT UNIT 1" starts with the title "initial core

cooling — phase 1";

(b) the *PFNAMEx card that defines the '"SAVE-file' for that par-
ticular input unit, e.g. the "SAVE-file" for the "FAULTIREE
INPUT UNIT 1" has the PF-name "BWRMCS!" with "ID=N3KT";

(¢} the *SPLITUP* card which means that the minimal cut sets are

presented in basic events;

(d) the *PRINT* card in order to print the minimal cut sets

(default they are not printed).

Each of these "PROGRAM CONTROL SECTIONS" ig closed by the xGOONx

card.

The "DATA INPUT SECTION"

The "DATA INPUT SECTION" of "FAULTTREE INPUT UNIT 1" consists of

two parts, viz.

- a "COMPONENT INPUT PART"; followed by
~- a "TREE INPUT PART".

The other two "FAULTTREE INPUT UNITS" only possess a "TREE INPUT
PART". This because the "COMPONENT INPUT PART" of the first
"FAULTTREE INPUT UNIT" must contain all components which are present
in the union of the three subsystems.

The "COMPONENT INPUT PART" starts with the keyname xCOMPONENTSx

and is closed by the "END" card. It contains 'COMPONENT NAME CARDS".
For a description of such a card we take as an example the first
""COMPONENT NAME CARD" that is present in the "COMPONENT INPUT PART"
of "FAULTTREE INPUT UNIT 1". The parameters on the card are (in

sequence) :
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- the name of the component (HPCS);

- the component's class (1, i.e. non-repairable);

- its lifetime distribution (0, i.e. negative exponential);

- its repairtime distribution (0, i.e. negative exponential);

— its failure rate (2.7 * 10-a/hr);

-~ 1ts mean repairtime (2.5 hrs). In the case of a class 1 com-
ponent this repairtime is neglected by PHAMISS;

~ the number of omitted parameters (0(5)). This last parameter

is necessary because the input is free-formatted.

Each '""TREE INPUT PART" starts with the keyname *GATES* and is
closed by the "END" card. Each tree card contained in it describes
a gate of the faulttree. Such a tree card starts with the name
of the considered gate followed by its type (AND or OR) and its

predecessors (inputs).

(iii) The "PROBCAL INPUT UNIT"

The "PROBCAL INPUT UNIT" consists of a "PROGRAM CONTROL SECTION"
followed by a "DATA INPUT SECTION".

The "PROGRAM CONTROL SECTION"

The "PROGRAM CONTROL SECTION" starts with the "PROBCAL INPUT UNIT
HEADER NAME'" %PROBCAL*, is closed by the *GOON* card and contains

the following program control cards:

(a) the *PHASED MISSION* card which means that the system unreliability
during the phased mission is not only calculate for each phase
at the terminating instant of that phase but also at the starting

instant, i.e. at the instants T. and Tl for phase 1, T, and T

0 1 2

for phase 2 and T2 and T, for phase 3, respectively.

3

(b) the *PFNAME* cards for each of the three phases. Because a PROBCAL
calculation always starts from the "SAVE~file(s)", the identifi-
cation of the concerned "SAVE-file(s)' has to be present in the
"PROGRAM CONTROL SECTION" of PROBCAL. In the case of a phased
mission calculation the sequence of the ''SAVE-files' has to be the

appropriate sequence of the concerned phases.
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Therefore, in our example, the first "SAVE-file'" has to be
"BWRMCS!" (for phase 1), the second one "BWRMCS2" (for phase 2)
and the third one "BWRMCS3" (for phase 3).

(c) the *ERROR* card that indicates that an error calculation is
performed . (See for the definition of the error in the

probability of mission failure (success) table 6.14 of chapter 6).

The '"DATA INPUT SECTION"

For this example the '"DATA INPUT SECTION" of the "PROBCAL INPUT
UNIT" consists of only one "INPUT PART", namely the "MISSION INPUT
PART".

The "MISSION INPUT PART" starts with the keyname *MISSION* and is
closed by the "END" card. Furthermore it contains two data cards.
The values on the first data card determine the time schedule of
the mission, i.e. the start of the "OR-phase' (at t=0), the start
of the mission (at t=0), the start of the second phase (at t=0.5),
the start of the third phase (at t=36.5) and the end of the mission
(at t=120.5).

The numbers on the second data card express the task of each sub-
system during its appropriate phase. In the present example all

subsystems have to survive their respective phases, i.e. u =1,

1

uzwl and u3=1 (see § 2.4, for the definition of a phased mission).

The output

The output of PHAMISS is self explaining. However, we shall make some

remarks concerning the present example.

(1) For each program control card present in the PHAMISS input deck a
message is printed in the output. This facilitates the user in

checking his calculations.

(2) In the case that the failure probability of the phased mission
where every subsystem has to survive its phase (indicated by
u1=u2=u3=1) is calculated, the probability of mission success for
a number of other phased missions is easily calculated too (see
§ 6.3.6. (iii)). The probabilities of mission success for these
phased missions are presented in the table with the heading "OTHER

MISSIONS'" in the PROBCAL output section.
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(3) The last table of the PROBCAL output section shows the time dependent
behaviour of the system during the phased mission where every sub-

system has to survive its phase. The heading of this table is
"-PHASED MISSION-".



C2 The input deck for PHAMISS

*PHASED MISSION EXAMPLE (BWR ~ 1977)#
#TREES* 3

*PROGRAM* *FAULTTREE* *CUTS#
#PROGRAN®  *PROBCAL*
*GUON*

*FAULTTREE#
*HEADING*

PHASE 1 =~ INITIAL CORE COOLING
#PFNAME* *BWRMCS1* #*N3KT*

*SPLITUPX
*PRINT*
*GOON*
*COMPONENTS#* :
HPCS 1 0 0 0o 2.7E~04 245 0U5)
ADS 1 0 0 0e¢ 1s4E~05 1.0 0(5)
LPCIC 1 0 0 0. 2.5E-05 2.5 015)
LPCIA 1 0 0 0. 2.56~05 2.5 0(5)
LPCIB 1 0 0 0o 245E~05 2.5 0(5)
LPC3S 1 0 0 0. 2406E-06 3.0 0(5)
HX=A 1 0 0 O« 2.8E~06 24. 015}
HX=B 1 0 O 0. 2.8E-06 24, 015}
END
*GATES*

Gl AND,HPCS,» G2

62 OR» ADS»63

63 ANDSLPCIA,LPCIB,LPCIC,LPCS

END
*FAULTTREE*

*HEAD ING* v

PHASE 2 - SUPPRESSION POOL COOLING
*PFNAME® #BWRMCS2* *N3IKT*
*SPLITUP*

*PRINT*
*GOON*
SGATES®

€1 ORs ADS,62

62 AND» G364

63 ORs HX=As LPCIA,; G5

(1.1 ANDSLPCIBSLPCIC,HPCS,LPCS

G4 OR,HX~BsLPCIB,GH

(]S ANDSLPCIASLPCICoHPCSsLPCS

END
*FAULTTREE#

*HEADING*

PHASE 3 -~ RESIDUAL HEAT REMOVAL
SPFHANES® *BWRMCS3#% *N3KT#
*SPLITUPS
*PRINTS
*GOON*

*GATES*

61 AND»G2,63

62 ORsHX~AsLPCIA

G3 ORyHX=BsLPCIB

END
*PROBCALY
*PHASED MISSION®
*PFNANE® *BWRMCS1* SNAKT#*
$PFNAME® *BWRMCS2% *N3KT*
*PFHAME® #BWRHCS3#* SN3IKT*
*ERROR*

*GOON*
*MISSION®

Os Os 05 36.5 120.5

1 1 1

END

~334~
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The output of PHAMISS

5%
$1%%
3 %3

$%

3

$%

%

$%

3
$$53%393%%
$33%%
$5553%
$% $%
% $$
33 it
$3 $3
$3 33
3 33
339553
$33%

1353333383
P3333553%9%
13 33
33 3%
33335553838
33533384

3 $3%
$3%34%
$3%%

$33385%%
53354335543
% 33
3% 3
$$$3%3%%
$335%4%%
33 $%
3% %
33353393333
3343853 %

593983983
FE533814%
3% $3%
3 +3%
% %3
%3 +3%

3844
$$85¢%9%
$3%3%

TS TERSEEIIZELEITITIR LRI RN ER T E R .

{BwR

$993%5%%
$$335153%3
3 %

% %
$3%35348%%
$385333343

$39533%%%%
$P553953%3
33
3
1$39355%9
3345345394
$%
$ $%
3833535933
$3335%%%%

$%%%
$$34%8%
$$ $%

%% %
$3p%  $3%3
$% 833 %3
$%  $3  $%
3 % 3%

333353935 %
$35334633%%
3% $%
3 53
$33533355%

$355338%3%

$%

$ %
$35553535% %
335$53%9%

$35535%55%
$335%4%3% 5
13
$%
$5%
$%¢
$3
$ $%
333545533
i32 22X 3)

$$33935%%%
$53823333%3

3585383333
535933343

$343
$335%3%
5333

$P333%%%
38393393 %
% $
$%
333138354
55339395
£
3 b
$3338833%3
$33583%%

$33%533%4%
$35383%%% %
£3
33
3433533938
$33333385%
b3
$ b3
$3533353% %
3335333

$535359%
3393395355
$% %
$3 b3
$5333%4%3

$P55183%3
$% 5%
3% 55
55435855 %
$533859%%

$Hi$%88%
2SS SN RSN
3% 1
it
$$5%3%6455%
1593%55%5%
3%
3 51
ESSART S22
$335L5%¢

£33

5%h b

$% 33

% b3

34 E3)
953335349
$9515%5839

3%

b3

3%

$353%55%5¢%
PE53365%%
[3]
%5
533
$%3
35
% $3%
$3F38%5% 8
133%45%

444244 NOTES 4404244344444+ 4444444340430 044444440

+
+
+
+
+
+
4
+
+
+
+
+

- 1977])

NeH OEKKER -

EX-E-E R 1

MINGFIELDLENGTIH UN JOBCARD 3

IN CASE OF DIFFICULTIES PLEASE CONTACT
ENERGIE ONBERZUEK CENTRUM

150000 UCTAL.

TO GET INFOPAATION ABOUT THE INPUT, JUST RiN
THE PROGKAM WITH ONLY THE CARD
*INPUT#
IN THE INPUT PECORD.

+
:

I R R R R R R R N R R R R RN R R R

NEUERLAND

3
*
+
3
+
+
+
+
+
+
+
+

IR}
$5%359
T3
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AN ST e S R A S N R T R R E A P KT R T R L YL R L T R TR E I RF A TR R SRR RS X E SR S PR N AR S LRSI ENCSEEREEIRLIIEASTEER PAGE 1

PHASE 1 - INITIAL CORE COOLING
ttl:sls:vl:xl:azg:axga:tg::=:s:::c:::ss:gz::ta!tz::tt!z!:sat!:t::zt:'sg:ltts:z:s:zanu::a:::xt:gt:tlx:::x::::ax:ns=:=:==:==z===:===:==
PROGRAM :  FAULTTREE curs ORDER @ ALL

SAVE-FILE WILL AE DEVELOPED.

PE-NAME

Rk kk kN

SAVEFILE 1 : BWRMCSI ID = N3IKY

EXTRA OUTPUT PRINTED,

RN R E Y UL E P N r L RN 2 R R N CE S N E P E T R I RN R R T E T N I N S I B E R Y E A S C N I R E T N I P N S A AR I R T RS B L T R T AN CE N S T R R SN S PSSR R TSN RITEZISTTRETRESE

-9¢e-



X R E KT X I E TSI T AN R NP IS B LI XN X IR CE IR NN N ECErEIEI T E N E R A IEEE IS X R P X NI ETZEIINANEXETEISSETARRTIABTETRE PAGE 2

PHASED MISSION EXAMPLE (BWR - 1977)

R E R IR E SRR RS EEEEEESER RS AR EEERERER RS2 R R R R SR S E R R AR ERERR R AR SR ERREREEEREEEEEEEEEERERESESESEEEEEEEIES S !‘32!:::::33:&1=38::2‘88
COMPINENTS
LEL A S22 LS
LIFE  REP, MAINTE MATNTE
COMPO. TIME  TIME INIT.UNAV./ FAILURE MEAN FIRST TEST NEXT TEST  TESTING NANCE NANCE
NR MAME TYPE DISTR. DISTR. CONST.UNAV, RATE. REP . TIME INTERVAL INTERVAL TIME CYCLE TIME
1 HPCS 1 0 o 0. 2.700E-04  2.500E+00 0. 0. 0. G 0.
2 ADS 1 0 0 0. 1.400E-05  1.000E+00 0. 0. 0. ¢ G.
3 LPCIcC 1 0 o 0. 2.500E-05  2.500E+00 0, 0. 0. 0 0.
4 LPCIA 1 0 0o 0. 2.500E-05  2.500E+400 0. 0. 0. ¢ 0.
5 LPCIB 1 0 0 0, 2.500E-05  2.500E+00 0. 0. 0. o 0.
6 LPCS 1 0 o O 2.600F-06  3,000E400 O, 0. 0. ¢ Ce
7 HX= A 1 0 o 0. 2.B00E~06  2.400E+01 O, 0, 0. ¢ c.
8 HX-B 1 0 0 0. 2.800E-06  2,400E+01 O, 0. 0. o 0.
GATES
Tl L
GATE TYPE PREDECESSORS.
61 AND HPCS 62
62 oF DS 63
63 AND  LPCIA  LPCIB  LPCIC LPCS
NR. GATE NAME  TYPE PREDECESSORS
1 63 AND -LPCIC =-LPCIA -LPCIB = LPCS
2 62 ar - ADS + 63
4 Gl AND +30001
3 30001 AND - HPCS + G2

NUMBER OF COMPONENTS
NUMBER [OF GATES
NUMBER OF SUPEREVENTS
INDEPENDENT BPANCHES
MAXJORDER UF TOPEVENT
TOP EVENT

o we ar we en we

AR W S

G

GATES MARKED WITH #* ARE SUPER EVENTS WITH MORE THEN ONE PATH TO THE TJP.
GATES MARKED WITH + ARE SUPER EVENTS WITH™ ONE PATH TU THE TOP.
COMPONENTS MARKED WITH — ARE COMPDNENTS WITH ONE PATH TO THE T0P,
GATE~NAMES STARTING WITH 39 OR 33 AKE INSERTED 8Y THE PRUGRAM

GATE-NAMES. STARTING WITH ONE 2 ARE JOINT EVENTS, {(JE)

GATE-NAMES STARTING WITH 39 ARE LUGGICAL COMBINED FVENTS. {LCE}

MAX «NUMBER OF CUTSETS @ 2

~LEE—



AR R R E I R R N N I R R E A S E R R I E R C R R I R R R R N R P R Y LS X E E e S X N R I R B P I R A N I R R F T NS AT T EIEENE RIS RN AN PSR R AR C S TR TSR PAGE 3

PHASE 1 -~ INITIAL CORE COOLING

R LR A R R S R R T e T E T A R E R R A R A R e I S R S R S N T R R P R R S A R R A S N S S R P X P SR P P ST R P I I L R S P I R R I R R E T IS EI SN X IR SN I SO FE AR EERT

kA ko b ok ok bR R A R R RO R AR AR R R R AR R R A RO R KRR R AR Rk R ik Rk R KRR Rk &
END INPUT «443{CPL.SECY TOTCPWTIME ¢ P449(SEC)

+239(10,5EC) TOT.10.TINE 2 «239{SEC)
L s e e L sy

NUMBER DOF MINLCUTSETSHWITH LOG.COMBLEVENTS.) 1

T T T e L e PR e e T e
END MINLCUTSETS +011(CP,SEC) TOTCP.TINE : «460(SEC)

«02BLI0.SEC) TOT,I0.TIME ¢ +267T{SEC)
FER AR R R R R R R R RN R S E R Rk R A A R AR E AR R AR R R AR R R R kRS F R SRRk &k

INFORMATION SAVED. PF=BWRM(CS1 I0=N3KTY

R R Y R E Y F XSS E R I I A B XL FN R E AL AR EERNEAEXERTIEEIREBIERS

-8E¢~



S EE I N X R T R R T A R I R R I A T A R E I IR S T I N S T L R P AT CE R EE NN T R R R N E T RPN RN SN TSI N REPINE FC RS S E DS RN RS SRR T R R PAGF 4

PHASE 1 - INITIAL CORE COOLING

RS X R S I X Er IR S CE L I A X E N E R B E IR Er I S AR SR NI E IS I C X R EE X R R E RN R I P A S IS NG O Y NP S S SNSRI NSNS TR IR IR ISR T RS X

“
]
[l
"
»
"
L]
"
#
i
#
L]
"
L]
L]
L
"

NR. OFRDER CUTSET

2 ADS HPCS
5 LPCS LPCIB  LPCIA LPCIC HPCS

[AVE o

Fhk ko kkrdkrkr ko khkEkkk ok kR Rk ok kAR ok k¥

NUMBER OF MIN.CUTSETS OF ORDER 1 0
NUMBER OF MIN,CUTSETS OF ORDER 2 1
NUMBER OF MINJLCUTSETS OF ORDER 3 0
NUMBER DOF MINJCUTSETS OF ORDER & 0
NUMBER OF MINLCUTSETS OF ORDER 5% 1
TOT JMUMBER OF MINLCUTSETS 2

Rk R R kR Rk Rk AR R R kR R ok Rk Rk R R Rk R kK

T T T e T T T e T R P e T e ey T e s T T S S T T P S S T S LT 2]
END OUTPUT CUTSETS. +092({CP.SETH TOTCPL.TIME : «55Z{SEC)

1+476010.5€EC) TOYL.I0LTIME ¢ 1e743(SEC)
Bk ok R R kR kR R AR R O R R R R R Rk R R kR R R koo Rk koK Rk R R R ok R kR R Rk Rk Rk

-6€¢-



A R LI RN R IR E T R A R S I P R S R L E R R R T R R A E R N S E T S N A R R N T EE X S R A A R A X I R N FEI N R EEET RS EREREERE RO e T e R PAGE 5

PHASE 2 -~ SUPPRESSION POOL COOLING
PR R FE R R R N e R I A R R P E R R R I R R R R R N R S R R S S S U N S I I T N R NI T R E I T F RN R E P N A N E R P S R AR I NN R P T AR E TSR Y TSN N N II T RAREECT TN

PROGRAM ! FAULTTREE CurTs ORDER ¢ ALL

SAVE~FILE WILL BE DEVELOPED.

PF-NAME
REEREE%
SAVEFILE 1 T BwRMCS1 ID = N3KT
SAVEFILE 2 H BWRMCS2 ID = N3KT

EXTRA OUTPUT PRINTED.

R E R R R RS P F AR I I I I S N T R N X I N R T R R S I R N R R S R P R R X R E R S S P E S S S I R R R T A N R E R TS T C R AL AT TR SICTL RERITZL LSRRI SR

~-Q%€-



F I N RN AT CIC T E NSNS CE ST E I rF T S XS XIS T E N T N R Y I TR RN SN T I EE X R PR R N RS E T R E XS S P BRI YN E S TR S I LN ERITSSSTIRCTR PAGE &

PHASED MISSION EXAMPLE {BWR =~ 1977)

B I T R IR T F R A DR X N Y S R T XS IR Y E I NI TR I NS P E 2T I TS PR T ErEEI P NSRS YT EIS SR XANN L RE T AT O RASE PSS E RO RS R

EE- A E 2R SRR E LS EEE R N
GATES
L[R2 22222 23]
GATE TYPE PREDECESSORS.
61 OR ADS G2
G2 AND G3 G4
G3 or HX~A LPCTIA G5
G5 AND LPCIB LeCIC HPLCS LPCS
G4 oRr HX~B LPCIB 66
G6 AND LPEIA LPCIC HPCS LPCS
INDEPENDENT GATES
(22222222 S RS2t
62
NRe GATE NAME TYPE PREDECESSORS
2 G2 AND G4 G3
3 Gl OR - ADS G2
4 G4 0oR LPCIB ~ HX-B G6
5 G3 0Or LPCIA - HX~A 65
[ 13 AND LPCIA 33001
7 G5 AND LPCIB 22001
1

a9001 AND HPCS  LPCIC LPCS

NUMBER OF COMPONENTS
NUMBER OF GATES E
NUMBER UF SUPEREVENTS:
INDEPENDENT BRANCHES ¢
MAXORDEF OF TOPEVENTS
TGP EVENT :

P Ll IRy

6

GATES MARKED WITH % ARE SUPER EVENTS WwITH MORE THEN ONE PATH TO THE TOP.
GATES MARKED WITH + ARE SUPER EVENTS wITH"™ ONE PATH TD THE TOP,
COMPONENTS MARKED WwITH ~ ARE COMPONENTS WITH OAE PATH T THE TOP.
GATE-NAMES STARTING WITH 2 OR 22 ARE INSERTED 3Y THE PROGRAM

GATE=-NAMES STARTIMG WITH ONE @ ARE JOINT EVENTS. (JE)

GATE-NAMES STARTING WITH 49 ARE LOGICAL COMBINED EVENTS. {(LCE) .

MAX NUMBER UF CUTSETS 16

-I%e-



AR R I X I RS P X R IR I T R N S M I I R T E R N R X P N N N NS Er X P T E R N RS S FE I IR SRS S C R T RTINS L LR N BT RIS TIPS B LY PAGE 7

PHASE 2 = SUPPRESSION POOL COOLING

AR AR L L E A S A EE R P IS R I E R R E R N P R R T P AR R R P P R E E R e P R S R R TR T X P R T R N E R I T I A R X N A T E X XS T T LT RS L CASTL AR INCASEEAREESRE

R R R R R AR AR SRR OR R TR O R R KOR RO R R Rk R R R R R Rk R kR R R R ok
END INPUT #223(CPL.SEC) TOT.CP.TIME @ «TT5(SEC)

«157(10.,5EC) TOT.I0TIME 2 L+ 900(SEC)
L e L e I e e P e i Ly

NUMBER OF MINJCUTSEIS{WITH LOG.COMBL.EVENTS.)? 7

L e L R e L eI I s
END MINJCUTSETS +028(CPLSEC) TOT.CPLTIME «T83{SEC)

+027(10,.3€C) TOT.10.,VIME 1+927(SEC)
LA R g R e L s e e s i e R s

INFORMATION SAVED. PF=BWRMCS2 1DaN3KT

AR AR S E R C S AR N R Y S A ECETRA T ANEARSFTES SR ATINACERE R =

-ehe-



EEFE XIS P E ST 2 FC AT R I EZ IS C EC T IS SN CE T IR NN NI S ET RS R F T I PSR X P F X C R XN S E S E EE T N WS EE R R R E T C I R I N X E S T AP XX I C XSS RERITIRSISHRCETSLS PAGE
PHASE 2 - SUPPRESSION POOL COOLING
R FE N N T I R R R I T EE A F R I A A S T I A R I T IS A A TR T E T N R AR O EE N A A S IR R P P C Y T N R I I TR E AT I T XTI SN RS CSI R IREISIINRNBLIB ISR IR E

NR. OPRDER CUTSET

ADS
LPCIB LPCIA
HX~-A LPCIB

HX-8 LPCIA
HX~-B HX~-4&
LPCS LPCIB LPCIC HPCS
LPCS LPCIA LPCIC HPCS

b AR S SRR IR AN g
E- BN AN TEAC R AV S

Aok ko F R kb kp gk ok bk E Rk bRk kR Rk Rk R R K

NUMBER OF MINLCUTSEYS OF ORDER 1 1
NUMBER OF MINJCUTSETS OF ORDER 2 4
NUMBER UF MINLCUTSETS OF ORDER 3 0
NUMBER OF MINJCUTSETS OF ORDER 4 2
NUMBER OF MINJCUTSETS OF ORDER 5 0
NUMBER OF MINJCUTSETS OF ORDEK 6 0
NUMBER OF MINJLCUTSETS OF ORDER 7 0
NUMBER OF MINLCUTSETS OF ORDER 8 0
TOT .NUMBER OF MINLCUTSETS 7

AR R AR R AR R kAR R R R R RO IOR Rk R kR ok K

R KA A KRR AR R AR R KRR R R R R RO OR KRR R kK OR S R oK R R Kok RO KOOk SR oK ok okok Ok
END QUTPUT CUTSETS. «096(CPLSEC) TOT.CPL.TIME «87315EC)

+310L10.5EC) TOTLLO0TINE ¢ 2.237(SEC)
LA g s L s e R e e Ess)

-£vE~



AL N R B E N R E I I R R R R R N R S R R A N A R A R A R N N R R R R P P E R R R T R E R IR R I A U I R T N P R X E N RS SRS S RNL BRI LR PAGE 9

PHASE 3 -~ RESIDUAL HEAT REMOVAL

(32 RT3 22 22 28 2 2 2 2 s L R I R E T R R R R R S
PROGRAM H FAULTTREE CUTsS ORDER ¢ ALL

SAVE«FILE WILL B8E DEVELOPED,

PF~-NAME

KRk KK )
SAVEFILE 1 t BWRM(SL 1D = N3KT
SAVEFILE 2 ¢ BWRMCSZ ID = N3KTY
SAVEFILE 3 t  BWRMCS3 10 = N3KT

EXTRA DUTPUT PRINTED.

R I R A X R EE R I R P N S F A S R R R N R R R AR R I R P S T R A T P E A S R R R N N R F R R R P I F R N R I I T P E N R T E R R I IR Y N PP E TR AR TSI ERECE LR

A4



KA I R R N Y R R T R I R N I R L I T R R S Y N N R N P T E T R RN N IS N A NI T I LT AR RSN AT I NI RIMERA TR R O e D pAGi: l(}

PHASED MISSION EXAMPLE (BWR - 1977}

R EE S ETEC X I T EFEE R Y NS 2T AT EIEEEE NI NN L IC T IS S 2T IR T ELE XX TER TESNECCE XN IE CEXI O ECCTIRLEE 2L BT TIIEIITIC IS C R TNF TS SF SIS INSLEL RIS CSIXTIERCCRR
GATES
Aok kKK Ak & K K
GATE FYpPi PREDECESSORS.
Gl AND G2 G3
62 gr HX~-A LPCIa
G3 ar HX=-8 LPCIB
NRe GATE NAME TYPE PREQECESSORS
1 G3 OR -LPCIB ~ HX-B
2 G2 R ~LPCIA - HX=A
4 Gl CAND +20001
3 200061 AND + 63 + G2

NUMBER OF COMPONENTS 3
NUMBER OF GATES :
NUMBER UF SUPEREVENTS:
INDEPENDENT BRANCHES @
MAX.ORDEFP OF TOPEVENT:!
TOP EVENT :

NGO D

G

GATES MAFRKED WITH * ARE SUPER EVENTS WITH MORE THEN ONE PATH TO THE TOP.
GATES MARKED WITH + ARE SUPER EVENTS WITH™ ONE PATH TO THE TOP,
COMPONENTS HMARKED WITH -~ ARE COMPONENTS WITH ONE PATH TO THE TOP.
GATE-NAMES STARTING WITH 3 OR 22 ARE INSERTED 8Y THE PPOGRAM

GATE-NAMES STARTING WITH ONE & ARE JOINT EVENTS. (JE)

GATE-NAMES STARTING WITH 49 ARPE LOGICAL COMBINED EVENTS. (LCE)

MAX .NUMBER OF CUTSETS : 4

Aok R R R b R HORROR ROR K KR R Rk K R KOR KR R  R F RR RR KORRORRR KR R R R KRR R R R R RO R KR R R R
END INPUT «1320CPLSEC) TOT.CP.TIME ¢ 1.071(SEC)

«159(10.SEC) TOTLIO0.TINE & 2+336(SEC)
AR R Rk ok kR Rk RO AR R R R R R R R R R R ROk Rk AR KR R A R b R R kR R R ok ok ok R otk Rk K

NUMBER OF MINJCUTSETSIWITH LUG.COMBLEVENTS, )¢ 1

-G~



R R R E R RN R P T R R X I R I E I R P R I TR X N P T R Y I X F P S E E E E X T R I NI S S AT S22 I ML AL LLEALITITEETIRAL I IR SRR PAGE 11

PHASE 3 -~ RESIDUAL HEAT REMOVAL

R E AR R e S I P RS e S IR E N I B A R I S NN R I S N T R S I R I N EE E S E S Z P P I X N RS EN I R S S RS E R I R 2 T P e O E S AR SR Y S RSP E R RS S TSR EESXNTEIXIALTEFRESERERR

AR AR AR F AR AR R AR R AR R AR AR R R PR R AR R F R d kRN h R b bk kR F kR bRk kR R F Rk
END MINJCUTSETS +013(CPLSEC) TOT.CP,.TIME ¢ 1.090(5€C)

«028(10.,5EC) TOTWI0TIME @ 2e424(3EC)
I I I I I I T I

INFORMATION SAVED. PF=BWRMCS3 ID=N3KT

B E N EE E NS P RS IR S S AR I I IR I RS S ETI IR ATIE LA S EAETIILERERRES

~97E-



BERRAR IR A R S R N R R S K R R I A R R A P I R R R RN Y R R N R R S X E R E C R T X I A R E S P TS N A I EE A PRI A BT L LN T XS IBEL AT E LR TR D PAGE
PHASE 3 -~ RESIDUAL HEAT REMOVAL
K RS X R TR r E P E A E R R T R RS IR EF R IR I T I R E R R A E E T I I S R E S E SR X I P R PR I N R A IR ST IR I F XTI X E R E I T T A IR EEER SR LY ISR IRISS TR IR S

NR., ORDER CUTSET

12

ITERZALLTREE

o o i oy i W S e, . e o e B 1 . 92 W et o D e i A ] ] " o -1 . Y " " D1 D e T o Y o W P SO < i S . o S T i T e i o S O e s S S T e o S i I e o S S T o T S S S 1 O T S W1 172 O "

Hx~B HX=A
HX~-B LPCIA
HX=-& LPCIB

2
F4
z
I LPCIB LPCIA

o N

Y IS AT L R It I T Iz I TS TS T

NUMBER OF MIN.CUTSETS OF ORDER 1 0
NUMBER OF MINLCUTSETS OF ORDER 2 4

TOTLNUMBER OF MINLCUTSETS 4

Iy Ry ey T s T T TR TYS L

LR 22 RS R 2R 222 A R RN R R R e R i R 222 R SRR 2RSS L]
END QUTPUT CUTSETS. «132ECPLSECY) TOTCP.TIME ¢ 1.193(5€ECY

2171010, 5€EC) TOTI0.TIME 249595(35EC)
LA L e e e s L e T L )

-L%E-



LI R A2 R RS R X2 2 23 R R R R 2 R R 2 2 i R R R R R R R R R Y E R RS R R R R RN R R R R R R P g e S L ] PAGE 13

PHASE 3 ~ RESIDUAL HEAT REMOVAL

BN R D N F R R e E R R I R AN E R P R E R N E R RN N E R R I R S I S R S S R X S E R O N S T S R E R R N T E R R L R T R N R AN P X E R S S T R PR R S I RS E P I R 2SI RIS I TS EE I T LN ETIILSEER

PROGRAM H PROBCAL

PF~NAME

Tk kk ok

SAVEFILE 1 ! BWRHMCS] 1D = N3KT

SAVEFILE 2 i BwWwRMCSZ ID = N3KT

SAVEFILE 3 ¢ BWRMCS3 1D = N3KT

S T R XL RE R RN AR R R A D EE ISR R E RN R T EE R AN R E X AR EE R R LT R P PRI ARSI E NN R C E RS I ECE RIS ¥ I NN I E TR ECEEXSEESCXE PR EIRXECRBSSECTTIZETEITSCESEZS S
MISSION

Fkkokdeok dok dok ok kR

EPRDOR CALCULATION PERFORMED.
ALL PHASES WILL BE CALCULATED,
RARE EVENT APPROUXIMATIUN APPLIED.

sxxzx CALCULATIONS BASED ON MIN.CUTSETS UP TO ORDER ¢  AlLlL, =====

TIME POINTS

T(0} T{BEGIN) TLEND-PHASEC(J))

0.000 0.000 « 500 364500 120.500

- " "> - o ;- ;S - - " " T O AL o . D O A A A LD 1 U1 2 -

~ghe-

B L T e T T Y Ty N P e T Y Y T i s L,
EMD INPUT PROBCAL «093{CP,SEC) TOTLCPLTIME : 1.286(SEC)
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SAMENVATTING

"Betrouwbaar zijn" en "beschikbaar zijn" of "betrouwbaarheid" en "be-
schikbaarheid" zijn begrippen welke al sinds lange tijd een bekende klank
bezitten in de dagelijkse omgang tussen personen. "Betrouwbaar zijn" als
persoon wil bijv. zeggen dat de betrokkene geen misbruik maakt van aan

hem (of haar) verstrekte informatie, gedurende langere tijd. Een zegswijze
als "door de jaren heen kun je op hem (haar) bouwen', geeft een duidelijke
relatie aan met "betrouwbaar zijn". Voor "beschikbaar zijn'" geldt iets
dergelijks. "Beschikbaar zijn'" als persoon houdt in dat op elk moment
aanspraak op de betrokkene gemaakt kan worden. Als voorbeeld hiervan kan
men denken aan huis— en keukenpersoneel dat gedurende de diensturen steeds
beschikbaar moet zijn voor diegenen welke hen ingehuurd hebben.

Voor door de mens gemaakte werktuigen geldt iets dergelijks. Men zegt
bijv. dat een auto 'betrouwbaar is" als gedurende langere tijd geen man—
kementen aan deze auto optreden. Dezelfde auto heet "beschikbaar te zijn"
als hij, op het ogenblik dat men een rit wil ondernemen, start en kan
rijden.

Blijkbaar is het zo dat "betrouwbaarheid" iets te maken heeft met het
ongestoord functioneren gedurende langere tijd, en dat "beschikbaarheid"
iets zegt over het functioneren op een zeker moment.

In het begin van deze eeuw is de behoefte ontstaan om de tot nu gevoels-
matig omschreven begrippen als "betrouwbaarheid" en 'beschikbaarheid"
preciezer te omschrijven. Deze behoefte is gevoed door een steeds voort=—
schrijdende technische ontwikkeling, waarbij het van belang geacht werd
vooraf iets te kunnen zeggen over het gedrag van materialen, d.w.z. een
voorspelling te kunnen geven over de "levensduur', de tijd van ongestoord
functioneren van het materiaal. Men heeft daartce de '"betrouwbaarheid" van
een materiaal wiskundig gedefinieerd als een kans, d.w.z. "de betrouwbaar-
heid op tijdstip t" wordt geformuleerd als '"de kans dat het materiaal geen
defecten vertoont gedurende minstens een tijd t". Naast de "betrouwbaar-
heid" wordt vaak de z.g. "levensduurverdeling" gebruikt. De ''levensduur-
verdeling" is complementair aan de "betrouwbaarheid", d.w.z. hij beschrijft
de kans dat het materiaal binnen een tijd t bezwijkt. In de jaren '30 heeft
bijv. Weibull voor de beschrijving van het vermoeiingsgedrag van metalen
de later zo gencemde "Weibull verdeling {levensduurverdeling)' voorgesteld.

Een ander voorbeeld betreft de levensduurverdeling van electronische compo-
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nenten. In de beginjaren '50 heeft men, gebaseerd op waarnemingen, gevonden
dat de "negatief exponentiele verdeling'" een goede representatie vormt voor
de levensduurverdeling van dergelijke componenten. Tijdens en na de Tweede
Wereldoorlog zijn systemen steeds ingewikkelder geworden. Vandaar dat niet
alleen de betrouwbaarheid van componenten van belang was, maar men ook
steeds meer geinteresseerd raakte in de "systeembetrouwbaarheid", de kans
dat een systeem gedurende een zekere periode ongestoord functioneert.

Omdat een systeem opgebouwd is uit componenten en hun structurele samen—
hang, is de "systeembetrouwbaarheid" vanzelfsprekend een functie van de
betrouwbaarheid van elk der componenten. De belangrijkheid van de systeem-—
betrouwbaarheid komt in de jaren '50 vooral naar voren bij militaire sys-
temen en in de ruimtevaart. De techniek welke in die jaren gebruikt wordt
ter bepaling van de systeembetrouwbaarheid berust op de z.g. "betrouw-
baarheids-blokdiagrammen'. De werking van een systeem wordt bij deze
methode aangegeven door blokken welke onderling verbonden zijn door lijnen.
Elk blok vertegenwoordigt een deelsysteem (of deelfunctie). Voor elk blok
wordt de betrouwbaarheid berekend en de systeembetrouwbaarheid kan daarna
bepaald worden aan de hand van de betrouwbaarheden van de blokken.

De betrouwbaarheidsberekeningen via blokschema's zijn eigenlijk gebaseerd
op handrekentechnieken. Want naarmate systemen complexer worden, groeien
ook de overeenkomstige blokschema's. Dit heeft tot gevolg dat de blok-
schematechniek voor complexe systemen praktisch niet zo goed hanteerbaar
is.

In het begin van de jaren '60 is men dan ook m.b.t. betrouwbaarheidsbere-
keningen voor complexe systemen overgegaan op een nieuwe methodiek, de

z.g. "foutenboom analyse'. Foutenboom analyse, afgekort FTA*, is een
techniek die gericht is op de analyse van een specifieke systeemstoring.

De comstructie van de foutenboom voor de betreffende storing, aangeduid
met "TOP-gebeurtenis', verloopt als volgt.

De TOP-gebeurtenis (systeem storing) wordt door middel van een logische
"OF" of "EN" gerelateerd aan storingen van subsystemen welke de systeem
storing mogelijkerwiis zouden kunnen laten optreden. Elke subsysteem storing
wordt daarna gekoppeld aan storingen op het volgende, lagere, systeemniveau,

enz. Deze ontwikkeling stopt op het moment waarop storingen van componenten

*FTA: Fault Tree Analysis
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(het laagste systeemniveau) ingevoegd zijn. De gehele structuur, welke
begint bij de TOP-gebeurtenis en eindigt op het niveau van de componenten,
heet nu een "foutenboom voor de betreffende systeem storing".

Met behulp van FTA kunnen zowel kwalitatieve als kwantitatieve karakteris-—
tieke grootheden voor de betreffende systeemfunctie bepaald worden.
Kwalitatieve grootheden zijn o.a. de mogelijke manieren waardoor de sys-—
teem storing tot stand komt. Deze storingsmogelijkheden noemt men "mini-
male sneden'". Iedere minimale snede bestaat uit een combinatie van compo-
nenten, welke de systeem storing laten optreden op het moment waarop elke
component van de combinatie gefaald is. Andere kwalitatieve grootheden,

de z.g. "minimale paden", vormen de combinaties van componenten welke het
functioneren van de systeemfunctie garanderen. Als iedere component van
zo'n minimaal pad functioneert, dan functioneert het systeem. Kwantitatieve
grootheden zijn o.a. de "systeem niet-beschikbaarheid" en de "levensduur-
verdeling" van het systeem. Deze twee grootheden zijn complementair aan
de "systeem beschikbaarheid" en de '"systeem betrouwbaarheid'. Maar omdat
FTA in principe een analyse is van een systeem storing i.p.v. het functio-
neren van een systeem, worden de eerstgenoemde grootheden meestal berekend.
De berekening van de "niet-beschikbaarheid" en de "levensduurverdeling"
voor een systeemfunctie is gebaseerd op de 'minimale sneden" en kan daarom
pas plaatsvinden nadat deze "minimale sneden" bepaald zijn. De complexi-
teit van de kwantitatieve berekeningen neemt sterk tcoe als onderhoudspro—
cedures mede in rekening gebracht dienen te worden.

In welke gevallen het aanbeveling verdient om de "niet-beschikbaarheid"

en in welke gevallen het aanbeveling verdient om de ''levensduurverdeling"
voor een systeem te berekenen, hangt enigermate af van het soort systeem.
Men kan, voor wat dit aspect betreft, onderscheid maken tussen z.g. "ac-
tieve" en '"niet~actieve'" systemen. Een systeem heet "actief' als het ge-
durende een zekere tijd {(bijv. een dag of een maand) onafgebroken moet
blijven functioneren. Een "niet~actief"” systeem daarentegen behoeft alleen
maar in werking te komen wanneer daar vraag naar is. Een "actief” systeem
is bijv. de motor van een auto tijdens een rit; het remsysteem van die
auto kan gedurende die rit beschouwd worden als een "niet-—actief' systeem.
Het verschil tussen beide soorten systemen bestaat hieruit, dat een systeem
storing voor een "actief" systeem fataal is terwijl dit voor een "niet-
actief" systeem niet zo behoeft te zijn. Als de storing van een 'niet-

actief'" systeem tijdig ontdekt en hersteld wordt voor de eerstvolgende
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keer dat er gebruik van het systeem gemaakt wordt, dan is zo'n storing
niet fataal.

Als bijv. de motor van een auto tijdens de rit afslaat en niet weer op
gang te brengen is, dan is de rit voortijdig afgelopen. Als echter het
indicatielichtje van het remsysteem tijdens de rit gaat branden, ten teken
dat het remsysteem defect is, bestaat de mogelijkheid om tijdig te stoppen
en de storing te verhelpen, waarna de rit voortgezet kan gaan worden.
Vandaar ook dat voor een "actief" systeem de "levensduurverdeling" en voor
een "niet—actief'" systeem de ''miet-beschikbaarheid" een kenmerkende kwan-
titatieve grootheid is.

In de praktijk van de afgelopen twintig jaar is gebleken dat voor complexe
systemen FTA eigenlijk de enige mogelijkheid biedt tot het verkrijgen van
inzicht in deze systemen. Met behulp van FTA kunnen o.a. zwakke plekken

in een systeem worden opgespoord en kunmen vergelijkende studies voor
diverse systemen uitgevoerd worden. Hoewel aanvankelijk FTA vooral in de
ruimtevaart is toegepast, heeft men omstreeks het midden van de zestiger
jaren ingezien dat deze techniek ook voor andere terreinen toepasbaar is.
Vandaar dat vanaf die tijd FTA ook is toegepast voor systemen binnen
nucleaire centrales, vooral voor de "niet—-actieve' veiligheidssystemen.
Bij de uitvoering van de grote risico-studie m.b.t. de veiligheid van
kerncentrales in de Verenigde Staten, de z.g. Rasmussen studie (eind-
rapport 1975), is voor het eerst op grote schaal FTA toegepast. Bij der-
gelijke studies gaat het echter niet alleen om de analyse van een enkel-
voudig systeem, maar veelal om de analyse van een aantal, procesmatig
verbonden systemen welke niet gelijktijdig maar na elkaar functioneren

en waarbij vaak afhankelijkheid tussen de systemen onderling bestaat.

Eén van de afhankelijkheden kan zijn dat door meerdere systemen van een—
zelfde component (bijv. een pomp) gebruik wordt gemaakt. Door deze af-
hankelijkheden wordt de berekening van kwantitatieve grootheden nogal wat
ingewikkelder.

In de moderne ruimtevaart treft men ook afhankelijke systemen aan. Een
voorbeeld hiervan is een raket. Zo'n raket bezit in het algemeen meerdere
trappen d.w.z. meerdere systemen. Elk van deze trappen werkt tijdens de
vlucht gedurende een bepaalde periode en stopt dan zijn werking, waarna

de volgende trap in werking treedt. De trappen zelf maken vaak gebruik

van een algemeen besturingssysteem. Voor een dergelijke raketvlucht
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(de z.g. missie van een raket) is men geinteresseerd in de kans dat de
totale vlucht goed uitgevoerd wordt, d.w.z. de kans op succes van de
raketvlucht.

In de literatuur wordt een dergelijke vlucht omschreven als een gefasecerde
missie. Blijkbaar is een gefaseerde missie een opdracht voor een complex
systeem, waarbij de opdracht in gedeelten (fasen) uitgevoerd wordt, het
ene deel na het andere. Iedere deelopdracht wordt uitgevoerd door een
deelsysteem van het totale systeem. De deelsystemen kunnen onderling af-
hankelijkheid vertonen. Voor het uitvoeren van elke deelopdracht is een
bepaalde tijd nodig. De opdracht (missie) is geslaagd (is een succes) als
elke deelopdracht slaagt, d.w.z. elke fase overleefd wordt. De missie
mislukt als er een deelopdracht mislukt, d.w.z. als er een storing van een
deelsysteem tijdens het uitvoeren van zijn deelopdracht optreedt. De
karakteristieke grootheid is de kans op het succesvol uitvoeren van de
missie, of het complement hiervan, nl. de kans op het falen van de missie.
In het eerste geval zou men kunnen spreken over de betrowwbaarherd van

het gehele systeem.

Het opmerkelijke is dat studies m.b.t. gefaseerde missies en gebaseerd

op FTA later in de literatuur verschijnen dan de risico-studies welke

met behulp van FTA uvitgevoerd zijn. Toch bestaat er overeenkomst tussen

de modellen van beide probleemgebieden. Om dit in te zien is het handig

om eerst een schets te geven van de opzet en ultvoering van grote risico-
analyses. We zullen dit doen aan de hand van een alledaags voorbeeld:

het wasproces van vuile was.

De bedoeling van het wasproces is om uiteindelijk een schone, droge was

te krijgen. Zo'n wasproces wordt pas aangevangen wanneer er vuile was aan-
wezig is. Het proces zelf in de wasmachine denken we ons opgebouwd uit

de volgende drie gesimplificeerde functies:

(a) het aanzuigen van water (functie FI);
{b) het wassen {(functie F2);

(c) het centrifugeren (functie F3).

Het aanzuigen van water, het wassen en het centrifugeren vinden plaats

in deze vaste volgorde. Daarbij neemt iedere functie een zekere tijd in
beslag. Het uitvoeren van elk der functies gebeurt door het daartoe ont-
worpen systeem. Voor het aanzuigen van water zijn de klok van de wasmachine,

de klep welke voor de watertoevoer zorgt en de waterniveauregelaar nodig.
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Tijdens het wassen moeten de klok, de waterniveauregelaar, de verwarming,

de motor en de snaar functioneren. Het centrifugeren wordt correct uitgevoerd
als de klok, de snaar en de motor hun respectievelijke functies goed ver-
vullen.

(Opgemerkt zij dat er verondersteld wordt dat alle andere onderdelen van

de wasmachine, zoals de trommel, lagers, enz. goed werken). Het deelsysteem

voor het uitvoeren van bijv, functie F, (aanzuigen van water) bestaat hier

1
dus uit de klok, de klep en de waterniveauregelaar.

Als alle drie functies (Fl’ F,. en F3) goed uitgevoerd worden, is het re-

sultaat (of gevolg) een schoni, droge was. Als echter functie F3 (centri-
fugeren) niet uitgevoerd wordt (omdat het daartoe benodigde systeem faalt)
dan bestaat het gevolg uit een schone, natte was. En wanneer functie Fl
(aanzuigen van water) of functie F2 (wassen) niet uitgevoerd worden, dan
is het gevolg dat men met een vuile was blijft zitten. Ommiskenbaar is
deze situatie de meest dramatische.

Het hierboven beschrevene is samengevat in onderstaand schema,

FUNCTIES e

F. F. F

IG 1 2 3
[VUILE WAS | WATER ( CENTRI-
AANWEZIG) AANZUIGEN) (WASSEN) FUGEREN)
| | | i
! ! ! SCHONE, DROGE
t { I WAS
| : Q
: : SCHONE, NATTE EC“":
| SLAGEN T WAS O
1
VUILE WAS 1
FALEN l VUILE WAS

In zo'n schema zijn de functies welke achtereenvolgens uitgevoerd moeten
worden gekoppeld aan het gevolg, dat afhankelijk is van het wel of niet
geslaagd uitvoeren van elk der functies. Voorafgaand aan de functies

wordt vermeld wat de reden voor het in gang zetten van het proces is ge-

weest, de z.g. "initiérende gebeurtenis (IG)". In ons voorbeeld is dat
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het aanwezig zijn van vuile was.

Binnen de risico—analyse noemt men een dergelijk schema een gebeurtenissen—
boom. Elk der wegen welke tot een gevolg leidt heet een ta¢k van de gebeur—
tenissenboom. De gebeurtenissenboom wordt in de regel zo opgesteld, dat

de "gevolgen" in het schema van boven naar beneden steeds ernstiger worden.
Daarbij moet men wel bedenken dat de "initierende gebeurtenis" in geval
van risico-studies veelal storingen binnen een systeem voorstellen, en

de functies (F], F2, enz.) zorg moeten dragen voor de goede afloop van een
dergelijk incident. De functies moeten dus zorgen voor een zo klein moge-
1ijk schadelijk gevolg. Een voorbeeld van een initiérende gebeurtenis
binnen een kernreactor zou kumnen zijn: een breuk in een van de leidingen
waardoor water stroomt om de kern te koelen.

Bij risico-studies heten de takken van een gebeurtenissenboom vaak onge-
luksverlopen. Van zo'n ongeluksverloop is het van belang om niet alleen
het gevolg te kennen, maar ook de kans op het optreden ervan. En hier
krijgen we te maken met kansrekening van een aantal, vaak afhankelijke,
functies (deelsystemen).

Als we teruggaan naar de hiervoor omschreven gefaseerde missie, dan is

het duidelijk dat die tak van de gebeurtenissenboom waarbij elk van de
functies goed uitgevoerd wordt, als een gefaseerde missie beschouwd mag
worden. In de huidige literatuur is dit nog niet onderkend. De huidige
studie gaat echter nog een stap verder en definieert iedere tak van een
gebeurtenissenboom als een gefaseerde missie. Tevens wordt een nieuwe
methodiek geintroduceerd voor de berekening van de kans op optreden van
een gefaseerde missie. Deze nieuwe methodiek maakt gebruik van FTA en is
hoofdzakelijk ontwikkeld om onderlinge afhankelijkheden van deelsystemen
op een juiste manier te behandelen. Bij de tot nog toe uitgevoerde risico-
studies is dit vrijwel nooit methodisch maar veelal gevoelsmatig gebeurd.
De nieuwe methodiek beperkt zich tot componenten en systemen welke zich
slechts in 8&n van de volgende twee toestanden kunnen bevinden: de functio-
nerende of de gefaalde toestand. Men spreekt dan ook van een binair gedrag.
Verder wordt verondersteld dat inspecties en reparaties niet uitgevoerd
worden bij "actieve' systemen. De methodiek berust op een scheiding van de
analyse van het gedrag van componenten en de analyse van het gedrag van
systemen. Vanwege dit aspect is het mogelijk gebleken om de inspectie en
reparatie procedures gestalte te geven in de mathematische modelvorming

van de componenten. Ten opzichte van de bestaande literatuur zijn een aan-
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tal nieuwe varianten toegevdegd aan de diverse bestaande componenten~
modellen. Deze nieuwe modellen worden uitvoerig behandeld in deze studie,

De oplossingsmethodiek is gebaseerd op FTA, d.w.z. op de minimale sneden
(storingsmogelijkheden) van een systeem. Aangezien het aantal minimale
sneden voor complexe systemen zeer groot kan zijn (soms miljoenen) is het
meestal niet mogelijk de exacte analytische oplossing te produceren.

Vandaar dat ook onder— en bovengrenzen voor de kans op het optreden van een
gefaseerde migssie (tak van een gebeurtenissenboom) gepresenteerd worden.

Uit berekeningsresultaten blijkt dat indien de afhankelijkheden tussen de
systemen niet volledig meegenomen worden, de kans op het optreden van die
takken in gebeurtenissenbomen welke de grootste gevolgen met zich meedragen,
te laag afgeschat worden. Tevens biedt de nieuwe methodiek op kwantitatieve
wijze inzicht in de mate van afhankelijkheid tussen systemen. Beide laatst
genoemde aspecten zijn van wezenlijk belang voor risico—analyses.

Om de methodiek hanteerbaar te maken voor complexe systemen is zij gelmple-
menteerd in het betrouwbaarheids—computerprogramma PHAMISS, Het programma

is geschreven in de programmeertaal FORTRAN-IV voor de CDC-Cyber 175.

In de praktijk is aangetoond dat PHAMISS een zeer snel en efficient programma

is en tevens een hoge mate van gebruikersvriendelijkheid bezit.
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STELLINGEN

Ook bij het gebruik van kernfusie-reactoren doen zich risico—-aspecten

voor, hoewel in geringere mate dan bij kernsplijtingsreactoren.

2

Het nut van de kwantificering van betrouwbaarheid en risico van systemen

is mede gelegen in het verkrijgen van een grondige systeemkennis.

3

Het uitvoeren van gevoeligheidsanalyses bij risico~ en betrouwbaarheids-

studies dient onder geen voorwaarde achterwege te blijven.

4

De interpretatie van resultaten van uitgevoerde risico-analyses vereist
een grote mate van deskundigheid. In het bijzonder diemt het interpre-
teren van kansen, welke optreden als uitkomsten bij betrouwbaarheids-

studies, met de grootste zorgvuldigheid te geschieden.

5

De verslaggeving van risico- en betrouwbaarheidsanalyses dient doorzichtig

te zijn; de uitgevoerde berekeningen moeten gecontroleerd kunnen worden,

6

Bij het vaststellen van een procedure voor uit te voeren risico-~analyses
dient nauwkeurig de doelstelling en het gebruik van de te verkrijgen re-
sultaten omschreven te worden; doelstelling en gebruik van een risico-

analyse stellen hun eisen aan de detaillering van het systeemmodel.

7

Bij het stellen van normen door de overheid omtrent het veilig gebruik
van complexe technische installaties, verdient het aanbeveling een norm
vast te stellen met betrekking tot de procedures volgens welke risico-

analyses uitgevoerd moeten worden.



8

In de verslaggeving van uitkomsten van betrouwbaarheidsberekeningen
dienen ten aanzien van de beschrijving van de invoergegevens vermeld te
worden:

(i) de gevolgde procedure ter verkrijging van de waarnemingen;

(ii) de statistische methodieken welke voor het verwerken van de waar—

nemingen zijn toegepast.

9

De in Nederland van overheidswege gesubsidieerde grote onderzoeksinsti~
tuten (bijvoorbeeld TNO, ECN, NLR, enz.) zijn bij uitstek geschikt voor

het ontwikkelen van hoogwaardige produktie software.

10

Bij het beschikbaar stellen van computer programma-pakketten voor het
uitvoeren van betrouwbaarheidsanalyses, dient naast doelmatigheid in
sterke mate rekening gehouden te worden met operationele gebruikers-

vriendelijkheid.

11

Voor programma-pakketten waarmee veelscortige berekeningen betreffende
eenzelfde vakgebied uitgevoerd kunnen worden, verdient het aanbeveling
een filosofie te ontwikkelen betreffende de structuur van de invoer zo-

danig dat voor elk soort berekening de invoer eenzelfde opbouw bezit.

12

De benodigde tijd voor het ontwikkelen van grote, doelmatige en effi-
ciénte computerprogramma's kan enigszins afgeschat worden als de pro-
grammeertaal en het aantal correcte opdrachten (software statements)

dat gemiddeld per dag geproduceerd kan worden door een goede program-

meur in deze taal bekend zijn; voor de taal FORIRAN ligt dit aantal
tussen de 5 4 15 per dag.



