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Abstract 

In the present paper we give a condition in order that the set of 

infinitely differentiable vectors for a representation 11" in a Banach 

space is equal to the set of all infinitely differentiable vectors for the 

restriction of 11" to a subgroup. Similar results for Gevrey vectors and 

analytic vectors are proved for unitary representations. 
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1 Introduction and notations 

Let 7r be a continuous representation of a d-dimensional real Lie group G in a Banach space 

E. For each U E E define 11 : G -+ E by 11(x) := 7rx U (x E G). A vector U E E is said to 

be infinitely differentiable, analytic resp. a Gevrey vector of order A for 7r, A ;? 1, if the map 

11 is infinitely differentiable, (real) analytic resp. a Gevrey function of order A for 7r. (Cf. 

[Gar], [NeIJ and [GW] respectively.) Let Doo(7r), DW(1f) and G.\(7r) denote the space of all 

infinitely differentiable vectors, of all analytic vectors and of all Gevrey vectors of order A for 

7r respectively. Note that DW(1f) = GI(1f). For each X in the Lie algebra l.l of G let d7r(X) 

denote the infinitesimal generator of the one-parameter group t I--l> 1fexp tX and let 81f(X) 

denote the restriction of d1f(X) to Doo(1f). The map X I--l> 81f(X) extends uniquely to an 

associative algebra homomorphism from the complex universal enveloping algebra U(g) of 9 
into the set of all linear operators from Doo(7r) into Doo(7r). The extension is denoted by 81f 

also. 

There exist infinitesimal characterizations for the spaces Doo ( 1f), DW( 7r) and G.\ (1f). There

fore, let A be a set of (possibly unbounded) operators in E. Define the joint COO-domain 

Doo(A) of the set A by 

n D(AI 0 ••• 0 An). 
nelNo At, ...• AneA 

Here D(At 0 ••• 0 An) denotes the domain of the operator At 0 ••• 0 An. For A ;? 1 define the 

Gevrey space S.\ (A) of order A relative to A by 

S.\(A) := {u E Doo(A) : 3c,t>O'v'nElNo'v'Al .... ,An EA [IiAt 0 ... 0 Anull :5 ctnn!.\]}. 

(Cf. [GW, Section 1].) Now Goodman and Wallach have proved the following infinitesimal 

characterization of the spaces D oo ( 7r) and G A ( 7r ). 

Theorem 1 Let 7r be a representation of a Lie group G in a Banach space E. Let Xl"'" Xd 

be any basis in the Lie algebra 9 of G. Let A ;? 1. Then 

and 

Proof. See [Goo, Proposition 1.1] and [GW, Proposition 1.5]. o 

Let d1 E {I, ... , d - I}, where d = dim g. Then clearly for any basis X I, ••. , Xd in g: 

In the present paper we give conditions on the Lie algebra 9 and the representation 1f in 

order that D oo( 1f) = D oo ( {d7r(X1), ... , d1f(Xdl)}) for suitable Xl"'" Xdl in g. Also, in case 

-t:= span{d7r(Xt), ... ,d1f(XaJ} is a subalgebra of g, there exists a subgroup J( of G with Lie 

algebra t and we obtain 
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For a semisimple Lie group G these conditions are satisfied if for t we take the subalgebra tin 

the Cartan decomposition g:::: t+13 of 9 and for the representation 1r a completely irreducible 

one or a principal series representation. 

For unitary representations we prove similar theorems for the set of Gevrey vectors. 

2 Infinitely differentiable vectors for restrictions to subgroups 

In this section we prove the following theorem. 

Theorem 2 Let 1r be a representation 0/ a Lie group G in a Banach space E. Let Xl, ... ,Xd 

be a basis in the Lie algebra 9 0/ G. Let dl E {l, ... , d - l} and let 

C:= xl + ... + xl1 - X~1+1 - ... - XJ E U(g). 

Suppose C belongs to the center 0/ U(g) and suppose there exists r E C such that 

Then 

Proof. Without loss of generality, we may assume that G is connected. Let 

~ .- X? + ... + XJ E U(g), 
~l .- X? + ... + X~1 E U(g), 
a -2 -2 .- Xl + ... +Xd, 
~1 

-2 -2 .- X I +,,,+Xd1 ' 

Here X denotes the left invariant differential operator on G which corresponds to X. Let 

u E DOO({d1r(Xl)'" .,d1r(Xd1 )}) be fixed. We have to prove that the function it from G 

into E is infinitely differentiable. By [Pou] it is enough to prove that it is weakly infinitely 

differentiable, Le. the function / 0 it from G into C is infinitely differentiable for all / E E'. 

We shall show that for all / E E' and all m E IN there exists a continuous function 9 on G 

such that / 0 it is a weak solution of the equation am F = 9 and then by using regularity 

theory for elliptic differential operators the regularity of / 0 it follows. 

Let t be the contragredient representation of 1r on the Banach space E in the sense of 

Bruhat. So E consists of all / E E' for which the map x I--t (1r x-I )* / from G into E' is 

(strongly) continuous. (Here ( )* denotes the dual operator in the dual space.) Then for all 

x E G the operator tx is defined by tx := (1rx -1 )*IE' SO x 1-+ tx is a continuous representation 

of G in the Banach space E. (See [Bru, §I.2.2].) We first consider infinitely differentiable 

vectors for t. Let / E DOO(t). Then /0 it(x) = /(1rx u) = [tx-1/](u) for all x E G, so /0 it is 
an infinitely differentiable function from G into C. Let m E IN. Let 
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Assertion 1. For all I E DOO(ii") and all x E G we have 

Proof of Assertion 1. Let IE DOO(ii"). Let n E IN and let iI, ... ,jn E {I, ... ,d}. Then for 

all x E G: 

[XiI 0 ... 0 Xi,,(f 0 u)](x) = 
= ;:;lJt I ... 00 I 1(7rx7rexp(t1X } 0 ... 0 7rexp(t"X )u) 

u 1 0 tn 0 31 3n 

= O~l to··· lJ~n 10 1(7rexp(tlAd(x)Xn ) 0 ••• 0 7rexp(tnAd(x)Xjn}7rxU) 

= o~110'" o~n 10 [ii"exp(-tnAd(X)Xin) 0 ••• 0 ii"exp(-tlAd(X)Xh)/] (7rx U) 

= (_1)11, IOii"(Ad(x)(Xin' .. XiI »/](7rx u) 

- [oii"(Ad(x )(Xil ... Xin)*)/]( 7rx U). 

Here L 1-+ L* denotes the usual anti automorphism from U(g) onto U(g). Let Y E g. Then 

Ad(exp Y)(C) = eadY (C) = C, because C belongs to the center of U(g). Since G is connected, 

Ad(x)(C) = C for all x E G. Moreover, for all v E DOO(7r} we have 

[lJ1i'(C)/l (v) = l(07r(C*)v) = l(07r(G)v) = r I(v). 

Since DOO(7r) is dense in E, by [Gar], Oii"(C)! = rl, by continuity. Note that A. = 2.601 - C. 

So we obtain for all x E G: 

[3.m (f 0 u)] (x) = [oii"(Ad(x)(.6om»/l (7rx u) 

= i;,(-1)' (~) [{8;;-(Ad(x)(C))}'o;;-(Ad(x)(2Ll.tlm-')f] (~.u) 

= ~(_I)k (;) [rklJii"(Ad(x)(2A.dm
-

k)/] (1I'x u) 

= [oii"(Ad(x)«2.6ol - r)m»/] (1I'xu) 

= [(23.1 - r)mu 0 u)] (x) 

= [(f 0 wm)](x). 

This proves Assertion 1. 

Let ). be a right Haar measure on G. 

Assertion 2. For all <p E Cgo( G) and all lEE' we have 

J [3.m <p] (x) [J 0 U] (x)d)'(x) = J <peg) [J 0 Wm ] (x)d).(x) 
G G 
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Proof of Assertion 2. Let TK be the polar topology for E' of uniform convergence on the 

compact subsets of E. Since E is complete, the topology TK is compatible with the dual pair 

(E', E) by [Will Example 9·2·10 and Theorem 9·2·12. Now it follows by the same arguments 

as in [Bru, page 113] that E is not only w* -dense in E', but E is even dense in (E', TK ). 

Since DOIO(ir) is dense in the Banach space E and since E is dense in (E', TK), it follows 

that DOIO(fr) is dense in (E',TK)' Now let fEE' and <p E C~(G). Let e > 0, let K:= {1r:cu: 

x E supp <p} U {1r :cWm : x E supp <p} and M := 1 + f IA m<p( x )Id>'( x) + f l<p( x )Id>'( x). There 
G G 

exists 9 E DOO(t) such that for all a E K: If(a) - g(a)1 ::; eM-to Then by Assertion 1: 

So 

J [Am<p] (x) [g 0 u](x)d>'(x) = J <p(x) [Xm(g 0 u)] (x)d>.(x) 
G G 

= J <p(x) [go wm](x)d>.(x). 
G 

J [Xm<p] (x) [f 0 u](x)d>'(x) - J <p(x)[f 0 wm](x)d>.(x) < 
G G 

::; JI[xm<p] (x) (f(1r:cu)-g(1rx u»ld>.(x)+ 
G 

+ J [X m<p] (x) [g 0 U] (X )d>.(x) - J <p(x)[g 0 wm](x)d>.(x) + 
G G 

+ J l<p(x) (g(1r:cwm) - f( 1r:cwm» Id>.(x) 
G 

< eM-I U 16m <p(x)ld)'(x) + I I <?(X)ld)'(X)) 

::; e. 

This proves Assertion 2. 

N ow we prove the theorem. Let fEE'. By Assertion 2 the function f 0 u is a weak 

solution of the equation X m F = f 0 wm. Since f 0 wm is a continuous function and X m is an 

elliptic operator of order 2m, it follows from the local regularity theorem for elliptic operators 

that f 0 u has locally L2 derivatives of order::; 2m. (See [Fol, Theorem 6.30].) Hence by [Fol, 

Lemma 6.9] (the Sobolev lemma), the function fou is 2m-d times continuously differentiable. 

Therefore f 0 u is infinitely differentiable for all fEE' and hence the function u is infinitely 

differentiable. Thus U E DO() ( 1r). 0 

Corollary 3 Let G be a semisimple Lie group with Lie algebra g. Let 1r be a representation 

of G in a Banach space. Let C E U(g) be the Casimir element. Suppose there exists TEe 

such that 81r( C) = T I. Let 9 = t + l' be a Cartan decomposition of 9 and let K be a subgroup 

of G with Lie algebra t Then 

5 



Proof. Let B denote the Killing form ofg. Let Xl, ... ,Xdl be a basis in t and Xdl+1,'" ,Xd 

be a basis in p such that B(Xi,Xj) = -6i,j for all 1 :5 i,j:5 d1 and B(Xi,Xj) = Di,j for all 

dl < i,j :5 d. Then C = E~=dl+1 X~ - E~!:l X~. So by Theorems 2 and 1 we obtain that 

o 

Remark. Note that there are no conditions on the center of G in the previous corollary. 

Corollary 4 Let G be a connected semisimple Lie group with finite center. Let K be a 

maximal compact subgroup. Let 1C' be a principal series representation of G. Then Doo ( 1C') = 

D'X>( 1C' IK ). 

Corollary 5 Let 1C' be a completely irreducible representation of a Lie group G in a Banach 

space. Let XI, ... , Xd be a basis in the Lie algebra 9 of G. Let d1 E {I, ... ,d - I}. Let 

Proof. Since 1C' is completely irreducible, by [Tay, Proposition 0.4.5], there exists T E (j such 

that 81C'( C) = T 1. 0 

3 Gevrey vectors for restrictions to subgroups 

In this section we prove a similar theorem as in the previous section, but now for Gevrey 

vectors instead of infinitely differentiable vectors. However, in this section we only consider 

unitary representations. We immediately formulate the main theorem of this section. 

Theorem 6 Let 1C' be a unitary representation of G. Let XI, ... ,Xd be a basis in the Lie 

algebragofG. Letd1E{I, ... ,d-l}. Let 

c:= xl + ... + xli - xli+! - ... - XJ E U(g). 

Suppose C belongs to the center of U(g) and suppose there exists T E IR such that 

Let A ~ 1. Then 

In particular, 
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Proof. First we prove that S>.{{l11r(X1 ), ... ,81r(Xd)}) = S>.{{81r(Xl), ... ,81r(Xdl )}) Let 

a := xl + ... + xJ E U(9) and at := xl + ... + xJ
I 

E U(9) be as in the proof of Theorem 

2. Let u E S>. ( {81r( Xl), ... , 81r{ Xdl)})' By an elementary counting argument it easily follows 

that u E S2>.({81r(at)}). Let C,t > 0 be such that 

1I[81r(at}]"'ull ::; Ctnn!2A 

for all n E lNo. Since 81r{a) = 281r(at) - 81r(C) = 281r(a1 ) - TI, we obtain for all n E INo: 

11[81r{a)]1lull < E (~) 2kITln-kIl[81r(at}]kuli 

::; C t, (~) 2ktkITln-kk!2>. 

::; Cn!2'\ t (~) 2ktk lTln- k 

k=O 

= C(2t + ITltn!2>'. 

So U E S2.\( {81r(a)}). 

Now by [GW] Examplefolowing Theorem 1.7, we obtain that u E SAC {81r(Xd, ... , 81r(Xd)}). 

(Here we used that 1r is a unitary representation.) So 

Thus 

By Theorem 2 we have the equality ofthe joint Coo-domains 

So 

This proves the theorem. o 

Remark. Another proof of this theorem has been presented in [tE, page 102]. 

Now for the Gevrey vectors for unitary representations we can state the same type of 

corollaries as in Section 2, for example: 

Corollary 7 Let G be a semisimpie Lie group with Lie algebra g. Let 1r be a unitary repre

sentation of G. Let C E U(9) be the Casimir element. Suppose there exists TEe such that 

81r{ C) = T I. (For example, 1r is irreducible.) Let 9 = e +;J be a Cartan decomposition of 9 

and let K be a subgroup of G with Lie algebra e. Then 

In particular 
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