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Abstract

In this paper we consider the time evolution of vortices simulated by the method of
contour dynamics. Special attention is being paid to the Hamiltonian character of the
governing equations and in particular to the conservational properties of numerical
time integration for them. We assess symplectic and non-symplectic schemes. For the
former methods, we give an implementation which is both efficient and yet effectively
explicit. A number of numerical examples sustain the analysis and demonstrate the
usefulness of the approach.

1 Introduction

In this paper we will discuss some aspects of the contour dynamics method, in particular
the time integration. This well-known method is a useful tool for simulating vortices in two­
dimensional flows of an incompressible, inviscid fluid. The method and many improvements
thereof, has been brought to full growth by the pioneering work of D.G. Dritschel ([1], [2]).
Contour dynamics is based on the idea that the evolution of a patch of uniform vorticity
is fully determined by the evolution of its boundary contour. The method is not limited
to just one region of uniform vorticity; indeed, several contours can be nested in order to
obtain an approximation of a patch of distributed vorticity (see [1], [2], [11]).

Two-dimensional flows of an incompressible, inviscid fluid can be described by Euler's
equation, which expresses balance of linear momentum, and the continuity equation, which
expresses conservation of mass. Regarding the latter conservation law we remark that, for
an incompressible fluid, the velocity field is divergence free and thus, a stream function 'IjJ
can be introduced in the usual way

{ x(t) u(x, y, t) &v,.(x,y,t)
&y

(1)
y(t) - v(x, y, t) &v,.(x,y,t)

&x
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Here u is the component of the velocity field in x-direction and v the component in y­

direction. From this we can see that we are dealing with a Hamiltonian system with
Hamiltonian -'ljJ. A very important property of such a system is the concept of preservation
of area (see [9]) which in our case is equivalent to conservation of mass. Operators which
have this property, are called symplectic. The solution operator of a Hamiltonian system
is thus a symplectic operator. Since we like to solve this Hamiltonian system numerically,
it is important, especially for long-time calculations, to preserve the area. This is possible
if a so-called symplectic integration scheme is used (see [9]).

In contour dynamics, we are in fact dealing with two types of discretisations, viz. one
in space and one in time. In this paper, we will show that the spatially discretised problem
is also a Hamiltonian system, and therefore a symplectic time integration scheme is to
be preferred to ordinary integration methods. Furthermore we shall outline how such a
scheme can be applied to the the contour dynamics method and we show some results.

2 The Governing Equations

The vorticity vector w is defined as the curl of the velocity field u. Since we consider a two­
dimensional flow in the (x, y)-plane, this vorticity vector points in a direction perpendicular
to the (x,y)-plane; so we can write

w = we z .

By defining the stream function as in (1) and taking the curl of the linear momentum
equation, we obtain the vorticity equation

ow + o'ljJow _ o'ljJow = 0,
ot oy ox Ox oy

(2)

which expresses conservation of vorticity of a fluid particle. Further, a relation between w
and 'ljJ can be derived from their definitions

(3)

By solving (3) using Green's function, we find an expression for 'ljJ

'ljJ(x,t) = - ff G(x;x')w(x',t)dx'dy' , t ~ 0,
JR,2

where x:= (x,yf and G(x;x') := 2~ In Ilx-x'll is Green's function in 2-D. The norm 11·11
is defined by /lxll := vx2 + y2, for each x E lR? Note that 'ljJ depends explicitly on time
only if w does; so if w does not, then the equation is autonomous.

The initial continuous vorticity distribution w is now approximated by a piecewise
constant distribution wlike in Figure 1. By doing this, conservation of vorticity of a fluid
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Figure 1: A cross-section of the continuous
vorticity profile and the piecewise constant
vorticity profile.

Figure 2: An arbitrary patch of piecewise
constant vorticity distribution.

particle ensures that this distribution remains piecewise constant throughout time. Thus
W depends on time only through x. For the approximate '0 we then find

M

'0(x) := - L 11 G(x; x') w(x') dx'dy' , t ~ 0,
m=l G

m

where the Gm are the regions of uniform vorticity (see e.g. Figure 2).
By applying Stokes' theorem for a scalar field, we can derive an expression for the

velocity field:

M

ii(x) = - L Wm i G(x; x')t ds ,
m=l Cm(t)

(4)

where Wm is the jump of vorticity when crossing the contour Cm (t) outward, and t is the unit
vector tangential to the contour. Note that this system of equations is also Hamiltonian,
with Hamiltonian -'0.

3 Spatial Discretisation

3.1 Discretisation of the Contours

From (4), we see that the velocity ii at any point of the two-dimensional plane is determined
by a sum of contour integrals. To calculate these contour integrals numerically, we discretise
each contour Cm into a finite but adjustable number of nodes. Between two adjacent nodes,
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the contours are approximated by so-called elements. These elements can e.g. be linear
(in this case, the two adjacent nodes are simply connected by a straight line segment),
or quadratic, cubic, etc. The parameterisation xn(O of an element en with nodes X n and
Xn+l, is chosen such that xn(-1) = X n, xn(l) = Xn+l and xN(l) = Xl( -1). In the case of
linear elements, this parameterisation is given by

(5)

The interpolated version of contour em will be called em'
The velocity u := (u, v)T at a point x anywhere in the flow field of the spatially

discretised problem is then given by

M

u(x)=- ~Wm 1 lnllx-x'lI tds
LJ 271" Jc
m=l em

M N 1

= - L W
m L JIn Ilx - X n (0 II xn (0 de .

271"
m=l n=l_l

(6)

In all numerical examples, we shall use linear elements. The integrals in (6) along the
elements can be determined using Gaussian quadrature. Only when x is equal to (or lying
close to) one of the element nodes, an analytical solution of this integral is used; this is
needed because the logarithm is (almost) singular in that case.

We will now prove the following property:

Property 3.1. The velocity field U of the spatially discretised problem is divergence free.

Proof. The partial derivatives of the velocity field are given by

ou
ox

ov
oy
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M N 1

L ~; L Jdlnllx-xn(OII
m=l n=l_l

M N

L ~; L [In IIx - x n(1)II-ln Ilx - x n ( -l)IIJ
m=l n=l

0,

since x n (l) = Xn+l( -1) for all n, 1 :::;; n < N, and xN(l) = Xl( -1). This even holds when
x is equal to one of the nodes on the contour. 0

From this theorem it follows that the spatially discretised problem also has a Hamil­
tonian. We can give an explicit expression for this Hamiltonian (in our case the stream
function with a minus sign):

Property 3.2. The stream function of the velocity field u is given by

M N 1

~(x) = L :; L J[J(x,xn(O)xn(O +g(x,Xn(O)Yn(e)] de,
m=l n=l_l

where

f(x, xn(e)) := (x - xn(O) arctan (~=~:g~) -(y - Yn(e)) In Ilx - xn(e)ll,

g(x, xn(O) := -(V - Yn(O) arctan (~=~:i:~) + (x - xn(e)) In IIx - xn(OII·

Proof. We have to prove that

(7)

(i)

(ii)

8~(x) = u(x),
fJy

fJ~(x) __ A( )
fJx - v x .

From the partial derivatives of f and 9 we find the following properties:

{

V'x!(x,xn(m _ -V'xnf(x,xn(m,

Vxg(x,xn(e)) - -Vxng(x,xn(e)),
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where \7x denotes the gradient with respect to x and similarly \7X
n

for the gradient with
respect to xn(O. By taking the derivative of (7) with respect to y and using (*) we find

Now, we use (**) to obtain

A M N 1

81jJ = _ L W m L J[8g(x,xn(O) xn(e) + 8g(x,xn(e)) Yn(O] de
8y 471" 8xn(O 8Yn(e)

m=l n=l_l

M N 1

- L ~; L JIn Ilx - xn(e) Ilxn(O de
m=l n=l_l

= U(x).

Here, we used similar reasoning as in property 3.1. The first part (i) of the proof is now
completed. The second part can be proven in a similar way. D

Thus, -J; is the stream function belonging to the velocity field u. Of course, an arbitrary
constant may be added to this stream function.

If we use linear elements for the interpolation of the contours and use hn to denote the
length of element en, we find the following property for the discretisation error:

Property 3.3. If hmax is defined as the maximum of all hn, then

M

llii - ull = L ~ i In Ilx - x'ilt ds' = O(h~ax)'
m=l Cm-Cm

Proof. For the sake of simplicity, only the situation of one contour C is considered. How­
ever, the more general case (with more than one contour) can be treated in the same way.
We assume that the nodes X n of contour 6 are lying on the exact contour C. Then we find

ii - u =~ J In Ilx - x'ilt ds'
271"

c-c
N

= ~ ~ in-cn In Ilx - x'ilt ds',

where en is the straight line segment (with length hn) connecting two adjacent nodes X n
and Xn+l and Cn is the part of contour C that connects these points also (see Figure 3). We
now consider the contribution vector Dn of one contour en - Cn (i.e. the 'local geometrical
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Figure 3: The region An enclosed by en and en.

error') to the discretisation error. We use Stokes' theorem for a vector field to obtain a
surface integral over An (see Figure 3) from the contour integral and find

6n : = 1 In IIx - x'ilt ds'
len-en

= 11 ez X Vxlnllx-x'lldx'dy'
An

rr ( y - y' X - X' ) , ,

=}} IIx_x'112ex-lIx_x'1I2ey dxdy.
An

We now introduce polar coordinates in the following way

X - x' : = r cos(<p) ,

y - y' : = r sin(<p) .

Then, the surface integral becomes

'P2 R2('P)

6n =11 (sin(<p)ex-cos(<p)ey)d<pdr.

'PI RI('P)

Here <pI, <P2, R1 (<p) and R2 (<p) are as in Figure 4. For the x-component we thus find

'P2

1(6n , ex)1 ~1IR2 (<p) - R1 (<p)11 sin(<p)I d<p

'PI

7



Figure 4: The situation of Figure 3 in polar coordinates.

and similar for the y-component

'P2

I(hn , ey)1 ~ JIR2(rp) - RI('P)/1 cos(rp)I drp

'PI

Because of the linear interpolation, we have IR2(rp) - RI(rp)1 ~ Ch~ for 'PI ~ 'P ~ 'P2·
Further, we can derive an expression for the angle {) := rp2 - rpl. If we define P by

P := Ilx - !(xn + Xn+l)II, then

1
Ilx - x nl1

2 = p2 + hnPCOS({)I) + -h~,
4

Ilx - x n+l11
2

= p
2

- hnPCOS({)I) + ~h~,

where ()l is the angle between x - !(xn +xn+l) and !(Xn+l - xn ). For the inner product
(x - X n , X - Xn+l) we simply have

Since

({))
(x - X n , X - Xn+l)

cos = -:-:-'---:-:,-:-:--_"":"""":-,.,-
Ilx - xnlllix - xn+lll'
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we find after some calculation that

sin2(19) = 1 - cos2(19)

(hn / p)2 sin2(191)

For p > hn, we find from this that 19 = O(hn/ p).
Using this result in (*) and (**), we have

Now, by combining the contributions from all regions An, and by assuming that only
few elements en are lying close (i.e. closer then hn) to the point x, we may conclude that
the overall discretisation error is O(h~ax), where hmax is the maximum element length on
contour 6. This completes the proof. 0

Note that this discretisation error is not necessarily made every time step during the
calculations. The first time this error is made, is when the initial contour grid is calculated.
After that, such errors only occur when nodes are added or removed; if this is done properly
the errors might be smaller.

3.2 Node Distribution

Since, in general, the shape of the contours becomes increasingly complex when time
proceeds, the number of nodes initially placed on the contours, will not be enough to
approximate the contours nicely at later time points. Therefore, the number of nodes on
a contour may change during the calculations.

Several situations may occur where one has to add nodes to, or remove nodes from a
contour. In general problems may arise when a small scale feature with a high density of
nodes, encounters a larger scale feature with a lower node density (see Figure 5). In this
case, the two parts of the contours may intersect, unless nodes are added properly to the
large scale feature. To prevent this intersection of two (parts of) contours, the following
is implemented: we say a node Xi is lying opposite to an element en with nodes Xn and
Xn+I, if the line through Xi, perpendicular to the line l through Xn and Xn+l (see Figure 6)
intersects l in between X n and Xn+l. When no nodes are added between X n and Xn+l and
the local curvature at Xi is higher than the curvature at Xn or Xn+I, such a point Xi may
cause trouble. This can be avoided by properly adding a node between X n and Xn+l each
time the distance between the node and the element is becoming smaller than a given
critical value. This distance is defined through the length of the vector v (see Figure 6). It
is also possible that oppositely situated points do not cause trouble, and are even such that
the local curvature is low enough to allow some nodes to be removed (for example on a
filament); here, the local curvature is found from differentiation of a quadratic polynomial

9
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Figure 5: A small scale feature encounter­
ing a large scale one.

Figure 6: Node Xi is lying opposite to en'

through three consecutive points. Alternatively, nodes may have to be added at places
where the local curvature is high in order to approximate the contour well enough. This
can be formulated as follows: if hn is the length of element en, and K:(xn ) is the local
curvature at node X n , then a node has to be added between X n and X n +1 if

and node X n has to be removed if

where 81 and 82 are given and 81 > 82 . Furthermore we require the element length to
become no smaller than a minimum hmin and not larger than a maximum hmax . The
former requirement is made because the logarithm behaves badly for small arguments.
The latter requirement is made to prevent the element length to become too large at
filaments (where the curvature is very low at some places). The last condition the node
distribution is required to satisfy, is that of quasi-uniformity. This can be formulated as

hn - 1 h hK ~ n ~ K n-I,

where K is a constant sufficiently larger than 1. This ensures that the element length of
two neighbouring elements is not changing too much.

All together, we have four criteria for adding nodes and three for removing. It is obvious
that the actual removal of nodes is very simple. For adding a node however, one has to

10



decide where the new node has to be placed. To this end, we fit a quadratic polynomial
through three successive nodes and place the new node on this polynomial. The velocity
at the new node is also determined by quadratic interpolation.

4 Time Integration

As we can see from (6), the velocity field u depends on the position of every node on every
contour. Let X(t) be the vector of x-coordinates of all nodes at a certain time t

and Y(t) the vector of y-coordinates of all nodes

Denote the velocity in x-direction at node X n by un(X, Y)(:= u(xn)) and in y-direction by
vn(X, Y)(:= v(xn)). Furthermore, let U be the vector of velocities in x-direction

and V the vector of velocities in y-direction

For the time evolution of the contours, we now have to solve the following initial value
problem

(8)

(
X(O)) = (Xo) .
Y(O) Yo

4.1 Symplectic and Non-Symplectic Runge Kutta Methods

As we have pointed out in section 3.1, the spatially discretised problem, of which we want
to know the time evolution, is Hamiltonian. This means that the solution operator is
symplectic (see [9]). In a numerical time integration, this solution operator is replaced by
an approximate one. If we wish the latter to retain the Hamiltonian character of the former,
we should insist the approximate solution operator on being symplectic as well. However,
most standard numerical integrators replace the solution operator by a non-symplectic
mapping. This is illustrated by the following example. Consider the time evolution of a
circular vortex patch (initial radius equal to r(O)) of uniform vorticity w. The velocity field

11
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Figure 7: The evolution of a circular patch
(initial radius equal to 1) of uniform vor­
ticity (w = 211") using the Euler forward
scheme with ~t = 0.05.

Figure 8: The predicted behaviour of ~A
and the numerically obtained ~A as a
function of time t. The area of the patch is
calculated each time step using a contour
integral expression.

inside the patch and on its boundary, is clearly given by (see [6])

{
U(X) = x= -~y,

v(x) = if = ~x,
t > 0, II xii ~ 1, (9)

By applying the Euler forward scheme to (9), we find

(
x(t)) _ (1 _w~t) (x(t - ~t))
y(t) - w~t 1 y(t - ~t) ,

where ~t is the time step. For the length r(t) of the vector x after tf~t time steps, we
thus find

r2(t) x2(t) + y2(t)

(1+ (W~t)') (x'(t - bot) +y'(t - bot))
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Figure 9: Similar as Figure 8 but for RK4 and ~A:= (A(t)-A(O))/A(O) (not the absolute
value). Note the decrease of the area in this case.

- (1+ (W~trr" r'(O)

r2(0) exp (tL~t (~)2+ 0 (t~t3 (~) 4) ) .

The radius of the patch thus grows exponentially with time (see Figure 7 where we used
w = 27r and ~t = 0.05). Since the patch remains circular for all time, we find for the area
A(t) of the patch after t/~t time steps

A(t) 7rr
2 (t)

= 7rr2(0) exp (t~t (~)2+ 0 (t~t3 (~) 4) ) .

The interesting feature here is that

A(t) I"V A(O) exp(ta2~t), (11)

where a = w/2; i.e. it becomes unbounded as t --+ 00, although it can be kept close to
A(O) on any finite interval by choosing ~t small enough. In Figure 8 we have plotted
~A := IA(t) - A(O)I/A(O) versus time t (where the area ~A was calculated at each time
step by a contour integral expression) and also the by (11) predicted behaviour of ~A.
Clearly, (11) predicts the behaviour of the area very well. Further it may be clear that the
Euler forward scheme is not symplectic and one may be forced to take many steps to stay
close to conservation. In fact, this applies to any explicit method. Note that if we would
apply the Euler backward scheme to this problem (although this would hardly be feasible
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in practice, since implementation would require the solution of a large linear system), we
would find shrinking patches instead. For higher order (explicit) RK-schemes, a similar
result applies, albeit with a more moderate growth. In particular, for the classical explicit
fourth order RK-method (see [3], [4]), one finds by straightforward expansion

A(t) '" A(O) exp( -ta6 /},t5 /72). (12)

In Figure 9 we have plotted both the predicted and the numerically obtained values of
/},A as a function of time for the same problem as before (circular vortex patch). Here we
omitted to take the absolute value of (A(t) - A(O))/A(O) in order to show the decrease of
the area. Again, the results agree remarkably well with the theory. Although the variation
of the area is much smaller in this case compared to the Euler forward scheme, it still can
be of significant importance, for large time intervals or problems with larger values of a.

Next, we will pay attention to a second order symplectic Runge I<utta (RK) scheme:
the midpoint rule.

4.2 Implementation of the Symplectic Midpoint Rule

Symplectic RK-methods are implicit in general (see [9]). Therefore, the implementation
of a symplectic method can be rather complex. If the problem would be stiff, Newton­
like iteration methods would be needed to solve the linear systems involved. In our case
however, these systems are not stiff normally. Indeed, in order to follow the contour
properly, we have to resolve regions which are moving relatively fast at all steps (probably
at different places during the evolution), i.e. the 'smaller' time scales dictate the step
size at any time. Therefore we can use a predictor-corrector scheme (p(EC)IE) for the
implementation of the symplectic scheme. This means that the method will be explicit
after all, but conservation can be achieved by choosing I large enough. For this scheme, we
shall choose the midpoint rule (which only is second order), but a similar implementation
can be used for higher order symplectic methods.

Denote the vector of approximate x-coordinates of the positions of the nodes after k
time steps /},t by X k and the vector of y-coordinates by Yk. Furthermore, denote the vector
of approximate velocities in x-direction by U(Xk,Y k ) and in y-direction by V(Xk,Y k ).

Then the midpoint rule can be represented as

or

(
HXk +Xk+l)) = (Xk) + ~/},t (U(HXk +Xk+d, HYk+Yk+d))
HYk+Yk+d Y k 2 V(~(Xk +Xk+l), ~(Yk + Yk+l))

Introducing vector

- 1
X := 2(Xk +Xk+l),

14



and
- 1
Y := 2(Yk + Yk+l),

we apparently need to solve

(~ = (~:) +~~t (~~~:~D '
each time step. This is done by the following (p(EC)IE) method:

Predict: (~) = (;:) + ~~t (~ii:: ~:O '
Evaluate: U(~-IV-I) and V(~-I,V-I),

Correct:

Evaluate:

(13)

for i = 1, ... ,I

The predictor step of this method is equivalent to the Euler forward scheme for obtaining
a first approximation to Xk+l and Y k+l' At the last evaluation step (i.e. after I cycles),
the velocities at the (approximate) new positions

(Xk+l
) := 2(X~) _(Xk

) ,
Yk+l Y Yk

are calculated and used for the next time interval.
In general, the number of cycles to be performed, depends on both the order of the

predictor scheme and the order of the corrector scheme. If the corrector is of order p and
the predictor of order q (p ~ q), then the local discretisation error after i cycles, b(i), is

b(i) = O(~tP) + O(~ti+q).

As far as standard accuracy arguments are concerned, we would not need to do more than
p - q + 1 cycles; so in our case, two cycles would be enough. However, a finite number
of iterations implies an explicit integration after all and loss of its symplectic property.
In order to obtain an (almost) symplectic scheme, we therefore have to do more cycles,
basically till we have solved (13) within machine precision (see Figure 10). One should
realise though, that each cycle requires the calculation of the velocity field, so this is very
time consuming. To solve this problem, we use an extrapolation method to accelerate the
convergence of the iteration process. The method we actually used is the so-called minimal
polynomial extrapolation (MPE) method (see [10]). This MPE method is very suitable for
our problem, since it is based on differences and does not need additional information of
the Jacobian matrix. Before explaining the idea of this method, we will prove the following
property:
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Figure 10: The same problem as in Figure 7; 14 cycles were needed to reach machine
preClSlOll.

. Property 4.1. For i ~ 0,

(14)

where J is the Jacobian matrix defined by

(

aUeX'y) auex,y))
ax ay

J '=. .
av(x,Y) av(x,Y)

ax ay

Proof. The proof is by induction. For i = 0, the result follows immediately from (13) since

Assume the property holds for i. Then we find with (13), the corrector part of the
(p(EC)IE) scheme and a Taylor expansion of (UT,VT)T around (XT,yTf

(~+l) = (Xk) + !~t (U(~' ~))
y+l Yk 2 V(~,y)

= (Xk) + !~t (U(X, V)) _(!~t) i+2 Ji+1 (U(X, V)) + O(~ti+3)
Y k 2 V(X,Y) 2 V(X,Y)

= (X\ _(!~t)i+2 Ji+l (U(X, V)) + O(~ti+3)
V) 2 V(X,Y) .
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This completes the proof.

From this property it follows that

(x: -x) = ~L\tJ (x :=: - x) + O(L\ti+2
) , for i ~ 1,

Y -y 2 y-y

( X: - x:=:) = -2
1

L\tJ (x :=: -x:=:) +O(L\ti+l) , for i ~ 2,
Y -y Y -y

o

(15)

(16)

and the sequence {X i} is linearly convergent. Since MPE is based on differences, it will
be convenient to have short notations for these. We define

and

A .- (aD a1 aI-I).- , ,... , .

Now MPE calculates the fixed point (XT
, yT)T as a weighted average of the iterates with

weights determined by the coefficients of the minimal polynomial P(>.) of J with respect
to aD. We take I -1 to be the degree P(>.). Then, the minimal polynomial can be written
as

I-I

P(>.) = L c(i) >.i, C(I-l) = 1.
i=D

Let the vector c := (C(D), C(I), . .. ,c(I-2))T be the vector of the unknown coefficients of the
minimal polynomial. Then c is the solution of the system of equations

Ac = _aI-I. (17)

In general, I will be much smaller than the number of nodes. Thus, the system (17) has
more equations than unknowns, but consistency can be proven (see [10]). Calculation of c
requires only an LV-decomposition of A and the solution of the upper triangular system,
which is cheap compared to the calculation of the velocities. Once the vector c has been
found, the fixed point can be calculated from

(

1-1 (i)) (~ _ I-I (i) (x i+l)L C y - L C -i+l .
i=D i=D Y

(18)

Of course, we do not know the degree of the minimal polynomial. But this is not a
problem in practice. If I - 1 is larger than the degree of P(>.), then there is no problem at
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all. If it is smaller, then instead of achieving equality in (17), the least squares solution gives
coefficients of an 'almost annihilating' polynomial that is the 'best' monic polynomial of
degree I -1 for eliminating the influence of I-I dominant components of the error. These
dominant components of the error are generated by the absolutely largest eigenvalues.

Consider now a vortex patch consisting of two concentric circular contours, where the
outer contour rotates slower than the inner (the fluid enclosed by the inner contour has
a larger uniform vorticity than the fluid enclosed by the outer and inner contour). Then
the eigenvalues belonging to the outer contour are smaller (in absolute sense) than those
of the inner one. So we might expect that, in the case where I - 1 is smaller than the
degree of the minimal polynomial, the area of the inner contour is better conserved than
that of the outer contour. This is exactly what happens in Figure 11 and 12. Here the
evolution of a circular vortex patch with two contours has been calculated. The outer ring
has vorticity w = 1r and the inner circle has vorticity w = 21r. So the outer contour has
eigenvalues which are smaller (in absolute value) than those of the inner. In Figure 12 we
see that the area enclosed by the inner contour is better conserved than that of the outer,
as expected. This suggests that it might be better to split up the extrapolation process
over the contours: instead of calculating one set of coefficients c(i) for the whole system, a
different set of coefficients is calculated for each contour in order to obtain the dominating
terms for each contour. We have implemented this, and the results for the same vortex
patch as in Figure 11 are shown in Figure results are much better and it turns out that not
only the outer 13a and 13b. Indeed, the latter contour behaves better, but also the inner.

y ~A
1.5 1e-02

Outer contour -
1 1e-03 Inner contour ----

0.5 1e-04
------

0 1e-05

-0.5 1e-06

-1 1e-07

-1.5 1e-08
-1.5 -1 -0.5 0 0.5 1 1.5 x 0 100 200 300 400 500 t

Figure 11: The situation at t = 0: the
outer ring has vorticity w = 1r and the
region inside the inner circle has vorticity
w = 21r.

Figure 12: The variation ~A of the area
as a function of time t. The time step is
taken to be ~t = 0.05, the number of cy­
cles is equal to 3 and MPE-extrapolation
is performed.
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a) Contour 1

Figure 13: The variation of the area ~A calculated with the midpoint rule with 3 cy­
cles where the extrapolation part is splitted up over the contours (MPREXC), with the
midpoint rule with 3 cycles with global extrapolation (MPREX) and with a fourth order
RK-method (RK4). In all three cases, ~t = 0.05.

This is due to the fact that larger w makes the extrapolation more accurate (dominance
of eigenvalue is more pronounced). In the next section we will show some more results. In
Figure 13, also results are shown of the evolution of the same vortex patch but now with
the classical fourth order explicit RK method. The results are in agreement with (12). It
might be clear, that the results of the midpoint rule are much better than those of the RK
method. This, while the same effort was needed for both methods: we used 1= 3, so the
velocities had to be calculated four times per time step which is the same as for the fourth
order RK method.

The other error, the phase shift, may also be investigated (although it is often less
interesting in practical situations). A way to do this, is to follow the point on a contour
which initially is placed at the positive part of the x-axis. The solution of the problem
can be determined analytically, and we find that such a point of the outer contour passes
the positive x-axis exactly 170 times and that of the inner 250 times. For all numerical

IMPREXC IMPREX I RK4 I Exact ~

Contour 1 169.6 169.6 169.8 170
Contour 2 249.3 249.3 249.8 250

Table 1: The number of revolutions of the outer and inner contour.
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R~4--MPREX :4-
MPREX :8 ---

methods, this turns out to be slightly less than these analytical values as can be seen in
Table 1. However, the differences between the investigated methods are very small, so we
may conclude that all numerical schemes produce a phase shift of comparable magnitude.

5 Further Numerical Results

In the previous section, we compared some numerical results obtained by the midpoint rule
with a fourth order explicit RK method. However, the test problem was rather simple.
Therefore, we will consider some more complex problems in this section. The first example
is the evolution of a so-called Kida-vortex (see [5]). Initially, an elliptical patch, with aspect
ratio equal to 0.75 and of uniform vorticity w = 211", is placed in the centre of a strain flow
Us, given by

Us = ex

V s = -ey.

Here, e is the strain rate which we have chosen to be e = 0.5. In this case, the motion of
the vortex is periodic: the vortex rotates around its centre while it remains elliptic and
the aspect ratio changes periodically with time. We calculated the evolution of the vortex
three times: once with the midpoint rule with 3 cycles (i.e. 4 calculations of the velocities
per time step) and extrapolation (MPREXC:4), once with the fourth order Runge Kutta
method (RK4) and finally with the midpoint rule with 7 cycles (i.e. 8 velocity calculations
per time step) and extrapolation (MPREXC:8). In Figure 14, ~A is plotted as a function
of time t for all three calculations. We see from this figure, that MPREXC:4 conserves the
area of the patch better than RK4 with the same effort. Further we see that with more
effort (e.g. 7 cycles), the area is even better conserved. Note that again the behaviour of
the area of the patch using RK4 agrees with (12). Further, we should remark that we

1e~ r-.---....-----.------r-----r--,--r--.---....-----;

le-03

le-04 _------.----Ie-OS /,'---
le-06 /

le-07 --------­...... _.... , ..... --_ ..........
Ie-OS ...,.-.- .. -.--.--------

,'-,I.. ,
1 09 I .. "e- ,{i
1e-lO UlL"------'_--L----'--_-'-----'----------'_--L----'--_-'------'

o 5 10 15 20 25 30 35 40 45 sOt

Figure 14: ~A as a function of time t for the Kida-vortex.
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t=O t =6 t = 12

Figure 15: The evolution of a monopolar vortex into a tripolar vortex
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Figure 16: ~A plotted as a function of time for contour 1 (outer contour), 2 and 3 (inner
contour).

forced the number of nodes on the contour to be constant. Of course, the variation of the
aspect ratio of the ellipse then causes a variation of the area, but this is the same for all
calculations. If we had applied node redistribution, we would not have been sure that the
effect this had on the area, would have been the same for all calculations; this would have
hampered our assessment. We shall meet a similar problem with the next example.

The following example concerns the evolution of a monopolar vortex into a tripolar
vortex which is a vortex consisting of an elliptic core with two satellites with vorticity of
opposite sign (see e.g. [7] and [S]). The initial configuration consists of three concentric
slightly elliptically disturbed contours (aspect ratio is equal to 0.95). The outer ring has
negative vorticity, while the core (consisting of the area enclosed by the second contour)
has positive vorticity. Due to the elliptical disturbance, the monopole deforms and becomes
a tripole. The evolution is shown in Figure 15. As we can see from this figure, the outer
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contour deforms dramatically and this will have influence on the area enclosed by the outer
contour. Although the two inner contours deform much less, nodes are added here too (in
regions where the curvature became larger) which also effects the area enclosed. Since
this node redistribution might be different for calculations with different time integrators
(because of the growing or shrinking of the area caused by the integrator), it is hard to
compare the various results. Nevertheless, we again have plotted ~A for all three contours
as a function of time both for RK4 and for MPREXC. The results are shown in Figure 16.
For contour 1, both methods seem to produce comparable results from time t = 6 on.
However, this may be caused by the node redistribution since for t < 6, MPREXC gives
better results. For the other two contours, MPREXC appears to be better on the entire
time intervaL

6 Conclusions

In this paper, we have considered some aspects of the contour dynamics method. We fo­
cussed on the Hamiltonian form of the spatially discretised problem and the consequences
this has for the numerical time integration. We have demonstrated that symplectic integra­
tion conserves the area enclosed by a contour better than an ordinary integration method.
However, a problem with symplectic integration schemes, is that they usually are implicit.
This can make implementation rather difficult. Since in general, the system of equations of
the contour dynamics method is not stiff, one may use a predictor-corrector scheme for the
implementation. To obtain a symplectic integrator this way, one should perform enough
corrector steps, i.e. basically until machine precision is reached. However, every corrector
step requires the calculation of the velocities, which is rather time consuming. Therefore,
we have chosen to use an extrapolation method to accelerate the iteration process. The
MPE method turns out to be very suitable for contour dynamics. It is based on the use
of differences, and does not need additional information about the Jacobian matrix of the
system. Performing the extrapolation for each of the contours separately, appears to work
even better in practice.

Acknowledgement: We would like to thank prof. G.J.F. van Heijst who introduced us
to the subject of contour dynamics.
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