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1. INTRODUCTION

In this monograph we study the control of Markov chains with incompletely
known transition law. The Bayes criterion, which is used explains the name
of the monograph. We start this chapter with a short historical overview of
the problem field (section 1.1), In section 1.2 we give an informal descrip-
tion of the model we are dealing with.

Then we summarize the contents of the following chapters (section 1.3). We
conclude this chapter with a summary of notations and prerequisites (section
1.4).

1.1 Histornical perspective

After A. Wald founded (statistical) sequential analysis, it was R. Bell-
man who recognized that the technique of backward induction, which is fre-
quently used in sequential analysis, is also applicable to a wide range of
non-statistical sequential decision problems (cf. [Wald (1947)], [Bellman
(1957) ]J) . Bellman formalized the technique and called it dynamic programming.
In [Howard (1960) ] the first extensive treatment is found on the relations
between dynamic programming and the control of Markov chains. Independent-
ly, in [Shapley (1953) ] sequential control problems concerning Markov chains
are studied, using a game theoretic formulation. Later on, in [Blackwell
(1965) ] and [Derman (1966) ] the results of Howard are refined and extended
for the criterion of expected total rewards and the criterion of expected
average rewards, respectively. Blackwell and Derman started an explosive
development of the theory of control of Markov chains.

Before enclosing the problem field we first specify what is meant by a
dynamic program or a Markov decision procees. A dynamic program is a system
that is determined by a state space,an action space, a reward function and
a transition law, such that for each pair (state, action) a probability
distribution on the state space is specified. At discrete points in time,
called moments or stages, the controller or decision maker chooses an ac-
tion from the action space. Then, according to the transition law, the
system moves. to a new state and an immediate reward is obtained, depending
on the state before the transition, on the action itself and on the new
state. A recipe for choosing an action at each stage, is called a sirategy.
To apply the resultsof dynamic programming in practice, one has to know the
transition law. Unfortunately it seldom happens that these probability

distributions are known. So the controller has to estimate the transition
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law during the course of the process. Therefore, apart from the control prob~
lem, there is an estimation problem.

From now on we assume that the transition law depends on an unknown param—
eter, which belongs to some parameter get. Therefore the expected return

at each stage depends on the unknown parameter and so we have to choose a
criterion to measure the return at each stage. In literature the Bayes cri—
terion is mainly used (cf. section 1.2 for a definition). The first attempts
in the field of dynamic programming with an incompletely known transition
law have been made by Bellman (see [Bellman (1961)]). He used the term
adaptive control of Markov chains. Bellman noticed that, if the Bayes cri-
terion is used, the problem can be transformed into an equivalent dynamic
program with a completely known transition law and with a state space which
ig the Cartesian product of the original one and the set of all probability
distributions on the parameter set. This transformation is also suggested

in [Shiryaev (1964)], [Dynkin (1965)] and [Aoki (1967)] for models, which
allow uncbservability of the states, and in [Wessels (1971),(1972)]. In
[Hinderer (1970)] the first systematic proof is given for the case that the
state and action spaces are both countable, and afterwards in [Rieder (1972),
(1975) ] the transformation is given for completely separable metric state
and action spaces. In fact it is shown that, for the Bayes criterion, the
posterior distributions of the unknown parameter are sufficient statistics.
In [Wessels (1968)], among other things, the problem of sufficient statis-
tics is studied in connection with several other criteria, such as theminimax
oriterion. Almost all other authors considered only the Bayes criterion and
studied the equivalent dynamic program, mentioned above. In [Martin (1967)],
[Rieder (1972)], [Satia and Lave (1273)], and [Waldmann (1976)] the method
of successive approximations for the equivalent dynamic program is studied.
Only Satia and Lave tried to exploit the special structure of this dynamic
program. In [Fox and Roiph (1973)], [Mandl (1974}, (1976)], and in [Rose
(1975)7 optimal strategies are constructed for the criterion of expected
average return. Here it is possible to construct strategies which are at
least as good as all other strategies, for all parameter values, hence it

is not necessary to work with the Bayes criterion or anything like it.
Special models, arising in control theory are studied in [Sworder (1966)]
and [Acki (1967)]. Inventory control models with an incompletely known de-
mand distribution are studied in [Scarxf (1959)1, [Iglehart (1964)],

[Wessels (1971), (1972)], [Rieder (1972)], [Zacks and Fennel (1973)] and in
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[waldmann (1976)]. A number of other prcblems can be found in the literature.
The most famous one is the two-armed bandit problem. We will return to most
of the contributions of the above-mentioned authors in the other chapters
of this monograph. The number of publications in the field of dynamic pro-
gramming with an incompletely known transition law is very small compared
“with the overwhelming amount of literature on dynamic programming with a
known transition law.
We conclude this section with a sketch of the problems we examine in this
monograph. We choose the Bayes criterion too. From a mathematical point of
view this criterion has the advantage, as compared with the minimax cri-
terion, that the model can be transformed into the so-called equivalent
dynamic program. Purther it has the nice property that the decision maker
may express his opinlon on the importance of the various parameter values,
which characterize the unknown transition law, by a weight function. Even
if the model with known transition law has finite state and action spaces,
the equivalent dynamic program has a state space which is essentially infinite.
However, the method of successive approximations to determine the optimal
expected total return is workable, since in order to determine the n-th
approximation we have to consider all possible paths through n stages of
which there are a finite number, if the state and action spaces are finite.
The effort needed to obtain good approximations proved to be very large in
the studies of Martin and Satla and Lave (in [Martin (1967)] examples with
only two states and two actions turn cut to be very time-consuming and in
[satia and Lave (1973)] examples with four states and two actions are con-
sidered to be of "moderate-~size"). One of the objectives of our study is
to show that the method of successive approximations can be applied success—
fully to rather large models, that have a suitable parameter structure.
Our analysis is based on the construction of special scrap-vectors for the
successive approximation method and on the exploitation of the convergence
of the posterior distributions. We note that some results of our analysis are
also interesting for the problem of robusiness of the model under variations
in the parameter value. In section 1.3 we specify the approximation methods
we advocate, in an informal way.
Another objective of our study is to show that there are easy-to~handle
optimal strategies for maximizing the average expected return, and also for
some practical examples of cur model for maximizing the expected total re-
turn. At the end of section 1.2 we consider this matter in more detail.



1.2 Ingormal description of the model

We start this section with a motivation of the choice of the model we study
in thie monograph: the Bayeeian control model.

Consider a dynamic program with finite state and action spaces. It sometimes
happens that a transition is affected by a random variable which is cobserv-
able for the decision maker, but the value of which cannot be reconstructed
from the state values of the process. For example consider a waiting-line
model in discrete time, where Yn+1 is the number of arrivals in the time
period [n,n+1) and where Xn is the number of customers in the system at

time n. Then it is obvious that the value of Yn+ is not determined by xn

1
, if the number of services completed in each time interval is

and Xn+1
random. If the distribution of the random variable Yn is incompletely known,
then it is useful to keep this random variable as a supplementary state
variable. Confining ourselves to the state values of the original process
only, means that we throw away information concerning the transition law.
In our model we assume that for each state and action the transition may
be affected by a random variable, the value of which is observed by the
decision maker immediately agfter the transition. The value of this random
variable is obtained by a random drawing from a distribution, depending
only on the actual state and action. There are at most countably many dif-
ferent distributions from which is sampled. Further we assume that only
these distributions are incompletely known. We call these random variables
supplementary state variables. In case the transition, for some state and
action, is not affected by a supplementary state variable we may consider
the next state variable itself as a supplementary state variable. We re-
turn to this point in chapter 2.

We now continue with the model description. For simplicity, we assume here
that all considered sets are finite. Let the state space be denoted by X
and the action space by A. Further let the random variables Xn and L de-
note the state and action at stage n, respectively. The transition to state
Xn+1, given xn and An is also affected by the outcome of the supplementary

state variable Y which is observed at stage n + 1 and which takes on

n+l
values in the set Y. This works in the following way. The conditional pro-

bability of X

ey’ 9iven xn =%, A =a and Yn+

1=YI is

®Ix =x' | X =x,A =a,

= = '
n+l n n Yht yl = P(x'|xay)



where the function P is assumed to be known.
However, the random variables Yn+1' Xn and An are dependent, while the con-
ditional distribution of Yn+1' given Xn and A depends on some unknown para-

meter 6, which belongs to a given parameter set 6, i.e. we have

IPe[Yn+1 =Y | Xn=x, An =al = z lK. (x2) Pi(Y|e)
iex "1

whexe {Ki' i € 1} is a partition of X X A, and I is some index set. Hence

the distribution in the set {pi(° 8), i € I} from which the random variable

Yn+1 is sampled depends on the state and action at stage n. Further, if
xn =X , An = a and Yn+1 = y there is an immediate, possibly negative, re-
ward: r(x,a,y).

Although the model may seem to be rather artificial, there are many well-
known models which fit into this framework. For example, inventory control
models, where Xn is the inventory level at time n and Yn+1 is the demand
during the interxval [n,n + 1). Here we always sample Yn from the same dis-
tribution, hence I is a singleton. Also the ordinary dynamic program with
finite state and action spaces and all transition probabilities unknown, is
included in our model. We return to this matter in chapter 2.

We note that, if the parameter 6 is known, we are dealing with a dynamic

program with state space X, action space A, transition law:
P[x =x'"| X =x,A =al-= ;(x'|x,a) = ) 1 (x,a) | P(x'|x,a,9)p, (y|8),
n+l n n . K 1
iel i yeY
and reward function:
r(x,a) := ) 1, (x,a) ) pi(yle)r(x,a;y) .
lel i yeY

In this monograph X,Y,A and 8 are complete separable metric spaces, but the
index set I is at most countable. Hence we do not allow more than countably
), 1 € T and 6 ¢ O.

many unknown distributions pi(‘
A strategy 7 is a procedure which chooses at each stage n an action, based
on the history of the process, i.e. XoeBo Y g Xy rAgreee ¥ X .

Each strategy m, each parameter value 6, and each starting state x to-
gether determine a probability on the sample space of the process . The
expectation with respect to this probability of the immediate reward at

stage n is denoted by:



[r(xn,A 'Yn+1)] .

The expected total discounted return v(x,0,m) is:

3]

v(x,8,m)

=&l E 8%z (x LAY
n=0

where 8 ¢ [0,1) is called the discount factor.

Only in trivial situations there is a strategy " such that

n+i

v(x,e,ﬂ*) z v(x,8,7) for all x € X, € € 8 and all strategies 7. So it is un-
wise to use this as a criterion for a strategy to be optimal.4cr1tezia for
which there are always (nearly) optimal strategles, are the already mentioned
winimax and Bayes criteria. A strategy ™" is called e~optimal, € = 0, for the
minimax c¢riterion, if

min v(x,e,w*} z min v(x,8,m) ~¢ for all x ¢ X, 6 ¢ 6

6eB 6eb
and all strategies w. Wedo notuse this criterion. In appendix B we consider an
example, which shows thet the use of this criterion has some odd implications.
We use the Bayes criterion. So, we fix some probability distribution g on the
parameter set 8 and we call a strategy " e-optimal, € 2 0, if

I a®vex,8,7™ 2§ qervix,e,m - e

8eB 8eB
for all x € X and all strategies 7. If a strategy is O-cptimal we call it
optimal. We note again that the so-called prior distribution q can be con-
sidered as a weight function, expressing the importance of the various para-
nmeter values in the opinion of the decision maker.
In chapter 4 we consider the average expected return instead of the expected
total discounted return. We call a strategy n e~optimal, € 2 0, with respect
to this criterion,if

N-l

hmii;zf L a)e:e q(mnzam o [T ALY ]2

Zliminf-- }oate Im olx(x B ¥ 11 -c¢
N eee =0 x,0 n’"n’ n+t
for all x € X and all strategies 7 {again, a O-optimal strategy is called
optimal) .
The Bayes criterion allows us to consider anothex interpretation of the

Bayesian control model. In this interpretation we consider the unknown para-
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meter as a random variable with distribution q. The posterior distributions
of this random variable, or in other words the conditional distributions of
this random variable, given the history of the process,play an important
role in this monograph. It is well~known that the name of Bayes is connected
with the criterion since he suggested to consider the unknown parameter of
a distribution as a random variable itself in statistical inference. It turns
out that the Bayesian control model is equivalent to a dynamic program with
a known transition law and with a compound state space X X W, where W is

the set of all probability distributions on 8, For each starting state and
each strategy, we are dealing with a stochastic process (Xn,gn,An) where

Qn is the actual posterior distribution of the random variable that repre-
sents the parameter.

It is desirable to have good strategies that are easy toAhandle, i.e. to
have a formula or a simple recipe which yields an action as a function of
the actual state x € X and the actual posterior distribution q € W. A way
of deriving easy to handle strategies is based on the following idea. If

the parameter is known to be € and if there is an optiﬁal strategy then an
optimal action in state x ¢ X often is a maximizer of F(x,9,*) where

F: Xx8xpa-+ IR. Note that the action depends on the parameter 8 and
that the function F l1s assumed to be known. Now let the parameter be unknown,
Then we may use an action a which maximizes the function a *'f g{a8)F(x,90,a)
if the actual state is x and the actual posterior distribution is g (pro-
vided that integration is possible and the maximum exists). Such a rule is
called a Bayesian equivalent rule. It will be proved that such a rule yields
an optimal strategy, if we are maximizing the average expected return, under
conditions which guarantee that in the long run the decision maker obtains
encugh information about the unknown parameter, i.e. the sets K, have to be
recurrent. For maximizing the expected discounted total return we do not
know a Bayesian equivalent rule that is optimal in general, however for some
special models, such as the linear system with guadratic cost and a simple
inventory control medel, there is an optimal Bayeslan equivalent rxule. For
the linear system with guadratic cost this rule can be consgidered as a

generalization of the well~known certainty equivalent rule.
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1.3 " Summa)‘cg of the following chaplers

In chapter 2 we start with a formal description of the Bayesian control
model and we consider some examples. Then we study the process of posterior
digtributions. The main result is the convergence of the posterior distri-
butions to a degenerate distribution, under each strategy which assures the
nunbexr of visits to each set K s i €I to be infinite, with probability one.
This result is used in several places in chapters 4 and 6.

In chapter 3 we deal with two rather technical points. First we show that
the Bayesian control model is equivalent to a dynamic program (see section
1,2) and after that we study a class of 6ptimal reward operators for dynamic
programs in general. Here we consider optimal reward operators based on
stopping times, for dynamic programs as introduced by Wessels (cf. [van
Nunen and Wessels (1977)1). We generalize the operators for dynamic programs
with complete separable state and action space and we derive some new
properties of these operators. These operators determine the maximal ex-
pected total return until some stopping time, and with a terminal reward

at the stopping time, depending on the state at the time. Successive ap-
plications of these operators yield a sequence of funtions on the state
space, which converges to the function of optimal values. We use these
operators in chapter 6 where we consider the method of successive approx-—
imations for the eguivalent dynamic program.

In chapter 4 we first introduce the Bayesian equivalent rules. Then we
construct optimal strategies in order to maximize the average expected re-
ward.

Chapter 5 is devoted to the study of optimal strategles for the expected
total-return criterion. For three examples of our model we show that a
Bayesian equivalent rule provides an optimal strategy., The first example we
call the independent case since the rewards are independent of the state,
i.e. r is constant in the first coordinate. In all examples it is assumed
that the indexset I is a singleton, so the randomvariables Yn’ n e N are
sampled from the same (unknown) distribution at each stage. The second
example is the linear system with quadratic cost and the last one is a
simple inventory control model. For this inventory model the Bayesian equi-
valent rule is not always optimal. However, we give an upper bound for the
logs we incur by using this rule when it is not optimal.

In chapter 6 we consider approximations for the "function of optimal values”

when maximizing the expected discounted total return. This function is called



the value funetion and is defined on X x W by:
v{x,q) := sup X g{8)v(x,98,n)
T 8

where the supremum is taken over all strategies. We first indicate an upper
.bound on v and several lower bounds. These bounds have simple interpretations
and are computable if the parameter set is finite or equivalently, if the
prior distribution is concentrated on a finite set. We study the use of

these bounds for successive approximations of the value function., We alsc
give a lower bound on the expected discounted total return if a special
Bayesian equivaleﬁt rule is used and we construct an other easy-to~handle
strategy which is not a Bayesian equivalent rule but which behaves nicely.
Further we specialize the parameter structure as follows: there is a sub-

set B of the state space X with the property that,if xn € B then Yn+1 is
sampled from the same unknown distribution for all actions chosen, for
X, € ¥\ B the distribution of ¥4 is known {hence K, =BXa and 82, 93 cen
are singletons). A special example of this structure arises in the model
where B = X, e.g. the models studied in chapter 5. Here we use an optimal
reward operator as studied in chapter 3, with the entrance time in the set

B as stopping time. In fact, this operator allows us to consider the pro-
eess which is embedded on the set B. For this parameter structure we use

the convergence of the posterior distributions to a degenerate distribution,
and also the upper and lower bounds, to compute in advance an error estimate
on the n-th successive approximation, starting with a fixed prior distri-
bution. If the error estimate for the n~th approximation is small enough,
then we may compute the value function for this prior distribution by back-
waxrd induction. The effort needed for the computation of the n-th errxor
estimate is small compared with the backward induction procedure. Since
usually the computed quéntities to determine the n-th approximation cannot
be used to compute the n+ 1-st approximation, it is nice to know in advance
whether the n-th approximation is sufficiently accurate.

We also consider in this chapter another type of approximations, namely
digcretizations of the parameter set. Here we split up the parameter set
into a finite partition, and in each set of the partition we choose a re-
presentative point. We give bounds for the exror caused by replacing the
given prior distribution g by the discrete prior distribution which attributes
probabilities to the representative points equal to the given probabilities
of the corresponding sets. In [Fox (1973)] and [whitt (1976)] also discre—
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tizations of dynamic programs are studied. To apply their method, we would
have to split up the set of all distributions on the parameter set into a
finite partition and, in the eguivalent dynamic program, the process would
then jump between representative points in these partition sets. However,
we then loose the nice property that the second state-coordinate of the
process (i.e. Qn) is the posterior distribution of the unknown parameter,
at every stage.

Our discretizations are of interest, since in general we can compute the
upper and lower bounds, mentioned above, only if the prior distribution is
concentrated on a finite set of parameters. As a byproduct of our analysis
of discretizations we obtain a bound for the difference bestween the value
function of the Bayesian control model and the model that is obtained by

replacing in advance the distributions pi(- 8) by their Bayes estimates
based on the prior distribution and considering these estimates as the true
distributions. This last model is used very frequently in practice, in-
stead of the Bayesian model.

Finally, in chapter 7 we construct algorithms, based on the approximations
of chapter 6, which compute the value function v{x,q) for a fixed prior
distribution, and which also determine t¢-optimal strategies. We illustrate
the guality of the algorithms by numerical data for some examples.

In appendix A we collect some results of measure theory which are used in
chapter 3. In appendix B we illustrate the odd implications of the minimax
criterion by an example.

We note that it is possible to start reading at chapter 4 after reading the
model description in chapter 2 and the assertions of the theorems and
corollaries of chapters 2 and 3.

1.4 Notations, conventions and prerequisiies

We start with some conventions. A numbered sentence indicates a definition
a result or a formula. Such a sentence may occupy several lines, each one
of which is indicated by an indentation. Symbols used for objects, which
are defined in a numbered sentence have a global meaning, i.e. if we use

a symbol without defining it in the theorem proof, example or comment where
it is used, then it has the meaning given in the numbered sentence where

it is defined. References to lemmas, theorems, corcllaries, examples, sections
and chapters are preceded by the words "lemma","theorem", etc. Each chapter

has its own numbering, for example 2.4 is the fourth numbered sentence in
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chap‘ter 2. References to appendix A are preceded by the capital: A. The end

of a proof is indicated by: {J. If there is no ambiguity concerning the domain
of some index or variable, we omit the domain in the notations.

We continue with a list of notations.

1.1 N :=1{0,1,2,...} N =N v {=}, N"= {1,2,3,...}, §5= w" v {}.
1.2 IR is the set of real numbers, R := R U {-=,®},

1.3 §(*,*) is the Xronecker symbol, i.e. §{i,i) =1 and §(i,3) = O ifi#7.
1.4 # A is the cardinality of the set A.

1.5  x = max(x,0), X := -min{x,0).

1.6 Let (X ,Xi) be measurable spaces for i ¢ I, where I is a countable

set then X := 0 X, is the Cartesian product and X := © Xi the

iel iel
product-o-field on X. If y; is a probability on Xi then y := @ u,
i€l
is the product measure on X, if I is finite and u oa o-finite measure

on Xi then u is also the product measure on X.
Let A, X and ¥ be sets, such that A € X X ¥ then
1.7 projy () = {x € X | there is some y ¢ Y with (x,y) € A}.

1.8 i.i.d. means'independent and identically distributed', iff means

"if and only if" and a.s. means "almost surely”.

Let (X,X) and (¥,Y) be measurable spaces and let £ : X + Y be measurable
then

1.9 o(£) is the sub-o-field of X induced by £, i.e.

o(f) :={aeX|a =vf~1(3), B ¢ ¥1, where fni(B) i= {x € X | £(x) ¢ B},
1,10 P(X) is the set of all piobabilities on a measurable space (X,X).
Let £ be a function on a set X then
1.11 x-= £(x), x € X is a notation for this function.
1.12 @ is the empty set.
Let ﬁcl,xz,x3,‘.. be a sequence of real numbers, then

.13 ing{x, |1 egl =, ] x =0 anda 1 x =1 .
ieg ieg@
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et (X,X) be a measurable space and let g be a measure on X and £ a non-

negative Borel measurable function on (x,X), then

1.14 £{x)g(dx) is a notation for the measure u defined by

w{a) := Ivf(x}q(dx}, ae X
A

1.1S> Let £ and g be functions on some set X with range R and let Y € R,
f s g if and only if £(x) s g(x) for all x € X, £ s y 1f and only if
£(x) s y for all x € X. The analogous convention is used if < is re-

placed by <, 2, > or = .

We continue with some pertinent facts on transition probabilities and
conditional expectations. Let (R,F,7) be a probability space, (A,4) a
measurable space, and let Y : 0+ A be measurable. Then we call Y a random
variable and we write

1.16 (1) ®IY eB]l := P[{w e Q| ¥Y(w) B}, BeA.
(i) EY] := me):p (aw) .

A real-valued function on Q is called F-measurable or simply measurable,
if it is measurable with respect to the Borel u~field on IR. The following
lemma is well~-known (cf. [Bauer (1968) lemma 55.11]).

Lemma 1.1

Let (Q,F) and (A,A) be measurable space, and let £ : © - A be measurable.
Then a real-valued function g on § is o(f)-measurable iff there is a real~-
valued measurable function h on A such that g = h(f}. If £ is a surjection
then the function h is ~unique.'

1.17 & measurable space (A,A) is called Borel space if A is a non-empty
Borel subset of a complete separéble metric space and A is the Borel
o-field on & (note that in [Hinderer (1970) page 1871 such a space
is called a standard Borel space and in [Blackwell (1965)] a Borel

set}).

1.18 The topological product of at most countably many Borel spaces which,
because of the separability of the spaces, coincides with the measure
theoretic product, is again a Borel space (cf.[Parthasarathy (1967)
p. 135D).
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Let (Q,F) and (A,A) be measurable spaces, then a Ffunction P from 2 x A
to [0,1] is called a tramsition probability from (Q,F) to (a,A), or simply
£rom O to A, if

1.19 (4) P(B]*) is F-measurable for each B ¢ A.
(ii) P(*lw) is a probability on A, for each & ¢ Q.

Let (2,F,) be a probability space, let Bbe asub-c-field of F and let X be
a real~valued measurable function on §i, with IE [X+] < ®

1.20 (i) The gonditional expectation of X given B is denoted by = [x|B]

and defined as a real-valued B-measurable function on § such
that E[x1.] = E[E Ex[BJlBJ for all B € B.
(Bere 1, is the indicator function of the set B.)

(ii) If ¥ is another a real-valued measurable function on Q we
define Ex|¥] := E[X|o()] .

{iil) For every A ¢ F we define the conditional probability of A gi~
ven B, respectively the conditional probability of A given Y
by ®[a|B] := :IE[lA[B], respectively ®[a|Y] := ]E[lA|Y].

Note that the conditional expectation is not uniquely defined, however two

versions of it are egual P -a.s.

Theorem 1.2

et (2,F) be a Borel space and let IP be a probability on F. Then for every
sub~u-field B of F the conditional probability is regular, i.e. there exists
a transition probability P from {?,B) to (R,F) such that for every real-
valued F-measurable function X that is bounded from above, we have
w~f %(@)P(ds|w) is a version of E[X|B] . If P' is another transition
probability from (2,B) to (Q,F) with this property, then

®l{e|P(-]w) #P' (+|w)}] =0 .
For a proof cf. [Bauer (1968) th. 56.5].

We sometimes need the following corollary of th. 1.2.
Corellary 1.3

et (2,F) be a Borel space, let I be a probability on F, let (a,A) be a
measurable space and let Y be a measurable map from @ t© A, The proba-
bility Q on A is defined by Q(B) := W[¥ ¢ B], B ¢ A, Then there is a
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traﬂsi‘td.on prcbability P from (A,A) to (R,F) such that
() plonyim] = J P(D|§)Q(dy) for allBe Aand D¢ F.
B

If P' is another transition probability from (a,A) to (Q,F) with this prop-
erty, then

ally | 2t-ly) #2' ¢+l =0 .

P is called a regularconditional probability given ¥ = y and we usually
write P[+|Y = y] for P{+|y).

Proof.

By th. 1.2 there is a transition probability P from (8,00¥)) to (R,F) such
that for all D¢ F and B ¢ A:

®[pn {¥y e B}] = J PO|o)® (aw) .
v 1(m)
By lemma 1.1 there is for each D ¢ F a real-valued measurable function on a,
denoted by P(D|*) such that
P(D|Y (W) = Pto|w , for w € Q.

It is easy to verify that P, considered as a function on & x F is a transition
probability from (A,A) to (9,F) with property (*).
Let P' be another transition probability on A X F with property (¥}, and
define N := {y ¢ a|P{-|y) # P'(+]|y)}. Then

T ) = e e o|pC Y # P (|Y ).

By th. 1.2 P[Y'l (N)] = 0. Hence Q[N] = 0. , n

Let the assumptions of corollary 1.3 hold and let X be a real-valued
measurable function on {, bounded from above. Then we define

1.21 E[x|Y = y] = £(y) = J X () P ldw]y = y1 .

It is easy to verify that £({¥) is a version of the conditional expectation
of X given Y.
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We frequently use the following theorem of Ionescu Tulcea (cf. [Neveu (1965)
page 165]).

Theorem 1.4

Let (x X ) . 0 €N be measurable spaces and let Qn+1 be a transition

probability from (nt -0 % t 0 Xt) to (X ..

(X, X) = (Ht_c -~ 6‘:_=0 Xt) and let 50,61,... be the coordinate functions
on X l.e. ?,n{x) =X X = (xa,xl,...) € X. Then

Xn+1), n € W. Further let

{1} feor all n € :N there is an unique transition probability P from

€ X

(Tlt -0 Xy t o ) to (X, X) denoted by P(B|x0,...,x Y, Be X, X, N

i=0,c0.,n, such that for cylinder sets of the forxm

z X wew X x * X aas = :
B ==Ao Am Xm+1 xm+2 and m 2 n

p(alxo,....xn) =1A1><...><An(x0“”'xn}f Q41 (dxm_l!xc,...,xn)

An+1

oo J Q (ax |x presiX 1)

-
m

(1i) for every probability p on XO there is a unique probability IPp on X
given by JPp[Bj = fxo p(dxo)P(B]xo) + B ¢ X and for any measurable
function ¥ on X that is bounded from above, | P(dx|£y,e../E )Y (x) is
a version of the conditicnal expectation of Y given the o-field

0(50,...,£n). Hence one may define: (cf. lemma 1.1)

E (v | &y = xgreeurb =% 1 = J Plax|xyeeee,x )Y (x)

ox

E LY | Egpennit] o= f P(ax|Egraet B )Y (X),

Finally we summarize some pertinent facts concerning the set P(X) of all
probabilities on a Borel space (X,X).

1.22  on P(X) we have the topology of weak convergence; this is the
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coarsest topology such that for functions £ € C(X) the map

¥ f £{x)u{dx) is continuous, § ¢ P{X), where C(X) is the set of
bounded real-valued continuous functions on X (cf. [Parthasarathy
(1967)1) .

~ Lemma 1.5

Let E be the topology of weak convergence on P({X) and F the o~field gener-
ated by E. Then F is also:
{1} the smallest o-~field such that the functions § -+ u(B) are measurable,
pePX), BelX.
(i1) the smallest o-field such that the functions p - f £{x)u{ax) are
measurable, u € P(X), £ € C(X).
The proof of statement (i) can be found in [Rieder (1975) lemma 6.1]. Note
that this implies that F is also the smallest o~field such that u - f fau,
¥ ¢ PIX) are measurable for all real-valued bounded measurable functions
£ on X. k
Proof of statement (i1i). Let B be the smallest o-field in P{X} such that
u o f f(x)u){dx) is measurable, for £ € C{X). For each Borel subset D € IR
and every £ € C(X) we have fi}u! ff(x)u{dx) € p} € B, for £ €C(X). This is
true in particular for all open sets of IR. Hence the topology E is contained
in B, i.e. F.< B. On the other hand, since for all open subsets D ¢ IR
"ﬁﬂ f £(x)u{dx) € D} ¢ F and since the Borel 0-field on R is generated by
the open sets, we have {pl ff(x)u(dx) € b} € F for all Borel subsets D € IR.
Hence B <« F . [

In lemma 1.6 we collect some miscellanecus results.
Lemma 1.6

(1) Let {%¥,X) be a Borel space and F the o-field on P (X), generated by
the topology of weak convergence, then (P (X) ,F) is a Borel space.

(ii} The identification of elements of X with the point measures in P (X}
is a homeomorphism.

(11i) Let (xX) and (¥,Y) be Borel spaces and f a nonnegative measurable
function on X X ¥, then the function

(x,q) > f f(x,y)g(dy) ., X €X q€ePW)

is measurable.
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The brcof of (i) is found in [Hinderer (1970) th. 12.13], the proof of
part (ii) in [Parthasarathy (1967) lemma 6.1 page 42] and part (iii) is
an immediate consequence of lemma 1.5 (i) (cf. [Rieder (1975) lemma 6.21).
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2. THE MODEL AND THE PROCESS OF POSTERIOR DISTRIBUTIONS

In section 2.1 we define the Bayesian control model, the model we study in
this moncgraph, and we present some examples. In section 2.2 the posterior
distributions of the random variable, which represents the unknown parameter,
are defined and some properties are derived. Finally, in section 2.3 the
linit behaviocur 6f the posterior distributions is studied and alsc the

differences of succegsive posterior distributions.

2.1 The Bayesdian control model

Our model is simiiar to models described in [Shiryaev (1964), (1967)1,
[Dynkin (1965)1, [Martin (1967)] and [Hinderer (1970)]. In fact, it is a
special case of the model considered in [Rieder (1975)], which will be
shown later on in this section. In this monograph several models are con~
sidered, which are special cases of the Bayesian control model, we des-

eribe now.

model 1: Bayesian control model
The medelconsists of the following objects.

2.1 {a) {X,X) a Borel space. X is called the state space.

{b) {¥,Y) a Borel space. Y is called the supplementary state space.

(¢} {a,A) a Borel space. A is called the action space.

{d) b, a functicn from X to the non-empty subsets of A such that
K :={{x,a) | x € X, 2 € D(x)} is an element of X ® A .
D(x) is called the set of adnigsible actions in state x. It is
assumed that XK contains the graph of some measurable function from
X to A.

{e) I is acountable set, called the indexr set.

(£} Por all i € i there is a Borel space (Gi'Ti) and 81 is called the
pdrameter space of index i. The Borel space (8,7} is defined by
8 5= HieI 91' T = ®ier

(g) {Ki, i ¢ 1} is a measurable partition of X x A.

{h) P is a transition probability from X x A x ¥ to X (cf, 1.19).

{1) v is a o-finite measure on V. If Y is countable then v ig assumed

Ti. The set 8 is called the parameter space.

to be the counting measure.
(1) Py is a nonnegative measurable function on Y X Oi, for all i € I
such that fY pi(ylei)v(dy} = 1 for all ei € Gi and i ¢ I.
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For all i € I and ei,ei € 8 , ei # ei we assume.

i
vy e ¥ | pvley) #p v[8h > 0.

This property is called: the separation property.
(k) r is a real~valued measurable function on X X A X Y, bounded from
above, and called the reward funetion.

We continue with some definitions which clarifyAthe meaning of the objects
defined in 2.1.
Each & ¢ 8 can be described by 8 = (8
coordinate of 8.
For each € ¢ 8 we define a trangition probability,ﬁa from X X A to ¥ ¥ X,

by

i)iel where Si € Gi ig called the i-th

2.2 Byexr|xa = ] 1 (xa Jv(dy)pi{yieg fptdx'ix,a,w
i€l i E F

where E ¢ Y, Pe X, x € X, a € A and 8, the i-th coordinate of 0 ¢ 8,
{Note that §é satisfies all requirements for a transition probability (c£.
1.19)).

2.3 The set of historice H at stage n is defined by

—
(i) By =X, B :=XXx (AxY¥YX *, newW .

(1) Hn is the product-o-field on H_ induced by X, Aand ¥ for n € W.
2.4 A strategy © is a sequence: T = {wo,wi,...) where L is a transition

probability from (Hn,Hn) to {a,A) such that

“n(’lxo,ao,yl,xi,ai,...,yn,xn)

is concentrated on. the set D(xn). The set of all possible strategies

ig denoted by 1.

V It ls easy to verify, by the condition on X (¢f. 2.1 (d)), that I is non-
emply.

2.5 The sample epace of the Bayesian control process is § := 6 x E_, and
on { we have the product-o-field H := T® H .

Note that (8,T) and (f,H) are Borel spaces (cf. 1.18). On Q we define the
aoordinate functione Z, X+ Y,A,neN, also called random variables:
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2.6 Z{w) = 0, xn(m) 1= xn, Yn(m) = Y An(w) =a, for

W= (e,xe,ao,yl,xi,al,...) € Q,

According to the Ionescu Tulcea theorem (cf. th. 1.4) we have for each so-
called etarting distribution o € P(X), each so~called prior distribution
q € P(T) and each strategy 7 € I, a probability n’E q on (Q,H), defined by
[
™

2.7 IPp'qEz € By X5 € Cy By € Doy (¥,%y) € Epyunes (¥ 4X ) € En] 1=

J g (as) jn(dxe) f Fo(daolxo) j Pe(d(ylpxl)!xo,ao) een

B C DO Ei

ces Jﬂn-i(danﬂllxo'ao'yl'xl’al"”‘Yn-l'xn-l);( Poldly,,x)|x .2 )

Dn--l Fn

where Be T, Cc ¢ X, D € A and E ¢ Ye X, ne m.

2.8 The expectation with respect to 111*;r q is denoted by :[E:}r -
¥ f

2.9 Define W := P(T) and let W be the o~field on W generated by the weak
topology (cf. 1.22).

We identify each 6 ¢ 8 with the element of W which is degenerate in 6,

i.e. 6 vepresents the probability that is concentrated on {8}.

(By lemma 1.6(ii) this identification is a homeomorphism). And similarly

we identify each x € X with the degenerate distribution in P(X). Hence, for

mell, xe X, 6 € 8 the probability PZ, o is well-defined.

Using th. 1.4 and the identification we easily derive:

2.10 The conditional probability may be chosen as:

w

p'6[']

r
" [z =
ol [z=01=m

or

T - w
«\ 2 = Ip . .
x?p'q[ |23 0,zb°]

Note that the difference in these expressions is that the first one is a
function on 8, while the second one is a function on £, depending on the
first coordinate only.

Using 2.10 we find, for Be Tand C e f_ :
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2.11 p q[z € By (X3B.Y, ,Xi,Al,...) € Cl =

J qtaeupz'e[ (XyeByr¥ rees) €l

or¥yr¥y e
B

1

Further we define eriterion functions for the discrimination of strategies.

2.12 (i) The Bayesian discounted total return v is a real-valued function
on X X W x Iz

v(x,q,m) = L Z B (x A, )]

x q n=0 n+l
where B € [0,1) is the discount factor.
(i) The value function v is a real-valued function on X X W:

vix,q) := sup v{x,g,n).
el

Note that we use the symbol v for two different, but related functions,
and note that we use the name “"wvalue function" only in connection with the
digcounted total return.

2.13 fThe Bayesian aqverage return g is a real-valued function on X x W x II:

1 n NoL
iminf £ B [ ] r(x A,
oo %19 nmp

1.

n+l

Finally we define (nearly) optimal strategies. Let & 2 0.

2.14 (i) A strategy 7 is called e-optimal for the total return eriterion

in x € X and q ¢ W, if vix,q,T) 2 v{x,q) - €.

(ii) A strategy T is called e-optimal for the average return eriterion
inx ¢ Xand g € W, if g(x,q,w)asup g(x,q,n) - € .
Hell

A O-optimal strategy is simply called optimal.
Now the Bayesian contrxol model has been described completely. Note that for
each starting distribution p ¢ P(X), each prior distribution g ¢ W and each
strategy 7 € II the probability n>§ q and the stochastic process
(Z,X..,4

00
consider the average~return criterion, everywhere else we consider the

%4 ,XI,AI,...)are completely described. Only in chapter 4 we shall

total~return criterion.
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The Bayesian control model is an example of the so-called Bayesian decision
model studied in [Rieder (1975)}. This relationship is not used in our mono-
graph. However, it simplifies compariscens of our results with the literature.
To gsubstantiate this we introduce the following notations.

2.15 (1) 8S::=¥xXx,S::=YVY®X.

*

(ii) Pe is a transition probability from S x A to S, defined by

PE(E x F | (x,y),8) := EB(E xF | x,a) for allyeY, Ecy,
FeXand 6 € 8.
{iii) D* is a function from S to the non-empty subsets of A, such
that D ((y,x)) := D(x) for all y € Y. '
(iv) r* is a real-valued function on & X A X 8 defined by

r*((y.x),a.(y'.x')) = rix,a,y') ,» X,x' € X, a €A, y,v' €Y.

The 8-tuple ((5,S), (A,A),6ﬁ(8,7},?§,q,p*,r*). where p* e P(S) and g ¢ W,
satigfies all assumptions of the model of Rieder. Note that, in our model
the starting distribution p is specified only on X and in Rieder's formul-
ation of our model the starting distribution p* on ¥ X X is required. How-
aver, only the marginal distribution of p* on X plays a rele, since the
transition probability P;
by 2.15({i1).

We conclude this section with some examples, illustrating the applicability

has the property: y - Pg(B | (yv,x},a) 1ls constant,

of our model.

Bxample 2.1

If the parameter set 6 is a singleton, or egquivalently if the prior distri-
bution q ¢ W is degenerate in 8 ¢ 8, the Bayesian control model is an or-
dinary dynamic program, with state space {X,X),action space (A,A) and trans-
ition probability ;e, given by

Po(e | x,2) = ] 1 (xa) f v(dy)p, (v]9;) f plax' | xa,y), BeX

iex i B
and reward function ;ez
rg(x,a) = } 1 (x,2) J viay)p, (v[ey) .

ieX i
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Example 2.2

Bach dynamic program with countable state space §, countable action space a
and incompletely known transition probability P from X X A to X and real-

valued reward function Ton X x A can be transformed intoc a Bayesian control

model. To verify this define ¥ := i, X is the power set of §, A, v=z, A is
the power set of A, ¥ =%, ¥ := X and r(x,a,y) s=;(x,a) for all x € X, a ¢ A
and y € Y. Further define I :=X X A, K, := {i}, i ¢ T and 0 = P(X) .

Note that I is countable and that (ei'Ti) is a Borel space if Ti is the
g-field on 6 generated by the weak topology (cf. lemma 1.6). Finally define
p({x' }lx,a,y) := 6(x',y), %X,x' € X, a€ A,y €Y and p ]6 } os= ei .

i € 91, i €I,

It is straightforward to verify that all assumptions of 2.1 are satisfied.

1f, for some pair x,a € X X A, B(* is known, then the marginal distri-
bution on 9 ,a of g € W has to be degenerate in ;( Ix,a) Similarly, if

B(- lx,a) is unknown but belongs to some family of probabilities on (X,X)
then the marginal on ex,a of g € W has to be concentrated on this family.
Consequently the models described in [Martin (1967)1, [Wessels (1968)],

[Rose (1975)] can be regarded as special cases of our model.

Example 2.3

The class of models considered here is specified by Euclidean spaces X, Y
and A, and a measurable function F from X X & X ¥ to X. The state Xn at

time n iz a function of the action An—l
time n - 1, and a random variable Yn such that

at time n - 1, the state x“”1 at

*
Xn = F(Xn_l. An-l' Yn) ’ ne€ N
*
where X ¢ X, A € A and Y ¢ Y. The random variables {Yn' nemwW } are
i.i.d and cannotbe controlled by the decision maker, however they can always
*

be obgerved by him. For that reason the sequence {Yn, ne W} is called
the external process. The external process can be considered as a nuisance

process. It is assumed that the distribution of Yn is not completely known:

finite measure
von ¥ for all 6 ¢ 8 where (6,T) is a Borel space. We also assume

vi{y ¢ ¥ | plyle) # p(yla)}) >0 for 0 # 8. It is easy to transform these
models into our framework. To this end let P({F(x,a,y}}!x,a,y) = 1 for
XeX,acAandy ¢ ¥, and let X be the Borel o-field on X, and let A and
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Y be the Borel o-fields on A and Y respectively. Further let I be a single-
ton, i.e. I := {1} and K, #= X X A. At each stage Y is sampled from the
distribution with density p(-la), g e 8,

Let there be a reward function satisfying 2.1 (k). Then all conditions of
2.1 are satisfied.

Examples of this class are the Iinear gystem with unknown disturbance dis-
tribution as studied in [Acki {1968)], and {mventory models with unknown
demand distribution with or without backlogging (in chapter 5 we study such
a model extensively). Another example of these models is the replacement
model with additive damage as considered in [Taylor (1975)] where the distxi-
bution of the so-called ghocke is not completely known (in chapter 7 we
congider this model too).

Example 2.4

A model that satisfies all conditions 2.1(a)- 2.1(3), but for which the re~
ward function is not bounded from above, can sometimes be transformed into
a model satisfying all conditions of 2.1. For this purpose we replace 2.1(k)
by another condition which is due to Wessels (cf. [Wessels (1977]), who
assumes the existence of a so-called bounding function b, i.e. a positive
meagurable function on X, and a positive numbex M such that for all x ¢ X,
achAandye¥:

(i) f P(ax'|x,a,y)b(x') < b(x)

(ii) rix,a,y) < Mo(x) .

We shall carry out this transformation for the case where X is countable.

It is easy to extend the argument to the general case. Define:

p*(x' |x,a,y) := B({x'}|x,a,p)bxNbe) "

r*(x,a,y) 3= r:(x,a\,y:ﬂa(z-:)”1 , for x,x' ¢ X, a€h, yeVY.

*
As it may happen that Zx'ex P*({x!}lx,a,y) < 1 we add a2 state X to X and
let X" := X U {x"}. Further we define for x €« X, a e Aand y € ¥:

P*(x*(x*:ac}’) =1, P*(x*fxpafy) = 1 - z P({x'pra:y} ’
x'eX
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r*(x",a,y) := 0 and b(x") := 1.

Bach strategy for the original model is also a strategy for the new model.
(except in state x*). We denote the expectation for the transformed model
by I;. Note that for x

g€ Xoay €A y; s
-1 07t
b (x,) {jzo Pllxgyyd%0a50y,,)000x) =
n-1 ’ -1 n-1 %
= jEO {P({xj+1}|x ,yj+1)b(xj 1)b(xj) = jga P (xj+1|xj,aj,yj+1).
And therefore
n—l
b(xo) {Jgo P({x3+1}ixj,aj,y +1)}r{x sy +1) =
n-1 «
= {jilc P (xj+1]xj.aj,yj+1}}r (x ra ey, ) o

Now it is straightforward to verify that for x ¢ X, g €¢ W and 7 ¢ II:

-1 7 L S
b (%) Ex,q[x(xn’An'Yn'i'l)] = Ex,q[r (xannrY 1] .

n+l

This shows the equivalence of both models.

2.2 Posterion distrnibutions

As already announced, the posterior distribution of the random variable Z,
which represents the unknown parameter, plays an important role in this
monograph. We define random variables on (2,H) with range the set W, the
set of distributiens on (8,7T) and afterwards we show that these random
variables are versions of the conditional distribution of Z, given the
observed histories of the process. This property justifies calling these
random variables the posterior distributions.

We start with some definitions.

2,16 On f we define, foxr i ¢ I, the function Zi=

W = (e,xo,ao,yl,xl,al,...) e Q and where 6 =

Zi(m) = ei where
(ei)iel'

i'iel
the parameter of the distribution from which Yn is sampled, if

Hence 2 = (2Z,) and we may interpret the random variable zi' ieIas
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x _,

On @ we define, for i ¢ I, a sequence of stopping times, {T1(i,n), n € N}:

IAn~1) € K.i.

2,17 t{i,0)(w) := 0, 1(i,n) (w) := infim ¢ Iilm > t(i,n-1) (@),

. (64 - 1(w) 1(w)) € K, }
for n e ¥ andwe Q.

Note that the n~th observation from the distribution determined by pi('IGiL
ei € ei occurs at stage t{i,n) and note also that for each w € Q and each
k € N* there is exactly one pair (i,n), with i € I, n € N such that

t{i,m)(w) =

In the rest of this chapter the sub-o-fields in f, induced by the observable
random variables, are used frequently, therefore we introduce the notation:

2,18 F_ 1= 0(RyeAsY, oKX A e Y X B ) ne N .
For the stopping times t{i,n) we define the usunal o~-fields Ft(i nt
¥’
2.19 Fr(i'n) ;= {BeH | Bn {t(i,n =k ¢F, for all k € W},
*
Note that {t(i,n) =k} e F for n,k € W ,

Since (8,T) is a product space we define, for each q € W the marginal die-
tributions q, on (Si,Ti), for i € I:

2.20 Let B ¢ Ti then

qi(B} 3= J q(dsey .
{eleieB}

It seems to be quite natural to work with prior distributions g that are
product-measures, i.e. g = © 9, - However most results of this monograph
are valid without this assu%ption. Note that the assumption that g= @ q
is equivalent with the assumption that zi, i € I are independent. InieI
th. 2,1 we return to this matter.

In order to define the posterior distributions we define, for n ¢ ]N*, the
functions o, on @ with range the set of measures on the parameter space
6,T) and for 1 € I the random variables o on  with range the set of

i,n
measures on ‘91'71)‘

n
. o n . (Y. |8 ae) .
2,21 (i) o« (B) J X 121 1 X, (X, _q o2y _4)P; ¢ jl 4)a (@)
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n
(i) a; | (B,) :=J jl;il{lKi(xj_l,A, )pi(Y |9 Yy +1- i(xj—l,Aj-l)}qi(dei)

]
B
where B ¢ T, Bi € Ti and ei the i-th coordinate of 6 ¢ 8 (for nota-

tional convenience we have omitted the dependence on w € £ in 2,21).

The integrand of 2.21 (i) may be considered as the likelthood function of
the parameter 6 at time n and similarly the integrand of 2.21 (ii) as the
likelihood function of the parameter-coordinate ei, at time n.

The following equality clarifies this. It is easy to verify that on 2 we
have
n

2,22 m{1, (x 1By )pi(Y Ie Y+1 -

(X, ,,a, )} =
g=1 Ky 77

’
Ki j=1""5-1

= I p, (¥

|ei) ' ierI.
{k>0|7(i,k)<n}

T(i,k)

Here we used the convention:
2.23 For any real-valued function f on Y and a stopping time T

£(y (W) =0 1if T(w) =, for w € £.

T(Ww)

Finally, we are ready to define the posterior distribution Q, for the prior

ligtribution q € W, as a random variable on 2 with range the set W:

2.24 Let B ¢ T, then Q,(B) := q(B) and for w ¢ Qandn e N :
QB W) = o B Wi @) W), 1£ a_(8) (W) > O

:= q(B) otherwise.

(In th. 2.1 it turns out that o 6 >0, E’: q-a «S.)e
And similarly we define the posterzor distributions Qi for 1 € I, ne N :

2.25 Let B € T,, then Q (B) := q,(B) and for w € R and n € N
i i,0 i
a1 .
Qi,n(B)(w) 3= ai,n(B)(w){ai,n(ei)(w)} ,  if aiyn(ei)(w) >0
=q, (B) otherwise.

Note that Qn(')(w) and Qi n(')(w) are probabilities for all w € Q.
!
The measurability of Qn and Qi n is a direct consequence of lemma 1.5 (i).
’

The name "posterior distribution" is justified in th. 2.1.
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In th. 2.1 we collect some obvious properties of the random variables Qn

and Q {0 Throughout this chapter we fix a starting distribution p ¢ P(X),

a prior distribution g ¢ W and a strategy T € II, and for notational con-
T

venience we write I and IE instead of P and E" .
0,q P.q

Theorem 2.1

let B e T and Bi € Tj.' for i € I, Then:

(i) [z ¢ B[Fn] =9 (B) , P-a.s.

® g, then = ® @ .
jer * % fex M

(i1} ifgq

|}

(iii) if q = ie:I q; then B[z, ¢ BiIFn] =Q .B,), P-as.

{iv) ifq-= i:i q, then Tlz, ¢ BilFT (i'n)] = Q1 (i,n)

on {1(i,n) < »} IP~a.s.

(B,)
i

[ by v, 18,00, (30)

v @ B = §1 (x,n)
nt+l K n'n
1€T i ({pi(ynﬂlei)gn(ae)

{on the subset of 2 where the denominator is positive).

wiy ElQ ®|F1=9® ifn>n, P-as.

Proof.

N
IY 3 x b4 X X X x X x b3 b4 x X

wherel)ieV,EieXandFiaAforie:N.‘I‘henCanand

eEO,A £F ,...,Ynenn,xnemn,Anan] =

00

fm [ze BanJdIP =P [2 eB,X,
c

= fq(de)J p(dxo)J 'no(daolxo)J v(dyl)f P(dxllxo,ao,yl)...

B EO FO D1 El
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fv(dyn) Jp(dxn[xn_i,an_l,yn) Iﬂn(danlxo,ao,yl.xi,...,yn,xn) .
D E F
n n n

n
SI{ YL (x, .,a, )p, (y.]860)} =
j=1 deI Ki F=1""4=1"F1 4174

= J p(dxo) Iﬂo(dao|xo) Jv(dyi) JP(dxllxo,ao,yi) vee

EO FO D1 El

al Jv(dyn) JP(dxnlxn-l'an~1'yn) f“n(danlxo'aO'yl'xl""'yn’xn) *

D, E F,
6y I 1 ’
. fq(d ) 1 1{1§1 x, ®g-1723-0P twle}
‘Jatad) TLF 1 oy pea e vgley )= = =
0 y=tiex 1 RSN RN ALRE
j=1 ier K¢

= m£1cgn(s)] = J Q (Bdr .
c

The second equality is a consequence of changing the order of integration.
{Note that we used the convention %‘= 1)
Hence

(%) f w[2 ¢ B{Fn]d:tp = [ Q (Bap .
C C

By standard arguments we have (%) for all C ¢ Fn' Since, by 2.21(i) and
2.24 g (B) is Fn—measurable the assertion (i) is proved.
We proceed with assertions (ii) and (dii). It is easy to verify that on &

n
2.26 LI ( AP (¥,le) =1 @ p, (¥ le,)
=1 ier Ky 3717 3-1RET ier {k>0|t(i,k)sn) + TUH

{remempber that for each m ¢ ]n* there is exactly one pair {(i,k), i ¢ I,
* .
k € N such that t{i,k) = m and remember that an empty product equals one).

Since q = @ q; we have, by 2.21 and 2.26,
iel
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a ({ale € By, ic I}y = T o

(B,)
iex im™L

for Bi € Ti, i ¢ I and therefore

Qn({e|ei €B,ie1}) = iglgi,n(ai) .
In particular we have for B = HieI‘Bi with B, = Gi for all i # § and with
Bj € T Q. (B) = Qj n(B .). Hence
:!p[z € By [F] Q4,084
To prove (lV) note that
iz, « Bi{F

T(i,n)] = 2lz, € Bi]FkZl

on the set {T(i,n) = k} for k € W (cf. [Neveu (1972) th. ITI-1-31).
Next we prove (v).
It is easy to verify that, for B € T:

n
It
oA, el L1, _1rByg)e (7 lo,) }q(a0) =

(B) = f D & a0p | %
ieX i j=1 i€l i

an+1

11, (X ,a)p. (¥ .l8)a @8 .
Bflel i o n'Fi el L T

Hence on the subset of @ where o (8) > 0 we have

n+1

[p v, 1800 (@0
(X_,A) r

n+1 z 1
jer ¥y 2B f p (¥ 6,00, (a0)

Q44 (B) = s
n+i +1(9)

and dividing numerator by an(G} we obtain the desired result, since

- te> o (d8) = Q (a8) , on @ .
n

The proof of assertion (vi) is an immediate consequence of (i).
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We introduce sgome notations which are useful in the following chapters.

On ¥ X W we define realwalued functions Py i€ 1:

2.27 pi(y,q) 1= f q(d@)pi(yiei) vy eY¥, qgeW..

Notice that these functions may be considered as extensions of the functions
defined in 2.1(j), by the embedding of 8 in W, in fact pi(y;e)==pi(Y|ei):

8 ¢ 8,

It is a consequence of lemma 1.6(iii) that the function (y,q) *’pi(y,q)

is measurable, i € I.

Note that pi(‘,q) is a probability density with respect to the measure v,
for 1 € I and q € W.

Purther we define functions Ti on ¥ * W with range the set W, for i ¢ I:

2.28 Ti y(q) is a probability on @ such that, for B ¢ 8
1 4

-1
Ti,y(q)(B) 1= f pi(ylei)q(ds){pi(Y:QJ} » if p,(y,@ >0
B

= g{B) , otherwise.
Agailn, using lemma 1.6(iii} we find the measurability of

(y,q) * T (q)(B) ’ BeT,ie1.

Hence Ti is a transition probability from Y X W to 8. We may interpret

Ti y(q) as the posterior distribution, if g is the prior distribution and
¥

y € Y is observed from the distribution belonging to the set Ki. The

following formula is easily verified:

2.29 = L1 (x,a)T Q) .
iex i i Y Qn

For q € W we define the functions qo,ql,qz,... recursively:

2.30 (1) 9y ¢ WrWw, qg(q) = q .
(ii)qn:WX(XXAXY)n'*W, newm

such that
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q (QrXgragreeery)) .alzll (e _q02 ) Ti,yn(qn*l(q'XO'aO""'yn—l'xn-l))

for q ¢ W, x, € X, ¥y € Yanda, ¢ &, 2 € W, .

% 2
It is straightforward to verify that, for B e T

é iy I g txgea)p; tyy,,16,))a(a0)
3=0 ieI i
2.31 qn(qpxoyaof...:y )(B) = 1
[ ], (x a)p, ty,,, 18, 1q(ae)
8 g=0 gex Ky 3 3 iT3HA

provided that the denominator is positive.

Using the notations above, we may write:
Qn qn(QO'x ’ Ot---'Yn) ’ on % .

We conclude this section with a few remarks:

Remarks.

(1) If £ and n are independent random variables, defined on some pro-

bability space, and B is a sub~0-field, then in general

-

However in th. 2.1(il) we proved that equality holds PP -a.s., if
§ = £(2)), n = g(zj) and B := Fn for i # 3, 1,3, € I, £ and g non-

negative measurable functions on8 N and 8, respectively, and ifg= ® gy

(il) Instead of defining the posterior distributions Qn by 2.25 we cgi%d
define them directly as conditional distributions (cf. th. 2.1(i)).
However the conditional distribution P[Z ¢ -|Fn] is undetermined
on some set with IP -measure zero.

(1ii) If the prior distribution g is concentrated on a set of finitely
many points then all posterior distributions are concentrated on

this set.

2.3 Limit behavioun of the posterion distrnibutions

The main result of this section is the convergence of the posterior distri-
butions Qn of Z (cf. 2.16 and 2,25) to a degenerate distribution, i.e.
Qn(B) converges almost surely to 13(2) for all B ¢ T , provided that the
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strategy, by which the system is controlled, ensures that the number of
vigits to the set Kic X xAa ig infinite, with probability one. Qur proof of
this statement is similar to the proof of a theorem in [Dook (1949)1. In
fact, our regult extends Doob’'s result to a more abstract getting.
Another result of this section concerns the expected differences of the
successive posterior distributions. In the proofs of the above mentioned
results, elementary martingale theory plays an important role. 2s a
corollary of the next lemma we shall show that given Z, the sequence
Yew,me
identically distributed random variables {(cf, [Neveu (1965) page 1291},
provided that @ [t(i,n) < 1= 1 for all n ¢ :N*. This lemma is also used

ne N} forms a sequence of conditionally independent and

in chapter 6 (remember that p € P(X), g ¢ Wand 7 € T are fixed).

Lemma 2.2

Let f be a nonnegative measurable function on ¥". Then

n
E Ef(yt ,1) voese¥ (i,n))] < qu (dei){f...fv (dyl)‘..v(dyn)jlgilpi(yj!Silf(yl, o yn)}

with equality if
wl{t(i,m) <=}]=1

{we use convention 2.23, note that t{i,k) < t{i,n), k < n).

Proof.

It suffices to consider functions £ of the form:

f(ylu.uyn) =

n
ni (Y); Eéyo
J= 3

1 By 3

It is easy to verify that for E ¢ Y we have P -a.s. (cf. th. 1.4):

(%) El1 () [2,X R0 sV ok oty T =

= | viay L1, (x A p (ylz)i () .
f T T e SRR At

Note that {T(i,n) =k} ¢ F _, < OB XgeByrese ¥y giX g oRy ) -
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Let h be a nonnegative measurable function on 8 4+ Consider

n ® n=-1
Eln(z,) T 1 (¥ )1 = § Eln@z,) 01 (¥ )1 1 (¥l =
A P 1% o ey By Tl {timy=k}'e_ "k
o n~1
= k}j Elh(z,) Tig 0o, e, ma By SN2 0% SIS APTE P N L
=n i=1 73 n
© n-1 )
= ) Elh(z,) I . A
an Ch( i)jgllEj(YT(irl))l{T(L;n)ﬂ{} Iv{dy)pi(y[zi)ign{y}] £
-1
< m[h(zi)jziiEj(Yﬂi,j)) fv(dy)pi(ylzin%(y)]

with equality if ®[{t(i,n) < =}]=1, Note that the third equality is a

consequence of (*) and the fact that (Xka-l’Akwl) ¢ K on {t{i,n) = k} .

Now we may repeat the argument for t(i,n-1} with the function
R(z,) = h(z) [vidy)p, (v|Z))1; (¥). So we £ind putting h = 1
n

n n
®ml 01, (v W1s EL R f vidy.)p, (v.12,01, (v)]
=1 By T, 5=t 4P 419y B3

which proves the lemma. 0

The following corollary ls immediate.

Corollary 2.3

Let ®L1(i,n) < «] = 1, Then for EjrevasE € Y we have g-a.s.

n
w
n>p,9[YT(i,1) € El""'Yr(i,n) € En] = jzl I pi(y|9i)v(dy)
E
J
or similarly as functions on 2 we have P -a.s.
n
" _[Y €E sran,Y eE 1= T | p, (y|z,)viay
Pz T, 17777 (i, n) nt g i i .
E

3
Hence

T(i,n) are, conditionally given Z, i.l.d.
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Theorem 2.4

If [ n . {t{i,n) <=}] = 1, then for all bounded real~valued measurable

neWN
functions £ on Gi:

lim J f(ei)Qntde) = f(zi) P-a.g.

no

Remark .

This holds in particular for all bounded continuous functions £. Hence Cn
converges weakly to the distribution which is degenerate in 2 40 P-acs.

Proof. The proof is divided into five parts.

a) We first reduce the problem.
It is easy to verify that f f(ei)Qn(de) = m[f(zi)if’n] P~a.s. {cf.
th. 2.1) by considering indicator functions first. Since {Fn' ne N} is
an increasing sequence of o-fields with limit Fw, and since the sequence
{m[f(zi)lfn] . n€ N} is a martingale with respect to {Fn' ne m},
we have (cf.[Neveu (1972) th. II-2-11]):

Lim f £(6,)Q (a8) = E[f(zi)l'f'm] ¢ TP-a.s.
Drre

Let F. be the completion of F_ in H, i.e.

F: s={aaNaeF_,NeH, P[N] = 0}. Obviously, it is sufficient to
* s . %

prove that £(z,) is F_-measurable, since EBL£(z,)|F ] = E[£(2)) [F 1+

®-a.s.

So we proceed with proving that £(2 i) is F:-measurable.

b) We Gefine on 9% := n {1(i,n) < =} the empirical distributions on (¥,Y):

EcY (note that 0" ¢ F) .

First we verify that F n(') is a measurable function from R to PYy,
where P(Y) is endowed with the o-field generated by the weak topology.
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This g-field is generated by sets of the form (cf. lemma 1.5)
{p e PO |u(E < a} , EeY, aeR .

Since
{w e Q*|Fn(E) e {pe PM|uE < a)} ={uwe 9*|Fn(E) <alefF_,

the measurability of F {*) has been verified.

Next we consider the limit behaviour of F for n + », as functions on
Q.LetF be the restriction of F_ on&‘e,ie.: {AnQIAeF}
Since 2" € F_ we have Fw «F_. By ccrollary 2.3 we have, for q—-almost
all §: Yr(i,l)""'yrti,n are i.i.d. on (Q F ,JP e) forn € W with
common distribution Pei , where P ¢ 8 M PY) is defined by

Pe (E) := J pi(ylei)v(dy) ¢ for B e ¥,
i
E
Let C(Y) be the set of all bounded continuous functions on Y. Since (Y,Y)
is a Borel space we may use a generalization of the Glivenko-Cantelli
lemma (cf. [Parthasarathy (1967) th. 7.1 page 531). This lemma states
that Fn converges weakly to Pei' IPﬂ

£,.8
Hence, for g-almost all 8, we have

- V59

[{w € Q |lim f g(y)Fn(dy) = Jg(y)?e (dy) for all g e c{¥)}l =1,
i

N

1r = =
Since It?p'e[zi = ei] 1, we have for

Q"= {w e Q*Llim J g(Y)Fn(dY) = J Q(Y)Pz (dy) for all g ¢ C(¥)}
N i

thatn’ [9 3== 1 and using 2.10 we find P [Q" }

Hence, since ®L2*"1 = 1 we have 2" e F .

Further we prove that the function Pzi from § to P(Y) is F:;ineasurable. Re-

member that the o-field on P(Y) is also generated by sets of the form

(cf. lemma 1.5):

{u e P Jg(y)u(dy) < a}, gec(¥,aemR .

*
since 27 € F_ we have
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{we ™ J giy)p, (@) < al = {ve 2" | Lin [ gIF, (dy) < a} « F: .
1

e

Hence {w ¢ 0| fg(y}Pzi(dy) <ale f": and therefore

B, : Q > PY) is F:-measurable.

e) Fi%ally we show that Z i
By the separation property (cf. 2.1(j)) we have P : Si + P(Y) is a one~

%*
is F_-measurable.

one map into P(VY). Since this mapping is measurable we have by Kuratowski's
theorem (cf. A7) that P'1 is also measurable, Hence, since the function
P-i ?y ) : 0 + 91 is F:-measurable and since P”l (py ) =2 :
we hav% that 2 i is F:-vmeasuxable on 52**‘ Therefore, bg‘r part (a), the
theorem is proved. 0

Corollary 2.5

Let 11,12,...,1 € I and let £ he a bounded measurable function on

k
—
ei x...xei +» Xk € N . Then:
1 k
k
(%) L n 0 *{r(ij.n) <w}] =1
j=1 nelN
implies
lime(O peees8, )10 (A0) = £{Z, ,404,Z, ) WP -a.s.
nbos 4 K n i ix
Proof.

We extend £ to a function on 8 by defining E{B) i= f(ei ,...,ei ) for 6 ¢ 8
1 k

with © i, 28 i j-ccorainate. Let (*} hold.
As in pg.rt {a) of the proof of th. 2.4 we have:

lim f f(o1g (a0) = EL£(2) |F 1 = BIE(2)|F.] P-a.s.

nre

It suffices to consider functions f of the form



39

m
(%) E(B, seeaeb, ) = NML_(B,) where E.e¢T, , msk, me N .
i i E i
1 x  3=1 By iy S
In the proof of th. 2.4 we showed that (*) implies that Zi is F:-measurable,
15395k A J
Hence ?(Z) is F:—measurable here, which proves the statement. 0

Corollary 2.6

Let g be concentratedon a countable subset of 6. Then [ a2 {t(i,n) <=} 1=1
. .
implies lim [ £(0,)Q (d0) = £(8,) , B o
<o
and for any bounded measurable function £ on Gi.

~a.5, for & € 8 with gq({8}) > 0

To prove this, note that for B=8 xc¢c, ¢ € H_: IPg'q[B] = 1 implies
IPz'e[B]=1 for all 6 € 8 with q({6}) > 0 (cf. 2.11).

The countability condition in corollary 2.6 is essential. In [Freedman
(1963),(1965) 1 and [Fabius (1964)] this problem is studied for the situation

of real-valued i.d.d. random variables.

In th. 2.7 we consider a slight extension of th. 2.4, to be used in section
4.2,

Theorem 2.7

‘ v F
Let il""'i € I, with k € N and let {6n, n € N} be a sequence of stop~

k

ping times, such that for m € N, {Tn =m} € Fm and g = 0, O 4y > One Let
the o-field Fo be defined as in 2.19.
n
k w0
assume:s PL n 0 {t{i,m) < «}] = 1. Then, for all bounded measurable func-
3=1 n=1

tions £ on Gi X ... X 8, we have, on n {cn < w} 3
1 x new
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limf Q% (dﬁ)f(ei ,.‘.,Gi )= £z, reesiZy } P-a.s8.
n

s 1 k 1 k

{by convention Q is the zero-measure)}.

Proof.
a) We first consider the o~-fields F"n in more detail. Let B ¢ Fn’ then

Bn{cn=k} wﬂifk<nsince{on=k} = @. If k= n then

Bn {on = Xk} e Fk‘ Hence Fnc Fon, ne N. Now, let B ¢ Fcn. Then

B n {cn_!_i-}dms ni u {cn =2}) n {°n+1 = k} ¢ Fk , since
nsi<k

Bn (v {on = 2}) ¢ Fk—-l' Hence the sequence {Fa » e M} is increasing.

nsl<k n
ginceF ¢ F_ <F , ne Nwehave v F_c¢ uv F_ < F_. Therefore
o o «© g o
n ne MW ne N n
F_ is the smallest o-field containing U Fcr .
ne IN n

b} Further we consider fQo (d8)£(0) where f is a bounded measurable function
on6. Let Be T. Then:

J %, [@)150) =g @) = m2=n1{on‘m}gm(s) =

=3 1{%%19& e B[F ] =mlze Blrgnjz{ , T-a.s.

o _<w}
m=n n

{for the last equality cf. [Neveu (1972) prop. II 1-3]).
Hence, using standard arguments, we find for each bounded measurable
function £:

(%) J Q, (@O £(8) = mLe@ |F I, 0 -
n n n

¢) Note that, by the conclusion of part (a): lim E[£(2) [Fc 1=®ml£(2)|F]
X n
P-a.s.

since {¢ < =} , n € N is a nonincreasing sequence with limit
n

n o, < »} we have, P ~a.8.:
nelN
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lim E[£(2)|F_ 1t
I Ci‘n

= E[£(2)|F 11
ne

{on<°°} s {cn«u} *

In exactly the same way as in the proof of corocllary 2.5 we find
ELE£(2) le] = £(%), P ~a.s., which proves the theorem. 0

We conclude this section with a theorem concerning the expected quadratic
differences of successive posterior distributions. This result, which might
be used to obtain approximations of the value function (¢f. chapters 6 and 7)

is of some interest in its own right.

Theorem 2.8

Let B1 ,82,... be a measurable partition of 6 i let g = & 9 and assume

Pl {t(i,n) <=}] =1, lel
ne]N
Then
nEmE[3£1{Ql n+l (B ) - Q (B )} IF 1=1- ji Qx;m j)

in particular, for m = 0

L

2
m[X{Q (B5) - Q BIF1=1- ] 2@y
n_z_o =1 1,0+l im0 3 =1 |

Proof.
Rccording to th. 2.4 @ (B)) = ®plz; e leFn], P-a.s. For n 2 m 2 Os

E[{Qi'nﬂ (Bj) - Qim(Bj)} |Fm2l =

2 2
JECQi'nﬂ (Bj) * Qon (Bj} - 2E [Ql n+l (Bj)Qi,n(Bj} [Fn:”Fm] =

2 2 N
m[Qi,nﬂ (Bj) - Qi,n(Bj) [Fm]' since E[Qi,m-l (Bj) anJ N Qi,n(Bj)
®-a.s, (cf. th., 2.1 (vi)). Hence

2
}: EL{Q; nyy B -2y, n(B)} |F]-E[Qi N+1(BIIF3 m(Bj) .

n=m

By th. 2.4 we have lim Qi,n(B

y =1 (Z,), P-~a.s. Hence by the dominated
ne By i

3 3



42

convergence theorem, for conditional expectations

2 _ -
iig m[gimmj)lFm] = m[1sj<zi)]:=m] =9 n®®

} .

Consequently, by changing the order of summation

z EL z {Qi.n+1(Bj)"'Qi,n(Bj)} IFQ] = jZI{Qi.m(Bj) - Qi.m(Bj)}

n=n j=1

which proves the theorem. g

Remark .

o©

The quantity 2 qi(Bj) is a measure of degeneration for the distribution qi.
j=1

In fact,

w©
2{1 - Eqi(sj)}
i=1
is the parabolic entropy of q; with respect to the partition B /Byseee if
only a finite number of sets Bk
It is easy to verify that if N is the number of non-empty sets in the
partition, then 1 - 2;1 qf_ () <1 - £ with equality if q ®,) = % for the
- 0
ooand 1 - )7 4q, (B))

are non-empty, see [Behara and Nath (1973)].

non-empty sets B 0 if qy is concentrated on one.

5]
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3. THE EQUIVALENT DYNAMIC PROGRAM AND OPTIMAL REWARD OPERATORS

In section 3.1 we show that the Bayesian control model is equivalent to a
dynamic program with a state space that is the Carteésian product of the
original state space X and the set W of all distributions on the parameter
get. This property is used frequently in the remaining chapters. In section
3.2 we study a class of optimal reward operators based on stopping times,

as introduced by Wessels (cf. [Van Nunen and Wessels (1977)]). .Here we con-
sider general. dynamic programs and therefore the section may be of some in-
dependent interest. However in section 3.3 we return to the Bayesian contreol
model and we specialize the results of section 3.2 for the equivalent Gynamic
program. Further we give some useful properties of the value function (cf.

2.12) . We note that the results of section 3.2 are used in chapters 6 and 7.

3.1 Transfoamation into a dynamic program

Before digcussing in detail the methods and results of this section, we
define the dynamic prbgram, that turns out to be equivalent to the Bayesian

control model.

model 2: Equivalent dynamic program
. The model 1ls defined in terms of the objects of model 1 (cf. 2.1).
3.1 (a) X x W is the 8tate space endowed with the o-field X @ W,
(b} A is the action gpace endowed with the o-field A.
(c) D is a function from X X W to the non-empty subsets of A such that
Sttx,q)) 1= D(x), x € X, g € W (the sets of adnissible actions).

(@) P is a transition probability from X X W x A to X X W such that

P(B x Clx,q.a) 1= ] 1 (x,2) fvidy)pi(y:q)JP(dxﬂx,a.y)
ier i {ye‘.z[’ri y(q)ec} B

(xeX,gewWw,acn, Be X, cel) (cf. 2.28).

(e} the reward function T:XXWXA> TR is defined by

rix,q.a) = )1 (x,a) Jv(dy)pi{y.q)r(ma,y) .
ser Ky
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As in section 1.2 we define the sets of histories, the strategies, the ran-

dom variables and the probabilities on the sample space.

3.2 The set of histories at stage n, is defined by:

*
(1) Hy = X X W, B_ := XxWwxaPxxxXW, ne N,

(ii) nn is the o-field on H_ induced by X, Wand A, n ¢« . Let A := ﬁw.
3.3 A strategy Tis a sequence 7= (;0,;1,?2,...), where ; is a transition
probability from H to A such that T (- |x0,qo,a0,...,x = ) is concen-

trated on D(x ,qn). The set of all strategies is dentoed by H.

3.4 On  we define the coordinate funetions ox random variables xn, Sn and
An by Xn(w) 1= xn, Qn(m) = qn, An(w) 1= an where
w = (XO'qO'aO’xl'ql'al"") € Q.
3.5 For each p € P(X), each g € W and each T € T there is a probability
' Eﬁ: q on H determined by (cf. th. 1.4):
P+

~
~

~7 o~ ~ ~ ~ ~
mp'q[xo € By, Q0 € Cyr By € EO,...,Xn €B.,Q €C,A ¢ En] 1=

1c0(q0) fp(dxo)f Tro(da0|x0,q0)...
Bo E0

ese I P(d(xn,qn)|xn_1,qn_1,an_1)j wn(dan|xo,qo,a0,...,xn,qn)
B_XxC E
n n n
for B, € X, C, e W and E, € A, i e N and qy = g-
We introduce a sequence of transformations tn t W ox Hn > gn which relate

histories for model 1 to histories for model 2.

3.6 tn(q,xo,ao,yl,xl,...,yn,xn) 3= (xo,q,ao,xl,ql,...,xn,qn)

where q; == qi(q,xo,ao,...,yn) (cf, 2.30(ii)), for i = 1,...,n.

Hence, if g € W is the prior distribution of Z, then tn(q,hn) is the history

at time n if we only observe the states X5 the actions a, and the posterior

i
distributions q; (L £n, hn € Hn).

Further we define the subset NI, of II by:

0

3.7 m e no iff there is for each q ¢ W a ; € ﬁ such that for all hn € Hn,
ne WN:
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T lelh) = (et (@b )) .
‘The strategy 7 is called the corresponding strategy of w (with respect

to q).

Notice that the strategles 7 ¢ HG base the choice of the action at time n
only on XO,QO,AO;...,Xn,Qn.
In this section we show that we may restrict our attention to the subset
of strategies HO when we are locking for "good" strategies formodeli, (cf. th. 3.4).
i.e. sup vi{x,q,7) = vi{x,q) for all x € X and q € W.

nell

0 ~ o~

Morecover we shall show that for each 7 € HO and its corresponding 7 € II

the following equality is valid for all p € P(X) and q € W:

i e e
n+1)3 = Ep,q[r(xn,Qn,An)] for all n € M.

T
Ep:q[r(xn,zsn,y

This implies that we may apply techniques of dynamic programming to the
equivalent dynamic program in order to determine or to approximate the value
function v and nearly optimal strategiles.

Transformations of this type are well-known, see for example [Martin (1967)1,
[wWessels (1968)1, [Hinderer (1970)], [Furukawa (1970)1, [vushkevich (1976)1.
As far as we know the most general result is proved in [Rieder (1975)1].
Translated to our situation Rieder's result implies that the Bayesian control
model is equivalent to a dynamic program with state space X X ¥ * W, in other
words that the process {(xn,Yn,Qn,Ah}, n € N} is a Markov decision process.
To this end Rieder transforms the Bayesian equivalent model into a so—-called
non-Markovian decision model, as defined in [Hinderer (1970)] and afterwards
he shows, using Hinderer's concept of sufficiency, that the non-Markovian
decision model is equivalent to the dynamic program with state space X X Y XW,
However, #e need the equivalence of the Bayesian control model to model 2, a
dynamic program with state space X * W. Therefore we prefer a direct proof.
Our approach employs the same idea in [Strauch (1966) th. 4.1], which is also
the basis of Hinderer's sufficiency concept.

We start with some preliminaries.

Note that, according to th. 1.4, we have a "natural" regular conditional
; R T

distribution Ep,q['|Z'X0'A0'Y1"“'Yn'xn'Anj' pePX), qgew, el

We always choose this version without comment. For real-valued measurable

functions £ on § that are bounded form above we always define

k3 s
Ep;q[le,XO,AO,Ylg...,Ynyxnyﬁn] as in th. 1.4(11).
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Note that we are working in model 1 until th. 3.5. Recall that in 2.24 we
defined the mapping Q, @ > W. On W we have the Borel o-field W, generated
by the weak topology, which is the smallest o-field on W such that the maps
B + u(B) are measurable {cf. lemma 1.5) for every B ¢ T Since for every
B ¢ T the mapping w - Qn (B) (w) is measurable it follows that

T

n
Ep,q[Qn‘B’|Qn3 QB B -a.s.

~ Lemma 3.1

Fixp e PX), ge W, 7 ¢ T and n ¢ IN. ‘
(i) Let f be a real-valued measurable function on 8 X X X W X a, bounded
from above. Then

T n
mp'q[f(z,xn.gzn,zan)Ixn,gn,an] = I‘f(e:xnpgnpAn)Qn(da) gl

(ii) Let f be a real-valued measurable function on 8 X (X X W X A) n+1,
bounded above. Then, for Vv := (XO.QO,AO,...,Xn,Qn,An), we have

ki n
mp'q[f(z,vylv‘_] = If(e,V)Qn(de) T e N T

Proof.

We start with assertion (i). All equalities hold P -a.s. We may suppose
14
£(8,x ,q ,a) 1= 1.(0)1 (x ,q ,a) withBeT anaceXelWeA

w w
mp'q[f(z,xn,gn,An)lxn,Qn,An] - 1C(Xn,Qn,An)1Pp'q[Z € len,Qn,AnJ.

Note that o(xn,Qn,An) € Fn’ Hence

k)

T £ _
®» 'q[z € Bixn,Qn,an] =& [® ’q[z € B{Fn]!x QA l=

o 0 o] n"n n
kL
==, Lo ®ix.0.a1=0® .

Therefore we have

n
B LE@X 00 A0 (X 00,81 = 1,(X ,0 /A)0 (B) =

- J 1(0)1,(X /0 /A )Q, (d9) = f £(0,% ,Q_ /A0 (a0) .



47

The c(xn,Qn,An)-measurability of f f(e,Xn,Qn,An)Qn(de) follows from lemma
1.6(iii). The proof of assertion (ii) is analogous. f]

i

In lemma 3.2 we employ symbols we used before, but here we do not uge their
intexpretation.

Lemma 3.2

Let (2,4, (U,X) and (V,T) be Borel spaces, let X : D > Uand Y : @ - V be
measurable. Let B be a probability on H. Further let ®[«|X = x] be

a regular conditional probability given X = x (cf. corollary 1.3) and let f
be a real-valued measurable function on U % V¥, that is bounded above.
pefine m (C) := Ply ¢ c|x = x] for all x € U and C € T,

Then [ £(X,y)my (dy) is a version of E[£(x,v)|x].

Proof.

First let £{x,y) := IA(x)lB(y) with A ¢ X, B € T, By corollary 1.3 and by
1.21 we have m[1B(Y)|x] =[ 1,(y)m (dy), P-a.s. Hence

EL£(x,)|x] = 1A(X) I 1, VIm (dy) = J f(x,y)mx(dy) .

By standard arguments the statement can be proved in general. 0

In th. 3.4 we shall show that we may restrict attention to the subset of
strategies Ilo
interesting strategles are those, where for all n € N the choice of the

distribution of the action at time n depends only on the values of }(n and
Qn‘ Here we use the same construction as in [Strauch (1966) th. 4.17. The

¢ II, defined in 3.7. In fact we shall show more: the only

idea of this construction can also be found in [Derman and Strauch (1966)1],
[Wessels (1968) th. 7.4 and th. 7.5)] and in [Hinderer (1970) th. 18.1].
We start with a lemma where this construction is carried out.

Lemma 3.3

Fix p ¢ P(X), g e Wand 7 ¢ II. For all n ¢ N we fix a regular conditional
T
pr:bability ]Pp’q[ Xn =X, Qn = qn], such that

i = = = x € X and € W. We define
®o R, € D(x ) |‘xn x.,Q =ql=1forx q,
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the strategy Tr* ¢ I by

3.8 w;(B[xo,ao,yl,xi,al....,yn,xn) e lP;'q[An € B|xn =X, Qn = qn] ’
B ¢ A, where q, = qn(q,xo,ao,yi,...,yn) {(cf. 2.30).
Then for each real-valued measurable function f on X X W x A x X x W that is
bounded above, we have simultaneously for all n ¢ W:
*

= n
M=® (80 A% 00 0] -

T
Ep,q[f(xn'gn'an'x n'*n'"n’'"n+

n+l’ *n+1
Proof.

The existence of a regular conditional probability JP: E{'Ixn=xn, Qn=qn]

L4
with the desired property can be proved as in [Hinderer (1970) th. 18.1 and
corollary 12.7]. We proceed by induction on n. Remember QO = q on . Hence

). Hence for all B € A and x. € X:

o (xo) =g (xo.,go o

* n
m (leo) = mp,q[AO € BIXO = x0] = w(B!xo) .

Hence the statement is proved for n = 0, Assume it holds for n~-1 and for all
functions £ satisfying the assumptions of the lemma. Define for notational

convenience the function F on § by F := f(xn,gn,An,x ).
]

n+l *n+t
First we show that for all 7' € I we have ]P'l:) q-a.s.:
r

.n-l‘
(a) Ep,q[thn'Qn'An] = iéIlK (X,+8,) Jv (dy)

i
. I P(dxlxn'An' Y)pi(y'Qn)f(xn'Qn’An'x’Ti,y (Qn)) =3 g(Xn:Qn:An) .

To prove this note that (according to th. 1.4):

‘ﬂ"
E Q‘qEF!Z:XO, O'Yi'""Yn'xn'an3=iglixi(xn'An)f v (dy)

. fP(dxixn'An'Y)pi(YIzi)f(xn'Qn'An'x'Ti,y(Qn)) =;h(Z,Xn:QnrAn) .

Hence, P ' -a.s.
1571

—"|
]Ep'q[F|Xn,Qn,An] =&,

.n»l
L ICR NTNEW, |x o sa 1=

= J‘ h(e'xn’Qn'An)Qn(de) 12
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where the last equality follows from lemma 3.1, This proves {(a). Next we

prove that there are versions of the conditional expectations such that

*
T i n
(b) mp,qtrlxn,gn] mp'qir'lxn.gn] .
Note that, by (a}, .‘:Pq’r “A.8.
. p.g
E' [Flx ,01==E" [g(x a)|x ,01
peq n'*n P g 0Ot Pa) 1 X0 Qd -
! T
Let mxn'qnts) 1= Pp'q[zxn € Blx = x0Q =],
Hence, by lemma 3.2, we have JPZ q—a.s.
14
K
Eg‘q[F’xlen] = '[ Q(XneQn:a)mxn'Qn (da) .

Remember that by definition we have for all B ¢ B

*
k1 *
Z!Pp’q[An € BiFn3 = ”n‘leof%'Y1"“'Yn'xn) = mxn'Qn(B) .
*

Hence T " -3.8., by lemma 3,2:
Pig

“_*
Epv'q[lelen] = f g{Xn'Qn'a)mX ,0 {da) .

o

This proves that g(xn,gn) = f g(xn’Qn'a)mxn, Qn {da) is a version of
™ T .
Ep'q[Fan,Q ] and also of E q[15'[}:n,s;znj. We proceed with the final step.

i3 ki1 k4 n ~
0,glF1 = B, LB [FIX,01] =%  [9(X,0)]=
* * * *
o T e — L -
=B 9,007 matqn:mp,q[?lxn.gnn E_ [LF]

where the third equality follows from the induction assumption, if we define
X _ 00 oA 0¥ Q) =G(X .00 . |

Theorem 3.4
Let p ¢ P{X), Qe W, T ¢ T, n ¢ N and let n* be as in 3.8. Then

*
™ T ~ T ~
E [r(xnva 24 1= Ep,q[r(xn'Qn'An)] = Ep,q[r(xn'gn'An)]

Peg n’ n+l
(¥ is defined in 3.1(e)).
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Proof.

The second equality follows directly from lemma 3.3. We proceed with the
proof of the flrst equality. According to th., 1.4 we have

T
B, e A,y ) lz,xo.Ao,yl,...,Yn,xn,An] = iglixi{xn,p.n)

. J V(dy)x(xnaan!Y)Pi(Y|zi) =3 f(zoxnrAn) .

By taking conditional expectations with respect to G(Xn,Qn;An) we obtain

T
r 8.8
f.q

11 ™
{*) mp’q[r(xn,an,ynﬂ) Ixn,gn,an] = mplqtf(z.xn,An)!xn,gn,AnJ =

= I f(enxn:An)Qn(del = iEIIKi{Xn,An) J-v(dy)r(xn,An,y)pi(y,Qn) =
= r(xnogn;An) -

Hence integration of the first and the last member of (*) with respect to
JP: q yields the desired result, 0
f

In th. 3.5 we prove the announced correspondence between the strategies of
110 for model 1 and the strategies of i for model 2.
Note that according to th. 1.4, we have for medel 2 a "natural"” regular

7" ~ Eand Rand ~ Rad Eand
conditional probability B [ lxo QgeBgreserX o0 /A T

Theorem 3.5

Let p € PIX), g ew, 7 ¢ T, and let T ¢ T be the corresponding strategy

(¥

{(cE. 3.7). Then, for all n ¢ W and all measurable functions £ : (X XW XA)n+1->m

that are bounded from above, we have

~

* ~7 ~ o~ o~ - o~
Ep,q[f(xo'Qo'Ao“”'Xn'Qn'An’] = Ep,q{f(XO'QO'AO“"'xn'Qn'An)] R

Proof.

Let n = 0. In this case the statement is valid, since nO('!x) =?r0(' x,q) for
all x ¢ X. Assume the statement is valid for n and all admissible functions

f. It is straightforward to verify that
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w
Ep,q[f(xo'QO'AON“'xn‘i'l' n+1'An+1)iz'XO'Aolyl“”'Yn'xn'An] =

= igxixi(xn,zxn) Jv (ay) IP(deXn,An.y) f“nﬂ (dalxo,AO.yl,...,Yn,xn,An,y,x)

“Py (¥]24) EX0000 B0 0 e e s X QAR 2Ty Q) =

= Y1 (x,a) fv(dy) JP(dxlx vB_,Y)
ié'IKi n.n nun

!I'ﬂ‘n_’_l (dal x{}' O'AO' e 'xn'Qn'an'x'Ti,Y (Qn} )
ML IREJE -0 SORRRYS ST WE 1 - DIL T YCJ2 97300 SO SE- 12 W

where the second eguality is a consequence of 3.7.
By lemma 3.1(ii) we have ]P;r q—a.s.
¢
T

E p,q[f(xo,QO,AO, “es ,Xn+1 an+1 ,An+1) |X0:QO) 0’ s ,Xn;Qn,An] =

= igxiKi(x“’A“) fv(dy) JP(dxlxn,An,y)

. J“n-t-i (d&l XO:QO,AO, e ;Xn:Qn;An'X,Ti’y (Qn) )
* pi(YlQn)f(xoﬂgolAOH-wxlenrAnixlTi'y(Qn)) =3 g(xolQoracfnuxnthlAn) .

For model 2 we have, according to th. 1.4:

~
~

E'}T
P.q

K11 SOPRRY S I S Ixo,QO,AO, coniX 4Q oAl =
= gtxoon.Ao,'-.,xn.Qn,An) .
Hence, using the induction hypothesis we have

w T
Ep'q[f(xo,QO,Ao,...,Xnﬂ, n+1'An+1)J = mp'q[g(xo,gc,ao,...,xn,Qn,An)l =

~ ~

= Ea,qtg(xo'%”‘o“'”Xn'Qn’An)] = Ep’q[f(XO,QO,AO,...,Xn+1,Qn+1,An+1

1.0
Remark.

In fact we proved by th. 3.5 the following result.,
Iet g e Wand let F : Q » @ be defined by
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F(S,xo,ao,yl,xl,al,...) g (xo,qe,al,xl,ql,gl,...)

where qn = %(q,xogaosylr-n:yn).
Then for all B ¢ .

" ~
F(u B = TP Bl .
mp’qt{w[ (%) € B}] 0rqt®]
The following corollary is an immediate consequence of theorems 3.4 and 3.5.

Corollary 3.6

Let p € P(X) and g € W. Then for all 7 € T, and its corresponding T (cf. 3.7)

~

(i) J p{dx)v(x,q,m) = i;w C 2 g™ r(x ,Q ,A )] (cf. 2.12)
plq n=0
and
n . N2 1~ ‘; Nil
{i1) liminf = E" [ ) rX ,A,Y )]=1liminf=T" [ ] 2(X QrA)]
N+ N pg g BB n+i Now NP 9 20 n'*n

Moreover, the supremum over all 7 € Ho on the left hand side equals the
supremum over all 7 € Il on the right hand side, in (1) and also in (ii).

{To verify this, note that for each 7 € I there is a 7 € I such that ? is

0
the corresponding strategy for 7).

Remark.

In case g € W is concentrated at € € 8 then all posterior distributions o,
are degenerate in 6 (¢f. the remarks at the end of section 2.2). Hence, in
this situation the Bayesian control model is egquivalent to a dynamic program
with state space x* = {(x,8)|x € X}. So we have shown here that observation
of the supplementary state variables YI'YZ'YB"" of the system is super-
fluous, in case the transition law is completely known, i.e. all information
needed to control the system is contained in the state variables XO'Xl'x PN

Since model 1 and model 2 are equivalent we shall omit the tilde in the
notations for medel 2 and we shall switch between these models without com-
ment.

We conclude this section with the introduction of some terminclogy.

In the class of strategies I we shall consider two nested subsets, that are

0
of gpecial interest in the remaining chapters.
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3.9 Each measurable function £ : X = A such that f£(x) € D{x) for all x ¢ X,
is called a Markov policy and the strategy 7 € HO' defined by
an({a}|x0,a0,y1,x1,...,yn,xn) =1 if f(xn) =a, n € N is called a
gtationary strategy.

3.10 Each measurable function £ : X X W > A such that £{x,q}) € D(x) for all
X € X and g € W, is called a Bayestan Markov policy and the strategy
T € Ho defined by
ﬁn({a}ixo,ao,yl,xlr---pynaxn) i= 1 if £(x ,q)) =a n e N wvhere

q; = qi(qo,xopao,yl,...,yi), is called a Bayesian stationary strategy.

Remarks.

(1) Each stationary strategy is also a Bayesian stationary strategy.

(14} It is easy to verify that, under each Bayesian stationary strategy,
the process {(xn,Qn), n € N} forms a Markov chain. This is well-known
if we are considering model 2, however for model 1 it is a consequence
of the eguivalence between the two models.

(11i) 2= a consequence of the equivalence between the models 1 and 2 we may
apply the numerous results for dynamic programs to model 1. We only
mention one of these resulﬁs: if r is bounded then the supremum over
all Bayesian stationary strategies of the Bayesian discounted total
return equals the optimal value {cf. [Blackwell (1965)1]). In other
words it suffices to consider only the Bayesian stationary strategies.

{iv} If the action space A 1s & finite set then any Bayesian Markov policy
£ such that, f(x,q) is a maximizer in the set D(x) of

a+ ) 1 (x,2) JV(dy)pi(y.q){r(x.a;y)-PBJP{dx’Ix.a.y)V(x',Ti'Y(q)>}

iel i

for {x,q) € X X W is optimal (cf. [Blackwell (1965) th. 71).

3.2 A class of optimal rewand operatonrs

In this section we study optimal reward operators for dynamic programs with
complete separable metric state and action spaces. Thése operators are based
cn stopping times. They generalize the well-known optimal reward operator
introduced in [Blackwell (1965)1. In [Wessels (1974)] these operators have
been studied for dynamic programs with finite state and action spaces and

they have been generalized for models with a countable state space and an
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arbitrary action space in [Van Nunen and Wessels (1977)]. Van Nunen and
Wessels show that a number of well-known approximation methods for the value
function in discounted dynamic programming, such as the Gauss - Seidel jter-
ation are equivalent to successive applications of an optimal reward operator
corresponding to a suitable stopping time. We prove some new results on these
optimal reward operators. First we show that if such an operator is applied
to a function on the state space that is upper semi~analytic and bounded from
above, then the result of the operation is again an upper semi~analytic func-
tion which is bounded from above. This generalizes a rather theoretical result
in [Blackwell, Freedman and Orkin (1974)] and [Shreve (1977)] for the optimal
reward operator introduced by Blackwell, to a similar result for all optimal
reward operators of the class we consider.

Further we show that.successive applications of two of these operators, possi-
bly for different stopping times, have the same result as one application of
the optimal reward operator which belongs to the composzed stopping time

(cf. 3.14 for a definition). This property has some interesting consequences,
one of which is that we can generalize results proved by Van Nunen and
Wessels for discounted dynamic programs, using the fixed point theorem for
contraction mappings, to more general models.

In chapter 6 we use another consequence of this property for the equivalent
dynamic program {(model 2). There we study the optimal reward operator, cor-
responding to the entrance time in a subset of the state space.

. Using this operator is equivalent to transforming the model into a dynamic
program with this subset as a state space.

Since we are dealing with a general dynamic program here, we have to intro-
duce some new notations. (Symbols used in this section do not have the inter-

pretation, given in the foregoing part of the monograph).

model 3: General dynamie program,

3.11 (a) (8,8) is a Borel space, called the state space.

(b) (a,A) is a Borel space, called the action space.

{(c) D is a function from S to the non-empty subsets of A such that
K := {(s,a)ls €S, a€D(s)} is an element of § ® A, and it is
assumed that K contains the graph of some measurable function,
from § to As

(d) P is a transition probability from S X A to 8,

{e) r is a real-valued measurable function on § X A, that is bounded
from above. B8 ¢ [0,1) is the discount factor,
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The sets of histories, the strateglies, the random varliables and the probab-
ilities on the sample space are defined analogous to model 2 (¢f. 3.2-3.5).
We even use the same notatlons, with the exception that we omit the tilde
and that the coordinate functions on the state space are denotéd by Sn for
neN.

We start with some definitions:

3.12 A stopping time t is a measurable function from R to I such that
{t = n} € Hn’

3.13 fThe shift operator | is a function from R to & such that
wtso,ao,sl,al,...} 1= (31'31’52'52'6”) for ’(so,ag,sl,al,...;_f 2.
The iterates of ¥ are defined by: ¢ (w) = w and ¥ (w) := P(P {w))
forweQandneN*.

3.14 The set of all stopping times is denoted by ), and on ) we define
the operation: ¢ by

Tl(@)
(1y @ 1) (W) =1, (W) + T, @) if T (W <=

Iy
s

® if tl(w) = ®, for w € @ and TyeTy € Z

The function T, © T, on § is called the composed Stopping time.

1 2

It is easy to verify that T, ° T, ¢ ¥ (cf. [Revuz (1976) page 220).

1
3.15 (1) Bm{S) is the set of real-valued measurable functions on S, which
are bounded from above.
(11) B, (s) is the set of upper semi-analytic {a.s.2.) Fanctions on S,
which are bounded from above.

In appendix A we give a definition of u.s.a:.functions and there we also
collect some useful properties of these functions. Note that Bm(s} < Ba(S} .
Finally we define for each T € z the corresponding optimal reward operator.

3,16 The optimal reward operator U, is defined for functions b € Ba (S) by:

=1
m n T
(U b)(s) :=sup B L[] B'x(S ,A) + B b(s)]
T well  ® neo n'“n T
{we use the convention b(ST) =0 on {1t = =} (cf. 2.23)).

The usual optimal reward operator U, introduced by Blackwell, canbe defined by

3.17 U := U, where 1 is the stopping time identically one on §.

1
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Note that, (Ub)(s) = sup {r(s,a) + BJP(ds'|s,a)b(s')}, for b ¢ B, (s).
aeD(s)

It is well-known that Ub need not to be an element of Bm(s) i€ b€ Bm(s)
(cf. [Blackwell (1965)]). However in [Strauch (1966)] it is shown that the
value function is u.s.a. and in [Blackwell, Freedman and Orkin {1974)] it
has been proved that Ub ¢ Ba(s) if b € Ba(S}. In [Shreve (1977)] the same
result is obtained. We show this property for all operators Uys T I.

Theorem 3.7

Let T € L2 and b ¢ Ba(s). Then (U‘rb) € Ba(s).

Proof.
Defineonfl Y := 2;;(1) Snr(sn,An) + Btb(ST) « It is straightforward to verify
that ¥ € M(1 - B)~1, where M := sup r(s,a) + sup bls) .

(s,a)é€s*a 8€5
(We divide the proof into three parts.)

{a) We first show that Y is u.s.a. on 2. Define for ¢ € IR:
T
E, = {wc 0|8 b(s.) > c}. Let ¢ > 0. Then:

: -n
E = n‘ém({‘t = n} n {b(sn) > ¢B "}). Note that b(s ) is u.s.a. (cf. A9).

Consequently Ec is analytic (cf. A2). Let ¢ £ 0, Then:

B, = Yy ({r =n} a{b(s) > 8™} u {1 = =}, Hence in this case E,
is also analytic. Therefore Stbtst) is u.s.a. on @ and go Y is u.s.a.
on 2 {(cf£. A 8).

(b) Consider the function on P{(A x §)N) x S defined by:
(P ,8) ~ [ ¥{s,0)P (dw'), (@' € (A x )N ). We show that this function
is u.s.a. (Note that P((a x $)M) is endowed with the topology of weak
convergence,) To this end we define the function ; on P((a x S}m) x Q

by: ;(P sw) = Y{w). To show that Y is u.s.a. note that, for ¢ € IR:
(@, |F@,0 >ct=P@axsN) x{wea| vw >l .

Since P{(a % S)JN) is a measurable set and by part {a) {w € QIY(w) > ¢}
is analytic we have by A2 that ; is u.s.a. Further we define a transition
probability p from P((a x $)T) x 5 to (& x §)T by

pldw'|P,s) = P (dw') .

To verify that p is indeed a transition probability, note that
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{(®,s)|p@|®,s) sct=(® e P(ax)T)|p (@ <c} xs

for Be (A @ S)m and ¢ € IR. Hence, by lemma 1.5(i) this set is measur-
able. Finally we note that, by Al0 the function on P((a x S)) x s:

(r,s) +,J Y(p 8,0')p(dut|P,s) = f ¥(s,0*}IP (du')

is u.s.a.

{¢) Introduce the set A := {(IP,s) Is €8, P ¢ P((a % S)]N) such that for a
meN:p[B] =P [sxB8] forallsec (a® T},
It has been proved in [Hinderer {1970) lemma 13.1] that A is a Borel
subset of P{{a x S)N} X 8§, {Note that model 3 is an example of Hiriderer's :
model.) Hence it is straightforward to verify that

(®,s) +~ F(IP,s) := J Y(s,0')Ip (dm')lA(]P /8) - IAC (P ,s)-=

is u.s.a.onP((a x 5)N) x s,

Finally we remark that (U_[b) {s) = sup F(IP,s), where the supremum is
taken over all ® € P((a x )Ny, P

Hence, since {s ¢ 5| (u_b) (s) > cl = projs{ (P ,s)|F(®,s) > c} for c € R,
we have by A4 : U b is u.s.a. 0

It has been shown in [Blackwell (1965) example 1] that even if b € Bm(S) it
is not necessarily true that for every ¢ > 0 there is a strategy v ¢ I such
that

EZEI(SO’AO) +8b(s)] 2 (Ub)(s) ~ ¢ forallses .

However, in [Blackwell, Freedman and Orkin (1974)1] it has been shown that
there always exists a "universally measurable strategy” T with this property

{i.e. trn(B *} is universally measurable for all B € A, see appendix A).
Moreover in [Shreve (1977)] the same property is proved for the stopping
time that is identically infinite. It should be possbile to establish a
similar result for arbitrary stopping times in I. However, we do not need

such a result, as we have the following lemma.

Lemma 3.8

If b ¢ Bm(s), te X, p € P(S) and ¢ > 0, then there is a strategy 7T € I such
that



58

=1
T n T
3.18 m:s[nzoe r(s ,A) +BDb(S)]2 (UD)(s) - e.

Proof.

This statement is a simple consequence of th. 14.1 in [Hinderer (1970)],
which is a generalization of th. 8.1 in [Strauch (1966)] to non-stationary
models. To verify this, we note that the function 1{T=n} on 8 is anmeasur~
able. Hence by lemma 1.1 there are real-valued measurable functionsg fn and
g, on (s x a)" x § such that:

3.19 (1) fn{So,ac,....Sn) = 1{T=n} on §.

(ii) fzn(sopao,...,sn} =1 if z;o fm(so '--.'Sm) = (

'80
= 0 otherwise,

si € 8, ai €A and i=20,...,n.

Hence ﬁn(SO'AO""‘Sn) = 1 4f and only if T > n. Purther we define, for n € W:

_ah
rn(so,ao,...,sn,an) 1= B r(sn,an)ln(so,ao,...,sn)~+Bnb(sn)fn(so,ad...sn)

for 8y € 8 a, €A and L = 0,...,n. It is straightforward to verify that

i

-3 T-l
n T
¥ x (SgiByreeesS /B = Y 8% m) + 8BS .
n=0 n=0
Hence we are dealing with a total-return model in the sense of Hinderer and

the assertion follows from the above mentioned result of Hinderer. 0

The main result of this section is th. 3.11 which states that for each palr

of stopping times T_,T, € Z and each function b € Bm(S) the fellowing identity

is valid:

172

U b=U_ (U b) .
%% ot

To prove this we need some preparations.
3.20 For any palr of strategies "(1)'“(2)
strategy T el by:

€Nl and any T € I we define a new
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n
T . (2)
‘il’n(’lsopao,-..,sn} = kgo’ﬂ'n_k(.’lskyak,..tlﬁn)fk(socaop-oopsk) +

W,

+
ﬂn

so,ao,.. .;Sn) ﬂn(so,aol- -otsn)

for si € S,'ai

Note that TI’T uses 7

that indeed wT € I, since w;(B

eAand i e N (fk and R'n are defined in 3.19).

(1) (2)

until time t and 7 afterwards. It is easy to verify

*) is (S ® A)n—l ® S-measurable for all B ¢ A.

3.21 Let t € I. The o-field H'r is defined as usual by:
HT :={BeH|Bn{'€=n}eﬂn}.
Lemma 3.9

Let f be a real-valued measurable function on £, which is bounded from above.
(1) L2 o,

Let 7 T € I and let nt be defined by 3.20. Then we have on
{1 <=} s
T (2} (1)
T T L ™
H -
E_Lfw )| d =Eg £, B -a.s.

T

{By convention the both sides vanish on {1 = }})

Proof.

let n ¢ W, B1 3 Rn and 32 e H, For the stopping time n, which is identically

equal to n, it is stralghtforward to verify, using th. 1.4:

‘H’n n 77(2) ‘fl'n
{*) 2 [B1 n{y e 32}3 = J Pg [3236.:\?8 .
B, n

- H -
Let £ : 132 an? let 81 €n T
Then, since JP: [B] = JP: [B] if B€ {1t =n}, B¢ H we have

7 (2} n

@) T e .
(%) fm: [flaw)| = § p, [glap] , forscs.

T n=0 I _ n
B, B0 T=n}

On the other hand, by the definition of conditional expectations (cf. 1.20(i}))

n ’ﬂ‘n
J 1, Whar [ .

T T bt

™ T T
(oxx) IES Ceqw’) [H Jaw [ = §0 ,
B "= B nl{t=n}

1
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Hence, using (*) we conclude that the left-hand sides of (#%) and (*+%) are
identical. By standard arguments the assertion is proved in general. U

Remark.

In fact we proved here the strong Markov property for a special stopping

time and a special non-Markovian process.

3.22 For each 7w ¢ 1 and each (so,ao,...,s ak) e {8 x A) we define a new
strategy ﬂ(s 07307 Sy ak) = ('xro,'rr ress} by:

™ (e

+k+1( |so,ao,...,sk,ak,hn), hn € Hn ’ new .

Note that w(so,a ,...,sk,ak) € lI. This strategy 7(s '“"Sk’ak) acts like

a
0 o' 0
the strategy w if the process has a “"prehistory" Spragre e S rdy .

Lemma 3,10

et m ¢ I and let ﬁ(sg,ag....,sk,ak} be defined in 3.22 for each
(so;ao,....sk:ak) € (S % A) ﬂ. Further let f be a real-valued measurable
function on @, which is bounded from above, and let T € I ,
Then
T(SaeA yeeesA )
elleghHl=2, © % M), ®las. onir <ol

St

(By convention both expressions vanish on {1 = =},)

Proof.

u(so,Ao,...,

)
it is easy to verify (cf. th., 1.4) that E Pe-1 [£] is kameasur-

8,
able, k € . Let B1 € Hn and 32 ¢ H, Againk using th. 1.4 one easily verifies
that
?F(s WBreeasA L)
L4 n _ 0 n-1 T
(*) 198[31 n {Y" € BQ}] = J T [lears .
B n
1
Now we let B, e H and £ :=1_ . Then
T 32
TS /By eeesA ) ® LIETNT YO Sy
(%%) E_ 00 Uilap” = 3 » 0 21rp 1am”,
8 ] 8 2 s
T n=0 n

B, Blr\{'r=n}



61
and on the other hand {(cf. 1.20(i)):

(k%) I E:[f("bt) IHT]‘HP: = z J 13 v"am :m
B n=0 B { = 2
. (lr=n}

N _ n
nzoms[al n{t=n}a{¥" B} .

From (%) we conclude that (**) and (x*x) are identical. Hence the assertion
has been verified for indicator functions, and it can be proved in general

by standard arguments. 0O

Now we are ready to prove th. 3.11. Note that Uab € Ba(s) if 0 € I and
b€ Bm(s).

Theorem 3.11

Let 1,0 € £ and let b € Bm(S). Then we have

U,y = U UDb) .

Proof.

(a} Pix € > 0 and let 8

E': [t =] < 1. Then it is easily verified that the set-function p on
0
S, defined by

€8, el and b ¢ 3m(sl. First we assume:

_ T T T Tuq=l
p(B) := ESOEB 1B(Sr)j{ms0[8 1}

*
is a probability on p. By lemma 3.8 there exists a strategy # ¢ I such
that
w95t n g
() ® [ Y 8"(s ,a) +8%b(s)]2 (Ub)(s) -~ &, p-a.s. on S.
S n=0 n n [¢] [0

EN) (2)

Define: i= 7, 19 ;= 1™, Let 7" be defined by 3.20.

Then we have
T to0g=1

kil n Teg.
Y(s,m) = B _ Enzo B°r(s_,a ) + B8 'b(s

11 =

ToC
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1' =1 1: T90-1 n -
[nzoﬁ T(S /A )+E ERET 8%(s ,a) + 8 bis ,)IH ]I
B e = T &8 -]
Note that S, =8, 1y =857y W) on {1 < =0 <o}
Using lemma 3.9 we find
T =1 * g=1
(%) Y(s,m) = B i:Esx{s ,A)+B mSEZBr(s A ) +8b(so)31 .
n=0 T n=0

T

Note that JP“[B] = ]P:EB] for B € Hr" 5 € 8. {To verify this note that

Z » [B n{t =nll = JPZ[B] since
n=0 n=0 "T ¥
Bn{t=nl}e H ) - Therefore we also have E _ [£] = Es[fl for a real-

T
JP:[B] E IP [Bn{run}}

valued ff,t-measurable function £, which is bounded from above. Using
(%), (#%) and the definition of p we find:
-1

¥(sym 2, [ [ 8%(s ) + B8 (W) ()] - e [877 .
0 n=0 S0

Now we assume JP: [T=®] =1, Then
0

Vs, m = B {Esr(s ,A)]=]E {Xﬁnr(s ,A)+B(Ub){s)].
0 n=0 %0 n=0

Hence

sup Y({s,,m) z (0. (U b))(s } - €
nell
and since sy € 5 and £ are arbitrary we conclude:

(x%x) ( b) (s) 2 sup ¥(g,m) 2 (UT (Ucbl) (s) . s €8 .
Tell
{b) We show that (***) is valid with € ingtead of 2.

Let 7 € I and let n(so,ao,...,s ,ak) be defined by 3.22 for

(so,ao,...,sk,ak) € {8 % A)k+1. Note that S, = (¢ )y on {t $ n}.
Consider for s ¢ 8:
To0-1
n Toq
E [ngo g (s ,a) + 8 b(s )] =
Tl a ToQ
wmtzsrts,m-x-m[z B'z(s ,a) + 8 b(s  |HI] =

n=0 n=t
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ﬂ['ril Ss py s g ‘W(SO’AO’“"AT'*-i)[Uil .
E 8"r(s_,4 ) + 8'E r(s_,a ) +8°b(s )11 <
5 =0 2 n Se oo M o

A

w Rt n T
ES[:;ZOB (S ,A ) + B (U B)(S )] S (U (U B))(s) .

The second equality is justified by lemma 3.10 and the inequality by the

definition of U . This proves the theorem. O
To be able teo apply th. 3.11 we need the following lemma.

Lemma 3.12

The opevation ° on I is associative.

Proof.
Let 1,0,p € Z. By 3.14 we have: T 2 0 = 1T + o(wt) and so

T
(tea)ep=t+o@®)+p@™ W,

On the other hand

T
te@ep) et @)@ =t 4o +oa’¥ Y .

T T
Since wk(wl) = ¢k+£ we have ¢T+c(w ) . wd(w )(WT) wvhich proves the lemma.[]

Hence Ty ° Ty % e 0T, is defined now. As a consequence of th. 3.11 and

lemma 3.12 we find:
Corollary 3.13

Iet b € Bm(S) and let T aTgreeneT € L. Then

2
U e P=U_ (U (..U Db)...)
TyoT, 0 0T T, T
To prove this, note that Ty ° Ty ® e eI, T (12 G hev ® Tn). Hence
u b= (UT T b), and the assertion follows by iteration.

0T 0, .0 eee
ri T2 Tn T 2 n
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We continue with two definitions:
3.23 fet t € I, The stopping time Tn, n e:ﬂ* is defined by:
=, =t e, n=2,3,... .
3.24 let t € L. Then U? is defined on Ba(s) by:
© Ulb = Ub for all b ¢ B,(s) and UMb =y (U} 'b) for all b ¢ B_(s)
and n = 2,3,... &

In th. 3.14 we collect some consequences of th. 3.11,

Theorem 3.14
Let b € Bm(s), T € L. Then:

(1) U b=U% (cf. 3.23).
i T

(ii) The value function v for model 3 is u.s.a. and satisfies the optimali-
ty equation:

ﬂrv =V, on 8 .

(iii) If the reward function r and b are bounded and if T{w) 2 1 for all
w € 2 then lim U?b =y, on S.
nree

Proof.

Note that (i) is an immediate consequence of 3.23, 3.24 and corollary 3.13.
We proceed with (ii). Note that v(s) = (U,v)(s), s € S by definition, where
{* represents the stopping time that is = with probability one). Hence by
th. 3.7 v is u.gs.a. By th. 3.11we find, for all b ¢ Bm(s)

v=U_b=U(Up) =Uv.

Tow

Finally we prove (iii). First let 0 S r s Mand 0 £ b £ M for M € R. Note

that o 2 n on {i. Then we have, for s € S:

(%) (0’1‘0) (8) = (U0)(s) S (U D)(s) S (U 0)(s) + 8™ < v(s) + B™M.
T T

It is well-known that lim (U?O)(s) = v{s) (see e.g. [Hinderer (1970}, th.
N

14.57). Hence we have, by (%):

1im (U‘;‘b}(s) =v(s), se§.

b s wacd
Further let ~-M € r < Mand ~M < b s M for M € R, and define ¥ i=r +Mand
g := b + M. Let ET be the operator for the model with reward function T in-

stead of r, and let V be the value function in this case. Hence we have
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1 - 6n+1 ~ o~ M
(UTnb) (s) + M "T_‘?_- £ (U-[nb) (s) = (UTnb) {s) + -1—_-3-

and we have also ;(s} = v(s) + T—g_g .
Hence we find:

lim (U _Db)(s) =1lim (U _b) (s) - =v{g) - =v(s}, s¢ 8 , [
g 0 1-8 1-B !

We conclude this section with some remarks.

Remarks.

(i) The theorems th. 3.11 and th. 3.14 can easily be generalized to models
with weaker conditions on the reward functions. In fact th. 3,.14(iii)
is valid for models where a strong convergence condition is satisfied
{cf. [Van Hee, Hordijk and van der wal (1977)1).

(1i) If there is a (nonempty) subset B(S) of Bm(s) such that for all t ¢ I
ub e Bs) if b €Bls) then {u,, T € I} is a semi-group of operators
on B(s}. 1f § is countable then the set of all real-valued functions
on § that are bounded from above will do for B(S). In section 3.3 we
show that there is such a set B(S) for the equivalent dynamic program
(model 2).

(11i) There need not be, for each b € Ba(S)' p € P(5) and € > 0 a strateqy
7 € II such that:

(%) - ets es | E:[:Z;Bnr(sn,An) +8'p(s )12 (Ub) (s) ~eh) =1 .
However, if b = UGE for some b ¢ Bm(s) and ¢ € I then for each
p € P(8) and each £ > 0 thexe is a 7 € II such that (*) holds. To veri-
fy this, note that by th. 3.1l Urb = Uroog' Hence by lemma 3.9 we
have the desired property.

{iv) Th. 3.14(ii) and (iii) are also proved in [van Nunen and Wessels
(1976) ] by use of the fixed point theorem for contraction mappings,
for dynamic programs with countable state space.

3.3 Miscellaneous results fon the Bayesian control moded

In this section we first study the cptimal reward operators for the Bayesian
control model (model 1). We show that these operators applied to functions

that are lower semi-continuous (l.s.c.) in the second coordinate, i.e. l.s.c.
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on W, yield functions that are again l.s.c. in the second coordinate.

In the rest of this section we consider the value function (cf. 2.12) in
more detail. We show that the value function v is convex in the second co=-
ordinate. Finally, we consider another consegquence of the convexity of v,
namely an upperbound on the value function. We note that the second part of
this section is independent of the first part.

{Remember that the symbols used in section 3.2 have a local meaning only.)

3.25 fThe set of stopping times I for the Bayesian control model consists
of all measurable functions T from @ to N such that

{t =n} ¢ OXyeBgr¥yeXyrenns¥ )X ), NN .
3.26 Bz(x X W) is the set of real-valued bounded measurable functions on
X % W, which are lower semi-continuous (l.s.c.) on W (cf, appendix a).

3.27 For each T ¢ I we define the optimal reward operator U, on Bx(x X W)
by (cf. 3.16)

T=1

ki n T

(Ub) (eyq) += sup B [ ) 8 T(X /ALY )+ B8'b(x,Q)]
weﬂo n=0

where (x,q) ¢ X x W and b ¢ Bg(x X W .
Note that, if T ¢ L satisfies the property:
{T = n} € G(XO’AO'XI’AI‘...’X‘Q)' neN

then there is a stopping time T for the equivalent dynamic program (model 2),
gsuch that for all xi € X, Yy € Y, a; € A, qi € Wand 1 € N:

T(xO'qO'aO’xi tqtfalro e = T (xo.ao,yl ,x1 ,al,...) .

Then the optimal reward operator 5; for the equivalent dynamic program,
defined by 3.16, is equivalent to U, in the following sense:

(U.b) (%, = (ﬁ:t«b) (x,q) forall x €X, g e Wandb e B (X xW.

Theorem 3.15%

Let x be bounded and let Bi -+ pi(Y|ei) be bounded and continuous for all
ie€eTandy € Y. Further let t € I, Then b ¢ Bg(x X W) implies UTbeﬁg(x XW) .



67

Proof.

{a) Fix the prior distribution q € W, and let Qn be the posterior distribu-
tion at stage n. Then we have: r(xn,an,Ynﬂ)l{T)n} + b(xn,Qn) 1{T=n} is
measurable with respect to the U~field ¢ (XO,AO,YI,...,A Y 1} . Hence

n nt
there are measurable functions Fnz WX {(X*Aax Y)n"'1 # W such that on&:
Fn(q,XO,AO;Yly...,Xn,An,Yn+1) =r(xn'An;Yn+1)1{T>n} +b(Xn,Qn) 1{T=n}
{cf. lemma 1.1). Hence we have
la T T .n
n£08 r(xn'An'Ynﬂ) +8b{x,Q) anéos Fn(q'XO'AO'Yi""’Xn'An' n+1)°

(b) Further we show that F, is l.s.c, in the first coordinate. To this end
we flrst prove that Qn is a continuous function of g in the sence of
weak convergence. Let the sequence {qk, kenN cw converge weakly to
g€ W (cE. 1.22) (notation: q ¥ @)e FIX (X.s8 ¢7 reeery sX.) € X X A X

1 k 0’01 n'’n
(Y *x X x A) x ¥ X X and let:

9, (@) = q (Qrxgeagr¥ reneey)) (c£. 2.30¢i)) .
¥We have to show that 9 {qk) ¥ 9, {g). Let £ be a bounded and continuous
function on 8. Notice that, by 2.30:
| Ty |
£{9)g_(q,) (ab) = jf(el i 1. (x,.8.)p, (y 8.)q, (@)
n ‘% joo ger Ky 3T

‘ -4
. {An (qeroraorY1 rese 'Yn) }

‘where
A n-1
A N NI A :=J jzo 1§: 1Ki(xj,aj)pi(yj+1Iei)qk(de).
Hence, since
n-1
v jio igxixi(xj'aj}pi{yj+1§ei)

is bounded and continuous, we have f fte)gn (qk} {d6) tends to

f £(0)g, (q) (d0) if k tends to infinity, provided that
An(q,xo,ao,yl,...,yn) > 0.

Hence q - b(xn,gn(q)) is l.s.c. {cf. A 15) and so

q > Fn(q,xo,ao,yl,...,x ,an,yn+1) is l.s.c. if An(q,xo,ao,yl,...,yn) > 0.

n
Consequently:
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is l.s.c. since & (q,xo,aa,yl,...,yn) = 0 implies

n+1(q.x 18 Yy ree ¥y, ) = 0,
{¢) Next we show that

q > E [F (CT2 VTV SUTTRIE S )J is l.s.c.

X,q n
Note that
(%) B [P (quX A ¥ Y 1=
%0 nql 1RarYyreseet

= J wo(dao[xo) Jv(dyl) Jp(dx1|x0,ao.y1)... JP(dxnlxn_l,a -1'Yn)
- J?fn(dan!xogac,yl,...,yn;xn) jv(dyn+1)Fn(q_lxotaofy1f°0°iyn+1)

JMPRL T FUREIYS SRR
8ince Fn is bounded, it follows from Fatou's lemma, applied in (*) that

i f X
{x=*) lim,inf!:x [Fn(qk,XO,AO,Yl,...,Yn+i)3 2 Ex'q[Fn(q,Xo, or¥yreni¥ y]

el 4 qk n+l

(4) Pinally we consider g (U‘rb) {x,q). Let the sequence {qk, k ¢ N} converge
weakly to g € W. Again by Fatou's lemma we have:

i3
liminf E 8"E [F TR S YU SUTURE S b
o o T Erig, o kR0 M0 M n+1
2 Z g" lim:me [F (q X B Y e, Y )] 2
n=0 kv 9 A
2 Z 8"y LRCE N WP AL
n=0
Note that
(U.b) (%,q) = sup nx'q[ Z 8"F NCT SN R
Tre]'lo n=0

Hence, by Al6, we have g » (U b) (x,q) is l.s.c. 0
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It is an immediate consequence of th. 3.15 that the function
q > vix.q)

is l.s.c. 1f r is bounded.
We conclude this section with two convexity properties of the value function.

Theorem 3.16

The value function of the Bayesian control model (cf. 2.12) is convex on W,

i.e.

3.28 v(x,?kq1 + {1 -?x)qz} Skv(x,ql} + {1 -?«)v(x,qz) s X € X, 9,49, € W

and X € (0,1).((Aq, + {1 ~X)qy) (B) := Aq, (B) + (1-2)q,(B) for B ¢ T
Further v satisfies the inequality:

3.29 vix,q) s I g (d@d)v(x,q) for x € X, g € W .

Proof.

¥ix A ¢ (0,1) and qyr9, € W. Then we have for all x € X (cf. 2.12):
viz,Aqy + (1 - A)qy) =sup J {l\ql + {1 -A)qz}(de)v(x,e,n) <
Tell

< A sup J qi(de)v(x,e,w) + {1 -A)sup I q,(@®)vx,8,m =
well mell

= Rv(x,ql) + (1 —R)v(x,qz) .

We proceed with 3.29. Let g € W and x ¢ X. Then

v{x,q) =sup J q(dé)vix,6,w) Sf q{dB)sup vix,0,m) =J q(ad)v(x,e) .0
Tell mell
Remark.

The ineguality 3.29 is a direct consequence of the convexity of q-vix,q)
in case this function is continuous.
Namely, if F is a continuous and cenvex function on W which is bounded from

above then the following inequality can be proved:
Fl(g) = J F(8)q(a8)

{remember that we have embedded 8 in W).
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4. BAVESTAN EQUIVALENT RULES AND THE AVERAGE-RETURN CRITERION

In section 4.1 we consider procedures to construct good strategies. Special
attention is given to strategies that are generated by so-called Bayesian
equivalent rules. In section 4.2 we consider the average-return criterion

and we give sufficient conditions for the existence of optimal strategies,
based on such rules. In chapter 5 these rules will be considered in connection

with the total-return criterion.

4.1 Bayesdan equivalent mules and othern approaches

We first consider the total discounted return criterion for models with

finite sets X, Y and A. If the parameter value € is known the usual technique

to determine an optimal strategy is solving the optimality equation

v(x,8) = (Uv) (x,0) for all x ¢ X, Then each Markov policy for which the

maximun in this equation is attained, is optimal {(cf. [Blackwell (1965)

th. 71).It seldom happens that an analytic solution of the optimality equation

can be found and that the value function x + v(x,9) , x € X is found in an

explicit form, In chapter 1 we noted that even if 8 is a finite set, the

equivalent dynamic program (model 2) has an uncountable state space X * W

and for each starting state (x,q) € X X W there is a countable subset of

X x W that can be reached in the long run. Hence it is even impossible

to determine the value function v for all (x,q) € X X W. However there are

rather complicated algorithms to determine v{x,q) for any fixed pair

(2,9} € X * W (cf. chapters & and 7). A

Hence it is possible to determine in eéch staté (#,g) € X x W the action

£(x,q), corresponding to an optimal Bayeslan Markov policy f in the following

way. First determine v(x"Ti,y(q)) for all x' € X, y € Y and all i ¢« I for

which there isana ¢ D(x) with (x,a) ¢ K;. Then f(x,q) is maximizing the

function

4.1 a~ } 1 (%) J v(dy}pi(y.q){r(x,a.y) +B[P(GX'Ix,a,y)vtx'r'l'i,y(q))}
iel i

on the set D(x), (x,q9) ¢ X X W (cf. the remarks at the end of section 3.1).

Since this is in general a very complicated procedure, it would be preferalie

t0 have a simple recipe to determine in each state (x,q) ¢ X X W an action

that corresponds to a good, not necessarily optimal, strategy.

For example, in practice one often uses the following recipe:
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4.2 At each stage estimate the unknown parameter § using the auailable
data, by B. Then compute an (nearly) optimal strategy for the model
where the parameter is known and equal to 8. Then use the action
corregponding to this strategy in the aetual state. Repeat this proce~
dure at the next stage.

The computation of an optimal strategy for a fixed parameter value is carried
out much faster than the determination of v(x',Ti,y(q)) for x' € X, y €Y

and the relevant i € I. Hence the recipe 4.2 is simpler than the procedure
given by 4.1. However, the strategy specified in 4.2 is not optimal in
general. Under some conditions it is optimal when we are dealing with the
average-return criterion {cf. section 4.2).

We consider the following method to construct simple recipes. Now we con-
sider the average-return criterion too. If 6 € 8 is known, an action corres—
ponding to an (nearly) optimal strategy is often found by maximizing some
real-valued function F on X X 8 X A, over all available actions a € D(x).

For example, if A is finite and r is bounded then we may define F by

4.3 a  P(x,0,a) :=

11, (x,2) | viayp, ty|6,) {rx,a,y) + 8 | Plax' |x,a,p)vix',0)}
jeT Ki i i

in case we work with the total discounted return criterion (cf. 4.1).
Sometimes there exist bounded measurable functions h and g such that

4.3 b hi{x,9) +gl(o) =

max z 1K (x,a) f V(dY)Pi(Ylei){x(xlafy) + j‘P(dx'IXIApY)h(x'ce)}
aeD(x) ieI "1

(cf.section 4.2).
Then each strategy that chooses in state x a maximizing action in the equa-
tion 4.3 b is optimal with respect to the average-return criterion (cf.

section 4.2). Hence in this situation we have



73

F(x,8,a) =

T 1, (x,a) fvcdwp.ty]s ) {r(x,a,y) + f?tdx' |x,a, 9 n(x', 0} .
i€l Ki * i

We now assume that such a function F is known. In the two examples above F
can be computed by standard methods, if X,Y,A and 8 are finite sets (cf.
chapter 7). Using this function F we construct a Bayesian Markov policy £

such that for some € > (:

4.4 J q(a8)F(x,98,f(x,q)) =2 sup [ q{d8)F(x,8,a) - ¢ ,
aeD(x)

for all (x,9) ¢ X *x W .

We call such a Bayesian Markov policy a Bayesian equivalent rule since we
are maximilzing the "Bayesian equivalent” of the function we have to maximize
in case the parameter is known. Note that we may choose € = 0 if there is a
maximizer of a + f g{d8)F(x,8,a) for all (x,q) ¢ X x W (cf. the informal
definition in section 1.2).

If g € W is degenerate, then the Bayesian equivalent rule is (nearly) optimal.
But Bayesian equivalent rules are not optimal in general. However in section
4.2 we give sufficient conditions for optimality in case we are considering
the average~return criterion, and in chapter 5 we consider examples of the
Bayesian control model where a Bayesian equivalent rule is optimal for the
total-return criterion.

Consider again the model with finite action space A and bounded reward func-
tion with respect to the total discounted return criterion. Then we may
define a Bayesian equivalent rule using the function F defined in 4.3 a.
This rule has the following interpretation. Consider a modified model where
the decision~maker is told the true parameter value after one transition. It
is easy to verify that this rule would be optimal in that situation.

In th. 6.4 {chapter 6) we give a lower bound on the Bayesian discounted
total return of this strategy. In th. 6.3 we consider ancther gimple recipe
to construct a good strategy for the total discounted return criterion.

We conclude this section with an overview of procedures suggested by other

authors for the average-return criterion.
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In [Mandl (1974), {(1976) ] the strategy described in 4.2 is studied.

Mandl used minimum contrast estimgtors and in his model the parameter struc-
ture ensures the consistency of these estimators, under each strategy. Mandl
considers the following average-return criterion: a strategy 7 i1s optimal if
for all 8 € B and x € X

-
lim inf B ol oz a iy 0]

N , n=0 n' n+l
is maximal, Note that this criterion is stronger than ours and not depénding
on the choice of a prior distribution. Mandl shows that the strategy described
in 4.2 is optimal in the model where X is a finite set, A a compact subset
of a Euclidean space and vhere for each stationary strategy {(cf. 3.9) the
resulting Markov chain is irreducible. We show a similar result in section
4.2 for a Bayesian equivalent rule. In [Fox and Rolph (1973)] an optimal
strategy i1s constructed for Markov renewal programs where alsc the recipe
4.2 is used. However, in their situation they have to ensure the consistency
of the estimators for the unknown parameter. This problem is solved by so-
called forced choice actions. These actions do not necessarily agree with
the recipe of 4.2, but they are pexformed to get information. Fox and Rolph
also use the stronger optimality criterion discussed above. In [Rose (1975)]
another strategy is proposed. Rose assumes that for each parameter value
an optimal Markov policy is known. At each stage an acticn is selected by
randomizing over the actions belonging to some Markov pelicy that is optimal
for some parameter value, according to the current posterior distribution.
Rose also needs forced choice actions to ensure degeneration of the posterior
distributions.

4.1 Optimal strategies for the average-retwwn criterion

In this section we construct optimal strategies for the average-return
criterion. Bayesian eguivalent rules play an important role. We first con~
sider an example showing that, even in case of finite state and action spaces,

there need not be an optimal strategy.

Example 4.1

Consider the following model: X = {1,2,3,4,5,6}, A = D{1) = D{2) ={1,2,3}
pix) = {1} for x ¢ {3,4,5,6)}. The transition probabilities p(x'|x,a) from x
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to x' if action a is chosen axe:

p(3|3,1) = pt4|a,1) = p(5]5,1) = p(sl6,1)
p(4|3,1) = p@3|4,1) = p(6l6,1) = pisl5,1)
p3lt,2) = p(sl1,3) = p3l2,2) = pes|2,3)

o
Ll LR\
A 2

p(t|1,1) = p2|2,1) =8
p2|1,1) = patl2,1) =1 -9
1

f

Only in the states 3,4,5 and 6 a rveward is obtained: r(3) = r(5) = 7 and
r{4) = r{6) = 3. Let 8 = (0,1). It is easy to transform this example into
the framework of the Bayesian decision model.

The average return in the subchain {3,4} is: %(7 + 3) = 5 and in the sub-
chain {5,6}: 76 + 3(1 ~ 6) = 46 + 3. Consider a starting state x ¢ {1,2}.
For fixed 6 € 8 the optimal action is a maximizer of 58(2,a) + {40 +3}8(3,a),
a € {2,3}. Hence,the corresponding Bayesian equivalent rule for the distri-
bution ¢ on (0,1) is the maximizerofSS{Z,a)-&{4f8q(d6)'93}6(3,a), a e {2,3}.
It is easy to verify that if we have to choose one of the actions 2 or 3

and if g is the prior distribution, then this Bayesian equivalent rule is
the best one. Let 7 be the strategy that chooses action 1 the first n times
and in states 1 and 2 the maximizer of 58(2,a) + {4f GQn(de) + 3}6(3,a) ,

a ¢ {2,3} thereafter, where Qn is the posterior distribution at time n, if
the system starts in state 1 with prior g € W. Then the Bayesian average
return in states 1 and 2 is:

IE’.q[maJi: {5, 4JQn(d6) + 31]

{note that this expression does not depend on the starting state and the
strategy) . Note that: '
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& [max{s, 4[9 Q41(@0) + 3}|Q ,uui0 T 2

> max{5,4 Eq[[egn'i-l (4e) IQI,...,Qnii + 3} = max{5,4 J 6Q_(a8) + 3}

with equality if and only if 5 2 4 [6 Q41(d0) +3, P -as. However if q
gives positive mass to the set {8 ¢ 8|8 > %} then equality never holds. Hence
in this case the strategy 7" is worse than wn+1 and consequently there is no

optimal strategy.
In this section we need the following assumptions:
Assumptions
4,5 (i) t is bounded on X X A X Y,
{ii) D{x) = A for all x € X.

4.6 There are bounded measurable functions g and h on 8 and X X 8 respec-
tively such that

h{x,8) + g(8) = sup L(x,8,a)
acA

whexe

Lix,0,a) := ] 1. (x,a) I\’(dy)pi(ylei){r(x.apy) +
iel i

+ J P(dx'lx,a,y}h(x',e)} for x €« X, ae¢ Aand 6 € B ,
4,7 For all € > 0 there is a Bayesian Markov policy f such that

I g{de)L{x,0,£f(x,q)) = sup f g{d8)L(x,0,a) ~ ¢ for (x,q) € X X W,
ach

Note that assumption 4.6 is identical to 4.3b. The assumption 4.5(ii) is not
essential, but it makes things more transparant. Purther it seems possible
to weaken assumption 4.5(i). The only serious assumption is 4.6. For models
with known parameter value 6 and finite action space A, assumption 4.6
guarantees the existence of a stationary optimal strategy. This has been
proved for finite X in [Dexman (1966)] and for arbitrary X in [Ross (1968) 1.
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In fact the strategy that chooses the maximizer of a » L(x,0,a) at each
stage is optimal with average xeturn g(8). In [Ross (1968)] several situa~
tions are given where, for fixed parameter value 0 a solution of 4.6 exists.
For instance, if X and A are finite and for each stationary strategy the
process is an irreducible Markov chain, then 4.6 is valid, The results of
Derman and Ross follow from th, 4.1 below. Assumption 4.7 is a regularity
condition to guarantee a measurable selection., In lemmas 4.4 and 4.5 we
give some sufficient conditions guaranteeing 4.7.

Note that a Bayesian Markov policy satisfying 4.7 is a Bayesian equivalent
xule.

In th, 4.1 we derive a sufficient condition for a strategy to be optimal,
In the rest of this section we consider model assumptions which guarantee
this condition for strategles generated by the Bayesian equivalent rules of
the form 4.7.

Remember that the functions g and h are easy to compute by standard methods

-

(cf. [Derman (1970)]) if 4.6 holds and X and A are finite sets.

First we introduce some notations:

4.8 (1) ¢(x,9,a) := L(x,8,a) - h{x,8) -~ g(8) , xeX, 6§ €8 and a ¢ A.
(i1) ¢{x,g,a) := J q(as)s(x,0,a) , x € X, qe¢Wand a € A,
4,9 (i) hix,q) := f g{déih(x,o) , xeXandgeW.

{ii) glqg) == I q{a8ig(®) , qew.

The definitions 4.8(1i) and (ii) are consistent, since we embedded © in W,
similarly the definitions of h and g in 4.9 are consistent.

Theorem 4.1
Assume 4,5, 4.6 and the existence of a strategy e Ho such that
1N§1 “*
4.10 lim inf = E,. [¢(xX ,Q ,2)]1=0.
R N n=0 X,q n'“n’’n

Then:
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sup lim inf L 2 IE“ [r(x B 1 = glq)
mel, e Vo ¥4 n+l

*
and © is optimal.

Proof ,

Pirst note that

fq(de){ ) 1 (x2)p; (y|6 )hix',8)} = | e (x,a)pi(y,q)h(X‘.T, (@) =
€1 &y ier ¥ 1y :

= ] iy (x,a)p (y,@h(x', ) le

(2,2} T, {(q))
per 84 ier &4 iy

since by 4.%9(i) and 2.28
hix',T, (@) = { J q@®)p, (v[6,)n(x',8)Mp, (v, 01!, if p (v, >0,

Hence, by definitions 4.8(ii) and 3.1(e) we have for all 7 € HG:

%00 /A0 = T ,Q A0 + EL [hex .0 01X 0.8 - hix 00 - 9(Q).
Therefore, by first conditioning on c(xn,Qn,An), we have for all N € 13*
I omy [r(Q ) +hit 00 ) - hix Q) - g) - ¢, )] =0

Since g(Qn) = I Qn(ae)g(e), we have (cf. th. 2.1)

T
Ex'q[g(Qn)] = g{q) .

Using the boundedness of h we find for 7 ¢ HO:

lim inf = Z ]E ['E(x, A)) = g@ +l:i_minf— Z :ua [cb(x, AT,
SO N n'<nPy N U n' Py
Note that ¢{x,8,a) £ 0 by 4.6. Hence, for all 7 ¢ Ho, g{g) is an upperbound
for the Bayesian average return, On the other hand, if 4,10 holds, then glq)
is the optimal value and 7 is optimal, 0
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Remarks .

(i) In [Mandl (1974) th. 3] a similar result has been cbtained,
In fact, Mandl's result, formulated in our terminology, reads:

N-1
1 T
lim ® z x(xn'An'Ynﬂ) = g({8) , :IPX g=as8.

N U n=0 ’

if and only if

1'N~1 .
lins § 6(X,0,a)=0 , P

s Lo x’e-—a.s.

(note that one limit exists iff the other exists).
{11) We conclude from th., 4.1 that if there is a € > 0 such that for all
T € I[0

N-1
1 T
liminf-*z E [¢x IQ:A)]QS:
o N n=0 Y4 n""nn

then the optimal Bayesian average return is at most equal te gl(q) -~ €,
in state (x,q) ¢ X X W,
(1ii) According to corollary 3.6 we may replace HO by I in th, 4.1,

We need the following obvious lemma.
Lemma 4.2

Let {¢ , n ¢ N} be a sequence of bounded real numbers such that lim €, = 0
1 oN~-1 Ao

then: lim = e =0,
N-mN n=0 n

The following coxollary to th. 4.1 includes the already mentioned results of

Derman and Ross.
Corollary 4.3

Let {en, n € N} be a non-increasing sequence of positive numbers such that
lim €, = 0, and let fn be a Markov peolicy such that for fixed 0 e 8;

e

L{x,9,f (x)) Z sup L(x,9,a) - e_ , nemw.,
n : n
aca

*
Then the strategy T that uses Markov policy. f‘n at stage n, n ¢ N, is optimal

for this parameter value 6.
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Proof.

Note that, if we start with a prior distribution which is degenerate at 8,
then Qn is degenerate in & for n € W, Hence, using n* we find:
¢(anQn.An) = L(xzfe'fn(xn)) - h(Xn,el - g(8) < € for n ¢ N, Therefore,
using lemma 4.2

lim inf = E [¢(x_,0 ,A)] 5 lim inf = e =0,
Moo N n=0 X,8 n"*n""n . N n=0 n
Now th. 4.1 applies. 0

We continue with some conditions guaranteeing 4.7. Note that if X is codntable
then 4.7 is fulfilled,

Lemma 4.4

If A is countable then 4,7 is valid.

Proof,
PMix £ > 0, Let al,az,... be an enumeration of A and define

31 = 0 {(x,q) € X x w| fq(de)l‘a(x,e,al) b3 I q(d8)L(x,8,a) - ¢}
aeh

and, for k = 2,3,-.0

k-1
B, := 0 {{x,q) € X x w] x,q) § U B, fq(de)ntx,e,ak) 2| g(d8)L{x,9,a) ~c}.
aeh i=1 i

Note that B, is measurable, for k ¢ ™" and B n BQ =@ 4if k # £. Purther

k k
note that for each (x,g) there is at least one k ¢ N such that (x,q) ¢ Bk‘
Hence the function £ : X x W » A defined by f(x,q) := a, iff (x,q) ¢ 13k is
a Bayesian Markov policy satisfying 4.7. X
Lemma 4.5

. Let the following assumptions hold:
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4.11 (i) A is compact.
(1i) a » P(+|x,a,y) is a continuous mapping from A to P(X), where P(X)
is endowed with the weak topology, for all x € X and y ¢ Y.
(1i1) a + r(x,a,y) is continuous for all x e X and y € Y.
(iv) x = h{x,0) is continucus for all 6 ¢ 8.
{v) a -~ 11(. (%,a) is continuous for all x ¢ X and i ¢ I,
Then there is a Ba;esian Markov policy £ such that

Iq(d@)L(X,G,itx,q)) = gup I gq(a@®)n(x,8,a) , for (x,q) € X X W .
aeh

Proof.

Since h and r are bounded, we have (x,8,a) + L(x,0,a) is bounded., And, since
this mapping is measurable, we have (x,q,a) - f q(@8)L(x,9,a) is bounded and
measurable,

Furthexr, since a +I \)(dy)pi(ylei)r(x,a,y) and a~ fP(dx‘ Ix,a,y)h(x‘,e)

are continuous, we have a > f g{d8)L{x,8,a) is continuous, Hence all conditions
for Schil‘'s, selection theorem (cf. A17) are satisfied, which proves the n

lemma,
Remark.
The condition 4.11({v)} is fulfilled in the following situation:

4,12 A := Nk' where N is compact with N, n Nl =@ if k #2%,

k
X i= ”2=1 Mk' where M is measurable and M oNM = g itk #2 ,

o
k=1

and R, gy 3= My X Ny and I s= {(i,3) ]i=1,..0m 3 =1,.0.,n) .

If A is finite then 4.12 is valid, and therefore 4,11 (i}, (i) and (iii),

Ancther example of 4.11(v} is the situation where A is compact and Ki =M, XA,

i
ie M * where Ml 'MZ’“' is a measurable partition of X.

Theorem 4.6

Assume 4.5, 4.6 and 4.7, Let {en, n € N} be a nonincreasing sequence of

f

positive numbers such that lf;ﬁ €,
‘ n
for n € M, such that for (x,q) € X X W:

0. Let fn be a Bayesian Markov policy
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4,13 J q(dG)L(x,B,fn(x,q)) z sup J g{dd)L(x,6,a) ~ e, (cf., 4.7).
achA

N .
Further let 7 be the strategy that uses fn at stage n, n ¢ N, Assume for
fixed (xo,qo) € X X W:

.
T o Ln a dtdm <o}l=1.

%090 ieI new

4.14

Finally assume the existence of a finite set F of Markov policies such that

8 »+inf ¢ (x,6,f(x)) is measurable for £ ¢ F and
XeX

4.15 max inf ¢(x%,8,f(x)) =0 , for all 6 ¢ 8 ,
feF xeX

Then condition 4,10 holds and therefore w* is optimal with Bayesian average
return g(qo) , in (xg,qo) (ef. 2.13).

Proof,

*
Note that T ¢ Ho. Under the strategy a* we have An = fn(xn,Qn) and there-
fore, by 4.6 and 4.8:

g2 ¢(anQn'An) 2 :‘:i J Qn(de){f?{xn:eaa) - En z

2 max f 0 (a8)é(x_,0,£(X )) ~ ¢ = max J Q {d8)inf ¢ (%,0,£(x)) - €
feF a B n n feF n X€X wr n

Using 4.14, the boundedness of ¢, 4.15 and corollary 2.5 we find

o *
T
1lim j 0 {389)inf ¢ (x,8,£f({x)) = inf ¢(x,2,£(x)) = 0 , n’x —a.8.
no n xeX xeX 0%
Angd since F is a finite set we have
1'!*
lim max I Qn(de)inf $(X,8,£(x)) =0 , I?x —a,8.
nrw fef xeX 0%
*
Since lim € = O we finally have lim ¢(X_,0 ,A) =0, P _ -a.s. And
e B b n’*n'"n X409,

therefore, by the boundedness of ¢:

.



83

N N-1
'ﬁ' Zo qo[¢(xn'Qn’An)] =

This proves the theorem. 0

lim
N>

Although, at first glance the number of assumptions in th. 4.6 is over-
whelming, only 4.14 and 4.15 are serious restrictions on the applicability
of the theorem. In 4.14 it is required that the strategy " guarantees that
we obtain enough "information" concerning the "true" parameter. If there is
a finite collection of Markov policies, which contains an optimal one for

all models with known parameter value, then 4.15 is fulfilled. In th. 4.8

we consider more appealing conditions guaranteeing all requirements of th. 4.6.

We start with a lemma, the truth of which is intuitively clear.

Lemma 4.7

Let X and A be finite sets and assume that, for all © € 8 and each stationary
strategy, the resulting Markov chainA{Xn, n € N} is irreducible. Then, for
all 6 e ®, xe€ Xand m € I, the number of visits to each state x' € X is in-

finite, P

-a.S8.
X,0

Proof.

Fix 0.« 0 and x' € X.

a) We first prove there is at least one visit, n’ile-a.s. To show this,
transform the transition law in such a way that x' becomes absorbing:
i.e. P({x'}|x',a,y):= 1 for all a € A, y € Y. Further consider the reward

function:

r(x,a) := 2 1
: €

In this model the total expected return is defined as usual:

‘ -]
v(x,0,m) := ): " [r(x ,a)], mTel and x € X .
X,0 n''n
n=0
*
According to th. 3.4 there is a strategy ™ ¢ Ho such that

*

vix,0,n) = v(x,8,7 ). However since we start with a degenerate prior

distribution, all posterior distributions are degenerate. Hence HO is the
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get of strategies such that the action at time n only depends on
xO'AO"“'Xn (cf. the remark following corcllary 3.6). Now we restrict

ourselves to strategies in II,. Note that " -a.s.

¢} x,0
= = 4
r(X ,a) IPX ol¥ g = % Ixn,An] P LEX #x .
Hence, for x # %', ¥ elIO:
o0 .
T w
vi(x,0,m) = § B, ol ol = |xn,A N3 BT =

n=0

©

= nzo P;,efxnﬂ =x', xn#x:'] = El'e[xn=x' for some nl,
Since this last probability does not depend on the transition law in x',
“the probability JP;;;’Q[Xn = x' for some nl] is not affected by the trans—
formation of the model. We return to the transformed model. Minimizing
v(x,8,7) over all = ¢ Hé is a negative dynomic programming problem with
state space X and action space A. Therefore we have, by [Strauch (1966)
th. 9.1] forall = ¢ I, v(x,8,m) 2 min v{x,0,T), where the minimum has to
be taken over all staticnary strateqies T in Ho
8ince by assumption the Markov chain is irreducible under each stationary
strategy, this minimum equals one, if x # x'. Therefore v{x,8,7) = 1 for
all 1 ¢ I and x # x'. So we have in the original model for x # x':

() " [x =x' for somen > 0] =1 for all we I .

2,6

l
It is easy to verify that (x) is also valid for x = x° in the original
model.

b) Consider the original model. By conditioning on the first visit to x' we

obtain:

T

[X = x' for at least two numbexs n > 0] =
xce n

@ k-1
= ¥ ) by J vidy,)... Iv(dyk) n{pux, =2y, )
. J+171T3 T3 g1
k=1 xl""'xk-—l aO""'ak-—i j=0
% #x'

1 (x 3y ), (¥, .10 )n ({a }|x LS P SRR A N )
izx 1 ¥ 4411% 0 %0 1% 3"

2" [x

= ! =, = = o pu—
x,0 %04k = ¥ for some n>0&xo 3, AO 0 Yi=y1, Xy xl,...,Yk-yk, X, =x 1.

Analogous to the construction in 3.22, there is for each
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(ao’yl'xl""'yk) € (A XY x X)k»i X AXY a strategy el such that

™

=x" =X, = G mgt] =
x,erxn-f-k x' for some n>0]x0-x, AO 0! Y1=y1, x1=x1,...,Yk Vo X =X ]

~

" ¥
=1Px.'e[Xn=x for some n > 0] .

This last term is equal to !, by part {(a). Therefore there are, :IP: g RS,
’
at least two visits to x'. Repeating the argument yields )

]P:: e[xn = x' for at least k numbers n > 0] = 1 and therefore
’

" [X = x' infinitely often] = 1 . 0
x,e n

Theorem 4.8

Let X and A be finite sets and let the Markov chain {X L e N} be irre-
ducible for each stationary strategy and all € € 8, Let MiseeesM be a
partition of X and Ki 1= Mi XA, i=1,ses,m.

Then the strategy 7%, defined in th. 4.6, is optimal.

Proof.

We only have to verify the assumptions of th. 4.6. As already noted, it has
been proved in [Ross (1970) corcllary 6.20] that 4.6 is true, hére. Further
4.7 is a consequence of lemma 4.4. Since for each known parameter value

8 ¢ 8 the Bayesian control model reduces to a dynamic program with state
space X and action space A {(cf. the proof of lemma 4.7) we have for each

8 ¢ 8 an optimal stétionary strategy (cf. corollary 4.3).

Since there are finitely many of these strxategies 4.15 is fulfilled.
Finally, by lemma 4.7, we have n?:'e[xn € M, infinitely often] = 1. Hence
4.14 holds. 0

Remarks,

i) The conditions of th. 4.8 are satisfied in particular if, for
X = {xl,...,xm} we have M; = {xi} , i=1,...,m and if for all 6 ¢ 8 ,

aeAandxi,x € X:

3

I v(dy)P({xj}lxi,a,y)pi(ylei) >0 .

ii) In the situation of th. 4.8 we may use at each stage a Bayesian equivalent

rule maximizing a -+ f q(do)L(x,0,a) in (x,q) ¢ X x W, since A is finite.
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In th. 4.8 we assumed that, if we are in state x ¢ Mi' then the information
we get after the next transition does not depend on the action chosen, In
th, 4.9 we relax this assumption. We shall assume there, besides 4.6 and
4.7:

4.16 (1) A is a finite set and Nl""’Nn is a partition of A,
{ii) Mi""’Mm is a meagurable partition of X and Ki 3 w.Mi x N
’
(1,3 e I = {(ilj)li =1,.ee,m, j =1,...,n}.
(iii) For each x ¢ X, 8 ¢ B and 7 ¢ HO
" [X emM infinitely oftenl = 1, i=1,,..,m .
X, n i
{(iv) There ig a finite get F of Markov policies such that

6+inf $(x,0,5£(x)) is measurable, for f ¢ F and
xeX

max inf ¢(x,6,£(x)) = 0 (cf. 4.15) .

feF xeX

jl

First, we discuss the form of a reasonable strategy for this situation. Then,
in th., 4.9, we prove the optimality of such a strategy and afterwards, in

th. 4.10 we consider a practical situation where 4.16 is satisfied in a
natural way.

Although 4.16(iii) guarantees that we return to M,, 1 =1,,..,m, infinitely
often under the strategy o defined in th. 4.6, it is not sure that we return
to each set Ki,j infinitely often. Hence we have to modify the strategy w*
of th. 4.6.

The idea for the modification is found in [Mallows and Robbins (1964)1]. In
[Fox and Rolph (1973)] and in [Rose (1975)] this idea is worked out for
Markov renewal programs and Markov decision processes respectively, in a way
similar to our approach here. The idea is, that we make forced choice actions

to guarantee that we return to all sets K infinitely often. However, we

i.3
do this with a freguency that is so low as not to influence the Bayesian
average return.

We start with scme preparations,

We define a {(double) sequence of stopping times'{c(i,t)lt € W, i=1,..,,m}:
4,17 6(i,0) (w} =0 , o(i,t) (w) :=inf{k > c(i,t-l){m)ixk(w) € Mi}
for we @) L=1,.0a/m, t ¢ N,

Hence o(i,t) is the time of the t-th visit to set Mi

4.18 An increasing sequence 8 = (sl,sz,sa,...) of positive integers is

, after stage zerxo.

said to be of density zero if
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1lim sup -l-i-mak{i € :N*lsi £k} =0.
X0

Examples of such sequences are: s, = 21, ieg N*, since

i

. . 2
Tmaxfi ¢ W¥|2t s k) s 2LE

and s; = 12, since
1

E-max{i € :N*l:l.?

<k} s k'% .
We define the strategy 'n**, vhich will be considered in th. 4.9, in an in-

formal way.

4.19 Fix in each set Nj an action aj for 3 = 1,...,n and fix some sequence
8§ = (s1.82,33....) of density zero. If for t ¢ N there are
ie {1,.cc,m} and k ¢ :N* such that t = c(i,sk) then determine £ ¢ W
such that k = bm + 2 with 1 €28 €m, b ¢ .
In that case action a, is chosen at stage t. .
IfFt # o(i,sk) at stage t, for all i = 1,...,m and all k € N then
the Bayesian Markov policy ft' defined in 4.13 is used to select an

action.

It is straightforward to make this definition more rigorous in a way similar
to definition 3.20.

Note that %" tries the actions a,s..¢,a successively at the forced choice
stages: o{l,t), i = L,...,m t € 8.

Since it is assumed in 4.16(iii), that the process visgits each set Mi in=-
finitely often, almost surely under every strateqgy, we have almost surely:

o(i,sk) <o forall i = 1,...,m and k ¢ .‘N*. Hence each set K is visited

1,3
infinitely often almost surely, under all strategies.

Theorem 4.9

Assume 4.5, 4.6 and 4.16. Then the strategy 7" defined in 4.19 is optimal
with Bayesian average return g(q) in each starting state (x,q) € X X W.

Procof.

*k
Fix (x,q) € X X W. For notational convenience we write I instead of BPTT .

X.q
a) As noted above, we have by 4.16(iii) and definition 4.19:



PL o o {t(d 3Kk <=}]=1.
i,3€l keN
Using th. 2.7 for the stopping times o(i,0), ¢{i,1),... we find in exactly
the same way as in the proof of th. 4.6 that IP-a.s.
(%) lim ¢ (X

o
k£s

o’(i,k)’Qc(i,k)'Ac(i,k)) =0, for i = 1,...,m «

b) For notaticnal convenience we write B(i,k) instead of
ch(i x) "% (i,k) c(i k))' The following assertion is easy to verify
{cf. 4.17). For all t ¢ N there is exactly one pair i,k such that
glik) = t,1 € {1,ecem}, k € {1,000t}

Hence it is easy to verify that on {:

Gex) M(x Q, /A = Z Zaum =
E Al i 4 io1 ket o (4, kst
izi k; BRI, 505N, kes) T ) E BUXIL6(4,0)5N, Kes)

i=] k=1

Notice that o(i,k) 2 k for k ¢ :N*. Hence we have
#{k € s|lo(i,k) < N} < #{ke s|ksn}.

Let M := inf ¢(x,6,a). Then — ® < M £ 0, since r is bounded and by 4.5.
x,8,a
Therefore we have for i = 1,...,m:

K
1 B(i,X)1

> ¥ uix e slksw
N
k=1

1
N {o(i,k)SN, keS}
which tends to zero as N tends to infinity by the definition of 8§ (cf. 4.18).
Now we consider the last texm of (%%}, Since, by (*}, B(i,k) tends PP ~a.s.

to zero, if k ¢ S and if k tends to infinity, we have by lemma 4.2:

1 N
lim = ] B(i,k1
N & Kel

{o(i,k)sN,kgs} = O ¢ P-a.s.

Finally we conclude from (**}):

N
im 2 Z
= (X, .Q } =0, P -a.s.
im o Wy ¢ (X 0Q rBy

And therefore 4.10 is satisfied. Hence by th. 4.1 the theorem is proved. [J
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In the following theorem we give more appealing conditions, whi¢h imply all
conditions of th. 4.9. Hence the strategy ™ defined in 4.19 is optimal

here.

- Theorem 4.10

Let X and A be finite sets and let the Markov chain {xn. n € N} be irre~
ducible for all ¢ ¢ 8 and each stationary strategy. Further let I = X X A

and let Kx‘a = {(x,a) }. Then the strategy 7" defined in 4.19 is optimal.
14

The proof of this theorem proceeds along the same lines as the proof of
th. 4.8. '

We conclude this section with scme remarks.

Remarks.

i) Consider the situation of th. 4.9.
The strategy w** is easy to handle. For each set ui, i=1,i¢.,m the
decision maker has to keep count of the number of visits. If this num-
ber is equal to a number in the sequence S of density zero, then he
has to select the next action from {ai,....an} in cyclical order
{cf. 4.19). If the number of the visits does not belong to S, then the
decision maker has to compute in state {(x,g) an action a*, such that

*
$({x:q,a) = max ¢{x,q,a).
ach
ii) If we are dealing with a dynamic program with finite state space X and

finite action space A and if for all x,x' € X and all a € A: P(x'|x,a)
is positive but unknown, then we can transform this model into our
Bayesian control model (cf. example 2,2), and by th. 4.10 the strategy
ﬁ** is optimal,

iii) Th. 4.10 is more general then the results in [Rose (1975)}], since we
allow arbitrary prior distributions., Further, the strategy ﬂ** is
easier to handle than the strategy Rose proposes, if 8 is finite,

iv) It is not clear whether all situations considered in [Mandl (1974)] are
covered by th. 4.6 or not. Mandl assumes that 6 >¢(x,0,a) is continuous
(cf. [Mandl (1974) th. 81), moreover he assumes the existence of minimum
contrast estimators. Although we conjecture that undexr the assumptions
of th. 4.8 minimum contrast estimators exist, it is easy to show that
under the assumptions of th. 4.10 they do not exist.
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5, BAYESIAN EQUIVALENT RULES AND THE TOTAL-RETURN CRITERION

We do not know Bayesian equivalent rules that are optimal with respect to
the discounted total-retuxn criterion, in general. Example 5.1 shows that a
"natural" Bayesian equivalent rule faills to be optimal. However, in section
5.1, we prove the optimality of a Bayesian equivalent rule for the so-called
independent case, and in section 5.2 for the linear system with guadratic
costs. Finally, in section 5.3, we study a simple inventory model for which
a Bayesilan equivalent rule is sometimes optimal. Here we alsc study the be~

haviour of this rule when it is not optimal.

5.1 Preliminarnies and the independent case

In the models we study in this chapter, there is only one unknown parameter, .
i.e. the index set I is & singleton. This implies that the decision maker
obtains information about the same parameter in each state x € X, regardless
of the action chosen. Since I is a singleton we shall omit the subscript i
in the notations 8., p; (ylei), p, (v/q) and Ti’y(q). Note that T{l,n}) = n

{on Q), for all n € N and therefore, by lemma 2.2, the distribution of

Y ""’Yn' n € N only depends on the prior distribution and not on the

1
starting state or the strategy. Hence the distribution of Qn (¢cf. 2.24) de-
pends only on the prior distribution and on Yl""'Yn’ For that reason we
shall write P and E_ instead of P andE. ; when we are dealing with

g d X:q X.q
the random variables Yn and Qn‘
We start with an example. In this example the Bayesian equivalent rule,

based@ on the function:
F(x,0,a) = f vidy)plyle) {rx,a,y) + 6 f p(ax'|x,a,y)vix',0)}

turns out to be non-optimal.
We remark that this example has some similarity to example 4.1.

Example 5.1

Consider the following model. X = {1,2,...,6}, Y = {0,1}, D(1) =a=1{1,2,3},
D(x) := {1}, x < {2,3,...,6}, 8 := {0,1}. The function p(y|8) is given by:
p(1|e) = 1-p(0|6) =8, 8 ¢ 8, And P({x‘}lx,a,y) is (we identify here x and
{x}):

p(3]3,1,0) =p(3|4,1,0) =p(6|5,1,0) =p(6]6,1,0) =p(2]|1,1,0) =

=P(1}2,1,0) = 1
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p(4|3,1,1) =p(4]4,1,1) =p(5]5,1,1) =r(5|6,1,1) =p(1]1,1,1) =
=p(2]2,1,1) = 1

p3]1,2,y) =1, psl1,3,y) =1, foryevy.

e

.Y
0 1—9%

Only in the states 3,4,5 and 6 a reward is obtained independent of y € Y¥:
r(3) = x(5) = ¢; r{(4) = x{6) = b, ¢ > b 2 0. The prior distribution ¢q is:
¢{0) = g(1) = %. The discounted total return v(x,8) for discount factor B
is:

<

v(3,0) = v(5,1) = 757 1 v(3,1) = v(5,0) = ¢ + B m2r(< =S,

Hence v(3,0) = {c + TB_-%)e + T =7(1-8) and v(5,8) =725 0 + (c +-1£_b—é-} (1-8).
Further v(2,0) = 22580 v(1,8), hence
B(1-8)
v(1,0) = max{Bov{1,8) +B(1 -0)—7—7z— v(1,8), Bv(3,8), Bv(5,0)} .

The first term equals:

8 3—%‘%(1,6) < v(1,8) for B e (0,1), 8 €8,

The Bayesian equivalent rule is based on the function F specified by:

8+ -2p8

F{1,6,1) =8 1 - B0

v{1,8), F(1,0,2) = Bv(3,08)
and

F(1,0,3) = 8v(5,0) .

Hence the Bayesian equivalent rule in state (1,q) chooses action 2 or 3,

with equal Bayesian discounted total return: %{c + T§?§'+ T—g—g} . Now we

consider another strategy for starting in state 1.

At stage 1 take action 1 and thereafter take the best of actions 2 and 3,

in state 1. Note that under this strategy the system remains in state 1 at
stage 1, or it returns to state 1 at stage 2. The discounted total return

becomes: 8> T f 7 if 6 = 0 ana 82 T f 7 if 6 = 1. Hence the Bayesian dis-
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counted total return is: % z—g—g-ﬁz(ﬁ +1). So, if for instance c = 2, b = 1
and 8 = 0.9, then this strategy is better than the Bayesian equivalent rule.
It is straightforward to show that the latter strategy is optimal, in this

case.

We proceed with a theorem. In this theorem we show that the process of poste-

rior distributions is a Markov chain.

Theorem 5.1

{i) Let £ be a real-valued measurable function on W X ¥ that is bounded

from above. Then, for n e:N*:
Eq[f(Qnan+1) I Y1""'Yn] = J‘ f(QnIY)P(YrQn)“(dY): Pq“a-s-
{ii) The process {Qn, n € N} is a (homogeneous) Markov chain.

Proof.

(L) Define

n n
qn(de) = q(ad) I p(y.le).{J g(as) I p(yj'e)}-l
=t =t

if the denominator is non-zero. Let B ¢ Y7, Using lemma 2.2 (T = 1) we

have
(%) J B L£0Q¥, ) | Yl,...,yn)]qu =
{(Yl,...,Yn)eB}
n+l
= f qae) { f J f(qn,yn_‘hi)‘l_l1 p(yjle)v(dyi)..v(dynﬂ)}.
¥y reeer¥y ) €BXY =
Note that

f n n -1
J p(ynﬂie)jzl p(yjla)q(de){f jzl p(yjlﬁlqme)} =ply 09, -

if the factor between braces is non—-zerc. Hence (*) equals:

(] st
(ch- "e ,Yn+1)€BxY
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)=

n+1

.{J

= Eq[l{ (Yll---lyn)EB} J f(iny)P(YIQn)V(dy)] ’

=

p(yj|6)q(d6)}v (dy,) ...V (dy

j=1

which proves part (i).

(i1) Eq[f(Qn+1) | Qqreeer2,] =Eq['Eq[f(Qn+1) | Yireeary ] |Q0,..,Qn:|=

Eq[j f(Ty(Qn))p(y.Qn)v(dy) |QO,--.Qn]=J f(Ty(Qn>)p(y,Qn)V(dy)=

By [£@) 1 =B [0Q,,,) lo 1, B -a.s.

The first equality follows from the fact that Qm is a function of g and

Yl""'Yh' The second equality is a consequence of part (i) and the

equality Qn+1 = TY (Qn). The other equalities are obvious. O

n+l

In th. 5.3 we prove the optimality of a Bayesian equivalent rule in the in-
dependent case. Here the reward function r is constant in the first coordi-
nate, i.e. at each stage the reward only depends on the chosen action and
the value of the supplementary state variable. Further it is assumed that
all actions are available in every state, i.e. D(x) = A, for x € X. Since,
given 2, the sequence {Yn, neN'}isa sequence of i.i.d. random variables
(cf. lemma 2.2) we call this case the independent case. It will play an im-

portant role in section 5.3. We start with a lemma.

Lemma 5.2

Let G be an upper semi-continuous (u.s.c.) function on A X ¥, that is bound-
ed from above. Let A be compact. Then there is a measurable function f: W—A
such that:

J G(f(qa) ,¥)P(y,q)V(dy) = max J Gla,y)ply,q)v(dy) .
a€A

Proof.

We show that all conditions of Schdl's selection theorem (cf. Al7) are sa-
tisfied. Let G be u.s.c. and bounded above by M € R. Then there are bounded

continuous functions G, on A x ¥, such that the sequence {Gk, k ¢ W} is non-
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increasing and lim G, = G (see Al2).
k
koo
Without loss of generality we may assume that Gk £ M, k € W, since otherwise
we may define G := min{Gk,M} and then {gk' k € N} is alsc a nonincreasing
sequence of bounded continuocus functions with limit G. Hence, by the mono-

tone convergence theorem we have

limj {-6 (a,y) +Mipty,vidy) = J {~Gla,y) +Mlp(y,q)v dy)
koo
and so {f Gk(a)y)p(y,q)v(éy), k € N} is a nonincreasing sequence with limit
[ clayipty,@v @y .

By the dominated convergence theorem the function

{a,q) > J Gk(a.y)p(y;q Ivi(dy)

is continuous in a, and for fixed k it is bounded since Gk is bounded. Using

lemma 1.6 (iii) we find that this function is measurable, since
(a,8) ~ J Gk(&rY)P(Y‘B)\’(dY)

is measurable. Hence we proved that f Gk(a,y)p(y,q)v(dy) € L(W * A) and
therefore [ Gla,y)ply,q)v(dy) € L(W X &) (cf. A17).
Hence all conditions of Al7 are satisfied. This proves the lemma. 0

Theorem 5.3

Let I be a singleton, let A be compact and let D(x) = A, x € X. Further let
% + r(X,a,y) be constant for all a € A, v € ¥ and let (a,y} * r(x,a,y) be
u.s.c. (We write r{a,y) := r(x,a,y), a € &, y € ¥.)

Then there is a strategy ™ e HO that choses a maximizer of

a - f r{a,y)p{y.q)v(dy) in each state (x,q) € X x W.

This strategy is optimal, and

o

vieg = § B le(@)]

n=0

where,

3.1 elg) := max J ri{a,yip{v,vidy), qeW.
a€h
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Proof.

Remember that r is bounded from above. Let x € X, g € Wand 7 € HO‘ We have:

E [r(a .Y )]=1~:“ ' [x(a_,¥
X,q n''n X,q

+1 X,q 0 ¥net) | }{O"Q()"p‘{lt""'Xn'Qn]:l *

Since 1 € IIO, there is a corresponding strategy T € i (cf. 3.7). Therefore

T
we have P - T-T%
X:q

X3
Ex,q{r(An'Yni-l) I XOIQO: 00---1xlen)]

= J ?r’n(dalxo,go,Ao,...,xn.Qn) J vidylply,Q )zla,y) =

5 sup J vigy)ply.Q lr(asy) .
a€En

By lemma 5.2 there is a measurable function f from W to ¥ such that

max J V(dy)p(y,Qn)r{a:y) = f V(dy}p(y,Qn)r(f(Qn) [y o= e(Qn> .
€A

Note that the distribution of e(Qn) does not depend on x and 7. Hence

ki

) <
Ex,q[rmn‘yn-l-l)] s Equ(Qn)l for all x € X, ™ ¢ N, ,
with equality if the strategy 7% is used. This proves the theorem. 0

The strategy 7" defined in th. 5.3 uses a Bayesian equivalent rule. To veri-
fy this, note that an optimal strategy for the model with known parameter 6

is obtained by using a maximizer of a + FP(x,8,a) at each stage, where
Flx,8,a) = J V(dy}p(y!e)r(a,y) .

Hence a Bayesian equivalent rule may be defined as a maximizer of
a - f q(d@)?(x,e,é), in each state (x,q) ¢ X x W. Hence 7 uses a Bayesian
equivalent rule at each stage. Note that each maximizer of

a > f q(d8)F(x,9,a) is alsc a maximizer of
a > J qtadply|ey{r(a,y) + 8 J Plax'|x,a,y)vix',0)}

since x -+ v{(x,8) is constant for all @ ¢ 8, Hence m* uses a "natural" Baye—
sian equivalent rule.

In th. 5.4 we give an upper and a lower bound for the value function of the
model. These provide a measure for the loss of return, due to the lack of
information concerning the "true" parameter value.
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Theorem 5.4

Under the conditions of th. 5.3 we have:

[ atadre®
5.2 %%?% < v(x,q) S'-ffrif___-°

Proocf.

The right hand inequality follows from th. 3.16. To prove the left hand in-
equality, note that:

Eq[e{Qn)] 2 zziEq[J Qn(de){{ V<dy)p(yle)rfayy)}3 =

= gup J q(de){j vigyply|8)r(a, )} = e(q .
ach
The first equality follows from the fact that ]E:q{ f f(G)Qn (@)1 = f £(8)q(as),

for real-valued measurable functions on 6, which are bounded from above. N

We conclude this section with an example which has some relationship with
the inventory contrel model we study in section 5.3. The model we consider
in this example can be transformed into the model we called the independent

case.

Example 5.2

Let I be a singleton, D(x) = A for all x ¢ X and let A be compact. Further
let r(x,a,y) = b{x) + cla), x € X and a € A, where b and ¢ are u.s.c. and
bounded from above on X and A respectively. Finally let P{{G(a,y)} | xea,y) =1
for all x ¢ X, a € 2 and y ¢ Y where G is a continuous function from A x Y
to X.

ForeachxeX,quandﬂeﬁowehave

I 8% A,y 0] =

w
vieeqm) =E, n’ “n+
n=0

:q[

v o n "
=E, [P +n£0 8%c(a) +Bb(G(A ,Y_ )}] =

=beo + | 6% [c@) +Bo@@,Y NI .

=0 n+l
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Define E(a,y) 1= ¢{a) + Bb(Gla,y)), 2 € A, ¥y € ¥. Then

ki) - b S
v(x,q,T) = b(x) +Ex’q[n£06 ray 7.

n+l
Note that (a,y) * E(a,y) is u.s.c. (cf. Al5). Hence, by th. 5.3, we find
that an optimal strategy is obtained by choosing in each state (x,g) € XXW

a maximizer of

a*{cta) + 8 J bi{G(a,y))ply,q)V(éy)}

and

vix, ) =bix) + ) 8 E [3(@)],
n=0 k! B
where

&(q) := maxic(a) + B f b(Gla,v))ply,g)viay) } .
a€A

As in th. 5.4 we have the inequalities:
bi{x) +8 ) (1-8)'1 <v{x,q) Sb(x) +[ e(8)q(ad) (1-8)7t, (x,q) €eX*W.

In the following sections we study models which have some practical rele-
vance. As this is more natural, in these models we shall minimize costs ra-
ther than maximize rewards.
Neote that all results up to here carry over if we define

-1

5.3 (1)  (Ub) (x,q) := inf E_ o I 8% e A + 8'b(x 0]

il ’ =
TE o n=0

for real-valued measurable functions b, that are bounded f£rom below.

1) vix,qg) = (U0) (x,q) -

5.2 Linear system with quadrnatic costs

In this chapter we consider a linear system with quadratic costs and with a
disturbance process of i.i.d. random variables with an incompletely known
distribution. We show the optimality of a Bayesian equivalent rule, In fact
this rule can also be considered as a so-called certainty equivalent rule,
We generalize results of M. Ackli on this topic in several ways: first we ‘
allow other disturbance processes than normal processes, secondly we allow

general prior distributions. Finally we allow the costs to be a quadratic
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function of the control variable (cf. [acki (1967), page 941].

The concepts and techniques we use here, are familiar in the theory of li-
near systems (cf. [Kushner (1971), chapter 9] and [Bertsekas (1976)]). We
remark that the greater part of thig section appeared in [van Hee (1976)1.
We shall use symbols that we used before. However, they loose their previous
interpretation here. We start with the specifications of the model, We pro-
ceed with some preliminary results, and in th, 5.9 we obtain one of the main
results of this section: an explicit expression for the optimal strategy and
also for the value function.

In this section x' means the transpose of X, where x is a column vector or

a matrix.

Model 4: the linear system

n, *
5.4 (1) X:=Y:=R ,n €N,
n, «
{ii) D(x) :=a :=R 7, n2€1~1 for all x € X,
{(iii) c(x,a) := x'Rx + a'Sa where R is a nonnegative definite n, x n, -

matrix and 8 a positive definite n, * n,

(iv) p{cx +Ba +y} | x,a,y) =1, x € X, a€ A, y € Y where C is a

-matrix,

n, X no-matrix and B a n, X n,-matrix satisfying the controlla-

bility assumption

n,~1

rank[B,CB,...,C t Bl=n

{v) f v {dy) l ¥i¥y I p(y[e) is bounded on 8 where y; is the i-th com-
ponent of y ¢ ¥, for all i,j € {1,...,n1}.

For q € W we define the vector m and the matrices Mq and Zq:
5.5 (i) mqu.) i= I y;ply,q)Vidy), i € {1,000y .
(i) Mq(i:j) 1= j me(i)me(j)q(de), i,4 € {1,...,n1} .
{iid) Zq(i,j) := { yiyjp(y.q)v(dy}, i,y € {1,...,n1}.

Note that Zq - Mq is the covariance matrix of Y averaged over 6 with q.
By assumption 5.4 (v) mq, Mq and Xq are bounded on W.

In lemma 5.5 we give some properties of mq and Mq.
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Lemma 5.5

For ¢ € W we have

(i) J mTy{q) Wply, V@) =n ), i€ {1,...,111} .
(i) j Yyg (g PV =), L e {1,000m,} .
Proof.

vi8)ply|e)

2D q(a®) viay) =

m'ry(q) (Wply,@ =ply.q) J?i{f {

= H ¥, p@[0)pty[0)v @) }q @) .

Hence
j m, (q)(i)P(Ytq)v(dy)== [{I §19(§|9)V(d§)}q(a3) - mq(i)

and b4
fyjmTy(q) (Lply,)vidy) "”I Yj§ip(§f9)p(y|9)v(d§>v(dy)q(ae) -
= J{J YjP(YIG)V(dy)}.{I §ip(§t9)v(a§)}q(de) = u 9 .

Note that all changes of integration order are allowed by 5.4 (v). N

Lemma 5.6 states that the optimal reward operator U (cf. 5.3{i)) maps the set
of functions £ on X x W of the form given in 5.6 below, into itself. The
‘proof proceeds in a familiar way (cf. [Kushner (1971}, section 9.2.2]).

lLemma 5.6
Let the real-valued function £ on X X W be defined by:

5.6 flx,q) := x'Kx + x‘Lmq + Hlg), =x¢€ X, qeW,

where K is a nonnegative definite matrix, L an arbitrary n, x nl-matrix and

1
H a bounded and measurable function on W. Then:

(Uf) (x,q) == x'Kx + x'fmq + §(q), XeX,qgeW,

where

(k]

5.7 (i) = G, (K) := R+BC'KC ~ B2C'KB (S + BE'KB) 'B'XC .

(ii) L := G, (LK) := 26C'K + BC'L ~ B2C'KB(S + BB'KB) " (2B'K +B'L) .
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(111) Hi@ = G, (@EKD) :=-¥82mé(21<3 +L'B) (5 +88'kB) ! (2B'K +B'Lim_+

+ B B('I'Y @) )ply,q)vidy) +8 trace(KZq) + B trace (I.Mq)

and the minimizing action a(x,q) in {(x,q) is:

1

5.8 a{x,q) = -B (S +BB'KB) lB'KCx - B (S +BB‘KB)-1(B'K+%B'L)mq )

FPurther: K is nonnegative definite and §(.) is bounded and measurable on W.

Proof.
(1) By some straightforward calculations, using lemma 5.5 we get:

(Uf) (x,q) =inf {a' (S +BB'KB)a + (2BX'C'KB + 2Bm'KB +Bm'L'B)a} +
aea 4 4

+ %' (R+BC'KC)x +Sx'(2C‘K+C'L)mq+ BIH(Ty(q))p(y,q)V(dy) +

+ B trace{(KX ) + B trace(IM ) .
g q

Since K is nonnegative definite and S is positive definite we have

S +BB'KB is positive definite and therefore (S +SB‘KB)_1 exists and is
positive definite. Hence by standard arguments for the minimization of
quadratic forms we find 5.7 and 5.8.

(2) We shall prove that K is nonnegative definite again. Note that the va-
lue of K does not depend on L, H or p(y|8), y € ¥, © ¢ 8, Hence, to
prove this, we may assume that H vanishes and that ,f !yiyjlp(yle)\!(dy) =0,
for all 1,3 ¢ {1,...,n1} and © ¢ 8, In that case (Uf)(x,q) = x'Kx, since
Zq, Mq and mq‘ contain only zeros for all ¢ ¢ W. By the definition of
(Uf) (x,q) we have

(Uf) (x,q) =inf {x'Rx+a'Sa+ B J’ {Cx +Ba +y) '"K(Cx +Ba +y)p (y,q) vidy) }
ach
and therefore (Uf) (x,q) 2 0 for all (x,q) € X X W since R, S and K are
nonnegative definite. Hence x'Kx > O for all x € X. It is easy to verify
that X is symmetric. Hence K is nonnegative definite.
(3) Pinally we consider the function q ﬁ(q). Using lemma 1.6 (iii) we have
q - mq(i), q~ Mq(i,j) and g Zq(i,j) are bounded and measurable. So
all terms in 5.7 (iii), except the second one, are bounded and measura-

ble on W. We consider the second temm separately. To show that
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(y.q) * Ty(q) is measurable, it suffices to prove that the set

{tv. | Ty(q) (B) £ ¢} is measurable for B € T and ¢ € R (cf. lemma 1.5).
Hence it suffices to show that (y,q) = T (q) (B) is measurable, B € T,
Note that (y,q) * f p(y!e)q(de) and (y,q) »> pl{y,q) are measurable (cf.
lemma 1,6 (iii)). Hence (y,q) ™ Ty(q)(B) is measurable since

J p(y‘e)q(delfp(y.q)}-l if plve@) > O
B

q(B) if ply.q) =

T B
y(qL( )}

Therefore {y.q) * H(Ty(q)) is also measurable. This proves the measura-
bility of (y,q - [ H(T, (@) P (v, @)V (&)« -

The equation G, (K) = K is called the Ricatti-equation.

Now we shall consider the sequence of successive approximationss

v, (%,@ = (U0)(x,q), X€X q€W.

We define n, x nl-matrices K, and L, and a sequence of bounded measurable
functions H_ on W, for n € N:

5.9 (1)  Kgli,d) == Ly(d,3) =0, i, ¢ {1,...,:11}; Hy(@) =0, geW.

(i) Kn = G1 (Kn-l) ’ Ln = G (L -1 n-l)"

*
H (@) := Gy(q/E _,¢K /L ,)sqeW neN

(Gl' Gz and G3 are defined in 5.7).

It is a direct consequence of lemma 5.6 that

5.10 vn(x,q) = x'Knx + x'anq + Hn(q), newN.,

In lemma 5.7 we prove that Kn and L, converge elementwise to matrices K*
and L* respectively. The proof of Kn + K* can also be found in [Kushner

{1971), section 9.2.3]. In ocur proof we use the same arguments. In lemma
5.8 we show the pointwise convergence of Hn as n tends to infinity.

Lemma 5.7

(i) Kn converges, elementwise, to a nonnegative definite matrix K" satis-
fying the Ricatti~equation (K* = Gl(K*)).
(ii) L converges, elementwise, to a matrix L* satisfying L*==GZ(L*,K*).
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Proof.

Since K, and L, do not depend on the measure V, to study the limit behavioux
we may assune that V is concentrated in a point m € R 1. Hence mq = m for
q € W, and we arxe dealing with a deterministic system. Let us denote the
value function of this system by v and the sequence of successive approxima-
tions by {vn(x),Vn € N} {(note that we omit the dependence on q € W). We
first show that this value function v is finite. Let x = Xq be the starting
state. Note that

n ni-l n,~1

x =C 1x0 + % CkBan —1-k + t Ckm* ’
1 =0 1 k=0

hence

% -Cx-i ckm=2 CkBa

ny k=0 -1 -k
By the controllability assumption 5.4(iv) we can find actions ao,...,an -1
1
such that X, = 0. So there is, for the deterministic linear system, a stra-
1

tegy T such that i, = 0 for k € N*, and such that each cycle from Xn

until x = (0 passes through the same states and actions (k e:N*).

(k+1)n1
Hence the discounted total costs of the system undex ¥ is finite. Since the
one~gstep costs are nonnegative,vn(x) is nondecreasing in n. Note that, by

a simple dynamic programming argument, vn(x) S v{x) for all n € N and x € X.
Hence vn(x) converges if n tends to infinity. Note that, by 5.7(iii) and

the special form of v,

*
s + x! +
vn(x) = X Knx 2'L,m Hn

where H is constant on W (therefore we omit the dependence on g ¢ W).

Since Vi {0) converges, we find that lim Hn exists and is finite. Let m = 0.
frpand
8o we find that lim x'Knx exists for all x € X, since Kn does not depend on
o

the value of m*. It is straightforward to show that this implies that Kn
converges elementwise. Consequently, for arbitrary m*, x‘an* converges for
all x € X. Hence L converges elementwise., As K is nonnegative definite we
have x Kn: 20 For all x € X, hence x 'Kz 2 0 for all x € X. Since K = Kﬁ
we have K = K= and therefore K is nonnegative definite. »
Finally, since (S +BB'K B) 1 converges elementwise to (S +BB'K*B)”! we find

K = G ") ana 1* = G, (L* &%) . 0
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Lemma 5.8

The sequence of functions H , defined in 5.9, converges pointm.se to a
bounded measurable functicn H (on W), such that H {*) = G3( ,H ,K ,L ¥

Proof.
Let
5.1 (a) b (@) := uwzm&(zxna +1'B) (s +6B'K B) (28'K_ +B'L)m_ +
+ B trace(Kan) + B trace (Lnuq} .
it follows from lemma 5.7 that bn(q) converges if n tends to infinity.
Denote:

5.11 (b)) blg) := lim b_(g), g€w.
e n

By definition 5.7 we have ¥, (q) =b (@) + B8 f " (T @ply.q)vidy}, m € W,
Note that f B (‘I' (q))p(y,q)\)(dy) —:E EB (Ql}] Therefore, by th. 5.1 and
the measurability of (y.,q) = Hm(Ty(q)) (cf. the proof of lemma 5.6):

*
(%) B, @) =b () + s:zq{am(gkﬂ) IY1"““~"1<]' kKeNR ,meN .

Hence we have

Hyey@ = b (@ +BE[b (@) +BE R _ (@) | v,1]=
= b (@ +6E[n,  ©)] + Szzqtnn L @7 .
And by iteration, using (#*) we find:
- n+
(xx) B @ = ) B [b, (0] + 6" (Ry(Q ] .

4=0

The last term vanishes since, by definition, By = 0. Since Kn and L, are
bounded in n (elementwise; see the proof of lemma 5.7), and since q * mq,
q -~ Mq and q > Eq are bounded functions (elementwise), we have {cf. 5.11)
the boundedness of (n,g) * bn(q). Hence, for all € > 0 there is a Ne el
such that:

gﬂ BYE (b (07 <

By the dominated convergence theorem, for fixed & we now have:
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lim E

b (9,01 =%E [b(g,)] .
e 9D 2t 4 q b2

Hence, using (*%) we find:

% o0
5.12 H'(q) = Un H (@ = )} B% [b)] .
. e n k=0 a k

Since b is bounded, oy is also bounded. The measurability of B* is immedia-
te. Finally, note that 5.12 and the Markov property of the process {Qn,nslﬂ
{cf. th. 5.1) imply:

* v v p
H" (@) =b(q) +6 kzo 8% [o(0,, )1 =b(@) +enq£kzoskzq[b(9kﬂ)|91]]=

= bl@ +EE[ ] 8%

[b(,)11=b(q) +BE [h(Q,)] .
k=0 9 K a1t

*
Hence H (q) = Gs(q,H*.K*pL*)- o

The next theorem is one of the main results of this section. It is an imme-
diate consequence of the foregoing lemmas and a well-known argument for ne-
gative dynamic programming {(cf. [Strauch (1966)]).

Theorem 5.9
{i) The value function satisfies

vix,q) = x'K'x + x'L*mq + H*(q) .

{ii) In state (x,q) the optimal strategy chooses the action:

1

alx,q) =-B(s +8B'K'B) "'8'K*cx - B(s +83'x*B) " (&'x” +3:B’L*}mq

{where K* and L* are defined in lemma 5.7 and H*(°) in 5.12).

Proof.
From the lemmas 5.6, 5.7 and 5.8 it follows that

v, (%,q) := lim v_{x,q) = *'K'x + x'L¥m_ + H*(q), Xe¢X geW
n—mn a

and also that, for x € X, g € W:

.
il
(%) v {x.q) = (Uv ) (x,q) = c{x,alx,q)) + BEx,q[Vm(xz'Q1” '
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where ™ is the strategy that chooses in (x,q) action a(x,q) {defined above) .
Since the process {(x Q)e n € N} is a Markov chain under T we find by
iteration of (*):
TT*
(*r) v, e =K, [ 2 8% (x_,a(x ,0 )] + s“z e (a1
9 =0

Note that according to a simple dynamic programming argument vn(x,q)fév(x,q)

for all n € N, since ¢ is a nonnegative function. Hence

*
Vi) 2 v, (x,Q 2 E, . 2 B (X ,a (X Q)12 v(x,q) .
n~0

Here the second inequality follows from (**) since v, (x.q) 2 0,
(%,q) € X x W, 0

The following theorem provides a bound for the extra costs we incur due to
lack of information about the parameter value 9 ¢ 6,

Theorem 5,10

0 £ vix,q) - f vix,0)q(dg) < T-—i—g{b(q) -! b(®)q(da®)}, (x,q) €X*W

{where b is defined in 5.11 (b)}.

Proof.

By th. 3.16 we have v(x,q) 2 f v{x,6)q(d8). (Remember that we are minimizing
here.} Note that, by th. 5.9:

o
vix,8) = x'K'x + x'L*me + § 8™pe)
n=0

since all posterior distributions are concentrated in 8, if the prior dig-

* *
tribution is concentrated in 6 ¢ 8, Since [ q(d8)x'L my, = x'L m, we
have

(*) vix,q) - J v{x,8)q(dd) = 2 S {b(Q Yl - f b(6)q(@d)} .
n=0

Note that b(g), satisfies 5.11 {(a), with K, and I, replaced by K and L*,
respectively. Note that the matrix E, defined by

s= (252 + L'B) (8 + BB'K"B) "t (2B'k* + B'LY) ,
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*
is positive definite, since {S+BB'K B) is, Therefore E can be written as
E = J'AJ, where J is an orthogonal matrix and 4 is a diagonal matrix with
positive entries ?&1,...,?\11 on the diagonal.

Hence 1

:3

n

A 1 E 3

n—i

m (9932 .

llM

i j

and, by Schwarz's inequality, we find

n l'l.

Eln Ba 12 } {ECZJm(J)]}z.
T4 % i "1 j=1 139

since m, (j) f Q_(d9)mg (3) we have

oy !
E ) 3, (3)] Toa.m (9) .
T 3=1 g1 1
Hence we have
n1 n
EfnEn 12 [ A L] g LS (912 = n'En_ .
q Qn Qn i=1 3-1 9 q
Note that
* nl n1 *
trace(L M) = ) § L (i,9) j mg (1)mg (3)q (40)
q
i=1 j=1
and
1’11 n
trace(K*Z ) = z E K*(i,j) J {J ¥iY p(y|6)v(dy)}q(de) .
T s g= 3

Hence we find:

» Eq[trace (L*Mgn) 1 =trace (L*Mq} and :Eq[trace (K*E Qn) ] =trace (K*Eq) .

8o we have

E[5@)] < b -

This proves the theorem. 0

Remarks.

(1) The linear system with (known) transition law given by

“~

P(D|x,a) = J ply,q)v{dy), DeX
{cx+Ba+yeD}
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and the same cost structure as in model 4 has the value function Gq(')
defined by:

~ I oy % b(g)

vth) t XKx+meq+1-B'
Hence, by th. 5.10, we have

f v{x,0)q(dl) < vix,q) < Vq(x) .

{ii) The optimal strategy we found in th. 5.9 is a Bayesian equivalent rule
(cf. 4.4), since the action in state {x,q) € X x W is the minimizer
of the function (cf. the proof of lemma 5,6)

a > f g(asy{a’ (s +8B'K"B)a + (28x'C'K'B +2Bmé1<*a + BméL*'B)a} .

(iii) since mq(i) = f me(i}q(de), mq(i) is the Bayes estimate of me(i} when
g is the prior distribution. Hence the optimal strategy we found in
th. 5.9 can alsc be formulated as: at each moment use the Bayes esti-
mate for my in the formula for the optimal action ingtead of Wy, which
should be used 1f © were known. In the linear system with known tran=-
sition lew, i.e. with 8 = {8}, it turns out that the optimal strategy
is the same as if v is concentrated at g+ In that situation we are
dealing with a deterministic system. This property, which we used in
the proof of lemma 5.7, is called the certainty equivalent principle
(cf. [Bertsekas (1976)]). We showed that in each state (x,q) we may

act as if v is concentrated on mq.

5.3 A simple inventfory contrnol model

In this section we consider an inventory control model which is closely re-
lated to the model described in example 5.2: the main difference is that
D{x) # A for all x ¢ X. Further we shall specify here the functions b, ¢
and G of the example. The model we shall deal with is extensively studied
by several authors: [Scarf (1959)1, [Iglehart (1964)], [Rieder (1972)],
[Zacks and Fennel (1973)] and[Waldmann (1976} }. Except for Zacks and Fennel
all these authors prove structural properties of the optimal strategy undex
various conditions. Only Zacks and Fennel considered an easy-to-handle sub=
optimal strategy and they studied its behaviour using Monte Carlo methods.
We also study a suboptimal strategy, namely a Bayesian equivalent rule, and
we give bounds on the difference of its Bayesian total discounted return
and the optimal value. Further we consider conditions under which this stra-
tegy is optimal. We start with a sketch of the model.
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Model 5A: inventory control model

5.13 (4) X = A := (-w,M], M > 0 is called the capacity.
(i) D(x) := [x,M], a is the ‘nventory after ordering.
(i1i) p({a-y} | %,a,y) = 1, y represents the demond .
{iv) Y:=‘{yen|y20}.
(v)  clx,a) := hx' + px  + k{a - x) where h is the koﬁding eost, p
‘the penalty cost for shortage and k the productioncost; h,p,k(> o
and k < B(k+p).

(It is easy to verify that, if k 2 B (k +p)} never ordering is optimal.)
We shall compare this model with model 5B.
Model 5B.

5.14 D(x) := [0,M] .

Further all specifications as in 5.13.

It is easy to verify that all assumptions of example 5.2 are fulfilled. The
optimal action in (x,q) for model 5B is the minimizer in [0,M] of:

5.15 a~+ (ka+8 } {hta-n " + pla-y) - kla-y)lply.q)viay)}l .

We shall determine the minimizer. The term between braces equals

5.16 {k-B(p+k) }a+mq8(p+k) +B8(h+p) J- (a-y)ply,q)vicy)
[0:&]

where

5.17 m, = J yply ) vidy) .

It is easy to verify that

f(a) := f (a-ylply.g}vidy) = Jdu{ f ply.g)vigy)t .
[0,a] 0 [o,ul

Hence the function f is continuous and £(s{a+b)) < %{f(a) + £(b)}. There~

fore £ is convex., So 5.16 has a minimum in

~ B ' B
5.18 (a) S(g) := infla e R | J' ply.qvidy) = —S 5 1.
[0,&]
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According to 5.13 (v} there always is minimum of 5.16. Note that q = Q) .,
q € W is measurable.
Congequently

5.18 (b} s{q) := min{M,5(Q)}, qe W

is a minimizer of 5.16 in the set [0,M].

It is well known that for the inventory control model 5A with known parame-~

ter value 6, the strategy:

"order upto level s(8) each pertod or wait if the imventory i{s larger than s(8)”
is optimal (cf. [Iglehart (1964)]).

To define a Bayesian equivalent rule for model 5a, define the function P by:

F(x,0,a) := ka + B f {h(awy)"' +pla~-y)” - k(a-y)iply|8)viay) .

Hence, in state (x,q) € X X W this Bayesian eguivalent rule chooses a mini-
mizer of a + f q{d8)F(x,8,a) on the set [x,M]:

5.18 (¢} the Bayesian equivalent rule chooses the acticn a(x,q),

a(x,q) = max{z,s{g)} in state (x,qg) € X X W.
We proceed with a definition:

5.19 Let v be the value function of model 5A, w the value function of model
5B and let ¥ be the Bayesian discounted total costs under the Bayesian
equivalent rule defined in 5.18 (c).

Note that the Bayesian equivalent rule 5.18 (c¢) defines a Bayesian stationa-
ry strategy for model 53 and also for model 5B. Note also that the Bayesian
discounted total costs for both models is the same under this strategy, name-~
ly 9{x,q), 1f {x,q) € X x W is the starting state.

There is an optimal strategy for model 5& of the form "choose the action
max{x,t(q)} ¢n state (x,q)", where t :W -+ 2 is a measurable function such that:

5.20 t{g) is a minimizer of
a—>ka+ B Jv(a—y,Ty{q))P(YrQ)v(dy)}

on the set [0,M].

This is proved in [Rieder (1972), th. 7.2 and th. 7.3] under the additional
assumption that & - ng is bounded. For practical purposes this result is

only interesting if the value function v is known. Lemma 5.1! shows that
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tl{q) £ siq) for g € W, which is intuitively clear, since if it is not al-
lowed to reduce the inventory, you will order more carefully.

Lemma 5,11

Let t: W - A be measurable such that t(q) satisfies 5,20 for ¢ ¢ W. Then
s(q) 2 ti{g), for g € W.

Proof.
Define
£0x,@) = v(x,q) - {hx" + px” - kx}, (x,Q) e X x W .

From the optimality equation, v = Uv, for model 5a it follows that

(%) £(x,q) = inf {ka + 8 I via-y,T_(Q)ply, vy} .
x<asM ¥

Hence x > £{x,q) is nondecreasing for all g € W. By (*) we have:

(%} £(x,q) = inf [ka+8 j{h(a~y)*+9(a-y)' ~kla-y)Iply,q)vidy) +
x<asM

+ BJf(a-y,‘l‘y(q))p(y.q)v(dy)] .
Remember that the function (¢f. 5.15)
a>ka+ 8 f {h(a'-y)+ + pla~-y) =~ kia=-y)lply,q)vidy)

is convex.and attains a minimum in [0,M] (cf. 5.18 (a)).
The last term of (**) is a nondecreasing function of a, since x » £{x,q)

is nondecreasing, for all g ¢ W. Hence & minimizer t{g) of
a+ka+ B J V(a-y;’I‘Y(q))p(y.q)“(dy)

in the set a ¢ [0,M] must satisfy t(q) € s{g), q ¢ W. 0

In th. 5.12 we give bounds for the difference ¥ -w (cf. 5.19). This diffe-
rence is an upper bound for ¢ -v, the loss due to controlling the system
with the Bayesian equivalent rule. The bounds are derived by comparing two
strategies for model 5B. We compare the optimal strategy for this model,
where En = s(Qn) for all n € N, with the strategy where An = max{x,s(Qn)}.
the Bayesian equivalent rule defined in 5.18 (¢). Note that the production
costs at time n for these two strategies, differ if s(Q ,) - Y - s(Q) > 0.
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Theorem 5.12

The functions v, w and ¢ defined in 5.19, satisfy the following inequali~

ties:
163 wix,q) 5 vix,q) S ¥(x,q), (x,9) € X* W .
(ii) ¢x,qQ) ~wix,q) < («f—t_g_?- h+k){(x-s@n™ +
+ n%; S%q[{sign_l) -y - s}k .
Proof.

{1)

{ii)

{*)

{wx)

Note that for model 5B the lower bound for the action space is not es-
gential, since E(q) > 0 (see 5.18 (a)). Hence it is obvious that
wix,q) £ v(X,q). The right-hand side of the inequality is trivial.
Let X denote the inventory at time n when the action at time n

A = max{s(Qn) ,xn} is 2sed, and §n the inventory if gn 1= s(Qn) is
used. Further let Xy = Xy = X. Since X A - ¥ and

n+l ~ “n T Tn#t
"~

xn-l-l = An - Yn+1 it is easily verified that: xn < xn, n € ¥, Let

Sn s= s(Qn) ; n € M, and consider the difference in immediate costs at

time n:
rx! ~-%) +p-%) - k(X -X) + k(max{x_,5 } ~5) s
n “n n “n n “n n'"n n
S h(x -X) + k(max{xn-sn,o} - X +X), neN,
since X; 4 '}‘{’; for n €« N. We consider the term with coefficient k first,
We establish:
~ + *
kmax{x -s_,0} - X +X ) Sk(S _,-S -¥),neN .
To prove (**), let X > S . Then (xx) holds, since ¥ =5 , - ¥ .

And if X £ S, we get max{xn-sn,ﬁ} - X +X <0, and so (**) holds.
¥or n = 0 we have

k(max{xowso,c} - X

~ +
o ¥ xo) =k{x -~ s(q)) .

Hence 1f h = Qs

Flx,q) - wix,q) < kitx-s@) T+ § 8%

o+
L of (Spet =Sy~ ¥ 1.
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For h > 0 we consider h(xn -?in) s €N,
Note that XO = %0 = x and

maxix,s(q)} - ¥, ~ s(g) + v, =1{x -~ st .

17 % 1

We shall prove

+ *
(Br%) xn-x S{x--s(q)} +k§1{s 1-Yk-sk},ne1q

{an empty sum vanishes).
We already verified (***) for n = 1. Assume it holds for n. Consider:

~ +
et~ Xne1 = max{xn,sn} T Ynet T Sp t Y T K-8
By the induction hypothesis:
xsx +{x-s(q)}++2{s 1 - Y sk}+=
k=1
+ +
= {x - s(@}" + X {8, -y -5t +s _, ~-¥ .
k=1
Hence
4
x, -s) < {x - s}t + 2 s, -y -5,
. k=1
which proves (**x),
Now we add the upperbounds for the differences in holding costs:
h): B"x—x)Sh——?(x-s(q)} +h}fs X y—s}

ne=l n=1 k=1

o

—hs—{x'—s(q)} +h z £s -Yk-sk}+ ) 8% =
k=1 ne=k+1

—l%{x s(q)}+ B z Sk{s -Yk—sk}+

which accounts for the term with h in the right-hand side of (ii). 0
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Corollary 5.13

If for all q € W:

5.21 I ply,V(dy) = 1
‘whwrﬁa%mn}

then, for x S s{q), we have v{x,q) = w(x,q) and therefore the Bayesian
equivalent rule (defined in 5.18 (c¢)) is optimal.

Example 5.3

We define (cf. 5.18 (a)):

Spin T égg $(8), Spax = g:g B(8) and § := Spax ~ Smin
Since 1-8
p-—g—h
plylO)viay 2 —p—2 f ply|8)vdy)
Cors ] [0rs )

for all © ¢ 8, we have

=
mn.n

s8(@ ss,, forallgew.
Note that s{q) = min{s(g),M} for g ¢ W, Further note that
5.22 {minG(Q )M -minG o) M -¥ } s (Blg, ) - S - v 1.

Eence

EqE{S(Qn—l) -slQ) - Yn}+] s:EqL' j p(y.Qn__l)‘-*(dy)] =
[

[0' ]
= [ ply.q)vidy) .
[0,8]
Therefore we have by th. 5.12
F{x,q) - wix,q) 5{1 EB h+k}{(x—s(q})++-i—§—g- J ply.q)vign) } .

fo,8]

Hence, if x S si{q) and f ply|8)v(ay) =0 for all © ¢ 8, then the Bayes-
[0,8
ian eguivalent rule is optimal.
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Remarks.

(i} The statement of corollary 5.13 is not new. In [Veinott (1965), sec-
tion 6] a similar condition is considered for a multi-product inven-
tory model with dependent demand, to prove an analogous statement.
In [Rieder (1972)] Veinott's result has been translated to the Bayes-
ian inventory model. However, the inequality of th. 5.12 (ii) seems
to be new.

{ii)} For the problem with known parameter, i.e. when g ¢ W is degenerate
at 6 ¢ 8, all posterior distributions are degenerate at 8 and there—
fore 5.21 holds, So we actually proved the optimality of the rule:
Yorder up to level s{8) at each stage" for this situation. .

(iil) Condition for lemma 5.13 can be weakened by requiring 5.21 only for
all possible posterior distributicns of a given g € W.

(iv) In [van Hee (1976)] a different proof of th. 5.12 is given.

We conclude this section with an extensive study of the behaviour of the
Bayesian equivalent rule (5.18 (c¢)) for the inventory model with exponen-
tially distributed demand, where we assume the parameter of the demand dis~
tribution to have a gamma prior distribution. We shall compute the bound
given in th. 5.12 (ii).

We also consider an upper bound for the relative error if we use the Bayes-~
ian equivalent rule {5.18 (¢)) instead of an optimal rule. This relative
error is defined by:

5.23 {\T(O;q) - V(O;q) }/V(OcQ) -

Remember that model 5B satisfies all assumptions of example 5.2, and note
that we are minimizing now.

Hence (cf. example 5.2) we have

w(0,q) 2 T f Q@)% (8)
where
5.24 S(8) := min [ka +8 J {h(a—y)*&p(a—y}-—k(a-y)}P(Y‘e)\;(dy)]‘
ash

Note that v{0,q) 2 w(0,q). Therefore we have the following upper bound for
5.23 (cf. th. 5.12 (ii)):
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B bt +

(-I—:-é- h +k) 21 S%q[{S(Qn__i) - Yn - S(Qn)} ]

5.25 5(8,k,h,p,q) := B .
— J q(a8)3 ()

We first give, in lemma 5.14, conditions guaranteeing that lim g(Qn)==§(z)
Pq-a.s. Under these conditions we have, by 5.22 e
5.26 lim A(B,X,0,p.,q) = O

g41

since

o0 - ~ +
éi? (1 s)nzi BQEq[{s<gn-1) Y -8} 1=

~ ~ + -
= lim Eq[{s(anl) -y - s(Qn)} l1=0.

fswacd

Hence the relative error (¢f. 5.23) tends to zZero in this case.

Lemma 5.14

Let for all 6 ¢ 8, the function a + | ply|6)v(dy) be continuous and
[0,a]
{strictly) increasing in a neighbourhood (5(6) -6,5(0) +6} for § > 0 (cf.

5.18 (a). Then

lim S(Q ) = 3(2) , P _~a.s. for all g e W .
oy n q

Proof.

Define for ¢ €« W and a € R, Fq(a) 1= f ply.q)v(dy). Note that
fo,al
Fq(a) = f Fe{a)q(de). Since a * Fg(a) is continuous for all 8 ¢ 8 the func~

tion a Fq(a) is continuous for all g € W.
According to th. 2.4 we have for each function 8 * Fy(a) a set @ ¢ H such
that Pq[ﬂa} = 1 and

(%) limFP_(a) = F_(a) on §_ .
o Qn 4 a
Let R be the set of rational numbers in R. Define Q* = N Qa. Note that
., AaE€R
P I0"] = 1. Let 4 := (p - 2 h e+ w7l Then r S(2) = 1.

8
Fix & € 0.
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Fix ai,a2 € R such that a, < g{zZ(wy} < a, and a, = a, < 8. Then

Fow @1) <4 <Fg @2 -

Hence
lin F (a,) €2<1lim F a,) -
nie Qn(m) t e Qn(w) 2

Therefore we have, for n sufficiently large

a, s s(Qn(w)) < a2 .

Hence . '
1im s(o (W) = s(Z{w)) . O
pe %

Example 5.4 Expomential demand, gamma prior distribution

In this example we consider the inventory control model (model 57), with
an exponential demand distribution and a gamma distribution for the unknown
parameter of the demand distribution.

Let ply|8) := 6e™Y, v := 8 := [0,%) and let q = I (A,N), where

N-1
I'(A,N) (B) := J"(‘ﬁgjp‘lNe_keae '
B

for a Borel subset B of R. It is easy to verify that

N : A N
ply.q) = ] and j ply,q)dy =1 - {m) .
(A +y) 0
Let
5.27 ¢ = (p+h)ln+ (1 -8y8 k)7L

Then the minimizer a* of 5.15 is a* = A(ci/M-1). So we have here

5.28 3@ =r2cN-1) forg=TO,N .

Further we consider the posterior distribution Ty(q). It is straightforw
ward to verify that

5.29 Ty(q) =T{A+y,N+1)} if g = T'(A,N) .

Therefore the posterior distribution after n observations is

n
5.30 Q@ =T+ ) ¥

s N+n} .
n i=1 i
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Hence, using 5.28 we find:

1 1 1
n B S S .
~ ~ N+n N4+n+l N+n+1
5,31 () -8tQ ) ~¥ ,, = (A4 ) Y He - Y-y e .

i=1

For a fixed 8 € 8 we compute, for positive constants a and b:

5.32 e [{a f ¥, +b-Y }+] =30 4y L, __ﬁ:if__
i 8 i=1 i n+l L] [} e(a+1)n

(remember here that, given €, Y, is exponentially distributed and § Y
is T (8,n)-distributed). =t
Now we integrate both texms in 5.32 over 8, with respect to the I (A,N)~dis-
tribution:

i

X A 1 1 AN

+b- +
@+ -1 O +p)¥ 1

n
5.33 E [a Y ¥

+
+b~Y ,} l=an
i=1 n+i

i N-% N-1

Finally we substitute for a and b the appropriate values {cf. 5.31). Hence

~ ~ 4
5.34 Eq[{s(Qn) -850, - Yn+1} 1=
1 1 2(n + N) -1
-z i i((n-?N-—i)cN+n - (n-fN)cN+n+1 + c(n+N)(n+N+1)} .
According to 5.22 we have
+ ~ ~ +
5.35 Eq[{s(Qn) -8(Q ) -Yn+1} 3an[{s(gn) -5(Q ) -Ynﬂ} ]

with equality if M = © (M is the capacity cf. 5.13).

Note that the minimum in 5.24 is nonincreasing if M tends to infinity.
Hence A{B,k,h,p,q) is nondecreasing if M tends to infinity. Therefore we
shall assume M = =,

It is easy to verify that:

5.36 2(0) ={k(1 -8) -sp}l°‘g °+B(Pe+k) +B(Pe'*'h){-};+1og c-1} .

Integration with respect to g = I'(},N) yields:
~ p B(p+h)
5.37 €(6)q(a0) zm{k(l -B)log ¢ +—F=—=+Bh(log c-1) +B8x} .

Finally A(8,k,h,p,q) is determined by 5.34 and 5.36.
In the table below we display A(B,k,h,p,l'(1,N)) for various parameter va-
lues. We also display the upperbound of th. 5.12 (ii):



5.38

Remember that M =

B(Bpkah;p:q) =1

B -
T htk} ] 6k

n=1

® and A = 1 in the table.
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; +
L5, ) -y, ~s@) ],

g =T(1,N) .

8 x B p N| e B(8,k,h,p,0(1,N))  A(B,k,h,p,T(1,N)) in%
0.90 10 0 5 1.8 2.22 8
0.90 10 © 15 1.8 0.33
0.90 10 0 10 9 10.39 34
0.90 10 2 10 3.8 15.89 46
0.90 10 2 10 15 3.8 2.21 22
0.95 10 0 1 1.9 3.79
0,95 10 2 1 5 1.2 4.61 9
0.95 10 2 5 15 2.8 4.76 26
0.95 100 2 10 5 1.6 40.29
0.95 100 2 10 15 1.6 6.56
0,99 10 0 1 5 9.9 31.85 12
0,99 10 0 10 15| 99.0 12.54 16
0.99. 10 2 5 15 3.3 60.28 67
0.99 100 1 1.4 95.22 4
0.99 100 1 5 S 2.9 274.41 10
0.999 10 0 5| 99.9 130.83 5
0.999 10 2 199.8 157.38
0.999 10 5| 499.5 196.55
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6. Approximations

In this chapter we give several approximations to the value function of the
Bayesian control model (cf. 2.12). Special attention is paid to the situa-
tion where there is only one unknown parameter, i.e. where ei iz a single~
ton for all indices i € I except one. In section 6.1 we consider upper and
lower bounds on the value function and their use in successive approxima-’
tions. These approximations are computable when X, Y, A and 8 are finite.
In chapter 7 we shall consider algorithms based on these approximations.

In section 6.1 we also give a lower bound on the Bayesian discounted total
return when a certain Bayesian equivalent rule is used and we also consider
another easy-to-handle Bayesian Markov policy. Since in practlce the set 8
is geldom finite, we study the consequences of approximating of 8 by a fi-
nite subset in section 6.2. Throughout this chapter we assume that r is
bounded and I finite.

6.1 Bounds on the value function and successive approximations

The bounds we consider require the knowledge of the value function of the
dynamic progrem with known parameter value § for all ® ¢ 8 and of the ex-
pected discounted total return under several stationary strategies, alsc

for all 6 ¢ 8. First we introduce some notations:

6.1 (i) ; is the set of Bayesian Markov policies (cf. 3.10}.
{(ii) F is the set of Markov policies (¢f. 3.9 and note that F ¢ F).

We identify each Bayesian Markov policy with the Bayesian stationary stra-
tegy which is determined by it (hence we write v(x,q,f), £ ¢ F). An impor-
tant role is played by a subset F of F satisfying:
6.2 inf sup {v(x,8) - v(x,8,£)} = 0 for all 6 ¢ 8 .

feF xeX
We shall assume that such a set F is given and that v(x,6,f) is known for
all x € X, 9 ¢ 8@ and £ ¢ F. Note that, if there exists for all 0 ¢« 8 a
£
ranmeter value 6, then the set {fe, 6 ¢ 8} satisfies 6.2.

€ P that is optimal for all x ¢ X for the dynamic program with known pa-

For each f ¢ F we define the (non-linear) operator L. on the set of bounded

measurable functions b on X X W as follows:
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6.3 (i) (Lfb} {x,q) := 2 1K (x,£{x,q)) Jv(dy)pi(y,q){r(x,f(x,q) :y) +
iel 1

+8 J Pldx'|x, £ (x,q) b, Ty (@t .
Y

*
(ii) Lg is the n~th iterate of Ly n €N and Lgb = b
Note that sup Lfb’= Ub for each bounded measurable function b on X * W (cf.
£

the remark following 3.10). We further note that, for £ ¢ ;

1im (L’f‘h) (x,q) = v{x,q,f) .
n—m

Although this is easily proved directly, it is an immediate consequence of
th., 3.14 (1ii) if we consider the model with D{(x,q) = {f(x,q)}, x,q € Xx W,
For £ ¢ Fand 8 ¢ 6 6.3 (i) reduces to

(Lgb) (x,8) = ) 1K (z,£(x)) Jv(dykpi(yiei){r(x,f(X) ¥+
i€l i

+B [ P{dx" |x,f(x) ,y)b(x' ,9)}

which is the usual return operator for the discounted dynamic program with
known transition law (cf. [Blackwell (1965)1).

Oon X ¥ W we define two functions:
6.4 (i) wix,q) = f q(ad)yvix,8) .

{ii) L(x,q) := sup J g(ad)v(x,8,£) .
feF

Note that % depends on the choice of the subset F of F. Further we define
forn e N, 8 ¢ 6 and £ € F:

6.5 9,(8,8) := sup {v(x,8) - (L{E’v) (x,6)}
x

9, (8,£) = sup {vix,0) - vix,0,8)} .
x

Note that, if X is finite, lim wn(e,f) = ¢ _(9,f) since
n'w

lim (L?v) (x,8) = v(x,0,£) .

nre



Thecrem 6.1

For x € X, g€ W,weHandneﬁ*wehave:

(1) Li{x,q) S vix,q) S wix,q).
(i1) wix,@) - 2 (x,g) € —— ingf q(d@)e (®,8) .
1-§" feF
T 1
]
{iii) E"'q{1-s“ .ngj Q, (@) ( 5]

is nonincreasing in n and if

¥ [n n {1l,;m <=}]=1

X9 e new®

then it tends to zero.

Proof.

In th. 3.16 we proved vi{x,q) < w(x,q). Purther we have

2 (x,q) = sup f q{a®)vix,8,£f) = sup vix,q,£) $ vix,q) .
£€F £eF

*
We proceed with assertion (il). Note that for N ¢ N

) v(x8) = v, = I (e w0 - @ w0,
k=0
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since lim {folv) (%,8) = v{%,8,£f). For bounded measurable functions b and ¢

ne
on X x 8 we £ind in a familiar way (cf. [Denardo (1967), th. 1]}

sup {chb) (x,8) = (Le) (x,0)} £ B sup {bix,8) - cix,8)}
X X

and therefore

(k+1)N

sup {0 (x,0) - (L ) (x,0)} s 8Nsup {vix,8) - (Lgv) {x,8)}.

x £ £ X

Congequently, using (%), we find:

1

1=V

(%) vi{x,8) - v(x,9,f) <

QN(G,f) .

Note that, for N = « (**x) also holds.
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By 6.4 we have

wix,q} - &(x,q) < inf J q(a8) {v(x,8) - v(x,0,£)}
feF

and so, using (**) we find the desired result.

We proceed with assertion (iii).

T w
E_ [inf J Q (@8)e (6,£) |F__,1sinfE [I Q (a8)e (8,6) |F_  I=
Tx,q feF n N n~1 feF X n N n-1
U
inf f Qn_i(de)Q)N(e,f), Px’q-a.s. {c¢f. th. 2.1) .
fe¥
Hence the sequence {inf f Q, (@), (6,5) | n e N} is a super martingale,
feF
which establishes the first part of (iil) and the existence of
lim inf f Qn(de)@Nfe L) .
e fefF
Assume that T{i,n) < » for all n € N* and i ¢ I, ]Pl q—a.s.
1
FProm (xx) it follows that Py (¢,£) 2 0 and from corollary 2.5 that
T
lim J Qn(de)tPN(ﬁ (£} = @N(Z,f) ' Px'q-a.s.
0
Hence we have P“ —3.S.3
X.q
0<lim inf [ Qn(ae)cpN(e,f) S$inf lim J Qn(aewmge,ﬂ =inf tPN(z,f).

n>® f¢F feF n¥* feF
Note that:

v(x,8) = (Lv) (x,8) = {Llév) (x,0) 2 v{x,8,f), xeX, 68 and £cF.
Hence:

0<inf @N(G,f) s inf sup {v(x,8) - v(x,8,£)} = 0 (cf. 6.2) .
fepP feF X

Therefore we have

T
lim inf J Q (d6)e, .(68,f) =0, P =
e £eF n N ¥iq

8ince (8,f) - qJN(e,f) is bounded, the dominated convergence theorem yields
the desired result. 0
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Remark.

The bound given in th. 6.1 (ii}) has significance only, if either @N(G,f) it~
self, or an approximation of it, is known for 6 ¢ 8 and f ¢ F,
If v(x,0) iz computed for all x € X and 8 € 8, and if optimal Markov poli~-

ciegs £, ¢ F, ® ¢ 8 are deterﬁined, then it requires morxe work to compute

3]
v(x,e',fe) than to compute (Lf v} {x,8') for x € X, 8,0 ¢ 8. However,
6 ,

sup {v(x,8) -v(x,0,£)} sl—i-g sup {vi(x,8) - (Lfv) (x,8)1
X X

{(cf. (**) in the proof of th. 6.1}). So for more work we get a better bound.
In th. 6.2 we consider succesgive approximations of the value function.

Theorem 6.2
For x € X, g € W
) W (x.qQ) < viz,g < @ (x,q) .

(ii) (Unw)(x,q) is nonincreasing and (Unz)(x,q) is nondecreasing in n.

Proof.

part (i) is a direct consequence of th. 6.1 (i) since U is monotone. To

prove part (ii) it suffices to show Uw < w and Uf 2 %. Using
Py YTy (@) (38) = py (v[6,)q(a®)

and 6.4 {1} we find

(uw) (x,q) = sup j q{de) z 1K (%x,2) J v(dy)pi(ylei}{r(x,a,y) +
aeb(x)

ieI i
+8 f P(ax'|x,a,y)vix',0)} SJ q(a8)vi{x,8) =wix,q)

where the inequality follows from exchanging sup and f q(da8), and the op-
aeD(x)
timality equation of the dynamic program with known parameter value, i.e.

vi{x,8) = (Uv)(x,0). Using

v(x‘,Ti'y(q),f) = J Ti’y{q)(de)v(x',e,f)

we find
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(0R) (x,q) = sup Z 1K (x,a) [ V(dy)pi(y,q){r(x,a,y) +
aeD(x) iel i

+ B j P(ax'|x,a,y)sup v(x',T, (q),6)} 2

feF iy

> sup sup fq(de} Z 1, (x,2) jv(dy)pi(ylei){r(x,a,y) +
feF acD(x) jex i

+ 8 J- P(ax'|x,a,yIvix',0,6)} = sup v{x,q,f) = 2(x,q) . 0
feF

In th. 6.3 we consider for each € > 0 a Bayesian stationary strategy, which
is easy to handle, and which is (nearly) as good as all stationary strate-
gles in F. Moreover the strategy processes new information concerning the
unknown parameter in the following sence. If, under the strategy f,

T(i,n) < =, :Piq-—a.s. for all 1 ¢ I and n ¢ N*, then we have

limsup:E [v(x Q )y - v(x Qn.f)] < B .
n+eo
Theorem 6.3
Fix £ > 0 and let f be a Bayesian Markov policy such that for (x,q) € X X W

(Lfﬁ} (x,q) 2 (U {x,g) - ¢ .

Then
vix,q,f) = 2(x,q) -3 _e_ g
and i.f:l? [ n Ltlim) < «}] =1, then
X9 gy néN
limsupES [{v(X ,0) - v(X_,0 ,£)}] S seimm .
oo %04 n'*n n'*n’ 1 -8
Proof.

Let 1 be the function on X X W which is identically equal to one. By the
proof of th. 6.2 (ii):

LfzUt-elzt-el.

Assume: L0Z 2 & - e(l—"-@ﬁn. Then:
£ 1-8

n+l
B

n+1

1
8)}1=!L—e{1 3.

n
L2 Lgt - 58{; _88)1 28 -efl + s(i
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Hence, 1f we let n tend to infinity, we get:

vi,g£) = lin (L) (6,0 2 L06,q) = 7= -
n*e

This proves the first statement,
The second statement is a consequence of th., 6.1 (iii), since
V(anQn) - V(xnranf) < W(xniQn) - 2(anQn) +

€

+ To3

< inf f Q,(d9)0, (8,5 +

[
1-8 feF

For the Bayesian equivalent rule considered in section 4.1 {cf. 4.3a) we
give in th. 6.4 a lower bound on its Bayesian discounted total return,
Hence we consider in th. 6.4 a Bayesian Markov policy such that

J ¢ (ae) z 1K (x,a) f v(dy)pi(ylei){rtx,a,y) +
ieX i

+ R J plax'|x,a,y)vix',0)}

is maximized within an £-~bound.
The strategy is "adaptive" in the same sence as the strategy in th. 6.3.

Theorem 6.4
Let ¢ » 0 and let f be a Bayesian Markov policy such that, for (x,g) eXxW:
(wa) (x,Q) 2 (Uw) (x,q}) - € .

Then £ is a Bayesian equivalent rule as considered above, and

vix,q.f) 2 wix,q) - -—1—-—{inf g{dé)e (8,5) + &} .
1 -8 FeF 1

IfPf: Lo n {t@,m <=}] =1, then
9 eI neN
‘ €
li:ffpnx,q[{v(xn'Qn) - V(Xn:Qnif)}] < T8

Proof.
To verify that £ is a Bayesian equivalent rule as considered above note that

(wa) (x,9) =J g (ao) Z 1K (x,a) J v(dy)pi(yfei){r(x,a:y) +
iel i
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+ B J P(dx'l x,a,7)v(x' 9)} .

We have }Pf ~2eS.
X.q

~ £
(wa) (xn'Qn) = TX QA + BEx,q[w(Xnﬂ'Qn-i-l) I Kn'Qn]

(c£. 3.1(e) for the definition of ¥)}. Hence:

£ . v .n~ £ v
E [ ]8 x (% ,Q /2] =nx'q[ )

n n
wed L 8% (L) (2,,0) - 1 8Mw(x )3,

n=0 n=1

And therefore, by the definition of £ we have:

(*) V(%,q,£) =w(x,q) wiqtnzos“{ (L) (X0 ) - wix ,0)}] 2
£ T n €
2 w(x,q) +Ex'q[n£08 L) (x Q) = wix Q)] -7—g .
Since
(Uw) (x,q) = supj (Lev) (x,8)q(a®), (x,9) ¢ XX W,
feP
we have:

(uw) (x,q) ~w(x,q) zsup J q(as){ (LEV) (x,8) -v(x,8)} 2
feF v

2 -inf J alas)e, (8,6 .
feF

and therefore:

£

. £ =
(%%} Ex,q[ (W) (X Q) ~w(X ,Q)] 2 -E [inf j Qn(dewl(e,fﬂ z

= fer
z ~ing =t [I Qn(de)&ui(e,f)j = ~inf J q(ad)e, (6,5) .
fep fer

Combination of (%) and (%x) yilelds the first statement.
To prove the second statement assume that 1(i,n) < «, P:f( q-a.s. Note that,

r
by the first statement:

V(Xn,Qn) - V(xneQn,f) s wtxn:Qn} - vIX,Q ) <

1 I - £
< 7= inf | o (a0)g, (8,F) + —=— .
i B8 Zeh T 1Y 1 B

Hence the desired result follows from th., 6.1 (iii). d
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Remaxk.

Note that, by th. 6.1 (ii),

wix,q) - 7o inf
er

Jq(dewl 0,5 < 20, .
£
Hence the lowerbound on v(x,q,f) in th. 6.4 is not better than the lower=~

bound we found for the strategy in th., 6.3.

In practise, when we are dealing with finite sets X, Y and A we often have
to approximate the value function v. Th. 6.2 gives us the opportunity to
do this as accurately as we like. However it is impossible to compute, for
example, (UNw) (x,q) for all (x,q) € X X W, since W is not finite. Neverthe~
less it is possible to compute (UNW) (x,q) for a fixed q € W, since the num-
ber of possible posterior distributions after N transitions is finite,

Hence we have to determine a horizon N € N such that

| ™ x,@ - @) @] < e

where € > 0 is the maximal allowed error in the approximation for vi{x,q).
Then we compute *{ {UN w) {x,gq) + (UNI!:) {x,q)}, which is an acceptable approxi-
mation for v{x,q) (cf. th. 6.2). To determine N we have to compute first
(Unw) {x,q) - (Unfb} {x,q) for n = no,n0+1,... N, where n, ig a lowerbound

on the horizon. In general the horizon determination in this way is very
_time comsuming compared to the backward induction to compute

(UN{‘:{w +2)} {x,q9), another acceptable approximation of v(x,q). To see this,
we note that in general the sets Wn (q) and wm {q) of possible posterior dis~
tributions of g after n and m transitions, respectively, are disjoint if

m # n (cf. the remarks at the end of this section).

Hence, to compute (Unb) {x,q) for some bounded measurable function b on XxW,
we first have to compute (Ub) (x,g) for x ¢ X and all g ¢ W _,(q) and after-
wards {(Ub) (x,d) for x € X and § ¢ LN {g) etc. So we have computed, toge-
ther with (Unb) {x,q), the set of values

n~1

v (™) =, | x € x, Gew _{pl).
m=1 n-m

+
However, to compute (Un 1b) (x,q), we need the values:
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n .
u {€Umb)(xaa) | X€ X, g€ W

=1 n+1—m(q)}

and since Wn+3_m(q) fn Wn_m(q) = @ in general, we cannot use the already
computed values for the computation of (Unb)(x,q), to determine (Un+1b)(x,q).
{We return to this matter in the next chapter.)

It will be clear that it would be nice to have a simpler method to determine
a suitable horizon. Indeed such a procedure exists when we are dealing with
the simple parameter structure that we introduce below.

Assumption on the parameter structure

6.6 Let I :=1{1,2,...,t} and let ei be a singleton for i = 2,...,t. Pur~-

ther let {51'L2} be a measurable partition of X and let K, := L, X A.

1 1

The models 4 and 5, considered in chapter 5, satisfy 6.6 in a trivial way:
there we have L2 = (§, In chapter 7 we consider other models satisfying 6.6
{(cf. examples 7.4 and 7.5). In the rest of this section we assume that 6.6
holds.

Note that for states x ¢ L, the transition lawis completely known and for

2

X € L1 it is incompletely known but the chosen action does not influence

the kind of information we get after the transition. It is easy to verify

that ¢ = ® q, for all q ¢ W, in this situation, since qi({ei}) = 1 for
iel

all 1z2.

Consider the stopping time ¢

6.7 o s= infln > 0 | X e L}

We shall use the coptimal reward operator U, (cf. section 3.2). Let x ¢ L2

and let b be a bounded measurable function on X % W. Recall:

o=1
W) (x,@) = sup E [ ] E'rx ¥ ) +8bx 007 .

®aq_°
neno n=0

Next we discuss a nice property of this operator.

If X. € L,then we have (X¥_,A ) € u K, for n < o, Hence the expectation
0 2 n''n 2<ist i

of the f£irst term does not depend on g ¢ W (however, it does depend on the

known parameter values 62,...,6t). Further we note that
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6.8 T{1,1) =0 + 1 ifXOeL2

(cf. 2.17 for the definition of 1). Hence, if XO €L, then Qc = Qo = g, and
therefore we may write:

o~1
6.9 (Ugb)(x,q)==sup EZ[ z Bnr(xn,A Y

neﬂe n=0 n’ o+l

) o+ Bab(xc,q)], x ¢ L,

since the expectation does not depend on q.
The computation of (Ucb). (%,q9) for x ¢ L2 is an ordinary dynamic programming
problem which is feasible if X, Y and A are finite (this will be clarified

in chapter 7).

In th. 6.5 we agsume that the function b on X X W is an approximation of v,
such that
|vix,@) -bx,)| €eta), x e X, gew.

First we introduce some notations:

6.10 (i) For q € W and Yyreene¥ € Y we define the probability
xq(yl,...,yn) on 8 by

n

Xq(yllo--ryn) (B) := [ .

n
I Pi(yj{el)q(de){ I
g !

-1
I ptylepqae’

=1

if the denominator is positive;
:=q(B) otherwise (B ¢ 7) .
(i) E(q,e/n) := f che){I cen j v(dy,)...v(dy )
n
" Py yy|0 e X vy reenry N}

where ¢ is a real-valued, bounded measurable function on W,

It is easy to verify that, if L, = @ then E(qg,e,n) = :E:q[e(gn)] since
T{l,n) = n for all n ¢ N*, in this situation (note that here the expecta~

tion is independent of the starting state and the strategy).

6.11 (1) so(q) := % inf { q(ddsup {vix,8 - v(x,8,8)};
feF xeL1

by lx,q) = wix,q) + {x,9} .
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(ii) ek(q) = b

1
inf f q(dd)e, (6,£);
1-6k feF k

by (/) = w(x,q) - € (@, k ¢ F .

Theorxem 6.5

(1) Let b be a bounded measurable function on X X W and let € be a bounded

nonnegative measurable function on W such that for x € L1 and g € W:
6.12 |vix,@) - bx,@] < et@ .
Then, for x € X, g € W, n EN*:
6.13 |v(x,q) - (U:b)(x,q)| < BnE(q,e,n) if x ¢ L,
n-1
< B "E(q,e,n-1) if x € L2 .
(i) In particular the functions bk and € (cf. 6.11) for k ¢ N satisfy
6.12 and E(q,ek,n) is nonincreasing in n with lim E(q,sk,n) = 0, for
q e W. e
Proof.

Part (i). Define the operator GG on the bounded measurable functions on
X x W by:

~ T
(Uof)(x,q) := sup Ex

neHo

g
q[B f(Xo,QO)] .

’

Note that this is an optimal reward operator of the kind we studied in sec-
tion 3.2, for the model with r identically zero. We define e*(x,q) :=e(q),
x € X, 9 € W. Using corollary 3.13 and th. 3.14 (ii), we find:

* ~ *
v—Ugv=Ucv5Uc b+e™) < (Uonb)+(Uce),
n n n
(cf. 3.14 and 3.23). And similarly

where o, := 0 and on 1= 0 o 0O

1 n-1
= > b-e¥) 2 (U_b U e
v=U v UU(—E).(UO)-(OE)-

n n n n

Hence

lvixe - (ugp) o) | < (@ eV (x,Q), x € X, Q € W .
n

Next we consider (50 e*)(x,q) in more detail.
n
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Note that t(1,1) = o +1 if xo € L2 and 1{1,2) =0 +1 if xo € L1 {remember

that t7(1,1) = 1 if XO € Ll)‘ By induction it is easy to verify that

o, = inf{k > ¢ X € Ll}, D= 2,37000 o

n-1 l
We show, using induction, that for n ¢ :N*=

T{1l,n) -o‘n-M if xo € :L.2 and T(l,n+1) =on+1if x0 € J‘..1 .

For n = 1 the statement is true, so assume it holds for n (n 2 2). If

xo € L2 we have

T(1,n+1) = inflk > 1,0 | % €1} =

= inflk >0 +1] x_, €L} = 1+inelk>o  |x end=o  +1.

Similarly if XO € L. Remember that T{1,n) 2 n for n ¢ ®". Hence

[+
(U, e*) {x,q) = sup E:: qEB n, Q, 1] s sup SK.E:'an(Q ]

n neno ’ n weno

T(l,k)-i)

withksnifxel.zandk=n+1ifxeLl.

= @ = 2 2. .
Note that Q o Qi’n and Qi’n({ei}) 1 for i 2 2. According to 2.26 we
have for BeT Pz g8 {c£. the proof of th. 2.1):
¥

Q,(8) = f
B

, H p, (¥ le,)q(as)
{e>olt(1,0ysn} L T

{ f I P, (¥ le,)qae)y™t .
g’ (0>0[t (1,2 5n} 1t b

L
Bence for k = 2,3,... we have Px q«a.s.:
¥

k~1
I py (Y'c 1. fel)q(de)

Q(1,x0-1® = J 4=1

B

k-1 1
o { J it pl(YT(llj)lﬂl)q(de)} .
g =1

Therefore

L
QT(l:k)'l b xq(yf(l,l)f'°"y—{ (1’}:_1)}: Px'q—a.s.
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By lemma 2.2 we find:

E I

R S(Q‘.(i’k)“l)] b4 E(q;ark-l); k= 2,3(... .

This proves part (i). We proceed with part (ii).

It is easy to verify that 6.12 holds for the functions b, and € _, k € N.

k k

Hence 6.13 holds by part (i). As already noted we have

E{q,&,n) = :E:qu(Qn)]
for the meodel with LZ = @ (note that the expectation is independent of the
starting state x and the strategy m, here). For this model the assumption
of th. 6.3 (iii) is true, which implies that E(g,t,n) converges monotoni-

cally to zero, as n tends to infinity, in case k e:ﬁ*. For k = 0 the proof

is analogous. 0

In chapter 7 we discuss algorithms in which the horizon determination is
based on th. 6.5 {ii). It turns out that computation of E(q,e,n) is rather
easy compared with the backward induction.

Corcllary 6.6
If L, = # (and 6.6 holds) we have
lvix,@ - W) o) | = e"nq[sk(gn)}, nen', k e®

(bk and €, are defined in 6.11).

This statement is already proved in the proof th. 6.5 (ii).

For the functicns €pt k € N defined in 6.11, 6,10 (ii) reduces to:

6.14 E(q,so,n) = b j o I v(dyi}...v(dyn}

n
> inf f q(de) 1 pityj(el)sup {vix,8,) -~ v(x,0,,£)}

feF 3=1 xeL1
=%
and for k ¢ N :
1
Elg,e m) =% % J I v(dy,)...vidy)

1-8

*inf f q(d8)

p, (v,]0,00, (68, ,£) .
o 1751909, (9

n
It

=1
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To verify this, note that

n
f q(de)j£1 Py (v5[0 )0, (8,5)

1 ; =
S g ¥y reeeryy)) = % — inf ,keR,

= n
1 -8B feF Jq(de) i pl(yjle)

i=1
if the denominator is positive.
Further note that, for all q € W:

gl@) S e (@ S, (@ Se @, forken ,

and note that eo(q) = ¢g_(q) if L, = g.

We conclude this section with some remarks. The first four remarks comple-
ment the results we derived in this section. The last three remarks concern

other approaches, not treated here.

Remarks.

(1) In most situations the sets of possible posterior distributions at
successive stages are disjoint. However the following example shows
that this is not always the case.

Let 6.6 hold and let L, = f. Further let 8, := {tj1-t}, 0<t <k
and let ¥ := {0,1} and p, (y[6,) := 6¥(1 -el)l'Y, yevy, o
is easy to verify that if g({t}) := w, then the posterior distribu-

€ 01. It

tion after n transitions is:

n
(n=2 ) ¥,)
o t i=1 7(1 - m),-1
g (eh =11 + =9 — .
2 n-m
Hence if n > m and z Y, = i then Q, = Qe

i=m+1
(i1) We have already suggested a choice for the set F (see 6.2). Now we

‘consider:
F := {feF | for some 6 ¢ 8: v(x,0) = v(x,0,f) for all x ¢ X} .

At first sight one may expect that the best Markov policy for the
Bayes criterion can be found in F. However for an example we show
that

sup v{x,q,f) < sup v(x,q,f) .
feF fep
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{iii)

{iv)

Counterexample
1 1 1
g 2 ]
0 ‘lu' 0 0 1'!.'
i-¢ 1-6
3 - 3 3

X := {0,1,2,3,4}, D(O) := A := {1,2,3}, pD{x) := {1}, % # 0.

8 :3‘{%3"%3%' Consider the transition probability P(x'|x,a) from

X X A to X: :
r(1]0,1) = 1 -pr(3|0,1) =&, P(3]0,3) = 1-p(1]0,3) =@
p(2]0,2) = p(4|1,1) = p(4|2,1) = p(4]3,1) = P(4|4,1) :=1 .

Only in the states 1, 2 and 3 a reward is ohtained: 110, 70 and 10
respectively. It is easy to fit this example into our framework. In
case of known parameter values actions 1 or 3 are optimal in state

0 but action 2 is never optimal. We identify the three possible Mar~
kov policies with the actions chosen in state 0. Hence F = {1,3}.
Let q ¢ W be such that q({0}) = % for 6 ¢ 8 and let B = %. Then

v{0,q,2) = 35 and v{0,q,1) = v(0,q,3) = 30 .

If there exists a f ¢ F such that v(x,e,f*) = v(x,0) for all x ¢ X,
6 ¢ 8 then v(x,q,f*) = f q(d@d)v(x,8) = wix,q), for x ¢ X and q € W
and therefore £ is optimal.

If b is a bounded measurable function on X X W such that

bix,q) = [ blx,0)q(d®) for all x € X, q € W then

(U") (x,q) < J q(a®) (U™b) (x,8), n e W .

To prove this note that using arguments of the proof of th. 6.2 we
find: (Ub)(x,q) = f q(de) (ub) {x,8) . Hence, by putting
b'(x,q) := f g{df) (ub) (x,9) and repeating the argument, we have

%) (x,q) € (Ub') (x,q) < J q(ae) (u%p) (x,0) ,

since (Ub') (x,8) = (Uzb)(x,e). The statement follows by induction.



(v)

(%)

(vi}

137

In [Martin (1967)] the usual method of successive approximations is
described for Bayesian control models with finite state and action
spaces. Martin suggested the use of "scrap functions"” b on X x W
that are constant on W {in fact Martin gpecifies a function b* on X
and he sets b(x,q) := b* {(x) for g ¢ W). Then he approximates v(x,q)
by (Unb)(x,q). The difficulty of this method is the cholice of the
horizon such that |v(x,q) - (U"b) (x,q)| is sufficiently small. He
gives the following bound for this difference (cf. [Martin (1967),
th. 3.4.3D):

m M

T-5'1T-F ¥

8 max(b -
where

M= sup z(x,a,y), m := inf r(x,a,y), b := sup b*(x)
and X.a,yY X,3,Y X
b := inf b (x) .

x

To verify this, note:

w?0) (x,q) + 8” 77 5 W) (x,q) < n M

and

W"0) (x,q) + B0 < (U"b) (x,q) s (U"O) (x,@) + B"B.

Since v = U'v we have

MR - B} 5 vixi@ - WD) (o) € BT - b .

It is obvious that this bound (*) is minimized by setting
M + m

b = bn 1 b T-F"* Then the bound becomes % —-—§(M m) which is

poor, in general. In our approach a better scrap function is sugges-

ted for the special parameter structure given in 6.6, and the con~

vergence of the posterior distributions is used tc get a smaller

horizon (see th. 6.5} {(see also chapter 7 for some examples).

The use of upper and lower bounds is also suggested in [Satia and

rave (1973)]. The authors consider bounds of the form:

M
1~-8

ub {x,q) := sup sup vi{x,8,£f)(1-¢) + €

feF 0¢B
q

b ({x,q) := sup inf v(x,0,f)(1-) + o —F ¢
feF 656
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where Oq < 0 such that:Pq[Z € Oq] 2 1 -¢ for some fixed € > 0 and m
and M are defined in the foregoing remark.

They compute their bounds with very time-consuming algorithms for
Markov games. It is clear that ub(x,q) = w(x,q) and 2b(x,q) < £(x,q9),
if F is defined as in remark (ii).

(vii) In [Waldmann (1976)] the space W is approximated by a finite subset
of W, i.e. a finite (measurable) partition of W is constructed, and
in each set of this partition a representative is chosen. Then the
transition law is modified such that the process only visits these
representative points. Waldmann suggests to solve the modified dyna-
mic program with state space X X ﬁ, where ﬁ is the set of represen-
tative points. The value function of this dynamic program is an ap-
proximation for the value function of the original model. The idea
of approximating a dynamic program with an uncountable state space
by one with a finite state space is also found in [Whitt (1976)].
Whitt also provides bounds on the approximation.

(viii) In [van Hee (1977)] a generalization of the well-known MacQueen ex-
trapolation is considered (see [MacQueen (1966)]) for the situation

where 6.6 holds and L, = g.

6.2 Discretizations

Although most of the material presented in section 6.2 is valid if X, Y

and A are noncountable, the results have practical relevance only if these
sets are finite. However, we do not assume that  is finite, but rather we
study the problems caused by 8 being infinite.

First we consider the determination of the upper and lower bounds given in
th. 6.1. We recall that, if X, Y and A are finite, the computation of
(Ug%(w-kl))(x,q) for fixed g € W and n € N* is rather simple if w(x',q')
and L(x',q') are known, for x' € X, q' € W. To approximate these upper and
lower bound we approximate f v(x,0)g(d8) and f v(x,0,f)q(dd) using straight-
forward numerical integration methods.

Afterwards we shall consider another approach, namely the "finitization®

of the parameter get in advance. This means that we only consider prior
distributions that are concentrated in finitely many points. It is easy to
verify that in that situation, all posterior distributions are also concen-
trated on this finite subset of 8.
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For both cases we give bounds on the érrors caused by the discretizations.
We start with a result on perturbations of the function & »+ v(x,9). In the
proof of th, 6.7 we use the same technique as used in [Whitt (1976), th.

6.31.

Theorem 6.7

Let 8,3 € 8, Then:

sup {vix,0) - vix,8)} < 5 1 7 span(x) H0(0,8)
where
6.15 A(G,g) := max J v(dy)Ipi(y!ei) - Pi(y|ei)|
ieIl
and
span{r) := sup r(x,a,y) - inf xri{x,a,y) .
X,a,Y X,a,¥
Proof.

First assume inf x(s.,a,y) = 0. For each € > 0 there is an action a eD(x)
such that it f

vix,0) se+ | L (x,8) [v(dy)pi(y{ei>
ier i

’{r{xaary) + B J P(dx'lx:aly)v(x'ra)} .

Hence:

vix,0) -v(x,8) < e+i§I 1Ki(x.a) [v(dy){(pi(&"ei) —pi(yigi}}r(x.a,y) +

+ 8 J P(dx'lx,a,y){v(x',e)pi(ylei) -v(x',g)pi(y‘gi)}] =
Se+ ) e (x.a)[J v(dy){pi(yiei) -pi(ylgi)}+ sup ri(x,a,y) +
ier i X8,y

+ B J v(dy)P(ax"|x,a,y) {v(x*,0) ~v(x' &) }min{pi (¥l 6,) /Py {yl?)'i)}

+ sJ v{dy)P(ax' |x,2,¥) {p; (y|ei) -min{pi(ylei) Py (yi?a'i) Ye(x', 831,
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Remembeyr that f v(ay)pi(ylei) = 1., Note that, for i ¢ I

1-J v(dy)minip, (v[0) p, (¥[8} = f viay) {p, w0, -p, (v[F 31" =

o = fv(dy>r|pi(y|ei) -
Let A = A(e,‘é') and M := sup r(x,a,y). Then
Xea,y

v(x,8) - v(x,8) S £ + %AM + B 2 1K (x,a)

ieX i

* [sup |vix',0) ~vix',8)|{1-% J.V(dy)fpi(y!ei) -p, tr8) 1) +
x! ' ;

* oy fv(dy)lpi(yleii -p, v[817 .
Note that

sup |vix',8) -~v(x',0)] < —_.
%' 1-8
Hence

vi(x,8) -v(x,8) £ €+ %M + B sup |v(x',8) -v(x',8)]| +
xl

+ B*:A{Eb_&—,s-sup‘ lvix',0) - v(x',g) I} .
x'! .

And therefore, by rearranging terms and omitting €, we finé:

() sup (v(x,0) ~v (8IS TEr M+B(1 -kt sup |vix,0) ~vix,B)| .
X x
If m := inf x(x,a,y) # O then we first subtract m frém r and afterwards

Xya,y
we add m again. This causes M to be replaced by span(r}. Now we exchange &

and §. Then we get

sup Iv(x,e) -v(x,g)l <k T=% span(r} +B (1 - %A) sup Iv(x,@)-v(x,%!

x

which proves the theorem. ’ [l

Remarks .

(i) If {9 +pi (y|e ); y € Y} is equ:.continuous for all i €I then the func-
tion {8 + v(x,8); x € X} is equicontinuous. This is an immediate con-

sequence of th. 6.7.
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(ii) If £ € F then

span(x) %A (6,8)
1 -B 1-8+%8A(8,6) °

sup }vix,8,8) -v(x,8,6)] <
< :
The proof is exactly the same if we assume D(x) = {£(x)}, x € x.

Assume 6.6 and identify 81 and 8, we shall split up the parameter space in-

to a measurable paztitionA{Bl,....Bn} and we assume that in each set B, a

3
point of discretization bj is fixed. Purther we suppose that, for j=1,..,n
and x € X, v(x,bj) is known and also that for j = 1,...,n a Markov policy

fj € F is known such that v{x,b.,) = v(x,b_,f

4 j i) for all x € X.
It is easy to verify that, if £

X ¢ F for k = 1,ceesn, then

n -~
6.16 (i) 2(x,q) 2 max vix/by £ )a(B,) ..E;&_(g_)__‘%__“‘
1sk<n j=1 1-8+484

span(r) __ %A
v(x,bj)q(Bj) + =%

n
(i1) wiz,q) < )

3=1 1-8+%A
where 2 i= max sup A{(8,b.) .
1<j<n 6eB 3

3

Hence we derived an upper and a lower bound for v{x,q) involving only the
points of discretization. Statements similar to 6.16 are possible with the
other bounds considered in th. 6.1. Note that the difference in the bounds
of 6.16 is positive , even if g is degenerate. If we assume more struc-
ture we may derive better bounds. Let 8 be an interval on the real line:

8 = [bo,bn] and let bo < b1 < «s. < b, be the points of discretization.
Further assume that 6 - v(x,e,fj) is nondecreasing for x € X, 3 = 1,000,n
(an example of this situation is considered in example 6.4). Then it is
straightforward to verify that, for (x,q) ¢ X x W:

n
6.17 max ) vix,b

n
oex 1 goprEallby_ b)) SV (k) € ) vxiballby /b)),

=1
Even if g is degeneraté, the upper and lower bound in 6.17 differ at least:

min {v{x,b

) = vix,b,_ )} .
1<j<n 3 -1

Now we shall consider the discretization in advance. We only treat the si-
tuation where I is a singleton., We omit the dependence on i ¢ I in the no-

tations.



142

Theorem 6.8

Let I be a singleton, let bi""'bn ¢ 8 be the points of discretization
and let {Bl""'Bn} be a measurable partition of 6 such that bj € B
j = 1,...,n. Let q ¢ W and define ¢ € W such that(p{{bj}) = q{Bj),

' 4

J

j = 1;---;1’1- Then:

s (J.‘) n 11‘5(6 rbj)
sup [vix) v |s H2 ] J' U OB
® j=1 3
B
3

¢ Span(r) )
T =B T-F+BE

where

n
. A =
6.18 L Jq(deme,b.)

i=1 g 3

3

(A(@,bj) has been defined in 6.15; note that I is a singleton).
Proof.

Fix € > 0. There iz a 7 ¢ ﬂo such that for a fixed x ¢ X
vix,q) - vi{x,0) s & + vix,q,T} - v(x,9,7T) .

Hence

«©

n .
vix,q) ~v(x,p) < e+ Z gk 2 { j q(de)mz‘etr(xk,;sk,y

k=0 =1 B
i

k+1)] =

ki1
-Ex,bj{:r(xk'Ak'Ykﬂ)]q(Bi)} .

f(yi,..‘,yk+1) 1= j wo(daofx) [ P(dxilx,ao,yl)...

'J P(dxk[xk-l'ak-i'yk) I”‘k(dak|x:aoly1n-:Yk:xk)r(xk,ak,yk+1) «
It is easy to verify that £(y,,ss+sy,..,) is a version of
1 k+1
™
Ex,e[r(xk'hk'yk-q-j,) | ¥ =YYy, =y,,,] forall®c8 .

Note that m £ £ < M where M := sup r{x,a,y) and m := inf xrix,a,y).

X8 %,a
Then we have 12eY r8ry
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vix,q) -v{x,0) <€ +f ...fv(dyl)...v(dyk+1)

n k+1 k+1 »
21 j q(de){.g1 plyy | 0 - fl Ply; | BYEy sy, ) S
=1 j= 3=
i
J J g k+t | k+1 | .
S €+ 4ee |V(Ay,)eav(dy, . ,) I{ I p(y,|8)- 1T p(y,|b,)} M-
1 AN R 3 4=1 3%
i
n k+1
-I Jv(dyl)...v(dyk_'_l z Jq(de){ I P(lee) -
i=1 B j=1
i
k+1
- I “m=
4=t p(yj Ib‘i)} m=¢€ +% gpan(r) JJ v(dyl)...v(dyk+1)
n k+1 k+1
) I qae)| m p(yjle) - I plyy |b )| .
i=1 3=1 j=1
By

(Here we use
k+1
J cer J v(@y,).evidy, ) T p(yjle) =1, for all 6 ¢ 8) .
j=1

Likewise there is a T e Hosuch that v(x,9) -v(x,q) <€ +v(x,9 ,TT*) -V(x:q,“*).

Therefore we have:

(*) sup |v(x,q) =v(x,0)| <% span(r) ] 85 I ...[ Vidy,) ...V (dy, )
X k=0

n k+1 k+1
"1 fq(dml T plyle) - T ptyylop] .
i=1 3=1 j=1

k+1 k+1
=% IJ vidyy)...vidy, ) 2 [q(d9)| 1 lylo) - T ewlepl .
Y 3=t 3=1
1

Further let CpressrCpyy ,d1 res ’dk+1 be nonnegative numbers. The following
inequality is immediate
k+1 k+1 k+1

(%%) min{ I cyr i dj} > I min{cj,d 1.
j=1 i=1 i=1
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It is easy to verify that

n k+1 k+1
) = I-J' ves J \’(dyi)"‘“(dyk-i-i) j;—;, [ q(dS)min{jfiip(yjfe), jlii p(yj‘bi)}.

Using (**) we find, after changing the order of integration

n

a S 1- ) '( q(dB)CJ v{dy)minlp(y|®), ptylbiHJk“ .

i=1
By
Hence (%) becomes:
1 : n F(e'bi)
sup |v(x,q) -v(x,9)] Sspan(z:){1 - ) J q(de)m} .
X i=1 L
B

i

n
where F(8,b,) := / v(ay>mn{p(y|e),p(yibi)}. Note that ) J qlde) = 1

and F(G,bi) = 1 - %&(e,bi). i=1 Bi
Hence we get the first inequality:
sup (v(x,q) -v{(x,9)| < span{xr) jq(de) - —& .
x {=1 B (1 8){1 G"'J:BA(e,bi)}
i

Since the function s _1—:{3%-%%_8; is concave on [0,1] we find using Jensen's

inequality:

- span (r) hA
sup |[v(x,@) - vix,0) | < B e,

b4

which proves the second inequality. {

Remarks.

(1) We can also use the proof of th. 6.8 to compare the original model
with a slightly different Bayesian control model. Let 8 := {1,2,...,n}
be the parametexr space of the modified model and let H(-* Ie) be a pro-
babllity density with respect to the measure v, for & ¢ 8. Further let
({3l := q(Bj), 3 = 1,...,n be the prior distribution on 8 and v (x,0)
be the value of the modified model. All other specifications of the
modified model are as in the original model. Then the statement of
th. 6.8 remains valid with v(%,9) replaced by ¥(x,9) and with A(8,b
replaced by [ vidy) |ply]®) - Bu|D].

j)



(ii) Note that, in case I 1s a singleton, th. 6.7 is a consequence of th.
6.8. To verify this let q ¢ W be degenerate at & and let the partition
of 6.16 consist of B only with discretization point 6. Then apply the
first inequality of th. 6.8.

Corollary 6.9

Let I be a singleton and let V(x,q) be the value of the model with known
transition law, given by v(dy)P(dx'!x,a,y)p(y,q). Then we have

~ span(r) _ A"
sup |vix,q) - Vx,q| s 22
X 1 -8 t-B+hpa”

where
A" = J q(de) Jv(dwlp{yle) - ply,] .

Note that this is an example of the situation considered in remark (i)
above, if we set © := {1} and p(*

1) = p(‘:q) .

If there is a b € © such that p(‘{b} = p(*,q) for some g € W, then corolla-
ry 6.9 is a special case of th. 6.8.

In practice one often considers the value ;(x,q}, defined in corollary 6.9
as an approximation to v{x,q). This is justified by the following interpre-
tation. In the Bayesian approach the prior distribution g is determined,
using data from the past. Then the Bayes estimation of the density is com-
puted: ply.q) = f q(de)p(yle), for y € ¥, and finally this density is con-
sidered to be the true one.

We conclude this section with some examples and remarks.

Example 6.1

The first bound in th. 6.8 is tight.
Consider the model with only one action in each state, and with X := (1,2},
:= {0,1}, a := {1}, 8 := {0,1}
P(1]1,1,1) := 1, P(2]|1,1,0) := 1, P(2|2,1,0) := P(2[2,1,1) =1
p(lle) =0, r(l,l,l) s 1, r(i.l,O) 1= r(2,1,0) 1= 1{2,111) =0,
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Let the only point of discretization ke 0, hence Bl =8, Let g € W be de-
£ined by q({0}) = q({1}) = %. It is easy to verify that v(1,q) =% g is .
The prior ¢ defined in th. 6.8 has all mass in the point 0. Hence v{1,¢) =0

and v{l,q) ~v{1,9) =} T—E-Tg- » Now we consider the first bound of th. 6.8.
We have

JvidY>|p(Y19) -ptylo)y] = |6-0| +|1-8-1] =28, 8 ¢8,

Hence the bound becomes % T%-_B- .

Example 6.2

The bound of th., 6.7 is tight. Consider the example above and let 8 1= 0

and 8 := 1. Then |v(1,0) - v(1,8)] = 1_%_{?

and

~

J v(dy) |pty|®) - piy|®| =26 - & =2 .

—--};-E- also.

Hence the bound is 1

Example 6.3

The bounds of th. 6.8 behave badly if B tends to 1. Consider the model of
example 6.1 and modify it as follows: 8 := [0,17, r(1,1,1) = x(1,1,0) ¢=1.
Let the only point of discretization be % and let q ¢ W be homogeneous.

= 3 R 4 - it
Hence v(1,8) = ;%7 and so v(l,q) = - 7 log(1-~§) and v(1,9) = v—¢7 -

The first bound of th. 6.8 becomes:

1
1 o
1 [6 = | _ 1 1 2(1-8) 2,1 _a
T—F I T=E 780 = %] a6 = 7—5i3 2 log(—_—l-ﬁ)}—O(i-B)'
0

Note that |v(l,q) - vite)| = 0(1 .1. 3)‘

In the next example we consider a situation where 6 - v(x,e,fi) is monotone
{cf. 6.17).

Example 6.4

Consider the inventory model: model 5B where the demand is exponentially
distributed:

piyle) = 0%, g e [a,b], 0 <a<b<w.
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For each 6 ¢ [a,b] the optimal strategy is characterized by a number Sg

Sy € [a,b], such that, at time zero the inventory level is brought to Sg
and afterwards at each stage the demand is supplied. Por a fixed s € [a,bl
we determine the total expected costs corresponding to the strategy as des~
eribed above with s instead of Sge

vi{x,0,s) =hx++px“+k{s—-x) + Z Srﬁ:‘:a[h(s»Yn}* +p(s-Yn)_ +kYn] .
n=1

It is easy to verify that
~ + - 1 -8z 1 1
Ee[h(s -Yn) +p(s-¥) +kYn] =(h+p)(s+g e -7) -ps + (pH)F .

If k > h, then this function is decreasing in 6.
Hence for each point of discretization and each x ¢ X, § - v(x,e,fi) is de~

creasing. (Remember that we considered costs instead of rewards in this example.)

Remarks.

{1y If 8 c R and for some £ ¢ F, 6 » v(x,8,f) is convexr then
{ q{dd)vix,6,£) 2 v(x,j g{deye,sy ,

by Jensen's inequalify, and if 8 - v(x,8) is concave then
wix,q) = v(x,f q(do)8), These properties are sometimes useful in ap-
proximating upper and lower bounds.

(41) In [Whitt (1976)] discretizations of the state and action spaces are
considered for discounted dynamic programs. If we apply Whitt's ap~
proach here we have to discretize the set of posterior distributions
W, i.e. we have to fix a finite measurable partition Bl,...,Bn of W
and in each set Bi a representant bi' Then the original model is com-
pared with the model with a perturbed transition law, which causes
the process to visit the points b, i ¢ {t,...,n} only. However, if
(Xn,Qn) is the state at time n of this new process, then Qn is not
the posterior distribution of Z, in general.

So th. 6.5 is not valid anymore.
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7. COMPUTATIONAL ASPECTS AND EXAMPLES

In this chapter we consider algorithms for the computation of the value
function (cf. 2.12) in two special cases of the Bayesian control model. In
section 7.1 we consider the model where the index get I is a singleton.
Hlere we alsc consider the rate of convergence of the algorithm. In section
7.2 we consider Bayeslan contrxol models where assumptionys.s holds and
where in addition the set L1 is a singleton (cf. 6.6). Finally, in section
7.3, we study some examples of the models considered in sections 7.1 and
7.2, and we illustrate the quality of the algorithms by numerical data.

The algorithms are based on the approximations given in th. 6.5. Throughout
this chapter we assume that X, ¥, A and 6 are finite sets. (For notational

convenience we write g{8) instead of q({81).)

7.1 Algornithm fon models where T 4is a singleton

In this section we assume that the index set I is a singleton.

We consider an algorithm, based on th. 6.5, to approximate v{x,q} for all
x € X and one fixed prior distribution g € W. The accuracy of the approxi-
mation has to be given in advance. In section 6.1 we already considered

the set of all possible posterior distributions after n transitions

7.1 W (q) := {xq(yl,...,yn) | Yyreeery, € ¥}, g € W (cf. 6.10 (1)) .

Since I ig a singleton we omit the subscript i € I in this section. We first
give the algorithm and afterwards we discuss each of its steps. Let A > O
be given, and let ¥{x,q) be the approximation to v{x,q). If

max |v(x,q) - V(x,q)| £ A for a fixed g € W then we say that the accuracy
X
of the approximation is (at least) 4.

In the algorithms the symbol ":=" denotes an assignment instead of a defi-

nition.

Algorithm 1

part 1¢ parameter influence

(@) For all 6 ¢ 6 and x € X determine v(x,6) and an optimizing fg € F (i.e.
v(x,8) = v{x,0,£) for 8 ¢ 8). Let F := {f,, 6 ¢ 8} (cf. 6.2).

(b) For all 6 ¢ & and £ ¢ F determine Qwie,f) = max {v(x,8) - v(x,9,f)}.
X
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part 2: horizon determination

{¢) Set n ;= ng {a lower estimate of the horizon, e.qg. ng = o).
(4) Compute {(cf. 6.14):
n
§ = EBlqe,m =% ]  min]aq® T piylere, 6,0 .

Yyreeery, £eF 6 3=1

(e) If B™8 < A then go to (f), otherwise set n := n+1 and go to (d).

part 3: backward induction

(£) Por all q' € W _(q) set v (x,q") := {w(x,q') + L(x,q")}, x € X.

{g) Set k¥ :=n-1,

(h) For all q' ¢ Wk(q) compute p{y,q') and Ty(q') for all y ¢ ¥, and then,
for x € X:

,vk(x.q‘} = max Ep(y,q'){r‘-(x,a.y)* BZ p(ix'}=x,a,v)v

(x',T_(g'))}.
aeD(x) y x' ki "y

(i) If k > O then set k := k-1 and go to (h).
Otherwise: stop.

At the end of the algorithm the values V(x,q) := vo(x,q), % ¢ X have been
computed and it follows from th. 6.5 that the accuracy is at least A.
We proceed with a discussion of each of the steps of the algorithm,

Remarks on algorithm 1

1) The computations of step {a) can be carried out by a standard method,
such as the poliey iteration algorithm or the method of successive
approximations with the MacQueen extrapolation (cf. [Ross (1970),
section 6.8], [MacQueen (1966)]). More sophisticated methods can be
found in [Van Nunen {(1976), section 7.3] and in [Hastings and Van
Nunen (1977)]. Note that F in step (a) satisfies 6.2.

It often occurs that, if the differences between the parameter values
are small then alsc the differences in the value function are small
{cf. th. 6.7). Hence if f6 € F is optimal, if 8 ¢ 8 is the true para-
meter and if 8 ¢ B is near to §, then it is wise to start the policy
iteration for the parameter value 3 with the policy fg. And likewise
we recommend to start the successive approximations for € with the

scrap function v(+,8).
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(ii) 1In step (b) we have to determine v(x,8,f) for all x € X, 6 ¢ 8 and
f e F. If N := ## 0 then it requires the solution of at most N(N - 1)
systems of linear equations, in fact we only have to solve them all
if we found for each 8 ¢ 8 a different optimal policy. Instead of the
function ¢_(9,f) we may also use the function
9,(8,£) = max {vix,8) - (Lfv)(x;e)}, if we replace € (*) by €,(*) in
step (d).
It is easy to verlfy that the computation of (Lfv)(x,e) for x € X,
6 € 8 and £ ¢ F requires less effort than the computation of v(x,9,f)
for x € X, 8 ¢ 8 and £ ¢ F. However we have to do more work in part 2
of the algorithm in this case (¢f. th. 6.1).

(Lii) et ¥ = {0,1,...,m}. We may compute E(q,€,,n) in the following way:

] m k
7.2 El@e,m=% [ —2—mn] q@ 1p3]e) do_©,0
Kreversky B o £F O 320
3=0 7

m
with summation over all ko'kl"“’km ¢ N such that Z kj = n.

j=0
Note that we have to sum over 8“;“; terms here, so the amount of work

to compute § in this way is very large if n is large. Therefore we

suggest another approach in case {p(*|8), & ¢ 8} is an exponential

family of the following form
7.3 ply|8) = a(®)b(y)explc(®)y}, 8 € 8, y ¢ Y = {0,1,...,m}
where a and b are nonnegative functions such that

] a(@)b(y)explc(e)y} =1, for all 6 ¢ 8 ,
Y

In this case the posterior distribution of g ¢ W after n observations

Yyreeos¥, becones:

n
a(8) Pexplc(9) } y.}q(e)
4=1 3

7.4
n n
7 ate')explc(s”) Z yj}q(e'}
N j=1
(provided that the denominator does not vanish).
Hence the number of different posterior distributions is:

n
£ Wn(q) = gt E ¥y l yj € ¥, 3=1,...,n} =m+1 .
I=t1
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7.5

7.6

(iv)

{(This number is small compared to (m:n), the number of terms in 7.2.)
Note that there is a one~to-one correspondence between 2§=1 Yj and Qn'
due to relation 7.4, Instead of computing E{q.,%,,n) as proposed in
step (d) we approximate this guantity in the following way. Note that

here

E(qe ) = E [e (9 )] = } ® [g =q'le (@) .
qd n ' o
g'ew (q)
n
It is relatively easy to compute €_(g') for each q' ¢ wn(q). Instead
of computing IPq[Qn = q'] directly, we approximate this probability by
the normal probability in the following way. Let q' € wn(q) correspond

to all sequences Yyreeor¥, €Y with Zg;l yj =g, 0§ s £ nm. Further
let
¢ 2 t 2
uy t= ) 3pGle) ana of = ) (3 - w)%pale) .
0 8 . 8
j=0 3=0

Then we have

. n
Plg =ql=)q®)p,[}) ¥, =sl
an 8 8o 3

and therefore

s +% - nu s =% - nu
-] 8
) - & 3}

eé? ae#ﬂ

®lo =al~ g 2@ {2 —
{(where ¢ is the standard normal distribution function).

Note that ue and Ue can be computed in advance, also in part 1.

Since # Wn(q') is relatively small it is easy to approximate E(q,&_,n)
in this way.

Besides the convergence due to the discount factor 8, we also use in
step (e) the convergence of the posterior distributions. In fact we
might replace the stop criterion by "6 s A" without loosing conver-
gence of the algorithm (cf. th. 6.5).

Instead of an absolute stop criterion we might use a relative criter-

ion. For instance we could use the inequality

g5 {1 + max]xa(x,q)[}'1 <A
X

instead of ans < A , in step {e).
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{v) The backward induction in part 3 requires the following storage capa-
city for mumbers

(AW (@ +# W _ (@} # x= {@2n ~ 1)m + 2} # X

if ¥ = {0,1,...,m}, {p(]8), 6 ¢ B} is an exponential family of the
form 7.3, and n is the horizon determined in part 2.

We note that the work in part 1 has to be carried out only once, vhile we
have to perform parxrt 2 and part 3 for each prior distribution q € W for

which we want to approximate v{x.,q) , % € X.

We continue with the discussion of a simple modification of the algorithm
to determine in part 3 upper and lower bounds on v(x',q'),

q' € u wk(q) . These bounds shall allow us to exclude some sub-
k=1,¢¢.,n~1
optimal actions, during the backward induction procedure. To derive these

bounds we proceed as follows. Let n be the horizon determined in part 2
and remember that

vn(x',q') = %{w(x',q‘) + 2(x',q")} for q' € Wn(q)’ x' € X .

According to corollary 6.6 we have

n-k

7.7 lvixtagh - @) x| <8 E e, (g, )]

for q' e W (@), ke {0,1,0e0n~-1} and x' € x .

Further note that, according to the Markov property of {Qk, k € N} (cf.
th. 5.1):

4! Iety.q")

7.8 E e 9, 0] = 5 ETy(q-)[Sw‘Qn-k-

for q' € W (@) , k¢ {0,1,...,n=11 and x' ¢ X .
Hence the values 33q.[em(Qn_k)} for q' €W, (q) are upper and lower bounds on
vix',g'), for x' € X.
Thege values are easy to compute by 7.9.
7.9 (i) Let Yn(q') = e _(q') for q' € wn(q) .
(ii) For k =n~-1, n-2,...,1 compute

Y @t = g p(yaq')Yk+1(Ty(q')), for q' € W (@) .
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Note that the computations of 7.9(ii) can be incorporated in step (h) of
the algorithm.

If we use the normal approximation, as suggested in remark (iii), then we
loose our exact accuracy. However if we incorporate the computations of 7.9,
then we have exact bounds after the execution of step 3.

It is obvious that an action a € D{x) is sub-optimal in state (x,q")

Q' €W (g'), x e Xand k € {0,1,.0n=1} if

7.10 Yoly.q)[z(x,a,y) + 8 ZP{{x'}ix,a:y){vkﬂ (x'T @) + ¥

(T _{g")))s
b4 X Yy

k+1
= (U(Vk-!-l - Yk“))(x,q') .

We conclude this section with a qualitative statement concerning the rate
of convergence of the algcrithm.

We start with some preparations. Remember that X, ¥, A and 8 are finite sets.

7.11 A maximen likelthood estimator M of the parameter based on the ob-

servations Yl 'YZ" .o ’Yn is a 8-valued function of Y, ,ees Yy such that

1

n
I

n i
I p(y.iM) 2
. i'n 3=1

p(YjIS) on §i, for all 6 ¢ 8 .
i=1

Lemma 7.1

There are numbers k and a, k,a > 0 such that for all 6 ¢ 8

]Pe[Mn;éBJSkexp{- an} , nemw .

Procf.

Define on Q:
ply. o)

*
P(Yj<9)}' jemwW , 6,pc 8.

Zj(9;¢) = 10g{
{let log 0 = -®, log * = @ and let 0¢= = 0).
Note that

n n
(%) {M_ #0}c {max T p(yji@) > T

p(vjie>} =
9#8 =1 j=1
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n ply.|e)

n
= {min I <1} = v { ] 2,6, s 0}
oo 3=1 PO10) ofs 4ot 3

By a Chebyshev~-type inequality we have for all ¢ £ 0 and ¢ ¢ 8:

(#%) ® L Z z,(0,0) <0] < B [exp(t z 2,(8,0)}] = = Lexplez ©,0311",

j=1 3 =1 7 3

Note that £, {t) = IE [exp{tz ¢,9)11 = Z{§%§+§%J p(y|@) is finite for

t £0, 8,9 ¢ 8 and independent of j ¢ ]N .

Further note that £, _(0) = £y o("1) = 1, for 8,9 € 8.

Since the function t - x-t {x > 0) is strictly convex, except when x = 1,

we conclude that for each pair 6,9 ¢ 8 there is a number t, -1 < t <0 such

that fe {t) < 1, except when ﬁhXTET 1 for all y with p(yle) > 0. However,

if p(y}e) p(y[@) for all y € Y then, by the separation assumption (cif.
2.1), we have 8 = g,

Hence there is for each pair 9,9 € 8, ¢ # & a number 1:6"p such that

-1 =2 te,w £ 0 and fG,Q(tS,w) < 1.

Hence by (%) and (**) we have:

n
Bu #01s ] Jpe[sz(e,cp)so]s Z{f6 .

9746 3=1 958 “o,0

Finally let m := max fe (te ), 8 :=~ logmand k := # 6 -1,
ei‘cp I(p l@
Then we have
IPBEMn #6815 k exp{-an} , for all 6 ¢ 8 . ]

The statement of lemma 7.1 is contained in th. 5.3.1 given in [Zacks (197131,
with a proof that is incorrect but easy to repalr. Since our situation is
less. general our proof is easier. However, the idea has been borrowed from
Zacks.

In th. 7.4 we use the maximum likelihood estimator to choose a Markov policy

fM € F such that on §:
n

z max{v(x,8) - v(x, G,f }Q (8) 2 min z 9.0, f)Q 9y .
6 x £¢F 6
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This bound is used implicitly to show that one has exponential convergence
in part 2 of the algorithm.

Theorem 7.2

Let £, ¢ F be an optimal policy for 6 ¢ 8 and let F = {fe,e ¢ B},
There are positive numbérs k and a such that

E [min | max{v(x,0) - v(x,08,£)}0 (6)] < k exp{-an} .
= ‘ n
fer 8 x

Proof.

For £ € F define A_ := {6 ¢ 8|v(x,8) = v(x,0,f) for all x ¢ X} and

4

Bf r= e\Af .

FPurther let A := max max max {v(x,8) - v{x,8,£}} .
fer 6 X

Note that

E [min 2 maxiv(x,8) - v{x,8,£)}0 (8)] £ A+ E [min Qn(Bf)J =
feF 6 X B q feF

= A E [min|P [2¢B
feF

Note further that:

flyl,...,yn]] .

min P _[Z € B |V, ,.0.,¥ 1<) 1, P [ZeB_ v, ..., Y]
Sl £ n 5 {Mn--@} q £g' 1 n

and, since Mn is a function of Yi""’yn (cf. 7.11), we obtain:

#

E _[min } max{v(x,8) - v(x,8,£)}0 ()] < &% [z ¢ B, ]
feF 68 x 4 Mo

L]

slarmie xa, 1.
8 M
n
Since 8 ¢ Ay for all 8§ € 8, we conclude that € ¥ Ag implies & # 9. Hence
8 9
loxa, Pe{e#ml.

M
n

Finally the desired result follows from lemma 7.1,
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7.2 Algorithm for models with known transition Law except for one state

In this section we assume that assumption 6.6 holds and that the set Ll is

a singleton (cf. 6.6). Hence the transition law is known except for one
‘state.

Throughout this section X = {0,1,...,N} and L, = {0}. Hence L, = {1,2,...,N},
The algorithm is also based on th. 6.5 and it consists of three parts again.
Each part is a modification of the corresponding part of algorithm 1.

We start with a discussion of these parts and afterwards we describe the
algorithm.

We start with part 1.

If we want to compute m:'qtzz;é Bnr(xn,an,yn W)t 8% (x,, 91 (cf. 6.7)
for some £ € F then we only have to specify the actions in the states of L2.
We shall use this property and therefore we introduce some useful notationsg:
7.12 (1) F = {f : L, > A|£(0) € D)) .

£f.0-1_n
1) e x) = mx[z" B"r (%_/B ¥

*
=0 )3, £eF, xel,.

n+i

(id) a 00 = EI8%1, £ferF’, xer, .

{iv) gix,e) := max*{cf(x) + df(x)e} . ee R , x €L, .
feF

As already noted in section 6.1 (¢f. 6.9), the determination of (Uob)(x,q)

%X € L, is an ordinary dynamic programming problem. To see this, extend the

statezspa.ce to {-1,0,1,...,N} and let p({-1}|0,a,y) := P({~1}]~1,a,y) := 1

for all a € A and y ¢ ¥. Further we define for this model r(0,a,y) := b{(0,q)

and r{~1,a,y) = 0 for a ¢ A and y € ¥, where q € W 1s fixed. It is easy to

verify that the value function of this model in x ¢ Lz equals (Ugb){x,q) of

the original model. Therefore we have

7.13 ' {Ucb)(x,q) = max_ {cf(x) + df(x)b(O,q)} = g(x,b{0,q}) , x ¢ L2 .
feF

Let two numbers e and e be fixed such that: e S v(0,q) < e for all q € W.

Note that, if mSr <M, mMe R thene :=m(l - B) > and & := M(1 - B)"

will do.

It is easy to compute g(x,e) for all e < e = e and X € Lz. This is due to

1

the following properties.

Lemma 7.3

For each x € X the function e - g(x,e) ig nondecreasing, convex and piece-

wise linear.
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The proof of this lemma is trivial.

It is a consequence of lemma 7.3 that for each £ ¢ E the set

fele £ e < e, glxse) = cg(x) + df(x}e} is a closed interval.
For x € I.2 and a € D(x) we define

7.14 (1) T(x,a) := 2 (X.a) Xpi(yle Yr(x,a,y) .

1) Pex'lxa) = 1 (x2) §p,ty|0)Px Hx,a,y) -
iel i ¥

{(note that these definitions are consistent with definitions 3.1 (4) and (e),

since Gi is a singleton for 1 # 1, i € I).

Lemma 7.4

* -
Let £ € F be optimal for some e,, e = e, < e, i.e. gix,e,) scf(x)~+df(x)e1,

for x € L2.

Then £ is optimal for all e ¢ [el,ezl and non-optimal for e > e, where

Ce {(x) - r{x,a) - B z P(x' !x,a)c (x')

7.15 e, := max [min { X €Ly 11,
ReL - d (x) +8 2 P(x’}x,a)d (x') + ﬁP(le,a)

2
X €L2

where the minimum has to be taken over all a € D(x) for which the
denominator is positive (the minimum over the empty set is infinite).

Proof.

Note that, for £ € F* and x € L2:

cglx) +d, (xle =r(x,£(x)) +8 J P(x’ [%,£(x)) {eg(x*) + d_(x') e} + BB (0]x,£({x))e.

x' €L2

Morsover for a = £{x} the denominator in 7.15 vanishes.
By Howard's policy improvement routine (cf. [Ross (1970), corollary 6.41)

the policy f ¢ F* is optimal if and only if for all a € D(x) and x ¢ Lzz
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celx) + d (x)e 2 ¥(x,a) + B Z P(x"x,a){c (x') + dg(x")e} + BP(0|x,a)e .
x'€eL
2

X
Hence £ ¢ F is optimal if and only if for all a € D(x) and x € Lz:

(*} ¢ (x)-—r(x,a) -8 2 P(x" |x,a)c (x') 2 ef- ag(x) +

x! €L2

+ B P Bx' Ix,a)a_ (x") +8E(0]x,a) }.

€L2

So, if the denominator in 7.15 is less than or equal to zero, then (*) holds
for all e > el, if it holds for el. On the other hand, if the denominator

in 7.15 1s greater than zero, then (%) holds for all e > e such that e is

less than or equal to the €ye
This proves the lemma. 0

According to lemma 7.4 we now have the following procedure to determine

g{x,*) for x ¢ L,. Compute for e; = ean optimal f € Fr. Then determine e,

2

by 7.15. If e, < e,

repeat this procedure. So €17€5,83,0.0 BYR computed. If during this process

- *
< e then compute for e, a new optimal policy £ € F and

e then we have to determine another optimal policy for the value

= e
e:_1 sgci that e, > e 1° Note that there always is such a policy (cf. lemma
7.3) and that we have to examine only finitely many Markov pelicies since X
and A are finite.

Let us denote the set of optimal Markov policies determined in this way by

- -
F. Using the values cf(x} and df(x) for x € L, and £ € F it is easy to

2
determine v{0,8) and optimal policies fe € F for8 ¢ 8 , so,
F = {fe ,0 €8} and v(0,8,£) for 8 ¢ 8 and £ ¢ F are easy to compute.

This concludes the discussion of part 1.

In part 2 of the algorithm a suitable horizon is determined.
Here we have to compute for g’ ¢ Wn(q) the value so(q‘) and afterwards
E(q,so,n) {(c€. 6.1t and th. 6.5).

However, eo(q') has a simple form in this case:

g(a') =hmin ] q(@){v(0,8) - v(0,6,0) .
feF 8¢

Therefore we have, in a way similar to 6.14:

7.16 E(q,eq,n) =k{ | q(0)v(0,0) - ) max ) q(9) 1 2 (yj]e yv(0,8,£) }.
0eB Yyreeeo¥y £€F 6¢0 g=
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1f {pi(-]el) . 91 € 81} is an exponential family, then we might use the nor-
mal approximation to approximate E(q,eo,n) {(c£. remark (iil) section 7.1).

In the final part of the algorithm the backward induction is carried out.

Here we use

7.17 (U b) (0,q) = max Xpl vy, [x(0,a,y) +BP({0}‘]013:Y)b(0:T1 Q@)+
>4
aed(0) y

+8 } P({x}io,a,y)ma:_;*{cf{x) +df(x)b{0:'l'1'y(q)}}3 .

xeL2 fepP

Finally we summarize the steps of the algorithm.

Algorithm 2

part 1 : parameter influence.

(a) Determine for all e « [9.53 an optimal f € F {cf. 7.12) and simultaneousw
1y cf(x} and df(x) for x € Lz. So ¥ and g{x,e) are determined for x ¢ L2
and ¢ S e 5 e.

(b} For all 8 € 6 compute v(0,9) and an optimal fe € F (using the results
of step {a)). Hence F is determined.

{c) Por all & € 8 and f ¢ F determine v (0,6,£)
part 2 : horizon determination.

(@) Compute w{0,q) = Iy g q(8) v(0,0).

(e) Set n := ny (no is a lower estimate of the horizon).

(£) Compute §:

§:= ] omin J qr 3p1(yjiel)v(o,e,f)} (cf. 7.16).
Yyreeor¥, fer 0¢B =1

{g) 1f &B"{w(o,m - 8} s A then go to step (h}, otherwise set n :=n + 1
and go to step (£} (A is the desired accuracy).
part 3 : backward induction.

(h) For q' € W (q) set : v, 0,q') := L{w(0,q') + £(0,g")} .

(L) Set k :=n ~ 1,

{j) For all ' ¢ wk(q) compute p{y.,q') and Ti'y(q‘) for all y € ¥, and then
compute
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v (0ig") = max ] py (v, [x(0,a,y) + BP({O}|O,a,vy , (O,Ty (gD +

aeD(0) ¥
+8 ) P{{x}|0,a,y) max {c (x) + d.(x)v (g'nll.
€L, ! £eF" ket 1y

(k) If k > O then set k := k - 1 and go to (3), otherwise go to ().

() FPor x € L, compute

2

vy (%) := max {cf(x) + df(x)vo(o,q)} .
feF

Note that g(x,q) = vc(x,q) is an approximation of v(x,q) of the desired

accuracy.

Finally we note that a modification to detexmine upper and lower bounds in
part 3 of algorithm 2 can be incorporated in a way similar to the modifi-
eation of algorithm 1. It is straightforward to modify th., 7.2 to show that

we have exponential convergence in part 2 of algorithm 2.

7.3 Numenical examples

In this section we present 5 examples. The first three examples illustrate
algorithm 1 (cf. section 7.1), and the last two examples illustrate algorithm
2 {cf. section 7.2).

Example 7.1 Imwentory control

We consider a well-known inventory control model. The model we studied in
section 5.3 {model 5A) is a special case.

The cost function is

c(x,a) = nxt + px + ki{a - x) + K{1 - §(a,x}} , K20 .

Here K represents the order cost or the cost for starting the production.
Note that the cost K is incured only if the inventory is brought to a higher
level. If K = 0 then we are dealing with model 5A again. In[Rieder (1972)]

it is proved that there is an optimal Bayesian Markov policy f of the follow-
ing form:
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7.18 £{x,q) = 8(q) if =x < s{q)
= X if x 2 s(q) , (®,q) e X xw
where s and S are measurable Ffunctions from W to the interval [O,M].
- (Note that s = S8 if K = 0). We specify the numerical data of the model,
In.this example the demand is binomially distributed.

plyje) = @myu-e>&y, yey=1{0,1,...,5},

and 8 ¢ 8 = {0.1,0.2,...,0.9},

The prior distribution g is uniform on 8, i.e. q({8}) = = for 6 ¢ 8.

O f b

The various costs are:
h = 0.%, p =5, k=3.

We consider two cases: K = 0 and K
B = 0.9.
In the tables below, we display the optimal strategies s(8) and {s(8),5(8))

1. Finally the discount factor is

for the models with known parameter values and the value function, at start-
ing-inventory level zero for the various parameter values. Further we dis-
play, for several horizons, the value E(g,e_,n) and finally we display the
optimal actions for the first 3 stages and the value function at inventory

level zero for the prieor distributions q' ¢ 02 Wn{q).

n=0

table 1 (K = 0)

8 c.1] 0.2 0.3 0.4 0.5] 0.6] 0.7] 0.8] 0.9

s(8) 1 2 3 4 4 4 5 5 5
v{0,6) 21 37 52 68 82 97 111 124 1137

(The optimal strategy, if & is known, is "order up to level s(B8) iff x < s{8)")

horizon n 0 1 2 3 4 S 6 7

E(q,e_sn) 3.6 1.7 1.1 6.8 1 0.6 | 0.5] 0.4} 0.3
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table 3 (K = 1)

6 0.1} 0.241 0.3| 0.4 0.5| 0.6| 0.7] 0.8} 0.9
s(6) 1 2 2 3 4 4 5 5
5(8) 2 3 4 5 5 5 5
v{0,8) 24 42 59 76 91 107 | 121 | 134 | 147

(The optimal strategy here is: “order up to S(8) iff x < s(8)").

table 4 (K = 1)
horizon n ] 1 2 3 4 6 7
E(q,e,,n) 3.2 1.5} 1.0} 0.8 0.6] 0.5] 0.4} 0.3

In table 5 we represent the posterior distributions q' ¢ Wn(q) by zri;l ¥ir

y; € ¥ {(cf. remark (iii) section 7.1).
table 5

TyogYy ol 1] 2| 3| a|s| e| 7| 8] 9| 10
n 1 4
ot slq) 0 5
0] v{0,q) 0 | 82
o s{q) 1 4
o} sy 1
0} v{0,q) 1190
1] s(a" 0 2 3 4 5 5 5
1] vigh) O |36 | 52 | 72 | 93 111 Ji25
1] s(g"} 1 2 2 4 4 5
1] 8(g") 1 4 5| 5 5
11 v{0,q") 1 41 58 80 101 120 |134
2] 8lq") 0 2 2 3 3 4 4 5 5 5 5 5
21 vig") 0 27 34 45 58 | 70 83 94 1106 117 1126 132
2] s{g") 1 1 2 3 4 4 4 5 5
21 8(g") 1 2 3 4 5 5 5 5 5 5
21 v(0,q") 1 31 39 51 65 78 a1 104 (116 (127 |136 |142
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(The optimal strategies are, if K = 0: "order up to s{(g') iff x < s(g')"
and if K = 1: "order up to S{g') iff x < s(g"'}").

Note that max{2(x,q) - w(x,q)} = E(q.e_,0).
x
It is remarkable that, although the variations in 6 > v(0,8) are large, the

upper and lower bounds on v(0,q) are very close.

Example 7.2 Replacement under additive damage

We consider the following replacement problem, In each time interval (n-1,nl,
n e 1J*, there is a random shock Yn' which is observed at time n. The random
variables Y ¥y ¥geee. are i.i.d., ¥ eYs= [0,%) and they act on the state of
the system in the following way:

7.18 X

*
1 = min{é(An,O)xn YLy } ,nem,

where X is the state of the system at time n, X ¢ X = [0,x"] and A is
the action at time n. The action space is A& = {0,1}. Action 0 means "do not
replace" and action 1 means "replace” the machine. D(x) := A for x ¢ [O,x*),
D(x) := {1}. Replacement takes place instanteneocus.

If the system is in state x* then replacement is more expensive than in the
other states. The costs are:

m(x)8(a,0) + Ré(a,1) , if OSx<x , aca

* *
= R , if X = X ; a €a

#

c(x,a)

where R > R. Here m(x) are the maintenance costs for one period, if the
state of the system 1s %, We assume that x * m(x), X € X is real-valued,
measurable and nondecreasing, and 0 = m(0), m(x*) < R. It is further as-
sumed that the distribution of Yn is incompletely known with density p(‘fe)
with respect to a o~finite measure v on ¥, with 8 ¢ 8 where 8 is a complete
separable metric space called the parameter space.

It is easy to transform this model inteo a Bayesian control model with index
set I a singleton (cf. example 2.3).

Before we consider numerical data we first establish a property concerning
" the form of an optimal strategy for this Bayesian control model. In lemma
7.5 we ghow that the optimal strategy is characterized by so-called control
limits in the following way. There is an optimal Bayesian Markov policy f
such that
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7.20 flx,q) = 0 if x5 slg)
=1 if x> s(q) ., (x,9) ¢ X x W,

where s is a measurable function from W to X.
{The values s(q) are called control limits).
The proof proceeds in a familiar way (cf.[Ross (1970), th. 6.9)).

Lemma 7.5

There is an optimal strategy of the form, given in 7.20.

Proof.

We first show that the value function v is nondecreasing in the first co-

ordinate.
Consider the sequence of successive approximations VorVytVorees of v where
Vg = 0, vy = Uvn-i' By th. 3.14 we have Il;:l;f: vn(x,q) = v(x,q), for

{2,q9) € X X W.
* %*
Note that, for 0 € x < x ,ge Wandne W :

{*) vn(x.q) =min{m({x) +8 f\) (dy)p(y,q)vn_l(min(x +y,x*} ;‘I‘y(q)) '
R+8 I

vi{dy)ply,q) Vo1 (min (y,x*) ,’l’y ant .

It ig easily verified that for ¢ ¢ W and n ¢ N
* * *
(%) v,(x.q) =R + 8 JV(dsr')p(y.q)vn__1 (minly,x ),Ty(q)) .

Hence X + v 1 (x,q) is nondecreasing , since % > m(x) is nondecreasing for

all q € W. Suppose that x + v __, (x,9) is nondecreasing for all q ¢ W. Then,
by (*), x =+ vn(x,q) is nondecreasing for all g ¢ W. Hence, by induction,

% vn(x,q) is nondecreasing for all g ¢ W and n € N and thereforeA x * v{x,q)
is nondecreasing for all q € W.

It is straightfoxward to verify that (x,q) > v, (x,q) is measurable and there-
fore, by (*} and an induction argument, (x,q) + v(x,q) is measurable {cf.
lemma 1.6 (iii)). Define, for x ¢ X and q ¢ W:

d(x,q) = m(x) + B J v{dy)ply,@)vimin(x + y:x*) rTy(q))

and
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blg) := R + B8 f v(dy)p(y,q)v(min(y,x*),Ty(q)) .

It is easy to verify that g - d(x,q) and g > b(g) are measurable for x € X.

Note that v satisfies the functional equation:
*
(*%x) V(X,q) = min{d(X:q) ,b(q)} ’ 0<x<x , q € W,
It is straightforward to prove that a strategy which chooses in each state
(x,q), 0 = x < x* and g € W, a mninimizing action in (***) is optimal.
Let
*
s(q) := sup{x|0 <x<x ,dx,q <£bl@l}.

If ¢ + s(q) is measurable, then the policy f defined in 7.20 is optimal.
To verify the measurability of g + s(q) note that for 0 £ a < x*:

{geW|s@ > al ={qewldx,q) <blg) for some x > a} =

{q € w|d(x,q) < blg) for some rational num-

ber x > al}.

Since g + d(x,q) and q > b(q) are measurable for all x ¢ X we conclude that

q + s(g), g € W is measurable. a

In the numerical example the following data are used: x*
all x € X, R=75, R = 125 and B = 0.95. Further ply|0)
forye ¥ ={0,1,...,9} and 6 ¢ 8 = {0.1,0.2,...,0.9}.

Hence, if we start the system in an integer x, 0 £ x < 25 then the state Xn

25, m{x) = 0 for
[+] -
(Y)Sg(l -9)97Y,

]
L

is always an integer (c¢f. 7.19).

The prior distribution g on 6 is the uniform distribution, i.e. q({e}) = %,
for 8 e 6.

In table 6 we display the optimal strategies for the models with known para-
meter values and the value function for a new machine, i.e. in x = 0, for

the various parameter values.

table 6
6 0.1 0.2 ] 0.3 0.4| 0.5| 0.6 0.7 0.8 0.9
s(6) 5 7 9 10 11 12 13 13 14
v{0,9) 461 546 | 600 | 639 | 670 | 693 | 714 731 745

(the optimal strategy, when 6 is the true parameter, is "replace iff x > s(0)").
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in table 7 we show for several horizons n: E(q,sw,n).

table 7

‘horizonn | © 1 2 3 4 5 6 7 8 9 | 10
E(ge_m)| 6.7] 2.9 t.9] 1.5] 1.2 1.0 0.9] 0.8] 0.7] 0.6 0.5

Finally we show in table 8 for all q' ¢ Ui=0 Wn(q) the optimal control limit

s{g') and the optimal value v(0,gq'). As in table 5 we represent q' ¢ Wn(q)

n
by Zjg ¥ r ¥g €Y.

table 8
121. n
b'g n=20 n=1 n=2 z v n=2
i=1 i i=1 i
s(q") vi0.q") Bla")| v(0,q')|s(g")| v(0,q") s{q')| v(0,q")
0 10 645 6 495 5 472 10 11| 679
1 529 6 483 11 12 | 691
2 574 6 506 12 13| 702
3 9 615 7 535 13 13 | 712
4 10 649 8 566 14 13| 721
5 11 675 9 593 15 13| 730
6 12 698 9 615 16 14 | 736
7 13 716 10 634 17 14 | 740
8 13 730 11 651 18 14 | 743
9 14 738 11 666

Example 7.3 Heads or tails

We consider a simple game with only one player, who may choose heads (action 1)
or tails (action 2) of a coin with unknown probabilities: the probability

of heads is 6, 0 s 8 < 1, The system has two states and only in state ! the
player has a choice. In state 2, the system stays there with probability ©

or it goes to state 1 with probability 1 - 0. If "heads" has been chosen then
the system stays in state 1 with probability § and if "tails" has been chosen
then it remains in state 1 with probability 1 - 6. Otherwise the system

moves to state 2.
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only in state 1 an immediate reward 100 is cbtained, independent of the
action chosen., The discount factor is B = 0.9, and the prior distribution g
on@ =[0,1] is:

1

q({-i%}) =5 fri=1,2,..9.

It is easy to transform this problem into a model considered in section 7.1.
At first glance cne might think that the optimal strategy is: "if the system
is in (1,&) then choose heads if f aa(ae) 2z ¥ and choose tails otherwise"
(Qew.

However,iif we consider a prior distribution which is concentrated on the
set {0,1}, then it is straightforward to verify that the action “heads" is
optimal in state (1,§) if and only if g({1}) 2 +—mb

2-8 "
In table 9 the optimal actions and the value function are displayed for the

models with known parameter values. In table 10 we present, for four horizons
and all possible posterior distributions, the value function in state 1, the
upper and lower bound in state 1 and the optimal action. Note that there is

a one-to-cne correspondence between the posterior distributions and the
number of "heads" for each horizon.

table 9
8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
action (in 1) 2 2 2 2 lor2 1 1 1 1
v{1,0) 210 820 730 640 550 561 578 609 678
table 10
horizon n | number of | 2(1,*) v(l,*) wi{l,*) action
heads
0 o] 568 639 675 1 {heads)
0 589 611 631 1
i 670 687 718 2({tails)
2 0 604 611 622 1
1 562 616 649 1
2 739 744 758 2
3 0 616 618 623 1
1 575 595 617 1
2 636 652 682 2
3 781 783 788 2
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For the horizon n = 14 we have ]quewtgn)] = 8.5. Note that the range be-
tween the upper and lower bounds are relatively large compared with the

examples 7.1 and 7.2.

Example 7.4 Taxi driver's problem

We consider a model that fits into the setting of section 7.2. At the cab-
rank a taxi driver 1s offered a run of size Yn € ¥ ¢ N, at each stage n.

If he accepts this run he will be away for Yn gtages and if he refuses the
run he remains in the cab-rank. The random variables Yl'YZ'YS"“ are i.i.d.
and observable if and only if the taxi driver is in the cab-rank. The distri~
buticn of Yn iz incompletely known. Only at the cab-rank the taxi driver
chooses an action a € 2 = Y. Action & means: "accept all runs larger than
or equal to a and refuse the runs smaller than a". Only if he accepts a run
of size y € Y he obtains a rewaxd r(y), where y > r(y) is nondecxeasing,.

To transform this model into a Bayeslan control model define the state space
X by

X =0} v {mX| k=1,.e.,n =1, ne N}
and the transition law by:
p({n, k+1)} (n,k),a,y) =1 for 1 <k<n-1, nke N,
p({0} tn,n-1),a,y) = 1 forne W™,
p{(n,10}0,2,n) = 1 forne N,

Note that, if the system is in state (n,k), 1 £ k € n-1, the taxi has been
away for k time units on a trip of n time units in total. Further p(-[e}

is the probability density of Y, with respect to the counting measure on W,
for © ¢ 8, where 8 is the parameter space.

We consider the operator Uy {(cf. 6.7) and we obtain the optimality equatioh
for the taxi driver's problem:

v(0,q) = supl § ply,@){r(y) + BYv(0,T (@)} + 8 § ply,@)v(0,T (@1.
aed yza ¥ y<a ¥
In the numerical example we used the following data:
Y= {1,2,...,10}, zly) = &, yeyY, B=20.,9,
p(y|8) = b(e)rexpl- (y - %), y e ¥, 8 ¢8=11,2,...,10}

- - a2yl
where b{8) = (zyeY expl{~- {y - 8)°h .
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The prior distribution g is uniform, i.e. g(®@) = 0.1,

Note that {p(*

one correspondence between W_(q) and "

i=1 Yi'¥y

B6eB,

0}, 8 ¢ 8} is an exponential family and there is a one-to-

ly. € ¥} (cf. 7.1). In table 11

we display optimal strategies and the value function v in state 0 for the

models with known parameter values.

In table 12 we display for several horizons n the value E(q,eo,n) (cf. 7.16).

This guantity is obtained using normal approximation (cf. remark (iii),

section 7.1) for n » 5.

table 11
G} 1 2 3 4 5 6 7 8 9 10
action | 2 3 4 5 6 7 8 9 10 10
v{0,0) 6 16 43 118 321 874 2376 6448 15997 21207
table 12
horizon n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E(q:ao,n) 327 253 153 125 B0 64 44 36 25 20 13 1t 8 6 )

For all q' ¢ wl(q) U W,(q) the value function in (0,q"), v(0,q') and

optimal actions are shown.

n
presented by Zi=1 Yir ¥y € Y.)

the

(Note that each posterior distribution is re-

table 13

n =0 vig) = 4508

n=1 ¥y 1 2 3 4 5 6 7 8 9 10
v{0,q9")} 17 49 134 366 995 2697 6992 14960 19859
action 3 4 5 6 7 8 9 10 10 10

n=2 ¥y * ¥, 2 3 4 5 6 7 8 9 10
vi0,g*y| 6 9 15 28 44 76 120 209 326
action 2 3 3 4 4 5 5 6 [
Yyt Y, 11 12 13 14 15 16 17 i8 19 20
v(0,q') [568 887 1544 2412 4187 6493 10665 15704 19100 20798

actien 7 7 8 8 9 2

10 10 10 10
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Example 7.5 Compound replacement

We consider another model that fits into the setting of section 7.2, Con~
sider a replacement problem with two types of machines. If the controller
decides to replace his machine he is not sure of what type the new machine
will be. The probabilistic behaviocur of both types of machines is known.
However the probability of obtaining a machine of type 1 is 6 ¢(0,1), and

a machine of type 2 is 1 - 6. The parameter & is unknown. We first describe
the machines. The life time of a machine of type i (1 = 1 or 2} is geometric
with parameter Pyr Py = 0.9 and p, = 0.8. If a machine is "alive" at stage n
the controller may replace it {(action 1) by a new one (of type 1 with pro-
bability & and of type 2 with probability 1~ €). The costs of such a re-

= 10, C, = 21. If the controller decides

1 2
to keep the machine i at stage n he has to pay maintenance costs mi(n) with

placement are < for machine i: €

probability Py and he has to pay costs for an emergency replacement Ri with
probability (I - p;). Here m (n) = 3(5 + N2 -3frnemw,

my(m =4+ 1D?, ne N, R =10and R, = 25.
The discount factor is B = 0.9.

We transform this model into a Bayesian control model in the following way.
Let ¥ = {0,1} and p(y|®) = 6¥(1 - 1Y, y e v, 6¢(0,1). Let
x={0}u{@,m|i=1{1,2}, ne 1"} and a = {0,1}. State (i,n) means that
we have a machine of type i of age n. State 0 means that we are replacing

1

the machine. The actions have the same meaning as in example 7.2. The trans-

ition law is given by

P{(i,n + 1)} (i,n),0,y) = p; -

P({0} ti,n),0,y) =1 - p; -

P({O}| (i,n),1,y)

n

1, ie{1,2}, nenN” and all yev .

P({(y,1)}0,0,7)

ft

P{ty.D}o, 1,9y =1, yev.

The cost function is:

c({i,n),0) = pimi(n) + (1 - pi)Ri .
cldm, )y =¢c, , ie{1,2}, newm”.

c{0,0) =c(0,1) =0 .
We consider the operator U, {c£. 6.7). It is easy to show, in a way similar
to the proof of lemma 7.5 that the "interesting” strategies in the set F*
{cf. 7.12(1)) are characterized by two control limits n,.m, € nw* such that
the controller chooses action 0 if and only if the system is in state (i,n)
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with n < n,. i € {1,2}. This means that in 7.13 the maximizing £ ¢ Fr is
found in this class, for all admissible scrapfunctions b.

Using this property, we find the optimality equation (cf. 7.17):

7.21 v{0,q) = Bp(l,g)min {A
neEJ

g )+ B, (n)v(O,T Qi1 +

+ Bp(0,q)min {A (n) + B, (n)v(C,Ty(q))}

neni
where
n-1
A =) Gp)  Hpm ) + 4 - porY + B e
i 5y Py By PRy Py i
et g-1 n-1 *
B, () uszg_l(spi) (1 -pg) + Bp) "~ , ie{1,2}, newW

(here Ay (n) equals Ce {i,1}) ana E (n) equals d t{1,1}) where e and df
are defined in 7.12 and fer is the strategy that replaces only in

states {i,k} with k 2 n}.

In the numerical example we have modified the model in such a way that the
state space X becomes finite: in states (i,10), i € {1,2} we allow only the

action 1, i.e. we always replace the gystem in these states.

The prior distribution g is given by: q({JL = ; r d=14, 2,...,9.
Hence all posterior distributions are concentrated on the set {10 reses 19}
In table 14 we display the values v(0,8), 8§ € 8 and the optimal strategies
for these parameter values. The strategies are characterized by pairs of
numbers (nl,nz) indicating the control limits for both machines.

After that, in table 15 we display the wvalues E(q,eo,n) (c£. 7.16) for

several horizons n.

table 14
8 0.1 0.2 0.3 (0.4 0.5 0.6 |0.7 |G.8 |0.9
v (0,06} 87 79 71 64 | 57 51 45 32 34

n 10,6 10,5 |10,5 |2,4 | 9,4 8,3 (7,2 [7,2 |8&,2




173

table 15

horizon 1 2 3 4 5 6 7 8 S 110 |11 12

E(Q:EO,n) 56 46 40 35 30 27 25 23 20 19 18 17
x 0.01

Hote that each posterior distribution 5 of g is completely characterized by
the number of times the replaced machine is of type 1, i.e. 22:1 Yy deter-
mines the posterior distribution. In table 16 we display, for the first 7
stages, the value function in (0,&}, v(o,a) for E € Ui=0 Wn(q) and the
optimal control limits ny and n, for the two types of machines (for example

ifn=2and iy, =1, thenn, =7, n, = 3 and v(0,d = 48).
table 16
Tet¥i|l 0 | 1 2| 3| a] 5| 6
n

0 49
7,3

1 56 | 42
7,3 | 6,2

2 60| 48| 38
83| 7,3] 6,2

3 631 53| 43| 35
8.4 7,3| 6,2| 6,2

3 &5 | 57| 48| 40| 32
8.4 8,3| 7,3 6,2] 6,2

5 56| 60| 52| 45| 38| 33
8,4 | 8,3 7,3 7,2| 62| 6,2

3 67| 62| 55| 48| 4z| 361 32
9,4 | 8,4 7,3| 7.3| 6.,2| 6,2| 6,2
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APPENDIX A. RESULTS FROM ANALYSIS

1. Analytic sets, semi-analytic functions and nelated subjects

We summarize some pertinent facts about analytic sets and semi-analytic

functions. For analytic sets we refer to [Parthasarathy (1967)]. Similar
summaries are found in [Blackwell,Freedman and Orkin (1974)] and [Shreve
(19773 1.

Let N be the Cartesian product of countably many copies of na* where Iﬂ* is
endowed with the discrete topology and N with the product topology. Let X
be a complete separable metric space.
A subset A ¢ X is called analytic if there is a continuous function from N
to X with £(N) = A, moreover @ is analytic. The following properties hold.
The proofs are found in [Parthasarathy (1967) chapter I section 31]).
Al Each Borel subset of a Borel space is analytic. ‘
A2 Countable unions, intersections and Cartesian products of analytic sets
are analytic.
A3 If A and B are analytic subsets of Borel spaces (X,X) and (¥,Y) respect~
ively and if f is a Borel measurable function from X to Y then £(a)
and f-i(B) are analytic.
As a consequence of A3 we have:

A4 If A is an analytic subset of X x Y then pron(A) is analytic.

Let {X,X) be a Borel space. For each p ¢ P(X) we have the o-field
X :={B uBA|B ¢ X, and there is a C ¢ X such that A c C and p(C} = 0} .

L.

X . is called the completion of X with respect to p. The unZversal o-field

U, is defined by U := n X . A e U, is called universally measurable.
X peP (X} P X
Every analytic subset of a Borel space is universally measurable.

For a proof see [Christensen (1974) th. 1.5 or th. 1.7].
46 For each probability p € P(X) where (X,X) is a Borel space, there is a

b

unique extension p* on Ux' And for each real-valued function f on X
which is Ux-measurable there is for each p ¢ P(X) an X-measurable function
f such that £ = £ p-a.s. {the proof is straightforward).

A7 Kuratowski theorem (see [Parthasarathy (1967) chapter I corollary 3.31]).
If (X,X) and (¥,Y) are Borel spaces and £ : X » Y is Borel measurable
and one-to-one, then £(X) is a Borel subset of Y and £ | is Borel

measurable.
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Let (X,X) be a.Borel-space: A real-valued function £ on X is called lower
semi-analytic (l.s.a.) if {x|£(x) < ¢} is analytic, for ¢ ¢ IR, and f is
called upper semi—analytic {u.s.a.) if -f is l.s.a.

The following .properties hold.. -

A8 If £ and g are l.s.a, (u.s.a.) then £ + g is l.s.a. {u.s.a.) If fk
k € N are l.s.a. then inf f is l.s.a. and if £,k ¢ l@ are UsSaas

then sgp £, is u.s.a.
Proof.

Note that: {x|£(x) + g(x) < ¢} = v {x|f(x) <y, g(x) < ¢ - y} where Q is
yeQ
the set of rational numbers. Further {xliﬁf £ (x) <cl = U{xlf (x) < cl.

So by A2 the statement has been proved for l.s.a. functions. For u. Sea.
functions the proof follows from the definition. B ‘ 0

29 - Let (X,X) and (¥,Y) be Borel space, and let g : X = Y be a Borel function
and -£-a l.s.a. (u.s.a.) function on.¥. Then £ ¢ g is l.s.a. (Q.s.a.).

Proof.

Let £ be i s‘a.

Then {y]f{y) < ¢} is analytic, for ¢ ¢ IR. Hence {x|£(g(x)). < c} =

{x[g{x) € {y]f(y} < c}} is analytic, by A3. ) ]
Similarly if £ is u.s.a. - L - o

Al0 Let x, X) and (Y Y) be Borel spaces and £ ¢+ X x ¥ » IR be bounded from
aboveé and measurable /l.s.a. /u.s.a. Further let P be a transition prob-
ability from X to Y. Then the function x> f f(x.y)P(dy[x) is measurable/

1.s.a. {u.s.a.
" Proof.

If £ is l.s.a./u.s.a. the proof can be found in [Shreve (1977) th. 2.41].
Nete that-a function is measurable if and only if it is both l.s.a. and

u.s.a., which proves the statement if f is measurable. - B
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A1l If £ is l.s.a. or u.s.a. then £ is universally measurable.
{the proof is trivial).

2. Semi-continuous functions and measurable selections

Let X be a metric space. A real-valued function £ on X is called upper semi-—

continuous (u.s.c.) at x, € X if lim sup £lx) = £(xy) for any sequence
neres

{xnlxn € X, n ¢ N} such that lim %, = X, and £ is called lower semi-contin-

wous (l.s.c.) if ~f is u.s.c. e

a12 Let £ be u.s.c., on the metric space X. Then there is a nonincreasing
sequence of bounded continuous functions {fk' k € N} on X such that

lim £ = £.
kv
For a procf see [Hausdorff (1957) sectiom 4.2].
Al3 If £ and g are u.s.c. {l.s.c.) then £ + g is u.s.c. (l.s.c,)., If
{fk, ke N} is a nonincreasing sequence of nonpositive u.s.c. func-
tions then £ := lim £ 1is u.s.c.
e Kk
For a proof see [Hinderer (1970) page 32].
214 Let g be continuous and nonnegative, and let £ be u.s.c. {l.s.c.) and
bounded. Then f.g is u.s.c. (l.s.c.).
For a proof cf, [Hinderer (1970) lemma 5.5(ii)].
Al5 Let X and Y be metric spaces, g a continuous function from X to ¥ and

£ is u.s.c. {l.s.c.) on ¥. Then g ¢ £ is also u.s.c. (l.s.c.).

Proof.

Let x € X {n € D) withlim X, = Xge Then, since lim g(xn) = g(xo):
n-e nw

lim sup £(g{x)) < f(g(xo)). 0

n-oe

216 Let A be an index set and let fk' k € A be l:s.é. Then sup fk is l.s.c.
kea

If £

K’ k € A is u.s.c. then inf £ is u.s.c.

kea k

Proof.

let x € X, ne€ N and limx_ = x.. Then
n n o}
n-re
lim inf sup £, (x) 2 lim inf £ (x) = £, (x;) for all k € A. W]
e kea e
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We continue with a result of Schdl on measurable selections. We first intro-

duce some notations.

Let (X,X) and (A,A) be Borel spaces.

L(X x A) := {f : X x A » R| £ is bounded Borel measurable and a + £(x,a) is
continuous}.

L xa) «={f:xxa *-IR[ £ is Borel measurable, bounded from above and

£ is the limit of some nonincreasing sequence of functions fn € L(X x A)}.
Al7 Let A be compact and £ ¢ ﬁ(x X A). Then there is a measurable mapping
g : X » A such that

£(x,g(x)) = max f£(x,a) .
' ach

For a proof see [Schdl (1975) th. 12.1].
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APPENDIX B, REMARKS ON THE MINIMAX CRITERION

Consider the Bayesian control model (cf. 2.1). Instead of rating the
strategies 7 € Il by their Bayesian discounted total returns (cf 2.12) we
might say w* is at least as good as 7 in state x, if

inf v(x,e,n*) 2 inf v(x,0,m) .
6eB 0e8

* . o
Let ¢ 2 0. A strategy 7 € Il is called e-minimax in state x ¢ X, if

inf v(x,e,vr*) 2 sup inf v(x,98,7) - € .

6eb well 0eB
A O-minimax strategy is simply called minimazx.
A term "maximin" would be preferable, however in statistical decision theory
the term "minimax" is current since one is interested in minimizing the ex-
pected loss instead of maximizing the expected return (cf. [Wald (1947)1).
We shall discuss a nice property of the Bayes criterion, which the minimax
criterion does not have. Let T = (ﬂo,ﬂl,...) € T be an optimal strategy for
the Bayes criterion, if the process is started in state x € X and if
q € W is the prior distribution. Let the history at stage 1 be (x,a,y,x') €H

1
and define similar to 3.22 the "tail-strategy" o= (ﬂ;,ﬂ:,...) by

*
“k(.|x0,ao,y1,x1,...,yk,xk) :=nk+1(-|x,a,y,x0,ao,y1,x1,...,yk,xk)

for k € IN. Then it is easy to verify that the strategy w is optimal for
the Bayes criterion if the process is started in x' with respect to the

prior distribution zisI 1K1(x,a)Ti'y(q).

Hence the decision maker, who chooses a strategy that is optimal for the
Bayes criterion, uses at each stage a strategy that is optimal for the Bayes
criterion from that stage on, with respect to an "updated" prior distribution.
In fact this property is the well-known "principle of optimality"”, for the
equivalent dynamic program (model 2). In [Groenewegen (1978) 1] this principle
is studied extensively . The property discussed above, enables us to compute
the value function and the optimal actions by backward induction.

However, we show by an example that the minimax criterion does not have this
property. A decision maker, who prefers the minimax criterion might be con-
sidered as a pessimist. However in the example he seems to forget his pes-
simism after one transition.

Another unpleasant property of the minimax criterion is that we may not
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restrict our attention to the nonrandomized strategies. In the example it

turns out that none of the nonrandomized strategies is optimal.

Example.

We start with an informal description.
Only in states 0 and 1 there are two
actions. In all other states the tran-
sitions are deterministic. If the decision
maker chooses action 1 in state 0 then the
next state will be 1 with probability 6
and 2 with probability 1 - 6. If he
chooses action 2, then the system moves to state 1 with probability 1 - 8

and to state 2 with probability 0. In state ! the two actions have the same
effect with respect to the states 3 and 4. The parameter 6 is unknown. In
state 2 the reward is large compared with the rewards in the other states.
This causes the "least favourable" parameter value for each strategy to

be completely determined by the action chosen in state 0, if he starts therxe.
We continue with a formal description of the example in terms of model 1.

x = {0,1,2,3,4}, ¥ =1{0,1}, a={1,2}, D(®) =D() = A, D(3) =D(2) =
=D(4) = {1}, 8 = {0.1,0.9} and I is a singleton. The transition probab-
ilities are determined by a function F : X X A X Y » X in the following

way P({F(x,a,y)}|x.a.y) =1 (cf. example 2.3 chapter 1):

F(0,1,y) 16(1,y) + 26(0,y) ,» PF(0,2,y) = 28(1l,y) + 18(0,y)

P(1,1,y) 38(1,y) + 48(0,y), F(1,2,y) = 486{1,y) + 38(0,y) and F(2,1,y) = 4,
F(3,1,y}) = 3, F{4,1,y) =4 for all y ¢ ¥.

Further ply|e) = 6¥(1 - &)Y for y ¢ v and 6 ¢ 6.

The reward function r is given by

r(0,1,y) =8, r(0,2,y) =1, z(l,1,y} = 25, r{1,2,y) = 20
r{2,1,y) = 200, x(3,1,y) =2, x{4,1,y) = 14 for all y € ¥, and the discount
factor B = &. We omit y in the notation for r. First we consider a decision

maker who starts in state 0. Any strategy for him can be characterized by
three numbers a, b, and c. Here a is the probability of choosing action 1
in state 0, b the probability of choosing 1 in state 1 if in state 0 action
1 is chosen, and ¢ is the probability of choosing action 1 in state 1 if in
state 0 action 2 is chosen.

Let v(0,8,(a,b,c)) be the expected discounted total return in state 0 for

the strategy given by a, b and ¢, if 6 is the true parameter value. It is
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straightforward to verify that

<] v{0,0,(a,b,c))

0.1 ] a(0.73b - 6.57¢ + 83.32) + 6.57c + 22.14
0.9 a(-2.07b + 0.23¢ - 65.48) ~ 0.23c + 98.94

Note that, for fixed b and c, the maximum over a ¢ [0,1] of min v{0,8, {(a,b,c))
is attained for 80

= 76.8 - 6.8¢c
148.8 -~ 6.8¢ + 2.8b

a

and

76.8 - 6.8¢ ,
146.8 - 6.8¢ + 2.8b"

flb,¢) := max min v{0,0,(a,b,c)) = 0.73b~6.57c +83.32) +

a 8
+ 6.57¢c + 22.14 .

Purther note that f£(b,c) attains its maximum over (b,c) ¢ [0,1]2 in a bound~
ary peint, It turns out that the optimal pair (b,¢) is (0,1}, and

£{0,1}) = 65.54 (.. .

Hence the optimal strategy is: a = 0.49... , b=0and ¢ = 1,

It is easy to verify that all nonrandomized strategies are less good than
this strategy.

Next we consider the minimax strategy for the situation that a second deci~
sion maker starts in state 1. Suppose this second decision maker has

the same information concerning the unknown parameter as the first decision
makexr, i.e. he performs a Bernoulli trial with parameter 6. Hence he works
with the conditional distribution, given this observation, However, since
this experiment 1is independent of the process, it does not change the tran-
sition law for the second decision maker.

{(Note that if the parameter set would be {0,1} then the obgervation of the
experiment would reduce the parameter set to a singleton.)

The strategies for the second decision maker are characterized by the prob-
ability d of choosing action 1. Note that

8 vi{l,6,{d))

0.1 37.84 4+ 23.2{(1 -~ Q)
0.9 |28.2d + 32.8{1 - 4)
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Hence the optimal strategy is: d = %,

8o, if the first decision maker reaches state 1, he does not randomize but he
chooses action 2 if he has chosen action 1 in state 0, otherwlse he chooses
action 1, and the second decision maker randomizes between the two actions
with probability %. The first decision maker acts in state 1 as if he knows

the true parameter in state 1.
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SAMENVATTING

In dit proefschrift wordt een onderzoek naar Markov beslissingsprocessen
met een discrete tijdsvariabele en een onvolledig bekend overgangsmecha-
nisme beschreven.

Alvorens de resultaten van dit onderzoek te begpreken wordt een schets van
het begtudeerde model gegeven.

Beschouw een systeem bestaande uit sen toestandsruimte X, een supplementaire
toestandsruimte Y en een actieruimte A. De onbekendheid van het overgangs-
mechanisme wordt tot ulting gebracht door een parameter 6 ¢ 8,

Voor de eenvoud wordt in deze samenvatting verondersteld dat de verzamelingen
X, ¥, A en 6 eindig zijn. Op tijdstip n € W is de toestand van het systeem
xn, de supplementaire toestand Yn en de actie An‘ Het overgangsmechanisme

heeft de gedaante

P LY =¥, X, =x'|Xx =x, 2 =al= P(X'|x:a:Y)iZlei(xoa)Pi(YWj,) '

x,x' € X, ye ¥, acah, ei € ei en 9 = igIBi.

Hierbij is P een overgangswaarschijnlijkheid van X X A x Y naar X, I een
index verzameling, {Ki, i € I} een partitie van X X A en y - pi(ylei) een
kansdichtheid op Y voor alle 1 € I en ei € 61. Hoewel dit overgangsmechanig-
me op het eerste gezicht nogal bijzonder lijkt zijn veel bekende modellen op
deze wijze te formuleren. Bijvoorbeeld Markov beslissingsprocessen met af-
telbare toestands- en actieruimten en volledig onbekende overgangswaarschijn-
lijkheden, voorraad modellen met onbekende vraag-verdeling en lineaire sys~-
temen met stochastische storing waarvan de verdeling onbekend is, kunnen op
deze wijze geformuleerd worden.

Verder is er een opbrengst functie r : X X 34 ¥ ¥ + IR, Een strategie 7 is

een voorschrift waarmee op ieder tijdstip n € N een actie An € A geselec—
teexd wordt, slechts gebruikmakend van de historie van het proces tot tijd-
stip n: xo, 0,Y1
en parameter 9 ¢ 6 bepalen een kansmaat en daarmee de verwachte opbrengst

,XI,AI,...,Yn,Xn. Iedere strategie w, starttoestand x € X

op tijdstip n: Ezte[r(xn,An,Yn_l_l)].

Daar deze grootheid nog van een onbekende parameter afhangt wordt er een
kansverdeling q op 6 gekozen. Deze kansverdeling kan volgens de Bayesiaanse
methode beschouwd worden als een a priori=verdeling en volgens de beslissings-
thecretische methode als een gewichtsfunctie, die het belang weergeeft dat
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de bestuurder van het systeem aan de verschillende parameter waarden hecht.

Om strategie@n met elkaar te vergelijken worden twee criteria gehanteerd:

(1) de totale verdisconteerde opbrengst van een strategie T bij start in
x ¢ X

vixoqm) = § B ] q@) E"

o oo x,e[r(xn,zsn,ynﬂﬂ} , B ¢ lo,n
€

%M8

{1i) de gemiddelde opbrengst van een strategie 7 bij start in x € X:

N-1
1 T
liminf = § {] q(8) B [r(x ,a,¥

—— n=0 6¢@ %9 n B ont

BRI

De onbekende parameter kan nu beschouwd worden als een stochastische groot-
heid 2 met kansverdeling g. Het beslissingsproces blijkt equivalent te zijn
met een Markov beslissingsproces (ock wel dynamisch programma genoemd) met
een bekend kansmechanisme, een toestandsruimte X X W en een actieruimte A,
waarbij W de verzameling van alle kansverdelingen op @ is. Op tijdstip n ¢ W
is de toestand van dit equivalente systeenm (xn,gn) waarbij Xn de toestand
van het corspronkelijke systeem is en Qn de a posteriori verdeling van Z is,
d.w.z. de voorwaardelijke verdeling van Z gegeven (XO,AG,Yl,xl,Al,...,Yn,xn).
In hoofdstuk 2 wordt een formele definitie van het model gegeven. Hierbij
ziin X, ¥, A en 8 Borel deelverzamelingen van volledige separabele metrische
ruimten. Verder wordt in hoofdstuk 2 het proces van a posteriori-verdelingen
bestudeerd. Het blijkt dat deze a posteriori-verdelingen met kans 1 conver-
geren naar de verdeling op € die geconcentreerd i1s in het punt 2, indien

met kans 1 iedere verzameling K., i € I oneindig vaak bezocht wordt door het

i

systeem (d.w.z. T (xn,An) = @ met kans 1 voor alle i € I). Dit resul~

n=0 1K
taat wordt in hoofdstuk™4 gebruikt om te bewijzen dat bepaalde strategieé&n
optimaal zijn en in hoofdstuk 6 om de convergentie van approximatie methoden
te bewijzen.

In hoofdstuk 3 worden twee nogal technische onderwerpen behandeld, In de
eerste plaats wordt hier de reeds gencemde equivalentie met een llarkov be-
slissingsproces met bekend kansmechanisme bewezen. Vervolgens wordt een
klasse van successieve~approxXimatie operatoren voor algemene Markov be-
slissingsprocessen bestudeerd. Van deze operatoren worden enige nieuwe eigen—-
schappen afgeleid die later, in hoofdstuk 6 gebruikt worden.

In hoofdstuk 4 worden eenvoudig te hanteren strategieé&n geconstrueerd die,

ondexr enige recurrentie voorwaarden, optimaal zijn wvoor het gemiddelde op~-
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brengsten criterium. Bij deze strategieén moet de bestuurder op ieder tijd-
stip n ¢ N een actie kiezen die de functie a » Zeee Qn(e)F(xn,G,a) maxi-
maligeert. Hier is F : X X 6 x A - IR een functie met de eigenschap dat
een strategie die in elke toestand x € X een a(x) ¢ A kiest zodanig dat
F(x,0,a(x)) 2 F(x,0,a) voor alle a ¢ A,optimaal is; als de parameter 6 € 8
bekend is. Deze strategieén worden "Bayesian equivalent rules" gencemd. In
de bestudeerde gevallen is zo'n functie F steeds eenvoudig te bepalen.
In hoofdstuk 5 worden voor drie speciale modellen Bayesian equivalent rules
geconstrueerd die optimaal zijn met betrekking tot het totale verdisconteerde
opbrengsten criterium. Een van deze modellen is het lineaire systeem met
kwadratische kosten en storing met onbekende verdeling. Een ander model
is een eenvoudig voorraad model waarbij de verdeling van de vraag onbekend
is. Hier wordt ook een schatting gegeven van het verlies dat geleden wordt
als de Bayesian equivalent rule gebruikt wordt terwijl deze niet optimaal
is.
In hoofdstuk 6 worden approximaties van de criterium functie V voor het
totale verdisconteerde opbrengsten criterium afgeleid. Hierbij is

Vi{x,q) := sup v(x,q,T), X €X,geW.

i

Er worden onder- en bovengrenzen voor V gegeven. En voor speciaal gestruc-
tureerde modellen worden deze gebruikt om successieve approximaties van
V(x,q), voor een vaste g € W, te krijgen met iedere gewenste nauwkeurig-
heid. De convergentie van de successieve approximaties berust mede op de
convergentie van de a posteriori verdelingen.
Tenslotte worden approximaties gegeven voor lv(x,q) - V(x,¢)| waarbij g een
willekeurige a priori-verdeling is en ¢ een discretizering van q is, d.w.z.
6 wordt opgesplitst in een eindige partitie Bl""'Bk' in elke verzameling
Bj wordt een representant ej gekozen en dan wordt ¢({ej}) 1= q(Bj) gede~
finieerd, 3 =1,...,k.
In hoofdstuk 7 worden algorithmen gegeven die gebaseerd zijn op de approxi-
maties die in hoofdstuk 6 zijn behandeld en er wordt aan de hand van een
aantal numerieke voorbeelden aangetoond dat deze approximatiemethoden effi-
ciént zijn. Met deze methoden kunnen veel grotere problemen behandeld wor-
den dan met de in de literatuur bekende methoden, althans voor speciaal ge-

structureerde modellen.
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Stellingen
bij het proefschrift

Bayesian control of Markov chains

van

*
K.M. van Hee

1

Beschouw een dynamisch programma in de zin van sectie 3.2 van dit proef-
schrift, met Borel deelverzamelingen van volledige separabele metrische
ruimten als toestands~ en actieruimten.

Indien voor elke starttoestand het supremum over alle zuivere Markov
strategiedn van de verwachte som der positieve opbrengsten eindig is, dan
is het supremum over de zuivere Markov strategieén van de verwachte som
der opbrengsten gelijk aan het supremum over alle strategieén.

ref. [5].

2

Voor het benaderen van de optimale~waarde functie van een optimaal~-stop
probleem voor een Markov keten, convergeert de strategie-verbeterings-
methode van Howard soms ook in situaties waar niet voldaan is aan condities
die conﬁergentie van deze méthode garanderen voor dynamische programma's

in het algemeen.

ref. [11, [7].

*(referenties zijn na stelling 14 vermeld)



3

Beschouw een dynamisch programma met een aftelbare toestandsruimte X, een
willekeurige actieruimte A (voorzien van een O-algebra die de één-punts-
verzamelingen omvat) en een overgangswaarschijnlijkheid P van X x A naar A.
Laat F := {£ | £ : X + A} en laat voor £ ¢ F de overgangswaarschijnlijk-
heid Pf van X naar X gedefinieerd zijn door Pf{x’ Ix) = P (x' !x, £(x}),
X, X' € X. ’

Als voor een positieve functie i1 op X geldt

n
(Pfu) (x)
P := sup limsup sup ———— < 1

feF n-+w xeX Hix)
en
P_uj} (x)
sup sup ©
feF xeX M (x)

dan is er voor iedere € > 0 een positieve functie v op X en een positief

getal M zodanig dat voor alle x ¢ X

(1) (p +e)vix) 2 sup (va)(x)
feF
(ii) Hi{xn) € vi(x) £ Mu(x) .
ref. [4].
4

Voor een dynamisch programma met een aftelbare toestandsruimte X en een
willekeurige actieruimte (voorzien van een o~algebra die de één-punts-
verzamelingen omvat) bestaat er een sterk excessieve functie dan en

slechts dan indien er een partitie {Xk' k € Z} van X is en er reéle getal-
len a > 1, 8 2 1 zijn, zodanig dat onder elke zuivere Markov strategie het
verwachte aantal bezoeken aan xk bij start XZ 2-k}
bedraagt, vooxr alle k ¢ 2, & € Z. {Z is de verzameling der gehele getallen.)
ref. [4].

ten hoogste Bmin{l,o

5

Beschouw het dynamische programma dat gedefinieerd is in 3.1 van dit
proefschrift, Laat toe dat de opbrengstfunctie r onbegrensd is en dat de
verdisconteringsfactor 8 = 1. Veronderstel echter dat er aan een sterke

convergentievoorwaarde is voldaan, d.w.z. dat er een rij niet-dalende



functies a: s~ [1,) n € N is, zodanig dat 1im an(s) = ® en
N0

o«
sup E L[] a(s) |r(s,5)]]<w, voor alle s € 8,
n n’“n
meM n=Q

waarbij M de verzameling der zuivere Markov strategiedn is.

Laat v de waardefunctie zijn, laat 1T een stoptijd zidn als in 3.12 en laat
UT de optimalizeringsoperator ziijn gedefinieerd in 3.16.

Als t{w} 2 | voor alle w ¢ §, dan geldt

lim (U"0) (s) = v(s), voor alle s ¢ § .
T
n—i»co

ref. [3].

6

Omdat contraherende dynamische programma's aan een sterke convergentie-
voorwaarde (zie stelling 5) voldoen, kan convergentie der successieve
approximaties van de waardefunctie eenvoudig bewezen worden zonder gebruik
te maken van de contractiestelling van Banach en bovendien voor een ruimere
klasse van startfuncties.

ref. [3].

7

Voor dynamische programma's met een aftelbare toestandsruimte en een wille~
keurige actieruimte (voorzien van een o-algebra die de één-puntsverzame-
lingen omvat), die.aan een sterke convergentievoorwaarde voldoen (zie
stelling 5), convergeert de étrategie—verbeteringsmethode van Howard en dus
bestaan er voor elke starttoestand e-optimale staticnaire strategieén.

ref, [2], [7].

8

Laat B een M X N-matrix zijn en pl,...,pN getallen uit het interval (0,1).
Dan geldt

o n N k n~k
T (Y min ] P, (1-p,)"  B(3,1)
k=0 1M i=1



is niet-stijgend inn (n € W, n » »), met limiet
N
7] min B(j,1) .
i=1 1<jsM
9

Uit de definities van Parthasarathy en Hinderer blijkt dat de term
"standaard Borel ruimte® niet standaard is.
ref, [6], [8].

10

Het is noodzakelijk dat technieken voor het simuleren van stochastische
systemen opgenomen worden in het onderwijs aan hen die zich later als

besliskundigen wensen te beschouwen,

11

De toepasbaarheid van wiskundige resultaten neemt toe naarmate deze in meer
algemene modellen worden bewezen, terwijl de toegankelijkheid en daarmee

het gebruik, afneemt.

12

Het is inconsequent dat voor het geven van onderwijs op middelbaar niveau
een certificaat van vak-didactische bekwaamheid nodig is, terwijl zo'n

certificaat niet vereist is voor het geven van wetenschappelijk onderwijs.

13

Dat y-wetenschappers vaak slecht met wiskundige methoden omgaan, is niet in
de laatste plaats te wijten aan het feit dat zij doorgaans door vakgenoten

in plaats van vaklieden in deze methoden opgeleid zijn.

14

Een democratisch stelsel dient voorzien te zijn van een grondwet die uit-

sluit dat door democratische besluitvorming de democratie wordt opgeheven.
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