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1. 1NTROVUCTION 

In this monograph we study the control of Markov chains with incompletely 

known transition law. The Bayes criterion, which is used explains the name 

of the monograph. We start this chapter with a short historical overview of 

the problem field (section 1.1), Insection 1.2 we give an informal descrip­

tion of the model we are dealing with. 

Then we summarize the contentsof the following chapters (section 1.3). We 

conclude this chapter with a summary of notations and prerequisites (section 

1.4). 

1.1 H.i..6:to1Uc.a1. peJL6pe.ruve. 

After A. Wald founded (statistical) sequential analysis, it was R. Bell-

man who recognized that the technique of backward induction, which is fre­

quently used in sequential analysis, is also applicable to a wide range of 

non~statistical sequential decision problems (cf. [Wald (1947)], [Bellman 

(1957)]). Bellman formalized the technique and called it dynamic programming. 

In [Howard (1960)] the first extensive treatment is found on the relations 

between dynamic programming and the control of Markov chains. Independent­

ly, in [Shapley (1953)] sequential control problems concerning Markov chains 

are studied, using a game theoretic formulation. Later on, in [Blackwell 

(1965)] and [Derman (1966)] the results of Howard are refined and extended 

for the criterion of expected totaZ rewards and the criterion of expeeted 

aver~e rewards, respectively. Blackwell and Derman started an explosive 

development of the theory of control of Markov chains. 

Before enclosing the problem field we first specify what is meant by a 

dynamic program or a Markov decision procees. A dynamic program is a system 

that is determined by a state spac?, an action space, a 1•eward function and 

a transition Zaw, such that for each pair (state, action) a probability 

distribution on the state space is specified. At discrete points in time, 

called moments or stages, the controZZer or decision maker chooses an ac­

tien from the action space. Then, according to the transition law, the 

system moves to a new state and an immediate reward is obtained, depending 

on the state before the transition, on the action itself and on the new 

state. A recipe for choosing an action at each stage, is o.alled a strategy. 

To apply the resultsof dynamic programming in practice, one has to know the 

transition law. Unfortunately it seldom happens that these probability 

distributions are known. So the controller has to estimate the transition 
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law during the course of the process. Therefore, apart from the control prob­

lem, there is an estimation problem. 

From now on we assume that the transition law depends on an unknown param­

ete~, which belongs to some p~ete~ set. Therefore the expected return 

at each stage depends on the unknown parameter and so we have to choose a 

criterion to measure the return at each stage. In literature the Bayes cri­

terion is mainly used (cf. section 1.2 fora definition). The first attempts 

in the field of dynamic programming with an incompletely known transition 

law have been made by Bellman (see [Bellman (1961)]). He used the term 

adaptive controZ of Markov chains. Bellman noticed that, if the Bayes cri­

terion is used, the problem can be transformed into an equivalent dynemie 

program with a completely known transition law and with a state space which 

is the Cartesian product of the original one and the set of all probability 

distributions on the parameter set. This transformation is also suggested 

in [Shiryaev (1964) ], [Dynkin (1965)] and [Aoki (1967)] for models., which 

allow unobservability of the states, and in [Wessels (1971), (1972}]. In 

[Hinderer (1970)] the first systematic proof is given for the case that the 

state and action spaces are both countable, and afterwards in CRieder (1972), 

(1975)] the transformation is given for completely separable metric state 

and action spaces. In fact it is shown that, for the Bayes criterion, the 

posterio~ distributions of the unknown parameter are sufficient statistica. 

In [Wessels (1968)], among other things, the problem of sufficient statis­

tics is studied in conneetion with several other criteria, suchas theminimat~: 

criterion. Almost all other authors considered only the Bayes criterion and 

studied the equivalent dynemie program, mentioned above. In [Martin (1967)], 

[Rieder (1972}], [Satia and Lave (1973)], and [Waldmann (1976)] the method 

of successive approximations for the equivalent dynamic program is studied, 

Only Satia and Lave tried to exploit the special structure of this dynamic 

program. In [Fox and Rolph (1973)], [Mandl (1974), (1976)], and in [Rose 

(1975)] optimal strategies are constructed for the criterion of expected 

average return. Here it is possible to construct strategies which are at 

least as good as all ether strategies, for all parameter values, hence it 

is not necessary to work with the Bayes criterion or anything like it. 

Special models, arising in control theory are studied in [SWorder (1966)] 

and [Aoki (1967)]. Inventory control models with an incompletely known de­

mand distribution are studied in [Scarf (1959)], [Iglehart (1964}], 

(Wessels (1971), (1972)], [Rieder (1972)], (Zacks and Fennel (1973)] andin 
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[Waldmann (1976)]. A number of ether problems can be found in the literature. 

The most fameus one is the two-armed bandit problem. We wil! return to most 

of the contributions of the above-mentioned authors in the other chapters 

of this monograph. The number of publications in the field of dynamic pro~ 

qramming with an incompletely known transition law is very small compared 

· with the overwhelming amount of literature on dynamic programming with a 

known transition law. 

We conclude this section with a sketch of the problems we examina in this 

monoqraph. We choose the Bayes criterion too. From a mathematica! point of 

view this criterion has the advantage, as compared with the minimax cri­

terion, that the model can be transformed into the so-called equivalent 

dynamic program. FUrther it has the nice proparty that the deelsion maker 

may express his opinion on the importance of the various parameter values, 

which characterize the unknown transition law, by a weight function. Even 

if the model with known transition law has finite state and action spaces, 

the equivalent dynamic program has a statespace which is essentiaUy infinite. 

Bowever, the method of successive approximations to determine the óptimal 

expected total return is workable, since in order to determine the n-th 

approximation we have to consider all possible paths through n stages of 

which there are a finite number, if the state and action spaces are finite. 

The effort needed to obtain good approximations proved to be very large in 

the studies of Martin and Satia and Lave (in [Martin (1967)] examples with 

only two states and two actions turn out to be very time-consuming and in 

[Satia and Lave (1973)] examples with four states and two actions are con­

sidered to be of "moderate-size"). one of the objectives of our study is 

to show that the method of successive approximations can be applied success­

fully to rather large models, that have a suitable parameter structure. 

OUr analysis is based on the construction of special scrap-vectors for the 

successive approximation method and on the exploitation of the converganee 

of the posterlor distributions. We note that someresultsof our analysis are 

also interesting for the problem of PObustness of the model under variations 

in the parameter value. In sectien 1.3 we specify the approximation methods 

we advocate, in an informal way. 

Another objective of our study is to show that there are easy-to-handle 

optima! strategies for maximizing the average expected return, and also for 

some practical examples of our model for maximizing the expected total re­

turn. At the end of sectien 1.2 we consider this matter in more detail. 



4 

We start this section with a motivation of the choice of the model we study 

in this monograph: the Bayeaian aontPoL modeL. 

Consider a dynamic program with finite state and action spaces. It somatimes 

happens that a transition is affected by a random variable which is observ­

able for the decision maker, but the value of which cannot be reconstructed 

from the state values of the process. For example consider a waiting-line 

model in discrete time, where Yn+l is the number of arrivals in the time 

period [n,n,+ 1) and where X is the number of cuetomers in the system at 
n 

time n. Then it is obvious that the value of Yn+l is not determined by ~n 

and Xn+l' if the number of services completed in each time interval is 

random. If the distribution of the random variable Yn is incompletely known, 

then it is useful to keep this random variable as a suppLementary state 

vapiabLe. confining ourselves to the state values of the original process 

only, means that we throw away information concerning the transition law. 

In our model we assume that for each state and action the transition may 

be affected by a random variable, the value of which is observed by the 

decision maker immediately afteP the transition. The value of this random 

variable is obtained by a random drawing from a distribution, depending 

only on the actual state and action. There are at most countably many dif­

ferent distributions from which is sampled. Further we assume that only 

these distributions are incompletely known. We call these random variables 

auppLementary state var-iabZes. In case the transition, for some state and 

action, is not affected by a supplementary state variable we may consider 

the next state variable itself as a supplementary state variable. We re­

turn to this point in chapter 2. 

We now continue with the model description. For simplicity, we assume here 

that all considered sets are finite. Let the state space be denoted by X 

and the action space by A. FUrther let the random variables Xn and An de­

note the state and action at stage n, respectively. The transition to state 

Xn+l' given xn and An is also affected by the outcome of the supplementary 

state variable Yn+l which is observed at stage n + 1 and which takes on 

values in the set Y. This works in the following way. The conditional pro­

bability of xn+l' given Xn =x, An =a and Yn+l = y, is 

li?[X ==x' n+l x 
n 

x , A 
n a ' Yn+l = y] P(x'lx,a,y) 
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where the function P is assumed to be known. 

However, the random variables Yn+l' Xn and An are dependent, while the con­

ditional distribution of Y 1 , given X and An depends on some unknown para-n+ n 
meter e, which belongs toa given parameter set a, i.e. we have 

where {Ki' i € I} is a partition of X x A, and I is some index set. Hence 

the distribution in the set {pi(•le>, i € I} from which the random variable 

Yn+l is sampled depends on the state and action at stagen. Further, if 

Xn = x ' An = a and Yn+l = y there is an immediate, possibly negative, re­

ward: r (x,a,y). 

Although the model may seem to be rather artificial, there are many well­

known models which fit into this framework. For example, inventory control 

models, where Xn is the inventory level at time n and Yn+l is the demand 

during the interval [n,n + 1). Here we always sample Y from the same dis-
n 

tribution, hence I is a singleton. Also the ordinary dynamic program with 

finite state and action spaces and all transition probabilities unknown, is 

included in our model. we return to this matter in chapter 2. 

We note that, if the parameter e is known, we are dealing with a dynamic 

program with state space x, action space A, transition law: 

a]= P(x'lx,a) := L lK (x,a) L P(x'lx,a,y)pi(yle>, 
i€! i y€Y 

and reward function: 

icx,a) := L lK (x,a) L pi(yle)r(x,a,y) • 
i€! i y€Y 

In this monograph X,Y,A and e are complete separable metrio spaces, but the 

index set I is at most countable. Hence we do not allow more than countably 

many unknown distributions pi(•le), i € I and 6 € 8. 

A strategy n is a procedure which chooses at each stage n an action, based 

on the history of the process, i.e. x0 ,A0 ,Y 1,x 1 ,A1, ... ,yn'Xn. 

Each strategy n, each parameter value e, and each starting state x to­

gether determine a probability on the sample spaae of the process • The 

expectation with respect to this probability of the immediate reward at 

stage n is denoted by: 
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11' 
JE : 6(r(X ,A ,Y. +l)] • x, n n n 

The e~eated totaZ disaounted return v(x,a,'lf) is: 

00 

1T [\' n 
:= JE a L 6 r(X ,A ,Y. +l)J 

x, n=O n n n 
v(x,S,?T) 

where a € [0,1) is called the discount factor. 
* Only in trivial situations there is a strategy 11' such that 

v(x,6,1f*) ~ v(x,6,1f) for all x ex, a e 6 and all strategies '~~'· soit is un-

wise to use this as a criterion for a strategy to be optimal. Criteria for 

which there are always (nearly) optimal strategies, are the already mentioned 

"* minimax and Bayes criteria. A strategy 11' is called &-optimaZ, e ~ 0, for the 

minimax criterion, if 

min v(x,a,'lf*) ~min v(x,6,1f) -e for all x € x, a € e 
aee aee 

and all strategies 'IT. We do not use this criterion. In appendix B we consider an 

ex~le, which shows that the use of this criterion bas some odd implications• 

We use the Bayes criterion. So, we fix some probability distribution q on the 

* parameter set 9 and we call a strategy 11' e-optimaZ, e ~ 0, if 

l q(G)v(x,a,'IT*) ~ l q(a)v(x,6 1 1T) - e 
6€9 aee 

for all x e x and all strategies 'IT. If a strategy is 0-optimal we call it 

optimal-. We note again that the so-called prior distribution q can be con­

sidered as a weight function, expressing the importance of the various para­

meter values in the opinion of the decision maker. 

In chapter 4 we consider the average expeated return instead of the expected 

* total discounted return. we call a strategy 11' e-optimal-, e ~ 0, with respect 

to this criterion,if 

N-1 * 
liminf -N

1 l q (6) l JE x'lf e [r (X ,A ,Y. 1>] ~ 
N-+<><> aee n=O I n n n+ 

N-1 
~ liminf ~ l q(S) l JE'~~' 6[r(X ,A ,Y. +l)] - & 

N-+<x> 6e6 n==O x, n n n 

for all x eX and all strategies 'lf{again, a 0-optimal strategy is called 

optimal-). 

The Bayes criterion allows us to consider another interpretation of the 

Bayesian control model. In this interpretation we consider the unknown para-
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meter as a random variable with distribution q. The posteriol' distributions 

of this random variable, or in other words the conditional distributions of 

this random variable, given the history of the process,play an important 

role in this monograph. It is well-known that the name of Bayes is connected 

with the criterion since he suggested to consider the unknown parameter of 

a distribution as a random variable itself in statistica! inference. It turns 

out that the Bayesian control model is equivalent to a dyna:rilic program with 

a known transition law and with a compound state space x x w, where w is 

the set of all probability distributions on a. For each starting state and 

each strategy, we are dealing with a stochastic process (Xn,Qn,An) where 

Qn is the actual posterlor distribution of the random variable that repre­

sents the parameter. 

It is desirable to have good strategies that are easy to handle, i.e. to 

have a formula or a simple recipe which yields an action as a function of 

the actual state x E X and the actual posterlor distribution q E w. A way 

of deriving easy to handle strategies is based on the following idea. If 

the parameter is known to be e and if there is an optimal strategy then an 

optimal action in state x E X often is a maximizer of F(x,6,•) where 

F : X x 6 x A ~ IR • Note that the action depends on the parameter 6 and 

that the function F is assumed to be known. Now let the parameter be unknown. 

Then we may use an action a which maximizes the function a~ f q(d6)F(x,6,a) 

if the actual state is x and the actual posterior distribution is q (pro­

vided that integration is possible and the maximum exists), Such a ruleis 

called a Bayeaian equivalent l'Ule. It will be proved that such a rule yields 

an optimal strategy, if we are maximizing the average expected return, under 

conditions which guarantee that in the long run the deelsion maker obtains 

enough information about the unknown parameter, i.e. the sets K1 have to be 

recurrent. For maximizing the expected discounted total return we do not 

know a Bayesian equivalent rule that is optimal in general, however forsome 

special models, such as the linear system with quadratic cost and a simple 

inventory control model, there is an optimal Bayesian equivalent rule. For 

the linear system with quadratic cost this rule can be considered as a 

generalization of the well-known certainty equivalent rule. 
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In chapter 2 we start with a formal description of the Bayesian control ' 

model and we consider some examples. Then we study the process of posterior 

distributions. The main result is the convergence of the posterlor distri­

butions to a degenerate distribution, under each strategy which assures the 

number of visits to each set Ki' i E I to be infinite, with probability one. 

This result is used in several places in chapters 4 and 6. 

In chapter 3 we deal with two rather technica! points. First we show that 

the Bayesian control model is equivalent to a dynemie program {see sectien 

1.2) and after that we study a class of optimal reward operators for dynamic 

programs in general. Bere we consider optimal reward operators based on 

stopping times, for dynamic programs as introduced by Wessels (cf. [Van 

Nunen and Wessels (1977)]). We generalize the operators for dynamic programs 

with complete separable state and action space and we derive some new 

properties of these operators. These operators determine the maximal ex­

pected total return until some stopping time, and with a terminal reward 

at the stopping time, depending on the state at the time. Successive ap­

plications of these operators yield a sequence of funtions on the state 

space, which converges to the function of optima! values. We use these 

operators in chapter 6 where we consider the metbod of successive approx­

imations for the equivalent dynamic program. 

In chapter 4 we first introduce the Bayesian equivalent rules. Then we 

construct optimal strategies in order to maximize the average expected re­

ward. 

Chapter 5 is devoted to the study of optimal strategies for the expected 

total-return criterion. For three examples of our model we show that a 

Bayesian equivalent rule provides an optimal strategy. The first example we 

call the independent aaae since the rewards are independent of the state, 

i.e. r is constant in the first coordinate. In all examples it is assumed 

that the index set I is a singleton, so the randomvariables Yn' n E lN are 

sampled from the same (unknown) distribution at each stage. The second 

example is the linear system with quadratic cost and the last one is a 

simple inventory control model. For this inventory model the Bayesian equi­

valent rule is not always optimal. However, we give an upper bound for the 

loss we incur by using this rule when it is not optimal. 

In chapter 6 we consider approximations for the "function of optimal values" 

when maximizing the expected discounted total return. This function is called 



the value j'unction and is defined on x x w by: 

v(x,q) := sup l q(6)v(x,6,1T} 
1f e 

9 

where the supremum is taken over all strategies, we firstindicate an upper 

bound on v and several lower bounds. 'l'hese bounds have simple interpretations 

and are computable if the parameter set is finite or equivalently, if the 

prior distributton is concentrated on a finite set. We study the use of 

these bounds for successive approximations of the value function. We also 

give a lower bound on the expected discounted total return if a special 

Bayesian equivalent rule is used and we construct an other easy-to-handle 

strategy which is not a Bayesian equivalent rule but which behaves nicely, 

FUrther we specialize the parameter structure as follows: there is a sub­

setBof the state space X with the property that,if Xn € B then Yn+l is 

sampled from the same unknown distributton for all actions chosen, for 

Xn € X\B the distributton of Yn+l is known {hence K1 ~ B x A and 92 , 93 ••• 

are singletons). A special example of this structure arises in the model 

where B = x, e.g. the models studied in chapter 5. Bere we use an optimal 

reward operator as studied in chapter 3, with the entrance time in the set 

B as stopping time. In fact, this operator allows us to consider the pro­

eess which is embedded on the set B. For this parameter structure we use 

the converganee of the posterior distributtons to a degenerata distribution, 

and à lso the upper and lower bounds, to compute in advance an error estima te 

on the n-th successive approximation, starting with a fixed prior distri­

bution. If the error estimate for the n-th approximation is small enough, 

then we may compute the value function for this prior distributton by back­

ward induction. The effort needed for the computation of the n-th error 

estimate is small compared with the backward induction procedure. Since 

usually the computed quantities to determine the n-th approximation cannot 

be used to compute the n + 1-st approximation, it is nice to know in advance 

whether the n-th approximation is sufficiently accurate. 

We also consider in .this chapter another type of approximations, namely 

disax>etisations of the parameter set. Bere we split up the parameter set 

into a finite partition, and in each set of the partition we choose a re­

presentative point. We give bounds for the error eaueed by replacing the 

given prior distribution q by the discrete prior distribution which attributes 

prObàbilities to the representativepointsequal to the given probabilities 

of the corresponding sets. In [Fox (1973)] and [Whitt (1976)] also discre-
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tizations of dynamic proqrams are studied. To apply their method, we would 

have to split up the set of all distributions on the parameter set into a 

finite partition and, in the equivalent dynamic program, the process would 

then jump between representative points in these partition sets. However, 

we then loose the nice proparty that the secend state-coordinate of the 

process (i.e. Qn) is the posterior distribution of the unknown parameter, 

at every stage. 

our discretizations are of interest, since in general we can compute the 

upper and lower bounds, mentioned above, only if .the prior distribution is 

concentratea on a finite set of parameters. As a byproduct of our analysis 

of discretizations we obtain a bound for the difference between the value 

function of the Bayesian control model and the model that is obtained by 

replacing in advance the distributions p 1 (·1e> by their Bayes estimates 

based on the prior distribution and considering these estimates as the true 

distributions. This last model is used very frequently in practica, in­

stead of the Bayesian model. 

Finally, in chapter 7 we construct algorithms, based on the approximations 

of chapter 6, which compute the value function v(x,q) for a fixed prior 

distribution, and which also determine E-optimal strategies. We illustrate 

the quality of the algorithms by numerical data for some examples. 

In appendix A we collect some results of maasure theory which are used in 

chapter 3. In appendix B we illustrate the odd implications of the minimax 

criterion by an example. 

We note that it is possible to start reading at chapter 4 after reading the 

model description in chapter 2 and the assertions of the theorema and 

corollaries of chapters 2 and 3. 

We start with some conventions. A numbered eentenae indicates a definition 

a result or a formula. SUch a sentence may occupy several linea, each one 

of which is indicated by an indentation. Symbols used for objects, which 

are defined in a numbered sentence have a gZobaZ meaning, i.e. if we use 

a symbol without defining it in the theorem proof, example or comment where 

it is used, then it bas the meaning given in the numbered sentence where 

it is defined. Raferences to lemmas, theorems,corollaries,examples, sections 

and chapters are preceded by the words "lemma", "theorem", etc. Each chapter 

bas its own numbering, for example 2.4 is the fourth numbered sentence in 
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chapter 2. Beferences to appendix A are preceded by the capital: A. The end 

of a proof is indicated by: O. If there is no ambiguity concerning the domain 

of some index or variable, we omit the domain in the notations. 

we continue with a list of notations. 

1.1 :N :== {0,1,2, ... }., Ë :=111 U{."}, 111*:== {1,2,3, ••• }, :ti*:= lN* U {oo}, 

1.2 lR is the set of real numbers, :iR := R u {-"',."?·. 

1.3 

1.4 

1.5 

1.6 

ö(•,•) is the Kroneekar symbol, i.e. ö(i,i) = 1 and ö(i,j) = Oifi;&!j. 

~ A is the cardinality of the set A. 

x+:= max(x,O), x-:== -min(x,O). 

Let (Xi,Xi) be measurable spaces for i ~ I, where I is a countable 

set then x := n xi is the cartesian product and x := • xi the 
i~I i~I 

product-a-field on X. If Pi is a probability on Xi then p := ~ p. 
i~I 1 

is the product measure on X, if I is finite and ~i a o-finite measure 

on Xi then ~ is also the product measure on X. 

Llit A, X and Y be sets, such that A c X x Y then 

1.7 projx(A) :={x~ X I there is some y ~ Y with (x,y) ~A}. 

1.8 i.i.d. means'independent and identically distributed", iff means 

"if and only if" and a.s. means "almost surely". 

Let (X,X) and (Y, Y> be measurable spaces and let f : X + Y be measurable 

then 

1.9 o(f) is the sub-cr-field of X induced by f, i.e. 

C(f) := {A ~ X I A= f- 1 
(B), B ~ !f}, where f-l (B} := {x ~ X I f(x) ~ B}. 

1. 10 P (X) is the set of all probabili ties on a measurable space (X, X> • 

Let f be a function on a set x then 

1.11 x+ f(x), x~ X is a notation for this function. 

1.12 ~ is the empty set. 

1.13 and n xi := 1 • 
i.:fll 
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Let (X,X) be a measurable space and let q be a measure on X and f a non­

neqative Borel measurable function on (X,X), then 

1.14 f(x)q(dx) is a notatien for the measure v defined by 

V(A) :• f f(x)q(dx), A € X. 
A 

1.15 Let f and q be functions onsome set x with range lR and let y e IR, 

f ~ q if ana only if f(x) s q(x) for all x € x, f ~ y if and only if 

f(x) $ y for all x € x. The analogous convention is used if $ is re­

placed by <, ~. > or = • 

We continue with some pertinent facts on transition probabilities and 

conditional expectations. Let (O,F,JP) be a probability space, (A,A) a 

measurable space, and let Y : n + A be measurable. Then we call Y a Pandom 

v~abZe and we write 

1.16 (i) JP[Y EB]:= JP[{w En I Y(w) € B}] I B € A. 

(ii) JE [Y] := JY (w) lP (dw) • 

A real-valued function on n is called F-measurabZe or simply measurable, 

if it is measurable with respect to the Borel cr-field on IR. The following 

lemma is well-known (cf. [Bauer (1968) lemma 55.1]). 

Lemma 1.1 

Let (O,F) and (A,A) be measurable space, and let f : n +A be measurable. 

Then a real-valued function q on Q is a(f)-measurable iff there is a real­

valued measurable function h on A such that q = h(f). If fis a surjection 

then the function h is · unique. 

1.17 A measurable space (A,A) is called Bol'eZ epaae if A is a non-empty 

Borel subset of a complete separable metric space and A is the Borel 

a-field on A (note that in [Binderer {1970) page 187] such a space 

is called a standard Borel space and in [Blackwell (1965)] a Borel 

set). 

1.18 The topological product of at most countably many Borel spaces which, 

because of the separability of the spaces, coincides with the measure 

theoretic product, is again a Borel space (cf.[Parthasarathy {1967) 

P• 135]). 
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Let (O,F) and (A,A) be measurable spaces, then a function p from 0 x A 

to (0,1] is called a t:MnBition pPobabiUty f:r'om (Sl,F) to (A,A), or simply 

from n to A, if 

1.19 (i) PCBI•l is F-measurable for each BE A. 
(ii) P(•lwl is a probability on A, for each we 0. 

Let (O,F,JP) be a probability space, letBbeasub-0'-fieldofFandletXbe 

a real-valued measurable function on 0, with JE [X+] < oo • 

1.20 (i) The 1110nditiona"l e:cpectation of x given B is denoted by JE CxiBJ 

and defined as a real-valued B-measurable function on 0 such 

that JE [X1B] = JE [JE rxiBJlB] for all B E B. 

(Bere 1
8 

is the indioatoP function of the set B.) 

(ii) If Y is another a real-valued measurable function on 0 we 

de fine JE [x I Y] := JE [X I a (Y) J • 
(iii) For every A E F we define the conditiona"t probabiUty of A gi­

ven B, respectively the conditionat probabi"lity of A given Y 

by JP[AIBJ := JE[lAIBJ, respectively JP[AIYJ := JE[lAIYJ. 

Note that the conditional expectation is not uniquely defined, however two 

versions of it are equal IP -a.s. 

Theorem 1.2 

Let (Sl, F) be a Borel space and let lP be a probabili ty on F. Th en for every 

sub-a-field B of F the conditional probability is Pegu"laP, i.e. there exists 

a transition probability P from (0,8) to (O,F) such that for every real­

valuad F-measurable function X that is bounded from above, we have 

w -.. J X (oo) P (d~Ï w) is a version of JE [X I BJ • If P' is another transition 

probability from (0,8) to (O,F) with this property, then 

JP[{w!P<•Jwl f: P'C•Iw>}] = 0. 

For a proof cf. [Bauer (1968) th. 56.5]. 

we sometimes need the following corollary of th. 1.2. 

corollary 1 • 3 

Let (Sl,F) be a Borel space, let IP be a probability on F, let (A,Al be a 

measurable space and let Y be a measurable map from n to A. The proba­

bility Q on A is defined by Q(B) := lP [Y e B], B e A. Then there is a 
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transition probability P from (A,A) to (Sl, F) such that 

(*) JP[D n Y-1
(B)] = J P(Djy)Q(dy) 

B 

for all B E A and D E F. 

lf P' is another transition probability from (A,Al to (f!,F) with this prop­

e:rty, then 

Q[{y I P(•jy) F P'(•jy)}J- 0. 

P is called a :r-egu"la:I'etonditionaZ probability given Y = y and we usually 

w:rite JP[•IY = y] · for P(•jy). 

P:roof. 

By th. 1.2 the:re is a transition probability P from (G,a(Y)) to (O,F) such 

that for all D E F and B E A: 

lP [D n {Y E B}J J P (DI w) lP (d(l)) 

y-1 (B) 

By lemma 1.1 there is for each D E F a real-valued measurable function on A, 

denoted by P(Dj•) such that 

P(DIY(w)) = P(Diw> , for W E 0. 

It is easy to verify that P, considered as a function on A x F is a transition 

p:robability from (A,A) to (O,F) with property (*). 

Let P' be another transition probability on A x F with property (*), and 

define N := {y E AIP<·Iyl F P'(•ly)}. Then 
1 . -

Y- (N) ={wE niP<•IY(w)) F P'<·IY(w))}. 

By th. 1. 2 lP [Y -l (N)] = 0. Bence Q(N] = 0. 

Let the assumptions of corollary 1.3 hold and let x be a real-valued 

measurable function on 0, bounded from above. Then we define 

1.21 JE[XIY=y] := f(y) := f X(w)JP[dwiY=y]. 

0 

It is easy to verify that f(Y) is a version of the conditional expectation 

of x qiven Y. 



15 

We frequently use the followinq theerem of Ionescu Tulcea (cf. [Neveu (1965) 

paqe 165]). 

Theorem 1.4 

Let (Xn,Xn) , n <:: JN be measurable spaces and let Q
0

+1 be a transition 

probability from (II~=O Xt' i9~=0 Xt) to (Xn+1, X
0

+1), n <:: JN. Further let 

(x,X) := crr;",0 xt, ~-o Xt) and let ~ 0 ,~ 1 , ••• be the coordinate functions 

on X i.e. ~n1x) := xn' x= Cx0 ,x1, ••• ) <::x. Then 

(i) for all n <:: JN there is an unique transition probability P from 

m~-o xt,e~=O Xt) to (X,X) denoted by P(Bixo•···•Xn)' B € x, xi € xi 

i= o, ••• ,n, such that for cylinder sets of the form 

and m 2: n: 

P(Bixo•···•xn) =1A1x •• ,xAn (xo•···•xn) I ~+1 (dxn+11xo•···•xn) 

An+l 

I 2mCdxmlxo, ... ,xm-1). 

Am 

(ii) for every probability p on X
0 

there is a unique probability JPP on X 
qiven by lP P[B] = J Xo p (dx

0
)P(B!x0) , B <:: X and for any measurable 

function Y on x that is bounded from above, J P(dx!~0 , ••• ,~0}Y(x) is 

a version of the conditional expectation of Y given the cr-field 

cr(~0 , ••• ,;
0
). Hence one may define: {cf, lemma 1.1) 

or 

Finally we summarize some pertinent facts concerning the set P{X) of all 

probabilities on a Borel space (X,X). 

1.22 on P{X) we have the topology of weak convergenae; this is the 
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coarsest topology such that for functions f E C(X) the map 

1.1 -+- J f (x) p (dx) is continuous, 'U E P ()() , where C (X) is the set of 

bounded real-valued continuous functions on X (cf. [Parthasarathy 

(1967)]) • 

Lemma 1.5 

Let E be the topology of weak converganee on P 0< l and F the a-field gener­

ated by E. Then F is also: 

(i) the smallest a-field such that the functions 1.1 + JJ(B) are measurable, 

Jl e PO<), B eX. 

(iil the smallest a-field such that the functions 1.1 + J f(x)JJ(dx) are 

measurable, 1.1 E P ()(), f e C(X). 

The proof of statement (i) can be found in [Rieder (1975) lemma 6.1]. Note 

that this implies that F is also the smallest a-field such that 1.1 + J fdl.l 1 

1.1 E PO<> are measurable for all real-valued bounded measurable functions 

f on x. 
Proof of statement (ii). Let B be the smallest a-field in P (X) such that 

1.1 ~ J f(x)pXdx) is measurable, for f E C(X). For each Borel subset D c IR 

and every f E: C(X) we have t1.1f J f (x) lJ (dx) E: D} E 8, for f E C (X). This is 

true in particulai: for all open sets of IR. Bence the topology E is contained 

in B, i.e. f, c B. on the other hand, since for all open subsets D c IR 

· ht! f f (x) 1.1 (dx) E: D} E: f and since the Borel a-field on IR is generated by 

the open sets, we have {IJ I J f (x) IJ (dx) E: D} E F for all Borel subsets D c IR • 

Bence B c: F • 

In lemma 1.6 we collect some miscellaneous results. 

Lemma 1.6 

(i) Let (X ,X) be a Borel space and F the a-field on P ()() , generated by 

the topology of weak converganee, then (P ()( l ,F) is a Borel space. 

(ii) The identification of elementsof X with the point measures in PO<l 
is a homeomorphism. 

0 

(iii) Let (X ,X) and (Y ,Y) be Borel spaces and f a nonneg a ti ve measurable 

function on x x Y 1 then the function 

(x,q} + f f(x,y)q(dy), x EE x, q ep(Y) 

is measurable. 
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The proof of (!} is found in [Binderer (1970) th. 12.13], the proof of 

part (ii) in [Parthasarathy (1967} lemma 6.1 page 42] and part (iii) is 

an immediate consequence of lemma 1.5 (i) (cf, [Rieder (1975} lemma 6.2]). 
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2. THE MOVEL ANV THE PROCESS OF POSTERlOR VISTRIBUTIONS 

In sectien 2.1 wedefine the Bayeeian eontrot model-, the model we study in 

this monograph, and we present some examples. In section 2.2 the posterior 

distributions of the random variable, which represents the unknown parameter, 

are defined and some properties are derived. Finally, in section 2.3 the 

limit behaviour of the posterior distributions is studied and also the 

differences of successive posterior distributions. 

2. 1 The Ba.yu-ia.n c.ont'Jtot mode! 

OUr model is similar to models described in [Shiryaev (1964), (1967) ], 

[Dynkin (1965)], [Martin (1967)] and [Hinderer (1970)]. In fact, it is a 

special case of the model considered in [Rieder (1975)], which wil! be 

shown later on in this section. In this monograph several models are con­

sidered, which are special cases of the Bayesian control model, we des­

cribe now. 

model 1: Bayesian eontrot model-
The modelconsiste of the following objects. 

2.1 (a) 

(b) 

(c) 

(d) 

(X,X) a Borel space. X is called the state spaae. 

{Y I Y) a Borel space. Y is called the supplementary state spaae. 

(A,Á) a Borel space. A is called the aation spaae. 

D, a function from x to the non-empty subsets of A such that 

K := {(x,a) I x € x, a € D(x)} is an element of X e A • 
D(x) is called the set of admissible actions in state x. It is 

assumed that K contains the graph of some measurable function from 

x to A. 

(e) I is a countable set, called the inde:c set. 

(f) For all i € I there is a Borel space (Bi,Ti) and ai is called the 

pàrameter spaae of inde:c i. The Borel space {B,T) is defined by 

B := rri€I Bi, T := ei€I T
1

• The set a is called the parameter space. 

(g) {Ki' i € I} is a measurable partition of X x A. 

(h) Pis a transition probability from X x A x Y to X (cf. 1.19). 

(i) v is a cr-finite measure on Y. If Y is countable then v is assumed 

to be the counting measure. 

{j) pi is a nonnegative measurable function on Y x Bi, for all i € I 

such that [y pi(yle1)v(dy} = 1 for all ei € ai and i € I. 
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This property is called: the sepa:t'ation p:rope:t'ty. 

(k) r is a real-valued measurable function on X x A x Y, bounded from 

above , and called the l:'elJJal'<Ï funation. 

we continue with some definitions which clarify the meaning of the objects 

defined in 2 • 1 • 

Badh 9 E 9 can bedescribed by 9 = (9i)iEI where 9i E ai is called the 1-th 

coo.rdinate of e • 

Por each e € e we define a t:t'ansition p~babiZity Pa from x x A to y x x, 

by 

2.2 Jv(dy)p1 (yje1) J P(dx'lx,a,y) 

B F 

where B E Y, F € x, x E x, a E A and ei the i-th coordinate of e € a. 

(Note that Pa satisfies all requirements for a transition probability (cf. 

1.19)). 

2.3 The set of histo:t'ies H at stage n is defined by n 

-* (i) HO := X, Hn := X X (A x Y x X)n 1 n e: JN • 

(ii) Hn is the product-a-field on Hn induced by X, A and Y for n e: JN. 

2.4 A st:t'ateg.y $is a sequence: n = (n
0

,n
1

, ••• ) where ~nis a transition 

probability from (H ,H ) to (A,A) such that n n 
wn(•lxo,aO,yl,xl,al, ••• ,yn,xn) 

is concentrated on.the set D(xn>· Thesetof all possible strategies 

is denoted by n. 

It is easy to verify, by the condition on K (cf. 2.1 (d)), that nis non­

empty. 

2.5 The sample spaae of the Bayesian control process is g := a x H .. , and 

on g we have the product-a-field H :• Te H.,.. 

Note that (a,T) and (g,H) are Borel spaces (cf. 1.18). On 0 wedefine the 

oool'dinate funations z, xn, Yn' An' n e: JN, also called :t'andom variabZes: 



2.6 Z(W) := 6, Xn(w) := Xn' Yn(w) := yn' An(w) := an for 

w = (e,x
0
,a

0
,y

1
,x

1
,a

1
, ••• ) e: 0. 
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According to the Ionescu Tulcea theerem {cf. th. 1.4) we have for each so-

called etal'ting dist:t>ibuticm p e: P (X), each so-called p:t>ior dist:t>ibution 
11' 

q E P(T) and each strategy 11' e: II, a p:t'obability JP on {O,H), defined by 
p,q 

2.7 JP'Il' [Z E B, XO E C, Ao e Do, (Yl,Xl) e: El, ••• ,(Yn,Xn) E E ] ;== p ,q n 

I q(d6) J P <dxo> f 'll'o(daolxo> f Pa (d (y 1 ,xl) I xo,ao) ••• 

B c Do El 

I'll'n-1 (dan-llxo,ao,yl ,xl,al '· • • •Yn-1 ,xn-1) f Pa (d(yn,xn) lxn-1 ,an-1 l 

Dn-1 En 

where B e: T, c E X, D e: A and E e: Y e X, n E JN. 
n n 

2. 8 The e:cpectation wi th respect to JP 11' is denoted by JEn 
p,q p,q 

2.9 Define W :== P(T) and let W be the o-field on W generated by the weak 

topology (cf. 1.22). 

We identify each 8 E f:l with the element of W Which is degenerate in 8, 

i.e. e represents the probability that is concentrated on {e}. 

(By lemma 1.6(ii) this identification is a homeomorphism). And similarly 

we identify each x Ex with the degenerata distribution in P(X). Hence, for 
'IT 

11' E JI, X E X, 6 E 9 the probability JP e is well-defined. 
x, 

Using th. 1.4 and the identification we easily derive: 

2.10 The conditional probability may be chosen as: 

n I ll JP [• Z=O] = JP [•] 
p,q p,a 

or 

Note that the difference in these expressions is that the first one is a 

function on 9, while the second one is a function on 0, depending on the 

first coordinate only. 

Using 2.10 we find, for B E T and C e: Hw 
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J q(d8llP~,e[<x0 ,A0 ,Y1 ,x1 ,A1 , ••• ) e cJ • 

B 

Further we define criterion funations for the discrimination of strategies. 

2.12 (i) The Bayesian disaounted totat :r>eturn v is a real-valued function 

on x x w x TI: 

v(x,q,;r) ;r [ \ n ] :=JE t..i)r(X,A,Y+l) 
x,q n=O n n n 

where a € [0,1) is the discount factor. 

(ii) The value function v is a real-valued function on x x W: 

v(x,q) := sup v(x,q,;r). 
1T€TI 

Note that we use the symbol v for two different, but related functions, 

and note that we use the name "value function" only in conneetion with the 

discounted total return. 

2.13 The Bayesian average return g is a real-valued function on x x w x TI: 

9' (x,q, ;r) 
N-1 

:= liminf ~ lE;r [ L r(X ,A ,Y +ll] • 
N~ x,q n=O n n n 

Finally we define (nearly) optimal strategies. Let e ~ 0. 

2.14 (i) A strategy ;r is called e-optimat for the total return criterion 

in x € X and q € w, if v(x,q,;r) 2 v(x,q) - e. 

(ii) A strategy ;r is called e.-optimal for the average return ariterion 

in x € X and q € w, if g(x,q,ïT)2sup g(x,q,;r) - e • 
'1f€TI 

A 0-optimal strategy is simply called optimal. 

Now the Bayesian control model has been described completely. Note that for 

each starting distribution p € P(X), each prior distribution q € wandeach 

strategy ;r € TI the probability JP ;r and the stochastic process p,q 
(z,x

0
,A0 ,Y

1
,x1,A1 , ••• )are completely described. Only in chapter 4 we shall 

consider the average-return criterion, everywhere else we consider the 

total-return criterion. 
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'l'he Bayesian control model is an example of the so-called Bayeaian deciaion 

model. studied in [Rieder (1975)]. This relationship is not used in our mono­

qraph. However, it simplifies oompariaons of our results with the literature. 

~ substantiate this we introduce the following notations. 

S ;= Y X X 1 S := Y ® X • 
* 

2.15 (i) 

(ii) Pa is a transition probability from s x A to s, defined by 

P;(E x F I (x,y),a) := Pa(E x F I x,a) 

* 

for all y € Y, E € Y, 

F € X and a € a. 
(iii) D is a function from S to the non-empty subsets of A, such 

* that D ((y,x)) := D{x) for all y € Y· 

(iv) r* is a real-valued function on s x A x s defined by 

r*((y,x),a,(y',x')) := r(x,a,y') 1 x,x' "x, a" A, y,y' E Y. 

* * * * * 'l'he a-tuple ((S,S), (A,A),o,(a,T),Pa,q,p ,r ), where p E P(S) and q E w, 
satisfies all assumptions of the model of Rieder. Note that, in our model 

the startinq distribution p is specified only on X and in Rieder's formul-

* ation of our model the starting distribution p on Y x X is required. How-

* ever, only the marginal distribution of p on x plays a role, since the 

* * I transition probability Pa has the property: y + Pa(B (y,x),a) is constant, 

by 2.15(11). 

We conclude this section with some examples, illustrating the applicability 

of our model. 

Exampl.e 2 • 1 

If the parameter set a is a singleton, or equivalently if the prior distri­

bution q € W is degenerata in a E 9, the Bayesian control model is an or­

dinary dynamic program, with state space (X,X),action space (A,A) and trans­

itiOn probability pa 1 gi Ven by 

and reward function ra: 
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Example 2.2 

Eaah dynamic program with countable state space x, countable action space A 

and inaompletely known transition probability P from X x A to x and real-- ""' valued reward function r on X x A can be transformed into a Bayesian control 

model. To verify this define X : .. x, X is the power set of x, Ai : .. A, A is 

the power set of A, Y := x, Y :• X and r(x,a,y) :=;(x,a) for all x E: x, a E: A 

and y E: y. FUrther define I :=X x A, Ki := {i}, i E: I and 9i := P(X) • 

Note that I is countable and that (91 ,Ti) is a Borel space if Ti is the 

a-field on ei generateel by the weak topology (cf. lemma 1,6). Finally define 

P({x'}lx,a,y) := ~(x',y), x,x' E: x, a E: A, y E: Y and pi <·lei) :=ai 1 

ai e: ei, i e r. 
It is straightforward to verify that all assumptions of 2.1 are satisfied. 

If, forsome pair x,a E: X x A, P(•lx,a) is known, then the marginal distri­

bution on e of q E: w has to bedegenerata in P(•lx,a). Similarly, if x,a 
P(•!x,a) is unknown but belengs tosome family of probabilities on (X,X) 

then the marginal on a of q E: W has to be concentrateel on this family. x,a 
consequently the models described in [Martin (1967)], [wessels (1968)), 

[Rose (1975)) can beregardedas special cases of our model. 

Example 2.3 

The class of models considered here is specified by Euclidean spaces x, Y 

and A, and a measurable function F from x x A x Y to x. The state Xn at 

timen is a function of the action An_1 at timen- 1, the state Xn-l at 

time n - 1, and a random variable Yn such that 

Xn .. F(Xn-1' An-1' Yn) ' * n E: lN 

where Xn e; x, An E: A and Yn "' Y. The random variables {yn' n E: lN *} are 

i. i. d. and cannot be aontro lled by the decision maker, however they can always 

be obsewed by him. For that reasen the sequence {y 1 n E: :JtÎ'} is called 
n 

the e~ternal p~ocess. The external process can be considered as a nuisance 

process. It is assumed that the distribution of Yn is not completely known: 

p(•la) is the probability density of Yn with respect to the o-finite maasure 

v on Y for all e e: a where (a 1 T) is a Borel space. we also assume 

V({y E: y I p(yle> ~ p(ylë>}> > 0 for e ~ ë. It is easy totransferm these 

models into our framework. To this end let P({F(x,a,y)llx,a,y) = 1 for 

x E: x, a E: A and y E: Y, and let X be the Borel a-field on x, and let A and 
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Y be the Borel a-fields on A and Y respectively. Further let I be a single~ 

ton, i.e. I := {1} and K
1 

:= X x A. At each stage Yn is sampled from the 

dis tribution wi tb densi ty p <. 1 e > , e e: e. 
Let there be a reward function satisfying 2.1 {k). Then all conditions of 

2.1 are satisfied. 

Examples of this class are the Zinear system with unknown disturbance dis­

tribution as studied in (Aoki (1968) ], and invento:t>y modeZs with unknown 

demand distribution with or without backlogging (in chapter 5 we study such 

a model extensively). Another example of thesemodelsis the repZaaement 

modeZ with additive damage as considered in (Taylor {1975)] where the distri­

bution of the so-called shocks is not completely known (in chapter 7 we· 

consider this model too). 

EXample 2.4 

A model that satisfies all conditions 2.1 (a)- 2.1 (j), but for which the re­

ward function is not bounded from above, can somatimes be transformed into 

a model satisfying all conditions of 2.1. For this purpose we replace 2 .1(.k) 

by another condition which is due to Wessels (cf. [Wessels (1977]), who 

assumes the existence of a so-called bounding function b, i.e. a positive 

measurable function on x, and a positive number M such that for all x e: x, 
a e: A and y e: Y: 

(i) J P(dx'lx,a,y)b(x') s b(x) 

(ii) r{x,a,y) s Mb{x) • 

we shall carry out this transformation for the case where X is countable. 

It is easy to extend the argument to the general case. Define: 

p*(x'lx,a,y) := P({x'}lx,a,y)b{x')b(x)-l 

r*(x,a,y) -1 
:= r(x,a,y)b{x) , for x,x' e: X, a e: A, y e: Y. 

As it may happen that }: , x p* ({x.' }lx,a,y) < 1 we add a state x* to X and 
x e: 

let x* := X u {x*}. Further we define for x e: x, a e: A and y e: Y: 

* *I * P (x x ,a,y) := 1, * *I P {x x,a,y) := 1 - L P({x'}lx,a,y) , 
x'e:x 
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* * * r (x ,a,y) := 0 and b(x ) := 1. 

Each strategy for the original model is also a strategy for the new model. 

* (except in state x). We denote the expectation for the transformed model 

* by JE. Note that for xj € x, aj € A, yj E Y: 

And therefore 

n-1 
-t I b(xO) { ll P({x.+l} xj,a.,y.+l)}r(x ,a ,y +l) 

j=O J J J n n n 

Now it is straightforward to verify that for x € x, q € w and 1r € ll: 

-1 1T *1T * 
b(x) JE [r(X ,A ,Y +l)] =JE [r (X ,A ,Y +l)] • x,q n n n x,q n n n 

'l'hie shows the equivalence of both models. 

As already announced, the posterioP dietribution of the random variable z, 

which represents the unknown parameter, plays an important role in this 

monoqraph. We define random variables on (ri,H) with range the set w, the 

set of distributions on (9,T) and afterwards we show that these random 

variables are versions of the conditional distribution of z, given the 

observed histories of the process. This proparty justifies calling these 

random variables the poeterioP dietributione. 

We start with some definitians. 

2.16 On Q we define, for iE I, the function Zi: Zi(W) =ai where 

w = (6,xO,aO,yl,x1,a1, ••• ) En and where e = (6i)i€I' 

Bence z = {Zi)iEI and we may interpret the random variable z
1

, iE I as 

the parameter of the distribution from which Yn is sampled, if 
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(Xn-l'An-1) f Ki. 

on n we define, for i f I, a sequence of stopping times, {t(i,n), n f JN}: 

2.17 T (i,O) (w) := O, T(i,n) (w) := inf{m f JNim > t(i,n-1) (w), 

for n e JN * and w f n • 
(Xm-1 (w),Am-1 (w)) f Ki} 

Note that the n-th observation from the distribution determined by p
1

<·1ei), 

ei f ai occurs at stage T(i,n) and note also that for each w f n and each 

k e lN * there is exactly one pair (i, n) , wi th i f I, n e lN * such that 

T (i ,n) (w) = k • 

In the rest of this chapter the sub-o-fields in H, induced by the observable 

random variables, are used frequently, therefore we introduce thenotation: 

2.18 n f lN • 

Forthestopping times T(i,n) wedefine the usual cr-fields F c· ): 
t l.,n 

2.19 F c· ) := {Be H I B (1 {T {i,n) 
t l.,n k} f F k for all k f lN } • 

* Nota that {t(i,nl = k} e Fk-l for n,k e JN • 

Since (9,T) is a product space we define, for each q e w the m~ginal dis­

t'X'ibutions qi on (0 i, Ti) , for i e I: 

2.20 Let B f Ti then 

qi(B) := J q(d6) 

{eleieB} 

It seems to be quite natural to work with prior distributions q that are 

product-measures, i.e. q = 8 q .• However most results of this monograph 
i€! J. 

are valid without this assumption. Note that the assumption that q = 8 qi 

is equivalent with the assumption that z., ie I are independent. Iniei 
J. 

th. 2.1 we return to this matter. 
* In order to define the posterior distributions we define, for n e lN , the 

functions an on n with range the set of measures on the parameter space 

(9, T) and for i f I the random variables ai on Q with range the set of ,n 
measures on {9i,Ti): 
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(ii) ai (B.) ,n l. 
:=J ~ {lK <x. 1 ,A, 1)pi(Y.IB.) +1-1K (X. 1 A. 1)}q, (d9,) 

j=l i J- J- J l. i J- , J- l. l. 

Bi 

where B € T, B. € Ti and e. the i-th coordinate of e € a (for nota-
l. l. 

tional convenience we have omitted the dependenee on w € n in 2.21). 

The integrand of 2.21 (i} may be considered as the tiketihood jUnation of 

the parameter e at time n and similarly the integrand of 2.21 (ii) as the 

likelihood function of the parameter-coordinate ei, at time n. 

The following equality clarifies this. It is easy to verify that on n we 

have 

= n p <Y Ie > 
{k>OIT(i,k)Sn} i T(i,k) i 

i € I • 

Here we used the convention: 

2.23 For any real-valued function f on Y and a stopping time T 

f(YT(W) (w)) := 0 if T(W) = oo, for W € Q. 

Finally, we are ready to define the posterior distribution Q for the prior n 
distribution q € w, as a random variable on n with range the set W: 

* 2.24 Let B € T, then Q
0

(B) := q(B) and for w € n and n € lN 

Qn (B) (w) :=a (B) (w){Ct (9) (w)}-l , 
n · n if an (9) (w) > 0 

:= q(B) otherwise. 

(Inth. 2.1 itturnsoutthata (9) >0, lP
11 

-a.s.). 
n p,q 

And similarly we define the posterior distributions Qi for i € I, n € JN ,n 

2.25 Let B € Ti, then Qi,O(B) := qi(B) and for w € n and n € lN* 

Qi (B) (w) := ai (B) (w) {ai (Si) (w) }-l , ,n ,n ,n 

:= qi(B) otherwise. 

if a. (9,) (w) > 0 
J.:,n l. 

Note that Qn(•) (w) and Qi,n(•) (w) are probabilities for all w € n. 
The measurability of Q and Qi is a direct consequence of lemma 1.5 (i). n ,n 
The name "posterior distribution" is justified in th. 2.1. 
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In th. 2.1 we collect some obvious properties of the random variables ~ 

and Qi • Throughout this chapter we fix a starting distribution p E P (X), ,n 
a prior distribution q E wand a strategy ~ E n, and for notational con-

venianee we write Jl? and JE instead of Jl? n and JEn • 
p ,q p,q 

Theorem 2 • 1 

Let B € Tand Bi E Ti, for i € I. Then: 

(i) li?[Z E alF J "'Q (B) , ll?-a.s. 
n n 

(ii) 

(iii) 

if q = 3 qi then 
i EI 

ll? -a.s. 

(iv) if q = 3 qi then Jl? [Zi E Bi I FT (i,n)] = Qi,, (i,n) (Bi) 
iEl 

on h (i,n) < oo} Jl? -a.s. 

{V) Qn+l (B) 

(on the subset of 0 where the denominator is positive). 

(vi) JE[Q (BliF] = o (B) if n > m, n m "''n 
Jl?-a.s. 

Proof. 

Let C :• 9 x E x F x D x E x F x ••• x D x E x F x (Y x X x A)JN 
0 0 1 1 1 n n n 

where DiE Y, Ei EX and F1 E A for iE JN, Then CE Fn and 

fli?Cz EBIF Jdll? =JP[z EB,x
0 

EE
0

,A
0 

€F
0

, ••• ,Y ED ,x €E ,A €F J ... 
n nnnnnn 

c 

= Jq(d6l J p(dxol J ~0 (da0 1x0 > J v(dy1l J P(dx1 1x0 ,a0 ,y1) ••• 

B EO FO Dl El 
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fv(dyn) JP(dxnlxn-1'an-1'yn) f~n(danlxO,aO,yl,xl, ••• ,yn,xn) • 
D E F 

n n n 

= J p(dx0) J~0 cda0 1x0> Jvcay1> JPcax11x0,a0 ,y1) 

EO FO Dl El 

fv(dyn) fP(dxnlxn-l'an-l'yn) f~n(danlxo,ao,y1,x1'"'''yn,xn) • 

Dn En Fn 

.. lE [1cQn (B) J = J ~ (B)dJP • 

c 

The second equality is a consequence of chanqinq the order of integration. 
0 (Nota that we used the convention 0 = 1) 

Hence 

(*) J lP[Z e BIFn]dJP = J Qn(B)dJP. 

c c 

By standard arquments we have (*) for all c e F. Since, by 2.21(i) and 
n 

2.24 Q (B) is F -measurable the assertion (i) is proved. 
n n 

We preeeed with assertions (ii) and (iii). It is easy to verify that on n 

* ( remamber that for each m e JN there is exacUy one pair (i ,k) , i e I, 

* k e JN such that T (i ,k) = m and rememl:>er that an empty product equals one) • 

Since q = ® q
1 

we have, by 2.21 and 2.26, 
ie I 
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for Bi 11 Ti, i 11 I and therefore 

In particular we have for B = ITi!I Bi with Bi= Si for all i~ j and with 

Bj 11 Tj: ~(B) = Qj,n(Bj). Hence 

lP [zj 11 Bj I F J = Qj (B. l . n ,n J 
To prove (iv) note that 

JP("zi E: BiiFT(i,n)] ,. JP[Zi E: Bi!Fk] 

on the set {T(i,n) = k} for k 11 JN (cf. [Neveu (1972) th. III-1-3]}. 

Next we prove (v). 

It is easy to verify that, for B € T: 

an+l(B) = J I lK (X ,A lp. (Y +lleil{ ~ I 1K (Xj_1,A._1lp. (Yjle.J}q(d6J 
i€! 1 n n 1 n j=l i€! i J 1 1 

B 

= J I lK (X ,A lp. (Y +lle1 Ja (d6) • 
B 1111 1 n n 1 n n 

Hence on the subset of n where an+l (6} > 0 we have 

Qn+1 (B) 
an+l (B) 

.....;;;;..;..:...,..,,-:- = I lK (X ,A ) 
an+l (9) iE::I i n n 

J pi(Y +1 ja. Ja (d6l 
B n J. n 

and dividing numerator by an(9) we obtain the desired result, since 

1 
a (9) an (d6) • ~ (d6) , on n , 

n 

The proef of assertien (vil is an immediate consequence of (i). 0 



32 

We introduce some notations which are useful in the following chapters. 

onYx w we definereal"''l'alued functions pi' i o:: I: 

2.27 yo::Y,qEW .• 

Notice that these functions may be considered as extensions of the functions 

defined in 2.1 (j) I by the embedding of 8 in w, in fact pi (y, 8) =pi (y I ei) I 

e e: 8. 

It is a consequence of lemma 1.6(111) that the function (y,q) +p1 (y,q) 

is measurable, i E I. 

Note that pi (•,q) is a probability density with respect to the measure v, 
for i E I and q E w. 
FUrther we define functions Ti on Y x W with range the set W1 for i E I: 

2.28 Ti (q) is a probability on 8 such that, for B E 8 ,y 

Ti,y (ql (Bl := J Pi<YI eilq(de){pi (y,ql l-1
, if pi (y,ql > o 

B 

:= q(B) , otherwise. 

Aqain, using lemma 1.6(iii) we find the measurability of 

(y,q) +Ti,y(q)(B) I B € T, i f I • 

Bence Ti is a transition probability from Y x W to 8. We may interpret 

Ti (q) as the posterlor distribution, if q is the prior distribution and 
ly 

y € Y is observed from the distribution belonging to the set Ki. The 

following formula is easily verified: 

2.29 Q +1 = I 1K (X ,A )Ti (~) • 
n it::I i n n ,yn+1 

For q € W wedefine the functions ~,q1 ,q2 , ••• recursively: 

2.30 (il ~ w + w , q0 Cql := q • 

(11) qn w x (X x A x Y)n + w 1 

such that 

* no::JN 
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for q ~ w, x1 ~x, y1 ~ Y and a
1 

e A,! e JN. 

It is straightforward to verify that, for B e T 

provided that the denominator is positive. 

Using the notations above, we may write: 

on n . 

We conclude this section with a few remarks: 

Remarks. 

(i) If ~ and n are independent random variables, defined on some pro­

bability space, and 8 is a sub-cr-field, then in general 

However in th. 2.1(i1) we proved that equality holds ~-a.s., if 
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~ := f(Z1J, n := g(Zj) and B := Fn for i~ j, i,j, eI, f and q non­

negati ve measurable functions on e 
1 

ànd ej respecti vely, and if q • ® qi. 
i€I 

(ii) Instead of defining the posterior distributions Qn by 2.25 we could 

define them directly as conditional distributions (cf. th. 2.1(i)). 

However the conditional distribution lP[z e ·IFn] is undetermined 

on some set with ~ -measure zero. 

(iii) If the prior distribution q is concentrated on a set of finitely 

many points then all posterior distributions are concentrated on 

this set. 

The main result of this section is the converganee of the posterior distri­

butions Q
0 

of z (cf. 2.16 and 2.25) to a degenerata distribution, i.e. 

Q
0

(B) converges almest surely to 1B(Z) for all B eT , provided that the 
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strategy 1 by which the system is controlled, ensures that the number of 

visits to the set Ki c X x A is infinite, with probability one. Our proef of 

this statement is similar to the proof of a theerem in [Doob (1949)]. In 

fact, our result .. extends Deob's result to a more abstract setting. 

Another result of this sectien concerns the expected differences of the 

successive posterior distributions. In the proofs of the above mentioned 

results, elementary martingale theory plays an important role. As a 

corollary of the next lemma we shall show that given z, the sequence 

{Yt (i,n), n e JN *} forma a sequence of aonditionaZ.Zy independent and 

identiaaZZy diatributed random variables {cf. [Neveu (1965) page 129]), 

* provided that JP[t(i,n) < oo] = 1 for all n E JN • This lemma is also us'ed 

in chapter 6 (remember that p e P(X), q e wand~ en are fixed). 

Lemma 2.2 

Let f be a nonnegatïve measurable function on Yn. Then 

wi th equali ty if 

:lP [ {t (i,n) < oo} ]= 1 

(we use convention 2.23, note that t(i,k) < t(i,n), k < n). 

Proof. 

It suffices to consider functions f of the form: 

n 
f(y1 , ••• ,yn) = n 1E (yj) , 

j=l j 

It is easy to verify that for E e Y we have JP -a.s. (cf. th. 1.4): 



Let h be a nonneqative measurable function on e 
1

• consider 

n oo n-1 

JE(h(Zi) j~11Ej (YT(i,j))J = k!nlE[h(Zi} j~11Ej (YT(i,j))1{-r(i,n)=k}1En (Yk)] 

wi th equali ty if 1P [ { t (i, n) < "'}] • 1 • No te that the third equali ty is a 

consequence of(*) and the fact that (Xk __ 1 ,~_ 1 > e Ki on h(i,n) = k}. 

Now we may repeat the arqument for t(i,n-1} with the function 

h(Z
1

) : .. h(Z
1

) J v (dy)p
1 

(ylzi) lE (y). So we find putting h = 1 
n 

which proves the lemma. 

The following corollary is immediate. 

eorollary 2. 3 

Let :IP[t(i,n) < oo] 1. Then for E1,. .. ,En E: Y we have q-a.s. 

~ J p. (yle.)v(dy) 
j=l l. l. 

Ej 

or similarly as functions on 0 we have lP-a.s. 

JP'Ir [Y. EE1 , ••• ,Yt(i,n)EE] ~ Jp.(ylz.)v(dy) p,z t(J.,l) n j=l J. J. 
Ej 

He nee 

Y (' l) , ••• ,Y (' ) are, conditionally given z, i.i.d. t J., t J.,n 

35 

0 
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Theorem 2.4 

If lP [ n * {T (i ,n) < ""}] • 1, then for all bounded real-valued measurable 
n~::Jil 

functions f on a i; 

lP-a.s • 

.Remark. 

This holds in particular for all bounded con~inuous functions f. Hence·Qn 

converges weakZy to the distribution which is degenerata in zi, lP-a.s. 

Proof. The proof is divided into five parts. 

a) We first reduce the problem. 

It is easy to verify that J f(6i)Qn(d6) = JE[f(Zi)IFnJ lP-a.s. (cf. 

th. 2.1) by considering indicator functions first. Since {F 1 n E: JN} is 
n 

an increasing sequence of cr-fields with limit F~, and since the sequence 

{JE [ f (Zi) I F J , n E: lN } is a martingale wi th respect to { F , n € lN } 1 n n 
we have (cf.[Neveu (1972) th~ II-2-11]): 

lim J f(6i)Qn(d9) = E[f(Zi>IF.,.J, lP-a.s. 
J:lo+ilO 

Let F* be the completion of F in H , i.e. 

F* :=
00

{A 1::. NI A E: F , N € H 1 ;[N] = 0}. Obviously, it is sufficient to "" .. 
prove that f (Zi) is F: -measurable 1 since JE [ f (Zi) I F • .J = E [f (Zi) I F:J 1 

lP-a.s. 

* So we proceed with proving that f{Zi) is F""-measurable. 

b) We define on n* :• n h (i ,n) < ""} the empii'ioaZ distl'ibutiona on (Y 1 Y) : 
nE:lN 

1 n 
F {E) :=- I lE(Y (" j)) , 

n n j=l T ~. 
E E: y * (note that n E F ,") • 

* First we verify that Fn(•) is a meas~rable function from n to P(Y) 1 

where P(Y) is endowed with the a-field generated by the weak topology. 
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This a-field is generated by sets of the form (cf. lemma 1.5) 

{~ € P<Y>j~(E) sa} 1 E € Y, a E IR • 

Since 

the measurability of Fn (•) has been verified. 

c) Next we consider the limit behaviour of F for n + ~~ as functions on 
* "" *n "" *I ~ • ·Let F~ be the restrietion of F~ on~ , i.e. Fm := {A n n A E F®}. 

* "" Since n E F® we have F~ ç Foo • By corollary 2.3 we have, for q-almost 
* "" '11' * alle: YT(i,l)'*'*'YT(i,n) are i.i.d. on (0 ,F~,JPp,e> for n E lN with 

common distribution Pe , where p : ei + P<Y> is defined bY 
i 

P8 (E) := J P1 (yjai)v(dy) 1 tor E € Y. 
i E 

Let C(Y) be the set of all bounded continuous functions on Y. Since (Y,Y) 

is a Borel space we may use a generalization of the Glivenko-cantelli 

lemma (cf. [Parthasarathy (1967) th. 7.1 page 53]). This lemma states 
'11' 

that Fn converges weakly to P81, JP p, 6-a.s. 

Bence , for q-almost all a, we have 

lP '!I' e[{w E n*lum I g(y)Fn(dy) .. Ig(y)Pa (dy) for all g € C(Y)}] .. 1 • 
p, n~ 1 

Since JP 1T [Z 
0 ,e i 

1 , we have for 

rl*:• {w € n*jlim f q(y)Fn{dy) .. I q{y)Pz (dy) for all q E C(Y)} 
n~ 1 

that JP'II' [n**J = 1 and usinq 2.10 we find JP[n**J = 1. 
Ot6 ** ** . * Bence, since JP[!l ] = 1 we haven E Foo. 

d) h th f ..... 1 P f n t PtV) is F:_measurable. Re-Further we prove t at e un .... on zi rom o "' 

member that the a-field on P{Y) is also qenerated by sets of the form 

{cf. lemma 1.5): 

{~ E P<Y>I J q(y)~(dy) sa}, q € C {Y) , a E IR • 

S1nce n** € F* we have 
00 
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{we n**f J q(ylPz (dy) sa}= {we n**llim J q(y)F (dy) s 
i n-+«> n 

Bence {w e nl f q(y)Pz (dy) s a} e F: and therefore 
i 

* Pz : 0 ~ P(Y) is F~-measurable. 

e) FiÀally we show that Zi is r:-measurable. 

By the separation property (cf. 2.1 (j)) we have P : 8
1 
~ P(Y) is a one­

one map into P(Y). Since this mapping is measurable we have by Kuratowski 's 
-1 theerem (cf. A7) that P is also measurable. Hence, since the function 

-1 * -1 P (Pz ) ; 0 + 81 is f
00

-measurable and since P (Pz ) = Zi 
i * ** i we have that zi is F .. -measurable on n • Therefore, py part (a), the 

theerem is proved. D 

COrollary 2. 5 

Let i 1,i
2

, ••• ,1k eI and let f be a bounded measurable function on 
-* ei x • • • x a i , k IE' lN • Then: 

1 k 

k 
(*) JP[ n n *{'r(ij,n) <co}] = 1 

j=l n!E'lN 

implies 

umJf(ei , ••• ,a. )Q (d6) 
n+= 1 l.k n 

f(Zi , ••• ,z. ) lP-a.s. 
1 

1
k 

Proof. 

We extend f to a function on 8 by defininq f(9) := f(ai , ••• ,a. ) fora € a 
1 J.k 

with ei. as ij-coordinate. Let (*) hold. 

As in pirt (a) of the proof of th. 2.4 we have: 

lim I f (6)Qn (d6) = JE [f (Z) I F .,.,J = JE a (Z) I F:] 
n+co 

lP -a.s. 

It suffices to consider functions f of the form 



m 

f(e. , .•• ,e. > = n 1E cei > 
1 1 1 k j=l j j 

where Ej E T
1 

, m ~ k , 
j 

39 

* m E lN • 

* In the proof of th. 2.4 we showed that (*) implies that zi. is F
00

-measurable, 

1 ~ j ~ k. J 

- * Bence f{Z) is F
00

-measurable here, which proves the statement. 0 

Corollary 2.6 

Let q be concentrated on a countable subset of a. Then ll? [ 11 * { -r (i ,n) <cro} ] = 1 
Tl' nElN . 

implieS lim J f(6
1

)Q (d6) = f(6,) 1 lJ? 9-a,S, f0r e € a With q({6}) > 0 
n~ n 1 p, 

and for any bounded measurable function f on a1 • 

To prove this, note that for B = a x c, c e: Hco ll? ~ ,q[B] 1 implies 

ll? Tl' 
6
[B] = 1 for all 6 € a with q({6}) > 0 (cf, 2.11). 

p, 
The countability condition in corollary 2.6 is essential. In [Freedman 

(1963),(1965)] and [Fabius (1964)] this problem is studied for the situation 

of real-valued i.d,d. random variables. 

In th. 2.7 we consider a slight extension of th. 2.4, to be used in sectien 

4.2. 

Theerem 2.7 

Let i 1, ••• ,ik EI, with k E ~* and let {étn, n E :N} be a sequence of stop­

ping times, such that for m E :N, hn = m} e: Fm and cr0 := 0, O'n+l > crn. Let 

the cr-field F
0 

be defined as in 2.19. 
n 

k co 

Assume: ll?[ n n { -r (i. ,n) < co}] = 1. Then, for all bounded measurable func-
j=l n=l J 

tions f on ai x ... x a we have, on n {0' < <»} l 

ik ne::N n 
1 
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lim J Q (de> f (6 i , ••• ,a i > = f czi , ••• ,zi ) 
~ 0 n 1 k 1 k 

lP -a.s. 

(by convention Q", is the zero-measure) • 

Proof. 
al We first consider the o-fields F0 in more detail. Let B ~ F , then 

n n 
B n {an=k} = f,J if k < n since { o = k} = f,J. If k 2: n then 

n 
B n {a = 

n 
k} ~ F k. Hence F c: F , n ~ JN • Now, let B ~ F • 'l'hen 

n an crn 

B n {o +l =k.l=B n ( u {a = t}) n {an+i = k} ~ Fk , since 
n DSR.<k n 

B n ( u {cr = t}) E; Fk_
1

• :a:ence the sequence {F , n ~ JN} is increasing. 
nSR.<k n °n 

Since F c F c: F n ~ :N we have u F c u F cr n c: F 
00 

• Therefore 
n an oo ne::N n ne:JN 

F
00 

is the smallest cr-field containing u Fcrn 
ne:JN 

b) Further we consider I~ (d9)f00) where fis a bounded measurable function 

on El. Let B E: T. 'l'hen: n 

00 

= I lP -a.s. 
m=n 

(for the last equality cf. [Neveu (1972) prop. II 1-3]). 

:a:ence, using standard arguments, we find for each bounded measurable 

function f: 

(*) f Q0 (d6)f(6) = JE [f(Z) I Fa ]1{a <"'} • 
n n n 

c) Note that, by the conclusion of part (a): lim JE [f (Z) I F <1 J = JE [f (Z} I F ,.,J 
n......, n 

JP-a.s. 

since (a < oo} , n e: JN is a nonincreasing sequence with limit 
n 

n {crn < co} we have, lP -a.s.: 
ne:JN 
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lim JE[f(Z)jf ]1{ } •JE[f(Z)jf ]1 n { } • a a <~ ~ a.<~ n...,. n n nt::JN n 

In exactly the same way as in the proef of corollary 2.5 we find 

JE [f (Z) J F .,.J = f (Z}, lP -a.s., which proves the theorem. 0 

We conclude this sectien with a theorem concerning the expected quadratic 

differences of successive posterior distributions. This result, which might 

be used to obtain approximations of the value function (cf. chapters 6 and 7) 

is of some interest in its own right. 

Theerem 2.8 

Let s1,s2 , ••• be a measurable partition of ei, 

lP [ n * {T (i ,n) < "'} J = 1. 
nEJN 

Th en 

in particular, for m = 0 

Proef. 

let q • e q and assume 
ie!I i 

According to th. 2.1 Q. {Bj) = lP [zi E B.JF ], lP-a.s. For n;:;: m;:;: 0: 1,n J n 

JE({Qi,n+1 (Bj} - Qi,n(Bj)}2jfm] = 

JE [Q~,n+1 (Bj) + Q~,n (Bj) - 2JE [Qi,n+l (Bj)Qi,n (Bj) J F n] I Fm] = 

lP-a.s. (cf. th. 2.1 (vi)). Hence 

By th. 2.4 we have lim Qi (Bj) = 18 (Z.), lP -a.s. Hence by the dominated 
n...,. ,n j 1 
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converqence theorem, for conditional expectations 

lim JE[Q
1
2 

(Bj>IF J = JE[18 <z1>1F J = Q. (Bj). 
n- ,n m j m ~,m 

consequently, by changing the order of summation 

which proves the theorem. 0 

Remark. .. 
The quantity L q~(Bj) is a measure of degeneration for the distribution q1 • 

j=1 
In fact, 

is the paraboLia entropy of q1 with respect to the partition s
1

,B2, ••• if 

only a finite number of sets Bk are non-empty, see [Behara and Nath (1973)], 

It is easy to verify that if N is the number of non-empty sets in the 
~~ 2 1 1 

partition, then 1 - L.j..,1 q1 (Bj) s 1 - N with equality 1f q1 (Bj) = N for the 

non-empty sets Bj, and 1- Ij.1q1 (Bj) = 0 if q1 is concentrated on one. 
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3. THE EQUIVALENT VYNAMIC PROGRAM ANV OPTZMAL REWARV OPERATORS 

In section 3.1 we show that the Bayesian control model is equivalent to a 

dynamic program with a state space that is the Cartèsian product of the 

oriqinal state space X and the set W of all distributions on the parameter 

set. This property is used frequently in the remaining chapters. In section 

3.2 we study a class of optimal reward operators based on stopping times, 

as introduced by weesels (cf. [Van Nunen and Wessels (1977)]). Here we con­

sider general.dynamic programs and therefore the section may be of some in­

dependent interest. However in section 3.3 we return to the Bayesian control 

model and we specialize the results of section 3.2 for the equivalent qynamic 

program. Further we give some useful properties of the value function (cf. 

2.12). We note that the results of section 3.2 are used in chapters 6 and 7. 

Before discussing in detail the methods and resul ts of this section, we 

define the dynamic program, that turns out to be equivalent to the Bayesian 

control model. 

model 2: Equivalent dynemie pl'O(JI'OJTI 

The model is defined in termsof the objectsof model 1 (cf. 2.1). 

3.1 (a) x x wis the statespace endowed with the cr-field X & W. 
(b) A is the action epace endowed with the a-field A. 
(c) D is a function from X x W to the non-empty subsets of A such that 

D( (x,ql) := D(x), x ~:: x, q ~:: w (the sets of admiseible actions). 

(d) P is a transition probability from x x w x A to x x w such that 

P(B x clx,q,a) : .. l 1 (x,a) J v(dy)p1 (y,q)JP(dx' lx,a,y) 
1€I Ki I {yEY Ti (q)EC} B ,y 

(x~ X, q ~ W, a € A, B ~X, CE W) (cf. 2.28). 

(e) the ~avd function r : x x w x A ~ IR is defined by 

;(x,q,a) := l 1K (x,a) Jv(dy)pi(y,q)r{x,a,y) • 
iEI i 
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As in sectien 1o2 we define the sets of histories, the strategies, the ran­

dom variables and the probabilities on the sample spaceo 

3o2 The set of histoPies at stage n, is defined by: 

(i) a0 := x x w, Hn := (X x w x A)n x x x w, n € lN *, 

H"' := 0 := (X x W x A) lN o 

(ii) 'R is the a-field on H induced by X, W and A, n € lN o Let H := H_o 
n n -

3o3 A st~ategy nis a sequence n = (n0 ,n1,n2 ,ooo), where nn is a transition 

probability from H to A such that n <·lx0 ,q0 ,a0 , o o o ,x ,q. ) is concen-- n n n n _ 
trated on D(xn'~)o Thesetof allstrategiesis dentoed by ITo 

3 o 4 ~n 0 we_ de fine the c~ordinate functions or roandom vaPiab Zes xn, Qn and 

An by Xn(w) := xn' Qn(w) := ~' An(w) := an where 

w = (xO,qO,aO,x1,q1,a1'o") € rio 

3o5 Fo! each p € P(X), each q € Wandeach n € rr there is a probability 

P 1T on fi determined by (cf. th. 1.4): 
p,q 

]p:,q[xo € Ba, Qo € co, Ao € Eo'ooo,Xn € Bn' Qn € en' An € En]:= 

1co (qol Jp(dxol J ;o(daolxo,~looo 
BQ EO 

000 I P(d(xn'~) 1xn-1'~-1,an-1) I ;n(danlxo,qo,ao'ooo,xn'~) 
B xc E n n n 

for Bi € X, ei € W and Ei € A, i € lN and q0 := qo 

We introduce a sequence of transformations tn : W x Hn + Hn which relate 

histories for model 1 to histories for model 2o 

where qi := qi(q,x0 ,a0 ,ooo,yn) (cfo 2o30(ii)), for i= 1,ooo,no 

Bence, if q € Wis the prior distribution of Z, then tn(q,hn) is the history 

at timen if we only cbserve the states xi, the actions ai and the posterior 

distributions qi (is n, hn € Bn)o 

Further we define the subset rr0 of IT by: 

3o7 n € rr0 iff there is for each q € W a n € rr such that for all hn € Hn' 

n € lN: 
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'IT <·lh) .; <·lt (q,h)). n n n n n 

'i'he strategy 'IT is called the COl'l'eBponding Btrotegy of 'lf (with respect 

to q). 

Notice that the strategies 'IT € n0 base the choice of the action at time n 

only on x0 ,Q0 ,A0, ••• ,xn,~· 

In this section we show that we may restriet our attention to the subset 

of strategies n0 when we are looking for "good" strategies formodel1, (cf. th. 3.4). 

i.e. sup v(x,q,n) = v(x,q) for all x € X and q € w. 
'lf€IIO 

,.... 
Moreover we shall show that for each n € n

0 
and its corresponding 'IT € IT· 

the following equality is valid for all p € PcX) and q € W: 

1r <'I.'W7f ,.., - - -
lE [r(X ,A ,Y +l)) • lE [r(X ,Q ,A )J p,q n n n p,q n n n for all n € JN • 

This implies that we may apply techniques of dynamic programrning to the 

equivalent dynamic program in order to determine or to approximate the value 

function v and nearly optimal strategies. 

Transformatiens of this type are well-known, see for example [Martin (1967)], 

[wessels (1968)], [Hinderer (1970)], [Furukawa (1970)], [Yushkevich (1976)]. 

As far as we know the most general result is proved in [Rieder (1975)]. 

Translated to our situation Rieder's result implies that the Bayesian control 

model is equivalent to a dynamic program with state space X x Y x w, in other 

words that the process {(X ,Y ,Q ,A ) , n € :N} is a Markov decision process. n n n n 
To this end Rieder transforma the Bayesian equivalent model into a so-called 

non-Markovian decision model, as defined in [Binderer (1970)] and afterwards 

he shows, usi.Ilg Binderer's concept of sufficiency, that the non-Markovian 

decision model is equivalent to the d:ynamic program with state space X x Y x w. 

Bowever, we need the equivalence of the Bayesian control model to model 2, a 

dynamic program with state space X x w. Therefore we prefer a direct proof. 

Our approach employs the same idea in [strauch (1966) th. 4.1], which is also 

the basis of Binderer's sufficiency concept. 

We start with some preliminaries. 

Note that, according to th. 1.4, we have a "natural" reqular conditional 

distribution p'll' [•lz,xo,A_,yl'"'''y ,x ,A], p € P(X), q € w, 1f € n. p,q --u n n n 
We always choose this version without comment. For real-valued measurable 

functions f on n that are bounded form above we always define 

En [flz,x
0

,A
0

,Y
1

, ••• ,Y ,x ,A J as in tb. 1.4(ii). p,q n n n 
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Note that we are workinq in model 1 until th. 3.5. Reeall that in 2.24 we 

defined the mapping ~ ; n + w. On w we have the Borel a-field w, qenerated 

by the weak topoloqy, which is the smallest a-field on W such that the maps 

B + ~(B) are measurable (cf. lemma 1.5) for every BET, Since for every 

B e T the mapping w + Q (B) (w) is measurable it follows that 
1f n 1f 

JE [Q(B)IoJ•Q(B),lP -a.s. 
p,q n -n n p,q 

Lemma 3.1 

Fix p E p (X), q E W, 1f E IT and n E lN, 

(i) Let f be a real-valued measurable function on a x X x w x A, bounded 

from above. 'l'hen 

(ii) Let f be a real-valued measurable function on a x {X x w x A)n+l, 

bounded above. 'l'hen, for V :• (x
0

,Q0$A0 , ••• ,xn,Qn,An), we have 

JE 1f r f cz, v> I VJ • Jf ca , v> Q ede> , 
p,~ n 

11' 
lP -a.s. p,q 

Proof. 

JE'If [f(Z,X ,Q ,A >IX ,O ,A J "'1C(X ,Q ,A )lP1f [ZE Blx ,Q ,A]. p,q n n n n -n n n n n p,q n n n 

Note that cr{X ,o ,A ) e F • Hence 
n -n n n 

JP1f [ZE BIX ,O ,A]= JE
11 [JP1f [ZE BIF JjX ,Q ,A] 

p,q n -n n p,q p,q n n n n 

- JE 11" [Q (B) I x ,Q ,A ] = Q (B) • p,q n n n n n 

'l'herefore we have 

JE'If [f{Z,X ,o ,A >IX ,Q ,A] 
p,q n -n n n n n 

= f 18 (6)1C(X ,Q ,A )Q (d6) = f f(S,X 1Q ,A )Q (d6) • n n n n n n n n 



47 

The o(X ,Q ,A )-measurability of J f(6,X ,Q ,A )O (d6) follows from lemma 
n n n n n n~ 

1.6(iii). The proof of assertien (ii) is analoqous. 0 

In lemma 3. 2 we employ symbols we used before, but here we do not use their 

interpretation. 

liemma 3.2 

Let (~,H), (U,X) and (v,r) be Borel spaces, let x: n +u and Y: Q + v be 

measurable. Let :m be a probabili ty on H. Further let lP [ • I x = x] be 

a regular conditional probability given X= x (cf. corollary 1.3) and let f 

be a real-valued measurable function on U x V, that is bounded above. 

Define m (C) := lP [y € cl x = x] for all x € u and c € r. x 
Then f f(X,y)lll_,c(dy) is a version of JE[f(X,Y)IxJ. 

Proof. 

First let f (x~y) := lA (x) 18 (y) with A € X, 8 € r. By corollary 1. 3 and by 

1.21 we have JE[18 (Y)IxJ = J 18 (y)mx(dy), lP-a.s. Bence 

m [f(X,Yl lxJ = 1A (Xl J 18 (y)~(dy) = J f(X,y)~(dy) 
By standard arguments the statement can be proved in genera!. 

In th. 3.4 we shall show that we may restriet attention to the subset of 

strategies n0 c IT, defined in 3.7. In fact we shall show more: the only 

interesting strategies are those, where for all n € JN the choice of the 

distributton of the action at time n depends only on the values of Xn and 

Q • Here we use the same construction as in [Strauch (1966) th. 4.1]. The 
n 

D 

idea of this construction can also be found in [Derman and Strauch (1966)]1 

[Wessels (1968) th. 7.4 and th. 7.5] and in [Hinderer (1970) th. 18.1]. 

We start with a lemma where this construction is carried out. 

Lemma 3.3 

Fix p € P(X), q € wand~ € IT. For all n € lN we fix a regular conditional 

probability lP 1T [·I X = x 1 Q = a ] 1 such that p,q n n n -n 
lP u [A € D(x) lx =x, Q =a]= 1 for xn € X and ~ € w. Wedefine 

p 1q n n n n n -n 
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the strategy 'Ir* E; n by 

3.8 * l .". I 'lfn(B xO,aO,yl,xl,al'''''Yn•xn) :=lP p,q[An € B Xn = xn, Qn = ~] ' 
B EC: A, where ~ := ~(q,x0 ,a0 ,y1 , ••• ,yn) (cf. 2.30). 

Then for each real-valued measurable function f on x x w x A x x x w that is 

bounded above, we have simultaneously for all n € JN: 

Proof. 

The existence of a regular condi tional probabili ty JP 1f [ ·I X =x , Q = d J 
P ,q n n n -n 

with the desired property can be proved as in [Binderer (1970) th. 18.1 and 

corollary 12.7]. We proceed by induction on n. Remember Q0 = q on 0. Hence 

(1 (x
0
> = a cx

0
,Q

0
). Hence for all B e A and x

0 
e x: 

Hence the statement is proved for n = o. Assume it holds for n -1 and for all 

functions f satisfying the assumptions of the lemma. Define for notational 

convenianee the function F on 0 by F := f(X ,Q ,A ,x +l'Q 1J. n ,n n n n+ 
First we show that for all .".' e n we have JP 1T -a.s. : p,q 

(a) 
1T' 

JE [Fix ,Q ,A J p,q n n n 

. I P(dxiX ,A ,y)pi(y,Q )f(X ,Q ,A ,x,Ti (Q )) =: g(X ,Q ,A) • n n n n n n ,y n n n n 

To prove this note that (according to th. 1.4): 

'Ir' f JE [Fiz,x
0

,A
0

,Y
1

, ... ,Y ,X ,A]= }:1 (X ,A) 
p,q n n n iei Ki n n 

v(dy) 

• f P{dxiX ,A ,y)pi(ylzi)f(X ,Q ,A ,x,T. {Q)) =: h(Z,X ,Q ,A) • n n n n n ~,y n n n n 

'Ir' 
Bence, JP -a.s. p,q 

'Ir' 1T' 
JE [FIX ,Q ,A ] = JE [h(Z,X ,Q ,A ) !x ,Q ,A ] = p,q n n n p,q n n n n n n 

= J h(S,x ,Q ,A )o (d6) , 
n n n'"'n 



where the last equality fellows from lemma 3.1. This proves (a). Next we 

prove that there are versions of the conditional expectations such that 

* 
(b) JE 1T [FIX ,Q J = E 'lf [Fix ,Q ] • p,q n n p,q n n 

Note that, by (a), lP 'lf -a.s. p,q 

E'lf [Fix,QJ=.m'~~" [g(X,O,AJ!x,Q]. p,q n n p,q n -n n n n 

Let m (B) : = lP 'lf [A € BI X = x 1 Q = q J • 
xn'~ p 1 q n n n n -n 

Bence, by lemma 3.2, we have lP 'lf -a.s. p,q 

E 'lf [Fix ,Q J = J g(X ,~,a)mx Q (da) • 
p,q n n n n' n 

Remamber that by definition we have for all B € B 

* Hence lP 'lf -a.s., by lei!Illa 3.2: p,q 

E '~~"* [FIX ,Q ] = J g(X ,Q ,a)mx Q (dal • 
p,q n n n n n' n 

~his proves that g(X ,Q ) := J g(X ,Q ,a)mx Q (da) is a version of n n n n , 
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'lf* n n 
E 1T [Fix ,Q ] and also of JE rFI x ,o ] • We preeeed with the final step. p,q n n p,q- n -n 

E 1T [F] 
p,q 

E'lf [E'If [FjX Q ]] - E'l! [-(X )] 
p,q p,q n 1 n - p,q 9 ~·~ 

* 
JE: ,q[q (Xn 'Qn)] 

where the third equality fellows from the induction assumption, if we define 

1 <xn-1'Qn-1'An-1'xn,~l := q(Xn,Qn) • 0 

Theorem 3.4 

Let p € P(Xl 1 q € w, 11 € I!, n € lN and let '11'* be as in 3.8. Then 

* JE'If [r(X,A,Y+l)]=JE'II' (r(X,Q,A)]=JE'If (r(X,Q,A)] p,q n n n p,q n n n p,q n n n 

(ris defined in 3.1(e)). 
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Proof. 

The second equality follows directly from lemma 3.3. We proceed with the 

proof of the first equality. According to th. 1.4 we have 

Ew [r(X ,A ,Y +l>lz,x0 ,A0 ,Y1, ••• ,Y ,X ,A] p,q n n n n n n 

· J v(dy)r(x ,A ,y)p. <ylz.) =: f{z,x ,A) • n n l. l. n n 

L iK (X ,A ) 
iEI i n n 

By takinq conditional expectations with respect to o (X ,o ,A ) we obtain 
n -n n 

lP n -a.s. 
p,q 

(*) JE 1t [r(X ,A ,y +l) I x ,Q ,A ] • JE '11 [f(Z,X ,A ) I x ,o ,A ] = p,q n n n n n n p,q n n n -n n 

"' r{X ,o ,A ) • 
n -n n 

Bence integration of the first and the last member of (*) with respect to 

lPn yields the desired result. 0 p,q 

In th. 3.5 we prove the announced correspondence between the strategies of 

no for model 1 and the strategies of Îi for model 2. 

Note that according to th.,.).4, we have for model 2 a "natural" regular 

conditional probability lP w [ ·lx
0 

,g
0

,Ä
0

, ••• ,'xn,Q ,Ä J. p,q n n 

Theorem 3.5 

Let p E P(X), q E w, v E rr0 and let~ En be the corresponding strategy 

(cf. 3. 7). Then, for all n E lN and all measurable functions f : (X x w x A)n+l.._JR 

that are bounded from above, we have 

1r -1T --- ---E [f(x
0

,Q
0

,A
0

, ••• ,x ,Q ,A >J =JE [f(x
0

,Q
0

,A
0

, ••• ,x ,Q ,A >J. p,q . n n n p,q n n n 

Proof. 

Let n = o. In this case the statement is valid, since w0 c·lx> .;
0

c•lx,q) for 

all x € X. Assume the statement is valid for n and all admissible functions 

f. It is straightforward to verify that 



= L 1K (X ,A) Jv(dy) JP<axlx ,A ,y) 
iei i n .n n n 

• f;;n+l (dal xo,Qo,Ao, ••• ,xn ,Qn ,An ,x,T i,Y (Qn)) 

".Pi (y lzi) f (Xo•2o•Ao• ••• ,xn ,Qn ,An ,x,Ti ,y< Qn} > =: h(z,xo,Qo,Ao' ••• ,xn,Qn ,Anl 

where the second equality is a consequence of 3.7. 
1T 

8y lemma 3.1(ii) we have lP -a.s. p,q 

lE;,q[f(Xo•2o•Ao•···,xn+1'Qn+l'An+1l lxo'2o'Ao•···•xn,Qn,An] 

= L 1K (X ,A ) Jv.(dy) JP(dxlx ,A ,y) 
iei i n n n n 

.J1f +l<dalx
0

,Q
0

,A0 , ••• ,x ,Q ,A ,x,T .. (Q )) 
n n n n 1,y n 

For model 2 we have 1 according to th. 1. 4 : 

Hence, using the induction hypothesis we have 

1T 
JE [g<x0,Q0,A0 , ••• ,x ,Q ,A J] p,q n n n 

Remark. 

In fact we proved by th. 3.5 the following result. 

Let q e W and let F : 0 + Q be defined by 
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where ~ := ~(q,x0 ,a0 ,y1 , ••• ,yn). 

Then for all B e H ; 

lP P'lf [ {w I F (tb) e B}] ,q 
p'lf [B] 

p,q 

The following corollary is an immediate consequence of theorems 3.4 and 3.5. 

Corollary 3 • 6 

·-Let p e P(X} and q e w. Then for all rt e rr
0 

and its corresponding '11' (cf. 3.7) 

(i) {cf. 2.12} 

and 
N-1 N-1 

(11) 
1 1T \ 1""'1f \',.." .... ~,." 

lim inf -N JE [ L r{Xn,A ,Y +l)] = lim inf -N JE [ L r(X ,Qn,A )]. 
N-+<'<> p,q n=O n n N-+<» p,q n=O n n 

Moreover, the supremum _over all '11' e rr0 ón the left hand side aquals the 

supremum over all '11' e rr on the right hand side, in {i) and also in (ii). 

(To verify this, note that for each '11' € n there is a '11' € rro such that ; is 

the corresponding strategy for '11') • 

Remark. 

In case q e W is concentrated at e e a then all posterior distributions Q 
n 

are degenerata in e (cf. the remarks at the end of section 2.2). Bence, in 

this situation the Bayesian control model is equivalent to a dynamic program 

with statespace x*:= {(x,e>lx eX}. so we have shown here that observation 

of the supplementary state variables Y1 ,Y2
,Y3, ••• of the system is super­

fluous, in case the transition law is completely known, i.e. all information 

needed to control the system is contained in the state variables x
0

,x
1
,x2 , ••• 

Since model 1 and model 2 are equivalent we shaU omit the tilde in the 

notations for model 2 and we shaZZ switch between these moelels without cam­

ment. 

We conclude this section with the introduetion of some terminology. 

In the class of strategies rr0 we shall consider two nested subsets, that are 

of special interest in the remaining chapters. 
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3.9 Each measurable function f : X+ A such that f(x) é D(x) for all x € x, 
is called a Markov poUcy and the strategy 11 € n

0
, defined by 

11n({aJixo,aO,y1,x1, ••• ,yn,xn) := 

stationary st~tegy. 

1 if f(x ) =a, n € lN is called a 
n 

3.10 Each measurable function f : X x W +A such that f(x,q) é D(x) for all 

x é x and q € w, is called a Bayesian Markov poUcy and the s~ategy 

11 € rro defined by 

1Tn({a}jx0 ,a0 ,y1 ,x1, ... ,yn,xn) := 1 if f(xn'~) =a, n € lN where 

qi = q
1 

(%,x0 ,a0 ,y1, ••• ,y1 l, is called a Bayesian stationary st~tegy. 

Remarks. 

(i) Each stationary strategy is also a Bayesian stationary strategy. 

(ii} It is easy to verify that, under each Bayesian stationary strategy, 

the process {(X 1Q ), n € JN} forms a Markov chain. This is well-known n n 
if we are considering model 2, however for model 1 it is a consequence 

of the equivalence between the two models. 

(iii} As a consequence of the equivalence between the models 1 and 2 we may 

apply the numerous results for dynamic programs to model 1. We only 

mention one of these results: if r is bounded then the supramum over 

all Bayesian stationary strategies o~ the Bayesian discounted total 

return equals the optimal value (cf. [Blackwell (1965)]}. In other 

words it suffices to consider only the Bayesian stationary strategies. 

(iv) If the action space A is a finite set then any Bayesian Markov policy 

f such that, f(x,q) is a maximizer in the set D(x) of 

a+ L 1K (x,a) Jv(dy)p1 (y,q){r(x,a,y) +13JP(dx'lx,a,y)v(x',Ti (q))} 
i€I i ,y 

for (x,q) € X x Wis optima! (cf. [Blackwell (1965) th. 7]). 

In this section we study optima! reward operators for dynamic programs with 

complete separable metric state and action spaces. Thése operators are based 

on stopping times. They generalize the well-known optima! reward operator 

introduced in [Blackwell (1965)]. In [Wessels (1974)] these operators have 

been studied for dynamic programs with finite state and action spaces and 

they have ~een generalized for models with a countable state space and an 
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a.rbitra.ry action space in [van Nunen and Wessels (1977) ], Van Nunen and 

Wessels show that a number of well-known approxtmation methods for the value 

function in discounted dynamic programming, such as the Gauss - Seidel iter­

ation are equivalent to successive applications of an opttmal reward operator 

correspoJi.ding to a sui table stopping time. We prove some new resul ts on these 

opttmal reward operators. First we show that if such an operator is applied 

to a function on the state space that is upper semi-analytic and bounded from 

above, then the result of the operatien is again an upper semi-analytic func­

tion which is bounded from above. This generalizes a rather theoretica! result 

in [Blackwell, Freedman and Orkin (1974)] and [Shreve (1977)] for the optimal 

reward operator introduced by Blackwell, to a similar result for all optima! 

rewa.rd operators of the class we consider. 

FUrther we show that.successive applications of two of these operators, possi­

bly for different stopping times, have the same result as one application of 

the optimal reward operator which belengs to the oomposed stopping time 

(cf. 3.14 fora definition). This property has some interesting consequences, 

one of which is that we can generalize results proved by Van Nunen and 

Wessels for discounted dynamic programs, using the fixed point theorem for 

contraction !llaPPings, to more general models. 

In chapter 6 we use another consequence of this property for the equivalent 

dynamic program (model 2) • There we study the optima! reward operator, eer­

responding to the entrance time in a subset of the state space. 

Using this operator is equivalent to transforming the model into a dynamic 

program with this subset as a state space. 

Since we are dealing with a general dynamic program bere, we have to intro­

duce some new notations. (Symbols used in this sectien do not have the inter­

pretation, given in the foregoing part of the monograph}. 

model 3: Genera:!, dynamia progl'Q111. 

3.11 (a) (S,S) is a Borel space, called the state spac~ 

(b) (A,A) is a Borel space, called the action space. 

(c) D is a function from s to the non-empty subsets of A such that 

K := {(s,a) Is € s, a € D(s)} is an element of S & A, and it is 

assumed that K contains the graph of some measurable function, 

from S to A• 

(d) P is a transition probability from s x A to s. 
(e) r is a real-valued measurable function on S x A, that is bounded 

from above. S € [0,1) is the discount factor. 
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The sets of histories, the strategies, the random variables and the probab­

ilities on the samplespace are defined analoqous to model 2 (cf. 3.2-3.5). 

We even use the same notations, with the exception that we omit the tilde 

and that the coordinate functions on the state space are denoted by Sn for 

neE. 

We start with some definitions: 

3 .12 A stopping time t is a measurable funct!on from G to ti such that 

{T = n} e Hn. 

3.13 The shift oper>atot> 1jl is a function from st to 1'2 such that 

1jl(sO,aO,s1,a1, ••• ) := (s1,a1,s2,a2, ••• ) 

The iterates of 1jl are defined by: w0 {oo) 

* forooeOandne:N. 

3.14 The set of all stopping times is denoted by l• and on l we define 

the operation: o by 

if "1 (00} < 00 

:="' if ".1 (w) = "", for weG and T 1 ,T2 e ÏJ· 

The function T
1 

o ".
2 

on G is called the aomposed $topping time. 

It is easy to verify that t 1 o t 2 eL (cf. [Revuz (1976) page 22]). 

3.15 (i) 8 (S) is the set of real-valued measurable functions on S, which m 
are bounded from above. 

(ii) Ba {S) is the set of uppèt> semi-anaZytic (u.s.a.} functions on s, 
which are bounded from above. 

In appendix A we give a definition of u.s.a;.functions and there we also 

collect some useful properties of these functions. Note that Bm(S) c Ba(S). 

Finally we define for each T e l the corresponding optima! reward operator. 

3.16 The optimaZ t'~at>d opet>atOt' o, is defined for functions b e Ba(S) by: 

T-1 
(U b)(s) := sup E1T[ l Snr(S ,A}+ ll"bcs".JJ 

t 1T€TI s n•O n n 

{we use the convention b(s".) = 0 on {T = co} (cf. 2.23)). 

The usual optima! reward operator u, introduced by Blackwell, can be defined by 

3.17 U := u
1 

where 1 is the stopping time identically one on n. 
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Note that, (Ub) (s) = sup {r(s,a) + B/P(ds'ls,a)b(s')}, for b € Ba(S). 
a€D(s) 

It is well-known that Ub need not to be an element of B (S) if b € B (S) 
m m 

(cf. [Blackwell (1965)]), Bowever in [Strauch (1966)] it is shown that the 

value tunetion is u.s.a. and in [Blackwell, Freedman and Orkin (1974)] it 

has been proved that Ub € Ba(S) if b € Ba(S), In [Shreve (1977)] the same 

result is obtained. We show this property for all operators u,, t € t. 

Theorem 3.7 

Let t € E and b € B {S). Then (0 b) € 8 (S). 
a t a 

Proof. 

" "'<-1 .,nr {S ) "t,_ ( ) i Define on •• Y := "n=O ,.. n'An + ,.. SJ s, . It is stra qhtforward to verify 

that Y ~ M(l - B>-1, where M := sup r(s,a) + sup b(s) • 
{s,a)€SXA sES 

(We divide the proof into three parts.) 

(a) we firstshow that Y is u.s.a. on n. Define for c E :m: 
E := {wE n!Btb(S ) > c}. Let c > 0. Then: 

C T -
E = VJN({t = n} n {b(S) > cB-n}). Note that b(S) is u.s.a. (cf. A9). c nE n n · 

Consequently E
0 

is analytic (cf. A2). Let c s o. Then: 

E = u ({t = n} n {b{S ) > c8-n}) v {< = ~}. Bence in this case E
0 c n€JN n t 

is also analytic. Therefore B b{St) is u.s.a. on Q and so Y is u.s.a. 

on n (cf. A 8). 

(b) consider the function on P((A x S)JN) x S defined by: 

{ll?,s) + f Y(s,w')JP (dw'), (w' € (A x S)lN). We show that this tunetion 

is u.s.a. (Note that P((A x S)JN) is endowed with the topoloqy of weak 

convergence.) TO this endwedefine the tunetion Y on P((A x S)JN) x n 
by: Y(ll?,w) := Y(w). TO show that Y is u.s.a. note that, for c € lR: 

Since P((A x S)JN) is a measurable set and by part (a) {w € niY(w) > c} 

is analytic we have by A2 that Y is u.s.a. FUrther we define a transition 

probabili ty p from P ( (A x s) JN ) x s to (A x s) lN by 

p (dw'l JP ,s) := ll? (dw') • 

To verify that p is indeed a transition probability, note that 
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{(JP ,s) IP<Bill? ,s) s c} • {ll? e: P((A x S)JN) IJP (B) s c} x s 

for B e: (A ® S) JN and c e JR. Bence, by lemma 1.5 (i) this set is measur­

able. Finally we note that, by AlO the function on P( (A x s) JN) x s: 

(lP ,s) -+ J Y(JP ,s,w')p(dw 1 lll? ,s) • J Y(s,w')JP (dw') 

is u.s.a. 

(c) Introduce the set t. :• {(ll?,slls e: s, ll? e: 'P((A x S)JN) such that fo:r a 

'Ir e: n :li?[B] == JP'If[S x B]. fo:r all Be: (A e S)JN}. 
s 

It has been p:roved in [Binderer (1970) lemma 13.1] that t. is a Borel 
JN . 

subset of P( (A x S) ) x s. (Note that model 3 is an example of Hinderer' s 

model.) Bence it is straightforward to verify that 

(JP ,s) -+ F(ll? ,s) :• J Y(s,w')ll? (d!ll')lt. (ll? ,s) - lt,c (ll? ,s)•"' 

JN is u.s.a. on·P((A x S) ) x s. 

Finally we remark that (U b) (s) = sup F(JP ,s), whe:re the supremum is 
T JN ll? 

taken over all ll? e: P ((A x S} ) • 

Bence, since {s E si cu,b) (s) > c} .. projs{ {ll? ,s) IF{ll? ,s) > c} fo:r c E JR, 

we have by A4 : u,b is u.s.a. 0 

It has been shown in [Blackwell {1965) example 1] that even if b e B (S) it m 
is not necessarily true that for every e > 0 there is a strategy 'lf e n such 

that 

Boweve:r, in [Blackwell, Freedman and Orkin (1974)] it has been shown that 

there always exists a "unive~aZZy meas~Ze etrate9Y" 'lf with this property 

(i.e. 'lf cal·> is unive:rsally measurable for all B € A, see appendix A). n 
Moreover in [Sh:reve (1977)] the same p:rope:rty is p:roved for the stopping 

time that is identically infinite. It should be possbile to establish a 

similar result for arbitrary stopping times in E. Bowever, we do not need 

such a result, as we have the following lemma. 

Lemma 3.8 

If b e 8 (S), Te I, p e P(S) and & > 0, then there is a strategy 'lf e: rr such m 
that 
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t-1 
3.18 JE TT[ I Bnr(S ,A ) + B'b(S ) ] ~ (U b) (s) - e:. 

s n=O n n t t 

Proof. 

This statement is a simple consequence of th. 14.1 in [Binderer (1970)], 

which is a generalization of th. 8.1 in [strauch (1966)] to non-stationary 

models. To verify this, we note that the function 1h=n} on 0 is Hn'"'llleasur­

able. Hence by lemma 1.1 there are real-valued measurable functions fn and 
n , 

~n on (S x A) x S such that: 

3.19 (i) fn(s0 ,A0 , ••• ,sn) = l{t=n} on o. 

if 0 

= 0 otherwise, 

si~ s, ai~ A and i= o, ..• ,n 

Hence in(s0 ,A0, ••• ,sn) = 1 if and only if t > n. Further we define, for n ~ lN: 

for s 1 ~ s, ai~ A and i= O, ••• ,n. It is straightforward to verify that 

Bence we are dealing with a total-return model in the sense of Hinderer and 

the assertien fellows from the above mentioned result of Hinderer. D 

The main result of this sectien is th. 3.11 which states that for each pair 

of stopping times t
1 
,t2 ~ t and each function b ~ Bm (S) the following identicy 

is valid: 

UT OT b = UT (Ut b) • 
1 2 1 2 

TO prove this we need some preparations. 

3.20 For any pair of strategies TT( 1) ,TT(2) ~n and any t ~ E wedefine a new 

strategy TT t ~ ll by: 
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for si e S, ai e A and i e lN (fk and R.n are defined in 3 .19). 

Note that ~T uses ~(l} until time T and ~(2 ) afterwards. It is easy to verify 

that indeed ~ten, since ~t<BI•l is (S 0 Á)n-1 
0 S-measurable for all Be A. 

n 

3. 21 Let T e 1:. The a-field H is defined as usual by: 
T 

H := {B e H I B n {t = n} e H } • 
T n 

Lemma 3.9 

Let f be a real-valued measurable function on O, which is bounded from above. 

Let ~( 1 ) ,~(2 ) en, Te 1: and let ~T be defined by 3.20. Then we have on 

{T < oo} 

~ (1) 
.Jl> -a.s. s 

(By convention the both sides vanish on { T = oo} ~) 

Proof. 

Let n ..: lN , B1 e H n and B2 € H. For the stopping time n, which is identically 

equal to n, it is straightforward to verify, usinq th. 1.4: 

(*) .Jl> :n[Bl n {1Pn e B2}] = I 
Bl 

Let f := 1B and let B1 E HT • 
2 T n 

Then, since .Jl> ~ (B] = .Jl> ~ [B] if B ~ {t = n} , B e: H we have 
s s 

(**) 
= ~ I ~ (2) , 11'n 

t. .Jl> s [13:2 ]d.Jl> s 
n=O n BlO t=n} 

for s e: S • 

on the other hand, by the definition of conditional expectations (cf. 1.20(i)) 

(***) 
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Hence, using (*) we conclude that the left-hand sides of (**) and (***) are 

identical. By standard arquments the assertion is proved in general. 0 

Remark. 

In fact we proved bere the strong Markov property for a special stopping 

time and a special non-Markovian process. 

k+l 
3.22 For each ~! TI and each (s0 ,a0 ,:··~sk,~) e (S x A) we define a new 

strategy v(s
0
,a

0
, ••• ,sk'~) = <v

0
,v

1
, ••• ) by: 

n e JN .• 

-Note ti1at v(s0 ,a
0

, ••• ,sk,ak) ! n. This strategy v(s
0
,a0 , ••• ,sk,~) acts like 

the strategy v if the process has a "prehistory" s0 ,a0 , ••• sk,~· 

Lemma 3.10 

Let v e n and let w(s0 ,a0 , ••• ,sk,~) be defined in 3.22 for each 
k+l (s0,a0 , ••• ,sk,~) e (S x A) • Further let f be a real-valued measurable 

function on 0, which is bounded from above, and let T e l: • 

Then 

(By convention both expressions vanish on {T = m}.) 

Proof. 
"' w(SO,A0, ••• ,~-1) 

It is easy to verify (cf. th. 1.4) that JES [f] is Hk-measur-
k able, k e JN. Let B1 E: Hn and B2 E: H. Again using th. 1.4 one easily verifies 

that 

(*) = f 
Bl 

Now we let B1 E: HT and f := 18 • Then 
2 

(**) 



and on the other hand (cf. 1.20(i}): 

... 
L JP;[a

1 
n {1: = n} n {ljln e: a

2
}J. 

n=O 
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From (*) we conclude that (**) and (***) are identical. Hence the assertion 

has been verified for indicator functions, and it can be proved in general 

by standard arguments. 

Now we are ready to prove th. 3.11. Note that u b e: B (S) if cr e: E and cr a 
b e: 8 (S). 

m 

'l'heorem 3 • 11 

Let T,a e: I: 

Proof. 

and let b e: 8 (S) • 'l'hen we have m 

(a) Fix E > 0 and let s0 e: s, ~ e: IT and b e: Bm(S). First we assume: 

D 

lP~ [T =co]< 1. Then it is easily verified that the set-function pon 
so 

S, defined by 

* is a probability on p. By lemma 3.8 there exists a strategy ~ e: IT such 

that 

(*) 
* (1-1 

E~ [ L anr(S ,A)+ a0b(S )] ~ (U b)(s)- €, p-a.s. ons. 
s n=O n n e1 a 

(1) (2) * T Definet 11 := 11, 71" := 11 • Let 11 be defined by 3.20. 

Then we have 

Y(s,11) 
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Note that Stoa = ST+a($t) = SO($T) (WT) on {T <=,a<~}. 

Using lemma 3.9 we find 

Note that lP 
115~B] = lP 

11
[B] for B ~ H , s ~ s. (To verify this note that 

S T 

T 00 T 00 

lP n [B] = I lP 
11 

[B n h .. nJ] = I lP 
11 

[B n h = nlJ = lP 
11 

[B] since 
s n=O s n=O s T s 

B n {t • n} E H ) • Therefore we also have JE '!r [fJ = JE '!r[f] for a real-
n s s 

valued lf T -measurable function f 1 which is bounded from above. using 

(*) 1 (**) and the definition of p we find: 

Hence 

sup Y(s0,11) ~ (Ut(Uab)) (s0) - e 
'll'EIT 

and since s 0 E s and e are arbitrary we conclude: 

(***) (UTMb) (s) ::!: sup Y(s,11) ;;: (U (U b)) (s) 1 s eS • 
, v 'll'EIT t a 

(b) We show that (***) is valid with s instead of ;;:. 

Let 1r e n and let ;(s0 ,a01 ••• ,sk'~) be defined by 3.22 for 
k+l t 

(s0,a0, ••• ,sk,~) e (S x A) • Note that Sn= sn-T($ ) on {t s n}. 

consider for s ~ S: 
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The secoud equality is justified by lemma 3.10 and the inequality by the 

definition of U
0

• This proves the theorem. 0 

To be able to apply th. 3.11 weneed the following lemma. 

Lemma 3.12 

The oparation ° on E is associative. 

Proof. 

Let r,cr,p ~ E. By 3.14 we have: t o cr = r + cr(~t) and so 

On the other hand 

T 

T o ( cr o P) .. r + ( cr o P) (~ T) = r + a (Ijl r) + P (Ijl cr (Ijl ) ($ r)) • 

T T 
Since 1jlk(1PR.) • !Jik+R. we have l/Jr+a(1jl ) •lJ! 0 (~ )(1/J') which proves the lemma.D 

Hence r 1 o r 2 o ••• o 'nis defined now. As a consequence of th. 3.11 and 

lemma 3.12 we find: 

eorollary 3.13 

To prove this, note that r 1 o r 2 o o 'n = r 1 o {r2 o ••• o rn). Hence 

U b =U (U b), and the assertien fellows by iteration. 
r 1or2o,,orn Tl t 2 ,,,tn 
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We continue with two definitions: 

3.23 Let t ~ t. The stoppin9 time tn, n ~ E* is defined by: 
n n-1 t' :=t,t :=t ot,n=2,3, ... , 

3.24 Let t ~ E. Then u~ is defined on Ba(S) by: 

U'b := U b for all b ~ 8 {S) and unb :=U (Un-lb) for all b ~ 8a{S) 
T T a T t T 

and n = 2,3, •••• 

In th. 3.14 we collect soma consequences of th. 3.11. 

Theerem 3.14 

Let b ~ 8 (S), TEE. Then: 
m 

(i) u b =u~ (cf. 3.23). ,.n T 
(ii) The value function v for model 3 is u.s.a. and satisfies the optimali-

ty equation: 

(iii) If the reward function 

w ~ n then ~ ~ = v, 

r and b are bounded and if T (w) :::: 1 for all 

on s. 

Proef. 

Nota that (i) is an immediate consequence of 3.23, 3.24 and corollary 3.13. 

We preeeed with (ii). Note that v(s) = {U
00

V) (s), s ~ s by definition, where 

(~ represents the stoppin9 time that is oo with probability one), Hence by 

th. 3.7 vis u.s.a. By th. 3.11we find, for all b ~ 8 (S) 
m 

Finally we prove (iii). First let 0 s r s Mand 0 s b s M for M ~E. Note 

that Tn ~ n on n. Then we have, for s E S: 

It is well-known that lim (~0) (s) = v(s) (see e.9. [Hinderer (1970), th. 
n-+co 

14.5]). Bence we have, by (*): 

lim (~) (s) = v(s), 
n-- t 

s ~ s . 

Further let -M S r S M and -M S b S M for M E E, and define r := r + M and 

b := b + M. Let Ut be the operator for the model with reward function r in­

stead of r, and let v be the value function in this case. Bence we have 
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1 - en+l 
(U nb) (s) + M 1 -13 

T 

"' "' s (U b) (s) 
Tn 

M 
:s; (U nb) (s) + r:-F 

T 

and we have also v(s) 

Bence we find: 

v (s) M 
+ 1="1" 

- "' M "' M lim (U b)(s)=lim (Unb)(s)- 1 _ 13 =v{s)-r:a=v(s), s€ s. 0 
n+"' T n n+"" T 

We conclude this section with some remarks. 

Remarks. 

(i) The theorema th. 3.11 and th. 3.14 can easily be qeneralized to niodels 

with weaker conditions on the reward functions. In fact th. 3.14(iii) 

is valid for roodels where a strong aonvergence condition is satisfied 

(cf. [Van Hee, Hordijk and van der Wal (1977)]). 

(ii) If there is a (nonempty) subset B(s) of B (S) such that for all T e E 
m 

U tb e 8 (S) if b e 8\s) then {u,, t e E} is a semi-group of operators 

on 8(S). If Bis countable then thesetof all real-valued functions 

ons that are bounded from above will do for 8(s). Insection 3.3 we 

show that there is such a set B[s) for the equivalent dynamic program 

(model 2). 

(iii) There need not be, for each b e Ba(S), p e P(S) and e > 0 a strateqy 

1t € n such that: 

t-1 
(*) p({s es IE:[ }:

0
snr(Sn,An) +8Tb(s,)] 2: (Utb) (s) -e:}) = 1 • 

n= 

However, if b = U b for some b € 8 (S) and o € E then for each o m 
p e P(S) end each e > 0 there is a 1t € TI such that (*) holds. TO veri-

fy this, note that by th. 3.11 Utb = UT 00b. Hence by lemma 3.9 we 

have the desired property. 

(1v) Th. 3.14(11) and (111) arealso proved in [van Nunen and Wessels 

(1976}] by use of the fixed point theorem for contraction mappinqs, 

for dynamic programs with countable state space. 

In this section we first study the optima! reward operators for the Bayesian 

control model (model 1). We show that these operators applied to functions 

that are lower semi-continuous (l.s.c.) in the second coordinate, i.e. l.s.c. 
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on w, yield functions that are again l.s.c. in the second coordinate. 

In the rest of this sectien we consider the value function (cf. 2.12) in 

more detail. We show that the value function v is convex in the secend co­

ordinate. Finally, we consider another consequence of the convexity of v, 

na.mely an upperbound on the value function. We note that the secend part of 

this section is independent of the first part. 

(Remember that the symbols used in sectien 3.2 have a local meaning only.) 

3.25 ~e set of stopping times Z for the Bayesian control model consists 

of all measurable functions t from 0 to lil suah that 

3.26 B~(X x W) is thesetof real-valued bounded measurable functions on 

X x w, which are lower semi-continuous (l,s.c.) on W (cf. appendix A). 

3.27 For each t e E wedefine the optimal reward operator Ut on B~(X x W) 

by (cf. 3.16) 

where (x,q) eX x wand b e B1 cx x W). 

Note that, if t e E satisfies the property: 

then there is a stopping time T' for the equivalent dynamic program (model 2), 

such that for all x1 e x, y1 e Y, ai e A, qi e Wand i e lil: 

'l'hen the optimal reward operator u:;; for the equivalent dynemie program, 

defined by 3.16, is equivalent to ut in the following sense: 

for all x~ x, q e wand b e B~(X x W). 

'l'heorem 3 • 15 

Let r be bounded and let ei~ pi(ylei) be bounded and continuous for all 

ie I and y e Y. FUrther lèt TeE. 'l'hen b e Bg,(X x W) implies UtbeB1 (XXW). 
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Proof. 

(a) Fix the prior distribution q e w, and let Qn be the posterlor distribu­

tion at stagen. Then we have: r(Xn,An,Yn+l)1{,>n} + b(Xn,Qn)1{T=n) is 

measurable with respect to the a-field acx0 ,A0 ,Y1, ••• ,An,Yn+1). Hence 

there are measurable functions F n: W x (X x A x Y) n+l -+ JR such that on Q: 

F (q,x
0

,A0 ,Y1 , •• ,,X ,A ,Y +1) =r(X ,A ,Y 1 )1{~> } +b(X ,Q )1{• } n n n n n n n+ • n n n •=n 

(cf. lemma 1.1). Hence we have 

(b) Further we show that Fn is l.s.c. in the first coordinate. To this end 

we first prove that Qn is a continuous tunetion of q in the sence of 

weak convergence. Let the sequence {qk, k e El ç W converqe weakly to 

q € w (cf. 1.~2) (notation: qk ~ q). Fix (x0 ,a0,y1, ••• ,yn,xn) e x x A x 

(Y x x x A) n- x Y x x and let: 

(cf. 2,30(i)) • 

We have to show that gn (qk) ~ gn {q) • Let f be a bounded and continuous 

function on a. Notice that, by 2.30: 

where 

:= J 

Sence, since 

n-1 
e + n I 1K (xj,ajlp1 {yj+1 !e1 > 

j=O i€I i 

is bounded and continuous, we have f f(S)gn (qk) (d6) tends to 

J f(6)gn(q) (d6) if k tends to infinity, provided that 

Án{q,xO,aO,y1, ••• ,yn) > o. 
Hence q + b(xn,gn(q)) is l.s.c, (cf. A 15) and so 

q + Fn(q,x0 ,a0 ,y1, ••• ,xn,an,yn+l) is l,s.c. if Án(q,x0 ,a0,y1, ••• ,yn) > 0. 

Consequently: 
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is l.s.c. since 6n(q,x0 ,ae,y1, ••• ,yn) = 0 implies 

6n+l (q,xO,aO,yl, ••• ,yn+l) = 0 • 

( c) Next we show tha t 

(*) 

Note that 

1T 
Ex,q[Fn(q,XO,AO,Yl'''''yn+l)] = 

= J 1l'o(daolxo> Jv{dyl) I P(dxllxo,ao,yl) ••• I P(dxnlxn-l'an-1;yn) 

· f 1Tn (danlxo,aO,yl •· .. •Yn•xn) f \l(dyn+l)Fn (q,xO,aO,yl •· • • •Yn+l) 

Since Fn is bounded, it fellows from Fatou's lemma, applied in (*) that 

(d) Finally we consider q + (U,b) (x,q). Let the sequence {qk, k E E} converge 

weakly to q E w. Again by Fatou's lemma we have: 

"" 
liminf L a~:.qk[Fn(qk,xO,AO,Yl, ••• ,Yn+1)];:: 
~ n=O 

"" 
>!: L 13nliminfE1T [F (qk,x0 ,A0 ,Y

1
, ••• ,Y 

1
>J;:: 

n=O k+oo x ,qk n n+ 

Note that 

Bence, by A16, we have q + (U,b) (x,q) is l.s.c. D 
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It is an immediate consequence of th. 3.15 that the function 

q + v(x,q) 

is l.s.c. if r is bounded. 

We conclude this section with two convexity properties of the value function. 

'l'heorem 3 .16 

'l'he value function of the Bayesian control model (cf. 2.12) is convex on w, 

i.e. 

and À € (0,1). ((Àql + (1-À)q2) (B) := Àql (B) + (1-À)q2 (B) for B € T.) 

Further v satisfies the inequality: 

3.29 v(x,q) s J q(d9)v(x,6) for x € x, q € w • 

Proof. 

Fix À € (0,1) and q1,q2 € w. 'l'hen we have for all x € x (cf. 2.12): 

v(x,Àq1 + {1-À)q2) =sup J üq1 + (1-À)q2}(d9)v(x,e,11) s 
1f~n 

s À sup J q1 (d9)v{x,e ,11) + (l- À}sup J q2 (d6)v(x,6,11} 
11~n 1f€n 

we proceed with 3.29. Let q € w and x € x. Then 

v(x,q) =sup J q(d9}v(x,e,11) sJ q(d6)sup v{x,6,11) =f q(d6)v(x,6).0 
11eU 11€U 

Ramark. 

'l'he inequali ty 3. 29 is a direct consequence of the convexi ty of q + v (x ,q} 

in case this function is continuous. 

Namely, if F is a continuous and convex function on w which is bounded from 

above then the following inequality can be proved: 

F(q) S J F{6)q(d6) 

(remember that we have embedded 8 in W) • 
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4. BAYES1AN EQUIVALENT RULES ANV THE AVERAGE-RETURN CRITERION 

In sectien 4.1 we consider procedures to construct good strategies. Special 

attention is given to strategies that are generated by so-called Bayesian 

equivalent rules. In sectien 4.2 we consider the average-return criterion 

and we give sufficient conditions for the existence of optimal strategies, 

based on such rules. In chapter 5 these rules will be considered in conneetion 

with the total-return criterion. 

We first consider the total discounted return criterion for models with 

finite sets X, Y and A. If the parameter value e is known the usual technique 

to determine an optimal strategy is solving the optimality equation 

v(x,e) = (UV) (x,e) for all x e x. Then each Markov policy for which the 

maximum in this equation is attained, is optimal (cf. [Blackwell (1965) 

th. 7]).It seldom happens that an analytic salution of the optimality equation 

can be found and that the value function x ..,. v (x, 9) , x E X is found in an 

explicit ferm. In chapter 1 we noted that even if e is a finite set, the 

equivalent dynamic program (model 2) has an uncountable state space x x W 

and for each starting state (x,q) € X x W there is a countable subset of 

X x w that can be reached in the long run. Bence it is even impossible 

te determine the value function v for all (x,q) e X x w. Bowever there are 

rather complicated algorithms to determine v(x,q) for any fixed pair 

(x,q) e X x w (cf. chapters 6 and 7). 

Bence it is possible to determine in each state (x,q) E x x w the action 

f (x,q) , corresponding to an optimal Bayesian Markov policy f in the following 

way. First determine v(x',T. (q)) for all x' Ex, y E Y and all ie I for 
J.,y 

which there isana E D(x) with (x,a) e Ki. Then f(x,q) is maximizing the 

function 

4.1 a-+- L 1K (x,a) J v(dy)pi (y,q){r(x,a,y) + 13 JP(dx' lx,a,y)v(x' ,Ti (q))} 
iEl i ,y 

on the set D(x), (x,q) ex x W (cf. the remarks at the end of sectien 3.1). 

Since this is in general a very complicated procedure, it would be preferatie 

to have a simple recipe to determine in each state (x,q) e x x w an action 

that corresponds to a good, not necessarily optimal, strategy. 

For example, in practice one aften uses the following recipe: 
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4.2 At each stage estimate the unk:nozm pal'GUTlete:r> a using the availabl-e 

data~ by ê. Phen oompute an (nea:r>ly) optimal stmtegy fo:r> the model 

whe:r>e the pal'GUTlete:r> is known and equal to ê, Phen use the action 

CO!'l'esponding to this stmtegy in the actual state. Repeat this proce­

du:r>e at the ne:ct stage. 

The camputation of an optimal strategy for a fixed parameter value is carried 

out much faster than the determination of v(x',T. (q)) for x' Ex, y E Y 
J.,y 

and the relevant i E I. Bence the recipe 4. 2 is simpler than the procedure 

qiven by 4.1. Bowever, the strategy specified in 4.2 is not optimal in 

qeneral. Under some conditions it is optimal when we are dealinq with the 

averaqe-return criterion (cf. section 4.2). 

we consider the following method to construct simple recipes. Now we con­

sider the average-return criterion too, If a E 8 is known, an action oorras­

ponding to an (nearly) optimal strategy is often found by maximizing some 

real-valued function F on X x 9 x A, over all available actions a E D(x). 

For example, if A is finite and r is bounded then we may define F by 

4.3 a F(x,B,a) := 

L1K (x,a) I V(dy)pi(yje.){r(x,a,y) + aJP(dx'lx,a,y)v(x',B)} 
iei i 1 

in case we work with the total discounted return criterion (cf. 4.1), 

Somatimes there exist bounded measurable functions h and g such that 

4,3 b h(x,B) + g{B) 

max L lK (x,a) I v(dy)p1 (ylai){r(x,a,y) + J P(dx'lx,a,y)h(x',a)} 
aeD(x) iEI i 

(cf.section 4.2). 

Then each strategy that chooses in state x a maximizing action in the equa­

tion 4.3 b is optimal with respect to the average-return criterion (cf. 

section 4.2). Bence in this situation we have 



F(x,a,a) := 

J/Ki (x,a) I v(dy)pi (y I ai) {r(x,a,y) + I P(dx' lx,a,y)h(x', 6)} • 

We now assume that such a function F is known. In the two examples above F 

can be camputed ~ standard methode, if X,Y,A and a are finite sets (cf. 

chapter 7) • Using this function F we construct a Bayesian Markov policy: f 

such that for some e > 0: 

4.4 I q(d8)F(x,e,f(x,q)) ~ sup I q{d6)F(x,e,a) - e , 
aE:D(x) 
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for all (x,q) E: X x w • 

We call such a Bayesian Markov policy a Ba.yesian equivatent rute since we 

are maximizing the "Bayesian equivalent" of the function we have to maxim1ze 

in case the parameter is known. Note that we may choose e = 0 if there is a 

maxim1zer of a+ f q(d6)F(x,e,a) for all (x,q) E: x x w (cf. the informal 

definition insection 1.2). 

If q E: W is deqenerate, then the Bayesian equivalent rule is (nearly) optimal. 

But Bayesian equivalent rules are not optimal in general. However in sectien 

4.2 we give sufficient conditions for optimality in oase we are considering 

the average-return criterion, and in chapter 5 we consider examples of the 

Bayesian control model where a Bayesian equivalent rule is optima! for the 

total-return criterion. 

Consider again the model with finite action space A and bounded reward func­

tion with respect to the total discounted return criterion. Then we may 

define a Bayesian equivalent rule using the function F defined in 4.3 a. 

This rule has the following interpretation. consider a modified model where 

the decision-maker is told the true parameter value after one transition. It 

is easy to verify that this rule would be optima! in that situation. 

In th. 6.4 (chapter 6) we give a lower bound on the Bayesian discounted 

total return of this strategy. In th. 6.3 we consider another simple ~ecipe 

to construct a qood strategy for the total discounted return criterion. 

We conclude this sectien with an overview of procedures suggested by other 

authors for the average-return criterion. 
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In [Mandl (1974), (1976)] the strategy described in 4.2 is studied. 

Mandl used minimum aontraet estimato~s and in his model the parameter struc­

ture ensures the consistency of ttiese estimators, under each strategy. Mandl 

conaiders the following average-return criterion: a strategy ~ is optimal if 

for all e € a and x € x 

~ 1 N-1 
lim inf JE e[-N I r(X ,A ,Y +1)] 

N-+a> x, n=O n n n 

is maximal. Note that this criterion is stronger than ours and not depènding 

on the choice of a prior distribution. Mandl shows that the strategy described 

in 4.2 is optimal in the model where X is a finite set, A a compact sUbset 

of a Euclidean space and where for each stationary strategy (cf. 3.9) the 

resulting Markov chain is irreducible. we show a similar result in sectien 

4.2 fora Bayesian equivalent rule. In [Fox and Eolph (1973)] an optimal 

strategy is constructed for Markov renewal programs where also the recipe 

4.2 is used. Bowever, in their situation they have to ensure the consistency 

of the estimators for the unknown parameter. This problem is solved by so­

called fo~aed ahoiae aations. These actions do not necessarily agree with 

the recipe of 4.2, but they are performed to get infoz:mation. Fox and Rolph 

also use the strenger optimality criterion discussed above. In [Rose (1975)] 

another strategy is proposed. Rose assumes that for each parameter value 

an optimal Markov policy is known. At each stage an action is selected by 

randomizing over the actions halonging to some Markov policy that is optima! 

for some parameter value, according to the current posterior distribution. 

Rose also needs forced choice actions to ensure degeneration of the posterior 

distributions. 

In this sectien we construct optima! strategies for the average-return 

criterion. Bayesian equivalent rules play an important role. We first con­

sider an example showing that, even in case of finite state and action space~ 

there need not be an optima! strategy. 

Example 4.1 

consider the following model: X= {1,2,3,4,5,6}, A= 0{1) = 0(2) ={1,2,3} 

D(x) = {1} for x € {3,4,5,6}. The transition probabilities p(x'lx,a) from x 



to x' if action a is ohosen are: 

p(3l3,1) = p(414,1) = p{5j5,1) • pC5I6,U = p(ll1,1) = p(212,1) = e 
p(4l3,1) = p(3l4,1) = p(6l6,1) = p(6j5,1} = p(211,1) = p(lj2,1) = 1 - e 
p<3l1,2) = pC5I1,3) = p(3l2,2) = p<5l2,3l .. 1 

Only in the states 3,4,5 and 6 a reward is obtained: r(3) = r{5) • 7 and 

r(4) = r(6) = 3. Let 8 = (0,1). It is easy totransferm this example into 

the framework of the Bayesian decision model. 
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The average return in the subchain {3,4} is: ~(7 + 3) = 5 and in the sub­

chain {5,6}: 76 + 3(1 - 6) = 46 + 3. Oonsider a starting state x e {1,2}. 

For fixed a e a the optima! action is a maximizer of 5ö(2,a) + {46 +3}ö(3,a), 

a e {2,3}. Hence,the corresponding Bayesian equivalent rule for the distri­

bution q on (0,1) is the maximizerof5ö(2,a) +{4f6q(d6) +3}ö(3,a), a e {2,3}. 

It is easy to verify that if we have to choose one of the actions 2 or 3 

and if q is the prior distribution, then this Bayesian equivalent rule is 

the best one. Let ~n be the strategy that chooses action 1 the first n times 

and in states 1 and 2 the maximizer of Sö (2,a) + {4/ e Q (d6) + 3Jó(3,a) , 
n 

a e {2,3} thereafter, where ~ is the posterior distribution at time n, if 

the system starts in state 1 wi th prior q e W. Then the Bayesian average 

return in statea 1 and 2 is: 

lE [ma:K {5, 4J~ {d6) + 3}] q 

(note that this expression does not depend on the starting state and the 

strategy). Note that: 
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with equality if and only if 5 :<: 4 Je Qn+1 (d6} + 3, lPq-a.s. However if q 

gives positive mass to the set {6 E ale > ~} then equality never holds. Hence 
n n+l in this case the strategy 1f is worse than 1f and consequently there is no 

optimal strategy. 

In this section we need the following assumptions: 

Assumptions 

4.5 {i) ris bounded on X x A x Y. 

(ii) D{x} = A for all x E x. 

4.6 There are bounded measurable functions 9 and h on 9 and x x 9 respec­

tively such that 

h{x,6} + g(6} = sup L(x,6,at 
aEA 

where 

L(x,e,a) := r 1K (x,a} I V(dy)p. <yle.){r(x,a,y) + 
iEI i ~ ~ 

+ J P(dx'lx,a,y}h{x',6)} for XE X, a E A and 6 E ij • 

4.7 For all e > 0 there is a Bayesian Markov policy f such that 

J q(d6)L(x,6,f(x,q)) :<: sup f q(d6)L{x,6,a) - E 
aEA 

for {x,q) E x x w . 

Note that assumption 4.6 is identical to 4.3p. The assumption 4.5(ii) is not 

essential, but it makes things more transparant. FUrther it seems possible 

to weaken assumption 4.5{i}. The only serious assumption is 4.6. For models 

with known parameter value e and finite action space A, assumption 4.6 

guarantees the existence of a stationary optimal strategy. This has been 

proved for finite X in [Derman (1966)] and for arbitrary X in [Ross (1968)]. 
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In fact the strategy that chooses the maximizer of a+ L(x,e,a) at each 

stage is optimal with average return g(e). In [ROss (1968)] several situa­

tions are given where, for fixed parameter value e a solution of 4.6 exists. 

For instance, if X and A are finite and for each stationary strategy the 

process is an irreducible Markov chain, then 4.6 is valid. The results of 

Derman and ROss follow from th. 4.1 below. Assumption 4. 7 is a regularity 

condition to guarantee a measurable selection. In lemmas 4.4 and 4.5 we 

give some sufficient conditions guaranteeing 4.7. 

Note that a Bayesian Markov policy satisfying 4.7 is a Bayesian equivalent 

rule. 

In th. 4.1 we derive a sufficient condition for a strategy to be optima!. 

In the rest of this section we consider model assumptions which guarantee 

this condition for strategies generated by the Bayesian equivalent rules of 

the form 4.7. 

Remamber that the functions g and h are easy to compute by standard methods 

(cf. [Derman (1970)]) if 4.6 holds and X and A are finite sets. 

First we introduce some notations; 

4.9 (i) t(x,e,a) := L(x,e,a) - h(x,e) - g(6) , x ~ X, e ~ 9 and a ~ A. 

(ii) t(x,q,a) := J q(de)~(x,e,a) , x ~ X, q ~ W and a ~ A. 

4.9 (i) h(x,q) := f q(d6)h(x,6) , X€Xandq€W. 

(ii) g(q) := f q(d6)g(6) , q ~ w • 

The definitions 4.9 (i) and {ii) are consistent, since we embedded 0 in w, 
similarly the definitions of h and g in 4.9 are consistent. 

Theorem 4.1 

* Assume 4,5, 4.6 and the existence of a strategy 'll' ~ no such that 

N-1 * 
lim in;f ~ I E:,i<~><xn,Qn,An)] 

N+«> n=O 
4.10 0 • 

Then: 
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N-1 * 
sup lim inf ~ L JEn [r(X ,A ,Y 

1
>J '"g(q) 

nEllo ~ n=O x,q n n n+ 

* and 1T is optima!. 

Proef. 

Fi:rst note.that 

= r 1K (x,a)pi(y,q)h(x', I lv (x,a)Ti (q)) 
iEl i iei ~i ,y 

since by 4.9(i) and 2.28 

Hence, by definitions 4.8(ii) and 3.1(e) we have for all n E n
0 : 

~ n I '(X ,Q ,A ) = r(X 1 Q ,A ) + JE [h(X +l'Q +l) X ,Q ,A ] - h{X ,Q :) - g{Qn). n n n n n n x,q n n n n n n n 

* Therefore, by first conditioning on cr(Xn'~'An)' we have for all NE~ 

N-1 
\' 1T ~ ] 
~0 Ex,q[r(Xn,Qn,An) + h{Xn+l'Qn+l) - h{Xn'~) - g(Qn) - ~(Xn,Qn,An) = 0 

Since g(Q) = f Q (d6)g(9), we have (cf. th. 2.1) n n 

JE'IT [g(Q )] = g(q) • 
x,q n 

Using the boundedness of h we find for n E n
0

: 

1 N-1 n ~ l N-1 
liminf ;:;" l E [r{X ,o ,A)]= g(q) + lim inf -N l E'IT [4l(X ,o ,A )J. 

N-+«> •. n=O x,q n -n n N-+«> n=O x,q n -n n 

Note that $(x,9,a) ~ 0 by 4.6. Hence, for all 1T E n
0

, g(q) is an upperbound 

for the Bayesian average return. on the other hand, if 4.10 holds, then g(q) 

* is the optima! value and n is optima!. D 



Rema:rks. 

(i) In [Mandl (1974) th. 3] a similar result has been obtained. 

In fact, Mandl's result, formulated in our terminology, reads: 

N-1 
lim -N

1 L r(X ,A ,Y +1> 
~ n=O n n n 

if and only if 

N-1 
lim -N

1 L cp (X ,e ,A ) 
~ n=O n n 

g(6) , 

0 
1T 

lP e-a.s. x, 

(note that one limit exists iff the other exists). 

(ii) We conclude from th. 4.1 that if there is a e: > 0 such that for all 

1f E: rro 

N-1 
lim inf k L 
~ n=O 

1f 
JE [cp (X 1 Q ,A ) ] ~ e , 

x,q n n n 
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then the optima! Bayesian average return is at most equal to g (q) - e, 

in state (x,q) E: X x w. 
(iii) According to corollary 3.6 we may replace n

0 
by IT in th. 4.1. 

We need the following obvious lemma. 

Lemma 4.2 

Let {e: 1 n E: :lil} be a sequence of bounded real numbers such that lim en = 0 
n 1~1 ~ 

then: lim N l.n=O e:0 • 0. 
N-+oo 

The following corollary to th. 4.1 includes the already mentioned results of 

Derman and Ross. 

Corollary 4.3 

Let {e: 1 n E: :lil} be a non-increasing sequence of positive numbers such that 
n 

lim e:n == O, and let fn be a Markov policy such that for fixed e E: 8: 
n+co 

L(x,e,f (x)) ~ sup L(x,e,a) - e: , 
n aE:A ' n 

n E: JN • 

* Then the strategy 1T that uses Markov policy fn at stage n, n € JN, is optima! 

for this parameter value e. 
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Proof. 

Note that, if we start with a prior distribution which is degenerata at e, 

* then Qn is degenerata in e for n e JN. Hence, using n we find: 

<jl(Xn,Qn,An) == L(Xrfe,fn (Xn)) - h(Xn,e) - g(6) s En for n e lN. Therefore, 

using lemma 4. 2 

Now th. 4.1 applies. 

e:: = 0 • n 

0 

We continue with some conditions guaranteeing 4. 7. Note that if X is countable 

then 4.7 is fulfilled. 

If A is countable then 4.7 is valid. 

Proof. 

Fix e:: > 0. Let a1,a2 , ••• be an enumeration of A and define 

B1 := n {(x,q) ex x wl Jq(d6)L(x,e,a1) ~ J q(d9)L(x,e,a) - e::} 
aeA 

and, for k = 2,3, ••• 

Bk:= n {(x,q) ex x wl (x,q) ~ k:
1
B1 , Jq(d6)L(x,e,~> <:Jq(d6)L(x,e,a) -e::}. 

aeA i=l 

* Note that Bk is measurable, for k e lN and Bk n B~ =*~ if k r ~. Further 

note that for each (x,q) there is at least one k e JN such that (x 1q) e Bk. 

Bence the function f : X x W +A defined by f(x,q) := ~ iff (x,q) e Bk is 

a Bayesian Markov policy satisfying 4.7. 0 

Lemma 4.5 

Let the following assumptions hold: 
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4.11 (i) A is compact. 

(ii) a+ P(•jx,a,y) is a continuous mapping from A to P(X),where P(X) 

is endewed with the waak topoloqy, for all x E X and y E y. 

(iii) a+ r(x,a,y) is continuous for all x E x and y E y, 

(iv) x+ h(x,e) is continuous for all e € a. 
(v) a -+ 1K. (x, a) is continuous for all x € x and i E I. 

l. 

Then there is a Bayesian Markov policy f such that 

Proof. 

I q(d6)L(x,9,f(x,q)) = sup J q(d6)L(x,6,a) , for (x,q) Ex x w , 
aEA 

Since handrare bounded, we have (x,e,a) + L(x,e,a) is bounded. And, since 

this mapping is measurable, we have (x,q,a) + J q(d6)L(x,6,a) is bounded and 

measurable, 

:trurther, since a+ J v(dy)pi(ylei)r(x,a,y) and a+ ft><dx'lx,a,y)h(x',e) 

are continuous, we have a + J q(d6)L{x,e,a) is continuous, Hence all conditlons 

for Sch!l's, selection theorem (cf. A17) are satisfied, which proves the 

lemma, 0 

Ramark. 

The condition 4.11 (v) is fulfilled in the following situation: 

4.12 A 
n 

Nk, where Nk is compact with Nk n N~ = ~ 1f k f. ~ := uk=1 

x m 

~· where ~ is measurable and ~ n M~ = ~ if k f. ~ := uk=l 1-

and K(i,j) :• Mi x N. and I :• { (i,j) I i= l, ••• ,m, j = 1,, •• ,n} . 
J 

If A is finite then 4.12 is valid, and therefore 4.11(i}, (ii) and (iii), 

Another example of 4.11(v) is the situation where AiscompactandK1 =M1 XA, 

* iE JN where M
1

,M
2

, ••• is a measurable partition of x. 

Theerem 4.6 

Assume 4. 5, 4. 6 and 4. 7. Let { e: , n € JN } be a nonincreasing sequence of 
n 

positive numbers such that lim e: = 0. Let f be a Bayesian Markov policy 
n.- n n 

for n E JN , such that for (x,q) E X x W: 
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4.13 J q(da)L(x,e,f (x,q)) ~ sup J q(da)L(x,e,a)- e (cf. 4.7). 
n aeA n 

* Further let 11 be the strategy that uses fn at stage n, n € :N • Asstlllle for 

fixed (x0 ,~) e x x w: 

*. 
4.14 lP 1l [ n n * {'r (i,n) < oo}] 

xO,qO üi n€:N 
1 • 

Finally asstlllle the existence of a fini te set F of Markov policies such that. · 

a+ inf ~ (x,a ,f (x)) is measurable for f e F and 
x.::X 

4.15 max inf $(x,6,f(x)) 0 I for all a " a • 
feF X€X 

Then condition 4.10 holds and therefore 11* is optimal with Bayesian average 

Proof. 

* * Note that 1l € n0 • Under the strategy 1l we have An fn(Xn,Qn) and there-

fore, by 4.6 and 4.8: 

0 ~ ~(Xn,Qn,An) ~:~i f ~(d6)$(Xn,e,a) -en~ 

~ max f· Q (d6),(X ,S,f(X))- e ~ max J Qn(dS)inf $(x,a,f(x)) 
feF n n n n feF X€X 

Using 4.14, the boundedness of ~. 4.15 and corollary 2.5 we find 

* 1l 

- e n 

lim J Qn(da)inf ~(x,&,f(x)) = inf '(x,Z,f(x)) 0 , lP -a.s. 
xo·~ n+oo X€X X€X 

And since F is a finite set we have 

lim max J Qn(da)inf $(X,S,f(x)) 
n+oo feF X€X 

Since lim e = 0 we finally have lim $(Xn,Qn,An) = 0, 
n+oo n rr+«> 

therefore, by the boundedness of ~: 
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0 • 

This proves the theorem. D 

Although, at first glance the number of assumptions in th. 4.6 is over­

whelming, only 4.14 and 4.15 are serious restrictions on the applicability 

of the theorem. In 4.14 i t is required that the strategy 'lT * guarantees that 

we obtain enough "information" concerning the "true" parameter. If there is 

a finite collection of Markov policies, which contains an optimal one for 

all models with known parameter value, then 4.15 is fulfilled. In th. 4.8 

we consider more appealing conditions guaranteeing all requirements of th. 4.6. 

We start with a lemma, the truth of which is intuitively clear. 

Lemma 4.7 

Let x and A be finite sets and assume that, for all e € a and each stationary 

strategy, the resulting Markov chain {x, n € JN} is irreducible. Then, for 
n 

all e € a 1 X € X and 'lf € 11 1 the number Of ViS i tS to each State X I € X iS in­
'lf 

finite, JP x, 6-a.s. 

Proof. 

Fix e l! a and x' € X. 
'lT 

a) We first prove there is at least one visit, lP 6-a.s. To show this, x, 
transform the transition law in such a way that x' becomes absorbing: 

i.e. P({x'}Jx•,a,y) := 1 for all a € A, y € Y. Further consider the reward 

function: 

r(x,a) := }: 1K (x,a) Jv(dy)P({x'Jix,a,y)pi (yle>, if x 'f x' 
i€! i 

:= 0 if x = x' 

In this model the total expected return is defined as usual: 

00 

v(x,6,'1T) := }: lE'lf
6
[r(x ,A)], 

n=O x, n n 
'lT € 11 and x € X • 

* According to th. 3.4 there is a strategy 'lT € 110 such that 

* v(x,6,'1T) = v(x,e,'lf ). However since we start with a degenerate prior 

distribution, all posterior distributions are degenerate. Hence 110 is the 
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set of strategies such that the action at time n only depends on 

x0 ,A0 , ••• ,xn (cf. the remark following corollary 3.6). Now we restriet 
1T ourselves to strategiesin IT

0
• Note that Wx,a-a.s. 

v(x,a,1T) 

.".,1r [ ' J. '] "'"''lr [x --x' f J ...-x,e Xn+l =x, Xnrx = "'"x,e n or some n. 

Since this last probability does notdepend on the transition law in x', 
'!f 

the probability W a[X .. x' for some n] is not affected by the trans-x, n 
formation of the model. we return to the transformed model. Minimizing 

v(x,a,'lf) over all 1r E n0 is a negative d,ynamia p~gramming problem with 

state space X and action space A. Therefore we have, by [Strauch {1966) 

th. 9.1] for all 1T f IlO V (x, a 1 'lf) ~ m!n V (x, a ,Ti) 1 where the minimum has to 
1T -

be taken over all stationary strategies 1r in n
0

• 

Since by assumption the Markov chain is irreducible under each stationary 

strategy,this minimum equals one, if x Y, x'. Therefore v{x,S,'If) ~ 1 for 

all 1r E II and x F- x' • So we have in the original model for x F x' : 

{*) w 'lr 
6

Cx = x' for some n > O] = 1 for all 7T € n • x, n 
It is easy to verify that (*) is also valid for x = x' in the original 

model. 

b) Oonsider the original model. By conditioning on the first visit to x' we 

obtain: 

ll? 1T [X x' for at least two numbers n > 0] = 
x,e n 

Analogous to the construction in 3. 22, there is for each 



k-1 Ca0 ,y 
1
,x1, ••• ,yk) e (A x Y x X) x A x Y a strategy 11 e: n such that 

JP:,e[Xn+k=x' forsome n>Ojx0=x, A0=a0 , Y
1
=y1 , x1=x1 , ••• ,Yk•yk, ~=x·J 

11' 
=lP , e[Xn=x' for some n > O] • x , 
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11' 
'l'his last term is equal to 1 , by part (a). 'l'herefore there are, lP x, 6-a.s., 

at least two visits to x', Repeating the argument yields 

lP 
11 

[X • x' for at least k numbers n > O] = 1 and therefore x,e n 

lP 
11 

[X • x' infinitely often] = 1 • x,e n 

'l'heorem 4. 8 

Let X and A be finite sets and let the Markov chain {xn, n e: JN} be irre­

ducible for each stationary strategy and all 6 e: 9, Let Ml,,,, 1~ be a 

partition of x and Ki :=Mi x A , i= l, ••• ,m. 

'!'hen the strategy 1r*, defined in th. 4.6, is optimal. 

Proof. 

0 

We only have to verify the assumptions of th. 4.6. As already noted, it has 

been provedin [Ross (1970) corollary 6.20] that 4.6 is true, here. Fllrther 

4.7 is a consequence of lemma 4.4. Since for each known parameter value 

e e a the Bayesian control model reduces to a dynamic program with state 

space X and action space A (cf. the proof of lemma 4.7) we have for each 

e e 9 an optimal stationary strategy (cf. corollary 4.3). 

Since there are finitely many of these strategies 4.15 is fulfilled. 

Finally, by lemma 4. 7, we have JP 
11 

6[x e Mi infinitely often] = 1. Hence x, n 
4,14 holds. 

Remarks. 

i) '!'he conditions of th. 4,8 are satisfied in particular if, for 

X"' {x1, ... ,xm} we have Mi= {xi}, i= l,.,,,m and if for all e e 9 , 

a e A and xi,xj e: X: 

0 

ii) In the situation of th, 4,8 we may use at each stage a Bayesian equivalent 

rule maximizing a ~ J q(d6)L(x,6,a) in (x,q) e X x w, since A is finite, 



In th. 4.8 we assumed that, if we are in state x E: Mi' then the information 

we qet after the next transition does not depend on the action chosen. In 

th, 4,9 we relax this assumption. We shall assume there, besides 4,6 and 

4.7: 

4,16 (i) A is a finitesetand N1, ••• ,Nn is a partit.ion of A. 

(ii) M1, ••• ,Mm is a measurable partit.ion of X and Ki,j "'Mi x Nj, 

(i,j) E: I= { (i,j) I i= 1, ••• ,m, j = l, •• ,,n}. 

(iii) Por each x € x, a € e and ~ € no 
JP :,a[Xn E: Mi infinitely often] • 1 , i = 1, ••• ,m • 

(iv) There is a finite set F of Markov policies such that 

e -+inf "x,a,f(x)) is measurable, for f E: F and 
XE: X 

max inf '(x,a,f(x)) = 0 (cf. 4.15) • 
fE:F X€X 

First, we discuss the form of a reasonable strateqy for this situation. Then, 

in th. 4.9, we prove the optimality of such a strateqy and afterwards, in 

th. 4.10 we consider a practical situation where 4,16 is satisfied in a 

natura! way. 

Although4.16(iii) guarantees that we return toMi, i = 1, ••• ,m, infinitely 

* often under the strateqy tt defined in tb. 4,6, it is not sure that we return 

to each set Ki . infinitely often. Bence we have to modify the strateqy ~ 
,) 

* 
of th. 4.6. 

The idea for the modification is found in [Mallows and Robbins (1964)]. In 

[Fox and Rolph (1973)] and in [Rose (1975)] this idea is worked out for 

Markov renewal programs and Markov decision processes respectively, in a way 

similar to our approach here. The idea is, that we make foPeed choice actû:ms 

to guarantee that we return to all sets Ki . infinitely often, Bowever, we 
,J 

do this with a frequency that is so low as not to influence the Bayesian 

average return. 

We start with some preparations. 

We define a (double) sequence of stopping times {cr (i,t.) I t E: :roT, i= 1, ... ,m}: 

4,17 cr(i,O)(w} := 0 , o(i,t)(w) :=inf{k > o(i,t -l)(w) I~ (w) € Mi} 

for w E: !'2, i = 1, ••• ,m, t E: :r.1* • 

Bence o(i,t) is the time of the t-th visit to set Mi' after stage zero, 

4,18 An increasing sequence S = (s1 ,s2,s3, ••• ) of positive integersis 

said to be of density zel'O if 



lim sup f; max{i € :N*Isi s k} = 0 • 
k+<>o 

i * Examples of such sequences are: si = 2 , i € Jll' , since 

2 t maX{i E Jll'*j2i s k} s lo' k 

and si= i 2 , since 

1 *I 2 k max{i € Jll' i 
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** We define the strategy 1f , which will be considered in th. 4.9, in an in-

formal way. 

4.19 Fix in each set Nj an action aj for j = 1, ••• ,n and fix some sequence 

S = {s1,s2,s3 , ••• ) of density zero. If fort € JN there are 

i € {1, ••• ,m} and k € JN* such that t = a{i,sk) then determine t € JN 

such that k = bm + f. with 1 st Sm, b € JN. 

In that case action a~, is chosen at stage t. 
* If t ~ a(i,sk) at stage t, for all i= l, ••• ,m and all k € JN then 

the Bayesian Markov policy ft' defined in 4.13 is used to select an 

action. 

It is straightforward to make this definition more rigorous in a way similar 

to definition 3.20. 
** Note that 1f tries the actions a1 , ••• ,an successively at the foraed ahoiae 

stages: a(i,t), i= l, ••• ,m, t € s. 
Since it is assumed in 4.16(iii), that the process visits each set Mi in­

finitely often, almost surely under every strategy, we have allll9st surely: 

* a(i,sk) < ~ for all i = l, ••• ,m and k € JN • Bence each set Ki,j is visited 

infinitely often almost surely, under all strategies. 

Theorem 4.9 

Assume 4.5, 4,6 and 4.16. Then the strategy 1r** defined in 4.19 is optimal 

with Bayesian average return g(q) in each starting state (x,q) € X x w. 

Proof. 

** 
Fix (x,q) € X x w. For notational convenience we write ll? instead of lP 'lf • x,q 
a) As noted above, we have by 4.16(iii) and definition 4.19: 
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lP[ n n *{T((i,j),k) < .. }] • 1 • 
i,jE:l ke:N 

Usinq th. 2.7 forthestopping times o(i,O}, o(i,l), ••• we find in exactly 

the same way as in the proof of th. 4.6 that lP-a.s. 

~== ${Xo{i,k)'Qa(i,k)'Ao(i,k)) = 0 ' 

kiS 

for i • l, .•• ,m. 

b) For notational convenience we write B'(i,k) instead of 

~(Xo(i,k)'Qa(i,k)'Aa(i,k)): 'l'he following assertien is easy to verify 
(cf. 4.17). For all t e JN there is exactly one pair i,k such that 

a(i,k) = t, ie {1, ••• ,m}, k e {l, ••• ,t}. 

Hence it is easy to verify that on n: 

m N m N 

= i~l k~1B(i,k)l{a(i,k)~N, keS} + i~l k~lB(i,k)l{a(i,k)~N, kjs}• 

* Notice that o(i,k) ~ k for k e JN • Hence we have 

#{k 1!." sla(i,kl ~ N} ~ #{k e sik s N} • 

Let M := inf $(x,S,a). 'l'hen-"" < M s 0, since ris bounded and by 4.5. 
x,a,a 

'l'herefore we have for i= 1, ••• ,m: 

which tends to zero as N tends to infinity.by the definition of S {cf. 4.19). 

Now we consider the last term of (**). Since, by {*), B(i,k) tends lP-a.s. 

to zero, if k t S and if k tends to infinity, we have by lemma 4.2: 

1 N 
lim N L B(i,k)1{ (i k):SN kJS} N+oo k=1 a , , F 

0 , lP -a.s. 

Finally we conclude from (**): 

lP -a.s. 

And therefore 4.10 is satisfied. Hence by th. 4.1 the theerem is proved. 0 
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In ·the followinq theorem we qive more appealing conditions, whiéh imply all 

** conditions of th. 4.9. Hence the strategy ~ defined in 4.19 is optima! 

hare. 

Theorem 4.10 

Let X and A be fini te sets and let the Markov chain {X , n ~:: JN} be irre­
n 

ducible for all 6 ~:: 9 and each stationary strategy. Further let I = X x A 

** and let K = {(x,a)}. Then the strategy ~ defined in 4.19 is optima!. x,a 

The proof of tnis theorem proceeds along the same linea as the proof of 

th. 4.8. 

We conclude this section wi th some remarks, 

Ramarks. 

i) Oonsider the situation of th. 4.9. 

** The strategy '11" is easy to handle. For each set Mi, i = 1, ••• ,m the 

decision maker bas to keep count of the number of visits. If this num­

ber is equal to a number in the sequence S of density zero, then he 

bastoselect the next action from {a1 ~ ••• 1an} in cyclical order 

(cf. 4.19). If the number of the vislts does notbeleng to s, then the 

* decision maker bas to compute in state (x,q) an action a 1 such that 

* ~(x1q1a) = max ~(x,q,a). 
a~::A 

ii) If we are dealing with a dynamic program with finite state space X and 

finite action space A and if for all x1x' eX and all a e A: P(x'lx1a) 

is positive but unknown, then we can transferm this model into our 

Bayesian control model (cf. example 2.2) 1 and by th. 4.10 the strategy 

'11"** is optima!. 

iii) Th. 4.10 is more generalthen the results in [Rose (1975)] 1 since we 

** allow arbitrary prior distributions. Further1 the strategy v is 

easier to handle than the strategy Rose proposesl if e is finite. 

iv) It is not clear whether all situations considered in [Mandl (1974)] are 

oovered by th. 4.6 or not. Mand! assumes that 6+~(x 1 6,a) is continuous 

(cf. [Mandl (1974) th. 8]) 1 moreover he assumes the existence of minimum 

contrast estimators. Although we conjecture that under the assumptions 

of th. 4.8 minimum contrast estimators exist, it is easy to show that 

under the assumptions of th. 4.10 they do not exist. 
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5. BAYESIAN EQUIVALENT RULES ANV THE TOTAL-RETURN CRITERION 

We do not know Bayesian equivalent rules that are optima! with respect to 

the discounted total-return criterion, in genera!. Example 5,1 shows that a 

"natural" Bayesian equivalent rule fails to be optimal. However, in section 

5.1, we prove the optimality of a Bayesian equivalent rule for the so-called 

independent case, and in section 5.2 for the linear system with quadratic 

costs. F!nally, in section 5.3, we study a simple inventory model for which 

a Bayesian equivalent rule is somatimes optimal. Bere we also study the be­

haviour of this rule when it is not optimal. 

In the models we study in this chapter, there is only one unknown parameter, 

i.e. the index set I is a singleton. This implies that the decision maker 

obtains information about the same parameter in each state x E x, regardless 

of the action chosen. Since I is a singleton we shall omit the subscript i 

in the notations 8i' pi(yl61 ), pi(y,q) and Ti,y(q). Note that T(l,n) = n 

(on 0), for all n E E and therefore, by lemma 2.2, the distribution of 

Y1 , ••• ,Yn' nEE only depends on the prior distribution and not on the 

starting state or the strategy. Bence the distribution of Qn (cf. 2.24) de­

pende only on the prior distribution and on Y1 , ••• ,Yn. For that reason we 
11 11 

shall write P and E instead of P and E , when we are dealing with q q x,q x,q 
the random variables Yn and Qn. 

We start with an example. In this example the Bayesian equivalent rule, 

based on the function: 

F(x,6,a) := f v(dy)p(yla>{r(x,a,y) + 8 J P(dx'lx,a,y)v(x',S)} 

turns out to be non-optima!. 

We remark that this example has some similarity to example 4.1. 

Example 5.1 

Consider the following model. x= {1,2, ... ,6}, Y = {o,ll, D(l} •A=Ü,2,3}, 

D(x) := {1}, x E {2,3, ••• ,6}, 8 := {O,l}. The function p(yiS> is given by: 

p(liS) = 1-p(OIS) = 6, 6 € 9, And P({x'}lx,a,y} is {we identify here x and 

{x}): 

P{3!3,1,0} =P(3I4,1,0) =P(6I5,1,0) •P(6I6,1,0) •P(211,1,0) 

•P(ll2,1,0) = 1 
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P(4l3,1,1) •P(414,1,1) •PCSIS,1,1) =PCSI6,1,1) =P(lll,l,l) = 

=P<2I2,1,1) = 1 

P(3l1,2,y) 1, P(SI1,3,y) = 1, fory~";Y 

e 

e 

Only in the statas 3,4,5 and 6 a reward is obtained independent of y e Y: 

r{3) = r(S) = Cl r(4) = r{6) = b, c > b ~ 0. The prior distribution q is: 

q(O) = q(l) = 1:1. The discounted total return v{x,6) for discount factor a 

is: 

c b c 
V(3,0) = v{5,1} = "["':13 1 v{3,1) = v(S,O) = c + fl "["':13(< ~). 

llb c 
Bence v(3,6l = (c + t-s>e + ~(1-6) 

a c1 - e > Further v(2,6) = 1- se v(1 ,6}, hence 

{ 13(1-6} } 
v(1,6) = max aev(1,6} +a(1-6) l-ae v(l,S}, 13v(3,6), 13v(S,S) • 

The first term equals: 

13 e +a- 213Sv{1 6) < v{l,S) 
1 - (le • for 13 e (0,1), e e a. 

The Bayesian equivalent rule is based on the function F specified by: 

e + 13- 2ae 
F(1,6,1) =13 l _SS v(l,S), F(1,6,2) = flv(3,S) 

and 

F(1,6,3) = flv(5,6) • 

Bence the Bayesian equivalent rule in state (1 ,q) chooses action 2 or 3, 

{ Sb c } with equal Bayesian discounted total return: ~ c + ï""='i3 + 1:-s , Now we 

consider another strategy for starting in state 1 • 

At stage 1 take action 1 and thereafter take the best of actions 2 and 3, 

in state 1. Note that under this strategy the system remains in state 1 at 

stage 1, or it returns to state 1 at stage 2. The discounted total return 

becomes: 13
3 

1 : a if 6 = 0 and 132 
1 : a if 6 = 1. Bence the Bayesian dis-
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counted total return is; 1:! ~ 13 2 (13 + 1) • So, if for instanee c = 2, b = 1 

and f3 = 0.91 then this strategy is better than the Bayesian equivalent rule. 

It is straightforward to show that tha latter strategy is optima!, in this 

case. 

We procead with a theorem. In this theerem we show that the process of poste­

rior distributions is a Markov chain. 

Theorem 5.1 

(i) Lét f ba a real-valued measurable function on w x Y that is bounded 

* from above. Then, for n € ~ 

E (f(Q ,Y +l) I Y
1

, ••• ,Y] = J f(Q ,y)p(y,Q )V(dy) 1 P -a.s. q nn n n n q 

{ii) The process {Qnl n € ~} is a (homogeneous) Markov chain. 

Proof. 

(i) Define 

n I n 1 ~{d6) := q(dflJ n p(y.lflJ.{ q(dfl) n p(y.le>}-
j=l J j=l J 

if the denominator is non-zero. Let B € yn. Using lemma 2.2 (T 

have 

I Eq[f(Qn,Yn+l) 

{ (Y
1

1 ... ,Yn)€B} 

I yl I ••• I y ) ]dJP = n q 

n+1 

1) we 

= f q(dEl){ f(~,yn+1) j~l p(yj]6)v(dy1).,\l(dyn+1)}. 

Note that 

r n f n 1 

J p(y +1 ]e> n p(y.le>qCd6J{ n p(y.]BJq,(dBJ}- p(y + 1 ~~> 1 

n j=l J j=l J n 

if the factor between braces is non-zero. Hence (*) equals: 

I · · · I 
(y 1 1 • •• ,y n+l) EBXY 
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n 
11 p(y.l6lq(d6)}v(dy

1
) ••• v(dy 

1
>= 

j=1 J n+ 

=E [1 J f(Qn 1y)p(y,Qn)v(dy)] , q { (Y1 , ••• ,Yn)EB} 

which provespart (i). 

(ii) Eq[f(Qn+1) I QO, ••• ,Qn] =Eq[Eif(Qn+1) I Y1, ••• ,Yn] IQo•··•Qn]= 

= Eq[ J f (Ty (Qn))p (y ,Qn) v (dy) I QO'. • ,Qn] =I f (Ty (Qn))p (y,Qn) v (dy) = 

=EQ [f(Q1)J =E [f(Q 1> IQ ],P -a.s. 
n q n+ n q 

The first equality fellows from the fact that ~ is a function of q and 

Y1 , ••• ,Ym. The secend equality is a consequence of part (i) and the 

equality Q 1 = TY (Q ). Theether equalities are obvious. D 
n+ n+1 n 

In tb. 5.3 we prove the optimality of a Bayesian equivalent rule in the in­

dependent case. Here the reward function r is constant in the first coordi­

nate, i.e. at each stage the reward only depends on the chosen action and 

the value of the supplementary state variable. FUrther it is assumed that 

all actions are available in every state, i.e. D(x) = A, for x E X. Since, 

given Z, the sequence {Y , n E ~*} is a sequence of i.i.d. random variables 
n 

(cf. lemma 2.2) we call this case the independent aase. It will play an im-

portant role in sectien 5.3. we start '"ith a lemma. 

Lemma 5.2 

Let G be an upper semi-continuous (u.s.c.) function on A x Y, that is bound­

ed from above. Let A be compact. Then there is a measurable function f: w +A 

such that: 

I G(f(q) ,y)p(y,q)V(dy) 

Proof. 

maxI G(a,y)p(y,q)v(dy) • 
aEA 

we show that all conditions of Schäl's selection theerem (cf. A17) are sa­

tisfied. Let G be u.s.c. and bounded above by M E E. Then there are bounded 

continuous functions Gk on A x Y, such that the sequence {Gk' k EN} is non-
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increasing anà lim Gk = G {see A12). 
Je--

Without loss of generality we may assume that ~ s M, k E E, since otherwise 

we may.define ~ := min{Gk,M} and then {Gk' k E E} is also a nonincreasing 

sequence of bounded continuous functions with limit G. Hence, by the mono­

tone convergence theerem we have 

~I {-~ (a,y) +M}p(y,q)v {dy) = J {-G(a,y) +M}p(y,q)v (dy) 

and so {j ~(a,y)p(y,q)V(ày), kEEl is a nonincreasing sequence with limit 

f G(a,y)p(y,q)v(dy). 

By the dominated converganee theerem the function 

(a,q) ~ J ~(a,y)p(y,q )V(dy) 

is continuous in a, and for fixeà k it is bounded since Gk is bounded. Using 

lemma 1.6(iii) we find that this function is measurable, since 

(a,e) ~I Gk(a,y)p{ylelv(dy) 

is measurable. Hence we proved that J Gk(a,y)p(y,q)V(dy) E L(W x A) and 

therefore J G(a,y)p(y,q)v (dy) E L(W x A) (cf. Ai 7). 

Hence all conditions of A17 are satisfied. This proves the lemma. 

Theerem 5.3 

0 

Let I be a singleton, let A be compact and let D(x) = A, x E x. FUrther let 

x ~ r(x,a,y) be constant for all a E A, y E Y and let (a,y) ~ r(x,a,y) be 

u.s.c. (We write r(a,y) := r(x,a,y), a E A, y E Y.) 

* Then there is a strategy ~ E rr0 that choses a maximizer of 

a~ J r(a,y)p(y,q)v(dy) in each state (x,q) E X x w. 
This strategy is optimal, and 

where, 

5.1 

"' 
v(x,q) = I ~~ [e(Q )] 

n=O q n 

e(q) := max J r(a,y)p(y,q)v(dy), 
aEA 

q € w • 
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Proof. 

Remember that r is bounded from above. Let x e; X, q e; W and 1T e; TI 0 • We have: 

1T 1T 1T 
E [r(A ,y +

1
)J =JE [E [r(A ,Y +l) x,q n n x,q x,q n n 

Since 1r e; n0 , there is a corresponding strategy ie; fl (cf. 3.7). Therefore 

we have P
11 

-a.s.: x,q 

E
11 

[r(A ,Y +1> I x0 ,Q0 ,A0 , ••• ,x ,Q l] = x,q n n n n 

J nn(dalxo,Qo,Ao•···rXn,Qn) I V(dy)p(y,Qn)r(a,y) s 

~ sup J V(dy)p(y,Qn)r(a,y) • 
ae:A 

By lemma 5.2 there is a measurable function f from W to Y such that 

maxI v(dy)p(y,Qn)r(a,y) = f V(dy)p(y,Q )r(f(Q ),y) = e(Q) • 
ae:A n n n 

Note that the distribution of e(Qn) does notdepend on x and 11. Hence 

1T 
E [r(A ,Y +l)] SE [e(Q )] x,q n n q n for all x e; x, 1T e; TI0 , 

* with equality if the strategy 1T is used. This proves the theorem. 

* 

0 

The strategy 1T defined in th. 5.3 uses a Bayesian equivalent rule. To veri-

fy this, note that an optimal strategy for the model with known parametere 

is obtained by using a maximizer of a-+ F(x,6,a) at each stag.e, where 

F(x,6,a} := J v(dy)p(yje}r(a,y) • 

Hence a Bayesian equivalent rule may be defined as a maximizer of 

a+ J q(d6)F(x,e,a), in each state (x,q) e; X x w. Hence 11* uses a Bayesian 

equivalent rule at each stage. Note that each maximizer of 

a+ J q(d6)F(x,6,a) is also a maximizer of 

a-+ I q(d6)p(yja){r(a,y) + e J P(dx'lx,a,y)v(x',6)} 

since x-+ v(x,a) is constant for all a e; a. Hence 11* uses a "natural" Baye­

sian equivalent rule. 

In th. 5.4 we give an upper and a lower bound for the value function of the 

model. These provide a maasure for the loss of return, due to the lack of 

information concerning the "true" parameter value. 



Theorem 5.4 

under the conditions of th. 5.3 we have: 

5.2 

Proof. 

f q(d8)e(6) 
~ s: v (x,q) ::;; --::----;;---
1-13 1-13 
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The right hand inequality fellows from th. 3.16. To prove the left hand in­

equality, note that: 

Eq[e(Qn)] ~ supE [I 2n(d8){J v(dy)p(yl&)r(a,y)}l = 
at:A q 

sup J q(d6){J v(dy)p(yje)r(a,y)} = e(q) 
at:A 

The first equality fellows from the fact that Eq[ J f(9)Qn(d6)] = J f(9)q(d9), 

for real-valued measurable functions on O, which are bounded from above. 0 

We conclude this sectien with an example which has some relationship with 

the inventory control model we study in section 5.3. The model we consider 

in this example can be transformed into the model we called the independent 

case. 

Example 5.2 

Let I be a singleton, D(x) = A for all x t: X and let A be compact. Further 

let r(x,a,y) = b(x) + c(a), x t: X and at: A, where bandcare u.s.c. and 

bounded from above on x and A respectively. Finally let P({G(a,y)} I x,a,y) = 1 

for all x t: x, a t: A and y t: Y where G is a continucue function from A x Y 

to x. 
For each x t: x, q t: w and w t: rr0 we have 

co 

v(x,q,w) =Ew [ ~ Snr(X ,A ,Y +l)] = 
x,q n=O n n n 

"' = Ew [b(Xol + L en{c(A ) + {3b(G(A ,Y +1) }] 
x,q n=O n n n 

." 

= b(x) + ~ 13~:,q[c(An) + !Sb(G(An,Yn+l))] • 
n=O 
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Define r(a,y) := c(a) + Sb(G(a,y)), a é A, y ~ Y. Then 

00 

v(x,q,~)- b(x) +E~ [ L an r(An,Yn+l)J • 
x,q n=O 

Note that (a,y) ~ r(a,y) is u.s.c. (cf. AlS). Hence, by th. 5.3, we find 

that an optimal strategy is obtained by choosing in each state (x,q) e;: X x w 
a maximizer of 

and 

whe.re 

a~ {c(a) +a I b(G(a,y))p(y,q)V(dy)l 

00 

V (x ,cf) = b (x) + L an }'; [ê (Q ) ] I 

n=O q n 

ê(q) := max{c(a) + S I b(G(a,y))p(y,q)V(dy)} • 
aE:A 

As in th. 5.4 we have the inequalities: 

- -1 f - -1 b(x) +e(q) (1-6} .Sv(x,q} Sb{x) + e(6)q(d6) (1-S) , (x,q) €XXW. 

In the following sections we study models which have some practical rele­

vance. As this is more natural, in these models we shall minilllize coats ra­

ther than maximize rewards. 

Note that all results up to here carry over if we define 

T-1 
s. 3 (i) := inf E~ [I Sn c(X ,A) + STb(X ,Q )] 

~€ll x,q n=O n n T ' 
0 

for real-valued measurable functions b, that are bounded from below. 

(ii) v(x,q) = (U
00

0) (x,q} • 

In this chapter we consider a linear system with quadratic costs and with a 

disturbance process of i.i.d. random variables with an incompletely known 

distribution. We show the optimality of a Bayesian equivalent rule. In fact 

this rule can also be considered as a so-called aertainty equivalent rute. 

We generalize results of M. Aoki on this topic in several ways: first we 

allow other disturbance processes than normal processes, secondly we allow 

general prior distributions. Finally we allow the coats to be a quadratic 



99 

function of the control variable (cf. [AOki (1967), page 94]. 

The concepts and techniques we use here, are familiar in the theory of li­

near systems (cf. [Kushner (1971), chapter 9] and [Bertsekas (1976)]}. we 

remark that the greater part of this sectien appeared in [van Hee (1976)]. 

We sball use symbols that we used before. Bowever, they loose their previous 

interpretation here. We start with the specifications of the model. We pra­

eeed with some preliminary results, and in th. 5.9 we obtain one of the main 

results of this section: an explicit expression for the optima! strategy and 

also for the value function. 

In this sectien x' means the transpose of x, where x is a column vector or 

a matrix. 

Moàel 4: the Unea:r' system 

5.4 
nl * (i) x := y := :R- , nl €:N , 

n2 * (ii) D(x) :=A := lR , n2 E:N for all x E x, 
(iii) c(x,a) := x'RX + a'Sa where Ris a nonnegative definite n1 x n1-

matrix and s a positive definite n2 x n2-matrix, 

(iv) P({Cx + Ba + y} I x,a,y) = 1, x E x, a € A, y € Y where c is a 

n
1 

x n1-matrix and B a n1 x n2-matrix satisfying the can.troZZa­

biZity assumption 

nel 
rank[B,CB, ••• ,c B] n1 

(v) J v(dy) I yiyj I p(y!e> is bounded on 8 where yi is the i-th com­

ponent of y E Y, for all i,j E {t, ••• ,n1l. 

Por q E W we define the vector m and the matrices M and ~ : q q q 

5.5 (i) mq(i) :=I yip(y,q)V(dy}, iE {1, • • • ,nl} • 

(ii) M (i,j) := I m6 (i)m6 (j)q(d6), i,j E h, ... ,n1} • 
q 

(iii) l: q(i,j) := J yiyjp(y,q)V(dy), i,j E {1, ••• ,n1J. 

Note that ~ - M is the cova:r'iance matrix of Yn averaged over 8 with q. 
q q 

By assumption 5.4 (v) m , M and ~ are bounded on w. q q q 

In lemma 5.5 we give some properties of mq and Mq. 
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Lemma 5.5 

Fo:r q ~;; W we have 

(i) 

{ii) 

P:roof. 

Hence 

and 

I mT ( ) (i)p(y,q)\1 {dy) = mq{i), i E h, ... ,n1} • 
yq 

f YJ·II\r { ) {i)p{y,q)\l(dy) = M (i,j), i,j E {l, ••. ,n1} • 
yq q 

llL (i)p(y q) =p(y q) Jy {J p(yjS)p(yjS) q(d6)}\l(dy) = 
'I'y(q) I I i p(y,q) 

= jJ y1p<yle>p<yle>vcdy)}q(d9) • 

J mTY(q) (i}p(y,q)V(dy} = J{f y1p(yi6)V(dy)}q(d6) = mq(i) 

I Yjll\ry(q) (i)p(y,q)V(dy) =JIJ yjyip(yj9)p(y,9)\l(dy)\l(dy)q(d9) 

= J{J yjp(y,6)\l(dy)}.{f yip(y,6)v{dy)}q(d6) = Mq(i,j) • 

Note that all changes of integration order are allowed by 5.4 (v). 0 

Lemma 5.6 statas that the optima! reward operator U (cf. 5.3(1)) maps the set 

of functions f on X x W of the form given in 5.6 below, into itself. The 

proof proceeds in a familiar way (cf. [Kushner (1971), sectien 9.2.2]). 

Lemma 5.6 

Let the :real-valued function f on X x W be defined by: 

5.6 f(x,q) := x'Kx + x'Lm + H(q), x Ex, q E W, 
q 

where K is a nonnagative definite matrix, L an arbitrary n1 x n1-matrix and 

H a bounded and measurable function on W. Then: 

where 

(Uf) (x,q) := x'Kx + x'Lm + H(q), x Ex, q € W, 
q 

5.7 (i) K := G
1 

(K) := R+BC'KC- B2c'KB(S+BB'KB)-lB'KC. 

Ciil L := G
2

(L,K) := 2Bc'K+Bc'L-B
2
c•KB(s+BB'KB>-

1
<2B'K+B'L). 
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(iii) B{q) := G3 (q,H,K,L) :==-~ 2m'(2KB+L'B)(S+i3B'KB)-1 (2B'K+B'L)m + 
q q 

+ 13 J H (T (q) )p (y ,q)v (dy) + 13 trace (!<E ) + 13 trace (LM ) 
y q q 

and the minimizing action a(x,q) in (x,q} is: 

N 

FUrther: K is nonneg a ti ve defini te and H ( •) is bounded and measurable on w, 

Proof. 

(1) By some straightforward calculations, using lemma 5.5 we get: 

(Uf) (x,q) = inf {a• {S + BB'KB)a + (213x'C'KB + 213m'KB + 13m'L'B)a} + 
aEA q q 

+ X 1 (R+I3C'KC)x+i3x'(2C'K+C'L)mq+ 13 JH(Ty{q))p(y,q}V(dy} + 

+ 13 trace (KI } + 13 trace (LM ) • q q 

Since K is nonnegative definite and S is positive definite we have 

S + i3B'KB is positive definite and therefore (S + BB'KB} -l exists and is 

positive definite. Hence by standard arguments for the minimization of 

quadratic forms we find 5.7 and 5.8. 

(2) We shall prove that K is nonnegative definite again. Note that the va­

lue of i does notdepend on L, Hor p(y,9), y € Y, 9 € 6, Hence, to 

prove this, we may assume that H vanishes and that J I y. y .I p (y Ie) v (dy) = 0, 
l. J -

for all i,j € {1, ••• ,n1} and 9 € 9, In that case (Uf)(x,q} = x'Kx, since 

E , M and m contain only zeros for all q € w. By the definition of q q q 
(Of) (x,q) we have 

(Of) (x,q) =inf {x'Rx + a'Sa + 13 J {Cx +Ba +y} 'K(Cx +Ba +y)p{y,q)V(dy)} 
aE:A 

and therefore (Uf) {x,q) ~ 0 for all (x,q) € X x w since R, s and K are -nonnegative definite. Hence x'Kx ~ 0 for all x € x. It is easy to verify 

that i is symmetrie. Hence i is nonnegative definite. 

(3) Finally we consider the tunetion q T H(q). Using lemma 1.6 (iii) we have 

q ~ mq{i), q + Mq(i,j) and q ~ Eq(i,j) are bounded and measurable. So 

alltermsin 5.7 (iii), except the second one, are bounded and measura­

ble on w. We consider the second term separately. To show that 
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(y,q) ~ Ty(q) is measurable, it suffices to prove that the set 

{(y,q) I T (q) (B) Sc} is measurable for BET and c E E (cf. lemma 1.5). 
y 

Hence it suffices to show that (y,q) ~ Ty(q)(B) is measurable, BET. 

Note that (y,q) ~ BJ p(yl6)q(d6) and (y,q) + p(y,q) are measurable (cf. 

lemma 1.6 (iii)). Hence (y,q) + Ty(q)(B) is measurable since 

Ty(q~(B) = I p(yj6)q(d6){p(y,q)}-l if p(y,q) > 0 

B 

= q(B) if p(y,q) = 0 • 

Therefore (y,q) + H(Ty(q)) is also measurable. This proves the measura­

bility of (y,q) + J H(TY(q))p(y,q)V(dy). D 

The equation G1 (K) = K is called the Ricatti-equation. 

Now we shall consider the sequence of successive approximations; 

x € x, q € w • 

We define n1 x n1-matriGes Kn and Ln and a sequence of bounded measurable 

functions Hn on w, for n E E: 

s. 9 (i) 

(ii) Kn := Gl(Kn-1 1 ' Ln := G2(Ln-1' Kn-1 1 ' 

* Hn(q) := G3(q,Hn-1'Kn-1'Ln-1)' q € W, n € B 

(G1, G2 and G3 are defined in 5.7). 

It is a direct consequence of lemma 5.6 that 

5.10 

* In lemma 5.7 we prove that Kn and Ln converqe elementwise to matrices K 

* * and L respectively. The proof of Kn + K can also be found in [Kushner 

(1971), sectien 9.2.3]. In our proof we use the same arquments. In lemma 

5.8 we show the pointwise converganee of Bn as n tends to infinity. 

Lemma 5.7 

(i) Kn converges, elementwise, 

fyinq the Ricatti-equation 

(ii) Ln converqes, elementwise, 

to a nonnegative definite matrix K* satis-

* * {K = Gl {K ) ) • 

* * * * to a matrix L satisfying L = G2 (L ,K ) • 
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Proof. 

Since Kn and L do not depend on the maasure v , to study the limit behaviour 
n * n1 * we may assume that v is concentrated in a point m E m . Hence m = m for 

q 
q € w, and we are dealing with a deterministic system. Let us denote the 

value function of this system by v and the sequence of successive approxima­

tions by {vn(x), nEE} (note that we omit the dependenee on q E W}. We 

first show that this value function v is finite. Let x = x0 be the starting 

state. Note that 

hence 

nl 
n

1
-1 

x - c xo - I 
nl k=O 

n -1 

C~an -1-k + t 
1 k=-0 

nc1 

Jtm * , 

Jtm* dtsa I n -1-k • k=O 1 

By the controllabili ty assumption 5.4(iv) we can find actions ao•···•an -1 

such that x 
nl 

1 
= 0. So there is, for the deterministic linear system, a stra-

* a 0 for k E E , and such that each cycle from ~ = 0 

* 1 
until x(k+l)n

1 
= 0 passes through the samestatas and actions (k E E ). 

tegy 11 such that ~ 
1 

Hence the discounted total costs of the system under 1r is fini te. Since the 

one-step coats are nonneqative,vn (x) is nondecreasinq in n. Note that, by 

a simple dynamic proqramming argument, vn(x) s v(x) for allnEE and x Ex. 

Hence vn(x) converges if n tends to infinity. Note that, by 5.7(iii) and 

the special form of v , 

where Hn is constant on W (therefore we omit the dependenee on q € W).* 

Since vn(O) converges, we find that lim H exists and is finite. Let m = 0. 
n-- n 

So we find that lim x'Knx exists for all x E X, since Kn does not depend on 
*n-+co 

the value of m • It is straightforward to show that ~s imp:ies that Kn 

converges elementwise. COnsequently, for arbitrary m , x'Lnm converges for 

all x E x. Hence Ln converges elementwise. As Kn is nonnegative definite we 

have x'K x ~ 0 for all x E x, hence x'K*x ~ 0 for all x E x. Since K K' 
n* *' * n n 

we have K = K and therefore K is nonnegative definite. 
-1 * -1 Finally, since (S +13B'KnB) converges elementwise to (S +6B'K B) we find 

* * * * * K = G1 {K) and L = G2 (L ,K ), 0 
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Lemma 5.8 

Tbe sequence of functions H , defined in 5.9, converges pointwise to a 
n * * * * * bounded measurable function B (on W), such that B (•) = G3 (•,a ,K ,L ). 

Proof. 

Let 

5.11 (a) bn (q) := -~2m• (2K B +L'B) (S + 6B'K B) -l (2B'K +B'L )m + qn n n n nq 

+ B trace{KnEq) + 6 trace(LnMq) • 

It fellows from lemma 5. 7 that bn (q} converges if n tends to infinity •. 

Denote: 

5.11 (b) b(q) := lim b (q), 
n-+<» n 

q e w . 

By definition 5.7 we have Hm+l (q) = bm{q) +BI Hm(Ty(q))p(y,q)V(dy}, m € E. 

Note that I Hm(Ty(q))p(y,q)V(dy) =Eq[Bm(Q1)J. Therefore, by th. 5.1 and 

the measurability of (y,q) 4 Bm(TY(q)) (cf. the proof of lemma 5.6): 

(*) 

Hence we have 

8 n+l (q) = bn (q) 

"'bn(q) 

k € :n*, m € :H • 

+BE [b l(Qll +BE [B 1{Q2) I yl]] = q n- q n-

+ BEq[bn-1 (Ql)] + B~q[Bn-1 (Q2)] • 

And by iteration, using {*) we find:. 

The last term vanishes since, by definition, a0 = 0. Since Kn and Ln are 

bounded in n (elementwise; see the proof of lemma S. 7), and since q + mq' 

q + M and q + E are bounded functions (elementwisel , we have {cf. 5.11) q q 
the boundedness of (n,q) "" bn (q). Hence, for all E > 0 there is a NE e :H 

such that: 

By the dominated converganee theorem, for fixed t we now have: 
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Hence, using (**) we find: 

00 

5.12 H*(q) := lim Hn(q) = L 6~q[b(Qk)] • 
n-+«> k=O 

* * Since b is bounded, H is also bounded. The measurability of H is immedia-

te. Finally, note that 5.12 and the Markov property of the process {Q , nEld n 
(cf. th. 5.1) imply: 

* Eence H (q) 

= b(q) +13:E [ Ï 6~Q [b(Qk) ]] =b(q) + 6Eq[h(Q1)] • 
q k=O 1 

* * * G
3

(q,E ,K ,L ), 0 

The next theorem is one of the main results of this section. It is an imme­

diate consequence of the foreqoing lemmas and a well-known argument for ne­

gative dynamia programrring (cf. [Strauch (1966) ]) • 

'l'heorem 5.9 

(i) The value function satisfies 

* * * v(x,q) = x'K x + x'L mq + H (q) 

(ii) In state (x,q) the optimal strateqy chooses the action: 

* -1 * * -1 * * a(x,q) =-6(S+6B'K B) B'K CX-6(S+6B'K B) (B'K +l:!B'L )m 
q 

(where K* and L* are defined in lemma 5.7 and H*(•) in 5.12). 

Proof. 

From the lemmas 5.6, 5.7 and 5,8 it follows that 

and also that, for x E x, q E W: 

* 1T v_(x,q) = (Uv
00

) (x,q) = c(x,a(x,q)) + aE [v {X1,Q1)J , - x,q .. 
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* where w is the strategy that chooses in (x,q) action a(x,q) (defined above). 
*' 

Since the process {(X ,Q ), n € E} is a Markov chain under n we find by 
n n 

iteration of (*): 

(**) 

Note that according to a simple dynamic programming argument vn (x,q) s: v(x,q) 

for all n € E, since c is a nonnegative function. Bence 

* 
v{x,q) i!: V

00
(x,q) i!:E: [I l!nc(Xn,a(Xn,Qn))]<:v(x,ql. 

,q n=O 

Here the second inequality follows from (**) since V
00

(x,q) <: 0, 

(x,q) € x x w. D 

The following theorem provides a bound for the extra coats we incur due to 

lack of information about the parameter value e € a . 

Theorem 5.10 

0 s v(x,q)- f v(x,e)q(d6) s: 
1

: l!{b(q) -f b(6)q(d6)}, (x,q) EXXW 

(where bis defined in 5.11 (b)}. 

Proof. 

By th. 3.16 we have v(x,q) <: J v(x,6}q(d6). (Remember that we are minimizing 

here.} NOte that, by th. 5.9: 

.. 
v(x,e) • x'K*x + x'L*m6 + I 1!~(6) 

n=O 

since all postertor distributtons are concentrated in e, if the prior dis-

I * * tribution is concentrated in e € 8, Since q{d6)x'L m6 = x'L mq we 
have 

(*) v(x,q) - J v(x,e)q(d6} = I antE [b(Qn)]- f b(6)q(d6)} • 
n=O q 

* * Note that b(q), satisfies 5.11 (a), with Kn and Ln replaced by K and L, 

respectively. NOte that the matrix E, defined by 
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* is positive definite, since (s+aB'K B) is. Therefore E can be written as 

E = J'AJ, where J is an orthoqonal matrix and A is a diagonal matrix with 

positive entries À
1

, ••• ,À on the diagonal. 
nl 

He nee 

m'Em = q q 

And, by Schwarz's inequality, we find 

nl nl 
E [m' Em ] ~ L ÀiUE [ L J 1jmQ (j)J}

2 • 
q ~ Qn 1=1 q j=1 n 

Since m
2 

(j) = J ~(d6)m6 (j) we have 
n 

Hence we have 

n1 nl 

~ L À,{ L J.jm {j)}2 = m'Em 
i=l 1 j=l 1 q q q 

Note that 

* 
nl n1 

* I m6 Cilm6 Cjlq(d6) trace{L Mq} z: z: L (i 1 j) 

and i=l j=1 

trace{K*E ) 
nl nl 

* I {f yiyjp{yi6)V{dy)}q(d6) • .. I l: K {i Ij) 
q i=l j=l 

Hence we find: 

* * * * E [ trace (L MQ ) ] = trace (L M ) and E [ trace (K r
2 

) ] = trace (K I: ) • 
q n q q n q 

So we have 

E [b(Q )] ~ b(q) • 
q n 

This proves the theorem. 

Remarks. 

(i) The linear system with (known) transition law given by: 

PCnlx,a) = I p(y,q)V(dy), DE X 
{cx+Ba+yED} 

0 
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and the same cost structure as in model 4 has the value function vq(•) 

defined by: 

vq(x) := x'K*x + x'L*mq + ~~~ , 

Hence, by th. 5.10, we have 

f v(x,e)q(de) s v(x,q) s vq(x) • 

(ii) 'I'he optimal strategy we found in th. 5.9 is a Bayesian equivalent rule 

(cf. 4.4), since the action in state (x,q). € x x wis the minimizer 

of the function (cf. the proof of lemma 5,6) 

I * * * * . a-+- q(de){a• (S+BB'K B)a+ (2Bx'C'K B+2BmáK B+l3máL 1 B)a} • 

(iii) Since mq(i) = J me(i)q(d6), mq(i) is the Bayes estimate of me(i) when 

q is the prior distribution. Hence the optimal strategy we found in 

th. 5.9 can also be formulated as: at each moment use the Bayes esti­

mate for me in the formula for the optimal action instead of me, which 

should be used if e were known. In the linear system with known tran­

sition lew, i.e. with B = {e}, it turns out that the optimal strategy 

is the same as if v is concentrated at m6• In that situation we are 

dealing with a deterministic system. 'I'his property, which we used in 

the proof of lemma 5.7, is called the aertainty equivaLent principLe 

(cf. [Bertsekas (1976)]), we showed that in each state (x,q) we may 

act as if v is concentrated on m • 
q 

In this section we consider an inventory control model which is closely re­

lated to the model described in example 5.2: the main difference is that 

D(x) ~ A for all x € x. Further we shall specify bere the funations b, c 

and G of the example. The model we shall deal with is extensively studied 

by several authors: [Scarf (1959)], [Iglehart (1964)], [Rieder (1972)], 

[Zacks and Fennel (1973)] and[Waldmann (1976)]. Except for Zacks and Fennel 

all these authors prove structural properties of the optimal strategy under 

various conditions. Only Zacks and Fennel considered an easy-to-handle sub­

optima! strategy and they studied its behaviour using Monte Carlo methods. 

We also study a suboptimal strategy, namely a Bayesian equivalent rule, and 

we give bounds on the difference of its Bayesian total discounted return 

and the optimal value. FUrther we consider conditions under which this stra­

tegy is optimal. We start with a sketch of the model. 



~del SA: invento:ey aont:ro~ mode~ 

5.13 (1) X := A := (-oo,M] 1 M > 0 is called the aapaaity. 

(ii) D(x) := [x,M], a is the inventory after ordering. 

(iii) P({a-y} I x,a,y) = 1, y represents the demand. 

(iv) Y := {y E lR I y <:: O} • 

109 

(v) c(x,a) := hx+ + px- + k(a- x) where h is the holding oost, p 

the penalty aost for shortage and k the p:Podu.ationaost; h,p,k > 0 

and k < 13 (k + p) • 

(It is easy to verify that, if k :<! 13 (k + p) never ordering is optimal.) 

We shall compare this model wi th model SB. 

Model SB. 

5.14 D(x) := [O,M] • 

FUrther all specifications as in 5.13. 

It is easy to verify that all assumptions of example 5.2 are fulfilled. The 

optimal action in (x,q) for model SB is the minimizer in [O,M] of: 

S.lS a+ [ka+B} {h(a-y)+ + p(a-y)-- k(a-y)}p(y,q)v(dy)}] • 

We shall determine the minimizer. The term between braces equals 

5.16 {k-13(p+k)}a+mql3(p+k) +B(h+p) I (a-y)p(y,q)V(dy) 

[O,a] 

where 

5,17 mq := f yp(y,q)v(dy) • 

It is easy to verify that 

f(a} := f 
[O,a] 

(a -y)p(y,q)V(dy) = (au{ I p(y,q)v(dy)} • 

0 [O,u] 

Bence the function f is continuous and f (!:!(a+ b)) ~ J:!{f (a) + f (b)}. There­

fore f is convex. So 5.16 bas a minimum in 

5.18 (a) := inf{a E lR I J p{y,q)V(dy) 

[O,a] 

1 - f3 
:<!p--a-k}. 

p + h 
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According to S.13 (v) there always is minimum of S.16. Note that q + s(q), 

q e: W is measurable, 

consequently 

S.18 (b) s(q) := min{M,s(q)}, q € W 

is a minimizer of S.16 in the set [O,M]. 

It is well known that for the inventory control model SA with known parame­

ter value e, the strategy: 

"ol'der upto Z.evel s(6) eaah period or UJait if the inventory is larger than s(6)" 

is optimal (cf. [Iglehart (1964)]). 

TO define a Bayesian equivalent rule for model SA, define the function F by: 

F(x,e,a) :=ka+ a I {h(a-y)+ + p(a-y)-- k(a-y)}p(y,e)v(dy) • 

Hence, in state (x,q) e: X x W this Bayesian equivalent rule chooses a mini­

mizer of a+ f q(d6)F(x,6,a) on the set [x,M]: 

S.18 (c) the Bayesian equivalent rule chooses the action a(x,q), 

a(x,q) = max{x,s(q)} in state (x,q) € x x w. 

We proceed with a definition: 

S.19 Let v be the value function of model SA, w the value function of model 

SB and let v be the Bayesian discounted total costs under the Bayesian 

equivalent rule defined in S.18 (c). 

Note that the Bayesian equivalent rule S.18 (c) defines a Bayesian stationa­

ry strategy for model SA and also for model SB. Note also that the Bayesian 

discounted total costs for both models is the same under this strategy, name­

ly v(x,q), if (x,q) e: x x wisthestarting state. 

There is an optimal strategy for model SA of the form "ahoose the action 

max{x,t(q)} in state (x,q) 11
1 where t: W +A is a measurable function such that: 

S.20 t(q) is a minimizer of 

a+ ka+ BI v(a-y,TY(q))p(y,q)\l{dy)} 

on the set [O,M]. 

This is proved in [Rieder (1972), th. 7.2 and th. 7.3] under the additional 

assumption that 6 + m6 is bounded. FOr practical purposes this result is 

only interesting if the value function v is known. Lemma S.11 shows that 
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t(q) S s(q) for q e w, which is intuitively clear, since if it is not al­

lowed to reduce the inventory, you will order more carefully. 

Lemma 5.11 

Let t; W ~ A be measurable such that t(q) satisfies 5.20 for q e w. Then 

s(q) ~ t(q), for q e w. 

Proof. 

De fine 

f(x,q) := v(x,q) - {hx+ + px-- kx}, {x,q) eX x W. 

From the optimality equation, v =uv, for model SA it follows that 

f{x,q) = inf {ka + 13 J v(a -y,Ty(q))p(y,q)V(dy)} • 
x~~M 

Bence x~ f(x,q) is nondecreasing for all q e w. By (*) we have: 

{**) f{x,q) = inf [ka+S J{h(a-y)++p(a-y)--k(a-y)}p(y,q)v(dy) + 
x~~M 

+ 13 J f(a-y,Ty{q))p(y,q)v(dy)] • 

Remamber that the function {cf. 5.15) 

a~ ka+ 13 f {h(a-y)+ + p{a-y)-- k{a-y)}p(y,q)v{dy) 

is convex-and attains a minimum in [O,M] (cf. 5.18 (a)). 

The last term of (**) is a nondecreasing function of a, since x+ f(x,q) 

is nondecreasing, for all q € w. Hence a minimizer t(q) of 

a+ ka+ 13 I v(a-y,Ty(q))p(y,q)V(dy) 

in the set a € [O,M] must satisfy t(q) ~ s(q), q € w. 0 

In th. 5.12 we give bounds for the difference v-w (cf. 5.19). This diffe.;.. 

rence is an upper bound for v-v, the loss due to centrolling the system 

with the Bayesian equivalent rule. The bounds are derived by oomparing two 

strategies for model SB. We oompare the optimal strategy for this model, 

where A = s(Qn) for all n € ~. with the strategy where A = max{x,s(Q )}, 
n n n 

the Bayesian equivalent rule defined in 5.18 (c). Note that the production 

costs at timenforthese two strategies, differ if s{Q 1> - Yn- s(Q) > 0, n- n 
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Theorem 5.12 

'l'he fWlctions v, w and 'IJ defined in 5.19, satisfy the following inequali­

ties: 

(i) w(x,q) ~ v(x,q} ~ 'IJ(x,q}, (x,q) e x x w • 

f3 { + (ii) 'IJ (x,q) - w {x,q) s (r:-Jr h + k) (x - s (q)) + 

Proof. 

(i) Note that for model SB the lower bound for the action space is not es­

sential, since s(q) > 0 (see 5.18 (a)), Bence it is obvious that 

w(x,q) s v(x,q). The right-hand side of the inequality is trivial. 

(ii) Let Xn denote the inventory at time n when the action at time n 

An := max{s(Qn)'xn} is used, and xn the inventory if An := s(Qn) is 

used. Further let x0 = x0 = x. Since xn+l = An - Yn+l and 

xn+l = ~ - yn+1 it is easily verified that: xn s xn' n e ~. Let 

S
0 

:= s(Q
0
), n e ~. and consider the difference in immediate costs at 

time n: 

+ -+ - -- - { } (*) h(X
0 

-Xn} +p(X
0 

-X
0

) - k(Xn -X
0

) + k(max xn,sn -Sn) s 

s h(X
0 

-xn) + k(max{xn- s
0

,0} - x
0 

+X
0
), n e ~ , 

since X- s x- for n e ~. We consider the term with coefficient k first. 
n n 

We establish: 

To prove (**),let Xn >Sn. Then (**) holds, since Xn = S
0

_ 1 - Y
0

• 

And if Xn s s
0

, we get max{x
0

- sn,O} - xn +Xn s 0, and so (**) holds. 

For n = 0 we have 

Hence if h = 0: 

co 

v{x,q) - w(x,q) S k{(x-s(q)}+ + l tsiE [(S l -S -Y )+]} • 
n=l q n- n n 
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-For h > 0 we consider h(Xn- Xn), n e N. 

Note that x0 = x0 = x and 

We shall prove 

(***) 

(an empty sum vanishes). 

We already verified {***) for n = 1. Assume it holds for n. consider: 

Xn+1 - Xn+l = max{xn,sn} - yn+1 - 8n + yn+l = (Xn- Sn)+ • 

By the induction hypothesis: 

aence 

which proves (***)• 

Now we add the upperbounds for the differences in holding costs: 

~ 00 

= lh!l3(:x-s(q)}+ + h L {sk-1-Yk-Sk}+ L Sn= 
k=1 n=k+l 

= .J!Lr x- s (q)} + ..hL i: sk{sk-1 - Yk- sk}+ 
1- ~- 1 -13 k=l 

which accounts for the term with h in the right-hand side of (ii). 0 
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corollary 5.13 

If for all q € W: 

5.21 J p(y,q)V(dy) 
. I {y s(q)-ySs(TY(q))} 

1 

then, for x s s(q), we have v(x,q) = w(x,q) end therefore the Bayesien 

equivalent rule (defined in 5.18 (c)) is optimal. 

Example 5.3 

Wedefine (cf. 5.18 (a)): 

Si nee 

for all e € e, we have 

s . s s(q) s smax for all q € w . llll.n 

p(ylelv(dy) 

Note that s(q) = min{s(q),M} for q € w. Further note that 

5.22 {min(s{~_ 1 ) ,M} -min(s{Qn) ,M) -Yn}+ S {s(Qn_1J - s(Qn) - Yn}+. 

Be nee 

Eq[{s(Qri-1) -s(Qn) - yn}+] s Eq[ J p(y,Qn-l)V(dy)] 

J p(y,q)V(dy) 

[O,ó] 

[O,ó] 

Therefore we have by th. 5.12 

v{x,q)- w(x,q) sf 1 ~ 13 h+kH(x-s(q)l++ 1 ~B J p(y,q)v(dy)}. 

[O,ö] 

Bence, if x s s(q) end I p(yle)v(dy) ... O for all e € e, then the Bayes­
[O,ö] 

ien equivalent rule is optimal. 
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Rema:rks. 

(i) The statement of corollary 5.13 is not new. In [Veinott (1965), sec­

tien 6] a similar condition is considered for a multi-product inven­

tory model with dependent demand, to prove an analogous statement. 

In [Rieder (1972)] Veinott's result has been translated to the Bayes­

ian inventory model. Bowever, the inequality of th. 5.12 (ii) seems 

to be new. 

(ii) For the problem with known parameter, i.e. when q E W is degenerate 

at e e 8, all posterior distributions are degenerata at e and there­

fore 5.21 holds, So we actually proved the optimality of the rule: 

"order up to level s(9) at each stage" for this situation. 

(iii) Condition for lemma 5.13 can be weakened by requiring 5.21 only for 

all possible posterio:r distributions of a given q e w. 

(iv) In [van Bee (1976)] a different proof of th. 5.12 is given. 

we conclude this sectien with an extansive study of the behaviour of the 

Bayesian equivalent rule (5.18 (c)) for the inventory model with exponen­

tially distributed demand, where we assume the parameter of the demand dis­

tribution to have a gamma prior distribution. We shall compute the bound 

given in th. 5.12 (ii). 

We also consider an upperbound for the relative error if we use the Bayes­

ian equivalent rule (5.18 (c)) insteadof an optimal rule. This PeZative 

e~op is defined by: 

5.23 {v(O,ql- v(O,ql}/v(O,ql • 

Remember that model SB satisfies all assumptions of example 5.2, and note 

that we are minimizing now. 

Bence (cf. example 5.2) we have 

1 I ~ w(O,q) ::: r-::-1" q(d9)e(9) 

where 

5.24 e(9) :=min [ka+B I {h(a-y)+ +p(a-y)- -k(a-y)}p(yle)v{dy)]. 
a~A 

Note that v(O,q) ~ w(O,q). Therefore we have the following upper bound for 

5.23 (cf. th. 5.12 (ii)): 
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00 

(l !f!, h+k) L f3l):: ({s(Q l) - Y - S(Qn)}+J 
n=1 q n- n 

5.25 b(S,k,h,p,q) := ----------~~---------------------------1: s I q(d6)ê(6) 

We first give, in lemma 5.14, conditions guaranteeing that lim s(Q ) =s(Z) 
zr+oo n 

~q-a.s. Onder these conditions we have, by 5,22 

5.26 lim à(B,k,O,p,q) = 0 
f!,tl 

since 
00 

Hm c1-s> l: sl):: [{s(Q 1> -Y -s·<Q >l+J 
13+1 n=1 q n- n n 

Hence the relative error (cf. 5.23) tends to zero in this case. 

Lemma 5.14 

Let for alle E a, the function a+ I p(y,6)V(dy) be continuous and 
[O,a] 

(strictly) increasing in a neighbourhood (s(6) -6,s{6) +Ö) for ö > 0 (cf. 

5.18 (a). Then 

lim s(Q ) = s(Z) I~ -a.s. 
n+oo n q 

for all q E w , 

Proof. 

Define for q E wand a E m, F (a) := I p(y,q)V{dy). Note that 
q [O,a] 

Fq{a) =I Fe{a)q{d6). Since a+ Fe(a) is continuous for alleE a the func-

tion a + F {a) is continuous for all q E w. 
q 

According to th. 2.4 we have for each function 6 + F6 (a) a set ~a EH such 

that P [n ] = 1 and 
q a 

(*) 

Let R be thesetof rational numbers inR. Define ~* := n ~ • Note that a 
1 B 1 ~ aER 

P [~*] = 1. Let ~ := (p-~ h) (p + h)- • Then Fz{s(Z)) = t. 
q * .., 

Fix W E ~ • 
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F ·x a a ~ R such that a 1 < ;(Z(w)) < a 2 and a2 - a 1 < ö. Then 
l. 1, 2 

Hence 

Therefore we have,for n sufficiently large 

Hence 
lim ;(~ (w)) s (Z {w)) 

n-+<» 

Example 5.4 ~nentiaZ demand~ gamma prior distribution 

In this example we consider the inventory control model (model SA), with 

D 

an exponential demand distribution and a gamma distribution for the unkno~ 

parameter of the demand distribution. 

Let p(y,9) := 9e-9Y, Y := 6 := [O,~) and let q = r(À,N), where 

r {À ,N) (B) 

for a Borel subset B of JR. It is easy to verify that 

Let 

5.27 

NÀN 
p (y ,q) ~ _...-;.;~-:-

(À +y)N+1 
and 

a 

f p(y,q)dy = 1 -

0 

-1 -1 c := (p+h){h+ {1-13)6 k} • 

À N 
(À + a~ • 

Then the minimizer a* of 5.15 is a* = À (cl/N- 1). So we have hare 

5.28 s(q) = À(Cl/N_1) for q = r(À,N) • 

Further we consider the posterior distribution T (q). It is straightfor­
Y 

ward to verify that 

5.29 T {q) = r (À + y ,N + 1) 
y 

if q .. r(À,N) • 

Therefore the posterior distribution aftar n observations is 

n 
5.30 Qn = r(À + I yi' N+n) • 

i=l 
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Hence, using 5.28 we find; 

1 1 1 

- - "' {À+ ~ yi}{~N+n _ ~N+n+l} _ yn+lcN+n+l • 5.31 s(Qn)-s(Qn+l)-Yn+l l.. .... .... 
1=1 

FOr a fixed e € e we compute, for positive constants a and b: 

n ~b 
{ \ }+ an 1 e 5.32 Ee[ a l.. yi + b - yn+l ] = T + b - e + _;:;._ __ 

i=l e (a+ l)n 

n 
cremember bere that, given e, Y1 1s exponentially distributed and I yi 

1=1 is rce,n)-distributed). 

Now we integrate both terms in 5. 32 over e, wi th respect to the r (À ,N) .:.dis­

tribution; 

5.33 
n + À À 1 1 ÀN 

E [{a \ Y +b Y } ] =an --+b---+ -- • 
q i~ 1 i - n+1 N-1 N-1 (a+l)n N- 1 {À+b)N-1 

Finally we substitute fora and b the appropriate values (cf, 5.31). Hence 

5.34 Eq[{s(Qn) - s(Qn+1) - Yn+l}+] 

1 1 2(n + N) - 1 
À r N+n (n+N)cN+n+l +~(n+N)(n-f.N+1)}. = ~ (n + N- 1) c - ... 

According to 5.22 we have 

5.35 Eq[{s(Qnl -s(Qn+1> -Yn+l}+J~Ei{s(2nl -s(Qn+l) -Yn+1}+] 

with equality if M = ~ (Mis the capacity cf, 5.13), 

Note that the minimum in 5.24 is nonincreasing if M tends to infinity. 

Hence ~(~ 1k,h,p,q) is nondecreasing if M tends to infinity. Therefore we 

shall assume M = ~. 

It is easy to verify that: 

5.36 

Integration with respect to q = f(À,N) yields: 

Finally ~(~,k,h,p,q) is determined by 5.34 and 5,36. 

In the table below we display ~(~,k,h,p,r(l,N)) for various parameter va­

lues. We also display the upperbound of th. 5.12 (11): 
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5.38 B(!3,k,h,p,q):={ 1 ~ah+k}~ S~[{s(Q 
1
)-Y -s(Q)}+], 

~ n=1 q n- n n 

q = r (1 ,N) • 

Remamber that M = ~ and À = 1 in the tabla. 

a k h p N c B (13 ,k,h,p,I'(l,N)) A (13 ,k,h,p, r (l,N}) in% 

0.90 10 0 2 5 1.8 2.22 8 

0.90 10 0 2 15 1.8 0.33 4 

0.90 10 0 10 5 9 10.39 34 

0.90 10 2 10 5 3.8 15.89 46 

0.90 10 2 10 15 3.8 2.21 22 

0.95 10 0 1 5 1.9 3.79 7 

0.95 10 2 1 5 1.2 4.61 9 

0.95 10 2 5 15 2.8 4.76 26 

0.95 100 2 10 5 1.6 40.29 8 

0.95 100 2 10 15 1.6 6.56 4 

0.99 10 0 1 5 9.9 31.85 12 

0.99 10 0 10 15 99.0 12.54 16 

0.99 10 2 5 15 3.3 60.28 67 

0.99 100 1 2 5 1.4 95,22 4 

0.99 100 1 5 5 2.9 274.41 10 

0.999 10 0 1 5 99.9 130.83 5 

0.999 10 0 2 5 199.8 157.38 6 

0.999 10 0 5 5 499.5 196.55 7 
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In this chapter we qive several approXimations to the value function of the 

Bayesian control model (cf. 2.12). Special attention is paid to the situa­

tion where there is only one unknown parameter, i.e. where ai is a single­

ton for all indices ie I except one. In section 6.1 we consider upper and 

lower bounds on the value function and their use in successive approxima-' 

tione. These approximations are computable when x, Y, A and a are finite. 

In chapter 7 we shall consider alqorithms based on these approximations. 

In section 6.1 we also give a lower bound on the Bayesian discounted total 

return when a certain Bayeeian equivalent rule is used and we also consider 

another easy-to-handle Bayesian Markov policy. Since in practice the set a 

is seldom finite, we study the consequences of approximating of a by a fi­

nite subset in section 6.2. Throughout this chapter we assume that r is 

bounded and I finite. 

The bounds we consider require the knowledge of the value function of the 

dynamic program wi th known parameter value e for all e € a and of the ex­

pected discounted total return under saveral stationary strateqies, also 

for all 6 E a. First we introduce some notations: 

6.1 (i) Fis thesetof Bayesian Markov policies (cf. 3.10). 

(ii) Fis thesetof Markov policies (cf. 3.9 and note that F c F). 
We identify each Bayesian Markov policy with the Bayesian stationary stra­

tegy which is determined by it (hence we write v(x,q,f), f e F). An impor­

tant role is played by a subset F of F satisfying: 

6.2 inf sup {v(x,6) - v(x,6,f)} = 0 for alle € a • 
fEF X€X 

We shall assume that such a set F is given and that v(x,6,f) is known for 

all x € x, e € a and f € F. Note that, if there exists for all e € e a 

fe e F that is optima! for all x e x for the dynamic program with known pa­

rameter value e, then the set {f6, e e e} satisfies 6.2. 

For each f e F we define the (non-linear) operator Lf on the set of bounded 

measurable functions b on X x W as fellows: 
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6.3 {i) 

(ii) 

(L~) (x,q) == ! 
ie:I 

+ 8 J P{dx'lx,f(x,q),y)b(x',Ti,y(q))l • 

Note that sup L~ = Ub for each bounded measurable function b on X x W (cf. 
f€' -

the remark following 3.10). we further note that, for f e F 

lim (L~) (x,q) = v (x,q,f) • 
n;+oo 

Although this is easily proved directly, it is an immediate consequence.of 

tb. 3.14 (iii) if we consider the model with D{x,q) = {f(x,q)}, x,q € xxw. 

For f e F and 9 € e 6.3 (i) reduces to 

(L~)(x,6)= Î 1K (x,f(x)) J V(dy)pi{yjSi){r(x,f{x),y) + 
i€l i 

+13 J P(dx'lx,f{x),y)b(x',B)} 

which is the usual return operator for the discounted dynamic program with 

known transition law (cf. [Blackwell (1965)]). 

on x x w we define two functions: 

6.4 (i) w(x,q) := J q(dS)v(x,B) • 

(ii) ll.(x,q) :=SUf J q(dS)v(x,S,f) • 
f€F 

Note that !1. depends on the choice of the s:ubset F of F. Further we define 

for n € E*, 9 € 9 and f e F: 

6. 5 qln ce ,f) := sup {V {x,S) - (L~) (x, 9)} 
x 

cp~(B,f) := sup {v(x,B) - v(x,B,f)} • 
x 

Note that, if X is finite, lim q~ (8,f) 
n-+«> n 

q~..,(B,f) since 

n lim (Lfv) (x,B) = v(x,S,f) • 
n-+«> 



'l'heorem 6. 1 

For x E: X, q E: W, 1r E: n and n E: i1' we have : 

(i) 

(ii) 

(iii) 

Proof. 

t (x,q) S v(x,q) S w(x,q). 

w(x,q) - R. (x,q) ::: __!_ inf f q(d6)!pN(6 ,f). 
1 -aN fE:F 

E'lf [~ inf J Q (d6)1PN(6,f)] 
x,q 1- a fE:F n 

is nonincreasing in n and if 

p1T [ n n {t(i,n) < m}J 
x,q iE:I nE::N* 

then it tends to zero. 

In th. 3.16 we proved v(x,q)::: w(x,q). Further we have 

R.(x,q) = sup f q(d6)v(x,6,f) = sup v(x,q,f) S v(x,q) • 
fE:F fE:f 

* We preeeed with assertion (i!). NOte that for NE: N 

"' 
(*) v (x,6) - v(x,e ,f) = Z: { (L~v) (x,6) - (L~k+l)Nv) (x,6)}, 

k=O 
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n since lim (Lfv) (x,6) = v(x,6,f). For bounded measurable functions band c 
n-+<o 

on X x 8 we find in a familiar way (cf. [Denardo (1967), th. 1]) 

sup { (L~) (x,6) - (Lfc) (x,6)} S a sup {b(x,6) - c(x,6)} 
x x 

and therefore 

sup { (L~v) (x,6) - (L~k+l)Nv) (x,6)} S akNsup {v(x,9) - (L~v) (x,6)}. 
x x 

consequently, using (*),we find: 

(**) 
1 v(x,9) - v(x,9,f) s ~ IPN(6,f) 

1- f3 

Note that, for N = "' (**) also holds. 
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By 6.4 we have 

w(x,q) - t(x,q) ~ in! I q(d9){v(x,9) - v(x,S,f)} 
feF 

and so, using (**) we find the desired result. 

We proceed with assertien (iii). 

= inf 
feF 

1T 
Q 

1 
(d9)q>N(6,f), P -a.s. (cf. th. 2.1) • n- x,q 

Hence the sequence {inf J Q (d9)cpN(6,f) n e :N} is a super martingale,· 
feF n 

which establishes the first part of (iii) and the existence of 

lim in! J Qn (d9)cpN(6 ,f) • 
n+<o fEF 

Assume thàt t (i,n) < co for all n e :N* and i e: I, JI?'IT -a.s. x,q 
From (**) it follows that cpN(S,f) ~ 0 and from corollary 2.5 that 

lim J Qn (d6)q>N(e ,f) = q>N(Z,f), 11/'" -a.s. n- x,q 

Hence we haveP'IT -a.s.: x,q 

O~lim in! f Qn(d9)cpN(6,f) ~in! lim J Qn(d6)cpN(6,f) •in! IJlN(Z,f). 
n~ fe:F fe:F n~ fEF 

Note that: 

v(x,a) ~ (Lfv) (x,e) ~ (L~v) (x,S) ~ v(x,6,f) I x e: x, a e: a and f e: F. 

Hence: 

O:>in! q>N(6,f):;; inf sup {v(x,6) - v(x,S,f)} = 0 (cf. 6.2) • 
fe:F fe:F x 

Therefore we have 

Since (9 4 f) ~ cpN(6,f) is bounded, the dominated convergence theorem yields 

the desired result. 0 
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Remark. 

The bound given in th. 6.1 (ii) has significanee only, if either ~N(a,f) it~ 

self, or an approximation of it, is known for a ff. B and f € F. 
If v(x,a) is computed for all x € x and e € B, and if optimal Markov poli­

cies fa € F, e € B are determined, then it requires more work to compute 

v(x,S',fel than to compute (Lf v) (x,8') for x € x, e,e• € 8. However, 
e 

1 sup {v(x,é) -v(x,6,f)} ~ 1 _
13 

sup {v(x,6)- (Lfv) (x,S)} 
x x 

(cf. (**)in the proof of th. 6.1). So for more work we get a better bound. 

In th. 6.2 we consider successive approximations of the value function. 

Theerem 6.2 

For x € x, q € w 

(i) (Un.fl.) (x,q) ~ v (x,q) ~ (~w) (x,q) • 

(ii) (~w) (x,q) is nonincreasing and (~JI.) (x,q) is nondecreasing in n. 

Proof. 

Part (i) is a direct consequence of th. 6.1 (i) since U is monotone. To 

prove part (ii) it suffices to show uw S w and u.fl. ~ Jl.. Using 

and 6.4 (i) we find 

(UW) (x,q) == sup I q(d8)) lK. (x,a} I v(dylp1 (yle
1
){r(x,a,y} + 

a€D(x} ~€I ~ 

+ t3 I P(dx' lx,a,y)v(x' ,e)} :s: J q(da)v(x,a} =w(x,q} 

where the inequality fellows from exchanging sup and J q(da}, and the op­
a€D(x) 

timality equation of the dynamic program with known parameter value, i.e. 

v(x,e) = (Uv} (x,e). Using 

v(x' ,T1 ,y(q) ,f) "' f Ti,y(q) (dS)v(x' ,e,f) 

we find 
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(UR.) (x ,q) sup 
aeD(x) io::I 

+SJ P(dx'lx,a,y)sup v(x',T
1 

(q),fJ} ~ 
feF ,y 

<!: SUt;! 

feF 
sup f q(à6} L 1K (x,a) J v(dy)p1 (yl6 1 ){r(x,a,y) + 

aeD(x) i<::I i 

+SJ P(dx'lx,a,y)v(x',e,f)} <:: su€ v(x,q,f) 
fo::F 

R. (x,q) • 0 

In th. 6.3 we consider for each e > 0 a Bayesian stationary strategy, which 

is easy to handle, anà which is (nearly) as gooà as all stationary strate­

qies in F. Moreover the strategy processas new information concerning the 

unknown parameter in the following sence. If, unàer the strategy f, 
f * t (i,n) < =, P -a.s. for all i € I anà n <:: :N , then we have x,q 

lim supEf [v(X ,Q ) - v(Xn,o ,f) J ~ 
1 

~ o • n+oo x,q n n -n ~ 

Theorem 6.3 

Fix e > 0 anà let f be a Bayesian Markov policy such that for (x,q) e x x W 

Th en 

(LfR.) {x,q) <:: (UR.) (x,q} - e • 

v(x,q,f) <:: R.(x,q) - ___ e ___ 
1 - 13 

anà ifPf [ n n *{t{i,n) < w}] = 1, then 
x,q io::I ne:N 

limsupEf [{v(X ,Q ) - v(X ,Q ,f) }] ~ 
1 

: 13 • 
n+w x,q n n n n 

Proof. 

Let 1 be the function on X x W which is iàentically equal to one. By the 

proof of th. 6.2 {ii): 

Lf~ <:: Ut - el "' R. - el • 

1 -lln 
Assume: L~R. 2: R. - e: ('f""='""S) 1. Then: 
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Hence, if we let n tend to infinity, we get: 

v(x,q,f) = lim (L~t) (x,q} ~ t(x,q) - l ~ e • 
n--

This proves the first statement. 

The second statement is a consequence of th. 6.1 (iii), since 

v(Xn,Qn} - v(xn,Qn,f} ~ w(Xn,Qn) - t(Xn,Qn) + 

+ 1 =a~ !n! I Qn(de)<p""(S,f} + 1 ~a 
fEF 

FOr the Bayesian equivalent rule considered in section 4.1 (cf. 4.3a) we 

give in th. 6.4 a lower bound on its Bayesian discounted total return. 

Hence we consider in th. 6.4 a Bayesian Markov policy such that 

+eI P(dx'!x,a,y}v(x',S)} 

is maximized within an e:-bound. 

The strateqy is "adaptive" in the same sence as the strateqy in th. 6.3. 

Theorem 6.4 

D 

Let e: > 0 and let f be a Bayesian Markov policy such that, for (x,q) € X x W: 

Then f is a Bayesian equivalent rule as considered above, and 

v(x,q,f) ~ w(x,ql - ~~n! J q(de)q~ 1 ce,f) + e:} • 
fEF 

IfPf [ n n {T(i,n) < oo}] = 1, then 
x,q iEI ni!!B* 

limSUpEf [{V(X ,Q ) - V(X ,Q ,f) }] ~ l : a • 
n

400 
x,q n n n n ~ 

Proof. 

To verify that f is a Bayesian equivalent rule as considered above note that 
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+ 13 J P(dx'l x,a,y)v(x' ,e)} • 

We have lP f -a.s.: 
x,q 

(Lfw) (Xn,Qn) = r{Xn'~'An) + 13E!,iw(Xn+1 ,Qn+l) I xn,Qn] 

(cf. 3.1 (e) for the definition of r). Hence: 

And therefore, by the definition of f we have: 

Si nee 

we have: 

"" 
v(x,q,f) =w(x,q) +Ef [ I 13n{ (Lfw) (X ,Q ) - w(X ,Q j}] ~ 

x,q n=O n n n n 

~ w(x,q) +Ef [ I an{ (UW) (X ,Q ) - w(X ,Q ) }] --:---"ll""l e • 
x,q n=O n n n n 1 - P 

(UW) (x,q) sup J (Lfv) (x,6)q(d6), (x,q) € x x w , 
fE:'r 

(UW} (x,q) -w(x,q) ~!Ui? I q(dS){ (L_v) (x,G) -v(x,S)} ~ 
f€F f 

~ -~n! J q(d6)~ 1 (S,f) • 
f€F 

And therefore: 

Ef [(UW)(X ,o) -w(X ,Q )] ~ -iEf [inf IQ (d6)~ 1 (6,f)] ~ x,q n -n n n x,q fE:F n 

combination of (*) and (**) yields the first statement. 

To prove the second statement assume that T (i,n) < ""• Pf -a.s. Note that, 
x,q 

by the first statement: 

v(X ,o ) - v(X ,Q ,f) s w(X ,Q ) - v(X ,Q ,f) s 
n"'n nn nn nn 

s 1: 13 !n! J Qn(d6)<p1(6,f) + 1: a. 
fE:F 

Bence the desired result follows from th. 6.1 (iii). 0 



Remark. 

Note that, by th. 6.1 (ii), 

w(x,q) - 1 ~ 0 !n! J q(d6)~ 1 (6,f) s ~(x,q) • 
P feF 
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Hence the lowerbound on v(x,q,f) in th. 6.4 is not better than the lower­

bound we found for the strategy in th, 6.3. 

In practise, when we are dealing with finite sets x, Y and A we often have 

to approximate the value function v. Th. 6.2 gives us the opportunity to 

do this as accurately as we like. However it.is impossible to compute, for 

example, (JNw) (x,q) for all (x,q) E X x W, since W is not finite. Neverthe-
N less it is possible to compute (U w) (x,q) for a fixed q E w, since the num-

ber of possible posterior distributions after N transitions is finite, 

Hence we have to determine a ho~son N E E such that 

I cJNw> <x,q> - cJN,~~, > <x,q> I s e: 

where e: > 0 is the maximal allowed error in the approximation for v(x,q). 

Then we compute ~{(JNw) (x,q) + {JNt) (x,q)}, which is an acceptable approxi­

mation for v(x,q) (cf. th. 6.2). Todetermine N we have to compute first 

(Unw) (x,q) - (~JI,) (x,q) for n = n
0

,n
0 

+ 1 1 ,,, ,N, where n0 is a lowerbound 

on the horizon. In general the horizon determination in this way is very 

time consuming compared to the backward induction to compute 

~JN{~(w+t)}) {x,q), another acceptable approximation of v{x,q). To see this, 

we note that in general the sets Wn {q) and Wm (q) of possible posterior dis­

tributions of q after n and m transitions, respectively, are disjoint if 

m ~ n (cf. the ramarks at the end of this section). 

Hence, to compute <hl (x,q) for some bounded measurable function b on X x w, 
we first have to compute (Ub) (x,q) for x.:: x and all q E W 1 Cq) and after­n-
wards (Ub) {x,q) for x.:: X and q E wn_

2
(q) etc. So we have computed, toge-

ther with (~) (x,q), thesetof values 

n-1 
u 

m=1 
{ etfbl (x,q) I x E x, q E W (q)} , 

n-m 

_..n+l However, to compute (IJ b) (x,q), we need the values: 
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n 
u { (tflb) (x,q) I x E x, q E wn+l-m (q)} 

m=l 

and since W +l (q) n W (q) = ~ in qeneral, we cannot use the already 
n -m n-m n+l 

computed values for the computation of(~) (x,q), todetermine (U b)(x,q), 

{We return to this matter in the next chapter.) 

It will be clear that it would be nice to have a simpler methad to determine 

a suitable horizon. Indeed such a procedure exists when we are dealinq with 

the simple parameter structure that we introduce below. 

Aeeumption on the paramete~ etructure 

6.6 Let I := {1,2, ••• ,t} and let 6 1 be a singleton for i= 2, ••• ,t. Fur-

ther let {L1,L2} be a measurable partition of X and let K1 := L1 x A. 

The models 4 and 5, considered in chapter 5, satisfy 6.6 in a trivial way: 

there we have L2 = ~. In chapter 7 we consider other roodels satisfyinq 6,6 

(cf. examples 7.4 and 7.5). Intherest of this section we assume that 6.6 

holds. 

Note that for states x e L2 the transition law is completely known and for 

x E L1 it is incompletely known but the chosen action does not influence 

the kind of information we qet after the transition. It is easy to verify 

that q = ® q
1 

for all q € w, in this situation, since qi({81}) = 1 for 

alli<!:2,i€I 

Consider the stopping time a 

6.7 a := inf{n > 0 I Xn ~ L1} • 

We shall use the optimal reward operator u
0 

(cf. section 3.2). Let x E L2 
and let b be a bounded measurable function on X x w. Recall: 

Next we discuss a nice property of this operator. 

If x0 € L2then we have (Xn,An) E u Ki for n < o, Hence the expectation 
2::>i:St 

of the first term does not depend on q E W (however, it does depend on the 

known parameter values e2 , ••• ,et)' Further we note that 
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6.8 1:(1,1)=o+lifX
0

eL
2 

(cf. 2.17 for the definition of •>. Hence, if x0 E L2 then Q
0 

= Q0 = q, and 

therefore we may write: 

o-1 
6.9 (U

0
b) (x,q) =sup E:[ L Snr(Xn,An,Yn+l) + 13°b(X

0
,q)], x E L2 1To::n

0 
n=O 

since the expectation does not depend on q. 

The computation of (U0b~(x,q) for x E L2 is an ordinary dynamic programming 

problem which is feasible if x, Y and A are finite (this will be clarified 

in chapter 7). 

In th. 6.5 we assume that the function b on X x W is an approximat1on of v, 

such that 

lv(x,q) - b(x,qll ~ e(q), x E: x, q € w. 

First we introduce some notat1ons: 

6.10 (i) For q E Wand y1, ••• ,yn E Y wedefine the probability 

x (yl, ... ,y ) on e by q n 

if the denominator is positive; 

:=q(B) otherwise (B e T) • 

(1i) E(q,e:,n) :• f q{dS) {J ... I V (dy1l ... v (dynl 

n 
• j~l Pl (Yjlal)e:(xq<Yt•···•Ynll} 

where e: is a real-valued, bounded measurable function on W. 

It is easy to verify that, if L2 = ~ then E(q,e,n) =E [e(Q l] since 
q n 

1:(1,n) = n for all n eN*, in this situation (note that bere the expecta-

tion is independent of the starting state and the strategy). 

6.11 (1) eo(q) := 1:! in! I q(dS}sup {v(x,a) - v(x,S,f) }; 
fEF XELl 

b0 (x,ql := ~{w (x,q) + R. (x,q)} • 
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(ii) Ek(q) := ~ ~ inf J q(d9)~k(9,f); 
1-13 fE:F 

'I'heorem 6.5 

(i) Let b be a bounded measurable function on X x W and let E be a bounded 

nonnegative measurable function on W such that for x e: L1 and q e: W: 

6.12 lv(x,q)- b(x,q)l S E(q) • 

6.13 

* 'I'hen, for x e: x, q e: W, n e: ~ 

lv(x,q) - (U:>) (x,q) I s 13nE(q,e,n) 

n-1 
S 13 E(q,E,n-1) 

(ii) In particular the functions bk and Ek (cf. 6.11) for k e: i satisfy 

6.12 and E(q,Ek,n) is nonincreasing in n with lim E(q,Ek,n) = 0, for 

q E: w. n-+<» 

Proef. 

Part (i). Define the operator u
0 

on the bounded measurable functions on 

x x w by: 

w cr := sup E [13 f(X ,o )] 
n x,q cr "'C1 we 

0 

Note that this is an optimal reward operator of the kind we studied in sec­

* tion 3.2, for the model with r identically zero. Wedefine E (x,q) :=E(q), 

x e: x, q e: w. Using corollary 3.13 and th. 3.14 (ii), we find: 

where cr 1 

Hence 

V= ~V u~ v s u (b + e*> s (U b) + (U~ e*>, 
vn On On vn 

:= cr and cr : = cr o cr 
n-1 (cf. 3.14 and 3.23). And similarly 

n 

V= U V ~ u (b-e*> ~.(U b) - (Ucr e*) 
cr cr cr n n n n 

lv(x,q) - (~) (x,q) I s (U
0 

e*> (x,q), x e: x, q e: W • 
n 

Next we consider (U
0 

e*> (x,q) in more detail. 
n 
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Note that • (1,1) = a+ 1 if x0 e: L2 and t' (1,2) = cr + 1 1f x0 " L1 (remember 

that T(1,1l = 1 if x0 e L1). By induction it is easy to verify that 

on= inf{k > crn-l I ~ e L 1}, n = 2,3, •••• 

* We show, usinq induction, that for n e E : 

For n = 1 the statement is true, so assume it holds for n (n ~ 2). If 

x0 e: L2 we have 

T(1,n+1) = inf{k > t(l,n) I ~-1.e L 1} = 

• inf{k > on+ 1 I ~-1 e: L1} = 1 + inf{k >on I Xk e: L1} =a n+1 + 1. 

* Similarly if x
0 

e: L
1

• Remember that t (1 ,n} ~ n for n e :t1 • Hence 

cr - * ~ n k ~ 
(U

0 
e ) (x,q) • sup Ex [a e:(Q0 }] s:sup a-Ex [e:(Qt'( 1 k)-1lJ 

n ne:n ,q n ne:n ,q ' 
0 0 

with k • n if x e: L
2 

and k = n + 1 if x e: L
1

• 

NOte that 2n = e Qi and Q1 ({ei}) = 1 for i ~ 2. According to 2.26 we 
ie:I ,n ,n 

have for BeT P~ -a.s. (cf. the proof of th. 2 .1): 
x,q 

Qn(B) = J 1i p1 (YT(l t)le1)q(d6) 
B {t>OIT(1,t)s:n} ' 

•{ J n Pt (Y•<l t> le1)q(d6J}-1 • 
e {t>OI•C1,t)sn} ' 

Hence for k = 2,3, ••• we haveP~ -a.s.: x,q 

Therefore 
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By lemma 2.2 we find: 

This provespart (!).We praeeed with part (i!). 

It is easy to verify that 6.12 holds for the functions bk and ek' k € E. 

Hence 6.13 holds by part (i). As already noted we have 

for the model wi th L2 = 111 (note that the expectation is independent of the 

startinq state x and the strateqy 1r, here). For this model the assumption 

of th. 6.3 (iiil is true, which implies that E(q,E,n) converges monotoni-
-* cally to zero, as n tends to infinity, in case k € ::N • For k • 0 the proof 

is analoqous. 0 

In chapter 7 we discuss alqorithms in which the horizon determination is 

basedon th. 6.5 (ii). It turns out that computation of E(q,e,n) is rather 

easy compared with the backward induction. 

Corollary 6. 6 

If L2 = - (and 6.6 holds) we have 

(bk and ek are defined in 6.11). 

This statement is already proved in the proof th. 6.5 (ii). 

For the functions ek, k € Ë defined in 6.11, 6.10 (ii) reduces to: 

6.14 E(q,&0 ,nJ =~I ... I v(dy1) ••• v(dy
0

l 

·in! J q(d6) ~ p
1

(yjla 1)sup {v(x,e1J- v(x,a1 ,fJ} 
f€F j=l X€Ll 

-* and for k € :N : 

E(q,ek,nl = ~ 1 ~ak J ... J v(dy1) ••• v(dyn) 

•in! J q(d6) ~ p 1 (yjle 1 J~k<e 1 ,fl • 
f€F j=l 
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To verify this, note that 

J q(d6) '~1 pl (yjl61)cpk(6,f) 

J q(d6) ~ p 1 Cy.l6> 
j=l J 

if the denominator is positive. 

FUrther note that, for all q € W: 

* for k € :N 

We conclude this section with some r~;rks. The first four remarks comple­

ment the results we derived in this section. The last three remarks concern 

other approaches, not treated here. 

Remarks. 

(i) In most situations the sets of possible posterior distributions at 

successive stages are disjoint. However the following example shows 

that this is not always the case. 

Let 6.6 hold and let L2 = ~. FUrther let 91 := {t,l-tl, 0 < t < 1:1 

and let Y := {0,1} and p1 Cyl6 1) := 6r(1-6 1) 1-Y, y € Y, 61 € 9
1

• It 

is easy to verify that if q({t}) := w, then the posterior distribu­

tion after n transitions is: 

n 

{1 + 

(n-2 L Y.) 
t . 1 .~(1 (--) ~= 

1 - t 

n 
\' n - m Hence if n > m and L Yi = ---2-- then Qn = ~· 

i=m+l 
(ii) We have already suggested a choice for the set F (see 6.2). Now we 

consider: 

F := {f € F I for some 6 € 9: v(x,6} = v(x,6,f} for all x € x} • 

At first sight one may expect that the best Markov policy for the 

Bayes criterion can be found in F. However for an example we show 

that 

sup v(x,q,f} < sup v(x,q,f} 
f€F f€F 
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Co~mterexample 

.~.~.~ 
1~ ~~ 1~· 

3 3 3 

X:= {0,1,2,3,4}, 0(0) :=A:= Ü,2,3}, D(X) := {1}, X f. 0. 
1 9 1 8 := {ÏÖ 1 lO}. Consider the transition probability P(x' x,a) from 

X x A to X: 

PC1I0,1) = 1-P<Jio,l> = &, PC3Io,3) = 1-P<1I0,3l = e 

P(2I0,2) = P(411,1) = P(4l2,1) = P(4l3,1) = P(414,1) := 1. 

Only in the statea 1, 2 and 3 a reward is obtained: 110, 70 and 10 

respectively. It is easy to fit this example into our framework. In 

case of known parameter values actions 1 or 3 are optimal in state 

0 but action 2 is never optimal. We identify the three possible Mar­

kov policies with the actions chosen in state 0. Hence F = {1,3}. 

Let q E W be SUCh that q({8}) = ~ for 8 E 8 and lèt a = ~. Then 

v(O,q,2} = 35 and v(O,q,1) = v(O,q,3) = 30 • 

(i11) If there exists a f* e F such that v(x,e,f*) = v(x,8} for all x e x, 

e e 9 then v(x,q,f*) =I q(d8)v(x,8) = w(x,q), for x eX and q e W 

* and therefore f is optimal. 

(iv) If b is a bo~mded measurable f~mction on X x W such that 

b(x,q) = I b(xl8)q(d8) for all x e X, q e W then 

(n) (xlq) ::; I q(d8) en> (x,e) I n e E* • 

To prove this note that using arquments of the proof of th. 6.2 we 

find: (Ub) (x,q) ::; I q(d8) (Ub) (x,6). Hence, by putting 

b' (x1ql := I q(d6) (Ub) (x,6) and repeating the argument, we have 

(U
2b) (x,q) s (Ub').(x,q) s J q(d8) cu2b} (x18l 1 

since (Ub'l(x,8) = (U
2b) Cx18). The statement follows by induction. 
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(V) In [Martin (1967)] the usual method of successive approximations is 

described for Bayesian control models with finite state and action 

spaces. Martin suggested the use of "scrap functions" b on X x w 
that are constant on W (in fact Martin specifies a function b* on X 

(*) 

* and he sets b (x,q) := b (x) for q E: W). Then he approximates v (x,.q) 

by ctfbl (x,q) • The difficulty of this metbod is the choice of the 

horizon such that lv(x,q) - ctfb> (x,q) I is sufficiently small. He 

gives the following bound for this difference (cf. [Martin (1967), 

th. 3.4.3]): 

where 

M := sup r(x,a,y), m := inf r(x,a,y), b :== * sup b (x) 

and x,a,y x,a,y x 

.!:. := inf b* (x) . 
x 

To verify this, note: 

n n m _..n 
(U 0) (x,q) + $ i="ä!.: (V v) (x,q) S (tfO) (x,n) + $n _M_ 

... 1 - (3 

and 

Since v = tfv we have 

It is obvious that this bound {*) is minimized by setting 
M+m P 

bm := bM :== 1:! 1'"'=13 • Then the bound beoomes 1:! T"=l3'(M -m) which is 

poor, in general. In our approach a better scrap function is sugges­

ted for the special parameter structure given in 6.6, and the con­

verganee of the posterior distributions is used to get a smaller 

horizon (see th. 6.5) (see also chapter 7 forsome examples). 

(vi) The use of upper and lower bounds is also suggested in [Satia and 

Lave (1973)]. The authors consider bounds of the form: 

ub(x,q) := sup sup V (X 1 6 1 f) ( 1 - !':) + _M __ e 

fE:F 6E:6 1 - (3 
q 

tb(x1ql sup inf V (X, 6 1 f) ( 1 - E) 
m 

:= +1'"'=13!': 
fE:F 6E:8 

q 
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where 8 c 8 such that P [Z e: 8 ] 2: 1 - e: for some fixed e: > 0 and m q q q 
and M are defined in the foregoing remark. 

They compute their bounds with very time-consuming algorithms for 

Markov games. It is clear that ub(x,q) 2: w(x,q) and ~b(x,q) $ ~(x,q), 

if Fis defined as in remark (ii). 

(vii) In [Waldmann (1976)] the space Wis approximated by a finite subset 

of W, i.e. a finite (measurable) partition of W is constructed, and 

in each set of this partition a representative is chosen. Then the 

transition law is modified such that the process only visits these 

representative points. Waldmann suggests to solve the modified dyna­

mic program with state space X x w, w~ere W is the set of repres~n­

tative points. The value function of this dynamic program is an ap­

proximation for the value function of the original model. The idea 

of approximating a dy.namic program with an uncountable state space 

by one with a finite statespace is also found in [Whitt (1976)]. 

Whitt also provides bounds on the approximation. 

(viii) In [Van Hee (1977)] a generalization of the well-known MacQueen ex­

trapolation is considered (see [MacQueen (1966)]) for the situation 

where 6.6 holds and L2 = ~. 

Although most of the material presented in sectien 6.2 is valid if x, Y 

and A are noncountable, the results have practical relevanee only if these 

sets are finite. However, we do not assume that 8 is finite, but rather we 

study the problems caused by 8 being infinite. 

First.we consider the determination of the upper and lower bounds given in 

th. 6.1. We reeall that, if x, Y and A are finite, the computation of 

(U~ (w + R.)) (x,q) for fixed q e: W and n e: :N* is rather simple if w (x' ,q') 

and R.(x',q') are known, for x' e: x, q' e: w. To approximate these upper and 

lower bound we approximate f v(x,6)q(d6) and J v(x,6,f)q(d6) using straight­

forward numerical integration methods. 

Afterwards we shall consider another approach, namely the "finitization" 

of the parameter set in advance. This means that we only consider prior 

distributions that are concentrated in finitely many points. It is easy to 

verify that in that situation, all posterior distributions are also concen­

trated on this finite subset of a. 
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For both cases we give bounds on the errors eaueed by the discretizations. 

We start witharesult on perturbations of the function e + v(x,e). In the 

proof of th, 6.7 we use the same technique as used in [Whitt (1976), th. 

6.3]. 

Theorem 6.7 

Let e,ë € a. Then: 

1 ~..u\ce,ê'> 
SUp {V (X t 9) - V (X 1 ê') } S ï=""'i3 Span (r) __ -.;;;.";;.;..;.~--
XE: X 1 - s + ~a~ce,ê'J 

where 

6.15 A(a,ë) := max J v(dyliPi<yla1J- P1 <Yiê'i>l 
iE: I 

and 

span(r) := sup r(x,a,y) - inf r(x,a,y) • 
x,a,y x,a,y 

Proof. 

First assume inf r(s,a,y) 0. For each E > 0 there is an action a € D (x) 

such that 
x,a,y 

•{r(x,a,y) +a J P(dx'lx,a,y)v(x',9)}. 

aence: 

v(x,e)-v(x,ë) sE+ I lK.<x,al Jv(dy)[{p1 <yle1 )-pi(ylei)}r(x,a,yl + 
i€I l. 

+SJ P(dx'lx,a,y){v(x',9)pi(ylei) -v{x',S)pi(ylê'i)}] s 

se+ I 1K (x,a)[J v(dy){pi(yla1J -pi<ylei)}+ sup r(x,a,y) + 
iE:I i x,a,y 

+a I v(dy)P(dx'lx,a,y){v(x' ,a) -v(x' ,e) }min{pi <YI ei) ,pi (ylê'i)} 

+eI \) (dy)P (dx'l x,a,y){pi <YI ei) -min(pi (y I ei) ,pi (ylê'i) l }v (x' ,e)]. 
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Remamber that J v(dy)p1 Cyl6i) = 1. Note that, for i~ I 

1-J v(dy)min{pi(yl61 ),pi(ylêi)} = f V(dy){p1 (yl6
1
)-pi(ylê'

1
>}+= 

-~ Jv(dyliPi<ylei) -pi(yl'è'i>l. 

Let A := A(e,ê) and M := sup r(x,a,y). Then 
x,a,y 

Note that 

Bence 

v(x,9) - v(x,S) s t + ~AM + 8 L lK (x,a) 
i€! i 

• Csup lv<x',6) -v(x•,ê)l{1-~ Jv(dyliP1 <yl91l -p1 Cy]ê'1>1l + 
x 

+~~ Jv(dy)]pi{y]91) -pi(y]ê'~>}J. 

sup lv<x' ,9) -v(x' ,ê') I s 
1 

: 
8 

M • 
x' 

v(x,9) -v(x,S) s e +~AM+ B sup ]v(x' ,9) -v(x' ,S) I + 
x' 

+ 8l:!A{1 ~· a- sup lv<x' ,9) - v(x' ,e) I} . 
x' 

And therefore, by rearranging terms and omitting e:, we find: 

- ~A I - I (*) sup {v(x,9) -v(x,9)} sï=i' M+l3(1-~ll)sup v(x,9) -v(x,9) • 
x x 

If m := inf r(x,a,y) F 0 then we first subtract m fróm r and afterwards 
x,a,y 

we add m again. This causes M to be replaced by span(r). Now we exchange 9 

and ê. Then we get 

sup lv(x,9) -v(x,'ël] s~ 1 ~ 13 span(r) +13(1-~A)sup lv(x,9)-v(x,Sll 
x x 

which proves the theorem. 0 

Remarks. 

(i) If { 9 -+pi (y I ei) ; y € y} is equicontinuous for all i ~ I then the func­

tion {6-+ v(x,9); x 10: X} is equicontinuous. This is an immediate con­

sequanee of th. 6.7. 
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(ii) If f e F then 

I "' I s spantt) ~ll (9 ,9) 
sup ·v(x,9,f) -v(x,9,f) 1 _ 8 l-S+l:!Sll(e,'3) • 

x 

'rhe proof is exactly the same if we assume D (x) { f (x)}, x € X. 

Assume 6.6 and identify al and 9. We shall split up the parameter space in­

toa measurable partition {B1 , ••• ,Bn} and we assume that in each set Bj a 

point of disal'etization b. is fixed. Further we suppose that, for j = 1, •• ,n 
J 

and x € x, v(x,bj) is known and also that for j = l, ••• ,n a Markov policy 

fj E F is known such that v(x,bj) = v(x,bj,f~) for all x E x. 
It is easy to verify that, if fk E F for k = l, ••• ,n, then 

6.16 (i) 

(ii) w(x,q) 
n 

s I v(x,bj)q(Bj) + span(r) 
j=l 1 - I§ 1 - 8 + ~:.t: 

where i := max sup A(9,bj) • 
1Sj$n 9EBj 

Hence we derived an upper and a lower bound for v{x,q) involving only the 

points of discretization. Statements similar to 6.16 are possible with the 

other bounds considered in th. 6.1. Note that the difference in the hounds 

of 6.16 is positive , even if q is degenerate. If we assume more struc~ 

ture we may derive better bounds. Let a be an interval on the real line: 

8 := [b0 ,bn] and let b0 < b1 < ••• < bn be the points of discretization. 

Further assume that a~ v(x,9,fj) is nondeaPeasing for x t: x, j = 1, ••• ,n 

(an example of this situation is considered in example 6.4). 'rhen it is 

straightforward to verify that, for (x,q) t: X x W: 

n n 
6.17 max L v(x,bj-l ,fk)q([bj-l ,bj)) Sv(x,q) :;; I v(x,bj)q([bj-l ,bj) >. 

1Sk:!>n j•l j=l 

EVen if q is degenerate, the upper and lower bound in 6.17 differ at least: 

min {v(x,bj) - v(x,b. 1>} 
1Sj:!>n J-

Now we shall consider the discretization in advance. We only treat the si­

tuation where I is a singleton. We omit the dependenee on i € I in the no­

tations. 
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'l'heorem 6.8 

Let I be a singleton, let b1, ••• ,bn ~ 8 be the points of discretization 

and let { a1 , ••• ,Bn} be a measurable partition of B such that bj ~ Bj, 

j = l, .•• ,n. Let q ~ Wand define <P ~ W such that <P ({bj}) = q(Bj), 

j = 1, ••• ,n. 'l'hen: 

where 

6.18 

sup I v(x,q) -V (x,tj)) I :S s.ya:: (al 
x 

8 := f 
j=l 

::; span ( r l 1:/l 
1-S 1-é+~Sl'l 

I q (d6 }8 (6 ,b.) 
B J 

j 

(à(6,bj} has been defined in 6.15; note that I is a singleton). 

/!roof. 

Fix E > 0. 'l'here is a~~ TI0 such thatfor a fixed X~ X 

v(x,q} - v{x,ql) :S e + v(x,q,~) - v(x,<P,u) • 

Hence 

Let 

v(x,q} -v(x,cp) s e + l 
k=O 

sk j~l{ I q(d6)E:,e[r(~,Ak,Yk+1)]­
Bi 

f(y1, ... ,yk+l) := J 110 (da0 ix> J P(dx1 1x,a0 ,y1 ) ... 

·I P(~lxk-1'~-l'yk) I 11k(daklx,aO,yl''''yk''1t)r('1t,~'yk+l) • 

It is easy to verify that f(y1 , ••• ,yk+l) is a version of 

Note that m :S f s M where M := sup r(x,a,y} and m := inf r(x,a,y). 

Then we have x,a,y x,a,y 



v(x,q) -v(x,cp) s e:+f ... Jv(dy1) ••• v(dyk+1) 

n J k+1 k+1 ·l: q(d6J{ 11 p(y. 1 6)- n p(y. bil}f(y1, ••• ,yk+1> s 
i=1 j=1 J j=1 J 

Bi 

I 
k+1 

q(d6J{ n p(y.le>-
j=1 J 

Bi . 

k+1 J J - n p{yj lbi)}-m=e:+~span(r) ••• V{dy1) ••• V{dyk+
1

) 
j=1 

k+1 
- . n p <Y j I bi> I 

J=1 

(Here we use 

J J 
k+1 

••• V{dy1) ••• V{dyk+1) n p(yjl6) = 1, for all 6 € 9) • 
j=1 
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* * * Likewise there is a 7T € ItJsuch that v(x,cp) -v(x,q) se: +v(x,cp,TT ) -v(x,q,TT ). 

Therefore we have: 

(*) s~p lv<x,q) -v(x,cp>l s~ span(r)kLf3k J ... J v(dy1) ••• v(dyk+1l 

n I k+1 k+1 • l: q(d6ll n p(y.le> - n p(yjlbill 
i=1 j=1 J j=1 

Bi 

Let 

Further let c 1 , ••• ,ck+1,d1, •• ,dk+1 be nonnegative numbers. The following 

inequality is immediate 

k+1 k+1 k+1 
(**) min{ n cj, n dj} ~ .n min{cj,dj} 

j=1 j=1 J=1 
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It is easy to verify that 

(Jk = 1 - J ... f \) (dy 1) ••• \) (dyk+l) 

Usinq (**) we find, after changing the order of integration 

Hence (*) becomes: 

J q(d6)[J v(dy)min{p(yle>, p(ylbi)}Jk+l 

Bi 

. n 

sup lv(x,q) -v(x,q~ll Sspan(r){ 1 :S- l 
x i=1 

n 
where F(6,b1 ) := J v(dy)min{p(yl6),p(ylb1)}, Note that l 

i=l and F(6,b
1

) = 1- ~A(6,b1 ). 
Hence we get the first inequality: 

n 
sup lvcx,q) -v(x,q~) I s span(rl 1: 
x 1=1 

= 1 

~s Since the function s -+ 1 _ 6 +~Ss is concave on [ 0,1] we find using Jensen' s 

inequality: 

which proves the secend inequality. D 

Remarks. 

(i) We can also use the proef of th, 6.8 to compare the original model 

with a sliqhtly different Bayesian control model. Let Ö := {1,2, ••• ,n} 

be the parameterspace of the modified modeland let p(•le) be a pro­

bability density with respect to the measure v, for 6 E: Ö. FUrther let 

q1({j}) := q(Bj), j = 1, ••• ,n be the prior distribution on Ö and V{X,q!) 

be the value of the modified model. All other specifications of the 

modified model are as in the oriqinal model. Then the statement of 

th. 6.8 remains valid with v(x,q~) replaced by v(x,q1) and with A(9,bjl 

replaced by J v(dy) IP<Yiel- p(ylj>l· 
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(ii) Note that, in case I is a singleton, tb. 6. 7 is a consequence of tb. 

6.8. TO verify this let q ~ W be degenerata at 6 and let tbe partition 

of 6.16 consist of a only witb discretization point a. Then apply tbe 

first inequality of th. 6.8. 

COrollary 6. 9 

Let I be a singleton and let v(x,q) be the value of tbe model with known 

transition law, qiven by V(dy)P(dx'!x,a,y)p(y,q). Then we have 

LiJ.* 
sup !vcx,q) - v(x,qll s span(r) ~ 
x 1 - a 1 -a +~all* 

where 

Note tbat this is an example of the situation considered in remark (i) 

above, if we set a:= {1} and p(•lt> := p(•,q). 

If there is a b ~a such that p(•jb) = p(•,q) forsome q € w, then corolla­

ry 6.9 is a special case of tb. 6.8. 

In practica one often considers tbe value v(x,q), defined in corollary 6.9 

as an approximation to v(x,q). This is justified by tbe followinq interpre­

tation. In the Bayesian approach the prior distribution q is determined, 

usinq data from the past. Then the Bayes estimation of tbe density is com­

puted: p(y,q) = J q(d6)p(yj6), for y € Y, and finally tbis density is een­

sidared to be the true one. 

We conclude tbis section with some examples and remarks. 

EXample 6.1 

The first bound in tb. 6.8 is tight. 

Consider the model witb only one action in each state, and with X := {1,2}, 

Y := {0,1}, A := {1}, a := {o,1l 

P(lj1,1,1) := 1, P(2j1,1,0) := 1, P(2j2,1,0) := P{2l2,1,1) := 1 

p{1ja) :=·a, r{1,1,1) := 1, r(1,1,0) := r(2,1,0) := r(2,1,1) :=0. 

1 -e 2 6 1 
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Let the only point of discretization be 0 1 hence a1 = 8. Let q € W bede­

fined by q({O}) = q({1}) = :1:1. It is easy to verify that v(1,q) =l:! 1 :a . 
'l'he prior <p defined in th. 6.8 has all mass in the point 0. Hence v(1 1 <p) =0 

1 and v(1,q) -v(1,<p) = l:! 'f"'='ä. Now we consider the first bound of tb. 6.8. 

We have 

J v(dyliP<Yie> -p<ylo>l = la-ol + lt-a-tl =29, a €e. 

1 Hence the bound becomes.~ 'f"'='ä. 

EXample 6.2 

'1'he bound of th. 6.7 is tiqht. Oonsider the example above and let a :=·0 

and e := 1. Then lv(1,9)- v(t,e)l = l: l3 and 

J v(dyllp<yla>- pCyiä>l 2!a- ël = 2. 

1 Bence the bound is 'ï"="li also. 

Example 6.3 

The bounds of th. 6.8 behave badly if 13 tends to 1. Consider the model of 

example 6.1 and modify it as follows: 9 := [0,1], r(1,1,1) := r(1,1,0) :=1. 

Let the only point of discretization be l:! and let q € w be homogeneous. 
1 1 1 Hencev(l,a) =T'='i3ëandsov(1,q) =-aloq{1-Sl andv(1,q~J = 1 _~6 • 

The first bound of th. 6.8 becomes: 

1 
_!_ J I a - l:! I da = ~ l_ 2 c 1 - SJ 
1·-13 1-13+Sia-~l 1-ee 2 

0 B 

1-! 
2 1 

loq(l- e>} =O<l-13). 

Note that lv(1,q) - v(1,q~) I = 0(1: s>· 

In the next example we consider a situation where a + v(x,e,f
1

) is monotone 

(cf. 6.17). 

Example 6.4 

consider the inventory model: model SB where the demand is exponentially 

distributed: 

p(yj a) ee-9Y, e € [a,b], 0 < a < b < ~ • 
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For each a f [a,b] the optimal strategy is characterized by a number se, 

s6 e [a,b], such that, at time zero the inventory level is brought to se 

and afterwards at each stage the demand is supplied. For a fixed s e [a,b] 

we determine the total expected costs oorreeponding to the strategy as des­

cribed above with s instead of s6• 

"" + - ~ n_ + -v(x,e,s) =hx +px +k(s -x)+ 1.. B Ee[h(s -Y ) +p(s -Y ) +kY J • 
1 

n n n 
n= 

It is easy to verify that 

If k > h, then this function is decreasing in e. 

Hence for each point of discretization and each x e x, e + v(x,e,fil is de­

creasing. (Remember that we considered coats instead of rewards in this example.) 

Ramarks. 

(i) If 9 c JR and fer some f e: F, e + v(x,B,f) is convez then 

J q(dB)v(x,e,f) ~ v(x,J q(dB)B 1f) 1 

by Jensen's inequality1 and if e + v(x1B) is concave then 

w(x,q) ~ v(x 1 f q(dB)e). These properties are somatimes useful in ap­

proximating upper and lower bounds. 

(11) In [Whitt (1976)] discretizations of the state and action spaces are 

considered for discounted dynamic programs. If we apply Whitt's ap~ 

proach here we have to discretize the set of posterior distributtons 

w, i.e. we have to fix a finite measurable partition B11 ••• ,Bn of W 

and in each set Bi a representant bi. Then the original model is com­

pared with the model with a perturbed transition law, which causes 

the process to visit the points bi' ie: {11•••1nl only. However1 if 

(X 1Q ) is the state at time n of this new process 1 then Q is not 
n n n 

the posterior distribution of z, in general. 

So th. 6.5 is not valid anymore. 
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7. COMPUTATIONAL ASPECTS ANV EXAMPLES 

In this chapter we consider algorithms for the computation of the value 

function (cf. 2.12) in two special cases of the Bayesian control model. In 

sectien 7.1 we consider the model where the index set I is a singleton. 

Here we also consider the rate of converganee of the algorithm. In sectien 

7.2 we consider Bayesian control models where assumption 6.6 holds and 

where in addition the set L1 is a singleton (cf. 6.6). Finally, in sectien 

7.3, we study some examples of the models considered in sections 7.1 and 

7.2, and we illustrate the quality of the algorithms by numerical data. 

The algorithms are based on the approximations given in th. 6.5. Throughout 

this chapter we assume that X, Y, A and e are finite sets. (For notational 

convenianee we write q(6) insteadof q({6}).) 

7.1 At.goJU.thm 601!. modei..6 whe.Jte. I i.-6 a. .td..ngle:ton. 

In this sectien we assume that the index set I is a singleton. 

we consider an algorithm, based on th. 6.5, to approximate v{x,q) for all 

x e X and one fixed prior distribution q e w. The accuracy of the approxi­

mation bas to be given in advance. In sectien 6.1 we already considered 

the set of all possible posterior distributions after n transitions 

Since I is a singleton we omit the subscript i e I in this section. We first 

give the algorithm and afterwards we discuss each of its steps. Let A > 0 

be given, and let v(x,q) be the approximation to V(x,q). If 

max I v (x,q) - v (x,q) I ~ A for a fixed q e W then we say that the accuracy 
x 

of the approximation is (at least) A. 

In the algorithms the symbol ":=" denotes an assignment instead of a defi­

nition. 

A2gor'ithm 1 

part 1: pa:roameter infl:uenae 

(a) For all 6 e 9 and x € X determine v(x,6) and an optimizing fe € F (i.e. 

v(x,e) = v(x,6,fe) fora € 8). Let F ;={fa, e € 8} (cf. 6.2). 

(b) For all a € a and f € F determine ~m(6,f) = max {v(x,e)- v(x,a,f)}. 
x 
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part 2: ho:l'izon detemination 

(c) Set n ;c n0 (a lower estimate of the horizon, e.g. n0 := 0). 

(d) Compute (cf. 6.14): 

n 
ö := E{q,e..,,n) =~ L min I q(S) TI p(yjl6l~P ... (6,f) • 

y1, ••• ,yn f~F 6 j=1 

(e) If Bnö sA then go to (f), otherwise set n := n+l and go to (d). 

part 3: baclaJJard induction 

(f) For all q' ~ wn (q) set vn(x,q') := ~{w(x,q') + R.(x,q')}, x € x. 

(g) Set k := n-1. 

(h) For all q' ~ Wk(q} compute p(y,q') and T (q') for all y E Y, and then, y 
for x ~ X: 

:== max L p(y,q') {rt-(x,a,y)+ si P({x'} lx,a,y)vk+1 (x' ,Ty(q')) }. 
aED(x) y x' 

(i) If k > 0 then set k := k- 1 and go to (hl. 

Otherwise: stop. 

At the end of the algori thm the values v (x, q) : = v 
0 

(x ,q) , x e X have been. 

computed and it follows from th, 6.5 that the accuracy is at least t:.. 

We proceed with a discuesion of each of the steps of the algorithm. 

Rema:t'ks on aZgo:l'ithm 1 

(i) The computations of step {al can be carried out by a standard method, 

such as the poticy ite'Pation a'lgo:l'ithm or the method of sucaessive 

a:pproximations with the Mac(;Jueen ea:tmpo'lation (cf. [Ross (1970), 

section 6.8], [MacQUeen (1966)]), More sophisticated methods can be 

found in [Van Nunen {1976), section 7.3] and in [Hastings and Van 

Nunen (1977)], Note that Fin step (a) satisfies 6.2. 

It often occurs that, if the differences between the parameter values 

are small then also the differences in the value function are small 

(cf. th. 6.7), Hence if fa € Fis optimal, if 8 ~a is the true para­

meter and if 8 ~ a is near to 8, then it is wise to start the policy 

iteration for the parameter value e with the policy f 6 • ~d likewise 

we recommend to start the successive approximations for a with the 

scrap function v{•,8). 
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(ii) In step (b) we have to àetermine v(x,6,f) for all x~ x, e ~ e anà 

f ~ F. If N := # e then it requires the solution of at most N(N- 1) 

systems of linear equations, in fact we only have to solve them all 

if we founà for each e ~ 9 a different optimal policy. Insteaà of .the 

function q>
00 

(6 ,f) we may also use the function 

q>l (6,f) = max {v(x,e) - (Lfv) (x,e)}, if we replace e:..,(•) by e: 1 {•) in 

step (à). x 

It is easy to verify that the computation of (Lfv)(x,6) for x ex, 

a ~ e anä f ~ i? requires less effort than the computation of v(x,e,f) 

for x ~ x, e € e anà f € F. Bowever we have to ào more work in part 2 

of the alqorithm in this case (cf. th. 6.1). 

(iii) Let Y = {O,l, ••• ,m}. We may compute E(q,e: ... ,n> in the followinq way: 

7.2 

m 
with summatien over all k0 ,k1, ••• ,k e ~ such that L k. m n. 

m j=O J 
Note that we have to sumover (m+n) terms here, so the amount of work 

n 
to compute o in this way is very large if n is large. Therefore we 

suqqest another approach in case {p (·I e) I e € e} is an ea;ponential 

family of the followinq form 

7.3 p(yle> = a(6)b(y)exp{c(6)y}, e e 9, y e Y = {O,l, ••• ,m} 

7.4 

where a and b are nonnegative functions such that 

L a(6)b(y)exp{c(e)y} = 1, 
y 

for all e ~ e . 

In this case the posterior distribution of q ~ W after n observations 

y1 , ••• ,yn becomes: 

n 
a(e)nexp{c(e) L yj}q(6) 

'=1 
n 

Ï a(6')nexp{c(6') Ï yj}q(6') 
a• j=l 

(provideà that the denominator does not vanish). 

Bence the number of different posterior distributions is: 

n 
# W (q) = #{ L Yj I yj e Y, j = 1, ••• ,n} = nm + 1 • 

n j=l 
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7.5 

7.6 

m+n (This nu.mber is small compared to ( n ) , the nu.mber of terms in 7. 2. ) 
n 

Note that there is a one-to-one correspondence between I:j=l Yj and ~' 

due to relation 7.4. Insteadof computing E(q,e:~,n) as proposed in 

step (d) we approximate this quantity in the following way. Note that 

he re 

JE [e: ... (Q ) ] 
q n 

I lP [Q =q']E."(q'). 
q'E:W (q) q n 

n 

It is relatively easy to compute e: ... (q 1
) for each q' E: Wn(q). Instead 

of computing lP [ Q = q 1 
] directly, we approximate this probabili ty by 

q n 
the normal probabili ty in the following way. Let q 1 e Wn (q) correspond 

n· 
to all sequences y1 , ••• ,yn e Y with I:j=l yj = s, 0 ss s nm. Further 

let 

m 
~a := I jp(jle> 

j=O 

Then we have 

2 
and oa 

m 
:= L (j- ue>2p<j!a> 

j=O 

n 

lP i9n = q'] tq(SlJPa[L YJ. 
a j=l 

s] 

and therefore 

(where ~is the standard normal distribution function). 

Note that 1J 6 and cr6 can be computed in advance, also in part 1. 

Since ri' Wn(q') is relatively small it is easy to approximate E(q,e:.",n) 

in this way. 

(iv) Besides the converganee due to the discount factor a, we also use in 

step (e) the converganee of the posterior distributions. In fact we 

might replace the stop criterion.by "o s A" without loosing conver­

genee of the algorithm {cf. th. 6.5). 

Instead of an absolute stop criterion we might use a relativa criter­

ion. For instanee we could use the inequality 

n I I -1 B 6{1 + max !(x,q) } s À 
x 

insteadof Bno s À , in step (e). 
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(V) The backward induction in part 3 requires the following storage capa­

city for numbers 

{#W {q) + # W 
1 

{q)} # X = { (2n - 1)m + 2} # X n n-

if Y = {0,1, ••• ,m}, {p(•l&), 6 € 6} is an exponential family of the 

form 7.3, and nis the horizon determined in part 2. 

We note that the work in part 1 has to be carried out only once, while we 

have to perform part 2 and part 3 for each prior distribution q € w for 

which we want to approximate v{x,q) , x € x. 

We continue with the discussion of a simple modification of the algorithm 

to determine in part 3 upper and lower bounds on v (x 1 ,q 1 
) , 

q 1 € u Wk(q) • These bounds shall allow us to exclude some sub-
k=1, ••• ,n-1 

optima! actions, during the backward induction procedure. To der i ve these 

bounds we proceed as follows. Let n be the horizon determined in part 2 

and remamber that 

vn(x',q') = ~{w(x',~') + R.(x',q')} 

According to corollary 6.6 we have 

7.7 lv<x' ,q'} - (Un-kv } (x' ,q') I 
n 

for q' € wn(q}, x' ex. 

for q' € Wk(q), k € {0,1, ••• ,n-1} and x' e X • 

Further note that, according to the Markov proparty of {Qk' k e: JN} (cf. 

th. 5.1): 

for q' e Wk(q) , k e {0,1, ... ,n-1} and x' ex. 

Bence the values Eqr[e~(~-k)] for q' e:Wk(q) are upper and lower bounds on 

v(x',q'), for x' ex. 
These values are easy to compute by 7.9. 

7.9 (i) Let yn(q'} :• e~(q') for q' e Wn(q) 

(ii) For k = n - 1, n - 2, ••• , 1 compute 

Yk(q') := L p(y,q')yk+l(Ty(q')), for q' e Wk(q) • 
y 
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Note that the computations of 7.9(ii) can be incorporated in step (h) of 

the algorithm. 

If we use the normal approximation, as suggested in remark (iii), then we 

loose our exact accuracy. However if we incorporate the computations of 7. 9, 

then we have exact bounds after the execution of step 3. 

It is obvious that an action a E D(x) is sub-optimaZ in state (x,q') 

q' E Wk(q'), XE X and k E {O,l, ••• ,n-1} if 

7.10 }:p(y,q')[r(x,a,y) + BtP({x'}!x,a,y){vk+l(x',T (q')) + Yk+l(TY(q'))):!:; 
y x' y 

We conclude this sectien with a qualitative statement concerning the rate 

of convergence of the algorithm. 

We start with some preparations. Remember that x, Y, A and 9 are finite sets. 

7.11 A maximum ZikeZihood estimator M of the parameterbasedon the ob­
n 

servations Y1,Y2 , ••• ,Yn is a 8-valued function of Y
1
,.,,,yn suchthat 

n n 
n p(Y .IM l <!: 

j•l J n 
n p(Yjle> 

j=l 
on n, for all 6 E 9 , 

Lemma 7.1 

There are numbers k and a, k,a > 0 such that for all e E 9 

Proof. 

Define on n: 

* n E lN • 

* j E JN ' 

{let log 0 • - 00
1 log 00 = ~ and let O•m = 0). 

Note that 

n n 

e,cp E e. 

(*) {M Fe} c {max n p(Yjl<fl> <!: n p(Yjle>} 
n <flFe j=l j=l 
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n p{Y Ie> n 
.. {min n ~ s 1} = u { I zj (6 ,q>) s o} • 

q>~e jz:1 P j Ijl q>~e j=1 

By a Chebyshev-type inequality we have for all t s 0 and e ~ 8: 

n n 
(**) lP 6C .I zj (6 ,cp) s O] s JE6 [exp{t I z. (S,q>)}] = JE 

6
Cexp{ tzj ca ,cp)} ] 0

• 

J=1 j=1 J 

\ o(vlm). -t 
Note that fa,q>(t) := JE 6(exp{tzj(6,cp)}) = ;{~} p(yle> is finite for 

* t s o, a,, ~ 8 and independent of j ~ :N • 

FUrther note that f 6 (0) = fe (-1) - 1, for e,q> ~ 8. 
,Ijl -t ,cp 

Since the function t +x (x > 0) is strictly convex, except when x= 1, 

we conclude that for each pair a,T ~ 8 there is a number t, -1 < t <,o such 

that f 6 {t) < 1, except when ~(( e)) = 1 for all y with p{yle> > 0. Bowever, 
'' P Yl!p 

if p(yla> = p(yl(!)l for all y E Y then, by the separation assumption (cf. 

2.1), we have e = cp. 

Bence there is for each pair 6,q> ~ 8, q> ~ a a number t 6 such that 
,Ijl 

-1 s te s 0 and fa (te ) < 1. ,, ,q> ,Ijl 

Bence by (*) and (**) we have: 

Finally let m := max f
6 

(t6 ) , a :=- loq mand k := # 8·- 1. 
a~rp ,q> ,q> 

'l'hen we have 

for all a € e • D 

The statement of lemma 7.1 is contained in th. 5.3.1 qiven in [Zacks (1971)], 

with a proof that is incorrect but easy to repair. Since our situation is 

less.qeneral our proof is easier. Bowever, the idea bas been borrowed from 

zacks. 

In th. 7.4 we use the maximum likelibood estimator to choose a Markov policy 

fM € F such that on 0: 
n 

L max{v(x,6) - v(x,S,fM }Qn(6) 2: min L q> (6,f)Q (6) • 
e x n f~F e 00 

n 
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This bound is used implicitly to show that one has ereponentiat conve~ence 

in part 2 of the alqorithm. 

Theerem 7.2 

Let fa € F be an optima! policy fora € e and let F := {fe,e ~ 8}. 

There are positive numbèrs k and a such that 

E [min l max{v(x,S) - v(x,S,f)}Q (8)] ~ k exp{-an} • 
q f~F e x n 

Proef. 

For f ~ F define Af := {8 € elvcx,S) = v(x,S,f) for all x € x} and 

Bf := 8\Af . 

FUrther let À := max max max {v(x,S) - v(x,a,f)} • 
f.::F 8 x 

Note that 

E [min l max{v(x,a) - v(x,S,f)}Q (a)] s 
q fE:F 6 x n 

1:!. E [miniP [ZE BfiY1, ••• ,Yn]] • 
q f€F q 

Note further that: 

1:!. • E [min Q (Bf) J 
q fEF n 

and, since Mn is a function of Y1, ••• ,Y
0 

(cf. 7.11), we obtain: 

Since 8 E: Af for all 8 E: 8, we conclude that 6 ~ Af implies 8 'f q>, Hence 

{6 ~ Af } c 8{a ~ M } • q> 
M n 

n 
Finally the desired result follows from lemma 7.1. n 
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7.2 AtgaJU.thm daJt made.ló wUh knawn tJr.an.M.:ti.an taw exc.e.pt dolt one .6.tate 

In this sectien we assume that assumption 6.6 holds and that the set L
1 

is 

a singleton (cf. 6.6). Bence the transition law is known except for one 

'State. 

Throughout this sectien X= {O,l, ••• ,N} and L1 = {O}. Hence L2 = {1,2, ••• ,N}. 

'I'he alqorithm is also basedon th. 6.5 and itconsists of three parts aqain. 

Each part is a modification of the corresponding part of algorithm 1. 

We start wi th a discuesion of these parts and afterwards we describe the 

alqorithm. 

We start with part 1. 
f a-1 n cr · 

lf we want to compute JE [E 0 a r(X ,A ,Y +1) +a b(X IQ~)] (cf. 6.7} x,q n= n n n cr v 

for some f e F then we only have to specify the actions in the states of L2• 

We shall use this property and therefore we introduce some useful notations: 

7.12 (i) F* := {f : L2 -~> Alf(~) E D(X)} , 

(ii) cf(x) 

(iii) df (x) 

f ..a-1 n * 
:=JE [z; 0 ar(X,A 1Y+l)] feF, xn= nnn 

:=JEf(acrJ feF*, xeL
2

, x , 

(iv) g(x,e) := max*{cf(x) + df(x)e} , 
feF 

As already noted in sectien 6.1 (cf. 6.9) ,. the determination of (Ucrb) (x,q) 

x e L
2 

is an ordinary dynamic programming problem. To see this, extend the 

statespace to {-1,0,1, ••• ,N} and let P({-1llo,a,y) := P({-t}l-t,a,y) := 1 

for all a e A and y e Y. FUrther we define for this model r(O,a,y) := b(O,q) 

and r(-l,a,y) := 0 fora e A and y e Y, where q e Wis fixed. It is easy to 

verify that the value function of this model in x e L2 equals (Ucrb)(x,q) of 

the original model. Therefore we have 

7.13 (U b)(x,q) = max* {cf(x) + df(x)b(O,q)} = g(x,b(O,q)) , x e L2 • 
cr feF 

Let two numbers! and ë be fixed such that: es v(O,q} s ë for all q e w. 
- -1 - -1 

Note that, if m s r s M, m,M e lR then e := m(1 - a> and e := M(l - tl) 

will do. 

It is easy to compute g(x,e) for all ! s e s e and x e L2• This is due to 

the following properties. 

Lemma 7.3 

For each x e x the function e -~> g(x,e) is nonctecreasing, convex and piece­

wise linear. 
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'l'he proof of this lemma is trivial. 

* It is a consequence of lemma 7.3 that for each f e F the set 

{el! s e s ë, g(x,e) • cf(x) + df(x)e} is a closed interval. 

Fer x e L2 and a e D(x) we define 

7.14 (i) ';(x,a) := }: 1K (x,a) I p
1 

(yle
1
)r(x,a,y) • 

iei i y 

(ii) P(x'!x,a) :=I 1K (x,a) }:p1 <yle1>P({x'}lx,a,y) • 
iEI 1 y 

(note that these definitions are consistent with definitions 3.1 (d) and (e), 

since 9i is a singleton for i~ 1 1 iE I). 

Lemma 7.4 

* -Let f e F be optimal forsome e 1 , ! :::; e1 :s; e, i.e. g(x,e1> =cf(x) +~(xle1 , 

for x e: L2• 

'l'hen fis optimal for alleE [e1,e2J and non-optimal for e > e2 where 

7.15 

Proof. 

where the minimum has to be taken over all a E D(x) for which the 

denominator is positive {the minimum over the empty set is infinite). 

* Note that~ for f e F and x e L2 : 

cf(x} +df(x)e=;'(x,f(x)) +13 }: P(x'lx,f(x)){cf(x') + df(x') e} + SP(Oix,f(x))e. 
x'eL2 

Moreover for a = f (x) the denominator in 7 .15 vanishes. 

By Howard's policy improvement routine (cf. [Ross (1970), corollary 6.4]) 

* the policy f e F is optimal if and only if for all a e D(x} and x e L2: 
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cf(X) + df{x)e ~ ;{x,a) +a I P(x'lx,a){cf(x') + df(x')e} + 8P(Oix,a)e • 
x'EL

2 

* Hence f E F is optima! if and only if for all a E D(x) and x E L
2

: 

(*) cf(x) -;(x,a) -8 L P(x'lx,a)cf(x') ~ e{- df(x) + 
X 1 €L

2 

+ a I P<x'lx,a>df<x'> + ei?co!x,a> }. 
X

1 €L 
2 

So, if the denominator in 7,15 is less than or equal to zero, then (*) holds 

for alle> e
1

, if it holds for e1 • on the other hand, if the denominator 

in 7.15 is qreater than zero, then (*) holds for all e > e
1 

such that e· is 

less than or equal to the e2 • 

This provee the lemma. 0 

According to lemma 7.4 we now have the followinq procedure todetermine 

* g(x,•) for x € L2 • Compute for e1 := ! an optima! f E F • Then determine e2 
by 7.15. If e 1 < e 2 < ë then compute for e2 a new optima! policy f E F* and 

repeat this procedure. So e1 ,e2,e
3

, ••• are computed. If during this process 

en = en-l then we have to determine another optima! policy for the value 

en-l such that en> en-l' Note that there always is such a policy (cf. lemma 

7.3) and that we have to examina only finitely many Markov policies since X 

and A are finite. 

Let us denote the set of optimal Markov policies determined in this way by 
-* -* F • Using the values cf(x) and df(x) for x € L2 and f E: F it is easy to 

determine v(0,6) and optimal policies fa € F for e .: e • So, 

F = {fe ,e "' e J and v (O,e ,f) for e E: a and f € F are easy to compute. 

This concludes the discuesion of part 1. 

In part 2 of the algorithm a suitable horizon is determined, 

Here we have to compute for q' E Wn(q} the value e0 (q'l and afterwards 

E(q,~0 ,n) (cf. 6.11 and th. 6.5). 

However, e0 (q') has a simple form in this case: 

e
0

(q'l =~mi!! L q(S){v(O,e) - v(o,e,f)} • 
fE:F 6€9 

Therefore we have, in a way similar to 6.14: 

n 
7.16 E(q,e:

0
,n) =~{ l: q(El)v(o,e) - /: llla! I q(6) n p 1 (yj le 1)v(o,e,f) }. 

6€8 y
1

, ••• ,yn fEF 6E9 j=l 
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If {p1 (•je 1J, e1 e e1} is an exponential family, then we miqht use the nor­

mal approximation to approximate E(q,e0 ,n) {cf. remark (iii) section 7,1). 

In the final part of the algorithm the backward induction is carried out. 

Bere we use 

7.17 (U
0
b) (O,q) = max LP1 (y,q)[r(O,a,y) +8P({O}jo,a,y)b(O,T

1 
(q)) + 

aeD(O) y ,y 

+ 8 L P({x}jO,a,y)m~*{cf(x) + df(x)b(O,T1 ,y(q)J}] 
XEL

2 
fEF 

Finally we summarize the steps of the algorithm. 

AZgoz>ithm 2 

part 1 ; parameter infZuenae. 

(a) Determine for alle.:: [~,ëJ an optimal f E F* (cf. 7.12) and simultaneous-
-* ly cf(x) and df{x) for x.:: L2 • So F and g{x,e) are determined for x e L2 

and !! ::;; e ::;; ë. 
(b) For all a e 6 compute v(O,a) and an optimal f6 .:: F (using the results 

of step (a)), :a:ence Fis determined. 

{c) For all a E e and f E F determine v(0,6,f) 

part 2 : hoz>ison determination. 

(d} compute w(O,q) = Eeee q(6) v(0,6), 

(e) Set n :• n0 (n0 is a lower estimate of the horizon). 

(f) Compute ö: 

n 
ö := 2 mia 2 q(6)• TI p 1 (y.Je 1)v(0,6,f)} (cf. 7.16). 

y
1

, ••• ,yn fEF 6e9 j=l J 

(g) If ~Sn{w(O,q) - ö}::;; A then qo to step (h), otherwise set n := n + 1 

and go to step (f) (6. J.s the desired accuracy). 

part 3 : backlila.:l'il induction. 

(h) For q' .:: Wn(q) set: vn(O,q') := ~{w(O,q') + ~(O,q'J} • 

(il set k := n - 1. 

(j) For all q' E Wk(q) compute p(y,q') and T
11

y(q') for all y € Y, and then 

compute 
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vk(O,q') = max l p1 (y,q)[r(O,a,y) + BP({O}!o,a,y)vk+1 (O,T1,y(q')) + 
a€D(0) y 

+BI P({x}!O,a,y) m~*{cf(x) + d.f(x)vk+l (O,T1,y(q'))}J • 
X€L2 f€F 

(k) If k > 0 then set k := k- 1 and go to (j), otherwise qo to (~). 

(t) "For x € L2 compute 

v0 (x,q) := m~*{cf(x) + df(x)v0 (0,q)} • 
f€F 

Note that ;(x,q) := v0 {x,q) is an approximation of v(x,q) of the desired 

accuracy. 

Finally we note that a modification to determine upper and lower bounds in 

part 3 of algorithm 2 can be incorporated in a way similar to the modifi­

cation of alqorithm 1. It is straightforward to modify th, 7.2 to show that 

we have exponential convergence in part 2 of algorithm 2. 

7. 3 NumeM..cal. examptu 

In this sectien we present 5 examples. The first three examples illustrate 

alqorithm 1 (cf. sectien 7.1), and the last two examples illustrate alqorithm 

2 (cf. sectien 7.2). 

Example 7.1 Invento'l'Y aontro~ 

We consider a well-known inventory control model. The model we studied in 

section 5.3 {model SA) is a special case. 

The oost function is 

c(x,a) := hx+ + px- + k(a- x) + K{1 - o(a,x)} , K :2: 0 • 

Bere K represents the order aost or the cost for startinq the production. 

Note that the cost K is incured only if the inventory is brought to a higher 

level. If K = 0 then we are dealinq with model SA again. In[Rieder (1972)] 

it is proved that there is an optima! Bayesian Markov policy f of the follow­

inq form: 
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7.18 f(x,q) = S(q) if x< s(q) 

=x if x ?! s(q) (x,q) t. x x w 

where s and S are measurable !unctions from W to the interval [O,M]. 

{Note that s = s if K = 0). we specify the numerical data of the model, 

In .this example the demand is binomially distributed. 

y € Y = {o,1, ••• ,s} , 

and e t. e = {o.l,0.2, ••• ,0.9}. 
1 The prior distribution q is uniform on e, i.e. q{{6}) = 9 for e € e. 

The various costs are; 

h = 0.1, p .. 5, k .. 3 • 

we consider two cases; K = 0 and K = 1. Finally the discount factor is 

a = o.9. 
In the tables below, we display the optimal strategies s(6) and (s(e),S(S)) 

for the models with known parameter values and the value function, at start­

ing-inventory level zero for the various parameter values. Further we dis­

pla~, for several horizons, the value E(q,e®,n) and finally we display the 

optimal actions for the first 3 stages and the value function at inventory 

level zero for the prior distributions q' € u~=O Wn(q). 

table 1 (K = 0) 

e 0.1 0.2 0.3 0.4 0.5 1 o.6 0.7 0.8 0.9 

s (6) 1 2 3 4 4 4 5 5 5 

v(O,S) 21 37 52 68 82 97 111 124 137 

('I'he optimal strategy, if e is known, is "order up to level s(S) iff x < s(a)") 

table 2 (K 0) 

hOrizon n 0 1 2 3 4 5 6 7 

E {q1 E:
00

,n) 3.6 1.7 1.1 0.8 0.6 o.s 0.4 0.3 
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ta.ble 3 (K = 1) 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

s (6) 1 2 2 3 3 4 4 5 5 
s (El) 2 3 4 4 4 5 5 5 5 
V (O,E!) 24 42 59 76 91 107 121 134 147 

('.t'he optimal strategy here is: "order up to s (6) iff x < s (El)"). 

ta.ble 4 (K = 1) 

horizon n 0 1 2 3 4 5 6 7 

E (q,e:..,,n) 3.2 1.5 1.0 0.8 0.6 0.5 0.4 0.3 

n In ta.ble 5 we repreaent the posterior distributions q' € Wn(q) by Ei=l yi' 

y
1 

€ Y (cf. remark (iii) section 7.1). 

ta.ble 5 

n 
l:i•lyi 0 1 2 3 4 5 6 7 8 9 10 

n K 

0 s (q) 0 5 

0 V (0 ,q) 0 82 

0 s(q) 1 4 

0 s (q) 1 5 

0 V(O,q) 1 90 

1 s (q') 0 2 3 4 5 5 5 

1 V(q') 0 36 52 72 93 111 125 

1 s (q') 1 2 2 3 4 4 5 

1 s (q') 1 3 3 4 5 5 5 

1 v(O,q'} 1 41 58 80 101 120 134 

2 s (q') 0 2 2 3 3 4 4 5 5 5 5 5 

2 v(q') 0 27 34 45 58 70 83 94 106 117 126 132 

2 s (q') 1 1 2 2 2 3 3 4 4 4 5 5 

2 s (q') 1 2 3 3 4 4 5 5 5 5 5 5 

2 v(O,q'} 1 31 39 51 65 78 91 104 116 127 136 142 
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(The optimal strategies are, if K = 0: "order up to s (q') iff x < s (q')" 

and if K = 1: "order up to S(q') iff x< s(q')"). 

Note that max{~(x,q) - w(x,q)} = E(q,g~ 1 0). 
x 

It is remarkable that, although the variations in e ~ v(0,9) are large, the 

upper and lower bounds on v(O,q) are very close. 

Example 7.2 Reptacement unde~ additive damage 

We consider the following replacement problem. In each time interval (n-l,n], 

n e ~*, there is a random shock Yn' which is observed at timen. The random 

variables Y
1

,Y
2

,Y
3

, ... are i.i.d., Yn E Y = [O,co) and they actonthe state of 

the system in the following way: 

7.19 

where X is the state of the system at time n, X E X = [o,x*J and A is n n n 
the action at time n. The action space is A = { 0,1}. Action 0 means "do not 

replace" and action 1 means "replace" the machine. D(x) :=A for x e [o,x*), 

ocx*> :• {1}. Replacement takes place instanteneous. 

* If the system is in state x then replacement is more expensive than in the 

other states. The costs are: 

c(x,a) =m(x)o(a,O) +Ro(a,l), 

* "' R 

if 

if 

* 0 :::; x < x 

* x= x 

a E A 

a E A 

where R* > R. Here m(x) are the maintenance costs for one period, if the 

state of the system is x. We assume that x~ m(x), x EX is real-valued, 

* measurable and nondecreasing, and 0 ::> m(O), m(x) < R. It is further as-

sumed that the distribution of Yn is incompletely known with density p(•le> 

with respect to a a-finite maasure v on Y, with e E a where a is a complete 

separable metric space called the parameter space. 

It is easy to transferm this model into a Bayesian control model with index 

set I a singleton (cf. example 2.3). 

Before we consider numerical data we first establish a proparty concerning 

the form of an optima! strategy for this Bayesian control model. In lemma 

7.5 we show that the optimal strategy is characterized by so-called control 

limits in the following way. There is an optima! Bayesian Markov policy f 

such that 



7.20 f(x,q) • 0 if x s s(q) 

1 if x > s (q) (x,q) € x x w , 

where s is a measurable function from W to x. 
(The values s(q) are called control limits), 

The proof proceeds in a familiar way (cf.[Ross (1970), th. 6.9]), 

Lemma 7 .s 

There is an optimal strategy of the form, given in 7.20. 

Proof. 
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we first show that the value function v is nondecreasing in the first co­

ordinate. 

consider the sequence of 

vo :• o, vn := ovn-1' By 

(x,q) € x x w. 

successive approximations v
0

,v
1

,v
2

, ••• of v where 

th. 3.14 we have lim v (x,q) • v(x,q), for 
~n 

* * Note that, for 0 s x < x , q € W and n e lN : 

v (x,q) =min{m(x) + S lv (dy)p(y ,q)v 
1 

(min(x +y ,x*> 1T (q)) 1 n n- y 

R+f3 Jv(dy}p(y1q)v 1 (min(y~x*>~T (q))}. n- Y 

It is easily verified that for q e W and n e :N *: 

* vn(x ,q) R* + S fv(dy)p(y,q)v 1(min(y,x*),T (q)) 
n- y 

Hence x • v 
1 

(x ,q) is nondecreasing 1 since x -+ m (x) is nondecreasing for 

all q € W. Suppose that x • vn-l (x1ql is nondecreasinct for all q € W, Then1 

by (*),x-+ vn(x,q) is nondecreasinq for all q e w. Hence, by induction, 

x + vn (x1ql is nondecreasing for all q € W and n e lN and therefore x + v(x,q) 

is nondecreasing for all q e w. 
It is straightforward to verify that (x,q) + v1 (x,q) is measurable and there­

fore, by {*) and an induction argument, (x,q) + v(x,q) is measurable (cf. 

lemma 1.6 (iii)). Define, for x € X and q € W: 

d(x,q) := m(xl 

and 

* v(dy)p(y1q)v(min(x + y,x ),Ty(q)) 
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b(q) := R + 13 J v (dy)p(y,q)v(min(y,x*> ,Ty(q)) • 

It is easy to verify that q + d(x,q) and q + b(q) are measurable for x E X. 

Note that v satisfies the functional equation: 

v(x,q) = min{d(x,q),b(q)} , * 0 $ x < x q € w. 

It is straightforward to prove that a strategy which chooses in each state 

* (x,q), 0:;; x< x and q € w, a minimizing action in (***) is optimal. 

Let 

s(q) := sup{xlo:;; x< x*, d(x,q) s b(q)}. 

If q + s(q) is measurable, then the policy f defined in 7.20 is optimal. 

To verify the measurability of q + s(q) note that for 0:;; a< x* 

{q E wls(q) > a} {q E wld(x,q) :;; b(q) for some x > a} = 

{q € wld(x,q) :;; b(q) for some rational num­

ber x > a}. 

Since q + d(x,q) and q + b(q) are measurable for all x € X we conclude that 

q + s (q) , q E W is measurable. 

* In the numerical example the following data are used: x 

all x E x, R = 75, R* = 125 and S 0.95. Further p(yle> 

for y E Y = {0,1, ••• ,9} and 8 E 9 {0.1,0.2, ••• ,0.9}. 

0 

25, m(x) = 0 for 

(~)89(1 -8)9-Y, 

Hence, if we start the system in an integer x, 0 $ x $ 25 then the state Xn 

is always an integer (cf. 7.19). 
1 

The prior distribution q on 9 is the uniform distribution, i.e. q({8}) = 9' 
for 6 E 9. 

In table 6 we display the optimal strategies for the models with known para­

meter values and the value function for a new machine, i.e. in x = 0, for 

the various parameter values. 

table 6 

8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

s (8) 5 7 9 10 11 12 13 13 14 

v(0,8) 461 546 600 639 670 693 714 731 745 

(the optimal strategy, when 8 is the true parameter, is "replace iff x> s(8)"). 
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In table 7 we show for several horizons n: E(q,E~ 1 n). 

table 7 

ho:rizonn 0 1 2 3 4 5 6 7 8 9 10 

E(q,E~,n) 6.7 2.9 1.9 1.5 1.2 1.0 0.9 0.8 0.7 0.6 0.5 

Finally we .show in table 8 for all q' € u!=o Wn(q) the optimal control limit 

s(q') and the optimal value v(O,q'). As in table 5 we reprasent q' € Wn(q) 
n 

by Ei=1 yi ' yi € y • 

table 8 

n n 
1: yi n = 0 n = 1 n = 2 L yi n = 2 

i=1 i=1 

s (q') v(O,q') ~ (q') v(O,q') s(q') v(O,q') s(q') v(O,q') 

0 10 645 6 495 5 472 10 11 679 

1 7 529 6 483 11 12 691 

2 8 574 6 506 12 13 702 

3 9 615 7 535 13 13 712 

4 10 649 8 566 14 13 721 

5 11 675 9 593 15 13 730 

6 12 698 9 615 16 14 736 

7 13 716 10 634 17 14 740 

8 13 730 11 651 18 14 743 

9 14 738 11 666 

Example 7 • 3 Heads or tai 7-s 

We consider a simple game with only one player, who may choose heads (action 1) 

or tails {action 2) of a coin with unknown probabilities: the probability 

of heads is a, 0 s a s 1. The system has two states and only in state 1 the 

player has a choice. In state 2, the system stays there with probability a 
or it goes to state 1 with probability 1 - a. If "heads" has been chosen then 

the system stays in state 1 with probability a and if "tails" has been chosen 

then it remains in state 1 with probability 1 - a. Otherwise the system 

moves to state 2. 
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ónly in state 1 an immediate reward 100 is obtained, independent of the 

action chosen. The discount factor is B = 0.9, and the prior distribution q 

on a = [0,1] is; 

1 =-
9 

for i= 1,2, ••• ,9 , 

It is easy to transferm this problem into a model considered in sectien 7.1. 

At first glance one might think that the optimal strategy is; "if the system 

is in (1,q) then choose heads if f 6q(d6) :?: ~ and choose tails otherwise" 

(q e W) • 

However, if we consider a prior distribution which is concentrated on the 

set { 0, 1} , then i t is straightforward to verify that the action ''heads" is 
- - t - a optimal in state (l,q) if and only if q({1}) :?: ~ • 

In table 9 the optimal actions and the value function are displayed for the 

roodels with known parameter values. In table 10 we present, for four horizons 

and all possible posterior distributions, the value function in state 1, the 

upper and lower bound in state 1 and the optimal action. Note that there is 

a one-to-one correspondence between the posterior distributions and the 

number of "heads" for each horizon. 
table 9 

e 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 

action (in 1) 2 2 2 2 1 or 2 1 1 1 1 

v(1,6) 910 820 730 640 550 561 578 609 678 

table 10 

horizon n number of !(1,•) v(1,') w(1,') action 
heads 

0 0 568 639 675 1{heads) 

1 0 589 611 631 1 

1 670 687 718 2 (tails) 

2 0 604 611 622 1 

1 562 616 649 1 

2 739 744 758 2 

3 0 616 618 623 1 

1 575 595 617 1 

2 636 652 682 2 

3 781 783 788 2 
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For the horizon na 14 we have Eq(E00 (~)] a 8.5. Note that the range be­

tween the upper and lower bounds are relatively large oempared with the 

examples 7.1 and 7.2. 

Example 7. 4 Ta:x:i <b:>ive:I' 's prob l6m 

we consider a model that fits into the setting of section 7.2. At the cab­

rank a taxi driver is offered a run of size Yn e: Y c: JN, at each stage n. 

If he accepts this run he will be away for Yn stages and if he refuses the 

run he remains in the cab-rank. The random variables Y
1

,Y2 ,Y3, ••• are i.i.d. 

and observable if and only if the taxi driver is in the cab-rank. The distri­

bution of Yn is incompletely known. Only at the cab-rank the taxi driver 

chooses an action a e: A = Y. Action a means: "accept all runs larger than 

or equal to a and refuse the runs smaller than a". Only if he accepts a run 

of size y e: Y he obtains a reward r(y), where y ~ r(y) is nondecreasing. 

To transferm this model into a Bayesian control model define the state space 

x by 

x:== fo} u {(n,k>l k == l, ••• ,n- 1, n e: JN*} 

and the transition law by: 

P ({n, k + 1)} I (n,k) ,a,y) 

P({oll (n,n -1) ,a,y) == 1 

P({(n,1J}!o,a,n) = 1 

1 for 1 :!:: k < n - 1 , 

for n e: JN * 

* for n E JN • 

* n,k e: JN 

Note that, if the system is in state (n,k), 1 :!:: k s n- 1, the taxi has been 

away for k time units on a trip of n time units in total. Further p(•IS> 

is the probability density of Yn with respect to the counting measure on JN, 

for e € e, where e is the parameter space. 

We consider the operator u
0 

(cf. 6.7) and we obtain the optimality equation 

for the taxi driver's problem: 

v(O,q) = sup( L p(y,q){r(y) + aYv(O,T (q))} + 6 L p(y,q)v(O,T (q))]. 
ae:A y~a Y y<a Y 

In the numerical example we used the following data: 

Y = {1,2, ••• ,10}, r(y) = eY, y E Y, 

p<yle> = b(6)•exp{- (y- e) 2}, y e: Y, 

where b(6) = (E Y exp{- (y- 6)2})-1• 
ye: 

13 0.9 

a e: e = {1,2, ••• ,10} 
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'rhe prior dis tribution q is uniform, i.e. q (6 ) = 0.1 , e € e . 
Note that {p(•lel, e € 9} is an exponentlal family and there is a one-to­

one correspondence between Wn(q) and {E~=l yiJyi E y} (cf. 7.1). In table 11 

we display optimal strategies and the value f11nction v in state 0 for the 

models with known parameter values. 

In table 12 we display for several horizons n the value E{q,e0 ,n) (cf. 7,16). 

This quantity is obtained using normal approximation (cf. remark (iii), 

section 7.1) for n ~ 5. 

table 11 

6 1 2 3 4 5 6 7 8 9 10 

action 2 3 4 5 6 7 8 9 10 10 

v(0,6) 6 16 43 118 321 874 2376 6448 15997 21207 

table 12 

horizon n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

E(q,e0 ,n) 327 253 153 125 80 64 44 36 25 20 13 11 8 6 

For all q' E w1 (q) u w2 (q) the value function in (O,q'), v(O,q') and the 

optimal actions are shown. (Note that each posterlor distribution is re­
n 

presented by Ei=l yi, y1 E Y.) 

table 13 

n = 0 v(q) = 4508 

~ = 1 yl 1 2 3 4 5 6 7 8 9 10 

v (o,q• > 8 17 49 134 366 995 2697 6992 14960 19859 

action 3 4 5 6 7 8 9 10 10 10 

n = 2 Y1 + Y2 2 3 4 5 6 7 8 9 10 

v(O,q') 6 9 15 28 44 76 120 209 326 

action 2 3 3 4 4 5 5 6 6 

Y1 + Y2 11 12 13 14 15 16 17 18 19 20 

v(O,q'l f568 887 1544 2412 4187 6493 10665 15704 19100 20798 

action 7 7 8 8 9 9 10 10 10 10 

15 

5 
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Example 7. 5 Compound rep lacement 

We consider another model that fits into the setting of section 7.2. Con­

sider a replacement problem with two types of machines. If the controller 

decides to replace his machine he is not sure of what type the new machine 

will be. The probabilistic behaviour of both types of machines is known. 

However the probability of obtaining a machine of type 1 is 6 €(0,1), and 

a machine of type 2 is 1 - 6. The parameter a is unknown. We first describe 

the machines. The life time of a machine of type i (i = 1 or 2) is geometrie 

with parameter pi' p 1 = 0.9 and p2 = o.a. If a machine is "alive" at stage n 

the controller may replace it {action 1) by a new one (of type 1 with pro-­

bability e and of type 2 with probability 1- 6). The costs of such a re­

placement are ei for machine i: c1 = 10, c2 = 21. If the controller decides 

to ~eep the machine i at stagen he has to pay maintenance costs mi(n) with 

probàbility pi and he has to pay costs for an emergency replacement R. with 
n 2 * ~ 

probability (1 - Pil • Here m1 {n) = 3 <w + 1) - 3 for n .; lN , 
n 2 * m

2
(n) = 4(Tö+ 1) , n e lN, R1 = 10 and ~ 25. 

The discount factor is a .. 0.9. 

we transferm this model intc a Bayesian control model in the following way. 

Let Y = {0,1} and p(yl6) = eY(l- 6)l-y, y € Y, 6 € (0,1). Let 

X= {0} u{(i,nlli • {1,2}, n € :N*} and A= {O,l}. State (i,n) means that 

we have a machine of type i of age n. State 0 means that we are replacing 

the machine. The actions have the same meaning as in example 7.2. The trans­

ition law is given by 

P({ (i,n + 1) ll (i,n) ,O,y) =pi • 

P ({O} I (i,n) ,O,y) 

P({O} I (i,n) ,1 ,y) 1 i € {1,2}, 

P({(y,llllo,o,yl = P({(y,1>}1o,1,yl 

The cost function is: 

c((i,n),O) = pimi(n) + (1- pilR
1 

c((i,n),l)- ei 

c{O,O) = c(0,1) 0 • 

i€{1,2}, 

n € lN * and all y € Y • 

y € y • 

We consider the operator u0 (cf. 6.7). It is easy to show, in a way similar 

te the proof of lenuna 7.5 that the "interesting" strategies in the set F* 

(cf. 7.12(i)) are characterized by two control limits n
1

,n
2 

€ JN* such that 

the controller chooses action 0 if and only if the system is in state (i,n) 



172 

with n < n1 , i € {1,2}. This means that in 7,13 the maximizing f E p* is 

found in this class, for all admissible scrapfunctions b. 

Using this property, we find the optimality equation {cf. 7.17): 

7.21 v{O,q) = Bp(l,q)min *{A1 (n) + B1 (n)v(O,T
1 

(q}}} + 
nElN 

where 

+ Bp(O,q)min *{A2 (n) + B2 (n)v(O,T0 (q))} 
nElN 

i E { 1, 2} , n "- lN* 

(here A1 (n) equals cf({t,l}) and Bi (n) equals df({i,l}l where cf and df 

are defined in 7.12 and f E p* is the strategy that replaces only in 

states (i,k) with k ~ n). 

In the numerical example we have modified the model in such a way that the 

statespace X bacomes finite: in statas (i,10), iE {1,2} we allow only the 

action 1, i.e. we always replace the system in these states. 

The prior distribution q is given by: q({1t}) = t, j = 1,2, ••• ,9. 
1 9 Hence all posterior distributions are concentrated on the set {TO , ... , 101. 

In tabla 14.we display the values v(O,e), e E 0 and the optima! strategies 

for these parameter values. The strategies are characterized by pairs of 

numbers (n
1

,n2) indicating the control limits for both machines. 

After that, in table 15 we display the values E(q,g 0 ,n) (cf. 7.16) for 

saveral horizons n. 

tabla 14 

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

V (0 1 8) 87 79 71 64 57 51 45 39 34 

n1 ,n2 10,6 10,5 10,5 9,4 9,4 8,3 7,2 7,2 6,2 
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table 15 

horizon 1 2 3 4 5 6 7 8 9 10 11 12 

E (q, e:
0 

,n) 56 46 40 35 30 27 25 23 20 19 18 17 

x 0.01 

Note that each posterior distribution q of q is completely characterized by 
n the number of times the replaced machine is of type 1, i.e. ~1 .. 1 yi dater-

mines the posterior distribution. In table 16 we display, for the first 7 
- ,..., N 6 

sta9es, the value function in (0 ,q) , v (0 ,q) for q <. un=O Wn (q) and the. 

optimal control limits n1 and n2 for the two types of machines (for example 

if n = 2 and ~~ .. 1 y
1 

= 1, then n1 = 7, n2 = i3 and v(Q,q) = 48). 

table 16 

~ 0 1 2 3 4 5 6 

0 49 

7,3 

1 56 42 

7,3 6,2 

2 60 48 38 

8,3 7,3 6,2 

3 63 53 

6:~ I 
35 

8,4 7,3 6,2 

4 65 57 48 40 34 

8,4 8,3 7,3 6,2 6,2 

5 66 60 52 45 38 33 

8,4 8,3 7,3 7,2 6,2 6,2 

6 67 62 55 

7:: I 
42 36 32 

9,4 8,4 7,3 6,2 6,2 6,2 



APPENOIX A. RESULTS FROM ANALYSIS 

We summarize some pertinent facts about analytic sets and semi-analytic 

functions. For analytic sets we refer to [Parthasarathy (1967)]. Similar 

summaries are found in [Blackwell,Freedman and Orkin (1974)] and [Shreve 

(1977)J. 

* * 
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Let N be the Cartesian product of countably many copies of JN where JN is 

endowed with the discrete topology and N with the product topoloqy. Let X 

be a complete separable metric space. 

A subset A c X is called anaZytia if there is a continuous function from N 

to X with f(N) = A, moreover ~ is analytic. The following properties hold. 

The proofs are found in [Parthasarathy (1967) chapter I sectien 3]), 

A1 Each Borel subset of a Borel space is analytic. 

A2 Countable unions, intersections and Cartesian products of analytic sets 

are analytic. 

A3 If A and B are analytic subsets of Borel spaces (X,X) and (Y,Y) respect­

ively and if f is a Borel measurable function from X to Y then f(A) 
-1 and f (B) are analytic. 

As a consequence of A3 we have: 

A4 If A is an analytic subset of X x Y then projx(A) is analytic. 

Let (X,Xl be a Borel space. For each p e P(X) we have the cr-field 

XP := {B u AIB € X , and there is a C € X such that A c c and p(C) = 0} • 

'), is called the aorrrp'letion of X with respect to p. The universaZ cr-field 

UX is defined by Ux := n X • A € Ux is called universaZZy measurabZe. 
p€P(Xl P 

A5 Every analytic subset of a Borel space is universally measurable. 

Fora proof see [Christensen (1974) th. 1.5 or th. 1.7]. 

A6 For each probability p e P(X) where (X,X) is a Borel space, there is a 

* unique extension p on UX. And for each real-valued function f on X 

~hich is UX -meas~rable there is for each p € P (X) an X-measurable function 

f such that f = f p-a.s. (the proof is straightforward). 

A7 KUratowski theorem (see [Parthasarathy (1967) chapter I corollary 3.3]). 

If (X,X) and (Y,Y) are Borel spaces and f : x~ Y is Borel measurable 
-1 and one-to-one, then f (X) is a Borel subset of Y and f is Borel 

measurable. 
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Let (X,X) be a Borel-space. A real-valued function f.on X is called Lowep 

aemi-anatytic (l.s.a.) if {xlf(x) < c} is analytic, for c E JR, and fis 

called uppe~ aemi-anatytic {u.s.a.) if -f is l.s.a. 

The following.prQperties hold. 

AS If f and g are l.s.a. (u.s.a.) then f + g is l.s.a. (u.s.a.) If fk• 
k E lN are l.s.a. then i~f fk is l.s.a. and if fk, k E lN are u.s.a. 

t.hen s~p fk is u.s.a. 

Proof. 

Note that; {xlf{x) + g{x) < c} = u {xlf(x) < y, g(x) < c- y} where Q is 
yEQ 

thesetof ratiónal numbers. FUrther {xli~f fk(x) < c} = ~{xlfk(x) < c}. 

so by A2 the statement has· beeri proved for l.s.a. functions. For u.s.a. 

f'unctiorts thë ptoof follows from the definition. 0 

A9 Let. (X,X) and (Y 1 Y) be Borel space, and let g X + 'l be a Borel function 

and fa l.s.a. (u.s •. a.) function on ,y. Then f o gis l.s.a. (u.s.a.). 

Proof. 

Let f be l.s.a. 

Then {ylf(y) < c} is analytic, forcE JR• Hence blf(g(x)) < c} = 
{xlg~:lt) E: .{ylf(:f) <cl} is analytic, byA3. 

Simil~rl:~ if is u.s.a. 0 

A10 Let (x,X) and (Y,Y) be Borel spaces and f : X x Y + JR be bounded from 

abov~ aild measurable /l.s.a./u.s.a. Further let P be a transition prob­

ability from X to Y. Then the fun~tion x + J f{x,y)P{dylx> is measurable/ 

l.s~a./u.s.a. 

Proof. 

U f is l<s.a./u.s.a. the proof can be found in [Shreve {1977) th. 2.4]. 

Note that.a function is measurable if and only if it is both l.s.a. and 

u.s.a., which proves the statement if fis measurable. 0 
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A11 If f is l.s.a. or u.s.a. tben f is universally measurable. 

(the proof is trivial). 

Let X be a metrio space. A real-valued function f on x is called uppe~ semi­

continuous (u.s.c.) at x0 e x if lim sup f(x l s f{x
0

) for any sequence 
n-+<o n 

{x I x e:: x, n e: JN } such that lim x = x
0 

and f is called Zowe~ semi-aontin-
n n n-+<o n 

uous (l.s.c.) if -f is u.s.c. 

A12 Let f be u.s.c. on the metric space x. Then there is a non1ncreasinq 

sequence of bounded continuous functions { fk, k e :N } on x such that 

lim f = f. 
k-+<o k 

For a proof see [Bausdorff {1957) sectien 4.2]. 

A13 If f and q are u.s.c. (l.s.c.) tben f + q is u.s.c. {l.s.c.), If 

{fk' k E:: JN} is a nonincreasing sequence of nonpos1tive u.s.c. func­

tions then f := lim fk is u.s.c. 
k-+<o 

For a proof see [Binderer {1970) page 32]. 

A14 Let 9 be continuous and nonneqative, and let f be u.s.c. {l.s.c.) and 

bounded. Then f·9 is u.s.c. (l.s.c,). 

Fora proof cf. [Binderer {1970) lemma S.S(ii)]. 

AlS Let X and Y be metrio spaces, g a continuous function from X to Y and 

f is u.s.c. (l.s.c.) on Y. Then g .. f is also u.s.c. (l,s.c.). 

Proof. 

Let x
0 

e: x (n e JN) with lim x
0 

= x
0

• Then, since ~ q (x
0

) "' q (x0 l : 

n-+<o ···-
lim sup f(q(x

0
)) s f{g(x

0
)). 

n-+<o 
0 

A16 Let A be an index set and let fk, k e A be l~s.c. Then sup fk is l.s.c. 
kE::A 

If fk' k E: A is u.s.c. then inf fk is u.s.c. 
keA 

Proof. 

Let x E x, n e JN and lim x
0 

= x0• Then 
n n-+<o 

lim inf sup fk{x
0

) ~ lim inf fk(x
0

) ~ fk(x0) for all k E:: A. 
n..- keA n-+<o 

0 
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We continue with a result of Schäl on measurable selections. We first intro­

duce some notations. 

Let (X,X) and (A,A) be Borel spaces. 

L(X x A) := {f: X x A+ IRI fis bounded Borel measurable and a+ f(x,a) is 

continuous}. 

L(X x A) := {f: X x A+ IRI fis Borel measurable, bounded from above and 

fis the limit of some nonincreasinq sequence of functions fn € L(X x A)}. 

A17 Let A be compact and f € L(X x A). Then there is a measurable mapping 

q : X + A such that 

f(x,g(x)) = max f(x,a} • 
a€A 

For a proof see [Schäl (1975) th. 12.1]. 
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APPENVIX B. REMARKS ON THE MINIMAX CRITERION 

consider the Bayesian control model (cf. 2.1). Insteadof rating the 

strategies n E rr by their Bayesian discounted total returns (cf 2.12) we 

* might say n is at least as good as n in state x, if 

inf v(x,e,n*> ;::: inf v(x,e,n) • 
6E8 6E8 

Let & ;::: 0. A strategy n* E rr is called e-minimar in state x E x, if 

inf v(x,e,n*> ;::: sup inf v(x,e,n) - e • 
6E8 nEll 6E8 

A 0-minimax strategy is simply called minimar. 

A term "maximin" would be preferable, however in statistical decision theory 

the term "minimax" is current since one is interested in minimizing the ex­

pected loss insteadof maximizing the expected return (cf. [Wald (1947)]). 

We shall discuss a nice property of the Bayes criterion, which the minimax 

criterion does not have. Let n 

the Bayes criterion, if the process is started in state x E X and if 

q E Wis the prior distribution. Let the history at stage 1 be (x,a,y,x') EH1 
* * * and define similar to 3.22 the "tail-strategy" n = (n0 ,n 1, ••• ) by 

* for k E JN. Then it is easy to verify that the strategy n is optimal for 

the Bayes criterion if the process is started in x' with respect to the 

prior distribution EiEI 1Ki (x,a)Ti,y(q). 

Hence the decision maker, who chooses a strategy that is optimal for the 

Bayes criterion, uses at each stage a strategy that is optimal for the Bayes 

criterion from that stage on, with respect to an "updated" prior distribution. 

In fact this property is the well-known "principle of optimality", for the 

equivalent dynamic program (model 2). In [Groenewegen (1978)] this principle 

is studied extensively • The property discuseed above, enables us to compute 

the value function and the optimal actions by backward induction. 

However, we show by an example that the minimax criterion does not have this 

property. A decision maker, who prefers the minimax criterion might be con­

sidered as a pessimist. However in the example he seems to forget his pes­

simism after one transition. 

Another unpleasant property of the minimax criterion is that we may not 
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restriet our attention to the nonrandomized strategies. In the example it 

turns out that none of the nonrandomized strategies is optimal. 

Bxample. 

0 

We start with an informal description. 

Only in states 0 and 1 there are two 

actions. In all other states the tran­

sitions are deterministic. If the decision 

maker chooses action 1 in state 0 then the 

next state will be 1 with probability e 
and 2 wi th probabili ty 1 - e. If he 

chooses action 2, then the system moves to state 1 with probability 1 - e 
and to state 2 with probability e. In state 1 the two actions have the same 

effect with respect to the states 3 and 4. The parameter e is unknown. In 

state 2 the reward is large compared with the rewards in the other states. 

This causes the "least favourable" parameter value for each strategy to 

be completely determined by the action chosen in state O, if he starts there. 

We continue with a formal description of the example in terms of model 1. 

X= {0,1,2 1 3,4}, Y = {0,1}, A= {1,2}, D(O) = D(l) =A, 0(3) = D(2) = 
= D(4) = {1}, e = {0.1,0.9} and I is a singleton. The transition probab-

ilities are determined by a 

way P({F(x,a,y)}jx,a,y) = 1 

F(O,l,y) lö(l,y) + 2ê(O,y) 

function F : X x A x Y + X in the following 

{cf. example 2.3 chapter 1): 

F(0,2,y) = 2ê(l,y) + lê(O,y) 

F(l,l,y) 3ö(1,y) + 4ö(O,y), F(1,2,y) = 4ö(1,y) + 3Ö(O,y) and F(2,1,y) 

F(3,1,y) = 3, F(4,1,y) = 4 for all y e Y. 

Further p(yj6) = aY(l - S)l-y for y e Y and 6 e e. 

The reward function r is gi ven by 

r(O,l,y) 8, r(0,2,y} = 1, r(l,l,y) = 25, r(1,2,y) = 20 

4, 

r(2,1,y) 200, r(3,1,y) 2, r(4,1,y) = 14 for all y e Y, and the discount 

factor a ~. We omit y in the notatien for r. First we consider a decision 

maker who starts in state 0. Any strategy for him can be characterized by 

three numbers a, b, and c. Here a is the probability of choosing action 1 

in state 0, b the probability of choosing 1 in state 1 if in state 0 action 

1 is chosen, and c is the probability of choosing action 1 in state 1 if in 

state 0 action 2 is chosen. 

Let v(0,6,(a,b,c)) be the expected discounted total return in state 0 for 

the strategy given by a, b and c, if e is the true parameter value. It is 
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straightforward to verify that 

a v(O,a, (a,b,c)) 

0.1 a(0.73b- 6.57c + 83.32) + 6.57c + 22.14 

0.9 a(-2.07b + 0.23c - 65.48) - 0.23c + 98.94 

Note that, for fixed b and c, the maximum over a € [0,1] of min v(O,e, (a,b,c)) 

is attained for 6€8 

76.8 - 6.8c 
a = 148.8 - 6.8c + 2.8b 

and 

f(b,c) := max min v(O,e,(a,b,cll = 148~:·~ ~.:~8~ 2•8b(0.73b-6.57c+83.32)+ 
a e 

+ 6.57c + 22.14 • 

[ 
2 

Further note that f(b,c) attains its maximum over (b,c) € 0,1] in a bound-

ary point. It turns out that the optimal pair (b,c) is (0,1), and 

f(0,1) = 65.54 •••• 

Hence the optimal strategy is: a= 0.49 ••• , b = 0 and c = 1. 

It is easy to verify that all nonrandomized strateqies are less qood than 

this strategy. 

Next we consider the minimax strateqy for the situation that a secend deci­

aion maker starts in state 1. Suppose this secend decision maker has 

the same information concerning the unknown parameter as the first decision 

maker, i.e. he performa a Bernoulli trial with parameter e. Hence he works 

with the conditional distribution, given this observation. However, since 

this experiment is independent of the process, it does not change the tran­

sition law for the second decision maker. 

(Note that if the parameter set would be { 0 1 1} then the observation of the 

experiment would reduce the parameter set to a singleton.) 

The strategies for the secend decision maker are characterized by the prob­

ability dof choosing action 1. Note that 

e v(1,e,(dll 

0.1 37.8d + 23.2(1 - dl 

0.9 28.2d + 32.8(1 - d) 
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Hence the optimal strategy is: d = ~. 
So, if the first decision maker reaches state 1, he does not randomi~e but he 

chooses action 2 if he has chosen action 1 in state 0, otherwise he chooses 

action 1, and the secend decision maker randomi~es between the two actions 

with probability ~. The first decision maker acts in state 1 as if he knows 

the true parameter in state 1. 
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SAMENVATTING 

In dit proefschrift wordt een onderzoek naar Markov beslissingsprocessen 

met een discrete tijdsvariabele en een onvolledig bekend overgangsmecha­

nisme beschreven. 

Alvorens de resultaten van dit onderzoek te bespreken wordt een schets van 

het bestudeerde model gegeven. 

Beschouw een systeem bestaande uit een toestandsruimte x, een supplementaire 

toestandsruimte Y en een actieruimte A. De onbekendheid van het overgangs­

mechanisme wordt tot uiting gebracht door een parameter e € a. 
Voor de eenvoud wordt in deze samenvatting verondersteld dat de verzamelingen 

x, Y, A en 6 eindig zijn. Op tijdstip n e: ~ is de toestand van het systeem 

xn, de supplementaire toestand Yn en de actie An. Het overgangsmechanisme 

heeft de gedaante 

x'lx=x,A 
n n 

x,x' e: X, y e: Y, a e: A, e
1 

e: 6i en a 

a] P(x'lx,a,y) ~ 1K (x,a)pi(ylei) 
ie:I i 

Bierbij is P een overgangswaarschijnlijkheid van X x A x Y naar x, I een 

index verzameling, {Ki' ie: I} een partitie van X x A en y ~ pi(ylei) een 

kansdichtheid op Y voor alle i e: I en ei e: ai. Hoewel dit overgangsmechanis­

me op het eerste gezicht nogal bijzonder lijkt zijn veel bekende modellen op 

deze wijze te formuleren. Bijvoorbeeld Markov beslissingsprocessen met af­

telbare toestands- en actieruimten en volledig onbekende overgangswaarschijn­

lijkheden, voorraad modellen met onbekende vraag-verdeling en lineaire sys­

temen met stochastische storing waarvan de verdeling onbekend is, kunnen op 

deze wijze geformuleerd worden. 

Verder is er een opbrengst functie r: X x A x Y ~JR. Een strategie~ is 

een voorschrift waarmee op ieder tijdstip n e: ~ een actie An e: A geselec­

teerd wordt, slechts gebruikmakend van de historie van het proces tot tijd­

stip n: x
0

,A0 ,Y
1
,x1,A1, ••• ,Yn,Xn. Iedere strategie~, starttoestand x e: X 

en parameter e e: e bepalen een kansmaat en daarmee de verwachte opbrengst 
~ 

op tijdstip n: JE e[r(X ,A ,Y 1> J. 
x, n n n+ 

Daar deze grootheid nog van een onbekende parameter afhangt wordt er een 

kansverdeling q op a gekozen. Deze kansverdeling kan volgens de Bayesiaanse 

methode beschouwd worden ala een a priori~verdeling en volgens de beslissinga­

theoretische ~thode als een gewichtsfunctie, die het belang weergeeft dat 
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de bestuurder van het systeem aan de verschillende pararoeter waarden hecht. 

om strategieën met elkaar te vergelijken worden twee criteria gehanteerd: 

(i) de totale verdisconteerde opbrengst van een strategie ~ bij start in 

x.;; x 

00 

v(x,q,~) := L an{ L q(6) JE~ e[r(X ,A ,y +1)]} , 
n=O 6€1:1 x, n n n 

a € [o,1> 

(ii) de gemiddelde opbrengst van een strategie ~ bij start in x € X: 

N-1 
lim inf -N

1 Z: { L q(6) JE~ 6[r(x ,A ,Y 1J]} • 
~ n=O 6E9 x, n n n+ 

De onbekende parameter kan nu beschouwd worden als een stochastische groot­

heid Z met kansverdeling q. Het beslissingsproces blijkt equivalent te zijn 

met een Markov beslissingsproces (ook wel dynamisch programma genoemd) met 

een bekend kansmechanisme, een toestandsruimte x x w en een actieruimte A, 

waarbij W de verzameling van alle kansverdelingen op 9 is. Op tijdstip n E JN 

is de toestand van dit equivalente systeem (Xn,Qn) waarbij xn de toestand 

van het oorspronkelijke systeem is en ~ de a posteriori verdeling van z is, 

d.w.z. de voorwaardelijke verdeling van z gegeven (x0 ,A0 ,Y1,x1,A1 , ••• ,Yn,Xn). 

In hoofdstuk 2 wordt een formele definitie van het model gegeven. Hierbij 

zijn x, Y, A en 8 Borel deelverzamelingen van volledige separabele metrische 

ruimten. Verder wordt in hoofdstuk 2 het proces van a posteriori-verdelingen 

bestudeerd. Het blijkt dat deze a posteriori-verdelingen met kans 1 conver­

geren naar de verdeling op e die geconcentreerd is in het punt z, indien 

met kans 1 iedere verzameling Ki' i € I oneindig vaak bezocht wordt door het .. 
systeem (d.w.z. tn=O 1K (Xn,An) =""met kans 1 voor alle i € I). Dit resul-

taat wordt in hoofdstuki4 gebruikt om te bewijzen dat bepaalde strategieën 

optimaal zijn en in hoofdstuk 6 om de convergentie van approximatie methoden 

te bewijzen. 

In hoofdstuk 3 worden twee nogal technische onderwerpen behandeld. In de 

eerste plaats wordt hier de reeds genoemde equivalentie met een t~rkov be­

slissingsproces met bekend kansmechanisme bewezen. Vervolgens wordt een 

klasse van successieve-approximatie operatoren voor algemene Markov be­

slissingsprocessen bestudeerd. van deze operatoren worden enige nieuwe eigen­

schappen afgeleid die later, in hoofdstuk 6 gebruikt worden. 

In hoofdstuk 4 worden eenvoudig te hanteren strategieën geconstrueerd die, 

onder enige recurrentie voorwaarden, optimaal zijn voor het gemiddelde op-
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brengsten criterium. Bij deze strategieën moet de bestuurder op ieder tijd­

stip n € ~ een actie kiezen die de functie a+ E
6 

a Q (6)F(X ,e,a) maxi-
€<> n n 

malizeert. Hier is F : X x a x A + lR een functie met de eigenschap dat 

een strategie die in elke toestand x € X een a(x) € A kiest zodanig dat 

F(x,9,a(x)) ~ F(x,6,a) voor alle a € A,optimaal is, als de parameter 6 € a 
bekend is. Deze strategieën worden "Bayesian equivalent rules" genoemd. In 

de bestudeerde gevallen is zo'n functie F steeds eenvoudig te bepalen. 

In hoofdstuk 5 worden voor drie speciale modellen Bayesian equivalent rules 

geconstrueerd die optimaal zijn met betrekking tot het totale verdisconteerde 

opbrengsten criterium. Een van deze modellen is het lineaire systeem met 

kwadratische kosten en storing met onbekende verdeling. Een ander model 

is een eenvoudig voorraad model waarbij de verdeling van de vraag onbekend 

is. Hier wordt ook een schatting gegeven van het verlies dat geleden wordt 

als de Bayesian equivalent rule gebruikt wordt terwijl deze niet optimaal 

is. 

In hoofdstuk 6 worden approximaties van de criterium functie V voor het 

totale verdisconteerde opbrengsten criterium afgeleid. Hierbij is 

V(x,q) := sup v(x,q,TT), 
TT 

x € x, q € w . 

Er worden onder- en bovengrenzen voor V gegeven. En voor speciaal gestruc­

tureerde modellen worden deze gebruikt om successieve approximaties van 

V(x,q), voor een vaste q € w, te krijgen met iedere gewenste nauwkeurig­

heid. De convergentie van de successieve approximaties berust mede op de 

convergentie van de a posteriori verdelingen. 

Tenslotte worden approximaties gegeven voor lv(x,q) - V(x,~) I waarbij q een 

willekeurige a priori-verdeling is en ~ een discretizering van q is, d.w.z. 

9 wordt opgesplitst in een eindige partitie B1 , ••• ,Bk, in elke verzameling 

Bj wordt een representant ej gekozen en dan wordt ~({ej}) := q(Bj) gede­

finieerd, j 1, ••• ,k. 

In hoofdstuk 7 worden algorithmen gegeven die gebaseerd zijn op de approxi­

maties die in hoofdstuk 6 zijn Çehandeld en er wordt aan de hand van een 

aantal numerieke voorbeelden aangetoond dat deze approximatiemethoden effi­

ciënt zijn. Met deze methoden kunnen veel grotere problemen behandeld wor­

den dan met de in de literatuur bekende methoden, althans voor speciaal ge­

structureerde modellen. 
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Stellingen 

bij het proefschr.tft 

Bayesian control of Markov chains 

van 

* K.M. van Hee 

Beschouw een dynamisch programma in de zin van sectie 3.2 van dit proef­

schrift, met Borel deelverzamelingen van volledige separabele metrische 

ruimten als toestands- en actieruimten. 

Indien voor elke starttoestand het supremum over alle zuivere Markov 

strategieën van de verwachte som der positieve opbrengsten eindig is, dan 

is het supramum over de zuivere Markov strategieën van de verwachte som 

der opbrengsten gelijk aan het supremum over alle strategieën. 

ref. [5]. 

2 

Voor het benaderen van de optimale-waarde functie van een optimaal-stop 

probleem voor een Markov keten, convergeert de strategie-verbeterings­

metbode van Howard soms ook in situaties waar niet voldaan is aan condities 

die convergentie van deze methode garanderen voor dynamische programma's 

in het algemeen. 

ref. [1], [7]. 

*<referenties zijn na stelling 14 vermeld) 
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Beschouw een dynamisch programma met een aftelbare toestandsruimte X, een 

willekeurige actieruimte A (voorzien van een a-algebra die de één-punts­

verzamelingen omvat) en eenovergangswaarschijnlijkheid P van X x A naar A. 

Laat F := {f I f : X + A} en laat voor f ~ F de overgangswaarschijnlijk­

heid P f van X naar X gedefinieerd zijn door P f (x' I x) := P (x' I x, f (x)), 

x, x' ~ X. 

Als voor een positieve functie ~ op X geldt 

en 

n 
(Pf~)(x) 

P := sup limsup sup < 1 
f~F n +o:> XEX ).1 (x) 

sup sup 
fEF XEX 

(Pfl!) (x) 

ll (x) 
< "' , 

dan is er voor iedere e > 0 een positieve functie v op X en een positief 

getal M zodanig dat voor alle x E X 

(i) (p+e)v(x) <: sup (Pfv)(x) 
fEF 

(ii) ll (x) ::;; v (x) ::;; M\1 (x) • 

ref. [4]. 

4 

voor een dynamisch programma met een aftelbare toestandsruimte x en een 

willekeurige actieruimte (voorzien van een cr-algebra die de één-punts­

verzamelingen omvat) bestaat er een sterk excessieve functie dan en 

slechts dan indien er een partitie {~, k E Z} van X is en er reële getal­

len a > 1, 6 2: 1 zijn, zodanig dat onder elke zuivere Markov strategie het 
t-k verwachte aantal bezoeken aan Xk bij start Xt ten hoogste 6 min{ 1 ,a } 

bedraagt, voor alle k € Z, t E z. (Z is de verzameling der gehele getallen.) 

ref. [4]. 

5 

Beschouw het dynamische programma dat gedefinieerd is in 3.1 van dit 

proefschrift. Laat toe dat de opbrengstfunctie r onbegrensd is en dat de 

verdisconteringsfactor 6 = 1. Veronderstel echter dat er aan een sterke 

convergentievoorwaarde is voldaan, d.w.z. dat er een rij niet-dalende 



functies a : S + [l,co} n E lN is, zodanig dat lim a (s) co en 
n n-rco n 

sup 
1TEM 

JE1T 
s 

.. 
[I a (s) lr(S ,A) IJ< oo, voor alles € s, 

n=O n n n 

waarbij M de verzameling der zuivere Markov strategieên is. 

Laat v de waardefunctie zijn, laat T een stoptijd zijn als in 3.12 en laat 

u, de optimalizeringsoperator zijn gedefinieerd in 3.16. 

Als T(w} ~ 1 voor alle wE Q, dan geldt 

lim (UnO)(s) = v(s), voor alles ES. 
T 

ref. [3]. 

6 

Omdat contraherende dynamische programma's aan een sterke convergentie­

voorwaarde (zie stelling 5) voldoen, kan convergentie der successieve 

approximaties van de waardefunctie eenvoudig bewezen worden zonder gebruik 

te maken van de contractiestelling van Banach en bovendien voor een ruimere 

klasse van startfuncties. 

ref. [3]. 

7 

voor dynamische programma's met een aftelbare toestandsruimte en een wille­

keurige actieruimte (voorzien van een o-algebra die de één-puntsverzame­

lingen omvat), die aan een sterke convergentievoorwaarde voldoen (zie 

stelling 5}, convergeert de strategie-verbeteringamethode van Howard en dus 

bestaan er voor elke starttoestand e-optimale stationaire strategieën. 

ref. [2], [7]. 

8 

LaatBeen M x N-matrix zijn en p
1

, ••• ,pN getallen uit het interval (0,1}. 

Dan geldt 
n 

I 
k=O 



is niet-stijgend in n (n € lN, n -+- "'), met limiet 

N 
L min B{j,i} • 

i=l l!Sj !SM 

9 

Uit de definities van Parthasarathy en Binderer blijkt dat de term 

"standaard Borel ruimte" niet standaard is. 

ref. [6], [8]. 

10 

Het is noodzakelijk dat technieken voor het simuleren van stochastische 

systemen opgenomen worden in het onderwijs aan hen die zich later als 

besliskundigen wensen te beschouwen. 

11 

De toepasbaarheid van wiskundige resultaten neemt toe naarmate deze in meer 

algemene modellen worden bewezen, terwijl de toegankelijkheid en daarmee 

het gebruik, afneemt. 

12 

Het is inconsequent dat voor het geven van onderwijs op middelbaar niveau 

een certificaat van vak-didactische bekwaamheid nodig is, terwijl zo'n 

certificaat niet vereist is voor het geven van wetenschappelijk onderwijs. 

13 

Dat y-wetenschappers vaak slecht met wiskundige methoden omgaan, is niet in 

de laatste plaats te wijten aan het feit dat zij doorgaans door vakgenoten 

in plaats van vaklieden in deze methoden opgeleid zijn. 

14 

Een democratisch stelsel dient voorzien te zijn van een grondwet die uit­

sluit dat door democratische besluitvorming de democratie wordt opgeheven. 
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