

Towards an evaluation framework for process mining
algorithms
Citation for published version (APA):
Rozinat, A., Alves De Medeiros, A. K., Günther, C. W., Weijters, A. J. M. M., & Aalst, van der, W. M. P. (2007).
Towards an evaluation framework for process mining algorithms. (BETA publicatie : working papers; Vol. 224).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/1912be10-daf6-45bc-8701-bb59ef4563f8

Towards an Evaluation Framework for Process
Mining Algorithms

A. Rozinat, A.K. Alves de Medeiros, C.W. Günther, A.J.M.M. Weijters, and
W.M.P. van der Aalst

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{a.rozinat,a.k.medeiros,c.w.gunther,a.j.m.m.weijters,
w.m.p.v.d.aalst}@tue.nl

Abstract. Although there has been a lot of progress in developing pro-
cess mining algorithms in recent years, no effort has been put in devel-
oping a common means of assessing the quality of the models discovered
by these algorithms. In this paper, we outline elements of an evaluation
framework that is intended to enable (a) process mining researchers to
compare the performance of their algorithms, and (b) end users to evalu-
ate the validity of their process mining results. Furthermore, we describe
two possible approaches to evaluate a discovered model (i) using existing
comparison metrics that have been developed by the process mining re-
search community, and (ii) based on the so-called k-fold-cross validation
known from the machine learning community. To illustrate the applica-
tion of these two approaches, we compared a set of models discovered by
different algorithms based on a simple example log.

1 Introduction

Process mining has proven to be a valuable approach that provides new and
objective insights into the way business processes are actually conducted within
organizations. Taking a set of real executions (the so-called “event log”) as the
starting point, these techniques attempt to extract non-trivial and useful process
information from various perspectives, such as control flow, data flow, organi-
zational structures, and performance characteristics. A common mining XML
(MXML) log format was defined in [5] to enable researchers and practitioners
to share their logs in a standardized way. However, while process mining has
reached a certain level of maturity and has been used in a variety of real-life
case studies (see [3, 25] for two examples), a common framework to evaluate
process mining results is still lacking. We believe that there is the need for a
concrete framework that enables (a) process mining researchers to compare the
performance of their algorithms, and (b) end users to evaluate the validity of
their process mining results. This paper is a first step into this direction.

The driving element in the process mining domain is some operational pro-
cess, for example a business process such as an insurance claim handling proce-
dure in an insurance company, or the booking process of a travel agency. Nowa-
days, many business processes are supported by information systems that help

coordinating the steps that need to be performed in the course of the process.
Workflow systems, for example, assign work items to employees according to
their roles and the status of the process. Typically, these systems record events
related to the activities that are performed, e.g., in audit trails or transaction
logs [5].1 These event logs form the input for process mining algorithms.

In this paper we focus on providing a means of comparison for algorithms
that discover the control-flow perspective of a process (which we simply refer to as
process discovery algorithms from now on). In particular, we focus on validation
techniques for these process discovery algorithms. We argue that this evaluation
can take place in different dimensions, and we describe two different validation
approaches: one based on existing validation metrics, and another based on the
so-called k-fold cross validation technique known from the machine learning do-
main. To directly support the evaluation and comparison of different mining
results (both for researchers and end users), we have implemented an extensible
Control Flow Benchmark plug-in in the context of the ProM framework2.

The remainder of this paper is organized as follows. Section 2 motivates the
need for an evaluation framework. Then, Section 3 outlines first steps towards
such a common framework. Subsequently, two different evaluation approaches
are described and illustrated based on the running example in Section 4 and in
Section 5. Finally, Section 6 presents the Control Flow Benchmark plug-in in
ProM, and the paper concludes. Related work is reviewed throughout the paper
and, therefore, not provided in a separate section.

2 Process Discovery: Which Model is the “Best”?

The goal of a process discovery algorithm is to construct a process model which
reflects the behavior that has been observed in the event log. Different process
modeling languages3 can be used to capture the causal relationships of the steps,
or activities, in the process. The idea of applying process mining in the context
of workflow management was first introduced in [8]. Over the last decade many
process mining approaches have been proposed [10, 18]. For more information on
process mining we refer to a special issue of Computers in Industry on process
mining [6] and a survey paper [5]. While all these approaches aim at the discovery
of a “good” process model, often targeting particular challenges (e.g., the mining
of loops, or duplicate tasks), they have their limitations and many different event
logs and quality measurements are used. Hence, no standard measure is available.
1 It is important to note that information systems that do not enforce users to follow

a particular process often still provide detailed event logs, e.g., hospital information
systems, ERP systems etc.

2 ProM offers a wide range of tools related to process mining and process analysis.
Both documentation and software (including the source code) can be downloaded
from http://www.processmining.org.

3 In the remainder of this paper we will use Petri nets, motivated by their formal
semantics. Note that in our tool ProM there exist translations from process modeling
languages such as EPC, YAWL, and BPEL to Petri nets and vice-versa.

2

I

H
C

B
A

G

F

E

D

H

A

B

D

D
E

I
C

G
H F

A
B D

E
I

C G
H

F

(b) Heuristic Miner

(d) Duplicates
 Genetic Miner

(f) Petrify Miner

A
B D E

I
C G H F

A
B D

E
I

C G H

F

A
B

D E
IC

G
H

F

(a) Alpha Miner

(c) Alpha++ Miner

(e) Genetic Miner

Fig. 1. Process models that were discovered by different process discovery algorithms
based on the same log

To illustrate the dilemma, we consider a simple example log, which only
contains the following five different traces: ABDEI, ACDGHFI, ACGDHFI,
ACHDFI, and ACDHFI. We applied six different process mining algorithms
that are available in ProM and obtained six different process models (for ev-
ery plug-in, we used the default settings in ProM 4.1). Figure 1 depicts the
mining results for the Alpha miner [7], the Heuristic miner [27], the Alpha++
miner [29], the Duplicates Genetic miner and the Genetics miner [12], and
the Petrify miner [4]. The models seem similar, but are all different4. Are they
equivalent? If not, which one is the “best”?

These questions are interesting both for researchers and end users: (a) Re-
searchers typically attempt to let their process discovery algorithms construct
process models that completely and precisely reflect the observed behavior in a
structurally suitable way. It would be useful to have common data sets contain-
ing logs with different characteristics, which can be used within the scientific
community to systematically compare the performance of various algorithms in
different, controlled environments. (b) Users of process discovery techniques, on
the other hand, need to know how well the discovered model describes reality,
how many cases are actually covered by the generated process description etc.
For example, if in an organization process mining is to be used as a knowledge
discovery tool in the context of a Business Process Intelligence (BPI) frame-
work, it must be possible to estimate the “accuracy” of a discovered model, i.e.,
the “confidence” with which it reflects the underlying process. Furthermore, end
users need to be able to compare the results obtained from different process
discovery algorithms.

4 Note that throughout this paper the invisible (i.e., unlabeled) tasks need to be
interpreted using the so-called “lazy semantics”, i.e., they are only fired if they
enable a succeeding, visible task [12].

3

3 Towards a Common Evaluation Framework

In an experimental setting, we usually know the original model that was used
to generate an event log. For example, the log in Figure 2(a) was created from
the simulation of the process model depicted in Figure 2(b). Knowing this, one
could leverage process equivalence notions to evaluate the discovered model with
respect to the original model [1]. But in many practical situations no original
model is available. However, if we assume that the behavior observed in the
log is what really happened (and somehow representative for the operational
process at hand), it is possible to compare the discovered model to the event log
that was used as input for the discovery algorithm. This essentially results in a
conformance analysis problem [24, 11]. In either case quality criteria need to be
determined.

In the remainder of this section, we first consider a number of evaluation
dimensions (Section 3.1). Afterwards, we outline ingredients of a possible evalu-
ation framework (Section 3.2).

3.1 Evaluation Dimensions

Figure 2 depicts an event log (a) and four different process models (b-e). While
Figure 2(b) depicts a “good” model for the event log in Figure 2(a), the remaining
three models show undesirable, extreme models that might also be returned by
a process mining algorithm. They illustrate that the evaluation of an event log
and a process model can take place in different, orthogonal dimensions.

Fig. 2. The evaluation of a process model can take place in different dimensions

4

Fitness. The first dimension is fitness, which indicates how much of the
observed behavior is captured by (i.e., “fits”) the process model. For example,
the model in Figure 2(c) is only able to reproduce the sequence ABDEI, but not
the other sequences in the log. Therefore, its fitness is poor.

Precision. The second dimension addresses overly general models. For ex-
ample, the model in Figure 2(d) allows for the execution of activities A – I in
any order (i.e., also the sequences in the log). Therefore, the fitness is good,
but the precision is poor. Note that the model in Figure 2(b) is also considered
to be a precise model, although it additionally allows for the trace ACGHDFI
(which is not in the log). Because the number of possible sequences generated
by a process model may grow exponentially, it is not likely that all the possi-
ble behavior has been observed in a log. Therefore, process mining techniques
strive for weakening the notion of completeness (i.e., the amount of information
a log needs to contain to be able to rediscover the underlying process [7]). For
example, they want to detect parallel tasks without the need to observe every
possible interleaving between them.

Generalization. The third dimension addresses overly precise models. For
example, the model in Figure 2(e) only allows for exactly the five sequences
from the log5. In contrast to the model in Figure 2(b), which also allows for the
trace ACGHDFI, no generalization was performed in the model in Figure 2(e).
To determine the right level of generalization remains a challenge, especially
when dealing with logs that contain noise (i.e., distorted data). Similarly, in the
context of more unstructured and/or flexible processes, it is essential to further
abstract from less important behavior (i.e., restriction rather than generaliza-
tion). In general, abstraction can lead to the omission of connections between
activities, which could mean lower precision or lower fitness (e.g., only captur-
ing the most frequent paths). Furthermore, steps in the process could be left
out completely. Therefore, abstraction must be seen as a different evaluation
dimension, which needs to be balanced against precision and fitness.

Structure. The last dimension is the structure of a process model, which is
determined by the vocabulary of the modeling language (e.g., routing nodes with
AND and XOR semantics). Often there are several syntactic ways to express the
same behavior, and there may be “preferred” and “less suitable” representations.
For example, the fitness and precision of the model in Figure 2(e) are good, but
it contains many duplicate tasks, which makes it difficult to read. Clearly, this
evaluation dimension highly depends on the process modeling formalism, and is
difficult to assess in an objective way as it relates to human modeling capabilities.

3.2 Evaluation Framework

Currently, process mining researchers are forced to implement their custom, ad-
hoc simulation environments to generate process models and/or logs that can

5 Note that—unlike in the log shown in Figure 2(a)—in real-life logs there are often
traces that are unique. Therefore, it is unlikely that the log contains all possible
traces and generalization is essential.

5

then be used to evaluate their mining approach, or to compare their approach
to other mining approaches (see [28] and [22] for examples). In the remainder of
this section we identify elements that are relevant in the context of a common
evaluation framework (cf. Figure 3).

Repository

Process Models

Event Logs

Negative
Examples

Discovered
Model

Positive
Examples

Reference
Model

Modification
Tools

Process
Discovery

Log
Generation

Verification
Tools

Evaluation and Comparison

Approach using Metrics Machine Learning Approach

Section 4 Section 5

Fig. 3. Outline of a possible evaluation framework

Repository. To systematically compare process mining algorithms, there
should be common data sets, which can be used and extended by different re-
searchers to “benchmark” their algorithms on a per-dataset basis. For instance,
in the machine learning community there are well know data sets (e.g., the UCI
Machine Learning Repository, CMU NN-Bench Collection, Proben1, StatLog,
ELENA-data, etc.) that can be used for testing and comparing different tech-
niques. Such a process mining repository would consist of a collection of Event
Logs and Process Models, and should also provide information about the pro-
cess or log characteristics as these may pose special challenges. Furthermore, the
results of an evaluation could be stored for later reference.

Log Generation. At the same time it is necessary to be able to influence
both the process and log characteristics. For example, one might want to generate
an event log containing noise (i.e., distorting the logged information), or a certain
timing behavior (some activities taking more time than others), from a given
model. For log generation, simulation tools such as CPN Tools can be used.
Note that we developed ML functions to generate MXML logs in CPN Tools
[13]. Moreover, a CPN Export plug-in in ProM can be used to extend a Petri
net process model with certain data, time, and resource characteristics, and to

6

automatically generate a Colored Petri net including the monitors necessary to
generate logs during simulation in CPN Tools [26]. Another example for log
generation is the generation of “forbidden” scenarios (i.e., negative examples) as
a complement to the actual execution log (i.e., positive examples).

Modification and Verification Tools. Furthermore, it is necessary to ver-
ify certain properties with respect to event logs or process models. For example,
assumptions such as the absence of duplicate tasks in the model must be checked
to ensure the validity of a certain evaluation metric (see also Section 4), or the
completeness of the log needs to be ensured before starting the process discov-
ery algorithm. Finally, the modification of event logs or process models might be
necessary to, e.g., generate “noisy” logs (to test the performance of the process
mining algorithm on distorted data), add artificial start and end activities (to
fulfill certain pre-conditions), or the log needs to be split up into training and
test set (see also Section 5).

Evaluation and Comparison. Clearly, there may be many different ap-
proaches for evaluation and comparison of the discovered process models. This is
indicated by the lower half of Figure 3 and the remainder of this paper will focus
on this aspect. As a first step, we looked at existing work both in the process min-
ing and data mining domain, and describe two different evaluation approaches.
In the first approach (Section 4), the quality of the discovered model is directly
evaluated using existing validation metrics. Some of these metrics make use of
a reference model (i.e., the model that was used to generate the event log). The
second approach (Section 5) is based on evaluation techniques known from the
machine learning domain, where a part of the input data is held back for eval-
uation purposes. Furthermore, it uses negative examples to punish over-general
models.

4 Approach using Metrics

Process mining literature describes several measures to assess the quality of
a model. In the desire to discover a “good” model for the behavior observed
in the execution log, shared notions of, e.g., fitness, precision and structure
have been developed. Naturally, these quality measures can be used to evaluate
and compare discovered process models. They are typically applied in a specific
mining context, i.e., assumptions are made with respect to the corresponding
mining algorithm. However, these assumptions do not need to be relevant for the
applicability of the defined validation metrics, and, therefore, it is interesting to
investigate to which extent these metrics can be used in a more general evaluation
setting.

In the remainder of this section, we first review existing metrics that have
been used by different authors to validate the quality of their (mined) models
(Section 4.1). Here the dimensions defined in Section 3.1 are used to structure
the review. Then, we calculate some of these metrics for the process models
shown in Figure 1 (Section 4.2).

7

4.1 Review of Existing Metrics

To provide an overview about the reviewed validation metrics in the process
mining area, Table 1 summarizes the following aspects:

– Which of the dimensions, i.e., fitness, precision, generalization, and structure
(cf. Section 3.1), are addressed by this metric?

– Which input is required to calculate the metric (reference log and/or refer-
ence model)?

– What is the output value range?
– What is the computational complexity? Here, we give a rough indication

based on whether the state space of the model needs to be explored (−),
some form of log replay is performed (+/−), or purely structural aspects of
the model need to be considered (+).

– For which process model type is the metric defined?
– Is it already implemented in the ProM framework?
– Which further assumptions need to hold to calculate the metric, or to obtain

a valid result?

In the following, we briefly review the metrics listed in Table 1 (for further
details the interested reader is kindly referred to the cited papers).

Metrics to quantify fitness. Fitness refers to how much behavior in a log
is correctly captured (or can be reproduced) by a model. From literature, we
identified five metrics that relate to the fitness dimension: Completeness (both
completeness [17] and PF complete [12]), Fitness (f) [24], Parsing Measure (PM)
and Continuous Parsing Measure (CPM) [28]. All these metrics are based on
replaying logs in process models and they mainly differ in what they consider to
be the “unit of behavior”.

– For the metrics completeness and PM, the trace is the unit of behavior. Both
metrics quantify which percentage of the traces in a log can also be generated
by a model. For the remaining three metrics (CPM, f , and PF complete), both
traces and tasks are units of behavior. The metric CPM gives equal importance
to the total number of correctly replayed traces and the total number of
correctly replayed tasks.

– The metric f is more fine-grained than the metric CPM because it also con-
siders which problems (missing and remaining tokens) happened during the
log replay. This way, it equally punishes problems of events that cannot be
replayed as the corresponding activity is “not activated”, and the problem
of activities that “remain activated” in an improper way.

– The metric PF complete is very similar to the metric f , but it also takes into
account trace frequencies when weighing the problems during the log replay.
Consequently, problems in low-frequent traces become less important than
problems in traces that are very frequent in the log.

8

T
a
b
le

1
.
O

ve
rv

ie
w

of
ex

is
ti
n
g

va
li
d
at

io
n

m
et

ri
cs

in
th

e
p
ro

ce
ss

m
in

in
g

ar
ea

A
u
th

or
s

M
et

ri
cs

D
im

en
si

on
s

R
eq

u
ir
ed

In
pu

t
O

u
tp

u
t

C
om

-
M

od
el

Im
pl

em
.

F
u
rt

he
r

fi
t-

pr
e-

ge
n
er

al
-

st
ru

c-
lo

g
m

in
ed

re
fe

re
n
ce

V
al

u
e

pl
ex

it
y

T
yp

e
in

P
ro

M
A

ss
u
m

pt
io

n
s

n
es

s
ci

si
on

iz
at

io
n

tu
re

m
od

el
m

od
el

R
an

ge

G
re

co
co

m
pl

et
en

es
s

!
!

!
[0

,1
]

+
/−

W
or

k
fl
ow

se
e
P
M

et
al

.
[1

7]
so

u
n
dn

es
s

!
!

!
[0

,1
]

−
S
ch

em
a

N
o

lo
op

s

W
ei

jt
er

s
P
ar

si
n
g

M
ea

su
re

(P
M
)

!
!

!
[0

,1
]

+
/−

H
eu

ri
st

ic
!

se
e

et
al

.
[2

8]
C

on
ti
n
u
ou

s
P
ar

si
n
g

!
!

!
[0

,1
]

+
/−

n
et

P
F

co
m

p
le

te

M
ea

su
re

(C
P
M
)

R
oz

in
at

F
it
n
es

s
(f

)
!

!
!

[0
,1

]
+

/−
P
et

ri
n
et

!
S
ou

n
d

et
al

.
[2

4]
B

eh
av

io
ra

l
!

!
!

[0
,1

]
−

!
W

F
-n

et
A

p
p
ro

p
ri

at
en

es
s

(a
′ B

)
S
tr

u
ct

u
ra

l
!

!
!

[0
,1

]
−

!
A

p
p
ro

p
ri

at
en

es
s

(a
′ S
)

A
lv

es
d
e

C
om

p
le

te
n
es

s
!

!
!

(−
∞

,1
]

+
/−

H
eu

ri
st

ic
!

N
o

d
u
p
li
ca

te
M

ed
ei

ro
s

(P
F

co
m

p
le
te

)
n
et

ta
sk

s
sh

ar
e

et
al

.
[1

2]
B

eh
av

io
ra

l
in

p
u
t

ta
sk

s
P

re
ci

si
on

(B
P
)

!
!

!
!

[0
,1

]
+

/−
!

or
ou

tp
u
t

an
d

R
ec

al
l
(B

R
)

!
!

!
!

[0
,1

]
+

/−
!

ta
sk

s
S
tr

u
ct

u
ra

l
−

P
re

ci
si

on
(S

P
)

!
!

!
[0

,1
]

+
!

an
d

R
ec

al
l
(S

R
)

!
!

!
[0

,1
]

+
!

D
u
p
li
ca

te
s

S
am

e
ta

sk
P

re
ci

si
on

(D
P
)

!
!

!
[0

,1
]

+
!

la
b
el

s
in

an
d

R
ec

al
l
(D

R
)

!
!

!
[0

,1
]

+
!

b
ot

h
m

o
d
el

s

va
n

D
on

ge
n

C
au

sa
l
F
oo

tp
ri

n
t

!
!

!
!

[0
,1

]
−

P
et

ri
n
et

!
N

o
d
u
p
li
ca

te
et

al
.
[1

4]
or

E
P

C
ta

sk
s

P
in

te
r

pr
ec

is
io

n
an

d
!

!
!

[0
,1

]
+

F
lo

w
m

ar
k

se
e

S
P

et
al

.
[2

2]
re

ca
ll

!
!

!
[0

,1
]

+
la

n
gu

ag
e

se
e

S
R

9

Metrics to quantify precision and generalization. Precision and gener-
alization refer to how much more behavior is captured in the model than was
observed in the log. The following metrics focus only on the precision dimension:
soundness [17], (advanced) Behavioral Appropriateness (a′

B) [24], and Behav-
ioral Precision (BP) [12]. The Behavioral Recall (BR) [12] metric focuses only
on the generalization dimension, and the Causal Footprint [14] addresses both
precision and generalization (basically evaluating the equivalence of a mined
model with respect to the reference model).

– The metric soundness calculates the percentage of traces that can be gen-
erated by a model and are in a log. The problem with this metric is that
it only makes sense when the log contains all possible traces. As mentioned
earlier, this might be unrealistic when the target model has many tasks in
parallel and is impossible when the target model has loop constructs.

– The a′
B metric derives “sometimes” follows and precedes relations (reflecting

alternative or parallel behavior) for tasks in a log and for tasks in a model,
and compares these relations. The less relations derived from the model
can also be derived from the log, the less precise is the model. While these
relations can be derived from the log in a linear way, deriving them from the
model requires an exploration of the state space of the model.

– The behavioral precision (BP) and recall (BR) quantify the precision and
generalization of the mined model with respect to the input log and the
reference model that was used to generate this log. The metrics BP and BR

measure the intersection between the set of enabled tasks that the mined and
reference models have at every moment of the log replay. This intersection
is further weighed by the frequency of traces in the log. BP measures how
much extra behavior the mined model allows for with respect to a given
reference model and log. BR quantifies the opposite. These metrics have the
advantage that they capture the moment of choice in the models and the
differences of behavior in low and high frequent traces.

– The metric Causal Footprint measures behavioral similarity based on two
models’ structures. It works by (i) mapping these models to their causal clo-
sure graphs, (ii) transforming these graphs to vectors in a multidimensional
space, and (iii) measuring the cosine distance between these two vectors.

Metrics to quantify structure. The structure of a model consists of (i) its
tasks, (ii) the connections (or dependencies) between these tasks, and (iii) the
semantics of the split/join points. The existing metrics for structural comparison
typically focus on one or more of these constituent elements, but not all of them.

– The metric Structural Appropriateness (a′
S) [24] measures if a model is less

compact (in terms of the number of tasks) than necessary. It punishes models
with extra alternative duplicate tasks and redundant invisible tasks indepen-
dently of the model behavior (so it can also be used to compare models with
different behaviors).

10

– The metrics precision and recall [22] (like the respective metrics Structural
Precision (SP) and Structural Recall (SR) [12]) quantify how many connec-
tions the mined model and the reference models have in common. When the
mined model has connections that do not appear in the reference model,
precision will have a value lower than 1. When the reference model has con-
nections that do not appear in the mined model, recall will have a value
smaller than 1.

– The metrics Duplicates Precision (DP) and Duplicates Recall (DR) [12] are
similar to the metrics precision and recall [22]. The only difference is that
they check how many duplicate tasks the mined and reference models have in
common with respect to each other, under the assumption that the number
of task labels is the same for the discovered model and the reference model
(which is the case in a typical mining setting).

4.2 Example Comparison using Metrics

We compare the discovered models depicted in Figure 1 using some of the val-
idation metrics discussed in above. For those metrics that need a reference log
and/or reference model, we use the log in Figure 2(a) and the model in Fig-
ure 2(b), respectively. The results of the comparison can be computed with the
Control Flow Benchmark plug-in in ProM (cf. Section 6), and are given in Ta-
ble 2.

Table 2. Overview of the presented fitness, precision and generalization, and structure
metric values for the process models in Figure 1(a)–(f). If the assumptions of the metric
are not fulfilled, and therefore no valid result can be obtained, “n.a.” (not applicable)
is given rather than the calculated value

Alpha Alpha++ Genetic Dupl. GA Heuristic Petrify

PM 0.965 0.965 1.0 1.0 1.0 1.0
f 0.995 0.995 1.0 1.0 1.0 1.0

PF complete 0.993 0.993 1.0 1.0 1.0 1.0
a′B 0.646 1.0 1.0 1.0 0.664 1.0
BP 0.964 0.993 1.0 1.0 0.972 1.0
BR 0.983 0.983 1.0 1.0 1.0 0.997

Causal Footprint 0.975 0.986 1.0 n.a. 0.988 n.a.
a′S 1.0 1.0 1.0 0.818 1.0 0.727
SP 1.0 1.0 1.0 1.0 1.0 0.854
SR 0.938 1.0 1.0 0.938 0.938 1.0
DP 1.0 1.0 1.0 0.9 1.0 0.9
DR 1.0 1.0 1.0 1.0 1.0 1.0

It is clear that the values of the different metrics are not directly comparable
to each other as they measure different aspects of quality, and at a different level
of granularity; they are even defined for different modeling formalisms. Never-
theless, they can highlight potential problems and provide an overall indication

11

of quality. It remains a continuous challenge to define good validation metrics
that can be used to evaluate desired aspects of process models in an efficient,
stable and analyzable way.

From the results in Table 2 we can see that: (i) All discovered models except
the models returned by the Alpha and Alpha++ miner fit the log (cf. metrics PM,
f , and PFcomplete). The algorithms Alpha and Alpha++ have problems to re-
turn fitting models because they cannot correctly discover the skipping of tasks.
Note that task “G” can be skipped in the model in Figure 2(b); (ii) Among
the fitting models, the Genetic, Duplicates GA and Petrify miner returned also
precise models (cf. metrics BP and a′

B). Note that there is a long-term depen-
dency between task “B” and “E”; (iii) The Petrify miner returned an overly
precise model, which does not allow for the trace ACGHDFI (cf. metric BR);
(iv) The structure of the models returned by the Duplicates GA and Petrify
miner contains unnecessary duplicate and invisible tasks (cf. metrics DP , DR,
and a′

S).
This demonstrates that the discussed metrics are able to successfully capture

real deficiencies of the discovered models. According to the results in Table 2,
all the discovered models in Figure 1 are relatively good models, among which
the model discovered by the Genetic miner (cf. Figure 1(e)) seems to be the best
solution for the example log in Figure 2(a).

5 Machine Learning Approach

From a theoretical point of view, process discovery is related to some work
discussed in the Machine Learning (ML) domain. In [9, 15, 16, 23] the limits of
inductive inference are explored. For example, in [16] it is shown that the com-
putational problem of finding a minimum finite-state acceptor compatible with
given data is NP-hard. Several of the more generic concepts discussed in these
papers could be translated to the domain of process mining. It is possible to
interpret the process discovery problem as an inductive inference problem spec-
ified in terms of rules, a hypothesis space, examples, and criteria for successful
inference. However, despite the many relations with the work described in [9,
15, 16, 23] there are also many differences, e.g., we are mining at the net level
rather than sequential or lower level representations (e.g., Markov chains, finite
state machines, or regular expressions), and therefore process mining needs to
deal with various forms of concurrency.

Furthermore, there is a long tradition of theoretical work dealing with the
problem of inferring grammars out of examples: given a number of sentences
(traces) out of a language, find the simplest model that can generate these sen-
tences. There is a strong analogy with the process-mining problem: given a num-
ber of process traces, can we find the simplest process model that can generate
these traces. A good overview of prominent computational approaches for learn-
ing different classes of formal languages is given in [21] and a special issue of
the machine learning journal about this subject [19]. Many issues important in
the language-learning domain are also relevant for process mining (i.e. learning

12

from only positive examples, how to deal with noise, measuring the quality of
a model, etc.). However, as indicated before, an important difference between
the grammar inference domain and the process-mining domain is the problem
of concurrency in the traces: concurrency seems not relevant in the grammar
inference domain.

Given the similarities between the problems addressed in the process mining
and the ML domain, it appears to be beneficial to consider existing validation
mechanisms used in the ML community and test their applicability in the process
mining area. In the remainder of this section, we investigate how the well-known
k-fold cv setup can be used for the evaluation of process discovery algorithms
(Section 5.1), and apply the approach to the discovery algorithms used in Fig-
ure 1 (Section 5.2).

5.1 K-fold CV Setup for Process Mining

Within the ML community, there is a relatively simple experimental framework
called k-fold cross validation [20]. Based on the observation that estimating the
performance of the learned model on the learning material leads to overly opti-
mistic results, a strict separation between training data and test (or validation)
data is advocated. The following steps can be distinguished: The available data
is divided into k subsets numbered 1 to k. The ML-algorithm is trained k times.
In training i (1 ≤ i ≤ k), subset i is used as test material, the rest of the mate-
rial, i.e., {1, ..., i−1, i+1, ..., k}, is used as learning material. The performance of
the ML-algorithm on the current data set (or the performance of the definitive
learned model) is estimated by the average (or otherwise combined) error over
the k test sets. The framework can also be used for parameter optimization,
and for comparing the performance of different learning algorithms (using the
paired T-test to calculate a confidence interval).

We want to investigate whether this validation framework is useful for the
evaluation of process discovery algorithms. One can think of the concept to
be learned as the process behavior, which should be captured by the discovered
process model (the knowledge description). The starting point in a typical k-fold-
cv experiment is a data set with positive and negative examples. However, during
process discovery an event log only contains positive examples; negative examples
are only available if the underlying model is known (impossible process behavior).
To apply the k-fold cross validation framework in our process discovery setting,
we have to answer the following questions: (i) How to deal with the lack of
negative examples?, (ii) How to partition the data in training and test material
(so that both parts contain representative behavior)?, and (iii) How to calculate
the error for each test run i? Different options are possible and need to be
investigated in more detail; in this paper only two illustrative combinations are
chosen.

(i) Negative examples. We want to generate negative examples, for which
we use the following simple solution: Starting with an event log called EventLog
another event log (EventLogRandom) is generated by building m random traces

13

of length n (where m is the number of traces in EventLog and n is the num-
ber of different activities in event log EventLog). In the presence of a reference
model, one could also use more sophisticated approaches that generate nega-
tive examples that better reflect really “forbidden” behavior. Note that without
an explicit reference model, the log EventLogRandom may accidentally contain
positive examples.

(ii) Partitioning the data. To partition the 1459 positive examples (cf.
total number of instances) of the event log in Figure 2(a) into training and test
data, we take two different approaches. First, we use k = 10 (a commonly used
value for k), and randomly partition the log in 10 pieces of equal size. In this
10-fold cv experiment, we then use 9 of the 10 partitions as training data and
the remaining part as test data. However, because we only have 5 different traces
in this simple example log, each of the 10 partitions contains these 5 traces (in
different frequencies), and, therefore, the test set does not contain really “new”
data. Here, the running example seems too simple6. Therefore, we also chose
another partitioning strategy, where k is the number of different traces in the
log (i.e., here k = 5) and each partition contains those instances that exhibit
the same sequence of activities. In this 5-fold cv experiment, 4 out of these 5
partitions were then used as training data, and the remaining part as test data.
A problem here is, however, that—because the example the log only contains the
minimal number of traces needed to rediscover the model—important behavior
is missing in the training data.

(iii) Calculating the error. For each test run i, we first discover a process
model based on the training data. Then, we calculate the error pos based on
the positive examples of the test set (should be parsed by the model), and
the error neg based on the negative examples (should not be parsed by the
model). The idea is that—while the model should account for enough fitness
and generalization to parse the positive examples from the test set—negative
examples should not be accepted frequently as otherwise the precision is low.
To calculate the errors pos and neg, we used the fitness metric f (cf. Section
4; other fitness metrics could be chosen). For each test run i, the overall error
is then (pos + (1 − neg))/2, where pos and neg are fractions of positive and
negative examples that “fit”. The average error of all the k test runs is taken
as the result of the k-fold cv experiment. For example, for the Heuristic miner
the overall error for each of the 10 test runs evaluates to (1.0 + (1.0-0.389))/2
= 0.805.

5.2 Example Comparison using the ML Approach

This section compares the discovered models depicted in Figure 1 using the setup
described in Section 5.1. As explained earlier, the performance of the definite

6 As indicated in Section 3.1, real-life logs often contain traces that are unique. Typ-
ically, traces are hardly reproduced in the log and logs are far from complete (i.e.,
only contain a fraction of the possible behavior). Therefore, the test set will contain
also unseen (i.e., “new”) traces in more realistic scenarios.

14

learned model is estimated based on the average error over the k test sets. The
results of this comparison both for the 10-fold and the 5-fold cv experiment are
given in Table 3.

Table 3. Overview of the evaluation results for 10-fold and 5-fold cv experiment

Alpha Alpha++ Genetic Dupl. GA Heuristic Petrify

10-fold cv exp. 0.814 0.818 0.813 0.795 0.805 0.787
5-fold cv exp. 0.702 0.701 0.705 0.705 0.716 0.696

One of the advantages of the presented machine learning approach is that
well-known statistical techniques can be applied to investigate whether one al-
gorithm performs significantly better than others on a particular data set. For
example, we performed a paired T-test for 15 combinations, where we compared
the performance of all the 6 process discovery algorithms based on the data
sets used for the 10-fold cv experiment in a pair-wise manner7. From this, we
can conclude that—using the fitness measure f and the earlier described experi-
mental set-up—the results are all statistically significant using a 95% confidence
interval, except for one combination (namely Duplicates GA and Petrify). The
significance is most likely influenced by the fact that all partitions in the 10-fold
cv experiment contained all the 5 different traces from the log (in different fre-
quencies), and, therefore, almost all8 the discovered models were identical for
each of the i test runs.

The results of the two cv experiments show that it is problematic to apply
this technique in a setting where exact models should be discovered and only a
limited amount of generalization (namely, detecting parallelism) is desired. For
example, partitioning the data correctly is difficult. However, the approach seems
attractive in situations where more abstraction is required to discover models
from logs that contain noise, or less structured behavior. More research is needed
to investigate this in detail.

6 Control Flow Benchmark Plug-in in ProM

The Process Mining (ProM) framework is an extensible tool suite that supports
a wide variety of process mining techniques in the form of plug-ins [2]. To di-
rectly support the evaluation and comparison of (discovered) process models in
the ProM tool, we implemented a Control Flow Benchmark plug-in9 that com-
putes some of the metrics presented in Section 4, and provides an integrated
7 If we compare each of the 6 process mining algorithms with every other algorithm

then this yields
`
6
2

´
= 6!

2!·(6−2)! = 15 pairs.
8 The Duplicates GA miner is sensitive to the frequency of traces in the training set,

and therefore discovered different models.
9 The Control Flow Benchmark plug-in can be downloaded together with ProM and

and all the example files used in this paper from http://www.processmining.org.

15

view on the results. Note that this plug-in can be easily extended: only the
BenchmarkMetric interface needs to be implemented and the new metric can
be added. The approach described in Section 5.1 is currently only partially sup-
ported by ProM, i.e., only the calculation of the error for each test run i (iii) can
be achieved with the help of the Control Flow Benchmark plug-in while the
generation of negative examples (i) and the partitioning of the log into training
and test data (ii) is not yet supported.

Fig. 4. Screenshot of the Control Flow Benchmark settings. A set of models can be
selected to be compared with respect to a log and/or a reference model based on a
number of different metrics

Figure 4 depicts a screenshot of the Control Flow Benchmark settings. The
plug-in accepts a reference log, a reference model, and an arbitrary number of
benchmark items (e.g., discovered process models) as a Petri net. Furthermore,
the user can select the metrics to be calculated. In Figure 4 the four models
from Figure 2 were added as benchmark items: Figure 2(b) as “Good model”,
Figure 2(c) as “Non-fitting”, Figure 2(d) as “Overly general”, and Figure 2(e)
as “Bad structure”. Furthermore, the log shown in Figure 2(a) is used as the
reference log, and the model from Figure 2(b) is used as the reference model.

As discussed in Section 4, some metrics require a reference model to be
present while others do not. Similarly, there are metrics that only compare the
benchmark items to the reference model, and, therefore, do not need a reference
log. If the input needed for a certain metric is not provided, the metric will
remain disabled. Upon pressing the start benchmark button, the plug-in will
transparently establish the mapping between the tasks in a model and the events
in the log, potentially convert the Petri net to another modeling formalism,
calculate the selected metrics, and present the user with the results. All the

16

benchmark metrics return values between 0 (interpreted as the “worst” value)
and 1 (interpreted as the “best” value). Furthermore, each metric is expected to
check its assumptions and to indicate the result being “invalid” if pre-conditions
are not met.

Fig. 5. Screenshot of the Bar Profile view in the Control Flow Benchmark plug-in in
ProM. The visualization of the metric values provides an overview, and makes it easy
to spot problems

The first result view is the Bar Profile view (see screenshot in Figure 5).
It visualizes the calculated values along a so-called bar profile in a fixed order.
Green and wide segments resemble “good” values while red and narrow segments
resemble “problematic” values according to the corresponding metric. Invalid
values are left out (i.e., the bar profile will have a gap at this place). This view is
intended to provide a graphical overview that makes it easy to spot problematic
areas, which can be subsequently inspected in further detail.

For the extreme models from Figure 2 we can clearly see some differences.
The “Good model” shows a consistently green and wide profile, while the “Non-
fitting” model has a reduced fitness (although the three fitness values PM, f , and
PFcomplete are still relatively high because the most frequent trace is correctly
captured) and less behavior and less connections than the reference model (cf.
Causal Footprint and Structural Recall SR). The “Overly general” model ex-
hibits extra behavior (cf. Behavioral Appropriateness a′

B , Behavioral Recall BR,
and Causal Footprint) and has more connections than the reference model (cf.
Structural Precision SP). Finally, the model with the “Bad structure” shows
a reduced Structural Appropriateness a′

S as it has many unnecessary duplicate
tasks. Similarly, the Duplicates Precision DP is low.

17

Fig. 6. Screenshot of the Table view in the Control Flow Benchmark plug-in in ProM.
The concrete metric values can be inspected in detail and exported to a CSV file

The view can be changed to Table view (see screenshot in Figure 6) for
inspecting the detailed results. The exact values are shown for each benchmark
item, or “invalid” is given if it could not be computed for a certain case (for
example, the Causal Footprint metric cannot deal with the duplicate tasks in the
model with the “Bad Structure”). Finally, the results can be exported as Comma
Separated Values (CSV) and analyzed/visualized using different analysis tools.

7 Conclusion

Adequate validation techniques in the process mining domain are needed to eval-
uate and compare discovered process models both in research and practice. We
have outlined an evaluation framework and introduced evaluation dimensions
for discovered process models. Furthermore, we described two evaluation strate-
gies, and presented a Control Flow Benchmark plug-in in the ProM framework,
which can be used to evaluate models with these two approaches.

The metrics discussed in the context of the first approach can be directly
applied to evaluate the quality of a process model. Nevertheless, many obsta-
cles such as bridging the gap between different modeling languages, defining
good validation criteria and good metrics that capture them remain. The sec-
ond approach seems especially promising in less structured environments where
more abstraction is required, and should be subject to further research. Finally,
completely new evaluation approaches might help to move towards a common
validation methodology for process mining techniques. Moreover, a comprehen-
sive set of benchmark examples (ideally containing both artificial and real-life
data) is needed.

18

Acknowledgements

This research is supported by Technology Foundation STW, EIT, SUPER, NWO,
and the IOP program of the Dutch Ministry of Economic Affairs. The authors
would also like to thank all ProM developers for their on-going work on process
mining techniques.

References

1. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Process
Equivalence: Comparing Two Process Models Based on Observed Behavior. In
S. Dustdar, J.L. Fiadeiro, and A. Sheth, editors, BPM 2006, volume 4102 of Lecture
Notes in Computer Science, pages 129–144. Springer-Verlag, Berlin, 2006.

2. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, Berlin, 2007.

3. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

4. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther.
Process Mining: A Two-Step Approach using Transition Systems and Regions.
BPM Center Report BPM-06-30, BPMcenter.org, 2006.

5. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

6. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

7. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

8. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

9. D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods. Computing
Surveys, 15(3):237–269, 1983.

10. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

11. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147–176, 1999.

12. A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven Univer-
sity of Technology, Eindhoven, 2006.

19

13. A.K. Alves de Medeiros and C.W. Guenther. Process Mining: Using CPN Tools
to Create Test Logs for Mining Algorithms. In K. Jensen, editor, Proceedings of
the Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, pages 177–190, 2005.

14. B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst. Structural Patterns for
Soundness of Business Process Models. In EDOC ’06: Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Conference (EDOC’06),
pages 116–128, Washington, DC, USA, 2006. IEEE Computer Society.

15. E.M. Gold. Language Identfication in the Limit. Information and Control,
10(5):447–474, 1967.

16. E.M. Gold. Complexity of Automaton Identification from Given Data. Information
and Control, 37(3):302–320, 1978.

17. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering expressive process
models by clustering log traces. IEEE Transactions on Knowledge and Data En-
gineering, 18(8):1010–1027, 2006.

18. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

19. P. Langley, editor. Grammar Induction, Special issue of Machine Learning, Volume
2, Number 1. Kluwer Academic Publishers, Boston/Dordrecht, 1987.

20. T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
21. R. Parekh and V. Honavar. Automata Induction, Grammar Inference, and Lan-

guage Acquisition. In Dale, Moisl, and Somers, editors, Handbook of Natural Lan-
guage Processing. New York: Marcel Dekker, 2000.

22. S.S. Pinter and M. Golani. Discovering Workflow Models from Activities Lifespans.
Computers in Industry, 53(3):283–296, 2004.

23. L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In K.P. Jan-
tke, editor, Proceedings of International Workshop on Analogical and Inductive
Inference (AII), volume 397 of Lecture Notes in Computer Science, pages 18–44.
Springer-Verlag, Berlin, 1889.

24. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Accepted for publication in Information Systems:
DOI 10.1016/j.is.2007.07.001.

25. A. Rozinat, I.S.M. de Jong, C.W. Günther, and W.M.P. van der Aalst. Process
Mining of Test Processes: A Case Study. BETA Working Paper Series, WP 220,
Eindhoven University of Technology, Eindhoven, 2007.

26. A. Rozinat, R.S. Mans, and W.M.P. van der Aalst. Mining CPN Models: Discover-
ing Process Models With Data from Event Logs. In K. Jensen, editor, Proceedings
of the Seventh Workshop on the Practical Use of Coloured Petri Nets and CPN
Tools, pages 57–76. University of Aarhus, Denmark, 2006.

27. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

28. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process
Mining with HeuristicsMiner Algorithm. BETA Working Paper Series, WP 166,
Eindhoven University of Technology, Eindhoven, 2006.

29. L. Wen, J. Wang, and J.G. Sun. Detecting Implicit Dependencies Between Tasks
from Event Logs. In Asia-Pacific Web Conference on Frontiers of WWW Research
and Development (APWeb 2006), Lecture Notes in Computer Science, pages 591–
603. Springer, 2006.

20

