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Summary

To enhance the toughness of semicrystalline polymeric materials, it is common practice
to blend these materials with rubber particles. The present-day notion of the toughening-
mechanism in semicrystalline polymers is based on a criterion, which states that tough-
ened material behavior occurs when the average interparticle matrix ligament thickness
is smaller than a critical value. This value is considered as an intrinsic material property,
and is attributed to thin layers of transcrystallized material appearing in the microstruc-
tural morphology. The objective of this work is to numerically investigate the influence
of the microstructural morphology on the microscopic, mesoscopic, and macroscopic be-
havior of particle-modified semicrystalline materials, particularly the presupposed effect
of the preferentially oriented layers.

The potential of local anisotropy around dispersed particles for enhancing the material
properties is investigated using anisotropic Hill plasticity for an idealized semicrystalline
material. The system, containing rubber particles, which are assumed to be cavitated and
are represented by voids, is described by a finite element model of a representative volume
element (RVE). The system contains a length parameter, which is the ratio of the average
distance between particles and an intrinsic material characteristic distance. This length
parameter is represented in the calculations by the presence of a layer of anisotropic ma-
trix material around well-dispersed particles. The applicability of different RVE models
for particle-modified semicrystalline materials is investigated using three-dimensional
simulations as a reference. The calculations show that local anisotropy of matrix material
enveloping voids replaces localization by dispersed shear yielding and changes the nature
of the occurring hydrostatic stresses. However, to achieve these improvements, a radially
oriented microstructure must be pursued that provides a sufficiently large amount of
anisotropy. The efficiency of this mechanism is found to be affected by the presence of
hard filler particles.

To investigate whether this anisotropy can be achieved by a transcrystallized microstruc-
ture, a micromechanically-based numerical model for the elasto-viscoplastic deformation
and texture evolution of semicrystalline polymers is developed. For particle-modified
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x SUMMARY

polymeric systems, a distinction between three different scales is made. The constitu-
tive properties of the material are identified at the microscopic scale for the individual
crystallographic lamellae and amorphous layers. At the mesoscopic scale, an aggregate
of individual phases is formed, which can be a spherulite or a sheaflike aggregate of pref-
erentially oriented material. To bridge between those scales, an elasto-viscoplastic two-
phase composite inclusion model is formulated. Each composite inclusion consists of a
crystalline lamella which is assumed to plastically deform by crystallographic slip, and an
amorphous layer. The local inclusion-averaged deformation and stress fields are related
to the mesoscopic fields of the aggregate by an interaction law. Uniaxial compression of
initially isotropic high density polyethylene (HDPE) is used to assess the applicability of
various interaction laws. Based on this evaluation, a hybrid interaction law is selected,
that compromises between local compatibility and local equilibrium.

A full micro–meso–macrolevel bridge is obtained by using an aggregate of composite in-
clusions in each integration point of a macroscopic finite element model. The multiscale
model is employed to study the mechanics of intraspherulitic deformation for polyethy-
lene. Finally, multiscale calculations are performed on particle-modified HDPE. The ef-
fect of a transcrystallized structure of matrix material versus randomly oriented material
is examined. A limited effect of the preferential orientations is observed. Further im-
proved properties in a specific loading direction are obtained for a hypothesized, partly
flow-induced, microstructure.



Notation

In the following definitions, a Cartesian coordinate system with unit vector base {e1‚e2‚e3}
applies and following the Einstein summation convention, repeated indices are summed
from 1 to 3.

Quantities

scalar α; a; A

vector a = ai ei
second order tensor α = αi j ei⊗ej ; A = Aij ei⊗ej

higher (nth) order tensor nA = Aij ...n ei⊗ej⊗. . .⊗en

column a
~

matrix A

Operations

multiplication c = ab; c = ab; C = aB
dyadic product C = a⊗b = ai bj ei⊗ej

cross product c = a�b

inner product c = a�b = ai bi ; C = A�B = AijBjk ei⊗ek

double inner product C = 4A :B = AijklBlk ei⊗ej ; c = A :B = AijBj i
conjugate / transpose CT = Cjiei⊗ej

inverse A−1

determinant det(A) = (A�e1)�(A�e2)�(A�e3)
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xii NOTATION

trace tr(A) = A : ei⊗ei = Aii
deviatoric part Ad = A − 1

3 tr(A)ei⊗ei

isochoric part Ã = [ det(A) ]−
1
3A

gradient operator ∇ = ei
∂

∂x i

tensor derivative
dA
dB

= dAij
dBlk

ei⊗ej⊗ek⊗el

absolute value |a|
euclidean norm ||a|| = √

a�a

aggregate-volume-average ā

RVE-volume-average 〈a〉

Crystallographic notation

crystallographic direction, family [uvw], 〈uvw〉
crystallographic plane, family (hkl), {hkl}
slip system, family (hkl)[uvw], {hkl}〈uvw〉

Indices

inclusion (�)I

amorphous phase (�)a

crystalline phase (�)c

arbitrary phase (�)π

interface (particle/matrix) (�)i

matrix (�)m

particle (�)p

elastic (�)e

plastic (�)p



CHAPTER ONE

Introduction

Abstract / A general introduction to particle-toughening of semicrystalline polymers is pre-
sented, as well as the basic concepts of the underlying hypothesized mechanism of toughen-
ing. An overview of the approach pursued for the numerical modeling of this mechanism,
involving different length scales, is given.

1.1 General introduction

Semicrystalline polymeric materials are widely used in a range of engineering applica-
tions. Despite many advantages as low cost and weight, their application is limited by
some unfavorable mechanical properties. An important point of concern is their often
occurring brittle response. An empirical procedure for enhancing the toughness of these
materials is to blend them with rubber particles. The present-day notion of the tough-
ening mechanism in semicrystalline polymers is based on the criterion proposed by
Wu (1985), which states that a sharp brittle–to–tough transition occurs for nylon/rubber
blends when the average interparticle matrix ligament thickness Λ is reduced below the
critical value Λc = 0.3 µm, as is schematically shown in Figure 1.1. The critical value was
shown to be independent of the rubber volume fraction and the particle size. Later on,
similar interparticle distance effects have been observed for particle-modified polyethy-
lene (Bartczak et al., 1999a) and poly(ethylene terephthalate) (Sánchez-Solís et al., 2000;
Loyens and Groeninckx, 2002, 2003). The explanation offered by Wu for this transi-
tion addressed the mutual interaction of particle-disturbed stress fields, enhancing ma-
trix yielding. Ramsteiner and Heckmann (1985) concluded that the energy-dissipating
deformation mode for rubber-modified nylon is shear yielding. Borggreve et al. (1987)
confirmed the existence of a critical interparticle distance for the brittle–to–tough transi-
tion, however questioned the physical explanation by Wu. Thereafter, a modified theory
was proposed, in which the critical ligament thickness corresponds to a local plane strain–

1
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Figure 1.1 / Impact toughness of nylon/rubber blends vs. the average surface–to–surface
interparticle ligament thickness Λ. Redrawn from Wu (1985).

to–plane stress transition in the matrix (Wu, 1988; Margolina and Wu, 1988). Based on
their numerical investigations, Fukui et al. (1991) and Dijkstra and Ten Bolscher (1994)
attributed the toughening effect to extensive shear yielding due to the interaction of stress
fields. However, since the stress field theory is only effective for changes in geometrical
ratios, it can be concluded that stress field interaction is incapable of explaining an abso-
lute length scale such as a critical interparticle distance.

1.2 Toughening mechanism

A physical explanation of the absolute length parameter was offered by Muratoǧlu et al.
(1995a,c), who recognized the brittle–to–tough transition as a true material characteristic.
It was attributed to thin layers of transcrystallized material, with a reduced plastic resis-
tance, appearing in the microstructural morphology of particle-modified semicrystalline
materials. Effectively, the crystallization behavior of the matrix is influenced by the parti-
cle/matrix interface, leading to a layer of parallel crystalline lamellae (Chacko et al., 1982;
Rybnikář, 1981, 1989; Muratoǧlu et al., 1995a,c; Bartczak et al., 1999a,b,c; Kim et al.,
2001; Nam et al., 2001), with the crystalline planes having the lowest plastic resistance
parallel to the interface. Figure 1.2 shows similar transcrystallized layers of polypropy-
lene on a fiber (Schimanski, 2002). It was experimentally established that these tran-
scrystalline layers have a well-defined thickness of approximately Λc=2. When the aver-
age matrix ligament thickness Λ is below the critical value Λc, the preferentially oriented
material percolates through the system, bridging between the second-phase particles, as
is depicted in Figure 1.3(a). Additionally, situations with Λ � Λc are represented in Fig-
ure 1.3(b) and (c). The blended system consists of (i) rubber particles having a low mod-
ulus, (ii) preferentially oriented anisotropic matrix material enveloping the particles and
(iii) the bulk matrix material having a randomly oriented structure and effectively hav-
ing isotropic material properties. According to the toughening mechanism postulated
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Figure 1.2 / Transcrystallized and spherulitic domains in a polypropylene matrix near an
embedded fiber. Reproduced from Schimanski (2002).

particle oriented layer bulk matrix

(a) Λ � Λc (b) Λ � Λc (c) Λ � Λc

Figure 1.3 / Transcrystallized layers around second-phase particles for (a) material with
a decreased plastic resistance percolating through the blend, enhancing the toughness
(adopted fromMuratoǧlu et al. (1995c) and Bartczak et al. (1999a)), and for material with
a brittle response, with (b) a smaller volume fraction and (c) the same volume fraction,
but larger particles.

by Muratoǧlu et al. (1995c), after cavitation of the second-phase rubber particles, the re-
gions with a lowered yield resistance will promote large plastic deformation and thereby
improve the toughness. This mechanism is schematically drawn in Figure 1.4. Tzika et al.
(2000) used a micromechanical numerical model, with a staggered array of particles, to
study the influence of preferentially oriented anisotropic layers, modeled with anisotropic
Hill plasticity, on the deformation mechanisms under high triaxiality conditions. They
observed plastic deformation in the matrix to occur diagonally away from the particles
(i.e. in the matrix material between particles, parallel to the interfaces) for Λ � Λc. The
anisotropic matrix material was found to act as a nonstretching shell around the (cavi-
tated) particles, leading to extensive shear yielding.

Bartczak et al. (1999a,b) generalized the Wu criterion to high density polyethylene
(HDPE) and showed the critical interparticle distance (Λc = 0.6 µm) to be an intrinsic
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(a) (b)

Figure 1.4 / Schematic illustration of the toughening mechanism in a particle-modified
semicrystalline material, with (a) the initial configuration and (b) a uniaxially deformed
state. The parallel lines denote slip planes with a low shear yield strength. Redrawn from
Muratoǧlu et al. (1995c) and Bartczak et al. (1999a).

property of the matrix material, thereby opening the possibility of using mineral fillers
for the toughening of semicrystalline polymers, the advantage of which would be an im-
proved modulus of the blend, as schematically indicated in Figure 1.5. They argued that

Modulus

Im
pa
ct
st
re
n
gt
h fillersfillers

rubber mineral

Figure 1.5 / Influence of soft (rubber) vs. hard (mineral) particles on the mechanical
properties. Schematically drawn after Bartczak et al. (1999b).

debonding of hard filler particles could be an alternative for the cavitation of the rubbery
phase. However, the Bartczak et al. results showed a distinct effect of processing con-
ditions on the toughness obtained. The importance of process conditions was demon-
strated by Schrauwen et al. (2001a,b, 2002), who found toughness to be dominated by
flow-induced effects, see Figure 1.6. By using calcium carbonate filler particles in a
nylon-6 matrix, Wilbrink et al. (2001) did not obtain the tough response of nylon/rubber
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Figure 1.6 / Influence of processing conditions on toughness. Reproduced from
Schrauwen et al. (2002).

blends, as was reported by Muratoǧlu et al. (1995c,b), and attributed this to the develop-
ment of triaxial stresses. A four times increase of the Izod impact energy was obtained
by Thio et al. (2002) by incorporation of calcium carbonate particles in polypropylene, re-
portedly resulting from combined mechanisms of crack deflection and local plastic defor-
mation of interparticle ligaments. Similar results have been obtained by Zuiderduin et al.
(2003).

1.3 Modeling strategy and outline

The route to toughness enhancement of semicrystalline polymers, in the above context,
is schematically shown in Figure 1.7. It is based on the hypothesis that local anisotropy,
induced by a specific microstructure, which results from preferred crystallization of poly-
meric material, leads to macroscopically tough behavior. The potential validity of this
hypothesis is examined by methods of micromechanical modeling. Thereby, the crystal-
lization behavior is left out of consideration, and the starting-point is an assumed mi-
crostructure of a particle-modified system.

The deformation of polymeric materials, and thus also their either brittle or tough re-
sponses, are the result the interplay of various effects and mechanisms at different
levels, such as for example (Michler, 1999) chain scission, microyielding, microcavita-
tion, crazing, shear band formation, crack initiation and propagation, and fracture. For
semicrystalline materials, also phenomena as interlamellar slip and intralamellar defor-
mation mechanisms as crystallographic slip, twinning, and stress-induced martensitic
transformation play a role (e.g. Petermann and Ebener, 1999; G’Sell and Dahoun, 1994;
Lin and Argon, 1994). A quantitative prediction of toughness would require a coupled
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Crystallization

Microstructure

Local anisotropy

Toughening

composite inclusion model

effect of the microstructure:

(HDPE)

efficiency of the toughening
mechanism: Hill model
(filled idealized material)

full multiscale
approach
(filled HDPE)

Figure 1.7 / Hypothesized route to toughness and the modeling strategy.

and detailed modeling of the various deformation mechanisms and criteria for the differ-
ent failure modes, which is at present still not feasible. In this thesis, the influence of the
microstructure on the qualitative individual occurrence of some of these phenomena, or
the conditions that may induce them, is investigated.

First, in Chapter 2, a micromechanical investigation of the potential of local anisotropy
around dispersed particles for enhancing the material properties is presented. Calcula-
tions are performed on an idealized semicrystalline material, blended with rubber parti-
cles, which are assumed to be cavitated and are represented by voids. The system con-
tains a scale parameter, which is the ratio of the average distance between particles and a
critical distance. This length parameter is represented in the calculations by the relative
thickness of an anisotropic layer around the particles. The simulations on the idealized
polymeric material are used to investigate the applicability of various types of RVE mod-
els for particle-modified semicrystalline materials. Furthermore, with these calculations,
it is ascertained (i) whether local anisotropy can potentially improve the toughness of
rubber-modified systems; (ii) what is the occurring effect of anisotropy that may improve
the toughness; and (iii) what type of anisotropy (i.e. mesoscopic morphology) would be
required.

Simulations on a three-dimensional structure show a distinct influence of the local
anisotropy on the triaxial stress field. This effect is also captured by a simplified ax-
isymmetric RVE model of a staggered array of particles. However, for the consequence of
anisotropy for the deformation mechanisms, the irregularity of the microstructure plays
a crucial role. A two-dimensional multiparticle plane strain RVE with an irregular stack-
ing of particles is used to investigate this effect. Simulations with both the axisymmetric
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and the multiparticle RVEs, show that local anisotropy of the matrix material around
the particles can effectively replace localization by dispersed shear yielding and change
the occurring hydrostatic stresses, potentially leading to toughened material behavior.
However, to achieve these improvements, a morphology must be pursued with a radially
oriented structure around the dispersed particles and it should, moreover, provide a suf-
ficiently large amount of anisotropy. Furthermore, the possibility of using mineral fillers,
rather than low-modulus rubber, for the toughening of semicrystalline polymers is evalu-
ated in Chapter 3. The presence of hard, easily debonding, particles is found to affect the
anisotropy-induced toughening mechanism.

Thereafter, to investigate whether the above-mentioned requirements can be achieved by
a transcrystallized microstructure, a micromechanically-based numerical model for the
elasto-viscoplastic deformation and texture evolution of semicrystalline polymers is de-
veloped in Chapter 4. For particle-modified polymeric systems, a distinction between
three different scales is made, as is schematically depicted in Figure 1.8. The constitu-

Microscopic scale
individual crystallographic lamellae
and amorphous layers

and amorphous domains

Mesoscopic scale
aggregate of crystallographic lamellae

Macroscopic scale
structure of dispersed particles
and matrix material

Single phase constitutive models

Composite inclusion model

Finite element model

Figure 1.8 / Different scales which can be identified in particle-toughened semicrys-
talline polymeric systems.

tive properties of the material are identified at the microscopic scale. At this scale, the
individual crystallographic lamellae and amorphous layers determine the local material
response. At the mesoscopic scale, an aggregate of individual phases is formed, which
can be a spherulite or a sheaflike aggregate of preferentially oriented material. To bridge
between those scales, an elasto-viscoplastic two-phase composite inclusion model is for-
mulated. Each composite inclusion consists of a crystalline lamella which is assumed to
plastically deform by crystallographic slip, and an amorphous layer, for which plastic flow
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is modeled as a rate-dependent process with strain hardening resulting from molecular
orientation. The local inclusion-averaged deformation and stress fields are related to the
mesoscopic fields of the aggregate by an interaction law. Due to the anisotropy of the ma-
terials under investigation, the proper choice of this interaction law, bridging between the
microscopic and the mesoscopic scales, is crucial. The interaction law should compro-
mise between local compatibility and local equilibrium, with as extreme exponents the
classical Taylor and Sachs models. The uniaxial compression of initially isotropic HDPE
is used to assess the applicability of various interaction laws. A hybrid interaction law is
chosen, which constitutes an intermediate approach between the Taylor and Sachs limits.

Subsequently, some aspects of the finite element implementation of the composite in-
clusion model, coupling all relevant length scales, are presented in Chapter 5. The me-
chanical behavior for an integration point is given by the average response of an entire
aggregate of composite inclusions. This multiscale model is used to study the mechanics
of intraspherulitic deformation and stress for polyethylene in Chapter 6. At the macro-
scopic scale, for particle-modified materials, a structure of dispersed particles and matrix
material can be identified. In Chapter 7, this system is modeled by a finite element ap-
proach using different representative volume elements, as suggested by the anisotropic
Hill simulations in Chapter 2. The effect of a transcrystallized structure of matrix ma-
terial versus randomly oriented material on both mesoscopic and microscopic results is
examined. A limited effect of the preferential orientations is observed. Further improved
properties are obtained for a hypothesized, partly flow-induced, microstructure, if loaded
in the appropriate direction. Finally, in Chapter 8, the main conclusions are recapitulated
and some recommendations for future developments are discussed.



CHAPTER TWO

Toughening by local anisotropy1

Abstract / In this chapter, the potential of local anisotropy for the toughening of voided
semicrystalline polymeric materials is investigated. The matrix material is modeled within
the framework of anisotropic Hill plasticity with a rate-dependent and hardening yield stress.
The applicability of different two-dimensional models is assessed by comparison to three-
dimensional simulations with irregularly dispersed voids. A reduced plastic shear resistance
of radially oriented material is found to be effective in inducing extensive delocalized shear
deformations and alters the location of the peak tensile hydrostatic stresses.

2.1 Introduction

To enhance the toughness of semicrystalline polymers, it is common practice to blend
these materials with rubber particles. The present-day notion of the toughening mech-
anism in these materials is expressed in the criterion proposed by Wu (1985), which
states that a sharp brittle–to–tough transition occurs for nylon/rubber blends when the
average interparticle matrix ligament thickness Λ is reduced below a critical value Λc.
A physical explanation of the existence of an absolute length parameter was offered by
Muratoǧlu et al. (1995c,a), who recognized the brittle–to–tough transition as a true ma-
terial property. It was attributed to thin layers of preferentially oriented material, with
a reduced plastic resistance, appearing in the microstructural morphology of particle-
modified semicrystalline materials. When the actual average matrix ligament thickness
is below the critical value, the favorably oriented material percolates through the system,

1This chapter is reproduced from Van Dommelen et al. (2003b), Van Dommelen et al. (2002a), and
Van Dommelen et al. (2002b).

9
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bridging between the second-phase particles. A blended system consists of (i) rubber
particles having a low modulus, (ii) preferentially oriented anisotropic matrix material
enveloping the particles and (iii) the bulk matrix material having a randomly oriented
structure and with effectively isotropic material properties.

In this chapter, a micromechanical investigation is presented of the potential of lo-
cal anisotropy around dispersed cavitated particles for enhancing material properties.
Generally, particle-modified systems intrinsically have a three-dimensional structure.
Fully three-dimensional numerical analyses, however, are extremely computationally
demanding. Detailed simulations involving for example nonspherical particle geome-
tries, a debonding algorithm, a realistic micromechanically-based constitutive model
and/or failure criteria, require the simplification to computationally two-dimensional
configurations, which restrict the analysis to either a regular stacking of particles (e.g.
Socrate and Boyce, 2000; Tzika et al., 2000) or irregularly dispersed cylindrically shaped
geometries (e.g. Smit et al., 1998, 1999). Since, in the current investigation, a relatively
efficient Hill plasticity model is used for the anisotropic behavior of idealized material,
in combination with the assumption of a spherically voided structure, three-dimensional
simulations on irregular structures are feasible. These three-dimensional calculations,
with either fully isotropic matrix material or strongly anisotropic material, will be taken
as a reference for assessing the applicability of an axisymmetric model with a staggered
array of voids and a multiparticle plane strain model having an irregular structure.

Calculations are performed on idealized semicrystalline materials, blended with rubber
particles, which are assumed to be cavitated and are represented by spherical voids. The
system contains a length parameter, which is the ratio of the average distance between
voids and a critical distance. This length parameter is represented in the calculations
by the thickness of an anisotropic layer around the voids. Each model is subjected to
constant strain rate tension. Simulations on a three-dimensional structure show a dis-
tinct effect of local anisotropy on the triaxial stress field. This effect is also captured by
a simplified axisymmetric model of a staggered array of voids. However, for the effect of
anisotropy on the deformation mechanisms, the irregularity of the microstructure plays
a crucial role. A two-dimensional irregular plane strain model is used to investigate this
effect. Simulations with both the axisymmetric and the plane strain models, show that a
local anisotropy of matrix material around the voids can potentially effectively transform
localization into dispersed shear yielding and change the occurring hydrostatic stresses,
leading to toughened material behavior. However, to achieve these improvements, a mor-
phology must be pursued that has a radially oriented structure around the dispersed par-
ticles and provides a sufficiently large amount of anisotropy.
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2.2 Constitutive model

In this chapter, the potential of plastic anisotropy for enhancing the toughness of
semicrystalline polymeric materials is investigated. For this purpose, an idealized poly-
meric material is modeled by isotropic elasticity (characterized by a Young’s modulus Em

and a Poisson’s ratio νm) and anisotropic plasticity. During yield behavior, the anisotropic
Hill yield criterion (Hill, 1950) is satisfied:

F(σ22 −σ33)
2 + G(σ33 −σ11)

2 + H(σ11 − σ22)
2 + 2Lσ223 + 2Mσ213 + 2Nσ212 = σ2y ‚ (2.1)

where σi j are stress components with respect to a local material vector basis and the
anisotropic constants F, G, H, L, M and N are given by
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The constants R11, R22 and R33 are the ratios of the actual tensile yield strength values of
the anisotropic material to the actual virtual bulk tensile yield strength, σy. The constants
R12, R13 and R23 are the ratios of the yield strength values in shear to the shear yield
strength τy of the virtual bulk material, with τy = σy=

√
3. The Hill yield criterion was

previously used for anisotropic polymeric material by Kobayashi and Nagasawa (1966)
and Tzika et al. (2000). Here, a linear dependency of the yield strengthσy on the effective
plastic deformation measure ε̃p and a power law dependency of σy on the corresponding
rate ˙̃εp are assumed for the polymeric material:

σy = σy0

8<
:hε̃p + q 1n

"
1+

� ˙̃εp
qγ̇0

�2# 1
2n

9=
; ‚ (2.4)

whereσy0 is the reference yield strength, h is the linear hardening parameter and n is the
stress exponent of the strain rate. The evolution of the yield stress with plastic deforma-
tion and strain rate is shown in Figure 2.1. A rate-independent contribution is introduced
for strain rate values which are considerably smaller than the reference strain rate γ̇0,
controlled by the parameter q. The plastic strain measure ε̃p and the corresponding rate
are, for anisotropic plasticity, assumed to be given by:

ε̃p =
tZ

0

˙̃εp dt ; ˙̃εp = σ : ε̇p
σy

‚ (2.5)
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Figure 2.1 / The dependence of the yield stress on the plastic strain rate and the evolution
with plastic deformation, with h = 0.6, n = 9 and q = 10−2.

whereσ is the Cauchy stress tensor and ε̇p is the plastic rate of deformation tensor. The
material parameters that are used for the investigation of the effect of local anisotropy in
particle-modified polymeric materials are summarized in Table 2.1. As mentioned earlier,

Em [GPa] νm σy0 [MPa] h γ̇0 [s−1] n q

1 0.45 25 0.6 10−3 9 10−2

R11 R22 R33 R12 R13 R23

1 1 1 1=ζ 1=ζ 1

Table 2.1 /Material parameters for a fictitious polymer matrix.

the Equations (2.1)–(2.3), with the anisotropic strength ratios Rij , are applied in a local
coordinate system. The transcrystallized material around the voids is assumed to have
a reduced plastic resistance with respect to the local 12 and 13 shear components (at the
void/matrix interface, the 1-direction is defined to be perpendicular to the interface), and
the reduction is controlled by the adjustable parameter ζ .

2.3 Micromechanical models

For particle-toughened materials, a structure of dispersed particles (here represented by
voids) and matrix material can be identified. The system is described by a finite element
model of a representative volume element (RVE). The particle-modified system, having
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a three-dimensional nature, is simplified to a computationally two-dimensional RVE, for
which two different approaches are used.

For an adequate representation of the triaxial stress state around a void, an axisymmetric
RVE is used, as suggested by Socrate and Boyce (2000) and Tzika et al. (2000). How-
ever, because of the regular void stacking associated to such RVEs, important effects as
sequential yielding of the matrix material between the different voids (Smit et al., 1999)
cannot be accounted for. In order to capture the essentially irregular nature of a system
of dispersed voids, also a plane strain RVE is used. To validate the use of the simplified
two-dimensional models, a comparison is made with three-dimensional calculations.

2.3.1 Axisymmetric RVE

An axisymmetric RVE model of a staggered array of voids (referred to as the SA model) is
considered, which was previously used for the study of the micromechanics of particle-
toughened polymers by Socrate and Boyce (2000) and by Tzika et al. (2000) and which
resembles a body centered tetragonal stacking of voids. A schematic representation of the
unit cell, with L0 = R0, is shown in Figure 2.2. The axis of rotational symmetry, as well as
the loading direction are horizontal. The RVE is subjected to anti-symmetry conditions

C1 C2

C3C4

C5

M

Γ12

Γ23

Γ34

Γ45

Γ15

R0

L0

η η

r

z

(a) (b)

Figure 2.2 / (a) Schematic visualization of an axisymmetric RVE model of a staggered ar-
ray of voids (Socrate and Boyce, 2000; Tzika et al., 2000) and (b) its position with respect
to three neighboring RVEs in a deformed state.

(with respect to point M) along the outer radius, which were introduced by Tvergaard
(1996, 1998). Axial compatibility along the radial boundary Γ34 is written as

uz(z0|M − η)+ uz(z0|M + η) = 2uz |M. (2.6)
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The combined cross-sectional area of neighboring cells is assumed to remain constant
along the axial coordinate:

[R0 + ur (z0|M − η)]2 + [R0 + ur (z0|M + η)]2 = 2[R0 + ur |M]2. (2.7)

Symmetry conditions along the right and left boundaries are written as

uz|Γ23 = uz |C2 (2.8)

and

uz|Γ45 = uz|C5 ‚ (2.9)

respectively. Since the axis of rotational symmetry coincides with boundary Γ12, the fol-
lowing condition is imposed on this boundary:

ur |Γ12 = 0. (2.10)

The axisymmetric RVE is subjected to tension at a macroscopically constant strain rate:

uz|C2 − uz|C5 = L0[exp(ε̇t)− 1]‚ (2.11)

where the deformation rate ε̇ is set equal to the material reference shear rate γ̇0 in Equa-
tion (2.4).

The finite element mesh of the axisymmetric SA model, with void fraction f = 0.2, is
visualized in Figure 2.3(a). In each integration point of the 196 four-noded bilinear el-

(a) (b) set 1 (c) set 2 (d) set 3

Figure 2.3 / (a) Finite element mesh and (b)–(d) local material orientations for the ax-
isymmetric SA model.

ements, a local coordinate system is generated. Tzika et al. (2000) used a heat transfer
analysis to obtain these orientations, where the local 1-direction corresponds to the direc-
tion of the heat flux vector. Here, a similar procedure is used. The 2-directions are chosen



2.3 MICROMECHANICAL MODELS 15

perpendicular to the 1-direction and in the plane of the mesh. The set of orientations that
is obtained is referred to as set 1. The resulting field of material 1-directions is perpen-
dicular to the void/matrix interface, parallel to the left and lower symmetry boundaries
and satisfies anti-symmetric compatibility conditions along the radial boundary. Addi-
tionally, two more sets of orientations are used, satisfying these conditions, as shown in
Figure 2.3(c)–(d). Although the differences between these orientation sets seem to be
small, the influence on the deformation mode that is obtained is substantial, as will be
demonstrated further on.

2.3.2 Multiparticle plane strain RVE

To account for the irregular nature of particle-dispersed systems, a plane strain RVE with
randomly dispersed voids (referred to as the RDmodel) is used. In Figure 2.4, a schematic
illustration of this RVE is shown, as well as its arrangement with respect to the neighbor-
ing RVEs. The periodicity assumption requires full compatibility of each opposite bound-
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Γ12

Γ23

Γ34

Γ14
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Figure 2.4 / (a) Schematic visualization of a multiparticle plane strain RVE (Smit et al.,
1998) and (b) its position with respect to neighboring RVEs in a deformed state.

ary pair. The corresponding kinematic and natural boundary tyings (Smit et al., 1998) for
related points on opposite boundaries are given by:

u|Γ34 − u|C4 = u|Γ12 − u|C1 ; (2.12)

u|Γ14 − u|C1 = u|Γ23 − u|C2; (2.13)

σ �n|Γ12 = −σ �n|Γ34; (2.14)

σ �n|Γ14 = −σ �n|Γ23‚ (2.15)
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where n denotes the outward unit normal of the boundary. A tensile loading condition in
x-direction is prescribed:

ux |C2 − ux |C1 = L0[exp(ε̇t)− 1]‚ (2.16)

where ε̇ is set equal to the reference strain rate γ̇0 of the material. Furthermore, rotations
are prevented by the following condition for the vertices C1 and C2:

uy|C1 = uy |C2. (2.17)

The relative displacements of C4 are unspecified and follow from the analysis, whereas
the displacements of C3 are tied to the other vertices.

A structure with 20 volume percent irregularly dispersed voids is generated using a pro-
cedure fromHall (1991) and Smit et al. (1999). In order to obtain initially straight bound-
aries, no void is allowed to cross a boundary. The mesh with 2,622 four-noded bilinear
plane strain elements is shown in Figure 2.5(a). A local orientation field is generated by

(a) (b)

Figure 2.5 / (a) Finite element mesh and (b) local material orientations for the multipar-
ticle plane strain RVE.

taking the local 1-direction perpendicular to the closest void/matrix interface, taking into
account the periodicity of the structure, and is shown in Figure 2.5(b). The obtained ori-
entation field resembles orientation set 2 for the axisymmetric model. Since for this RVE,
the results obtained are largely influenced by the irregular geometry of the structure, the
RD model is qualitatively less sensitive to the choice of orientations than the SA model.



2.3 MICROMECHANICAL MODELS 17

2.3.3 Three-dimensional geometry

The results obtained with the RVE models previously discussed are validated by compari-
son with three-dimensional calculations. To this end, a three-dimensional cube, schemat-
ically visualized in Figure 2.6(a), containing an irregular arrangement of 48 spherical
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C3
C4

C5 C6

C7C8

Γ2367

Γ1458

(a) (b)

Figure 2.6 / (a) Schematic visualization of the three-dimensional geometry with the posi-
tion of two cross-sections and (b) the void arrangement.

voids, with volume fraction f = 0.2, as shown in Figure 2.6(b), is subjected to uniaxial
tension in x-direction. The boundaries with their normals in the x-direction are required
to remain planar:

ux |Γ1458 = ux |C1 ; (2.18)

ux |Γ2367 = ux |C2. (2.19)

The model is loaded in tension at a macroscopically constant strain rate:

ux |C2 − ux |C1 = L0[exp(ε̇t)− 1]‚ (2.20)

with ε̇ = γ̇0. Additionally, rotations around the x-axis are suppressed:

uy|C5 = uy |C1 . (2.21)

Results will be presented in two cross-sections, either perpendicular (A) or parallel (B)
to the tensile direction, as defined in Figure 2.6(a). Figures 2.7(a) and (c) show three-
dimensional views of the cross-sections. Moreover, in Figures 2.7(b) and (d) the mesh,
containing 41,086 ten-noded quadratic tetrahedron elements, is shown in cross-section
A and B, respectively. The local 1-directions are again taken perpendicular to the closest
void/matrix interface.
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Figure 2.7 / Cross-sections and the finite element mesh of the three-dimensional geom-
etry.

2.4 Effect of anisotropy

The constitutive behavior and micromechanical models previously discussed have been
implemented in the finite element package ABAQUS (HKS, 2001) to study the poten-
tial of local anisotropy enveloping dispersed voids for the toughening of semicrystalline
polymers. In this section, the results are presented. First, the effect of the choice for a
set of local orientations is investigated for the SA model. Thereafter, the effect of large
anisotropy versus isotropy is studied for the three-dimensional configuration. The appli-
cability of the SA and the RD model is validated by comparison to the three-dimensional
calculations. The potential of toughening by local anisotropy is investigated by using
different amounts of anisotropy in both the SA and the RD model.

2.4.1 Sensitivity to local orientation field

In the previous section, for the axisymmetric SA model, different sets of orientations
have been presented, which are used for the local principal anisotropy directions. Here,
the effect of a specific choice for these local orientations on the deformation obtained
is demonstrated. Figure 2.8 shows the model sensitivity of the magnitude of plastic de-
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Figure 2.8 / The magnitude of plastic deformation, εmagp , at ε̇t = 0.05.

formation, εmagp =
q
2
3εp :εp, with εp the plastic strain tensor (HKS, 2001), to the local

anisotropy directions, at ε̇t = 0.05. The anisotropy factor ζ (see Table 2.1) is set to 5. The
deformation pattern obtained largely depends on the local material orientations chosen.
For the isotropic reference material, a shear band is found, originating from the area at
the void surface where the surface normals are perpendicular to the loading direction,
also denoted as the equator. The anisotropic material with orientation set 1 shows plastic
deformation both in the matrix, diagonally away from the void (i.e. in the interparticle
material, approximately parallel to the void surface), and in a band emanating from the
void surface at an inclined off-polar region (the term pole refers to the location at the void
surface where the surface normals are aligned with the loading direction). However, the
results obtained with orientation set 2 show plastic deformation diagonally away from
the void only, whereas orientation set 3 is found to produce plastic deformation in a shear
band starting at the void surface in an off-polar region only.

Tzika et al. (2000) used orientations similar to orientation set 1 for their study of pref-
erentially oriented nylon and found plastic deformation in the matrix material to occur
diagonally away from the particle. However, this result is strongly related to the specific
choice of orientations and, therefore, the SA model is unsuitable to simulate the distri-
bution of plastic deformation in a particle-modified system. In the remaining, the SA
model is primarily used to study the hydrostatic stress field around the void. Thereby,
orientation set 2 is used, which corresponds to independently grown crystals, orthogonal
to the void surface.

Due to their irregular nature, the RD model and the three-dimensional configuration
are less influenced by minor changes in local anisotropy. For both models, the local
1-directions are assumed to be perpendicular to the closest void/matrix interface, which
is similar to orientation set 2 for the SA model.

2.4.2 Three-dimensional structure

The three-dimensional configuration as described previously is subjected to uniaxial ten-
sion at a constant strain rate ε̇ = 10−3 s−1. In Figure 2.9, the magnitude of plastic de-
formation is presented at ε̇t = 0.05 for both isotropic material, with ζ = 1 and strongly
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Figure 2.9 / The magnitude of plastic deformation, εmagp , in a three-dimensional arrange-
ment of voids, at ε̇t = 0.05.

anisotropic matrix material, with ζ = 5. The former corresponds to the situation where
there is no significant influence of transcrystallized material around the cavitated parti-
cles, i.e. a large scale configuration where the thickness of these layers can be neglected
(Λ�Λc) and the material consists of randomly oriented bulk matrix material. The latter,
however, resembles a small scale situation, where the matrix material completely con-
sists of transcrystallized polymeric material (Λ < Λc). In both cross-sections A and B, a
strongly localized behavior can be observed for the isotropic material, where the major-
ity of plastic deformation is concentrated in a distinct path of shear bands through the
irregular microstructure and the highest levels of plastic deformation are reached at the
void equator regions. The effect of a reduced plastic resistance in the local 12 and 13 shear
directions is a more dispersed field of shear bands, with the maximum values positioned
both near the voids surfaces and in the matrix and smaller than for the isotropic material.
The void-bridging shear bands approach the void surface at approximately the inclined
30Æ–50Æ off-polar region, forming a double shear band at each side of a cavitated particle.

In Figure 2.10, the hydrostatic pressure field p = − 13 tr(σ ) is represented. For the large
scale (Λ�Λc) isotropic material, the negative (tensile) triaxial stresses, whichmay induce
brittle behavior, are located at the equator regions of the voids, whereas in the small
scale (Λ < Λc) anisotropic material, with ζ = 5, the maximum tensile triaxial stresses
are located at the void poles.
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Figure 2.10 / The normalized hydrostatic pressure field p=σy0 , in a three-dimensional
arrangement of voids, at ε̇t = 0.05.

Therefore, the effect of completely transcrystallized anisotropic material, with reduced
shear yield strengths, between voided inclusions is extensive, delocalized, shear yielding
while the negative hydrostatic stresses are located at the polar regions rather than at the
void equators.

2.4.3 Two-dimensional RVEs

In this section, both the two-dimensional RDmodel and the SAmodel are considered for
the description of the particle-modified system. Isotropic material, with ζ = 1, is used as
a reference case for large scale, randomly crystallized material. For the small scale trans-
crystallized material, several levels of anisotropy are considered, ranging from ζ = 1.5 to
ζ = 5. In Figure 2.11, the magnitude of the plastic deformation is given for the irregular
plane strain model. Qualitatively, the same effect as for the three-dimensional config-
uration previously discussed (Figure 2.9) can be observed. For fully isotropic material,
the deformation is strongly localized in a specific path through the microstructure, de-
termined by the irregular void arrangement. For increasing anisotropy, an increasingly
dispersed mode of shear yielding is observed, which is highly favorable to enhance the
toughness. Maximum ε

mag
p -values are reduced, and are located both in the matrix mate-

rial, away from the void surface and at the void/matrix interface for the transcrystallized
material. Analogous to the three-dimensional configuration, in the largely anisotropic
material, double shear bands can be observed at each side of a void, positioned at the
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Figure 2.11 / The influence of radially oriented anisotropy on the magnitude of plastic
deformation, εmagp , for the irregular plane strain model, at ε̇t = 0.05.

inclined 30Æ–50Æ off-polar regions, whereas in the isotropic material mostly single shear
bands at the void equators are found. The shear yielding mechanism becomes truly ef-
fective for anisotropy ratios R11=R12 above the value of 3.

Although not shown here, it is mentioned that for all levels of anisotropy, in the RD
model, the highest tensile triaxial stresses are found at the void equator regions, which
is not in agreement with the three-dimensional simulations. More realistic predictions
of the triaxial stress state around dispersed voids are obtained with the axisymmetric SA
model, as represented in Figure 2.12. In the isotropic material, the maximum tensile tri-

p=σy0

−0.72
−0.55
−0.39
−0.22
−0.057
+0.11
+0.27
+0.44

(a) ζ = 1 (b) ζ = 1.5 (c) ζ = 2 (d) ζ = 3 (e) ζ = 5
Figure 2.12 / The influence of radially oriented anisotropy on the normalized hydrostatic
pressure, p=σy0 , for the axisymmetric SA model, at ε̇t = 0.05.

axial stresses are found to occur at the void equators, corresponding to the observations in
the three-dimensional simulation and a second maximum is found in the matrix material
between the voids. The latter is not observed in the 3D simulations. For small anisotropy
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levels, these negative hydrostatic pressures are reduced. At higher levels of anisotropy
however, the tensile pressures again increase with increasing ζ , where the maximum
now is found in the matrix material near the void pole. The SA model is in much bet-
ter agreement with the three-dimensional situation than the RD model. However, the
peak values of the tensile hydrostatic stress are significantly lower for the axisymmetric
SA model than for the three-dimensional model. Danielson et al. (2002) found the op-
posite effect, when comparing their three-dimensional analysis of a BCC arrangement of
voids under triaxial loading with results obtained by Socrate and Boyce (2000) with an
axisymmetric BCC model.

The distinct effect of anisotropy on the triaxial stress field is also reflected in the maxi-
mum in-plane principal stress, σmax, as is shown in Figure 2.13. For the isotropic matrix
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Figure 2.13 / The influence of radially oriented anisotropy on the normalized maximum
in-plane principal stress,σmax=σy0 , for the axisymmetric SA model, at ε̇t = 0.05.

material, the locations of large equivalent stress and negative hydrostatic stress coincide,
leading to a relatively high maximum in-plane principal stress, concentrated at the void
equators, and the void-bridging ligaments. As the anisotropy parameter ζ is increased,
the values of σmax are considerably reduced and the location of the largest σmax changes
to the void poles for ζ = 5.

2.4.4 Failure mechanisms

Based on the investigations with both the RD and the SA model, two distinct effects
of local, radially oriented, anisotropy can be observed. The influence on the triax-
ial stress field is a change of the position of maximum tensile values. Under high
tensile triaxial stress, crazelike features, as interlamellar separation and voiding of
amorphous regions (Friedrich, 1983; Narisawa and Ishikawa, 1990; Kausch et al., 1999;
Michler and Godehardt, 2000), may be initiated in the semicrystalline matrix material,
and upon extension and coalescence of cavities, true crazes may be formed. Although
crazing may lead to brittle behavior, the crazing process itself may under certain condi-
tions also lead to plasticity, and therefore to toughness (Argon et al., 1983, 1994).
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In the simulations, the highest negative hydrostatic pressures are found at the void equa-
tors for the large scale, isotropic material. For the small scale anisotropic material how-
ever, large tensile pressures are found at the void poles. Therefore, the initiation of craz-
ing may, for the voided system with radially oriented anisotropy, be expected to occur
at the particle poles, rather than in the equator region. The growth of initiated crazes
is likely to occur along planes which are perpendicular to the direction of maximum
principal stress (Kramer, 1983; Narisawa and Ishikawa, 1990; Kausch et al., 1999). In
Figure 2.14, the direction of the maximum in-plane principal stress is given for the SA
model, for both isotropic (ζ = 1) and largely anisotropic (ζ = 5) material. For both sit-

(a) ζ = 1 (b) ζ = 5
Figure 2.14 / The influence of radially oriented anisotropy on the direction and magni-
tude of the maximum in-plane principal stress,σmax, for the SA model, at ε̇t = 0.05.

uations, in the region of large tensile triaxial stress, the maximum in-plane principal
stresses are relatively large, and directed parallel with the void interface. Therefore, craze
growth is expected to occur perpendicular to the interface. Moreover, the large principal
stresses at the particle equators of the isotropic material may lead to brittle fracture of the
matrix material. The decrease of maximum in-plane principal stresses in the anisotropic
material, makes this system less susceptible to brittle fracture. It is noted that in the
current simulations, no failure and crazing initiation/growth criterion has been used (as
for example in Tijssens et al., 2000; Estevez et al., 2000; Socrate et al., 2001). Anyhow,
the observed stress and deformation phenomena are schematically represented in Fig-
ure 2.15. The actual mechanism that will occur for a specific matrix material will depend
on the values of the brittle fracture strength, the resistance against craze initiation and
growth and the yield strength of the material, relative to each other (Bicerano and Seitz,
1996). In the isotropic material, possible crazes are initiated at the particle equators, and
grow transversely to the macroscopic tensile direction. The plastic deformation is local-
ized in a few bands, located in crazing regions. For this large scale system, the crazes
may act as precursors to cracks, and ultimately failure. For the small scale situation, with
radially oriented anisotropic material around the cavitated particles, maximum tensile tri-
axial stresses are predominantly found in zones of limited plastic deformation. Possible
crazes are initiated at the particle poles, and grow in the direction of macroscopic load-
ing. In this situation, crazing may become a mechanism of energy-absorbing inelastic
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(a) isotropic (b) anisotropic

Figure 2.15 / Schematic illustration of the effect of radially oriented anisotropy on the
occurrence of matrix shearing and triaxial stresses.

deformation. Additionally, extensive matrix yielding, which is another beneficial energy-
absorbing mechanism, occurs in noncrazing regions. Therefore, by changing the nature
of matrix crazing, reducing principal stresses and inducing extensive matrix shearing, a
local, radially oriented, anisotropy, with sufficiently reduced shear strengths, may be a
highly efficient method for the toughening of semicrystalline materials.

2.5 Unidirectional anisotropy

In the foregoing, the local principal anisotropy directions were radially oriented around
the dispersed voids. Here, as an alternative, the consequences of a unidirectional ori-
entation field are investigated. The 1-directions of the uniform field of local coordinate
systems are chosen either to be aligned parallel with the macroscopic tensile direction,
referred to withϕ = 0Æ, or at an angle ofϕ = 45Æ with the loading direction.
The plastic deformations obtained in the RD model are represented in Figure 2.16, for
largely anisotropic material (ζ = 5). The resulting mode of plastic deformation depends
on the direction of the orientation field. Forϕ = 0Æ, localization of deformation is found
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(a)ϕ = 0Æ (b)ϕ = 45Æ

Figure 2.16 / The influence of unidirectional anisotropy on the magnitude of plastic de-
formation, εmagp , at ε̇t = 0.05, using ζ = 5.
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to be more severe than for the isotropic material, shown in Figure 2.11(a). Shear bands
are found predominantly in either the local 1- or the local 2-direction. In the ϕ = 45Æ
situation, the directions of reduced plastic resistance are oriented favorably with respect
to the shear directions that are induced by the geometry of irregularly dispersed voids.
Consequently, a pattern of dispersed, void-bridging, shear bands is obtained. In contrast
to the radially oriented anisotropy, for this material, the shear bands are starting mainly
from the void equators and have their maximum of plastic deformation at the void/matrix
interface.

In Figure 2.17, the resulting hydrostatic stress fields, as obtained with the axisymmetric
SA model, are represented. Again, the results depend on the angle between the principal
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Figure 2.17 / The influence of unidirectional anisotropy on the normalized hydrostatic
stress, p=σy0 , at ε̇t = 0.05, with ζ = 5.

anisotropy directions with the loading direction. When the local 1-direction coincides
with the direction of the macroscopic load, a band of large tensile triaxial stress is found
in the matrix material between voids, starting near the void equator, whereas for the case
ofϕ = 45Æ, the maximum tensile triaxial stresses, which are reduced with respect to the
isotropic situation, are found in the matrix material near the void pole.

Although a unidirectionally oriented plastic anisotropy can potentially induce a tough-
ened behavior if loaded in the proper direction, the direction dependence of this material
makes this morphology hardly suitable for improving the toughness of semicrystalline
material in general.

2.6 Influence of hardening

In the numerical investigation of the effect of locally anisotropic yield properties, the hard-
ening parameter h has been kept constant. However, increasing the postyield hardening
is a known method of improving impact behavior of particle-modified polymeric mate-
rial (Smit et al., 2000a,b,c). In Figure 2.18, the effect of this hardening parameter on the
plastic deformation obtained is shown, for a fully isotropic matrix. Increasing the hard-
ening reduces the localization of shear bands. Although a considerably more dispersed
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Figure 2.18 / Influence of postyield hardening on the magnitude of plastic deformation,
ε
mag
p , at ε = 0.1.

pattern of plastic deformation is found for large hardening, the extensive matrix shearing
in distinct shear bands, as found for the anisotropic material, see Figure 2.11(e), is not ob-
tained. Increasing the hardening parameter has no significant effect on the triaxial stress
field in the SA model.

By itself, increased hardening will indeed improve toughness, however, the toughening
as obtained by local radially oriented anisotropy is potentially much larger. Nevertheless,
a combination of bothmechanisms, where the material behavior exhibits increased strain
hardening, preferably in the local 2-direction to prevent localization in thin interparticle
ligaments, in addition to a local anisotropy with reduced 12 and 13 shear strengths would
be advantageous.

2.7 Conclusions

In this chapter, the effect of matrix material with a reduced yield strength in the local
shear directions around well-dispersed voids has been investigated by numerical sim-
ulations of idealized systems. The local principal anisotropy directions were assumed
to be radially oriented around second-phase particles. The fictitious polymeric material
was modeled in the context of anisotropic Hill plasticity, where the yield strength has
been taken to depend on an effective plastic deformation measure, and its time deriva-
tive. Two extreme size scales were investigated; the smallest scale having fully percolated
anisotropic material and the largest scale having completely isotropic material properties.

The three-dimensional structure of the voidedmaterial was simplified to two different mi-
cromechanical models. The applicability of these computationally two-dimensional mod-
els was assessed by comparison of two reference situations with fully three-dimensional
simulations. The irregular distribution of voids is captured by a multiparticle plane
strain RVE. The irregular nature of this RVE is essential in capturing the effects of local
anisotropy on the mechanics of plastic deformation. For the large scale, plastic deforma-
tion localizes in a specific path through the matrix material, inducing macroscopically
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brittle behavior, whereas for the small scale configuration, a heterogeneous field of void-
bridging shear bands was found throughout the entire domain, which could lead to a
macroscopically toughened behavior. The extent of shear yielding increases with increas-
ing anisotropy. The localization of deformation vanishes due to a large reduction of local
shear yield strengths. Comparison with fully three-dimensional calculations shows that
the RD model is incapable of capturing the distinct effects of local anisotropy on the tri-
axial stress state. A better representation of the three-dimensional stress state is obtained
with the axisymmetric SA model, where a regular distribution of voids is assumed. The
most striking effect of local anisotropy on the hydrostatic stress field is a shift of the high-
est tensile triaxial stresses from the void equator region (where the surface normals are
perpendicular to the loading direction) to the void polar region (the surface area where the
normals are aligned with the loading direction). Consequently, the maximum principal
stresses at the void equator are considerably reduced.

The calculations presented in this chapter confirm that the mechanism as proposed by
Muratoǧlu et al. (1995c) could indeed lead to toughened material behavior. The presence
of an absolute length scale is related to the thickness of a layer of anisotropic matrix
material enveloping the dispersed voids. Required for toughening by this mechanism is
then (i) a structure of well-dispersed voided particles with an average surface–to–surface
interparticle distance which is smaller than the critical length parameter of the matrix
material; (ii) locally anisotropic material with the principal 1-direction radially oriented
with respect to the nearest void surface; and (iii) a sufficiently reduced shear yield strength
in the local 12- and 13-directions (with R11=R12 at least of the order of 3). The role of voiding
will be discussed in the following chapter.

It is noted that although the large potential of local anisotropy for toughening of semicrys-
talline polymers was shown, the origin of this anisotropy has not been addressed
here. The material was merely assumed to be oriented with the principal 1-direction
of anisotropy towards the nearest void and having a finite anisotropic layer thickness.
The origin of these layers is attributed to a preferred crystallization at the particle/matrix
interface by Muratoǧlu et al. (1995c) and Bartczak et al. (1999a,b). The consequences of
such a morphology for local anisotropy will be addressed in Chapter 7.

An alternative anisotropy configuration has been investigated, having a unidirectional
field of the principal material orientations. Although this microstructure can poten-
tially induce a toughened behavior if loaded appropriately with respect to the principal
anisotropy directions, the direction dependence of this material makes this toughening
mechanism hardly suitable for improving semicrystalline materials. Finally, hardening of
the yield strength with plastic deformation was shown to also reduce localization. How-
ever, it is concluded that local anisotropy is amore powerful tool in obtaining substantially
improved material behavior. Nevertheless, when used in combination with anisotropy, an
increased hardening would be beneficial for preventing localization in thin interparticle
ligaments.



CHAPTER THREE

Hard particles versus soft particles1

Abstract / The potential of toughening of semicrystalline polymeric material by local
anisotropy in combination with soft rubber and hard mineral filler particles is investigated
in this chapter. The matrix material is modeled within the framework of anisotropic Hill
plasticity with a rate-dependent and hardening yield stress. Various particle/matrix interface
conditions are used to study the role of debonding and cavitation. The presence of debonded
moderately stiff or hard fillers is found to influence the shear yielding effect of local anisotropy
that was found for voided material.

3.1 Introduction

A physically-based mechanism for the toughening of semicrystalline polymeric ma-
terials due to the dispersion of particles originates from the presence of a layer of
anisotropic transcrystallized material enveloping the particles, and was proposed for ny-
lon by Muratoǧlu et al. (1995c). Bartczak et al. (1999a,b) generalized this mechanism to
other material (high density polyethylene) and showed the critical interparticle distance
to be an intrinsic property of the matrix material, thereby opening the possibility of using
mineral fillers instead of rubber particles for the toughening of semicrystalline polymers,
the advantage of which would be an improved modulus of the blend. They argued that
debonding of hard filler particles could be an alternative for the cavitation of the rubbery
phase.

In Chapter 2, an idealized, polymeric matrix material was modeled by anisotropic Hill
plasticity, and various representative volume elements were used to describe the system
containing dispersed voids. It was shown that a local plastic anisotropy of matrix mate-
rial around the voids can effectively replace localization by dispersed shear yielding and

1This chapter is based on Van Dommelen et al. (2003g).
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change the occurring hydrostatic stresses, potentially leading to toughened material be-
havior. However, to achieve these improvements, a morphology should be pursued that
has a radially oriented structure around the dispersed voids and provides a sufficiently
large amount of anisotropy.

In this chapter, the consequence of using moderately stiff rubber fillers or hard mineral
particles for the toughening of semicrystalline polymers is investigated. For this pur-
pose, again the anisotropic Hill model is used, with a rate-dependent and hardening yield
stress. The system contains a scale parameter, which is the ratio of the average distance
between particles and a critical distance. The value of this parameter is represented in the
calculations by the relative thickness of an anisotropic layer around the particles. Large
and small scale configurations are modeled by entirely isotropic or anisotropic matrix
material, respectively. Debonding particles with various interface strengths, precavitated
rubber shell-structures, and fully bonded hard particles are used. The combination of lo-
cal anisotropy and precavitated rubber shell-structures is found to promote matrix shear
yielding. The presence of easily debonding hard particles is found to partly disturb the
anisotropy-based toughening mechanism, whereas fully bonded particles induce large
tensile hydrostatic stresses.

3.2 Model description

In this chapter, the potential of plastic anisotropy, in combination with moderate or high
stiffness filler particles, for enhancing the toughness of a particle-modified semicrys-
talline polymeric material is investigated. For this purpose, an idealized polymeric mate-
rial is modeled by isotropic elasticity and anisotropic plasticity. For the yield behavior, the
anisotropic Hill yield criterion (Hill, 1950) is used, with a rate-dependent and hardening
yield stress, as discussed in Chapter 2. Also the material parameters of the fictitious poly-
mer matrix are similar as in the previous chapter. The transcrystallized material around
the particles is assumed to have a reduced plastic resistance in the local 12 and 13 shear di-
rections (at the particle/matrix interface, the 1-direction is perpendicular to the interface),
and the reduction is controlled by the adjustable parameter ζ = R11=R12. Rubber parti-
cles are modeled with a neo-Hookean hyperelastic model (HKS, 2001), characterized by
a shear modulus Gp = 30MPa and a bulk modulus κp = 1 GPa. The mineral filler par-
ticles are modeled as linearly elastic, with Young’s modulus Ep = 80 GPa and Poisson’s
ratio νp = 0.3.
Particle-modified material is again described by a finite element model of a representative
volume element (RVE). The particle-modified system, having a three-dimensional nature,
is simplified to a two-dimensional RVE, for which two different approaches are used, as
discussed in Chapter 2, where a comparison with fully three-dimensional calculations
was presented. To account for the irregular nature of particle-dispersed systems, a multi-
particle plane strain RVE with randomly dispersed particles (referred to as the RD model)
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is used. The meshes with 2,622 4-noded bilinear plane strain matrix elements and either
324 elements for the precavitated rubber shell or 796 filler particle elements, are shown
in Figure 3.1(a) and (b), respectively. A local orientation field for the matrix material is

x

y

(a) (b)

Figure 3.1 / Finite element mesh of multiparticle plane strain RVE model including (a)
precavitated and (b) uncavitated particles.

generated by taking the local 1-direction perpendicular to the closest particle/matrix in-
terface, taking into account the periodicity of the structure, as was shown in Figure 2.5(b).
The RVE will be subjected to tensile loading in x-direction.

An axisymmetric RVE model of a staggered array of particles (referred to as the SAmodel)
is considered, which was previously used for the investigation of the micromechanics of
particle-toughened polymers by Socrate and Boyce (2000) and by Tzika et al. (2000) and
which resembles a body centered tetragonal stacking of particles (see Section 2.3.1). The
finite element meshes of the axisymmetric SA model with 20 volume percent particles
are shown in Figure 3.2. The matrix material is represented by 196 4-noded bilinear
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Figure 3.2 / Finite element mesh of the axisymmetric RVE model of a staggered array of
particles including (a) precavitated and (b) uncavitated particles.
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elements, whereas the precavitated rubber shell and the uncavitated particle regions are
modeled by 40 and 136 elements, respectively. The local 1-directions are assumed to
be perpendicular to the closest particle/matrix interface (i.e. corresponding to set 2 in
Chapter 2). The RVE will be subjected to tensile loading along the horizontal symmetry
axis.

In the following, the influence of dispersed rubber (i.e. soft) inclusions versus mineral
(i.e. hard) filler particles in semicrystalline polymeric material is investigated, and par-
ticularly the effect of these fillers on the mechanism of toughening by locally induced
anisotropy. As a reference situation, voided matrix material will be used. A distinction
is made between fully bonded particles, for which a tied particle/matrix interface is used,
and debonding particles. For the latter, a contact algorithm (HKS, 2001) with a relatively
low maximum tensile strength σ i=σy0 = 0.4 is used to describe the particle/matrix inter-
action.

3.3 Rubber particles

For rubber inclusions with a relatively low stiffness, the effect of the presence of either
debonded or cavitated particles with respect to the stress and deformation fields is negli-
gible. These systems may be modeled by voided matrix material. For voided polymeric
material, the effect of a local, radially oriented, anisotropy (see Chapter 2) is (i) a transition
from localized deformation for isotropic material to dispersed shear yielding; and (ii) a
relocation of hydrostatic stresses from the equator region (the particle equator is defined
as the location where the interface normal is perpendicular to the loading direction) for
isotropic material to the polar region (the term pole denotes the region where the interface
normal is in line with the loading direction).

Rubber filler particles with a moderately high stiffness will have an effect on the deforma-
tion mechanisms. To investigate the effect of anisotropy in the presence of rubber filler
particles on the triaxial stress field and local principal stresses, the SA model is used. The
influence of rubber particles on the observed hydrostatic pressure, p = − 13 tr(σ ), is shown
in Figure 3.3 for both isotropic (ζ = 1, i.e. large scale) and locally anisotropic (ζ = 3, i.e.
small scale) material. Results are shown for voided (i.e. low modulus fillers), debonded,
precavitated, and well-bonded uncavitated fillers. For the latter, either debonding or cavi-
tation may occur. This is due to tensile triaxial stresses in the rubber particle region and
depends on the interface strength and the cavitation resistance. The cavitation process
itself is not modeled; instead, precavitated particles are represented by a rubber shell, as
was previously done by Smit et al. (2000b). For the isotropic systems, little difference
in tensile triaxial pressure between the voided, debonded and cavitated RVEs is observed
in the matrix. For the anisotropic systems, maximum negative pressures are found in
the polar area; however these are slightly higher when a relatively stiff rubber particle
is included. Crazelike features, such as interlamellar separation and voiding of amor-
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Figure 3.3 / Normalized hydrostatic pressure, p=σy0 , for the SA model with (a), (e) voids,
(b), (f) rubber particles with interface strength σ i=σy0 = 0.4, (c), (g) precavitated rubber
particles, and (d), (h) fully bonded rubber particles, at ε̇t = 0.1.

phous regions (Kausch et al., 1999), may be initiated in the semicrystalline matrix mate-
rial under high tensile triaxial stress. For the anisotropic systems with both debonded and
cavitated relatively stiff rubber inclusions, the maximum principal stresses are directed
parallel to the matrix interface (i.e. perpendicular to the loading direction) in the area of
maximum tensile triaxial stress. Therefore, crazing is expected to occur parallel to this
loading direction, rather than perpendicular, as for the isotropic systems.

The mechanism of shear yielding is captured by the irregular plane strain RVE, as dis-
cussed in Section 2.4.3. For the voided systems (i.e. low modulus fillers), a distinct transi-
tion from localization in isotropic matrix material to massive dispersed shear yielding in
the anisotropic system is observed (Chapter 2). This effect is shown in Figure 3.4, where

the obtained magnitude of plastic deformation, ε
mag
p =

q
2
3εp :εp, with εp the plastic

strain tensor (HKS, 2001), is displayed. Moderately stiff rubber inclusions were found
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(a) ζ = 1 (b) ζ = 3
Figure 3.4 / The magnitude of plastic deformation, εmagp , for the RD model with voids, at
ε̇t = 0.1.
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to have only a small influence on the matrix hydrostatic pressure. Smit et al. (2000b)
found precavitated load bearing particles to stabilize local yield zones and promote ma-
trix shear yielding for rubber-modified polystyrene, which shows pronounced strain soft-
ening before strain hardening. In Figure 3.5, the consequences of either debonded or
cavitated rubber inclusions on the plastic deformation, as predicted by the multiparticle
RD model, are displayed for both isotropic and anisotropic systems. Prior to cavitation or
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(d) ζ = 3 (e) ζ = 3 (f) ζ = 3
Figure 3.5 / The magnitude of plastic deformation, εmagp , for the RD model with (a), (d)
debonding rubber particles, (b), (e) precavitated rubber particles, and (c), (f) fully bonded
rubber particles, at ε̇t = 0.1.

debonding, plastic shearing remains dispersed through the matrix material for both the
isotropic and the anisotropic system. However, the axisymmetric simulations indicate
tensile triaxial stresses within the fully bonded and uncavitated inclusions, which will in-
duce either debonding or cavitation of rubber particles. With debonded moderately stiff
rubber particles included, the effect of anisotropy is reduced. For this system, both matrix
shear yielding and localized deformation in relatively thin ligaments are observed. The
presence of well-bonded precavitated inclusions has a stabilizing effect on matrix yielding
in thin ligaments, as was reported by Smit et al. (2000b). Therefore, for polymer tough-
ening by local anisotropy with moderately stiff rubber inclusions, cavitation of particles is
preferred over debonding. Finally, the combined effect of moderate anisotropy (ζ = 1.5)
and included rubber shell-structures is shown in Figure 3.6. For this system, localized
yielding in thin interparticle ligaments is replaced by dispersed matrix shear yielding.
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Figure 3.6 / The magnitude of plastic deformation, εmagp , for the RDmodel with (a) voids,
and (b) cavitated rubber particles, at ε̇t = 0.1, with ζ = 1.5.

3.4 Hard particles

In Figure 3.7, the obtained magnitudes of plastic deformation as obtained by the RD
model are shown for systems containing both debonded and fully bonded hard filler par-
ticles, for both isotropic (ζ = 1, i.e. large scale) and anisotropic (ζ = 3, i.e. small scale)
matrix material, respectively. For the voided isotropic matrix material (Figure 3.4(a)), the
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Figure 3.7 / The magnitude of plastic deformation, εmagp , for the RD model with (a), (c)
easily debonding hard particles, and (b), (d) fully bonded hard particles, at ε̇t = 0.1.

macroscopic contraction in the y-direction is small, corresponding to the growth of voids,
due to stretching of relatively thin ligaments. Therefore, for this matrix material, the
inclusion of easily debonding hard particle fillers has no significant effect on the defor-
mation observed, as can be seen by comparison with Figure 3.7(a), where the interface
strength σ i is negligibly small. For radially oriented anisotropic voided material, a dis-
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persed mode of massive shear yielding is observed, with double shear bands at each side
of a particle. As a result of matrix shearing, for the voided anisotropic system, however,
the voids become smaller in the macroscopically free direction, see Figure 3.4(b). Con-
sequently, the presence of hard mineral fillers interferes with the mechanism of matrix
shearing, as can be observed in Figure 3.7(c). Therefore, although there is some effect of
anisotropy, the mechanism of toughening by locally induced anisotropy is expected to be
considerably less efficient for nonadhering hard fillers than for low modulus rubber par-
ticles. For material filled with well-bonded stiff particles, which is shown in Figure 3.7(b)
and (d), massive shear yielding is found for both isotropic and anisotropic matrix behav-
ior.

In Figure 3.8, the effect of hard filler particles on the normalized hydrostatic pressure,
p=σy0 , as predicted by the SA model, is displayed for (large scale) isotropic and (small
scale) anisotropic matrix material. For voided systems, the effect of anisotropy on the

(a) ζ = 1 (b) ζ = 1 (c) ζ = 1 p=σy0
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−0.8
−0.4
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+0.8

(d) ζ = 3 (e) ζ = 3 (f) ζ = 3
Figure 3.8 / The normalized hydrostatic pressure, p=σy0 , for the SA model, with (a), (d)
voids, (b), (e) easily debonding hard particles, and (c), (f) fully bonded hard particles, at
ε̇t = 0.1.

triaxial stress field is a change of the position of maximum tensile values. The highest
negative (tensile) hydrostatic pressures are found at the particle equators for the isotropic
material (Figure 3.8(a)). For the anisotropic material however, large tensile pressures are
found in the polar regions (Figure 3.8(d)). Therefore, the initiation of crazing may, for the
voided system with radially oriented anisotropy, be expected to occur at the particle poles,
rather than in the equator region. For easily debonding hard particles, a similar effect of
local anisotropy on the tensile triaxial stresses is observed, with an increase of the peak
value for the anisotropic situation. The well-bonded configurations both show peak ten-
sile triaxial stresses at the poles. Moreover, the peak values are substantially larger than
for the well-bonded stiff rubber particles. The growth of initiated crazes is likely to occur
along planes which are perpendicular to the direction of the maximum principal stress.



3.4 HARD PARTICLES 37

In Figure 3.9, the normalized maximum in-plane principal stress, σmax=σy0 is depicted
for the SA model, for both isotropic (ζ = 1) and anisotropic (ζ = 3) material, with either
a void, or easily debonding or adhering hard particles. Moreover, in Figure 3.10, the di-
rection of the maximum in-plane principal stress is given for the systems containing a
hard particle. For both nonadhering situations, the maximum in-plane principal stresses

(a) ζ = 1 (b) ζ = 1 (c) ζ = 1
σmax=σy0

−0.44
0.0

+0.44
+0.88
+1.32
+1.76
+2.2
+2.64

(d) ζ = 3 (e) ζ = 3 (f) ζ = 3
Figure 3.9 / The normalized maximum in-plane principal stress, σmax=σy0 , for the SA
model, with (a), (d) voids, (b), (e) easily debonding hard particles, and (c), (f) fully bonded
hard particles, at ε̇t = 0.1.

(a) ζ = 1 (b) ζ = 3 (c) ζ = 1 (d) ζ = 3
Figure 3.10 / The direction (and magnitude) of the maximum in-plane principal stress,
σmax, for (a), (b) easily debonding hard fillers, and (c), (d) well-bonded particles, at
ε̇t = 0.1.

in the region of large tensile triaxial stress, are parallel with the rubber/matrix interface.
Therefore, craze growth is expected to occur perpendicular to the interface, i.e. perpendic-
ular to the loading direction for the isotropic material and parallel to the loading direction
for the anisotropic system. However, for the well-bonded systems, which did show ad-
vantageous shear yielding for both the isotropic and the anisotropic configuration, the
maximum principal stresses in the polar region (where the largest tensile triaxial stresses
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are observed) are directed approximately in the loading direction. Consequently, for these
systems craze growth or microcracking may be expected to occur perpendicular to the
loading direction, thereby possibly leading to macroscopic failure. Anyhow, for the sys-
tems containing well-bonded hard particles, an isotropic matrix seems to be favorable
over locally anisotropic material.

A secondary potential effect of hard mineral filler particles is an increase of the modu-
lus of the particle-modified system (Bartczak et al., 1999b). In Figure 3.11, the influence
of hard fillers, with various interface conditions, on the normalized equivalent volume-
averaged stress

〈σ〉eq =
r
3

2
〈σ 〉d : 〈σ 〉d ; 〈σ 〉d = 〈σ 〉 − 1

3
tr(〈σ 〉)I‚ (3.1)

with

〈σ 〉 = 1

V

Z

x2V
σ (x) dV (3.2)

the volume-averaged Cauchy stress (Smit et al., 1998), versus the imposed deformation
is represented for the RD model. For both the isotropic and the anisotropic material
with a reduced shear yield strength, an increase of the elastic modulus is observed for
the fully bonded systems with respect to the voided situation. The particles with low
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(a) ζ = 1 (b) ζ = 3
Figure 3.11 / The normalized equivalent volume-averaged stress, 〈σ〉eq=σy0 , vs. the im-
posed deformation, ε̇t, for the RD model, for both voids and hard particles, with variable
interface conditions.

interface strength (σ i=σy0 = 0.4) are debonding early in the elastic region. For an increase
of the modulus in the entire elastic regime, the interface strength must be sufficiently
high, for particles to remain bonded prior to macroscopic yielding. The volume-averaged
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response is also shown for two situations with elevated interface strength. The stress-
drops for these curves correspond to individual interface debonding events. The local
anisotropy, which is achieved by a reduction of the shear yield resistances, trivially results
in a reduction of the overall yield stress.

3.5 Conclusions

Fictitious, idealized, polymeric matrix materials were modeled by anisotropic Hill plas-
ticity in Chapter 2, where the distinct effect of local plastic anisotropy of matrix material
around the voids was shown, viz. an effective replacement of localization by dispersed
shear yielding and a change of the occurring hydrostatic stresses, potentially leading to
toughened material behavior. In this chapter, a similar modeling approach was used to in-
vestigate the influence of rubber and mineral (moderate and high modulus, respectively)
filler particles on this toughening mechanism.

Moderately stiff inclusions, which are either debonded or precavitated, were found to
have little effect on the triaxial stresses. Rubber shell inclusions however, stabilize local
deformation zones and promote matrix shear yielding, whereas debonded rubber parti-
cles have a disturbing effect on the anisotropy-induced shear yielding mechanism. The
use of mineral filler particles for toughening of polymeric materials requires debonding
in order to prevent excessive tensile hydrostatic stresses. These debonded hard particles
show a relocation of tensile triaxial stresses to the particle polar areas by local anisotropy,
similarly to anisotropic voided systems, with the maximum principal stresses directed
such that crazes or microcracks are expected parallel to the loading direction. However,
the anisotropy-induced shear yielding mechanism is affected by the presence of stiff in-
clusions.

The potential of particle-toughening of semicrystalline polymeric materials by local
anisotropy is schematically indicated in Figure 3.12, which is a refinement of the orig-
inally hypothesized diagram (Figure 1.5). Although some effect of anisotropy is observed,
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Figure 3.12 / The potential of particle-toughening of semicrystalline polymeric materials
by local anisotropy for soft (rubber) and hard (mineral) particles.
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the mechanism of toughening by local anisotropy is less effective for nonadhering hard
particles, which have the advantage of increasing the blend modulus, than for low stiff-
ness rubber fillers.



CHAPTER FOUR

Composite inclusion model1

Abstract / A micromechanically-based constitutive model for the elasto-viscoplastic deforma-
tion and texture evolution of semicrystalline polymers is developed. The model idealizes the
microstructure to consist of an aggregate of two-phase layered composite inclusions. The
crystalline lamellae are modeled as anisotropically elastic with plastic flow occurring via crys-
tallographic slip. The amorphous phase is modeled as isotropically elastic with plastic flow
being a rate-dependent process where strain hardening results from molecular orientation.
The volume-averaged deformation and stress within the inclusions are related to the meso-
scopic fields by various interaction models. The uniaxial compression of initially isotropic
high density polyethylene (HDPE) is taken as a case study. The ability of the model to capture
the elasto-plastic stress–strain behavior during monotonic and cyclic loading, the evolution of
anisotropy, and the effect of crystallinity on the initial modulus, yield stress, postyield behavior
and unloading–reloading behavior are evaluated.

4.1 Introduction

The mechanical performance of semicrystalline polymeric materials, as characterized
by elasto-viscoplastic deformation, is strongly dependent on the underlying microstruc-
ture (Lin and Argon, 1994; G’Sell and Dahoun, 1994; Petermann, 1996; Peacock, 2000).
Semicrystalline polymers consist of both amorphous and crystalline domains, where the
percentage crystallinity in commercially available materials can vary from 10 to 90 per-
cent. The elastic and the viscoplastic behavior depend on the percentage crystallinity,
the initial crystallographic and morphological texture, as well as the evolution of this mi-
crostructure with ongoing deformation. Furthermore, the folded chain structure of poly-
mer crystals limits the ability of the crystalline domains to accommodate arbitrary plastic
deformations. Thus, the interplay between the amorphous and crystalline domains in re-

1This chapter is based on Van Dommelen et al. (2003c) and Van Dommelen et al. (2000b).
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sponding to imposed deformation is a key issue in determining the mechanical behavior
of semicrystalline polymers based on the structure and the behavior of the underlying
amorphous and crystalline constituents.

In recent years, much research has been focused on understanding the viscoplastic be-
havior of semicrystalline polymers with experimental and modeling studies focused on
the evolution of crystallographic texture during plastic straining up to large strains (e.g.
Parks and Ahzi, 1990; Dahoun et al., 1991; Bartczak et al., 1992b; Galeski et al., 1992;
Lee et al., 1993a,b, 1995; Ahzi et al., 1994; Schoenfeld et al., 1995; Argon, 1997). How-
ever, semicrystalline polymers may exhibit substantial elastic strains which play an im-
portant role in the overall mechanical behavior. The yield point itself is typically not
very clearly defined since there is considerable nonlinearity prior to any clear rollover or
plateauing of stress to signify yield. The contribution of the amorphous and crystalline
domains to the initial elastic response and the transition of this elastic response to vis-
coplastic behavior with increasing strain has been unexplored yet. Elastic deformation
continues to play a role during large strain deformation and, furthermore, the elastic be-
havior of a semicrystalline polymer evolves in an anisotropic manner during large strain
deformation due to crystallographic texturing of the elastically anisotropic crystals.

The elastic behavior of each phase and, importantly, the interplay between the elasto-
viscoplastic behavior of the phases govern the processing behavior and determine end-
use properties. During processing, polymeric materials are often subjected to large
plastic deformations, giving rise to preferential orientation of macromolecules and mor-
phology, which may result in high anisotropy. Furthermore, in thin films, a pre-
ferred orientation of the crystalline component, produced by transcrystallization dur-
ing cooling and/or by spin casting, can give rise to strong anisotropy and therefore
can have a profound influence on the mechanical properties of these films (Elsner et al.,
1990; Muratoǧlu et al., 1995a; Bartczak et al., 1999c). This anisotropy is a general phe-
nomenon that plays a significant role in various thin film technologies which are widely
used in, for example, the micro-electronics industry. Similar conditions, namely a
thin layer of preferentially oriented material, may appear in the microstructural mor-
phology of particle-modified polymers (e.g. Chacko et al., 1982; Muratoǧlu et al., 1995c;
Bartczak et al., 1999a,b; Kim et al., 2001; Nam et al., 2001).

When focusing on larger strains, different stages of deformation of semicrystalline ma-
terials can be distinguished (Peterlin, 1971; Petermann and Ebener, 1999). In stage one,
the original lamellar structure of the material is continuously deformed by mechanisms
of intralamellar and interlamellar deformation. The second stage comprises a discontin-
uous transformation of the original structure into a fibrillar structure, with the molecular
chains parallel to the drawing direction. In the final stage, the fibrillar structure is further
deformed.
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In this chapter, a micromechanically-based numerical model for the deformation and
texture evolution of semicrystalline polymers is developed for the elastic and moderately
plastic strain range (i.e. for the first stage of deformation). The new model is formulated
within an elasto-plastic deformation framework. The model builds on previous contri-
butions by Lee et al. (1993a,b) to the micromechanical modeling of rigid/viscoplastic de-
formation of amorphous/crystalline aggregates. The model idealizes the microstructure
to consist of an aggregate of two-phase layered composite inclusions. A new framework
for the composite inclusion model is formulated to facilitate the use of finite deforma-
tion elasto-viscoplastic constitutive models for each constituent phase. The crystalline
lamellae are modeled as anisotropically elastic with plastic flow occurring via crystallo-
graphic slip. The amorphous phase is modeled as isotropically elastic with plastic flow
being a rate-dependent process with strain hardening resulting from molecular orienta-
tion. The volume-averaged deformation and stress within the inclusions are related to
the mesoscopic2 fields by several interaction models. The uniaxial compression of ini-
tially isotropic HDPE is taken as a case study to investigate the effectiveness of various
interaction models.

The model presented provides the ability to calculate the initial anisotropy properties, and
the evolution thereof, for specifically preoriented semicrystalline polymers. Furthermore,
the volumetric response and hydrostatic stresses, which, in combination with the mi-
cromechanics of the material, play an important role in the failure of polymeric material
are accounted for. The mechanics and micromechanics of loading–unloading–reloading
hysteresis are explored. The model is also used to investigate the influence of the per-
centage crystallinity on the initial elastic stiffness, the yield and the postyield behavior,
and loading cycles. Finally, the ability of the model to capture the effects of an anisotropic
microstructure on the mechanical behavior is demonstrated.

4.2 Material models

Viscoplastic Taylor-type models have been used by, for example, Parks and Ahzi (1990)
and Lee et al. (1995) for the prediction of texture evolution for semicrystalline polymeric
material. A self-consistent viscoplastic approach was used by Dahoun et al. (1991). In
these studies, the influence of the amorphous phase was neglected. An elasto-viscoplastic
polycrystalline model for low symmetry crystals, such as polymeric crystals, was pre-
sented by Schoenfeld et al. (1995), also exclusively for idealized 100 percent crystalline
materials. However, for many semicrystalline materials, the contribution of the amor-
phous phase can be substantial. For example the typical crystallinities of HDPE and

2 In the context of the three-level approach that is presented in this thesis, the term mesoscopic will be
used for the averaged fields of an aggregate.
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nylon-6 are 70 percent and 40 percent, respectively. Since the elastic behavior of polyethy-
lene at ambient temperature is dominated by its rubbery amorphous phase, with an
elastic shear modulus which is several orders lower than the crystalline modulus, the
Schoenfeld et al. model, with its purely crystalline elasticity, shows an overly stiff overall
stress–strain behavior. To account for the amorphous phase, Lee et al. (1993a,b) used
a rigid/viscoplastic composite inclusion model. Following this Lee et al. work, a lay-
ered two-phase composite inclusion model is formulated. Each composite inclusion
consists of a crystalline lamella which is assumed to deform plastically by crystallo-
graphic slip, and an amorphous layer for which a power law constitutive relation is used
in conjunction with a back-stress tensor to account for orientation-induced hardening
(Boyce et al., 1988). In contrast to the rigid/viscoplastic composite inclusion model of
Lee et al. (1993a,b), an elasto-viscoplastic3 formulation is used, with anisotropic elasticity
for the crystalline phase. In this section, the kinematical framework, and the material
models that are used to describe the constitutive behavior of each respective phase are
discussed. In the following, the superscripts “a” and “c” denote the amorphous layer and
the crystalline lamella, respectively.

4.2.1 Kinematics

For a microstructural elasto-viscoplastic constitutive description of both the crystalline
and the amorphous phase, the deformation gradient tensor Fπ = (∇0⊗xπ )T of each con-
stituent phase π = a‚ c, where the superscript “T” indicates the transpose, is decomposed
into a plastic and an elastic component, denoted by the subscripts “p” and “e”, respectively
(Lee, 1969):

Fπ = Fπ
e �F

π
p ; π = a‚ c. (4.1)

This multiplicative decomposition considers the concept of a local intermediate stress-
free state Ω̄ π , which results from instantaneous unloading of the current configura-
tion Ω π , as is schematically illustrated in Figure 4.1. The deformation gradient Fπ

p is
supposed to be invariant, i.e. upon a superimposed rigid body motion

x 2 Ω π �→ x+ = v + Q �x‚ (4.2)

with v a rigid body translation and Q an orthogonal mapping, the respective deformation
gradients are transformed to:

Fπ+
e = Q �Fπ

e and Fπ+
p = Fπ

p . (4.3)

3 A thermo-elasto-viscoplastic extension of this formulation is presented in Van Dommelen et al.
(2000b).
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Figure 4.1 / Schematic representation of the local reference, intermediate and current
configurations, based on a multiplicative decomposition of the deformation gradient ten-
sor.

The velocity gradient tensor Lπ = Ḟ
π
�Fπ−1 is decomposed according to:

Lπ = Lπ
e + Fπ

e �L
π
p �F

π
e

−1 ; π = a‚ c‚ (4.4)

where the elastic and the plastic parts of the velocity gradient are defined as

Lπ
e = Ḟ

π
e �F

π
e

−1 and Lπ
p = Ḟ

π
p �F

π
p

−1 ; π = a‚ c‚ (4.5)

respectively. Within this framework, a constitutive model is defined for each constituent
phase in terms of the elastic and viscoplastic behavior, based on micromechanical con-
siderations.

4.2.2 Crystalline phase

The crystalline domain of polymeric material consists of regularly ordered molecular
chains, which results in (i) anisotropically elastic behavior, where the elastic proper-
ties are given with respect to the crystallographic directions; and (ii) plastic deforma-
tion, governed primarily by crystallographic slip on a limited number of slip planes (e.g.
G’Sell and Dahoun, 1994; Argon, 1997). The orthorhombic crystal structure of polyethy-
lene is shown in Figure 4.2.

Elasticity

The elastic component of the deformation in the crystalline phase is characterized by a
fourth-order anisotropically elastic modulus tensor 4Cc which linearly relates the elastic
Green–Lagrange strain tensor Ece and the second Piola–Kirchhofflike stress measure τ c:

τ c = 4C
c :Ece‚ (4.6)



46 4 COMPOSITE INCLUSION MODEL
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Figure 4.2 / Orthorhombic crystal structure of HDPE, after G’Sell and Dahoun (1994).

where τ c and Ece are defined as

τ c = Jce Fc
−1
e �σ c

�Fc
−T
e and Ece = 1

2

�
Fc

T

e �F
c
e − I

�
‚ (4.7)

respectively, with Jce = det(Fce),σ
c the Cauchy stress tensor and I the second-order iden-

tity tensor. The anisotropically elastic properties are coupled to the crystallographic lattice
directions in the intermediate configuration Ω̄ c.

Viscoplasticity

The microstructural processes that control the mechanical behavior of the crystalline
phase in semicrystalline polymers are assigned primarily to crystallographic slip and
secondarily to mechanical twinning or stress-induced martensitic phase transformations
(Young and Bowden, 1974; Lin and Argon, 1994; G’Sell and Dahoun, 1994). Since crys-
tallographic slip is assumed to be of most importance, in the modeling process the latter
two mechanisms are left out of consideration.

For the viscoplastic behavior of the crystalline phase, a rate-dependent crystal plasticity
model is used. In this model, the plastic flow rate of the crystalline lamella, consisting of
a single crystal, is composed of the contributions of all Ns physically distinct slip systems
and is given by

Lcp =
Ns

∑
α=1

γ̇αPα
0 ; Pα

0 = sα0⊗nα
0 ‚ (4.8)

where the nonsymmetric Schmid tensor Pα
0 is given by the dyadic product of the unit

slip direction sα0 and the unit slip plane normal n
α
0 of the αth slip system, both given in

the reference configuration Ω c
0 . The shear rate γ̇α of each slip system is assumed to be
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related to the corresponding shear stress, defined as τα = τ c
�Cce :P

α
0 , via the viscoplastic

power law relation (Hutchinson, 1976; Asaro and Needleman, 1985):

γ̇α = γ̇c0
τα

gα

����τα

gα

����
nc−1
‚ (4.9)

where gα is the shear strength associated with the αth slip system, which is assumed to
be constant (hardening is neglected). Furthermore, γ̇c0 is a reference shear rate, and n

c is
the rate exponent.

Crystallographic slip in polymer crystals can occur either by affine or fine slip, where the
deformation is equally distributed over a large number of parallel slip planes, or by coarse
or block slip, with large deformation on a few slip planes (Young, 1988; Lin and Argon,
1994). These slip mechanism are schematically represented in Figure 4.3. During the

cc
n

n

(a) affine slip (b) coarse slip

Figure 4.3 / Schematic illustration of chain slip mechanisms, after Young (1988).

early stages of deformation, affine slip, which changes the angle between the molecular
chains and the amorphous/crystalline interface normal, is considered to be the predomi-
nant mode of plastic deformation in the crystalline phase, whereas coarse slip, leaving the
chain tilt angle unaltered, becomes more important at larger strains. Here, all slip is con-
sidered to be of the affine type. The resulting change of the interface normal orientation
will be discussed in Section 4.4.3.

To potentially impose any arbitrary volume-invariant plastic deformation to a crystal struc-
ture by the mechanism of crystallographic slip, a set of five linearly independent slip
systems is needed, as was first pointed out by Von Mises (1928) and later by for exam-
ple Groves and Kelly (1963). High-symmetry crystals, e.g. cubic metal crystals, gener-
ally possess a relatively large number of physically distinct slip systems of which a set
of five independent slip systems can be composed. However, in case of low-symmetry
crystals, such as for example many polymeric crystals, less than five independent slip
systems may be present, in which case these materials have limited deformation pos-
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sibilities. For most polymers, the chain direction is inextensible and therefore, these
crystals cannot accommodate plastic deformation in the direction of the molecular chain.
(Van Dommelen et al., 1999a,b, 2000a).

4.2.3 Amorphous phase

The amorphous phase of semicrystalline polymeric material consists of an assembly of
disordered macromolecules, which are morphologically constrained by the neighboring
crystalline lamellae. At room temperature, the amorphous phase of HDPE, which is
the material of interest in this work, is in the rubbery regime, with the glass transition
temperature T g near −70 ÆC. However, the amorphous phase of other semicrystalline
polymers, e.g. nylon, with a higher glass transition temperature, need to be modeled
as elasto-viscoplastic. For purpose of generality, an elasto-viscoplastic approach4 is pre-
sented.

Elasticity

The initial elastic resistance of the rubbery amorphous phase is well below the elastic
resistance of the crystalline domain. Consequently, elastic deformations can be consider-
ably large and are modeled by a generalized neo-Hookean hyperelastic relationship:

σ a = G
a

Ja
B̃
ad

e + κa(Ja − 1)I‚ (4.10)

where the superscript “d” indicates the deviatoric part, Ja = Jae = det(Fae) is the volume

ratio, F̃
a
e = Jae−

1
3Fae is the isochoric elastic deformation gradient tensor, and B̃

a
e = F̃

a
e�F̃

aT

e

is the isochoric elastic left Cauchy–Green deformation tensor. The parameters Ga and κa

denote the shear modulus and bulk modulus, respectively.

Viscoplasticity

A relatively strain rate-insensitive power law relation between an effective shear strain
rate γ̇ap and the effective shear stress τa (Lee et al., 1993a) is used:

γ̇ap = γ̇a0

�
τa

τa0

�na
with τa =

r
1

2
σ ad

?
:σad

?
‚ (4.11)

4 By using a purely rubberlike model, such as pure neo-Hookean elasticity or the Arruda–Boyce eight-
chain network rubber elastic model (Arruda and Boyce, 1993), mesoscopically less significant yielding
and/or stress-plateauing is observed. A viscoplastic contribution is required for a reasonable mesoscopic
stress–strain behavior. As an alternative to the model that is used here, the time-dependent Bergström–
Boyce model for elastomeric materials (Bergström and Boyce, 1998) may be employed.
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where γ̇a0 is a reference shear rate, τ
a
0 is a reference strength, n

a is the rate exponent, and

σ ad
?
represents the deviatoric part of the rotation-neutralized driving stress tensor σa

?
,

which is defined as (Boyce et al., 1992)

σ a
?

= Ra
T

e �σ
a
�Rae − Ha. (4.12)

The rotation tensor Rae is obtained from the polar decomposition of Fae. Further-
more,Ha is a back-stress tensor which accounts for orientation-induced strain hardening
(Boyce et al., 1988). The plastic rate of stretching, Da

p, is then defined by the associated
flow rule

Dap = γ̇ap

τa
σad

?
. (4.13)

By choosing the plastic spin to equal zero, the plastic velocity gradient is given
by Lap = Da

p. Using the Arruda–Boyce eight-chain network model of rubber elasticity
(Arruda and Boyce, 1993), the back-stress tensor is expressed as

Ha = µR

√
N

λch
L

−1
�

λch√
N

��
Bap − λ2chI

�
‚ (4.14)

where N represents the number of rigid links between entanglements and µR is propor-
tional to the initial stiffness. Furthermore, Bap = Fap�F

aT
p is the plastic left Cauchy–Green

deformation tensor, λch =
q
1
3 tr(B

a
p) is the stretch of each chain in the eight-chain net-

work model and L−1 is the inverse5 of the Langevin function L(β) = coth(β)− 1=β.

4.3 Micromechanical model

When cooled from the melt, many polymers, such as for example polyethylene, pos-
sess a semicrystalline structure. These materials often show a spherulitic morphology
(Bassett and Hodge, 1981; Bassett et al., 1981; G’Sell and Dahoun, 1994). Each spherulite
consists of a radial assembly of thin crystalline lamellae which are separated by amor-
phous layers. Furthermore, in thin films crystallized on a substrate, a sheaflike morphol-
ogy with preferentially-oriented crystalline lamellae is found (Bartczak et al., 1999c).

5 The inverse Langevin function is approximated by (Bergström and Boyce, 2001):

L
−1(x) =

8
><
>:

1.31446 tan(1.58986 x)+ 0.91209 x if |x| < 0.84136
1

sign(x)− x if 0.84136 � |x| < 1
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4.3.1 Composite inclusion

The mechanical behavior of the microscopically heterogeneous material is modeled by an
aggregate of layered two-phase composite inclusions as was used by Lee et al. (1993a,b,
1999, 2002) for rigid/viscoplastic material behavior. Each separate composite consists of
a crystalline lamella which is mechanically coupled to its corresponding amorphous layer,
as is represented in Figure 4.4. The stress and deformation fields within each phase

f c

f a

nI eI2 eI1

X
I

c
b a

crystalline lamella

amorphous layer

interface

Figure 4.4 / Schematic illustration of a layered two-phase composite inclusion.

are assumed to be piecewise homogeneous; however, they may differ between the two
coupled phases. The volume fractions of the respective phases are given by the relative
thicknesses f a and f c = 1− f a, which, because of elastic dilatations, are given by

f π = f π0 J
π

f a0J
a + (1− f a0)Jc

; π = a‚ c‚ (4.15)

with Jπ = det(Fπ ) the actual volume ratio of each constituent phase and f π
0 , the corre-

sponding initial volume fraction. The inclusion-averaged deformation gradient FI, where
the superscript “I” denotes the composite inclusion, and the inclusion-averaged Cauchy
stressσ I are given by the volume-weighted average of the respective phases:

FI = f a0Fa + (1− f a0)Fc‚ (4.16)

σ I = f aσ a + (1− f a)σ c. (4.17)

On the interface between the crystalline lamella and the amorphous layer, kinematical
coupling is maintained by enforcing compatibility on the deformation gradients. Let
nI0 = eI03 denote the unit normal vector of the interface in the reference configuration Ω0,
with eI0i a local orthonormal vector basis. Furthermore, let x

I
0 denote an arbitrary vector
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in the plane of the interface X I
0, spanned by e

I
01 and e

I
02. Then, the interface compatibility

condition, in combination with volume-averaging, can be written as

Fc�xI0 = Fa�xI0 = FI�xI0 8 xI0 2 X
I
0. (4.18)

Moreover, traction continuity on the interface is given by

σ c
�nI = σ a

�nI = σ I
�nI‚ (4.19)

with nI the unit normal of the interface in the current configuration Ω . A similar de-
formation gradient-based framework for compatibility and averaging within two-phase
laminates has been used by Ortiz et al. (2000) and Evers et al. (2001, 2002) for metallic
materials.

4.3.2 Inclusion interaction law

To relate the volume-averaged mechanical behavior of each composite inclusion to the
imposed deformation for an aggregate of inclusions, a local–global interaction law is for-
mulated. The most widely used interaction law in polycrystal plasticity, is the Taylor inter-
action model (Taylor, 1938; Hutchinson, 1976; Asaro and Needleman, 1985). This model
however, may lead to unreasonably high stresses since the crystalline phase of the poly-
mer material under consideration is strongly anisotropic. Because of the chain inextensi-
bility in the crystalline phase, Lee et al. (1993a,b) proposed a Sachs-type interaction model
and two more hybrid interaction models to relate the volume-averaged deformation and
stress within the inclusion to the mesoscopic fields. In the Sachs interaction model
(Sachs, 1928; Lee et al., 1993a), micromechanical equilibrium is addressed in a stronger
sense, in combination with a weakened measure of compatibility. Nikolov et al. recently
used a two-phase composite inclusion model based on a self-consistent homogeniza-
tion method (Nikolov and Doghri, 1998, 2000) and a Sachs-type method (Nikolov et al.,
2002) for the micromechanically-based small strain constitutive behavior of HDPE. In
this thesis, the ability of four interaction models (Taylor, Sachs, and two Taylor/Sachs
hybrids) to simulate the elasto-viscoplastic stress–strain behavior of semicrystalline poly-
mers is investigated. The class of hybrid-inclusion models was introduced by Lee et al.
(1993a,b) for rigid/viscoplastic composite inclusions in a rate formulation; here, it is de-
veloped in a deformation gradient-based framework. This framework is suitable for use
in a finite element context, is virtually independent of the particular choice of the interac-
tion model, and includes arbitrary constitutive models for the constituent components.

The self-consistency conditions (Hill, 1972) for global equilibrium and compatibility re-
quire the mesoscopic fields to equal the appropriately averaged local quantities. Within
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the current framework, the mesoscopic deformation gradient, F̄, of an aggregate com-
posed of N I inclusions, is assumed to be given by:

 
J̄

JΣ

! 1
3 N I

∑
i=1
f I
i

0 F
Ii = F̄‚ (4.20)

with

J̄ =
N I

∑
i=1
f I
i

0 J
Ii and JΣ = det

 
N I

∑
i=1
f I
i

0 F
Ii
!
‚ (4.21)

with f I
i

0 = 1=N I the initial volume fraction of the ith inclusion and JI
i = det(FI

i
). The

scaling factor
�
J̄=JΣ

� 1
3 is added to assure volumetric consistency6, which is written as

V̄ =
N I

∑
i=1
V I

i
‚ (4.22)

with V̄ the actual global volume and V I
i
the actual volume of the ith inclusion. The

mesoscopic Cauchy stress tensor, σ̄ , is assumed to be given by:

N I

∑
i=1
f I
i
σ Ii = σ̄ ‚ (4.23)

where, because of elastic dilatations, the volume fractions of the inclusions evolve as

f I
i = f I

i

0 J
Ii

N I

∑
j=1
f I
j

0 J
Ij

; i = 1‚ . . . ‚N I. (4.24)

Taylor-inclusion model

The Taylor interaction law assumes that the local inclusion-averaged deformation for each
composite inclusion is equal to themesoscopically imposed deformation of the aggregate:

FI
i = F̄ ; i = 1‚ . . . ‚NI. (4.25)

6 For the Taylor-inclusion model, both volumetric consistency and consistency of work are trivially sat-
isfied. For the Sachs-inclusion and the hybrid-inclusions models, in the current formulation, a correction
term is used to enforce volumetric consistency; consistency of work is, however, not satisfied.



4.3 MICROMECHANICAL MODEL 53

This assumption assures local kinematical compatibility. The mesoscopic Cauchy stress
tensor is taken to be the volume-averaged Cauchy stress of the aggregate, Equation (4.23),

where, due to assumption (4.25), the volume fraction f I
i
remains constant. In this model,

global equilibrium is provided by the global volume-average, whereas local equilibrium
of the inclusions is not addressed.

Sachs-inclusion model

The Sachs interaction law assumes that the volume-averaged Cauchy stress of each inclu-
sion is equal to the mesoscopic Cauchy stress of the aggregate:

σ Ii = σ̄ ; i = 1‚ . . . ‚N I‚ (4.26)

which provides local equilibrium between the composite inclusions. Global kinematical
compatibility is provided by the assumption that the mesoscopic deformation equals the
appropriately scaled volume-average of all inclusion-averaged deformations, viz. Equa-
tions (4.20) and (4.21). To complete the interaction model, the rotation of each inclusion
is assumed to equal the mesoscopically imposed rotation:

RI
i = R̄ ; i = 1‚ . . . ‚N I‚ (4.27)

where RI
i
and R̄ are the rotation tensors obtained from the polar decomposition of the

deformation gradients FI
i
and F̄, respectively. Then, Equation (4.20) can be rewritten in

terms of the corresponding right stretch tensors:

 
J̄

JΣ

! 1
3 N I

∑
i=1
f I
i

0U
Ii = Ū. (4.28)

Hybrid-inclusion models

In this paragraph, a class of hybrid interaction models is discussed. These hybrid-
inclusion models for lamellar composites, which were introduced by Lee et al. (1993a,b),
constitute an intermediate approach between the upper bound Taylor- and the lower
bound Sachs-inclusionmodels. In the hybrid interaction models, local–global compatibil-
ity conditions are assumed for the projections of the inclusion-averaged fields for which
intrainclusion equilibrium conditions were formulated. Inversely, local–global equilib-
rium conditions are chosen for the components of the inclusion-averaged fields that are
subjected to intrainclusion compatibility.
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Let the following fourth-order subspace projection tensors, based on the orientation of

the amorphous/crystalline interface plane X Ii of the ith inclusion, be defined as

4P
Ii
n =

3

∑
j=1

eI
i

j ⊗nI
i⊗nI

i⊗eI
i

j ‚ (4.29)

4P
Ii
x = 4I − 4P

Ii
n ‚ (4.30)

with 4I the fourth-order identity tensor. The interface conditions, Equation (4.18) and
(4.19), can be rewritten in terms of the following subspace projections:

4P
Ii
x0 :F

ci = 4P
Ii
x0 :F

ai = 4P
Ii
x0 :F

Ii ; i = 1‚ . . . ‚N I‚ (4.31)

4P
Ii
n :σ ci = 4P

Ii
n :σai = 4P

Ii
n :σ Ii ; i = 1‚ . . . ‚N I‚ (4.32)

where the subscript “0” refers to the lamellar orientation in the reference configuration.

Since the interface condition (4.31) acts upon the 4P Ii
x0 subspace projection of the defor-

mation gradient, and provides certain constraints on these components of the inclusion-

averaged deformation, a Sachslike interaction law is assumed for the 4P Ii
x subspace pro-

jections of the inclusion-averaged stress. Furthermore, since a certain measure of equilib-
rium is provided for the inclusion-averaged stress by the interface condition (4.32), acting

on the 4P Ii
n subspace projections ofσ Ii , a Taylorlike interaction law is assumed for the

corresponding 4P Ii
n0 subspace projection of the inclusion-averaged deformation.

A consistent set of boundary conditions must be prescribed for the mesoscopic deforma-
tion and stress fields. Let the mesoscopic rotations R̄ be prescribed. Then, additionally, a
total of six components of Ū and σ̄ must be prescribed. The remaining six components
need to be determined by the inclusion model.

In the Taylor-inclusion model, the mesoscopic compatibility conditions are satisfied
trivially, whereas in the Sachs-inclusion model, the mesoscopic equilibrium conditions
are satisfied trivially. Since the inclusion-averaged rotations are assumed to equal the

mesoscopic rotations, RI
i = R̄, the mesoscopic compatibility conditions reduce to (4.28).

The six unknown mesoscopic components can be obtained from the remaining self-
consistency conditions. However, for the hybrid interaction models that are considered
here, neither conditions (4.23) or (4.28) are satisfied trivially. In order to satisfy the 12
conditions of consistency, six more auxiliary unknowns must be introduced (Lee et al.,
1993a). Different choices for these auxiliary unknowns can be made, leading to different
versions of an hybrid interaction model.

Some considerations about the consequences of the hybrid formulations for the condi-
tioning of the problem in combination with initial and current textures will be given in
Chapter 8.
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σ̂ -inclusion model

In the σ̂ -inclusion model, a Taylorlike assumption is used for the 4P Ii
n0 subspace projec-

tion ofUIi . Furthermore, an auxiliary unknown symmetric tensor σ̂ , with the dimension

of stress, is introduced. Then, the subspace projection 4P Ii
x of the inclusion averaged

Cauchy stress is assumed to equal the corresponding subspace projection of σ̂ . The in-
teraction model is completed by assuming the rotation of each inclusion to equal the
mesoscopically prescribed rotation:

4P
Ii
x :σ Ii = 4P

Ii
x :σ̂ ; i = 1‚ . . . ‚N I‚ (4.33)

4P
Ii
n0 :U

Ii = 4P
Ii
n0 : Ū ; i = 1‚ . . . ‚N I‚ (4.34)

RI
i = R̄ ; i = 1‚ . . . ‚N I. (4.35)

Û-inclusion model

In the Û-inclusion model, six auxiliary deformationlike unknowns are introduced. Then,

a Sachslike interaction law is used for the 4P Ii
x subspace projection of the inclusion-

averaged stress. The 4P Ii
n0 subspace projection of the inclusion-averaged stretch is as-

sumed to equal the corresponding subspace projection of the auxiliary unknowns Û.
Again, also the inclusion-averaged rotations are prescribed:

4P
Ii
x :σ Ii = 4P

Ii
x :σ̄ ; i = 1‚ . . . ‚N I‚ (4.36)

4P
Ii
n0 :U

Ii = 4P
Ii
n0 : Û ; i = 1‚ . . . ‚N I‚ (4.37)

RI
i = R̄ ; i = 1‚ . . . ‚N I. (4.38)

4.4 Solution procedure

In this section, some numerical aspects concerning the solution procedure for the com-
posite inclusion model are outlined. For this purpose, the time domain is subdivided
into discrete time steps. First, the time-integration of the viscoplastic deformation of the
respective phases is discussed. For each discrete time step, a set of nonlinear equations,
comprising the interaction law, the local interface conditions and the volume-averaging
equations, is solved. Thereafter, the interface normals are explicitly updated, based on
convected material vectors within the planar interface.
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4.4.1 Time-integration of plastic flow

The plastic deformation gradient of each phase is obtained from time-integration of the
plastic flow rule Ḟ

π
p = Lπ

p �F
π
p , with π = a‚ c, denoting either the amorphous phase or the

crystalline phase. If Lπ
p is assumed to be constant during an increment with length ∆ t,

the plastic deformation at the end of this increment, at time level tn+1 = tn + ∆ t, is given
by

Fp(tn+1) = exp(∆ tLp)�Fp(tn)‚ (4.39)

where the superscript π is omitted. The tensor exponential is numerically evaluated
by the Padé approximation (Weber, 1988), so that the incremental plastic deformation
gradient is given by

Fpinc = exp(∆ tLp) �
�
I − ∆ t

2
Lp

�−1
�

�
I + ∆ t

2
Lp

�
. (4.40)

For finite increments, the determinant of the approximated exponential termmay deviate
slightly from unity, which is corrected by the following normalization:

Fp(tn+1) = F̃pinc�Fp(tn) with F̃pinc = [ det(Fpinc) ]
− 13

Fpinc. (4.41)

4.4.2 Boundary value problem

For an aggregate of composite inclusions, a set of boundary conditions is prescribed for
the global deformation and stress fields. Consider the right polar decomposition F̄ = R̄�Ū
of the volume-averaged deformation gradient. Then, certain components of R̄, Ū and σ̄
are prescribed. For example, for uniaxial compression or tension in e1-direction, the fol-
lowing set of boundary conditions is imposed with respect to an orthonormal vector ba-
sis ei :

R̄ = I ; Ū11 = λ(t)‚ (4.42)

σ̄22 = σ̄33 = σ̄12 = σ̄13 = σ̄23 = 0. (4.43)

Given these boundary conditions, a complete set of equations can be formed from the
equations for interface compatibility (4.31) and traction equilibrium (4.32) in combina-
tion with the interaction laws (e.g. Equations (4.36) to (4.38) for the Û-inclusion model),
into which the equations for intrainclusion and interinclusion volume-averaging, (4.16)–
(4.17), and (4.23), (4.21), and (4.28), respectively, are substituted. With the multiplicative
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decomposition given by Equation (4.1) and the material models discussed in Section 4.2,

all these equations can be expressed in terms of the elastic deformation gradients Fπ i

e of
each phase π = a‚ c of all N I inclusions i. Figure 4.5 shows how these different aspects
of the model are interconnected. Moreover, in Appendix A, the complete set of equations
that are simultaneously solved is given for each interaction model.
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Figure 4.5 / Schematic overview of the elasto-viscoplastic composite inclusion model.

For each increment, this set of nonlinear equations is solved by a Newton–Raphson it-
eration procedure. For numerical efficiency, the unprescribed mesoscopic stretches and
unprescribed mesoscopic stress components are considered as extra unknowns for the
σ̂ -inclusion and the Û-inclusion model, respectively.
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4.4.3 Morphological texture update

The evolution of the morphological texture, i.e. the change of orientation of the amor-
phous/crystalline interfaces, is accounted for explicitly. During an increment, the orien-
tations of the lamellar normals are fixed. After each increment, the inclusion normals
are updated, based on convected material vectors within the planar interface (Lee et al.,
1993a). For this purpose, let xI

i

01 and xI
i

02 be two independent vectors at time t = 0 in the
amorphous/crystalline interface X Ii

0 of the ith composite. At the current time t, these
vectors are convected to

xI
i

1 = F i �xI
i

01 and xI
i

2 = F i �xI
i

02‚ (4.44)

where F i can be either Fa
i
, Fc

i
or FI

i
. The interface unit normal nI

i
is then obtained by

nI
i = (F i �xI

i

01)�(F
i
�xI

i

02)

‖ (F i �xIi01)�(F i �xIi02) ‖ . (4.45)

Since (F i �xI
i

01)�(F
i
�xI

i

02) = det(F i)F i
−T
�nI

i

0 , Equation (4.45) can be rewritten as

nI
i = F i

−T
�nI

i

0

‖ F i
−T
�nIi0 ‖

. (4.46)

4.5 High density polyethylene

In the following sections, the presented elasto-viscoplastic composite inclusion models
are used to simulate the mechanical behavior of initially isotropic HDPE. The spherulitic
structure of melt-crystallized HDPE is represented by an aggregate of 125 composite in-
clusions with randomly generated initial orientations of the crystallographic phases. The
HDPE crystal lattice, which was shown in Figure 4.2, is orthorhombic, with the c-axis
corresponding to the molecular chain direction, and with lattice parameters a = 7.4 Å,
b = 4.9 Å, and c = 2.5 Å (G’Sell and Dahoun, 1994; Mandelkern and Alamo, 1999). The
initially random distribution of orientations of the principal lattice directions is repre-
sented by equal area pole figures in Figure 4.6(a)–(c). Experimental studies of melt-
crystallized polyethylene show that lamellar surfaces are of the {h0l}-type, where the an-
gle between the chain direction c and the lamellar normal n varies between 20Æ and 40Æ

(Keller and Sawada, 1964; Bassett and Hodge, 1981). Gautam et al. (2000) have found by
molecular simulations the {201} planes to provide the lowest amorphous/crystalline inter-
face energy. In this thesis, the initial angle between c0 and nI0 is set at 35

Æ, corresponding
to the {201} planes. The resulting initial orientations of the lamellar normals are shown
in Figure 4.6(d).
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Figure 4.6 / Equal area projection pole figures representing the initially random orien-
tation distribution of (a)–(c) the principal crystallographic lattice directions, and (d) the
lamellar interface normals. The projection direction corresponds to the axial loading di-
rection for uniaxial compression or tension.

In the crystalline phase of HDPE, eight physically distinct slip systems7 can be distin-
guished, which are summarized in Table 4.1. This set of slip systems effectively com-

Slip system gα=τ0

Chain slip (100)[001] 1.0
(010)[001] 2.5
{110}[001] 2.5

Transverse slip (100)[010] 1.66
(010)[100] 2.5
{110}〈11̄0〉 2.2

Table 4.1 / Slip systems of HDPE and the normalized resistances (Bartczak et al., 1992a;
Lee et al., 1993a).

prises four independent deformation modes (Cotton et al., 1991). The molecular chain
axis, c, is a constrained direction and therefore in this direction no plastic deformation is
possible. The two most easily activated slip systems are the (100)[001] chain slip system
and the (100)[010] transverse slip system. In Table 4.1, also the resistances gα at room
temperature of all slip systems are given, normalized to τ0 � g (100)[001] = 8MPa, the low-
est slip resistance (Bartczak et al., 1992a; Lee et al., 1993a). Strain hardening on the slip
systems of the crystalline lamellae is neglected.

7 Using the Miller index notation system (e.g. Kocks et al., 1998), the six displayed systems in Table 4.1,
represent eight physically distinct slip systems.
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The elastic behavior of the crystalline phase is anisotropic, with a relatively high stiffness
in the molecular chain direction. The elastic moduli used for the crystalline domains are
given in Table 4.2 (using Voigt’s notation for Equation (4.6)).

C11 C33 C12 C13 C44 C66

7 81 3.8 4.7 1.5 1.6

Table 4.2 / Elastic constants [GPa] for the crystalline domains (Choy and Leung, 1985).

Following Lee et al. (1993a), the viscoplastic rate exponents of the amorphous and the
crystalline phase are set to an equal value of n = 9. Moreover, also the reference shear
rate of the amorphous phase is set equal to that of the crystalline phase, γ̇0 = 10−3 s−1.
The reference initial shear strength of the amorphous phase is written as τa0 � aτ0. The
viscoplastic parameters of the amorphous phase, taken from Lee et al. (1993a), are sum-
marized in Table 4.3. The typical crystallinity of HDPE is 70 percent; therefore the initial
amorphous volume fraction is set to f a0 = 0.3.

γ̇0 [s−1] n a µR [MPa] N

10−3 9 1.2 1.6 49

Table 4.3 / Viscoplastic properties of the amorphous phase (Lee et al., 1993a).

For the elastic behavior of the amorphous phase, an isotropic generalized neo-Hookean
relationship is used. In this model, the material is characterized by the bulk modulus κa

and the shear modulus Ga. The bulk modulus is chosen to be 2GPa. The influence of the
amorphous shear modulus on the initial mesoscopic behavior is presented in Figure 4.7
for constant strain rate uniaxial compression, with stretch ratio history λ(t) = exp(−ε̇t)
and ε̇ = 10−3 s−1, for each interaction model. For the Taylor-inclusion model, the initial
mesoscopic elastic modulus is approximately linearly dependent on the shear modulus of
the amorphous phase, with Ē → 1.9 GPa as Ga approaches zero. For the Sachs-inclusion
model however, the mesoscopic elastic behavior depends on the local amorphous elastic
behavior in a nonlinear way, with Ē → 0 for Ga → 0. For the σ̂ -inclusion model, the ini-
tial mesoscopic elastic behavior approximately equals the behavior of the Taylor-inclusion
model. The Û-inclusion model however, shows a dependency that is in between the
extreme Taylor- and Sachs-inclusion models. In the following investigations, the shear
modulus of the amorphous phase is selected to be Ga = 35MPa.



4.6 MONOTONIC UNIAXIAL COMPRESSION 61

0 40 80 120 160 200
0

0.5

1

1.5

2

2.5

3

Ga [MPa]

Ē
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Figure 4.7 / The mesoscopically observed initial modulus in uniaxial compression, as a
function of the shear modulus of the amorphous phase, for each interaction law.

4.6 Monotonic uniaxial compression

In this application, the initially isotropic HDPE material is subjected to constant strain
rate uniaxial compression with ε̇ = 10−3 s−1. Figure 4.8(a) shows the equivalent meso-
scopic stress σ̄eq =

q
3
2σ̄

d :σ̄d, with σ̄d = σ̄ + p̄I the mesoscopic deviatoric stress ten-
sor and p̄ = − 13 tr(σ̄ ) the mesoscopic hydrostatic pressure, as a function of the imposed
mesoscopic strain ε̇t = −ln(λ) for each model. Table 4.4 provides a summary of the ini-
tial modulus and the 5 percent strain yield strength as computed by each model.
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Figure 4.8 / (a) The normalized equivalent mesoscopic stress, σ̄eq=τ0, vs. the imposed
mesoscopic logarithmic strain, ε̇t, for HDPE in uniaxial compression, as predicted by
the Taylor-inclusion model, the Sachs-inclusion model and the hybrid-inclusion models,
and (b) an enlargement of the stress-dips exhibited by the Sachs-inclusion model.

In the Taylor-inclusion model, all inclusions are forced to undergo the same deforma-
tion, whereas in the Sachs-inclusion model, the mesoscopic deformation is accommo-
dated mainly by relatively weak inclusions. Therefore, the Taylor-inclusion model shows
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Ē [GPa] σ̄eq=τ0
Model at ε̇t = 0 at ε̇t = 0.05

Taylor-inclusion 2.0 3.4
Sachs-inclusion 0.73 2.6
σ̂ -inclusion 2.0 3.0
Û-inclusion 1.4 3.0

Table 4.4 / The mesoscopically observed initial elastic modulus Ē [GPa] and the normal-
ized equivalent mesoscopic stress σ̄eq=τ0 at ε̇t = 0.05 as obtained by the Taylor-inclusion
model, the Sachs-inclusion model and the hybrid-inclusion models in uniaxial compres-
sion.

a significantly higher initial modulus and postyield stress–strain behavior than the Sachs-
inclusion model. In the rigid/viscoplastic Sachs-inclusion model of Lee et al. (1993a), us-
ing the same viscoplastic and hardening parameters, an initial yield stress of σ̄eq=τ0 = 2.9
is found. In the present elasto-viscoplastic Sachs-inclusion model, plastic deformation
starts at a lower stress. For relatively small strains in the plastic region (ε̇t = 0.05 to 0.3),
the stress–strain behavior of the two hybrid-inclusion models is approximately equal and
is in between the Taylor- and the Sachs-inclusion model, which is in contrast with the re-
sults of Lee et al. (1993a) for the rigid/viscoplastic hybrid-inclusion models, which closely
resemble the behavior of the rigid/viscoplastic Sachs-inclusion model. For mesoscopic
strains higher than approximately 40 percent, both the Taylor-inclusion model and the
σ̂ -inclusion model, which is the most Taylorlike of the two hybrid models, show a strong
strain hardening originating from the straining in the crystalline domains of inclusions
with the crystallographic [001]-direction, which is the plastically inextensible molecular
chain direction, approximately parallel to the corresponding interface normal and per-
pendicular to the compression direction.

In Figure 4.9, the equivalent phase-volume-averaged stresses and the phase-volume-
averaged hydrostatic pressures are represented for all interaction models as obtained
by the following definition of the phase-volume-averaged Cauchy stress tensor for each
phase:

σ̄π = 1

f̄
π

N I

∑
i=1
f I
i
f π iσπ i ; π = a‚ c‚ (4.47)

where the volume-averaged volume fractions of the amorphous and crystalline phase are
defined as

f̄
a =

N I

∑
i=1
f I
i
f a
i
and f̄

c = 1− f̄ a‚ (4.48)
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Figure 4.9 / (a) The normalized equivalent phase-volume-averaged stress, (σ̄π )eq=τ0, and
(b) the normalized phase-volume-averaged hydrostatic pressure, p̄π=τ0, vs. the imposed
mesoscopic strain ε̇t for HDPE in uniaxial compression, for the crystalline and the amor-
phous phase separately.

respectively. Then, the volume-averaged Cauchy stress tensor can be written as

σ̄ = f̄ aσ̄ a + (1− f̄ a)σ̄ c. (4.49)

Figure 4.9(a) shows that the difference in equivalent stress–strain behavior between the
models is due mainly to the response of the anisotropic crystalline phase. Moreover,
Figure 4.9(b) shows that when the strong textural hardening sets in for the Taylor- and the
σ̂ -inclusion models, for ε̇t > 0.4, also the phase-volume-averaged hydrostatic pressure in
the crystalline phase strongly increases, which is partly compensated by a large negative
hydrostatic pressure in the amorphous phase.

In Figure 4.10, the statistical variation in the normalized equivalent inclusion-averaged
stress difference8, (∆σI

i
)eq=σ̄eq, is shown, which is defined as

∆σ Ii = σ Ii − σ̄ ; i = 1‚ . . . ‚NI. (4.50)

For the Taylor- and σ̂ -inclusion models, a strong variation in equivalent inclusion-
averaged stress is found for imposed mesoscopic strains larger than 0.4. For each in-
clusion, the angle between the molecular chains and the lamellar normal has initially
been set to 35Æ. Upon deformation, the evolution of crystalline and morphological texture
changes these angles. The strong increase of the equivalent inclusion-averaged stress
for certain inclusions, corresponds to the alignment of molecular chains in the lamellar
normal direction. For ε̇t > 0.4, this angle is found to be smaller than 10Æ for the in-
clusions with relatively high equivalent stresses in the Taylor- and the σ̂ -inclusion mod-
els. Moreover, these stiff inclusions are oriented with their lamellar normals, and thus

8 The normalized equivalent inclusion-averaged stress difference is trivially zero for the Sachs-inclusion
model.
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Figure 4.10 / Statistical variation in the normalized equivalent inclusion-averaged stress
difference (∆σ Ii )eq=σ̄eq in uniaxial compression for various interaction models. In each
figure, the (maximum − mean) and (mean − minimum)-values are represented, along
with the corresponding standard deviation.

the molecular chains in the crystalline phase, approximately in the transverse global di-
rection. This direction corresponds with the directions of the maximum principal plas-
tic stretch in the amorphous phase, corresponding to the evolution in the orientation
of the molecular chains in the amorphous network model. The large variation in local
stresses results in a severe deviation from local equilibrium. Consequently, for these con-
ditions, the Taylor assumption is not appropriate. On the same account, also the hybrid
σ̂ -inclusion model is found to be unsuitable for the modeling of these anisotropic ma-
terials. The Sachs assumption states that all inclusion-averaged stresses equal the meso-
scopic volume-averaged stress. Consequently, for this interaction model, no variation in
stress is found. However, some small temporary reductions of the equivalent mesoscopic
stress are found. These stress-dips, which are enlarged in Figure 4.8(b), are caused by
relatively weak inclusions, which momentarily accommodate most of the prescribed de-
formation, as is shown in Figure 4.11, which represents the statistical variation in the
normalized equivalent inclusion-averaged rate of deformation difference9 per inclusion
for all inclusion models, defined by

∆ε̇I
i = ε̇I

i − ˙̄ε ; i = 1‚ . . . ‚N I. (4.51)

For the Sachs-inclusion model, a large variation in strain rate is found, where the extreme
rates correspond to the weak inclusions that cause the stress-dips. These inclusions are
initially oriented with the molecular chains of their crystalline phases almost parallel to
the compression direction and the initial (100) poles in the outer regions of the pole
figure. In Figure 4.12, the crystallographic textures are given for all inclusion models
at a mesoscopically prescribed strain ε̇t = 0.75. To enrich the information shown in the

9 The normalized equivalent inclusion-averaged rate of deformation difference is trivially zero for the
Taylor-inclusion model.
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Figure 4.11 / Statistical variation in normalized equivalent strain rate difference per in-
clusion (∆ε̇I

i
)eq= ˙̄εeq in uniaxial compression for various interaction models. In each fig-

ure, the (maximum−mean) and (mean−minimum)-values are represented, along with
the corresponding standard deviation.

plots, the mirror location of each pole with respect to the central point of the pole figure
is also given. Upon deformation, for the (100) poles, the general tendency is to move
towards the center and for the (001) poles to migrate towards a transverse direction. For
the above-mentioned inclusions, these poles thereby pass through the 45Æ orientation,
which corresponds to the most favorable orientation for crystallographic slip. In this
weak orientation, this particular inclusion experiences a relatively large rate of plastic
deformation. As a result of this deformation, the orientation of the inclusion changes to
a less weak configuration, terminating the reduction of stress. For small strains, the stress
prediction of the the Û-inclusion model lies between the Taylor- and the Sachs-inclusion
model. However, for larger strains, this model does not show the strong strain hardening
as observed in the Taylor-inclusion model. Moreover, this model does not exhibit any
stress-dips, as does the Sachs-inclusion model.

The Sachs-inclusion model exhibits the most distinct evolution of crystallographic textur-
ing (see Figure 4.12). For the inclusions that accommodate most deformation, i.e. that are
the most active, in the Sachs-inclusion model, the crystalline phase is found to initially
deform mainly along the two easiest slip systems, i.e. the (100)[001] chain slip system
and the (100)[010] transverse slip system, which is in agreement with observations by
Bartczak et al. (1992b). In the Taylor-inclusion model however, all inclusions are forced
to be active. This is accomplished by deformation on other slip systems than mentioned
above for relatively stiff inclusions. The same behavior is observed for the σ̂ -inclusion
model, whereas in the Û-inclusion model, initially, the {110}〈11̄0〉 slip systems are slightly
active, besides the dominant slip systems on the (100) plane. In a later stage of the de-
formation process, the slip systems on the {110} plane become more active in both the
Sachs- and the Û-inclusion model. For all models, most (100) poles, which represent the
crystallographic slip planes of the two easiest slip systems, are moving towards the com-
pression direction, with, for the Sachs-inclusion model, a maximum intensity of poles at
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Figure 4.12 / Crystallographic textures as predicted by (a)–(c) the Taylor-inclusion model,
(d)–(f) the Sachs-inclusion model, (g)–(i) the σ̂ -inclusion model, and (j)–(l) the Û-
inclusion model, for HDPE subjected to uniaxial compression at a mesoscopically im-
posed strain ε̇t = 0.75.

an altitude angle of 20Æ–25Æ with the loading direction, which again is in agreement with
experimental results of Bartczak et al. (1992b). In the Taylor-inclusion model however, a
more diffuse pattern is formed, with most poles at an altitude angle> 25Æ. In Figure 4.13,
the trajectories and the corresponding angular velocities of the (100) poles are shown. The
Sachs-inclusion model exhibits a more structured pattern for the crystallographic pole
trajectories. However it shows more variation in the length of the trajectories since only
relatively weak inclusions are active, in contrast to the Taylor-inclusion model, where all
inclusions are forced to be active. Since, in the latter model, slip occurs on planes other
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Figure 4.13 / Crystallographic (100) pole trajectories as predicted by (a) the Taylor-
inclusion model, (b) the Sachs-inclusion model, (c) the σ̂ -inclusion model, and (d) the
Û-inclusion model, for HDPE subjected to uniaxial compression up to a mesoscopically
imposed strain ε̇t = 0.75. The dots denote the initial position of the poles and the gray
values represent the angular velocity of each pole. For the Sachs-inclusion model, the
arrows indicate the inclusions that induce the stress-dips.

than the principal slip plane (100), the direction of the pole trajectories is more diverse.
For the Sachs-inclusion model, the (100) poles approaching the compression direction
are found to change direction when attaining an angle of approximately 20Æ–25Æ. There-
fore, apparently the initial goal, which is the compression direction, is not reached, which
is also observed in the experiments by Bartczak et al. (1992b). This alteration of the di-
rection of the trajectories corresponds to the activation of less easy slip systems, mainly
the {110}〈11̄0〉 slip systems. The stress-dips that were observed in the Sachs-inclusion
model are accompanied by temporarily large rates of deformation in few inclusions, cor-
responding to large polar angular velocities for these inclusions in Figure 4.13 (indicated
by the arrows). This phenomenon is not observed for the Taylor- and the hybrid-inclusion
models.
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In Figure 4.14, the morphological texture, i.e. the orientation of the lamellar normals, is
shown for each interaction model. In all models, the normals of the inclusion interfaces
are migrating towards the compression direction, with, for the Taylor-, Sachs- and σ̂ -
inclusion models, a maximum intensity of normals in the center of the pole figure. The
Sachs-inclusion model exhibits a slightly sharper texture than the Taylor-inclusion model.
In the Û-inclusion model, the compression axis is not reached.
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Figure 4.14 / Morphological texture for HDPE subjected to uniaxial compression at
mesoscopically imposed strain ε̇t = 0.75, for (a) the Taylor-inclusion model, (b) the Sachs-
inclusion model, (c) the σ̂ -inclusion model, and (d) the Û-inclusion model.

The normalized stress–strain behavior of the Û-inclusion model is shown in Fig-
ure 4.15(a) for different strain rates. This strain rate-dependency is in reason-
ably good agreement with experimental results of G’Sell et al. (1992) and Hiss et al.
(1999). Figure 4.15(b) exhibits an approximately linear relation between ln(σ̄eq=τ0)
and ln(ε̇=γ̇0), as dictated by the plastic power law behavior of both the crystalline
and the amorphous phase. The mesoscopically observed strain rate sensitivity coeffi-
cient m̄ = [d ln(σ̄eq=τ0)=d ln(ε̇=γ̇0)]ε is found to be 0.09 for ε̇t = 0.25, which is slightly
below the corresponding coefficient of the individual phases, 1=nπ = 0.11 (with π = a‚ c).
A similar dependency is obtained for the other inclusion models.

The stress–strain curves of various polyethylenes were split into five different ranges by
Hiss et al. (1999). The transition points are located at similar strain-values, and are as-
sociated with (i) the onset of isolated slip processes, (ii) collective activity of slip, (iii) the
beginning of crystallite fragmentation, and (iv) chain disentanglement. The underlying
microstructural assumptions of the composite inclusion model are appropriate only up
to the third transition point, at ε � 0.6, after which the lamellae begin to disintegrate. At
larger strains, the applicability of the model becomes questionable.

4.7 Loading cycles

In this section, the behavior of the four inclusion models is investigated during consecu-
tive loading, unloading and reloading. The previously considered high density polyethy-
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Figure 4.15 / (a) The rate-dependency of the normalized equivalent mesoscopic
stress σ̄eq=τ0 vs. the imposed mesoscopic strain ε̇t and (b) the normalized equiva-
lent mesoscopic stress vs. the normalized mesoscopically imposed strain rate ε̇=γ̇0, for
HDPE in uniaxial compression with λ̇=λ = −ε̇, as predicted by the Û-inclusion model
(indicated by closed diamonds) and obtained from experimental (tensile) data from
G’Sell et al. (1992), indicated by open circles, and Hiss et al. (1999), indicated by open
squares.

lene material with the initially random orientations as represented in Figure 4.6 is first
subjected to uniaxial compression at constant strain rate with λ̇=λ = −ε̇ and ε̇ = 10−3 s−1.
Then, at a certain mesoscopic strain level, the direction of the mesoscopic deformation
is reversed and the material is unloaded gradually with λ̇=λ = ε̇ until the mesoscopi-
cally observed stress is fully released (σ̄11 � 0). Following this unloading step, the ma-
terial is reloaded at the same strain rate. This unloading–reloading cycle is repeated at
higher strains. The mesoscopic stress–strain behavior during these cycles is presented
in Figure 4.16 for each interaction model. For polyethylene, commonly a hysteresis
loop is found during unloading and subsequent reloading (Sargent and Shinozaki, 1977;
Hiss et al., 1999; Hobeika et al., 2000). For the Sachs-inclusion model, the predicted
stress–strain curve does not show this hysteresis loop. Since the Sachs-inclusion model
does not enforce interinclusion compatibility, the unloading can be accommodated fully
elastically, resulting in an approximately linear release of stress. Consequently, the mate-
rial in each inclusion reloads along the same path. After yielding, the stress–strain curve
returns to the continuous-loading curve. The elastic nature of the unloading–reloading
of the Sachs-inclusion model is shown in Figure 4.17, which plots the phase-volume-
averaged plastic strain for each phase as a function of ε̇t. For the Sachs-inclusion model,
no plastic deformation is observed during unloading or during reloading (until rejoining
the original curve). In the other interaction models, the interinclusion compatibility con-
ditions enforce a partially plastic unloading in the crystalline phase, as is demonstrated
for the first unloading–reloading cycle in Figure 4.17 for the Û-inclusion model. For the
Taylor-inclusion and σ̂ -inclusion models, initially only small hysteresis loops can be ob-
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Figure4.16 / Themesoscopic stress–strain behavior for loading, unloading and reloading
of polyethylene in uniaxial compression, predicted by various interaction models. The
dashed lines represent the stress–strain response for continuous uniaxial compression.
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Figure 4.17 / The equivalent logarithmic strain measure of the phase-volume-averaged
plastic deformation during sequentially loading, unloading and reloading for (a) the
Sachs-inclusion model and (b) the Û-inclusion model. The onset of unloading and
reloading is denoted by circles and squares, respectively.

served. Also, after each unloading–reloading cycle, the stress–strain curve returns to the
continuous-loading curve. After the strong textural hardening has set in (ε̇t > 0.4), a con-
siderably larger hysteresis loop is found. This is attributed to a continuation of unloading
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after the relatively weak inclusions have reached a relaxed state. During this stage of local
reverse loading, plastic deformation occurs in the crystalline phases of the concerning
inclusions. The Û-inclusion model resembles best the experimentally observed behav-
ior. In this model, local–global interactions for both deformation and stress are imposed.
These mixed conditions, in combination with the amorphous/crystalline interactions,
prevent the unloading from being fully elastic. During unloading, significant plastic de-
formations occur in the crystalline phase, as is shown in Figure 4.17. Consequently, the
subsequent reloading step, which is initially elastic, follows a different path.

Since in the foregoing the Û-inclusion model was found to exclude the deficiencies of the
Taylor- and the Sachs-inclusion models, and appears to be superior in cyclic loading, in
the remaining of this thesis only the Û-inclusion model will be used.

4.8 Effect of crystallinity

The basic element of the presented elasto-viscoplastic composite inclusion model con-
sists of a layered structure of amorphous and crystalline domains with relative thick-
nesses f a and f c = 1− f a, respectively. The influence of the crystallinity f c on the nor-
malized equivalent mesoscopic stress, σ̄eq=τ0, for uniaxial compression, using the Û-
inclusion model, is presented in Figure 4.18. An increase of both initial stiffness and
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Figure 4.18 / The influence of the crystallinity on the normalized equivalent mesoscopic
stress σ̄eq=τ0 vs. the imposed mesoscopic strain ε̇t for HDPE in uniaxial compression as
predicted by the Û-inclusion model.

yield stress with increasing crystallinity level can be observed. Since postyield hardening
is found to be approximately independent of the amount of crystallinity, at higher strains,
the curves differ mainly by a vertical shift, corresponding to experimental observations
(Kennedy et al., 1994).
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In Figure 4.19(a), the mesoscopically predicted initial modulus, Ē, obtained in uniaxial
compression, with the Û-inclusion model, is shown as a function of the crystallinity f c,
as well as experimental data by Crist et al. (1989). The value for Ē corresponds reasonably
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Figure 4.19 / The influence of crystallinity f c on (a) the mesoscopically predicted initial
modulus Ē and (b) the mesoscopically observed equivalent mesoscopic stress σ̄eq, at var-
ious mesoscopic strain levels, in uniaxial compression, as predicted by the Û-inclusion
model (indicated by closed diamonds). The closed circles indicate yield stresses, obtained
as shown in the insert. Experimental (tensile) data for the initial modulus and yield stress,
from Crist et al. (1989), are represented by open squares.

well to the experimental data for f c = 0.7, since in the present work, this crystallinity level
was used as the reference level for the selection of material parameters. The dependence
of the initial modulus on the crystallinity, as predicted by the Û-inclusion model, is sig-
nificantly smaller than can be deduced from the Crist et al. data. The relatively strong in-
fluence of f c on Ē is attributed by Crist et al. to a dependence of the amorphous modulus
on the crystal thickness. An alternative explanation was offered by Doyle (2000), whose
finite element model of alternating amorphous and crystalline layers provides a quanti-
tatively good prediction of the dependence of the elastic modulus on the crystallinity for
higher crystallinities. The deviation at lower crystallinities was attributed to a relaxation of
the mechanical constraints due to a change in aspect ratio of lamellae. The change of na-
ture of the interactions at low crystallinity (an amorphous matrix with randomly oriented
lamellae) suggests the use of a more Sachslike approach. The effect of the crystallinity
on the yield stress, as well as postyield stress is shown in Figure 4.19(b). The yield stress
is assumed to be given by the intersection of the initial and 5 percent strain tangents of
the mesoscopic equivalent stress–strain curve, as shown in the insert of the figure. The
dependence of the yield stress on crystallinity, becoming less pronounced for crystallini-
ties lower than 0.6, corresponds reasonably well with the effect experimentally observed
(Crist et al., 1989).
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The effect of crystallinity on the unloading and subsequent reloading in uniaxial com-
pression is given in Figure 4.20, for the Û-inclusion model. For each cycle, unloading
occurs first via an initial tangent and after a certain transition zone, via a much lower
secondary tangent. A similar behavior is found during reloading. Besides the effect of
crystallinity on the stress level at the start of unloading, decreasing f c has a lowering effect
on the initial unloading tangent and a stronger decreasing effect on the secondary tan-
gent. The energy dissipation during an unloading–reloading cycle, i.e. the area enclosed
by a hysteresis loop, is found to have a maximum for a crystallinity level of approximately
50 percent.
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Figure 4.20 / The influence of crystallinity f c on the mesoscopic stress–strain behavior
for loading, unloading and reloading of polyethylene in uniaxial compression, predicted
by the Û-inclusion model.

4.9 Evolution of anisotropy

Although the material considered here is initially randomly oriented, and thus is initially
quasi-isotropic, the mechanical properties will evolve in an anisotropic manner upon
deformation, due to the evolution of crystallographic and morphological texture. This
is illustrated by immediate reloading in compression and in shear along different axes,
where the initial deformation was uniaxial compression in the e1-direction up to ε̇t = 0.6,
followed by unloading to a stress-free state at t?. Compressive reloading is applied in
the basic ei-directions as Ū i i(t) = λ?Ū i i(t?), with λ? = exp[− ε̇(t − t?)], whereas plane
stress i j-shearing is obtained by prescribing the appropriate rotation-neutralized com-
ponents of F̄ = [I + γ?ejei ]�Ū(t?), with γ? = √

3 ε̇ (t − t?). The normalized stress–strain
behavior obtained is displayed in Figure 4.21. In compression, the yield stress in the two
transverse directions is significantly reduced with respect to the initial loading direction,
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Figure 4.21 / Anisotropy in reloading (lower axis) after loading and unloading (upper
axis) of initially isotropic material.

and is even below the initial yield stress. For 23-shearing, the flow stress approximately
equals the flow stress for compressive reloading in the initial loading direction. In the
other shear directions, the material yields at a substantially reduced stress level, with a
more nonlinear elastic behavior.

4.10 Conclusions

An elasto-viscoplastic model for the constitutive behavior of semicrystalline polymers has
been developed. The model is based on (a simplified representation of) the underly-
ing morphology and deformation mechanisms of this material. As a representative mi-
crostructural element, a two-phase layered composite inclusion has been used, based on
the lamellar structure that is commonly observed in semicrystalline polymers. Both the
crystalline and the amorphous phase are participating in the composite inclusion model,
mechanically coupled by enforcing compatibility and traction continuity on the interface
between the crystalline lamella and the corresponding amorphous layer. For both phases,
micromechanically-based constitutive models have been used within the framework of
an elasto-viscoplastic decomposition of the deformation gradient. The local inclusion-
averaged deformation and stress fields are related to the mesoscopic fields of the aggre-
gate using four interaction models: a Taylor approach; a Sachs approach; and two hybrid
Taylor/Sachs approaches.

This work extends earlier work of Lee et al. (1993a) by including the important effects of
the elastic behavior of the constituent phases. To facilitate the use of elasto-viscoplastic
constitutive models, the framework in which the composite inclusion model is formu-
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lated, deviates from that of Lee et al.. The new model formulates compatibility and aver-
aging schemes in terms of deformation gradients of the respective phases, whereas the
Lee et al. model was a rate formulation. Due to dilatation effects, the volume fractions
of both the inclusions and the individual phases are allowed to change upon deforma-
tion. In order to obtain the correct volume-averaged volumetric response, the deforma-
tion gradients are scaled. A solution procedure is used, which is based on solving a set of
nonlinear equations for the elastic deformation gradients of the constituent phases. The
uniaxial compression of initially isotropic high density polyethylene is taken as a case
study. The choice of the interaction model appears to be rather critical in the predictions.
For HDPE in uniaxial deformation, application of the Taylor-inclusion model leads to un-
reasonably high values of the stress in certain inclusions, resulting in modulus and yield
strength predictions that are relatively high and also predicting excessive hardening to oc-
cur at relatively modest strain. The Sachs-inclusion model however, assumes a weakened
measure of kinematical compatibility, and thus circumvents the difficulty of unfavorably
oriented inclusions. The crystallographic textures obtained in this model seem to be in
agreement with experimental observations. However, the stress–strain behavior of the
Sachs-inclusion model shows a number of temporary reductions due to the existence
of relatively weakly oriented inclusions. The hybrid σ̂ -inclusion model shows largely the
same behavior as the Taylor-inclusion model. The hybrid Û-inclusion model however, ap-
pears to exclude the deficiencies of the Taylor- and the Sachs-inclusion models, whereas
in the Lee et al. work, the hybrid interaction laws were concluded to give results similar
to the classical Sachs-type interaction law. Furthermore, the stress–strain behavior dur-
ing unloading–reloading cycles shows the superiority of the Û-inclusion model over the
alternatives.

The new model is able to simulate the mesoscopic elasticity, the rate-dependent plasticity,
and the unloading behavior of semicrystalline polymers, based on the elasto-viscoplastic
micromechanics of the material. With this model, the influence of crystallinity on the
mesoscopic stress–strain behavior has been studied. The dependence of initial modu-
lus, yield stress and postyield behavior on the crystallinity corresponds reasonably well
to experimentally observed effects, as reported in the literature. Additionally, the effect
of crystallinity on the behavior during unloading–reloading cycles is investigated. The
dissipated energy during a cycle is found to have a maximum for about 50 percent crys-
tallinity. The ability of the model to capture the effects of a textured microstructure giving
rise to anisotropic mechanical behavior was demonstrated by simulating axial and shear
loading in different directions on a pretextured microstructure.

The model presented, capturing the elasto-viscoplastic micromechanics of both the amor-
phous and the crystalline phase, as well as the morphological structure, offers new pos-
sibilities to study the mechanics of semicrystalline polymers, particularly, the anisotropic
mesoscopic stiffness and deformation resistances for preferentially oriented semicrys-
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talline polymers as commonly present in thin films and coatings as well as in particle-
modified polymers. In Chapter 6, the composite inclusion model will be used to simu-
late intraspherulitic deformation and stress, whereas in Chapter 7, the model will be em-
ployed to study the matrix deformation in particle-toughened semicrystalline materials.
For these purposes, an aggregate of composite inclusions will be used as a representa-
tive microstructural unit at each integration point of a finite element formulation. Some
aspects of the finite element implementation will be presented in Chapter 5.



CHAPTER FIVE

Bridge to the macroscopic level1

Abstract / In this chapter, some aspects concerning the implementation of the composite in-
clusion model into a finite element formulation are presented. The influence of the aggregate-
size, the tangent operator, and a subincremental procedure are discussed.

5.1 Introduction

In this thesis, a multiscale approach is used for modeling the micromechanics of particle-
modified semicrystalline polymers. The different levels involved are schematically shown
in Figure 5.1. At the microscopic level, a structure of individual crystalline lamellae, inter-
spersed with amorphous domains is identified. A bridge to the mesoscopic level, where
the semicrystalline matrix material consists of aggregates of these constituent phases, is
formed by the composite inclusion model, which was presented in Chapter 4. At the
macroscopic level, the particle-modified material consists of a polymeric matrix with ran-
domly dispersed particles or voids. This two-phase system is modeled by finite elements.
A micro–meso–macrolevel bridge is obtained by using an aggregate of composite inclu-
sions in each integration point of a finite element model. A bridge to the engineering
level, at which the material can be considered to be homogeneous, could be obtained by a
multilevel finite element procedure (e.g. Smit et al., 1998; Smit, 1998; Kouznetsova et al.,
2001, 2002; Kouznetsova, 2002). However, this step is not pursued in this work.

In this chapter, some aspects concerning the use and the implementation of the com-
posite inclusion model in a finite element context are presented. In Chapter 4, the Û-

1This chapter is partly reproduced from Van Dommelen et al. (2001).
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engineering level

microscopic level
mesoscopic level

macroscopic level

(100)

(010)

(001)

lamellar

Figure 5.1 / The various levels involved in the multiscale model.

inclusion model was concluded to be the most effective of the interaction models con-
sidered for the material of interest. Therefore, in the remaining of this thesis, only the
Û-inclusion model will be used and the term composite inclusion modelwill implicitly refer
to this interaction model.

5.2 Influence of aggregate-size

The composite inclusion model can be used to simulate the mechanical behavior of ini-
tially isotropic semicrystalline material by taking a randomly generated set of initial crys-
tallographic orientations. The number of inclusions within an aggregate should be suffi-
ciently large, in order to expel the influence of the particular set of initial orientations, and
to have truly isotropic material behavior. The influence of the aggregate-size (i.e. the num-
ber of composite inclusions N I) on the equivalent mesoscopic stress, σ̄eq, as a function
of the imposed mesoscopic strain is represented in Figures 5.2 and 5.3. The term meso-
scopic is used for the aggregate of inclusions. In this application, the initially isotropic
HDPE material is subjected to constant strain rate uniaxial tension with λ(t) = exp(ε̇t)
and ε̇ = 10−3 s−1.
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For the smallest aggregate-size, with N I = 8, a relatively large scatter in the stress–
strain response is found. After an imposed strain of ε̇t = 0.5, the standard deviation
of the mesoscopic equivalent stress of 30 different sets of randomly generated aggregates
reaches a value of 5 percent of the mean stress. For an aggregate-size of N I = 27, and
ε̇t � 0.2, approximately similar standard deviations are found. A significantly smaller
scatter of mesoscopic stress–strain behavior is obtained for aggregates with 64 inclu-
sions, with a standard deviation of 2 percent of the mean stress at ε̇t = 0.5. An aggregate-
size of 125 inclusions results, in the plastic region, in an approximately constant relative
standard deviation of about 2 percent of the mean equivalent stress. A further increase of
the aggregate-size, to 216 inclusions, slightly decreases the standard deviation bandwidth,
with no further significant effect on the mean stress–strain curve.

When used in a finite element simulation, in each integration point, the material is rep-
resented by an aggregate of inclusions. In order to simulate the behavior of initially
isotropic semicrystalline material, a sufficiently large aggregate must be used. However,
since an entire composite inclusion model is solved in each integration point, for each
iteration of the global iterative process, calculation times tend to become extensive. There-
fore, for the aggregate-size, a compromise of a sufficiently large aggregate with respect to
statistical considerations which is small enough for acceptable computation times should
be pursued. Based on these considerations, an aggregate-size of 64 inclusions will be
used in the finite element simulations that are presented in the remaining of this thesis.

5.3 Finite element implementation

In Chapter 4, the composite inclusion aggregate has been discussed, which represents
a numerical, micromechanically based constitutive model for semicrystalline polymeric
materials. In this section, some aspects of the implementation of this constitutive model
in a finite element context will be outlined. An overview of the numerical procedure is
shown in Figure 5.4, whereΦj symbolically represents the equations that constitute the
composite inclusion model and σ̆ are extra unknowns that are introduced for efficiency
reasons (see Appendix A).

5.3.1 Tangent operator

The composite inclusion model, as discussed in Chapter 4, gives, for an integration point,
the Cauchy stress σ̄ , i.e. the volume-averaged stress of an aggregate, for a given deforma-
tion gradient F̄, the volume-averaged deformation of the aggregate. Since the relationship
between these two quantities is intrinsically nonlinear, at the finite element level, an it-
erative procedure is used (HKS, 2001). For this purpose, the Jacobian 4K̄ is determined,
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∂Φj
∂Fπ i

e

‚
∂Φj
∂σ̆

‚
∂Φj
∂Û
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Figure 5.4 / FEM implementation scheme.

which is defined as:

δσ̄ = 4K̄ :δF̄ (5.1)

The mesoscopic Cauchy stress following from the composite inclusion model can be
functionally written as

σ̄ = σ̄ (Fπ i

e |i = 1‚ . . . ‚N I; π = a‚ c)‚ (5.2)
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where Fπ i

e are the elastic deformation gradients of the crystalline and amorphous do-
mains of the N I composite inclusions and remain to be determined. For a given F̄ 2, the

a priori unknown elastic deformation gradients Fπ i

e (corresponding to 18N I unknowns)
are obtained by solving a set of coupled nonlinear equations, which is summarized in
Section 5 of Appendix A and can be symbolically written as

Φj (F̄‚Û‚σ̆ ‚Fπ i

e |i = 1‚ . . . ‚N I;π = a‚ c) = 0 ; j = 1‚ . . . ‚18N I + 12. (5.3)

In these equations, also the 12 extra unknowns Û and σ̆ appear, corresponding to the
auxiliary stretchlike variables and the unprescribed macroscopic stress components, re-
spectively. The Jacobian 4K̄ in Equation (5.1) can be written as

4
K̄ =

N I

∑
i=1

∑
π=a‚ c

dσ̄

dFπ i
e

:
dFπ i

e

dF̄
‚ (5.4)

where the derivatives dσ̄=dFπ i

e can be determined straightforwardly and are also required

for the iterative solution of the composite inclusion model itself. The derivatives dFπ i

e =dF̄
remain to be determined. For all variations of F̄, the 18N I + 12 functionalities in Equa-
tion (5.3) should remain 0. Thus, a set of linear equations for the derivatives dÛ=dF̄;
dσ̆=dF̄ and dFπ i

e =dF̄ in the direction with dΦj=dF̄ = O is obtained by

dΦj
dF̄

= ∂Φj
∂F̄

+ ∂Φj
∂Û

:
dÛ

dF̄
+ ∂Φj

∂σ̆
:
dσ̆

dF̄
+
N I

∑
i=1

∑
π=a‚ c

∂Φj
∂Fπ i

e

:
dFπ i

e

dF̄
= O ;

j = 1‚ . . . ‚18N I + 12.
(5.5)

After solving this set of equations, the Jacobian 4K̄ is obtained by substitution of dFπ i

e =dF̄
in Equation (5.4).

5.3.2 Subincrementation

The Newton–Raphson procedure that is used to solve the composite inclusion model,
for each iteration of the global (FEM) incremental procedure, requires that the steps in
which the deformation F̄ is applied are small enough, depending on the internal state
of the concerning aggregate. In order to prevent a dramatic reduction of the global in-
crement size, the deformation gradient F̄ is applied in a number of subincrements for

2 The implementation presented here is limited to 3D, plane strain, and axisymmetric calculations. For
plane stress simulations, mixed conditions for F̄ and σ̄ are prescribed. For all 2D assumptions, however,
the composite inclusion model remains essentially three-dimensional.
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those integration points that require smaller steps. For this purpose, let the incremental
mesoscopic deformation gradient, between time steps tn and tn+1, be decomposed as

F̄inc = R̄inc�Ūinc with F̄(tn+1) = F̄inc�F̄(tn). (5.6)

First, the incremental stretch is applied. For this purpose, assume that within a stretch
increment, the time-dependency of the deformation gradient can be written as

F̄(τ) = (Ūinc)
τ−t n

∆ t �F̄(tn) ; tn � τ � tn+1 ; ∆ t = tn+1 − tn . (5.7)

Then, the incremental deformation is applied in the following N inc subincrements i:

F̄(τi) = �Ū inc
� i
N inc �F̄(tn) ; i = 1‚ . . . ‚N inc ; τi = tn + i

N inc
∆ t. (5.8)

Finally, the incremental rotation R̄inc is applied:

F̄(tn+1) = R̄inc�F̄(τN inc) and σ̄ (tn+1) = R̄inc�σ̄ (τN inc)�R̄
T
inc. (5.9)

Also, the appropriate orientation-dependent state variables are updated with the incre-
mental rotation tensor.

5.3.3 Finite element package

The composite inclusion model is implemented in the finite element package
ABAQUS (HKS, 2001). Thereby the previously discussed numerical aspects have been
applied within the UMAT subroutine, using a geometrically nonlinear formulation.

5.3.4 Output

In the remaining chapters, the following mesoscopic measure of plastic deformation
magnitude is used as an output quantity:

ε̄
mag
p =

r
2

3
ε̄p :ε̄p with ε̄p = ln(Ūp)‚ (5.10)

where Ūp is obtained from a right polar decomposition of the following mesoscopic plas-
tic deformation gradientlike quantity:

F̄p = F̄
−1
e �F̄. (5.11)

The mesoscopic deformation gradient tensor F̄ is given by Equations (4.20) and (4.21). A
similar volume-averaging procedure is used to obtain F̄e.
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CHAPTER SIX

Intraspherulitic deformation1

Abstract / The multiscale composite inclusion model is used to investigate the mechanics
of intraspherulitic deformation of polyethylene. The model establishes a link between the
macroscopic and the microscopic level. The averaged fields of an aggregate of composite
inclusions, having preferential orientations, constitute the behavior of the intraspherulitic
material. The spherulitic macrostructure is modeled by finite elements and loaded under
uniaxial and plane strain conditions. Heterogeneous intraspherulitic deformation, with strain
concentrations in the centers, results from the anisotropic structure within each spherulite.

6.1 Introduction

When cooled from the melt, many polymers, such as for example polyethylene, possess a
semicrystalline structure with often a spherulitic morphology (Bassett and Hodge, 1981;
Bassett et al., 1981; G’Sell and Dahoun, 1994). Considered from a central point, each
spherulite consists of a radial assembly of thin twisted crystalline lamellae which are
separated by amorphous layers. Any macroscopically homogeneous deformation of these
materials is accommodated by various deformation mechanisms in the heterogeneous
microstructure. For a better understanding of the mechanical behavior of semicrystalline
materials, a link between the macroscopic and microscopic levels should be established.

A review of the structure and the microscopic deformation mechanisms of polyethy-
lene spherulites is given in Lin and Argon (1994). Experimental investigations of in-
traspherulitic deformation processes have been carried out for thin films. Both affine
and nonaffine deformation models of spherulites were proposed by Wilchinsky (1964).
Hay and Keller (1965) found spherulitic deformation to consist mostly of a combination
of homogeneous and inhomogeneous deformation. The latter was found to occur pre-

1This chapter is based on Van Dommelen et al. (2003a).
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86 6 INTRASPHERULITIC DEFORMATION

dominantly within spherulites in the equatorial region (the equator denotes the region
where the radial direction is perpendicular to the loading direction, as schematically
shown in Figure 6.1) by (100)[001] slip, causing a rotation of crystals around the b-axis
for appropriately oriented crystals, and between spherulites in the polar regions (the pole
is defined as the region of the spherulite where the radial direction is aligned with the
loading axis) of the boundary. Deformations in the equatorial area were observed to be

equatorial region

polar region

inclined region

Figure 6.1 / Definition of regions in a spherulite.

higher than in the polar area, with the strain becoming very large towards the center
of the spherulite. Neck formation across the transverse diameter in spherulitic films
of polyethylene was reported Keith and Padden (1959). Kobayashi and Nagasawa (1966)
used a rigid/plastic Hill yield criterion to model the heterogeneous distribution of de-
formation in a spherulite. Wang (1974) attributed the inhomogeneous deformation pri-
marily to the anisotropic structure of the spherulite, and secondarily to the mechanical
interactions between spherulites. Based on a linearly elastic model of a spherulite, Wang
found the stress and strain to approach infinity in the spherulitic center, and the strain in
the equatorial region to be larger than in the polar region. In the inclined 45Æ area, the
deformation was dominated by shear strain. Allan and Bevis (1977, 1980) reported the
occurrence of twinning in the equatorial regions of thin films of polyethylene spherulites.
They subdivided the spherulitic domain into three regions: (i) the equatorial region, (ii)
the region where the angle between the radial direction and the tensile axis ranges from
30Æ to 55Æ, here referred to as the inclined region, and (iii) the polar area. The b-axis gov-
erns the deformation behavior in all three regions, with a tendency to align the c-direction
towards the tensile axis. The primary mode of deformation is interlamellar slip, followed
by intralamellar slip. The polar region was concluded to possess a larger deformation
resistance with respect to the loading direction than the other regions. Aboulfaraj et al.
(1995) found the deformation to be initiated near the center of polypropylene spherulites,
and observed little deformation in the polar region and the largest strains in the equa-
torial area. A finite element model of alternating amorphous and crystalline layers was
presented by Doyle (2000) for polyethylene, and appeared to provide a quantitatively good
prediction of the dependence of the elastic modulus on the crystallinity for relatively high
crystallinities.
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In this chapter, a multiscale numerical model is used to investigate the mechanics of
intraspherulitic deformation in polyethylene. For this purpose, a distinction between
three different scales is made, as is schematically shown in Figure 6.2. Macroscopically,

macroscopic scale

microscopic scale

mesoscopic scale

Figure6.2 / Schematic illustration of a polyspherulitic structure with one spherulite high-
lighted, and an indication of the various modeling levels.

a structure of multiple spherulites is considered, which will be modeled by finite ele-
ments. Different RVE models are used for either uniaxial or plane strain deformation.
In each material point within a spherulite, referred to as the mesoscopic level, an as-
sembly of twisted, and locally parallel lamellae is assumed. The mechanical behavior of
this assembly is modeled by the polycrystalline composite inclusion model (see Chap-
ter 4). The basic element of this model is a two-phase layered structure of a crystalline
and an amorphous domain. Constitutive properties are assigned to the components at
this microscopic level. The microstructural behavior is linked to the mesoscopic and the
macroscopic scale.

6.2 Mesoscopic scale: composite inclusion model

In this section, the anisotropy of a bundle of polyethylene lamellae, as predicted by the
composite inclusion model, will be investigated. For this purpose, an aggregate of pref-
erentially oriented composite inclusions will be subjected to various deformation modes.

6.2.1 Deformation modes

An aggregate of composite inclusions (at the mesoscopic scale), represented by a set of
crystallographic orientations and corresponding lamellar orientations, will be subjected
to constant strain rate uniaxial tension in the three basic directions ei of a material asso-
ciated coordinate system:

R̄ = I ; Ū i i = λ(t) ; i = 1 ∨ i = 2 ∨ i = 3‚ (6.1)
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with

λ(t) = exp(ε̇t)‚ (6.2)

where ε̇ is set equal to the material reference shear rate γ̇0, R̄ is the mesoscopic rotation
tensor, and Ū is the corresponding right stretch tensor. Furthermore, the components of
the mesoscopic Cauchy stress tensor σ̄ should satisfy:

σ̄j j = σ̄12 = σ̄13 = σ̄23 = 0 ; j 2 {1‚2‚3| j �= i}. (6.3)

In another test case, pure shear deformation is applied by prescribing one of the basic
shear components i j of the (symmetric) right stretch tensor:

R̄ = I ; Ū i j = γ(t) ; i j = 12 ∨ i j = 13 ∨ i j = 23‚ (6.4)

with

γ(t) = 1
2
√
3 γ̇0t‚ (6.5)

and

σ̄11 = σ̄22 = σ̄33 = σ̄k l = 0 ; kl 2 {12‚13‚23| kl �= i j}. (6.6)

6.2.2 Intraspherulitic material

A schematic illustration of the structure of an isolated spherulite is shown in Fig-
ure 6.3(a). Crystalline lamellae, interspersed with amorphous regions, grow in an
approximately radial direction from a central nucleus (e.g. G’Sell and Dahoun, 1994;
Lin and Argon, 1994; Allan and Bevis, 1977). This rather complicated structure will be
approximated by assuming that all lamellae have grown in a perfectly radial direction
with respect to the center, represented by a local coordinate system with its 1-axis in

e1
e2

(a) (b)

Figure 6.3 / (a) Structure of an isolated spherulite (after G’Sell and Dahoun, 1994), and
(b) simplified model.
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Figure 6.4 / (a) Twisting of a lamella (after Allan and Bevis, 1977), and (b) orientation of
the crystallographic directions in a lamella.

the radial direction, as is shown in Figure 6.3(b). For polyethylene spherulites, hav-
ing an orthorhombic lattice, this growth direction corresponds with the crystallographic
(010)-direction, with a twist around this b-axis, as schematically depicted in Figure 6.4(a).
Consequently, the principal crystallographic a and c-axes, the latter corresponding to the
molecular chain direction, exhibit a rotation around the b-axis, as shown in Figure 6.4(b).
As a representative mesoscopical unit for the intraspherulitic material of melt-crystallized
high density polyethylene (HDPE), a bundle of radiating lamellae with multiple twisting
periods is assumed. Therefore, the mesoscopic constitutive behavior will show a fiber
symmetry around the local 1-direction. This material is modeled by an aggregate of com-
posite inclusions with preferential initial orientations of the crystallographic domains,
where the (010) poles are, except for an additional randomness, parallel to the 1-direction.
The distribution of orientations of the principal lattice directions is represented in Fig-
ure 6.5(a)–(c) for 125 composite inclusions. The initial angle between c0 and nI0 is set
at 35Æ, corresponding to the {201} planes (see Chapter 4). Consequently, the lamellar
normals are approximately perpendicular to the spherulitic radial direction. The initial
orientations of the lamellar normals are shown in Figure 6.5(d).

The obtained equivalent mesoscopic stress, σ̄eq, as a function of the imposed deforma-
tion, when loaded in the different modes, as previously described, is represented in Fig-
ure 6.5(e) and (f). The results are normalized by the lowest slip resistance τ0 = 8MPa.
The constitutive behavior at the mesoscopic scale should be transversely isotropic with
the fiber symmetry direction corresponding to the spherulitic radial direction. There-
fore, all differences (at the mesoscopic scale) in mechanical response in the 22 and 33
tensile deformation modes and the 12 and 13 shear modes are of statistical origin. The
viscoplastic part of the crystalline constitutive model provides eight distinct slip systems
for polyethylene (Bartczak et al., 1992a). However, when loaded in the b-direction, only
the {110}〈11̄0〉 slip systems can accommodate plastic crystalline deformation, whereas the
(100) slip planes, having the lowest slip resistance, are not activated. As a consequence,
an increased yield stress in the 1-direction is observed. In the plastic range, the ratio of
σ̄11=σ̄22 is approximately 1.4. The direction in which yield resistance is elevated will be
in line with the tensile direction in the polar areas of a spherulite under tension, and
perpendicular to the tensile direction in the equatorial region.
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Figure 6.5 / Equal area projection pole figures with (a)–(c) the principal crystallographic
lattice directions, and (d) the lamellar normals of a set of orientations representing in-
traspherulitic material and (e), (f) the normalized equivalent mesoscopic stress σ̄eq=τ0,
vs. the imposed deformation for tension and shear, respectively, in the basic material
directions as predicted by the composite inclusion model.

6.3 Macroscopic scale: spherulitic models

A macroscopic structure with multiple spherulites is modeled by finite elements. Differ-
ent representative volume element (RVE) models are used for for either uniaxial or plane
strain deformation. For the latter, also the irregularity of the structure is accounted for.

6.3.1 Axisymmetric RVE

An axisymmetric RVE model of a staggered array (referred to as the SA model) of
spherulites is considered, which was previously used for the simulation of particle-
toughened polymers by Socrate and Boyce (2000) and by Tzika et al. (2000) and which
resembles a body centered tetragonal stacking. A schematic representation of the RVE,
with L0 = R0, is shown in Figure 6.6(a). A spherulitic center is assumed to be located in
point C1. Figure 6.6(b) shows the location of neighboring RVEs and the corresponding
arrangement of spherulites. The spherulites are assumed to be the result of a uniform
radial crystal growth; i.e. the spherulitic boundaries are located such that the distances
to the nearest centers are equal. The staggered arrangement of spherulites is realized by
subjecting the RVE to anti-symmetry conditions (with respect to point M) along the outer
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Figure 6.6 / (a) Schematic visualization of the axisymmetric RVE model of a staggered
array of spherulites, (b) the RVE with three neighboring RVEs, (c) the finite element
mesh and (d) local material orientations.

radius (Tvergaard, 1996, 1998). A similar RVE has been employed for the simulation
of particle-modified material in Chapter 2, where the applied boundary conditions have
been discussed (Equations (2.6) to (2.11), with C5 coinciding with C1).

The finite element mesh of the axisymmetric SA model is visualized in Figure 6.6(c).
Further on, microscopic responses will be shown for the elements that are marked A
and B. In each integration point of the 256 reduced integration four-noded bilinear el-
ements, a local coordinate system ei is generated. The local 1-directions are shown in
Figure 6.6(d). In the local coordinate system of each integration point, a unique set of
initial crystallographic and lamellar orientations was generated, similar to the distribu-
tion that was shown in Figure 6.5(a)–(d), where the local 1-directions correspond to the
view direction of the pole figures.

6.3.2 Irregular plane strain RVE

To account for the irregular nature of spherulitic semicrystalline material, also a plane
strain RVE with randomly dispersed spherulites (referred to as the RD model) is used,
see Figure 6.7(a). Full compatibility of each opposite boundary pair is assumed. The
corresponding kinematic and natural boundary tyings (Smit et al., 1998) and the loading
boundary conditions have been discussed in Chapter 2 (Equation (2.12) to (2.17)).
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Figure 6.7 / (a) Schematic visualization of the plane strain RVE with an irregular distri-
bution of spherulite centers, (b) finite element mesh and (c) local material orientations.

A structure with 6 irregularly dispersed spherulitic nuclei is taken. The mesh with 576
four-noded bilinear reduced integration plane strain elements is shown in Figure 6.7(b).
A local orientation field is generated by taking the local 1-direction towards the closest
nucleus, taking into account the periodicity of the structure, and is shown in Figure 6.7(c).
Again, spherulitic boundaries are located at an equal distance to the two closest nuclei.

The periodic twisting in the radial direction is modeled by employing in each integra-
tion point an aggregate of composite inclusions with a fiber symmetry around the global
1-direction, with the b-axes oriented parallel to each other. A more refined model would
be obtained by assuming the length scale of an aggregate to be smaller than the wave
length of twisting, i.e. if the twisting nature would be macroscopically modeled rather
than mesoscopically. However, this approach would require considerably more refined
finite element meshes, and is therefore not pursued in this work.

6.4 Intraspherulitic deformation and stress

In this section, the multiscale model will be used to investigate intraspherulitic defor-
mation and stress. Both RVE models, as described in the previous section, are used. In
each integration point a (unique) set of orientations with a similar distribution as in Fig-
ure 6.5(a)–(d), representing a bundle of twisted lamellae, is assumed. The local (fiber)
symmetry directions correspond to the 1-directions as described in Section 6.3. In each
integration point, 64 composite inclusions per aggregate are used.

6.4.1 Axisymmetry

The axisymmetric SA model represents a polyethylene spherulite, with an initial crys-
tallinity of f c = 0.7, under uniaxial loading conditions. In Figure 6.8, the obtained fields
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of the magnitude of plastic deformation, ε̄
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3ε̄p : ε̄p, with ε̄p a mesoscopic plastic

strain tensor, are shown for different levels of macroscopically imposed deformation ε̇t.
Plastic deformation is found to be initiated in the center of the spherulite, and spreads
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Figure 6.8 / Intraspherulitic magnitude of the plastic deformation, ε̄magp , at (a) ε̇t = 0.025,
(b) ε̇t = 0.05, and (c) ε̇t = 0.075, for the axisymmetric SA model.

out initially in the equatorial direction. At somewhat larger strains, the deformation re-
mains predominantly concentrated in the center, and spreads out with an angle in the
range of 0Æ–35Æ with the equator, forming a lobe at 35Æ. Moreover, a small concentration
of deformation is found at the spherulite boundary.

Some selected microscopic texture evolutions and deformation quantities in the points A
and B (as defined in Figure 6.6(c)) for the SA model are shown in Figure 6.9 and 6.10,
respectively. In the pole figures showing the evolution of crystallographic and morpho-
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Figure 6.9 / Texture evolution in selected points of the axisymmetric SA model, at
ε̇t = 0.075.



94 6 INTRASPHERULITIC DEFORMATION

Point A

z

r

(a)

0.25

0.2

0.15

0.05

0.1

intralam. deformation

z

r

(b) 0.2

0.4

0.6

0.8
interlam. shear

z

r

(c)

+0.1
+0.05
0

−0.05
−0.1
−0.15

interlam. separation

Point B

z

r

(d)

0.1

0.05

0.15

0.2

0.25
intralam. deformation

z

r

(e)
0.3

0.5

0.7

0.9

interlam. shear

z

r

(f) −0.05

0

+0.05

+0.1
interlam. separation

Figure 6.10 /Microscopic deformation results in selected points of the axisymmetric SA
model, at ε̇t = 0.075.

logical texture (Figure 6.9), each initial orientation is represented by a dot. The arrow
connects it with the corresponding final orientation, which is located at the arrow-head.
In the pole figures showing microscopic deformation quantities (Figure 6.10), the loca-
tion of each dot denotes the initial orientation of the lamellar normal of an inclusion
and its gray intensity represents the value of the indicated quantity for the inclusion.
The latter pole figures are enriched by also mapping each pole in reflection with respect
to the central point of the plot. The view direction is the macroscopic out-of-plane di-
rection. Intralamellar deformation of the ith inclusion is represented by the magnitude

of deformation of the crystalline phase, (εc
i
)mag =

q
2
3ε

ci :εci , with εc
i = ln(Uci ). For

the amorphous deformation, a distinction is made between interlamellar shear and inter-
lamellar separation. Let ya

i
be a material vector in the amorphous phase of inclusion i,

with ya
i

0 = nI
i

0 . Then, interlamellar shear is assumed to be represented by the angle (in

radians) between the convected material vector, ya
i = Fa

i
�nI

i

0 , and the current lamellar

normal, nI
i
. Lamellar separation is represented by ln(λa

i

nn), with λa
i

nn = nI
i
�ya

i
.

Most (100) poles of point A, which is located in the equatorial region of the spherulite,
migrate away from the tensile direction, whereas the (001) poles are moving towards the
loading axis, and the (010) poles show little activity. The patterns result from deformation
primarily on the (100)[001] slip system, which is the most easily activated slip system.
For a small number of inclusions, also the {110}〈11̄0〉 slip systems are active. All lamellar
normals are moving away from the tensile direction. The microscopic mode of defor-
mation is found to depend on the local orientation of the lamellar normal with respect
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to the loading axis, as can be observed in Figure 6.10. Intralamellar crystallographic
deformation is found to occur predominantly for composite inclusions with their lamel-
lar normals almost perpendicular to the tensile direction, whereas interlamellar shear
is present for inclusions with their normals either inclined to or parallel to the loading
direction. For the latter orientations, also interlamellar separation is observed. In Fig-
ure 6.11, a schematic overview of the occurrence of these deformation modes is depicted.
Point B is located in a region where the angle between the radial direction and the axis of

intralamellar deformation

interlamellar shear

interlamellar separation and shear

Figure 6.11 / Schematic overview of microscopic deformation modes in the equatorial
region.

loading is 45Æ. In this point, significant intralamellar crystallographic slip occurs only in
few composite inclusions. For these domains, predominantly the (100)[010] slip system
is active. Interlamellar deformation is present for those inclusions that have a relatively
small angle between their lamellar normal and the loading direction (i.e. in the outer re-
gion of the pole figures). In the polar region, crystallographic slip occurs predominantly
on the (100)[010] and {110}〈11̄0〉 slip systems.
The normalized equivalent mesoscopic stress, σ̄eq=τ0, and the normalized mesoscopic
hydrostatic pressure, p̄=τ0, are represented in Figure 6.12, as well as the direction and
magnitude of the normalized in-plane principal stress, σ̄max=τ0. Deviatoric stresses are
concentrated primarily in the center of the spherulite. Also in the polar region near the
boundary, slightly elevated equivalent stresses are found. Large tensile triaxial stresses
are observed near the spherulitic boundary, and in the equatorial area, becoming larger
towards the boundary. Maximum principal stresses are larger in regions of either ele-
vated deviatoric or elevated triaxial stress, i.e. in the center of the spherulite and near
the boundary, in the equatorial region. The direction of the maximum principal stress
is approximately aligned with the loading direction in the entire spherulite, with a small
deviation in the center and near the inclined boundary.



96 6 INTRASPHERULITIC DEFORMATION

σ̄eq=τ0

3.1
3.46
3.81
4.17
4.53
4.89
5.24
5.6

p̄=τ0

−2.0
−1.69
−1.37
−1.06
−0.74
−0.43
−0.11
+0.2

σ̄max=τ0

2.3
2.66
3.01
3.37
3.73
4.09
4.44
4.8

(a) (b) (c)

(d)

Figure 6.12 / (a) Normalized equivalent stress, σ̄eq=τ0, (b) normalized hydrostatic pres-
sure, p̄=τ0, and (c), (d) magnitude and direction of the normalized maximum in-plane
principal stress, σ̄max=τ0, at ε̇t = 0.075, for the axisymmetric SA model.

The dependence of the macroscopic volume-averaged axial stress 〈σ̄zz〉, versus the im-
posed deformation, on the crystallinity f c, is represented in Figure 6.13(a) for the axisym-
metric SA model. An increase of both initial stiffness and yield stress with increasing
crystallinity level can be observed. The influence of the crystallinity on the macroscopic
yield stress is presented in Figure 6.13(b). The yield stress is assumed to be given by the
intersection of the initial and 5 percent strain tangents of the macroscopic stress–strain
curve, as shown in the insert of the figure. The stresses are found to be somewhat larger
than as obtained by the composite inclusion model in Chapter 4.

Although the macroscopic deformation of spherulitic material, and the corresponding
stress field, may appear homogeneous, due to the heterogeneity of the meso- and mi-
crostructure, local concentrations of stress are present, even in the absence of defects.
The axisymmetric SA model, that is employed in the foregoing, predicts for uniaxial ten-
sion a normalized macroscopic triaxial stress of 〈p̄〉=τ0 = −1.12, at ε̇t = 0.075. It can be
observed from Figure 6.12(b), that this is accompanied by a minimum normalized meso-
scopic hydrostatic stress of p̄=τ0 = −2.0, which is found near the spherulite boundary.
The corresponding microscopic normalized triaxial stresses in the amorphous and crys-
talline domains, pπ i=τ0 with π = a‚ c, are shown in inverse pole figures in Figure 6.14,
where the location of each dot represents the relative orientation of the tensile direction
with respect to the crystallographic coordinate system of the corresponding inclusion.
The view direction is the crystallographic b-axis and the gray intensity represents the
magnitude of the normalized hydrostatic pressure. In the figures, 1000 randomly se-
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Figure 6.13 / The influence of the crystallinity, f c, on (a) the normalized volume-averaged
axial stress, 〈σ̄zz〉=τ0, vs. the imposed deformation, ε̇t, and (b) the volume-averaged axial
stress at ε̇t = 0.05 (closed diamonds) and yield stresses (closed circles, obtained as shown
in the insert), for the axisymmetric SA model. Experimental results from Crist et al.
(1989), are represented by open squares.
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Figure 6.14 / Inverse equal area pole figures of the normalized hydrostatic pressure,
pπ i=τ0, at ε̇t = 0.075, in (a) the amorphous domains and (b) the crystalline phases.

lected composite inclusions are displayed. Maximum tensile triaxial stresses are found
in the amorphous domains for loading perpendicular to the b-axis, i.e. in the equatorial
region. In this region, maximum values are found for inclusions that are located near
the boundary and near the center, and with the molecular chain axis parallel to the tensile
direction.

6.4.2 Plane strain

The multispherulite RD model is used to investigate the intra- and interspherulitic defor-
mation of semicrystalline material under plane strain loading conditions. In Figure 6.15,
the mesoscopic deformation and stress fields obtained are displayed for this model.
Plastic deformation is initiated in the center of all spherulites. At larger strains, weak
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Figure 6.15 / Intraspherulitic plastic deformation, ε̄magp , at (a) ε̇t = 0.025, (b) ε̇t = 0.05,
and (c) ε̇t = 0.1, and (d) normalized equivalent stress, σ̄eq=τ0, (e) normalized hydro-
static pressure, p̄=τ0, and (f) normalized maximum in-plane principal stress, σ̄max=τ0,
at ε̇t = 0.1, for the plane strain RD model.

deformation bands appear in the inclined regions, as well as near some spherulite bound-
aries. Stress concentrations are observed in the centers, spreading out in the macroscopic
loading direction and the free direction, and at the boundaries. In contrast to the uniaxial
unit cell simulations, tensile triaxial stresses are concentrated in the centers, spreading
out in the inclined direction, and at some boundaries. Maximum principal stresses are
found predominantly in the centers, spreading out towards the loading direction.

More detailed results of intraspherulitic deformation under plane strain conditions are
obtained with the model with a staggered spherulite arrangement. For this purpose,
plane strain elements are used for the model that was shown in Figure 6.6. Compati-
bility within the staggered array of spherulites is imposed by using linear anti-symmetry
conditions in the r -direction along the outer radius, replacing Equation (2.7). The results
obtained with the plane strain SA model are shown in Figure 6.16, and compare reason-
ably well with themultispherulite model with an irregular stacking of spherulites, indicat-
ing that the inhomogeneous behavior is primarily governed by the anisotropic structure
within the individual spherulites, and to a lesser degree from the interactions between
irregularly distributed spherulites.

Some selected microscopic texture evolutions and deformation quantities are shown in
Figure 6.17 and 6.18, respectively, for the plane strain SA model. In the area of concen-
trated plastic deformation, i.e. in the inclined direction, where point B is situated, most
slip occurs on the (100)[010] transverse slip system and additionally also on the chain slip
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Figure 6.16 / (a) Plastic deformation, ε̄magp , (b) normalized equivalent stress, σ̄eq=τ0, (c)
normalized hydrostatic pressure, p̄=τ0, and (d), (e) direction and magnitude of the nor-
malized maximum in-plane principal stress, σ̄max=τ0, at ε̇t = 0.075, for the plane strain
SA model.
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Figure 6.17 / Texture evolution in point B of the plane strain SA model, at ε̇t = 0.075.

systems. Deformation in the equatorial area (point A) of the spherulite is substantially
smaller than for the axisymmetric unit cell. Particularly, interlamellar shear in inclusions
with their lamellar normals away from the tensile direction is considerably smaller as a
consequence of the plane strain condition. In this area, intralamellar deformation occurs
mainly by slip on the (100)[001] chain slip system.

6.5 Comparison with the mesoscopic model

In Chapter 4, a multispherulitic structure has been modeled by a mesoscopic composite
inclusion model with randomly oriented composite inclusions. In the current chapter,
the same structure is represented by a more refined macroscopic finite element model,



100 6 INTRASPHERULITIC DEFORMATION

Point A

x

y

(a) 0.02

0.04

0.06

0.08

0.1

0.12
intralam. deformation

x

y

(b)
0.1

0.2

0.3

0.4

interlam. shear

x

y

(c)

+0.01

+0.03

+0.05

−0.01

interlam. separation

Point B

x

y

(d)

0.1

0.05

0.15

0.2

0.25

0.3
intralam. deformation

x

y

(e)
0.2

0.4

0.6

0.8

1
interlam. shear

x

y

(f)

0

+0.1

−0.1

interlam. separation

Figure 6.18 / Microscopic deformation results in selected points of the plane strain SA
model, at ε̇t = 0.075.

also taking into account the geometrical structure of the spherulites. In this section,
a comparison of the microscopic results obtained for these two models is given. For
this purpose, the composite inclusion model (referred to as CI model) of Chapter 4 is
used for an aggregate of 343 initially randomly oriented composite inclusions in uniaxial
tension with λ̇=λ = ε̇, and ε̇ = 10−3 s−1, up to the same macroscopic strain level as the
multiscale finite element model of spherulites (axisymmetric SA model, Section 6.4.1),
which consists of 256 times 64 composite inclusions.

In the foregoing, the local mode of deformation was found to be dependent on the ori-
entation of the crystallographic b-axis and on the lamellar normal orientation, i.e. on the
full three-dimensional orientation of the composite inclusion. Moreover, the radial co-
ordinate within the spherulite was found to determine the amount of strain. The latter
effect is not represented in the mesoscopic CI model. Since the tensile direction is a sym-
metry direction for uniaxial loading, thus only one axis of the global coordinate system
being relevant, and the orientations of all three crystallographic axes being of interest,
the dependence of the microscopic results on the three-dimensional orientation of the
inclusions is shown in the inverse pole figures in Figure 6.19, where the location of each
dot represents the relative orientation of the tensile direction with respect to the crystal-
lographic coordinate system of the corresponding inclusion. The view direction is the
crystallographic b-axis and the gray intensity represents the value of the indicated defor-
mation quantity for each inclusion. For the finite element model, 1000 randomly selected
composite inclusions are displayed, whereas the inverse pole figures for the mesoscopic
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Figure 6.19 / Inverse equal area pole figures of various microscopic deformation mea-
sures in (a)–(c) the macroscopic finite element model and (d)–(f) the mesoscopic com-
posite inclusion model, at ε̇t = 0.075.

composite inclusion model are enriched by reflecting each pole with respect to the center
of the figure. The amount of amorphous deformation is represented in Figure 6.19(a)

and (d) by (εa
i
)mag =

q
2
3ε

ai :εai , with εa
i = ln(Uai ). For both models, the amorphous

deformation is small if the b-direction is aligned with the axis of loading (i.e. in the po-
lar region of the spherulite) or when the loading axis is inclined between a and c. Due
to the geometrically induced strain concentration in the center of the spherulite in the
SA model, peak values are considerably higher, falling outside the chosen limits of the
scale bar. In Figure 6.19, also the normalized shear rates of the two slip systems with the
lowest slip resistance are represented. In both models, the (100)[001] chain slip system
is inactive when the loading direction is close to the b-direction or the a-direction. When
loaded parallel to the molecular chain axes, the SA model shows relatively large (100)[001]
shear rates, an effect which is not observed in the CI model. The transverse slip sys-
tem on the (100) plane is active only when the principal axis of loading corresponds to a
certain direction in the ab-plane. Also for this slip system, the two models are in good
agreement. Therefore, it can be concluded that although the geometrical effect of the
anisotropic structure within a spherulite, causing strain concentration in the center, is
not present in the mesoscopic composite inclusion model, the microscopic deformation
mechanisms observed are in reasonably good agreement with the finite element model.
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6.6 Influence of spherulite size for particle-modified systems

In this thesis, the influence of locally anisotropic structures in particle-modified semicrys-
talline polymers is numerically investigated. Starting-point was the hypothesis that the
matrix material possesses a preferential orientation near the particle/matrix interface due
to transcrystallization. The brittle–to–tough transition was assumed to be controlled by
the ratio of the anisotropic layer thickness and the average interparticle distance. In the
absence of transcrystallized layers, the matrix material of a particle-modified semicrys-
talline polymeric system is assumed to possess a spherulitic structure. In Figure 6.20,
this is depicted for two different length scales. At a relatively small length scale, the av-

(a) (b)

Figure 6.20 / Spherulitic structure in particle-modifiedmaterial at (a) a small length scale
and (b) a large length scale.

erage spherulitic diameter approximately equals the average interparticle distance. Thus,
an alternative length scale parameter can be defined as the ratio of the average spherulite
size and the average interparticle distance. However, although intraspherulitic material
is generally anisotropic, this ratio is unable to explain the existence of a critical interpar-
ticle distance. Retrospectively, the requirements for toughening by local anisotropy (see
Chapter 2) were (i) a radially oriented structure, and (ii) a sufficient amount of anisotropy
with reduced 12 and 13 shear strengths. Neither requirements are satisfied for the system
as represented in Figure 6.20(a). Since the amount of anisotropy within a spherulite is
relatively low, the geometrical effects of the voided structure will dominate over the effects
of the intraspherulitic anisotropy.

6.7 Conclusions

A three-level numerical model was used to study intraspherulitic deformation and
stresses for semicrystalline polyethylene. The twisted lamellar structure of spherulitic
material was represented by an aggregate of preferentially oriented two-phase compos-
ite inclusions within each material point of macroscopic finite element models of a
spherulitic structure. Deformations were found to be initiated in the center, spreading
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out in the approximate equatorial region for uniaxial loading conditions and in inclined
directions for plane strain loading. Inhomogeneous deformations were found to develop
mainly as a consequence of the anisotropic structure within each spherulite, and to a
lesser degree from the interactions between irregularly distributed spherulites. The de-
formations were linked to microstructural processes as interlamellar deformation and
intralamellar crystallographic slip. Besides the dependence on the orientation of the
spherulitic radial direction, the local mode of deformation depends on the phase of twist-
ing, i.e. on the interface normal orientation. Deviatoric stress concentrations were found
in the center and near the polar boundary. Tensile triaxial stresses are largest near the
radial boundary of the spherulite. The anisotropy within a spherulitic structure was con-
cluded to be unable to explain the length scale effects in particle-modified material.
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CHAPTER SEVEN

Particle-modified semicrystalline
material1

Abstract / The multiscale model is used to investigate the effect of a specific microstructural
morphology on the mechanical behavior of particle-modified high density polyethylene sys-
tems. The anisotropy of material with preferential orientations is investigated. A transcrys-
tallized microstructure is found to have a limited effect on matrix shear yielding and to alter
the triaxial stress field. An alternative hypothesized microstructure is used to demonstrate the
possible influence of processing conditions.

7.1 Introduction

The present-day notion of the toughening mechanism in semicrystalline materials is
based on the criterion proposed by Wu (1985), which states that a sharp brittle–to–tough
transition occurs for nylon/rubber blends when the average interparticle matrix ligament
thickness is reduced below a critical value. A physical explanation of the absolute length
parameter was offered by Muratoǧlu et al. (1995a,c), who recognized the brittle–to–tough
transition as a true material feature, which was attributed to thin layers of preferentially
oriented material, with a reduced plastic shear resistance. Therefore, local anisotropy is
due to the crystallization behavior of the matrix which is influenced by the rubber/matrix
interface, leading to a layer of parallel crystalline lamellae, with the crystalline planes
having the lowest plastic resistance parallel to the interface.

In Chapter 2, idealized polymeric matrix material was modeled by anisotropic Hill plas-
ticity, and various representative volume elements were used to describe the system con-
taining dispersed voids. It has been shown that local plastic anisotropy of matrix mate-

1This chapter is partly reproduced from Van Dommelen et al. (2003d) and Van Dommelen et al.
(2003f).
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rial around the voids can effectively replace localization by dispersed shear yielding and
change the occurring hydrostatic stresses, potentially leading to toughened material be-
havior. However, to achieve these improvements, a morphology must be pursued that (i)
has a radially oriented structure around the dispersed particles, and (ii) provides a suffi-
ciently large amount of anisotropy with reduced 12 and 13 shear resistances. Moreover, in
Chapter 3, the efficiency of this mechanism was found to be affected by the presence of
hard filler particles.

To investigate the possibility that a particular microstructure satisfies the above-
mentioned requirements, a micromechanically-based numerical model for the elasto-
viscoplastic deformation and texture evolution of semicrystalline polymers has been de-
veloped (Chapter 4) and will be used to simulate the behavior of particle-modified high
density polyethylene (HDPE). For the analysis of these systems, a distinction between
three different scales is made, as schematically depicted in Figure 1.8 of the introduc-
tory chapter. The constitutive properties of the material components are characterized at
the microscopic scale. At this level, the individual crystallographic lamellae and amor-
phous layers are identified and are modeled as elasto-viscoplastic. The crystalline lamel-
lae are assumed to deform plastically by crystallographic slip, whereas plastic flow of the
amorphous phase is modeled as a rate-dependent process with strain hardening resulting
from molecular orientation. At the mesoscopic scale, an aggregate of individual phases
is considered, which can be a spherulite or a sheaflike aggregate of preferentially ori-
ented material. To bridge between those scales, the composite inclusion model is used.
The microscopic deformation and stress fields are related to the mesoscopic fields of the
aggregate by a hybrid interaction law. At the macroscopic scale, for particle-modified ma-
terials, a structure of dispersed particles and matrix material can be identified. At this
level, the system is represented by a finite element model using various representative
volume elements, as suggested by the Hill-type simulations of Chapter 2. A bridge to
the mesoscopic level is obtained by using an aggregate of composite inclusions as a rep-
resentative microstructural unit in each integration point. The effect of transcrystallized
orientations of matrix material versus randomly oriented material on both mesoscopic
and microscopic results is investigated. A limited shear yielding effect of transcrystallized
orientations is observed. Further improved properties are obtained for a hypothesizedmi-
crostructure (which may be the result of process conditions) if loaded in the appropriate
direction.

7.2 Anisotropy of preferentially oriented material

In the next sections, the full multiscale model will be used to examine the effect of the
microstructural morphology on the mechanics of particle-modified systems. First, in
this section, the anisotropy, at the mesoscopic level, of (microscopically) preferentially
oriented material, as predicted by the composite inclusion model, is investigated.
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7.2.1 Randomly oriented material

The local spherulitic structure of melt-crystallized HDPE is represented by an aggregate
of 125 composite inclusions with randomly generated initial orientations of the crystallo-
graphic phases, having an orthorhombic lattice. The distribution of orientations of the
principal lattice directions is represented in Figure 7.1(a)–(c). The initial angle between c0
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Figure 7.1 / Equal area projection pole figures representing (a)–(c) the principal crystal-
lographic lattice directions, and (d) the lamellar normals of a random set of orientations
and (e), (f) the normalized equivalent mesoscopic stress σ̄eq=τ0, vs. the imposed defor-
mation for tension and shear, respectively in the mesoscopic basic directions as predicted
by the composite inclusion model.

and nI0 is set at 35
Æ, corresponding to the {201} planes (see Chapter 4). The initial orien-

tations of the lamellar normals are shown in Figure 7.1(d). Since the distribution of the
crystallographic orientations is random, the mechanical behavior of this aggregate will be
quasi isotropic. The aggregate is subjected to the boundary conditions for different defor-
mation modes as described in Section 6.2.1; the obtained equivalent mesoscopic stress,
σ̄eq, as a function of the imposed deformation, is represented in Figure 7.1(e) and (f). The
equivalent stresses are normalized by the lowest slip resistance τ0 = 8MPa. The num-
ber of inclusions within an aggregate should be sufficiently large, in order to expel the
influence of the particular set of initial inclusions, and to mimic a truly isotropic material
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behavior. Here, the number of inclusions that comprise an aggregate is limited to 125,
hence a quasi isotropic response is obtained. The influence of the aggregate size on the
mesoscopic behavior was examined in Chapter 5.

7.2.2 Transcrystallized material

The criterion for toughness of semicrystalline polymers, which was initially proposed by
Muratoǧlu et al. (1995c) for nylon/rubber blends and which was extended to HDPE with
rubber or calcium carbonate fillers by Bartczak et al. (1999a,b), is based on the presence
of transcrystallized matrix material around well-dispersed particles. A similar morphol-
ogy, namely unidirectionally grown crystalline lamellae, was found in polymeric mate-
rial crystallized on planar substrates (Muratoǧlu et al., 1995a; Bartczak et al., 1999c). For
thin HDPE films, crystallized on rubber and calcium carbonate substrates, Bartczak et al.
(1999c) found a sheaflike morphology of the lamellae, which were oriented preferentially
edge-on against the substrate, resulting from a surface-induced crystallization. The (100)
planes, containing the two crystallographic slip systems with the lowest slip resistance,
(100)[001] and (100)[010], were found to be directed preferentially parallel to the plane
of the film with a random orientation of the molecular chains within this plane. The
lamellar normals were either parallel to the plane of the substrate or somewhat tilted
with respect to the plane. However, twisting of lamellae was found to be substantially
reduced. The preferred crystallographic planes for the crystalline/amorphous interface
remain unclear for this morphology. It can be assumed that these planes are still of the
{h0l}-type. The observation by Bartczak et al. (1999c) that crystal growth is unidirectional
with little divergence sideways, and the reduction of lamellar twisting, suggest a smaller
angle between the crystallographic chain direction c and the lamellar normal nI than ob-
served in randomly crystallized material. Here, the plane of the crystalline/amorphous
interface is assumed to be of the {102}-type, corresponding to an initial chain tilt angle
of 9.7Æ. Besides the crystallographic and lamellar orientations, all microscopic material
properties are assumed to be identical to the properties of the randomly crystallized mate-
rial. A set of crystallographic orientations is generated with the (100) poles preferentially
aligned in the direction of the normal of the substrate, with a certain random deviation
from the substrate normal direction. Furthermore, a random rotation around this normal
direction is applied. Therefore, the mechanical properties at the mesoscopic scale can be
expected to be transversely isotropic with the (fiber) symmetry direction corresponding
to the substrate normal direction. All differences in mechanical response in the 22 and
33 tensile directions and the 12 and 13 shear directions will be of statistical origin. After
a set of crystallographic orientations has generated, the lamellar normals are obtained
as described above. In Figure 7.2(a)–(d), the orientations of a set of 125 composite in-
clusions are displayed. The view direction of the equal area pole figures is the substrate
normal direction. This direction is the preferred direction for the (100) poles. In Fig-
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Figure 7.2 / Equal area projection pole figures representing (a)–(c) the principal crys-
tallographic lattice directions, and (d) the lamellar normals of a set of transcrystallized
orientations and (e), (f) the normalized equivalent mesoscopic stress σ̄eq=τ0, vs. the im-
posed deformation for tension and shear, respectively, in the basic material directions as
predicted by the composite inclusion model.

ure 7.2(e) and (f), the corresponding mesoscopic stress–strain response of the composite
inclusion model is shown in the basic tensile and shear directions. With respect to the
randomly oriented aggregate, the equivalent stresses in the transverse tensile directions
are increased. The reduction of the 12 and 13 shear resistances is related to these tensile 22
and 33 resistances. The ratio of transverse tensile and 12=13 shear resistances at the onset
of yielding is of the order of 2. At higher strains, this ratio decreases to approximately
1.5. Simulations with an anisotropic Hill plasticity model (Chapter 2) showed that for
the effectiveness of the toughening mechanism under investigation, a larger amount of
anisotropy would be necessary. A sharper texture, however, does not increase the R22=R12
anisotropy ratio.

7.3 Macroscopic models

For particle-modified materials, a structure of dispersed particles and matrix material
can be identified. The system is described by a finite element model of a representa-
tive volume element (RVE). The blended system, having a three-dimensional nature, is
simplified to a two-dimensional RVE, for which two different approaches are used (see
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Chapter 2). In order to capture the important effects of the essentially irregular nature
of particle-dispersed systems, a plane strain RVE with randomly dispersed particles (re-
ferred to as the RD model) is used, where the cavitated particles are represented by voids.
In Figure 7.3(a), a schematic illustration of this RVE is shown. The periodicity assump-
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Figure 7.3 / (a) Schematic visualization of a multiparticle plane strain RVE, (b) finite
element mesh, and (c) local material orientations.

tion requires full compatibility of each opposite boundary pair (Smit et al., 1999). The
corresponding essential and natural boundary tyings and the applied tensile loading con-
ditions were discussed in Chapter 2 (Equation (2.12) to (2.17)). A similar structure as was
used in the Hill-type simulations in Chapter 2 is adopted, containing 20 volume percent
irregularly dispersed voids. The mesh with 565 four-noded bilinear reduced integration
plane strain elements is shown in Figure 7.3(b). An orientation field is generated by tak-
ing the local 1-directions perpendicular to the closest void/matrix interface, respecting the
periodicity of the structure, as shown in Figure 7.3(c).

For the representation of the triaxial stress state around a particle, an axisymmetric RVE
model of a staggered array of particles (referred to as the SA model) is considered, which
was previously used for the study of themicromechanics of particle-modified polymers by
Socrate and Boyce (2000) and by Tzika et al. (2000) and which resembles a body centered
tetragonal stacking of particles. A schematic representation of the RVE, with L0 = R0, is
shown in Figure 7.4(a) and (b), where the cavitated particle is represented as a void. The
RVE is subjected to anti-symmetry conditions (with respect to point M) along the outer
radius. The periodicity conditions and tensile loading conditions applied were presented
in Chapter 2 (Equations (2.6) to (2.11)). The finite element mesh of the SAmodel, with 20
volume percent voids, is visualized in Figure 7.4(c). In each integration point of the 196
reduced integration four-noded bilinear elements, a local coordinate system is generated,
such that the local 1-directions are again perpendicular to the closest void surface, as is
shown in Figure 7.4(d).
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Figure 7.4 / (a) Schematic visualization of an axisymmetric RVE model of a staggered
array of particles, (b) its position with respect to three neighboring RVEs in a deformed
state, (c) finite element mesh and (d) local material orientations.

7.4 Effect of transcrystallized anisotropy on toughness

In this section, the full multiscale model will be used to investigate the effect of a trans-
crystallized orientation on the deformation of particle-modified systems. Both RVE mod-
els, as described in the previous section, are applied, with in each integration point either
an aggregate of randomly generated orientations or a (unique) set of orientations with a
similar distribution as in Figure 7.2. For the latter situation, the local (fiber) symmetry
directions correspond to the 1-directions as described in Section 7.3. In each integration
point, 64 composite inclusions per aggregate are used.

In Figure 7.5, for the plane strain RD model, the obtained fields of the magnitude of plas-

tic deformation, ε̄magp =
q
2
3ε̄p : ε̄p, are shown for ε̇t = 0.025. For the large scale RVE,

containing randomly oriented, and thus quasi isotropic, matrix material, plastic deforma-
tion is localized in particle-bridging paths, percolating through the matrix, approximately
perpendicular to the loading direction. The small scale RVE, having transcrystallized ori-
entations, shows more widespread localized plastic deformation, with also shear bands in
relatively thick interparticle ligaments, in the 30Æ to 50Æ direction with respect to the parti-
cle poles (the term pole refers to the location where the particle/matrix interface normals
are aligned with the loading direction). In the relatively thin ligaments, still localized
deformation is observed. In Figures 7.6 and 7.7, the magnitude of the plastic deforma-
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Figure 7.5 / The influence of radially oriented anisotropy on the magnitude of the plastic
deformation, ε̄magp , for the RD model, at ε̇t = 0.025, with (a) randomly generated initial
orientations, and (b) transcrystallized preferential orientations.

tion is shown for ε̇t = 0.05, as well as some selected microscopic texture evolutions and
deformation quantities in two integration points, for random and transcrystallized initial
orientations, respectively. For both situations, most plastic deformation is concentrated
in relatively thin interparticle ligaments. The presence of a layer of preferentially crys-
tallized material with significant thickness around cavitated rubber particles does have
some effect on the mechanism of matrix shear yielding. This effect is, however, limited
due to the relatively small level of anisotropy in the material.

In the pole figures showing the evolution of crystallographic and morphological texture,
the initial orientation of each composite inclusion is represented by a dot. The arrow
connects it with the corresponding final orientation, which is located at the arrow-head.
In the pole figures showing microscopic deformation quantities, the location of each dot
denotes the initial orientation of the lamellar normal of an inclusion and its gray intensity
represents the value of the indicated quantity for the inclusion. To enrich the informa-
tion shown in the latter pole figures, the mirror location of each pole with respect to the
central point of the plot is also given. The view direction is the macroscopic out-of-plane
direction. The term intralamellar deformation is employed for the magnitude of the de-
formation of the crystalline phase. For the amorphous deformation, a distinction is made
between so-called interlamellar shear and interlamellar separation (as defined in Chapter 6).
The integration point indicated by A in Figures 7.6 and 7.7, represents, for the initially
randomly oriented material, a material point in the highly localized zone. Since this in-
tegration point is located in the equatorial area (the equator is defined as the area where
the particle/matrix interface normal is perpendicular to the loading direction), the local
1-direction is almost perpendicular to the global loading direction. The microscopic re-
sults for this point show moderate crystallographic deformation, mainly for inclusions
with their lamellar normals close to the local 1-direction. The (100) poles, which repre-
sent the planes containing the two most easily activated slip systems, migrate towards a
direction which is approximately 40Æ away from the local 1-direction. The lamellar nor-
mals are moving towards the same direction, with the largest activity for lamellar poles
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Figure 7.6 / The magnitude of the plastic deformation, ε̄magp , and selected microscopic
results for the RD model, at ε̇t = 0.05, with randomly generated initial orientations.

initially far from the target direction. Amorphous deformations are relatively large, with
interlamellar shear predominantly in inclusions with their crystalline/amorphous inter-
face approximately 45Æ inclined with the loading direction. Interlamellar separation is
found predominantly in inclusions with their interface normals perpendicular to the lo-
cal 1-direction. For the RVE with transcrystallized orientations (Figure 7.7), deformation
is still localized in the ligament containing integration point A. In this point, the maxi-
mum intralamellar (crystallographic) deformation has increased with respect to the quasi
isotropic material, whereas both maximum interlamellar shear and separation have de-
creased. Crystallographic deformation is concentrated in inclusions with their lamellar
normals perpendicular to the loading direction. Also in integration point B, the maxi-
mum intralamellar deformations are approximately doubled, whereas the magnitude of
the interlamellar deformations is comparable to the isotropic situation.

In Figures 7.8 and 7.9, the normalized hydrostatic pressure p̄=τ0, as well as some selected
microscopic texture evolutions and deformation quantities in two integration points, are
shown for the SA model, with random and transcrystallized initial orientations, respec-
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Figure 7.7 / The magnitude of the plastic deformation, ε̄magp , and selected microscropic
results for the RD model, at ε̇t = 0.05, with transcrystallized initial orientations.

tively. The region of peak tensile triaxial stresses is located in the matrix material near the
polar region for the preferentially oriented material, rather than in the equator area, as is
observed for the randomly oriented material. In the equator region, the hydrostatic pres-
sures remain negative; however, the absolute values are reduced with respect to the quasi
isotropic material. In Figure 7.10, the direction and the magnitude of the normalized
maximum in-plane principal stress, σ̄max=τ0, are shown for the SA model. For the large
scale, quasi isotropic material, the maximum principal stresses are found to be negligible
in the polar region, whereas for the small scale configuration, with transcrystallized ori-
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Figure 7.8 / The normalized hydrostatic pressure, p̄=τ0, and selected microscopic results
for the SA model, at ε̇t = 0.1, with randomly generated initial orientations.
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Figure 7.9 / The normalized hydrostatic pressure, p̄=τ0, and selected microscopic results
for the SA model, at ε̇t = 0.1, with transcrystallized initial orientations.

entations, also in this region, maximum principal stresses are significant. In the equator
region, maximum values are slightly increased with respect to the principal stresses in
the isotropic material.
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Figure 7.10 / The direction and the magnitude of the normalized maximum in-plane
principal stress, σ̄max=τ0, for the SA model, at ε̇t = 0.1, with (a)–(b) randomly generated
orientations, (c)–(d) transcrystallized preferential orientations.

For the initially randomly oriented configuration, in integration point C, which is located
in the equatorial region, the intralamellar deformations are relatively small, and are found
predominantly for inclusions with their lamellar normals either perpendicular or parallel
to the loading direction. In the remaining inclusions, interlamellar shear is considerably
large and a significant amount of interlamellar separation is found for inclusions with
their lamellar normals aligned with the loading direction. For these inclusions, the pre-
ferred direction of possible craze growth, perpendicular to the direction of the maximum
principal stress (Kramer, 1983), is parallel to the crystalline/amorphous interface. For the
material with transcrystallized initial orientations, the maximum intralamellar deforma-
tions are more than doubled with respect to the randomly oriented material for inclusions
with their lamellar normal perpendicular to the loading direction. Interlamellar deforma-
tions are considerably reduced. For integration point D, which is located in a high tensile
triaxial stress area, lamellar separations remain small.

In polymeric materials, the principal mechanisms leading to deformation and fracture
(Kausch et al., 1999) are shear yielding of matrix material, voiding and the occurrence
of crazelike features (Michler and Godehardt, 2000; Narisawa and Ishikawa, 1990) un-
der triaxial stress conditions, and brittle fracture of the matrix by chain scission, induced
by high tensile principal stresses. Whether or not the material will show toughened be-
havior will depend on which of these phenomena will predominantly occur. Massive
shear yielding, with energy-absorbing inelastic deformation, will have a beneficial effect
on toughening. However, for the transcrystallized orientation currently considered, the
increase of matrix shear yielding (replacing strain localization) is limited. Intralamellar
deformation is favored over interlamellar deformation. In the quasi isotropic material,
crazelike features may be initiated in the equator region, where the peak tensile triax-
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ial stresses are maximal, and significant interlamellar separation occurs. Since they will
grow perpendicular to the direction of maximum principal stress, the growth direction
will be transversely to the macroscopic tensile direction. These crazes may act as precur-
sors to cracks, ultimately leading to failure. For the material having transcrystallized pref-
erential orientations, in this region the negative hydrostatic pressures and interlamellar
separation are reduced, diminishing the chance of craze initiation. On the other hand, in
the polar region, for this material, relatively large tensile triaxial stresses are found, possi-
bly initiating voids. However, interlamellar separation remains small at this location. In
this area, the growth direction of possible crazes will be in the direction of macroscopic
loading, and crazing may become an energy-absorbing mechanism. Therefore, transcrys-
tallized orientations may lead to some degree of toughening, however, the effect is limited
by the relatively small amount of anisotropy.

7.5 Alternative microstructure

In the previous section, a fully radially oriented, transcrystallized, microstructure was
shown to have a beneficial, but limited effect on the mechanics of deformation in particle-
modified systems. This was due to the relatively small reduction in yield strength in
the local 12 and 13 shear directions. A further decrease of these shear yield strengths
would increase matrix shear yielding. Alternatively, an increase of the local 22 tensile
yield strength, would have a similar effect, since concurrently it reduces the strengths in
shear.

A small flow-related crystallographic orientation was found by Bartczak et al. (1999b) in
HDPE with calcium carbonate fillers. The importance of process conditions was demon-
strated by Schrauwen et al. (2001a,b, 2002), who found toughness to be dominated by
flow-induced effects. A row structure of polyethylene lamellae was found in extruded al-
ternating high density polyethylene and polystyrene thin layers by Pan et al. (1990). The
long axes of the lamellae, which are the crystallographic b-axes, were oriented in the plane
of the layers and perpendicular to the extrusion direction. The a-directions were found to
be predominantly normal to the layer surface and lamellar surface normals were aligned
with the direction of flow. Moreover, only partial twisting was observed. In thicker layers,
an unoriented structure was observed, similar to bulk polyethylene, with the correspond-
ing lamellar twisting.

In this section, the effect of a hypothetical microstructure, with preferential orientations
that may be the result of an influence of the process conditions on the crystallization of
matrix material, will be investigated for a voided macrostructure. The transcrystallized
preferential orientations as used previously, were axisymmetric with respect to the lo-
cal 1-direction, i.e. within the plane of the particle/matrix interface, the orientation was
assumed to be random. This is schematically shown in Figure 7.11(a), where all trans-
verse orientations are represented in a discoid structure (Muratoǧlu et al., 1995a). Here,
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Figure 7.11 / (a) Transversely isotropic transcrystallizedmaterial and (b) transcrystallized
material with an additional row structure.

an additional preferential orientation of the molecular chains and the lamellar normals
in the local 2-direction is assumed (see Figure 7.11(b)). The lamellar row structure ob-
tained thereby may be the result of an influence of the flow on the crystallization behavior,
and resembles the structure that was reported by Pan et al. (1990). Again, the crystallo-
graphic {102} planes are assumed to constitute the crystalline/amorphous interface, with
an initial tilt angle of 9.7Æ. In Figure 7.12, a generated set of 125 composite inclusion
orientations of this type are displayed. The stress–strain behavior obtained when this
aggregate of composite inclusions is subjected to tension and shear in the basic material
directions is shown in Figure 7.12(e) and (f). Because of the lack of a fiber symmetry in
this material, large differences between the 22 and 33 tensile loading configurations are
found. With respect to the transcrystallized orientations (Figure 7.2), the yield strength
in the 22-direction has considerably increased, whereas the 33 yield strength is reduced.
At ln(λ) = 0.05 and 23

√
3γ = 0.05, the ratio of the 22 tensile and 12 shear yield strength is

3.4. The ratio of the 22 tensile resistance and the 12 shear resistance of transcrystallized
material is 3.0. When material with this microstructural morphology would, in a particle-
dispersed system, be oriented appropriately with respect to the loading conditions, an
additional beneficial effect on the amount of matrix shear yielding may be expected.

A microstructure of matrix material around well-dispersed voided particles is hypothe-
sized that consists of lamellar crystals that are nucleated at the particle/matrix interface.
An influence of processing conditions is assumed for matrix material in the equatorial
regions (with respect to the flow direction). This hypothetical morphology is realized
by assigning aggregates of composite inclusions with crystallographic and morphologi-
cal orientations similar to the orientation set in Figure 7.12 to specific elements of the
finite element meshes which were previously used for the RD model and the SA model.
These elements are located in the equatorial areas with respect to the flow direction. For
the remaining elements, again transcrystallized orientations are assumed (similar to Fig-
ure 7.2). In Figure 7.13, the assigned flow-influenced areas are shown for both models,
for either flow in the loading direction or flow perpendicular to the loading direction. In
each integration point, the local 1-directions are assumed to be radially oriented with re-
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Figure 7.12 / Equal area projection pole figures representing (a)–(c) the principal crys-
tallographic lattice directions, and (d) the lamellar normals of an anisotropic set of ori-
entations with an assumed influence of processing conditions and (e), (f) the normal-
ized equivalent mesoscopic stress σ̄eq=τ0, vs. the imposed deformation for tension and
shear, respectively, in the basic material directions as predicted by the composite inclu-
sion model.

transcrystallized flow-influenced

(a) FD: ↔ (b) FD: ↔ (c) FD: � (d) FD: �
Figure 7.13 / Assumed influence of flow on crystallization, with (a)–(b) flow in the load-
ing direction and (c)–(d) flow perpendicular to the loading direction. The flow direction
(FD) is indicated by the arrows.

spect to the nearest particle, as was previously used for the transcrystallized situation. In
Figure 7.14, the effect of this microstructure on the obtained field of plastic deformation
is shown for the RD model at ε̇t = 0.035. In this figure, also the fully transcrystallized
situation is represented. When the macroscopic loading is applied perpendicular to the
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Figure 7.14 / The influence of (a) transcrystallized orientations and (b), (c) flow-
influenced orientations on the magnitude of the plastic deformation, ε̄magp , for the RD
model, at ε̇t = 0.035, with (b) flow in the loading direction, (c) flow perpendicular to the
loading direction. The flow direction (FD) is indicated by the arrows.

flow direction, no significant effect of the flow-influenced orientations can be observed,
compared to fully transcrystallized material. However, when the RVE is loaded in the
direction of the flow, the plastic deformation is no longer localized in the relatively thin
interparticle ligaments, but occurs predominantly in the matrix material, away from the
particle surfaces and at the particle surface at an inclined location.

In Figure 7.15(a), the normalized hydrostatic pressure field is represented for the SA
model, loaded in the flow direction. Results for the material loaded perpendicular to

p̄=τ0
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7.4

(a) (b) (c)

Figure 7.15 / (a) The normalized hydrostatic pressure, p̄=τ0 and (b), (c) the magnitude
and the direction of the normalized maximum in-plane principal stress, σ̄max=τ0, for the
SA model, at ε̇t = 0.075, with the influence of flow in the loading direction.

the flow direction are not shown because of the similarity with the fully transcrystallized
situation. As for the fully transcrystallized situation, the area of peak tensile hydrostatic
stress is relocated from the equatorial region for the quasi isotropic material to the matrix
material near the particle pole. Figure 7.15(b) and (c) show the normalized maximum in-
plane principal stress for the SAmodel with the influence of flow in the loading direction.
The largest maximum principal stresses are again observed in the equatorial area.

Thus, the hypothesized microstructure with local material orientations that may result
from an influence of process conditions on crystallization may increase the toughening
effects, if loaded in the appropriate direction with respect to the flow direction. Then,
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localization of deformation is replaced by dispersed shear yielding. Although an hypoth-
esized microstructure is used, whereas the actual microstructure induced by the flow is
unknown, this example demonstrates the possible importance of the processing condi-
tions for the particle-toughening of semicrystalline material.

7.6 Conclusions

A physically-based mechanism for the toughening of semicrystalline polymeric materials
by the dispersion of particles relies on the presence of a layer of anisotropic transcrys-
tallized material around the particles (Muratoǧlu et al., 1995c; Bartczak et al., 1999a,b).
In this chapter, a multiscale model was used to investigate the effect of preferentially
oriented matrix material in HDPE blended with rubber particles, which were assumed
to be cavitated. The particle-dispersed system was described by both a plane strain RVE
model with irregularly dispersed voids and by an axisymmetric RVE model with an as-
sumed regular stacking of voids, which were loaded in constant strain rate tension. In
each integration point of the finite element model, an aggregate of composite inclusions
has been used as a representative microstructural element that provides the constitutive
behavior of the material at the mesoscopic level. Constitutive properties were assigned
at the microstructural level to the amorphous and the crystalline domains. Besides these
properties, the mesoscopic constitutive behavior was affected by the crystallographic and
lamellar orientations of the composite inclusions. By using preferential initial orienta-
tions, a mesoscopically anisotropic constitutive behavior was obtained.

Simulations on voided polymeric material with a large average interparticle matrix lig-
ament thickness, having quasi isotropic constitutive behavior at a mesoscopic level,
showed a strongly localized deformation, along a path through the matrix, perpendic-
ular to the loading direction. Large tensile triaxial stresses were found in the equator
region (with respect to the loading direction) near the particles. In this area, interlamel-
lar separations were relatively large. A particle-modified system having a relatively small
average interparticle matrix ligament thickness has been realized by using initially prefer-
entially oriented lamellae, with the crystallographic (100) planes approximately parallel to
the void/matrix interface. For this system, a more dispersed field of plastic deformation
was found, induced by a small relative reduction of the shear yield strength. Moreover, a
relocation of the tensile triaxial stresses in the polar region, where deformation by inter-
lamellar separation remains small, was observed, diminishing the likeliness of initiation
and growth of critical crazelike features in the amorphous domains. These phenomena
could indeed lead to some degree of toughening of the particle-modified material if the
interparticle distance is small. However, with the level of anisotropy as predicted by the
composite inclusion model, the effects of these locally preferential orientations remain
limited. Simulations on idealized polymeric material, modeled by anisotropic Hill plas-
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ticity (Chapter 2), showed a much larger potential of local anisotropy for toughening of
particle-dispersed semicrystalline materials, if the amount of anisotropy would be suffi-
ciently large.

The level, and thereby the effect of local anisotropy was found to be improved if an addi-
tional hypothetical possibly flow-induced row structure of the transcrystallized lamellae
was assumed in certain regions. When loaded in the direction of the macroscopic flow,
plastic deformation was no longer localized in relatively thin interparticle ligaments, but
was dispersed through the matrix. This massive shear yielding, in combination with the
effects on craze-initiating conditions, will have a further beneficial influence on the be-
havior of this material, however, only if loaded in the appropriate direction. Although the
employed microstructure was hypothetical, the calculations demonstrated the important
role of processing conditions in particle-toughening of semi-crystalline polymers.



CHAPTER EIGHT

Conclusions and recommendations1

Abstract / The main ideas, methods and conclusions of this thesis are recapitulated. Ret-
rospectively, the initial hypothesis concerning the mechanism of particle-toughening of
semicrystalline polymers is evaluated. Recommendations for future work are given.

8.1 Conclusions

In this thesis, the hypothesis that local anisotropy in particle-modified polymeric systems
may lead to macroscopically toughened behavior was investigated by numerical methods.
The anisotropy is assumed to be induced by a specific microstructure, which results from
preferred crystallization of the polymeric matrix material. The role of the particles in this
mechanism is (i) to create a microstructure with anisotropic constitutive behavior during
crystallization, and additionally (ii) to provoke local stress concentrations during loading,
thereby inducing extensive matrix shear yielding. The validity of this hypothesis has been
investigated by micromechanical modeling methods. Thereby, the crystallization behav-
ior was left out of consideration, and the starting-point was an estimated microstructure
for the particle-modified system.

The effect of matrix material with a reduced yield strength in the local shear directions
around well-dispersed voids has been investigated by finite element simulations for ideal-
ized systems. The fictitious polymeric material was modeled in the context of anisotropic
Hill plasticity. The three-dimensional structure of the voided material was simplified by
the introduction of two different micromechanical models. The applicability of these
computationally two-dimensional models was assessed by comparison with full three-
dimensional simulations. The calculations confirmed that the mechanism as proposed
by Muratoǧlu et al. (1995c) could indeed lead to toughened material behavior. Required

1This chapter is partly based on Van Dommelen et al. (2003e).
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for toughening by this mechanism is apparently (i) a structure of well-dispersed voided
particles; (ii) locally anisotropic material, radially oriented with respect to the nearest void
surface; and (iii) sufficiently reduced shear yield strengths. If these requirements are sat-
isfied, local plastic anisotropy of matrix material around the voids can effectively replace
localization by dispersed shear yielding and can relocate the occurring tensile triaxial
stresses at the particle poles, potentially leading to toughened material behavior.

A similar modeling approach was used to investigate the influence of rubber and min-
eral filler particles on this toughening mechanism. The use of mineral filler particles for
toughening of polymeric materials requires debonding in order to prevent excessive neg-
ative hydrostatic pressures. These debonded hard particles show a relocation of tensile tri-
axial stresses to the particle polar areas by local anisotropy, similarly to anisotropic voided
systems, with the maximum principal stresses directed such that crazes or microcracks
are expected to propagate parallel to the loading direction. Moreover, the anisotropy-
induced shear yielding mechanism is affected by the presence of stiff inclusions. Al-
though some effect of the anisotropy was observed, the mechanism of toughening by
local anisotropy is considered to be less effective for nonadhering hard particles, which
have the advantage of increasing the blend modulus, than for low stiffness rubber fillers.

Thereafter, to investigate whether the requirements for the toughening mechanism can
be achieved by a transcrystallized microstructure, a micromechanically-based numeri-
cal model for the elasto-viscoplastic deformation and texture evolution of semicrystalline
polymers was developed and used to simulate the behavior of particle-modified high den-
sity polyethylene (HDPE). For these blended polymeric systems, a distinction between
three different scales has been made. The constitutive properties of the distinguish-
able material components were characterized at the microscopic scale. At the meso-
scopic scale, an aggregate of individual phases was considered. To bridge between those
scales, a composite inclusion model has been formulated. The model is based on (a
simplified representation of) the underlying morphology and deformation mechanisms
of this material. As a representative microstructural element, a two-phase layered com-
posite inclusion has been used, with a lamellar structure as is commonly observed in
semicrystalline polymers. Both the crystalline and the amorphous phase are represented
in the composite inclusion model and are mechanically coupled at the interface. For
both phases, micromechanically-based constitutive models have been used. The local
inclusion-averaged deformation and stress fields are related to the mesoscopic fields of
the aggregate using an interaction model. Due to the anisotropy of the materials under
investigation, a proper choice of the interaction law, bridging between the microscopic
and the mesoscopic scales, was found to be crucial. A hybrid interaction model was cho-
sen, that compromises between local compatibility and local equilibrium. In the model,
the effect of transcrystallization on microscopic properties other than orientation, such
as crystallinity and amorphous and crystalline constitutive behavior (e.g. as a result of the
lamellar thickness), are not accounted for.
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The composite inclusion model was used to evaluate intraspherulitic deformation and
stress. The spherulitic macrostructure was modeled by finite elements and loaded under
uniaxial and plane strain conditions. Heterogeneous intraspherulitic deformation, with
strain concentrations in the spherulitic centers, was found to result from the anisotropic
structure within each spherulite.

Finally, a full multiscale model was used to investigate the effect of preferentially ori-
ented matrix material in HDPE blended with rubber particles, which were represented
by voids. In this model, the structure–property relationship is addressed at various lev-
els: (i) the arrangement of chain segments, represented in the constitutive behavior of
the individual phases; (ii) the arrangement of the lamellae, influencing the response
of the polymeric matrix material; and (iii) the particle-modified macroscopic structure.
Simulations on voided polymeric material with a large average interparticle matrix lig-
ament thickness, having quasi isotropic constitutive behavior at the mesoscopic level,
showed strongly localized deformation. Maximum tensile triaxial stresses were found
in the equator regions near the particles. A particle-modified system having a relatively
small average interparticle matrix ligament thickness was realized by using initially pref-
erentially oriented lamellae, with the crystallographic (100) planes approximately parallel
to the void/matrix interface. For this system, amore dispersed field of plastic deformation
was found, induced by a relative reduction of the shear yield strength. Moreover a relo-
cation of the peak tensile triaxial stresses to the polar region was observed, diminishing
the initiation and growth of critical crazelike features in the amorphous domains. These
phenomena could indeed lead to some degree of toughening of the particle-modified ma-
terial when the interparticle distance is small. However, with the level of anisotropy as
predicted by the composite inclusion model, the effects of these locally preferred orien-
tations remained limited. The simulations on idealized polymeric materials, modeled
by anisotropic Hill plasticity, showed a substantially increased potential capacity of local
anisotropy for toughening of particle-dispersed semicrystalline materials, if the amount
of anisotropy was sufficiently large.

The level, and thereby the effect of local anisotropy was more pronounced by assuming a
hypothetical additional row structure of the transcrystallized lamellae in certain regions,
which might be the result of the processing history. When loaded in the direction of the
macroscopic flow, plastic deformation was no longer localized in relatively thin interpar-
ticle ligaments, but was largely distributed through the matrix. This shear yielding, in
combination with the effects on craze-initiating conditions, has a further beneficial effect
on the mechanical behavior of this material, however only when loaded in the appropriate
direction.

Based on these simulations, Figure 1.5, which was the starting-point of this work, illus-
trating the potential of rubber and mineral fillers for improving mechanical properties
by the hypothesized mechanism, can be further refined. This refinement is displayed in
Figure 8.1. Whereas in the reference (large scale) isotropic system, tensile triaxial stresses
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Figure 8.1 / The influence of voids (cavitated rubber) vs. hard (mineral) particles in com-
bination with microstructure-induced anisotropy on the mechanical properties.

were found in the particle equator areas, for all anisotropic (small scale) systems, max-
imum negative pressures were observed in the polar area. For these systems, crazelike
events are expected to propagate in the loading direction. For rubber-filled systems, trans-
crystallized layers had a limited effect on matrix shearing, whereas the presence of row-
structured material more efficiently changed the mode of deformation to dispersed shear
yielding. However, the mechanism of toughening by local anisotropy was concluded to
be less effective for nonadhering hard particles.

8.2 Recommendations

In this thesis, the mechanical behavior of particle-modified semicrystalline materials is
numerically modeled at various scales. Many assumptions and simplifications have been
made. In this section, some aspects are discussed that may be focused on in future work.

8.2.1 Composite inclusion model

A micromechanically-based model has been developed for the constitutive behavior of
semicrystalline polymers. A hybrid local–global interaction law was used, which compro-
mises between interinclusion compatibility and equilibrium. For the Û-inclusion model
with a sharp initial texture (e.g. parallel interface normals nI

i

0 ), the span

{ eIi0j⊗nI
i

0 | i = 1‚ . . . ‚N I ; j = 1‚ . . . ‚3 } (8.1)

does not have a full rank and some components of Û may be indeterminate. The same
holds for the span

{ eIij ⊗xI
i

k | i = 1‚ . . . ‚N I ; j = 1‚ . . . ‚3 ; k = 1‚2 }‚ (8.2)
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in the σ̂ -inclusion model in combination with a sharp current texture, which may yield
some components of σ̂ indeterminate. In case of a strongly evolved morphological tex-
ture, the well-posedness of the boundary conditions for the individual composite inclu-
sions in the Û-inclusion model (Equations (4.36) and (4.37)) and the σ̂ -inclusion model
(Equations (4.33) and (4.34)) degenerates. Therefore, the nature of the hybrid interaction
laws limits the strain range that is numerically attainable. An alternative (hybrid) interac-
tion law, with a different basis for assigning interinclusion compatibility and equilibrium
conditions and/or less severe constraints on the rotation tensor could evade some of these
limitations. Such a formulation may possibly be based on nominal stresses. Then, both
interinclusion compatibility and interinclusion equilibrium may be based on the inter-
face orientation in the reference configuration, such as for example:

4P
Ii
x0 :T

Ii = 4P
Ii
x0 : T̄ ; i = 1‚ . . . ‚N I‚ (8.3)

4P
Ii
n0 :F

Ii = 4P
Ii
n0 : F̂ ; i = 1‚ . . . ‚N I‚ (8.4)

with T the first Piola–Kirchhoff stress tensor.

Furthermore, in the current hybrid composite inclusion interaction models, the assign-
ment of Taylorlike and Sachslike interactions is based on the directions in which the
equilibrium and compatibility conditions within the basic element are enforced. A dif-
ferent approach that could be pursued may involve assigning the directions of interinclu-
sion compatibility and equilibrium on the basis of the intrainclusion principal anisotropy
directions. Then, the Sachslike interaction for a certain composite inclusion could be
enforced either in the plastically constrained directions of the crystallographic phase, or
in the relatively stiff principal directions of the entire composite inclusion. Similarly, the
Taylorlike interactions could be assigned to the weak directions within the basic element
of the model. Moreover, a composite inclusion model in a rate formulation may be more
suitable for large strain usage and addresses the conditions of consistency in a more ap-
propriate way.

Elasto-viscoplastic generalizations of the constitutive models that were used by Lee et al.
(1993a) have been chosen. The selection of the appropriate constitutive model for the
noncrystalline domain and the characterization of material parameters may deserve addi-
tional attention. At relatively large strains, the crystalline phase may exhibit phenom-
ena other than accounted for in the model, such as a degradation of the crystalline
structure, twinning, or stress-induced martensitic transformation (e.g. Gent and Madan,
1989; Lin and Argon, 1994; G’Sell and Dahoun, 1994). Some of these aspects may be
incorporated into the model.
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8.2.2 Spherulitic modeling

In the current models of spherulitic structures (Chapter 6), the boundaries between
spherulites are assumed to have an infinitely small thickness. They are merely present by
the virtue of changes in local material orientation, and therefore have no physical prop-
erties. A finite thickness may be assigned to these boundaries which can be modeled
with a distinct constitutive behavior. Furthermore, more detailed finite element mod-
els of spherulitic structures, with a macroscopic modeling of lamellar twisting, may be
employed, as well as three-dimensional unit cell models (e.g. Danielson et al., 2002).

8.2.3 Particle-modified systems

For large strain investigations of particle-toughening of semicrystalline polymers, a phe-
nomenological constitutive model may be preferred from a computational point of view.
Such a model may involve anisotropic elasticity, anisotropic yielding and postyield hard-
ening, with distinct compressive and tensile behavior, and rate dependence. An efficient
finite element implementation of this model would allow for more detailed studies of
particle-modified semicrystalline materials.

Future investigations could include a more appropriate particle/matrix interface model,
high triaxiality loading conditions, and other particle geometries and size distri-
butions. The process of the cavitation of rubber inclusions could be modeled
(Steenbrink and Van der Giessen, 1999). Furthermore, for quantitative predictions of
brittle/tough behavior, failure criteria for crazing (e.g. Tijssens et al., 2000; Estevez et al.,
2000; Socrate et al., 2001) and brittle fracture should be included. The conditions of
crazing in glassy polystyrene have been characterized by a combination of microinden-
tation and numerical modeling by Van Melick et al. (2003); Van Melick (2002). The
incorporation of thermal expansion in the composite inclusion model is discussed in
Van Dommelen et al. (2000b). Using the thermo-elasto-viscoplastic composite inclusion
model, the effect of residual thermal stresses in particle-modified systems may be exam-
ined. The influence of transcrystallization on microscopic properties other than orien-
tation, such as crystallinity and amorphous and crystalline constitutive behavior is ne-
glected in the current model; however may be substantial. This effect may be quantified
and incorporated in the model for transcrystallized material. Moreover the effect of tran-
scrystallization on the resistance to void nucleation may be of interest.

Three-dimensional simulations are preferred for a correct representation of many as-
pects of particle-modified systems, as was demonstrated in Chapter 2. For efficiency
reasons, different two-dimensional models have been used instead. Using a phenomeno-
logical model for the anisotropic constitutive behavior of semicrystalline material allows
full three-dimensional computations. Multilevel finite element methods (e.g. Smit et al.,
1998; Smit, 1998; Kouznetsova et al., 2001, 2002; Kouznetsova, 2002) could provide



8.2 RECOMMENDATIONS 129

a link to the engineering scale (see Figure 5.1). However, in combination with the
micromechanically-based composite inclusion model, these computations would require
enormous computational effort. Therefore, for this application, also a phenomenological
model would be recommended.

A possible effect of processing conditions has been established. Experimental investi-
gations should further clarify the microstructure and its origin that causes toughened
behavior (see Schrauwen, 2003). The potential of alternative microstructures for tough-
ening of semicrystalline material may be studied, as well as the possibility to realize these
morphologies.

Finally, in this thesis, a hypothesis that was based on experimental findings in the litera-
ture has been evaluated entirely by numerical modeling methods. Therefore, the conclu-
sions are valid only within the restrictions of the modeling assumptions. Experimental
studies should verify the validity of these conclusions for real material systems.
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APPENDIX A

Composite inclusion model

Abstract / The sets of equations that compose the composite inclusion model with its various
interaction laws are summarized.

A.1 Introduction

In this appendix, the nonlinear equations of the composite inclusion model (see Chap-
ter 4) that are simultaneously solved for each increment are symbolically given for each
inclusion interaction assumption. The mesoscopic rotation tensor R̄ is assumed to be
fully prescribed. Furthermore, Nσ components of the mesoscopic Cauchy stress tensor,
σ̄ , and the 6 − Nσ nonassociated components of the mesoscopic right stretch tensor, Ū,
are prescribed. Let these components be given by

σ̌ = 4Pσ :σ̄ and Ǔ = 4PU : Ū‚ (A.1)

respectively, with

4Pσ + 4PU = 4I . (A.2)

In Table A.1, the unknown variables for each inclusion interaction model are summa-
rized. For all interaction models, both the amorphous and the crystalline elastic defor-
mation gradients are considered as unknowns. The microscopic deformation and stress
fields of inclusion i can then be symbolically written as (see Figure 4.5):

Fπ i = Fπ i (Fπ i

e ) ; π = a‚ c‚ and FI
i = ∑

π=a‚ c
f π i

0 Fπ i (Fπ i

e )‚ (A.3)

σπ i = σπ i (Fπ i

e ) ; π = a‚ c‚ and σ Ii = ∑
π=a‚ c

f π iσπ i (Fπ i

e )‚ (A.4)
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Model Unknowns Number of unknowns

Taylor-inclusion Fc
i

e , F
ai
e ; i = 1‚ . . . ‚N I 18N I

Sachs-inclusion Fc
i

e , F
ai

e ; i = 1‚ . . . ‚N I 18N I

σ̂ -inclusion Fc
i

e , F
ai
e ; i = 1‚ . . . ‚N I 18N I

σ̂ 6
Ŭ = 4Pσ : Ū Nσ

Û-inclusion Fc
i

e , F
ai
e ; i = 1‚ . . . ‚N I 18N I

Û 6
σ̆ = 4PU :σ̄ 6 − Nσ

Table A.1 / The unknown variables and the number of unknowns in each composite
inclusion model.

respectively. In the σ̂ -inclusion and the Û-inclusion model, an auxiliary unknown stress
tensor σ̂ or stretch tensor Û, respectively, is defined. Moreover, for numerical effi-
ciency, the unprescribed mesoscopic stretch components or unprescribed mesoscopic
stress components are considered as unknowns for the σ̂ -inclusion or the Û-inclusion
model, respectively, and are denoted by Ŭ and σ̆ . Consequently, a strong reduction of
the number of nonzero elements in the matrix K = dΦ

~
=du
~
is obtained, where Φ

~
sym-

bolically contains the complete set of equations to be solved, whereas the unknowns are
stored in the column u

~
. The unknowns are determined by simultaneously solving the set

of 18N I equations for the Taylor- and the Sachs-inclusionmodel, the set of 18N I + Nσ + 6
equations for the σ̂ -inclusion model or the set of 18N I − Nσ + 12 equations for the Û-
inclusion model. The complete sets of equations are given in the following sections.

A.2 Taylor-inclusion model

• Intrainclusion equilibrium (3N I scalar eqns.):

4P
Ii
n :σ ci = 4P

Ii
n :σ ai ; i = 1‚ . . . ‚N I (A.5)

• Volume-averaging of stress (Nσ scalar eqns.):

4Pσ :
N I

∑
i=1
f I
i
σ Ii = 4Pσ :σ̄ = σ̌ (A.6)
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• Intrainclusion compatibility (6NI scalar eqns.):

4P
Ii
x0 :F

ci = 4P
Ii
x0 :F

ai ; i = 1‚ . . . ‚N I (A.7)

• Interinclusion compatibility and volume-averaging of deformation (6N I−Nσ scalar
eqns.):

4PU :UIi = 4PU : Ū = Ǔ ; i = 1‚ . . . ‚N I (N I[6 − Nσ ] scalar eqns.) (A.8)

4Pσ :UIi = 4Pσ :UIi+1 ; i = 1‚ . . . ‚N I − 1 (Nσ [N I − 1] scalar eqns.) (A.9)

• Prescribed rotations (3N I scalar eqns.):

RI
i = R̄ ; i = 1‚ . . . ‚N I (A.10)

A.3 Sachs-inclusion model

• Intrainclusion equilibrium (3N I scalar eqns.):

4P
Ii
n :σ ci = 4P

Ii
n :σ ai ; i = 1‚ . . . ‚N I (A.11)

• Interinclusion equilibrium and volume-averaging of stress (6[NI − 1] + Nσ

scalar eqns.):

4Pσ :σ Ii = 4Pσ :σ̄ = σ̌ ; i = 1‚ . . . ‚N I (N INσ scalar eqns.) (A.12)

4PU :σ Ii = 4PU :σ Ii+1 ; i = 1‚ . . . ‚N I − 1 (A.13)

([N I − 1][6 − Nσ ] scalar eqns.)

• Intrainclusion compatibility (6NI scalar eqns.):

4P
Ii
x0 :F

ci = 4P
Ii
x0 :F

ai ; i = 1‚ . . . ‚N I (A.14)

• Volume-averaging of deformation (6− Nσ scalar eqns.):

4PU :

 
J̄

JΣ

! 1
3 N I

∑
i=1
f I
i

0U
Ii = 4PU : Ū = Ǔ (A.15)

• Prescribed rotations (3N I scalar eqns.):

RI
i = R̄ ; i = 1‚ . . . ‚N I (A.16)
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A.4 σ̂-inclusion model

• Intrainclusion equilibrium (3N I scalar eqns.):

4P
Ii
n :σ ci = 4P

Ii
n :σ ai ; i = 1‚ . . . ‚N I (A.17)

• Interinclusion equilibrium (3N I scalar eqns.):

4P
Ii
x :σ Ii = 4P

Ii
x :σ̂ ; i = 1‚ . . . ‚N I (A.18)

• Volume-averaging of stress (Nσ scalar eqns.):

4Pσ :
N I

∑
i=1
f I
i
σ Ii = 4Pσ :σ̄ = σ̌ (A.19)

• Intrainclusion compatibility (6NI scalar eqns.):

4P
Ii
x0 :F

ci = 4P
Ii
x0 :F

ai ; i = 1‚ . . . ‚N I (A.20)

• Interinclusion compatibility (3N I scalar eqns.):

4P
Ii
n0 :U

Ii = 4P
Ii
n0 : (Ǔ + Ŭ) ; i = 1‚ . . . ‚N I (A.21)

• Volume-averaging of deformation (6 scalar eqns.):

 
J̄

JΣ

! 1
3 N I

∑
i=1
f I
i

0U
Ii = Ǔ + Ŭ (A.22)

• Prescribed rotations (3N I scalar eqns.):

RI
i = R̄ ; i = 1‚ . . . ‚N I (A.23)

A.5 Û-inclusion model

• Intrainclusion equilibrium (3N I scalar eqns.):

4P
Ii
n :σ ci = 4P

Ii
n :σ ai ; i = 1‚ . . . ‚N I (A.24)

• Interinclusion equilibrium (3N I scalar eqns.):

4P
Ii
x :σ Ii = 4P

Ii
x : (σ̌ + σ̆ ) ; i = 1‚ . . . ‚N I (A.25)
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• Volume-averaging of stress (6 scalar eqns.):

N I

∑
i=1
f I
i
σ Ii = σ̌ + σ̆ (A.26)

• Intrainclusion compatibility (6NI scalar eqns.):

4P
Ii
x0 :F

ci = 4P
Ii
x0 :F

ai ; i = 1‚ . . . ‚N I (A.27)

• Interinclusion compatibility (3N I scalar eqns.):

4P
Ii
n0 :U

Iii = 4P
Ii
n0 : Û ; i = 1‚ . . . ‚N I (A.28)

• Volume-averaging of deformation (6− Nσ scalar eqns.):

4PU :

 
J̄

JΣ

! 1
3 N I

∑
i=1
f I
i

0U
Ii = 4PU : Ū = Ǔ (A.29)

• Prescribed rotations (3N I scalar eqns.):

RI
i = R̄ ; i = 1‚ . . . ‚N I (A.30)
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Samenvatting

Een veel gebruikte methode om de taaiheid van semi-kristallijne polymeren te verhogen,
is het inmengen van rubberdeeltjes. Het huidige begrip van het onderliggende taai-
heidsbevorderende mechanisme in deze semi-kristallijne materialen is gebaseerd op een
criterium, dat stelt dat taai gedrag ontstaat indien de gemiddelde matrix-ligamentdikte
tussen de deeltjes kleiner is dan een bepaalde kritische waarde. Deze waarde wordt
beschouwd als een intrinsieke materiaaleigenschap en wordt toegekend aan dunne lagen
van getranskristalliseerd materiaal in de microstructurele morfologie. De doelstelling van
dit onderzoek is met behulp van numerieke methoden de invloed van de microstructuur
op het microscopische, mesoscopische en macroscopische gedrag van deeltjesgemodi-
ficeerde semi-kristallijne materialen te onderzoeken, in het bijzonder het effect van lagen
met een voorkeursoriëntatie.

De mogelijkheden van lokale anisotropie rondom gedispergeerde deeltjes voor het ver-
beteren van de materiaaleigenschappen worden onderzocht voor een geïdealiseerd mate-
riaal uitgaande van anisotrope Hill-plasticiteit. Het systeem, bestaande uit matrixmateri-
aal met ingemengde rubberdeeltjes, wordt beschreven met een eindige elementen model
van een representatief volume-element (RVE). Het systeem bevat een lengteparameter,
gedefinieerd als de verhouding tussen de gemiddelde afstand tussen de deeltjes en een
intrinsieke materiaal-karakteristieke afstand. Deze lengteparameter is in de berekenin-
gen vertegenwoordigd door de aanwezigheid van een anisotrope laag met een specifieke
dikte rondom de gedispergeerde deeltjes. De toepasbaarheid van verschillende typen RVE
modellen voor deeltjesgemodificeerde semi-kristallijne materialen is onderzocht. Daarbij
zijn driedimensionale simulaties als referentie gebruikt. De berekeningen tonen aan dat
lokale anisotropie van het matrixmateriaal rondom de deeltjes gelokaliseerde deformatie
vervangt door verdeelde plastische deformatie in afschuifbanden en de aard van de optre-
dende hydrostatische spanningen verandert. Echter, om deze verbeteringen te bereiken,
dient een microstructuur gerealiseerd te worden met voldoende mate van anisotropie.
De effectiviteit van het taaiheidsmechanisme blijkt echter beperkt te worden door de aan-
wezigheid van harde deeltjes.
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Om te onderzoeken of deze anisotropie bereikt kan worden met een getranskristalli-
seerde microstructuur, is een model voor het mechanische gedrag van semi-kristallijne
materialen ontwikkeld, dat gebaseerd is op de onderliggende morfologie. De gevolgde
procedure omvat analyses op drie niveau’s. De constitutieve eigenschappen van het ma-
trixmateriaal worden gekarakteriseerd op het microscopische niveau, waar de individu-
ele kristallijne en amorfe fasen geïdentificeerd worden. Op het mesoscopische niveau
wordt een aggregaat van individuele fasen beschouwd, zoals een sferuliet of een bun-
delvormige verzameling met voorkeursoriëntaties. Om de bijbehorende lengteschalen te
overbruggen is een model met gelaagde bicomposiete inclusies geformuleerd. Iedere in-
clusie bestaat uit een kristallijn lamel, dat verondersteld wordt plastisch te deformeren
door kristallografische slip en een amorfe laag. Een interactiemodel koppelt de lokale
deformatie- en spanningsvelden van de inclusies aan demesoscopische velden van het ag-
gregaat. Uniaxiale compressie van initieel isotroop HDPE wordt gebruikt om het gedrag
van diverse interactiemodellen te evalueren. Op basis van de evaluatie is een hybride in-
teractiemodel gekozen, dat een compromis vormt tussen lokale compatibiliteit en lokaal
evenwicht.

Een volledige overbrugging van micro–meso–macroniveau wordt verkregen door een
verzameling van composiete inclusies in ieder integratiepunt van een macroscopisch
eindige elementen model te gebruiken. Het meerschalige model is gebruikt om de me-
chanica van intraspherulitische deformatie van polyethyleen te simuleren. Tenslotte zijn
meerschalige berekeningen uitgevoerd voor deeltjesgemodificeerd HDPE materiaal. Ge-
transkristalliseerde oriëntaties laten een beperkt effect op het gedrag van de matrix zien.
Verbeterde eigenschappen in een specifieke belastingsrichting worden verkregen voor
een veronderstelde alternatieve, gedeeltelijk stromingsgeïnduceerde, microstructuur.
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