EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Construction rules for component-based architectures

Citation for published version (APA):
Aalst, van der, W. M. P., Hee, van, K. M., & Toorn, van der, R. A. (2002). Construction rules for component-
based architectures. (Computer science reports; Vol. 0208). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/266c35e7-21e4-41f1-8f4e-e66941d52055

Construction Rules for Component-Based Architectures

W.M.P. van der Aalst3, K.M. van Heé&?, and R.A. van der TooA+

1 Faculty of Technology Management, Department of Information and Technology, Eindhoven University of
Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlawds.p.v.d.aalst@tm.tue.nl
2 Deloitte & Touche Consultants, P.O. Box 23103, NL-1100 DP Amsterdam, The Netherlands.
kvanhee@deloitte.nl, rvandertoorn@deloitte.nl
3 Faculty of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB,
Eindhoven, The Netherlands.

Abstract. Software architectures are shifting the focus from lines-of-code towards coarser-grained
“business-process-components” and their interconnecting structures. These components are not de-
signed and built from scratch, but composed from smaller components. The challenge in designing
these architectures is to preserve construction consistency, meaning that a complete system of com-
ponents has the same visible behavior as its specifying top-level component. We start with a single
component, which is the specification of the system, and we use construction rules to extend the com-
ponent architecture step by step with new components, while the construction consistency is preserved.
In addition we introduce one design pattern. The advantage of using the pattern is that we do not have
to verify construction consistency because it is implied by the pattern, i.e., itis introduced as an alterna-
tive for state space checking. Finally, we show that if a system is consistent and its specifying top-level
component has the option to complete transactions properly, then the complete system has this prop-
erty as well. The formalisms we use are Petri net theory and branching bisimilarity of transition systems.

Keywords:Software architectures; Component-based design; Correctness-by-construction; Design pat-
tern; Petri nets; Branching bisimulation

1 Introduction

In recent years there has been an increasing interesifiware architecturesdemonstrated by the large
number of publications and conferences on this subject and the various commercial activities that are un-
dertaken in this area. This interest can be explained from the development of information systems in the
past forty years and the complex status of today’s information systems.

In the development of information systems we can identify roughly the following four steps. The first
step, starting in the sixties, is that systems are developed as isolated applications dedicated to a single
specific purpose. Data is stored in files and the files are only accessed by stand-alone applications. In the
second step, starting in the seventies, data is separated from applications, and sbatedBase Man-
agement SystemShared data stored in databases couples applications. In the eighties, the focus shifts to
the end-user of a system. There is an interestar interfacesvisual programming languages and user
interface management systems emerge. In the nineties business processes and control flows are separated
from other aspects of information systems. This leads to the developméiatrkflow Management Systems
[7]. These systems are used to guide users according their business processes along the various transitions
they have to fulfill in the system. The result of this development is the separation of concerns and a modular
organization of information systems. Moreover these modules are managed by separated control flows.

Today’s information systems are often very complex mainly caused by the many technological pos-
sibilities to connect systemdliddleware productsuch asBizTalk BEA Weblogic Integrationand Tibco
andcomponent technology4] such asCOM ComponentSCORBAandEnterprise Java Beanfgcilitate
Enterprise Application Integratio(EAI) by removing technical obstacles. Therefore information systems
with different business functionalities and possibility running on different platforms may be connected. For
instance a legacy system containing product data can be connected to a Customer Relationship Management
application and at the same time disclosed for the internet to facilitate on-line updates. Moreover a Workflow

Management System can be used to coordinate these systems. In fact there are often connections at vari-
ous levels, which increases the complexity even more: within applications between components, between
applications in a single organization, and across company borders. For business-to-business or business-to-
government integratioBDI and XML concepts are often used and for business-to-consumer integration the
internet plays a major role. Although technology is an enabler for an open systems environment it does not
answer all questions. We come across two key questions that remain unanswered: How do we structure a
complex network of interconnected systems such that it becomes manageable? And, how do we manage
transactions across interconnected systems?

Software architectureare a mean to deal with the complexity of information systems and to reason
about various aspects of information systems at various levels of abstraction. In [13] a software architecture
is defined “as the structure, which comprises software components, the externally visible properties of those
components, and the relationships among them.” Software architecturefsihetienalandnon-functional
dimensions. The functional dimensions consists ofstinectureand thebehaviorof an architecture. Non-
functional dimensions [13] are often captured by the so-calleality attributesof an architecture. For
instance: performance, security, availability, usability, modifiability, portability, reusability, and integrabil-
ity. Often these qualities compete and any design decision involves trade-offs. In this paper we consider the
functional dimensions of software architectures. In particular we focus asytiemic behavioof compo-
nents rather than the passing of data, the signature of methods, and naming issues. Dealing with dynamic
behavior in a correct and efficient way is an architectural problem. We will use the topologlyesfta
structure architectures and to express concurrent and interacting components. These components typically
have an internal state and interact by sending messages, i.e., asynchronous communication. We reason about
correctness of components with respect to their dynamics. The formal basis for modeling and analyzing the
dynamics of components is Petri nets [41]. The choice for Petri nets over other formal methods such as
process algebra and state charts is primarily motivated by the possibility to describe complex dynamic sys-
tems hierarchically [27, 28] and the availability of advanced inheritance notions [4, 5, 14]. Inheritance of
behavior is particularly used with respect to refinement and evolution of architectures rather than the reuse
of components. A large suite of Petri-net based tools is available to execute Petri-net based models [6]. The
foundation of this paper is a particular class of Petri nets c&llemiponent-nets (C-netalso referred to as
Workflow-netgWF-nets) [1-3]. These nets are very well suited to specify the transactions of a component.
Since the framework we introduced in [9] is also based on C-nets, the results of this paper are applicable
to this framework. This is advantageous since the dual concept of this framework in which a component
has aspecificatiorand anarchitectureallows for an understanding of the systems functionality by different
stakeholders at different levels of abstraction.

There are two different approaches to software design: top down or refinement and bottom up or com-
position. Given the specification of the component to be built one may refine this component into a network
of connected sub-components for which the specifications are derived, or one may look for existing com-
ponents that can be composed into a component that has a behavior that fits the specification of the original
one. In both cases one needs rules that guarantee that connected components preserve some behavioral
properties, like the correct treatment of transactions. In this paper we focus on rules to build systems of
components. We will use C-nets as elementary building blocks for systems. A system wilieleehC-
nets. Figure 1 is an example of a system built from C-nets. In Figure lreatdnglerepresents a C-net
and eacharrow represents amterfacebetween two C-nets. The C-ndtis called theroot C-net, B, E
and F’ are called thaeon-leaveC-nets and”, D, G, H and[are called théeaveC-nets. In fact one may
consider such a tree as one compound component, consisting of the compbnBnts, D, E, F, G, H
and/, in which the root componert is the only one that interfaces with the environment. In Figuréig
used to indicate the net which is the compositiorBofC’' and D and Z is used to indicate the net which is
the composition of', G, H andI. The systenX itself is a net which is the result of composiiig £ and
Z. The root component is used as the specification for the compound compoiewe will prove that
under certain conditions a C-net tree (such¥gds a C-net again.

With respect to the behavior of these constructed trees we will require that each non-leave C-net has
the same behavior as the composition of this C-net and all its “child” C-nets. In the example of Figure 1
this means that, for instanc®&, should have the same behavior as the Yietvhich is the composition

X A
/ VA\
Y B E Z F
C D G H |

Fig.1.A C-net tree.

of B and its childrenC' and D. Moreover the behavior of the root componehshould be similar to the
behavior ofX which is the composition of the childrén, E andZ. Therefore applied to the complete C-

net tree this requirement means that the observable behavior of the tree is determined by the root C-net. In
component-based software development this corresponds to the notion that an interface specification should
describe the observable behavior of the complete component. We will prove that if this property holds for
all non-leave nodes in the tree, then the tree as a whole behaves as the root C-net. Hence the root C-net
is an interface specification for the complete system. We call a tree which has this progrestsuction
consisten{Definition 24). Construction consistency is an important feature in component-based software
development. It ensures that the implementation of a system is consistent with the specification, i.e., respects
the users requirements. The main result of this paper is a set of construction rules and a pattern to design
complex trees of C-net that are construction consistent.

The client-servercomposition of C-nets is the elementary construction that is key to all construction
rules presented in this paper. (In fact a client-server composition is a very simple C-net tree consisting of
two nodes: the client-net is the root and the server net is the leave.) To create a client-sever composition we
start with a single C-net and we will attach it to another C-net. We will give the example of an embedded
software component to inspect and sort out letters. The device has two functionalities: it determines whether
a letter is stamped and it scans the address on the letter in order to sort the letter. The component has
two subcomponents: one interface component and one technical component. The interface component is
described in Figure 2 b-net 1and the technical component is describedyet 2 The composition
of the two C-nets is called a client-server composition when these nets are glued together under certain
conditions. One of the conditions that is vital to end up with a consistent system is that the behavior of

C-net1

C-net 2 4
O O O

“ calibrate saveimage register release

Fig. 2. The interface C-net and the technical C-net glued together.

3

the client-server composition should be similar to the behavior of the client whemndeehe behavior

of the server; we pretend thealibrate, save imageregisterandreleaseare not visible to the user of the
system. In Figure 2 the invisible transitions have been indicated by usinglddgel. When we consider

the behavior of the first C-net in isolation, we see that this net has the following functionaftietsscan
stampedunstampegdscan addressstop scanlf the client-server composition of the interface C-net and

the technical C-net is able to reproduce exactly the same behavior as the interface C-net in isolation when
we hide the behavior of the technical C-net, then we reached our goal, i.e., construction consistency. To
compare behaviors of different C-nets we will use the notiohrafiching bisimilarity[25, 36, 38], which

is introduced in Section 3.

In addition to the client-server construction we will introduce two other construction$iatizontal
and thevertical unionof client-server compositions. These constructions can be used to extend a C-net
tree. Suppose that, for instance in Figure 1, the composition of thefmhatsd C, respectivelyB and D
are client-server compositions, then the compositénebnsisting of the C-netB, C and D is called the
horizontal union of these two client-server compositions. Moreover, if we suppose that the composition of
A andB is a client-server composition, then the compositiompB andC is called a vertical union.

Finally we present an example of a design pattern which allows building consistent treesjubst-
response patterriThe advantage of using the request-response pattern is that we do not have to execute an
exhaustive state space check on the bisimilarity of the extended tree and its specifying root C-net. Instead we
should verify if the conditions of the request-response pattern are satisfied, which are all graph conditions
(i.e., no “state explosion” problems). Compare this to the three inheritance-preserving transformation rules
based on the notion of branching bisimilarity for sound-processes defined [4, 5, 14]. These rules correspond
to design patterns when extending a super class to incorporate new behavior: (1) adding a loop, (2) inserting
methods in-between existing methods, and (3) putting new methods in parallel with existing méthods.

The structure of this paper is the following. Section 2 presents related work. Section 3 introduces the
concepts this paper builds upon. Section 4 discusses the construction rules for the composition of C-nets.
Section 5 presents two branching bisimilarity results to obtain construction consistency for C-nets. Section 6
presents a design pattern. Section 7 summarizes the results of this paper.

2 Related work

Software architecture originated in 1968 when Dijkstra [21] pointed out that not only the result but also
the structuring of software is important and carries benefits. Parnas contributed by concerning information-
hiding modules, software structures [39] and program families. The analogy to a building architecture was
due to Alexander [11] who stressed that architectures should be “timeless” and prove to be stable when
exposed to the introduction of the latest technologies. Research to software architecture has emerged as a
large-scale manifestation over the last years. However the area of software architecture is still quit young
considering the large number of definitions that are used simultaneously. Applicable to this paper is the def-
inition by Bass and others [13] quoted in Section 1. This definition is closely related to the déE&é&o
1471definition [17] agreed upon recently: “A software architecture can be defined as the fundamental or-
ganization of a system embodied in its components, their relationships to each other and to the environment
and the principles guiding its design and evolution.”

Perry and Wolf [40] provided foundation for the study of software architectures and Shaw and Garlan
[24, 42] defined and explored the advantages of the uaechitectural stylei.e., the voluntarily restriction
to a relatively small set of choices when it comes to component cooperation and interaction. In this paper, the
use of the C-net, the client-server coupling and the request-response pattern are an example of architectural
style.

Others stressed the importance of the use of multia/s Views are important because they pro-
vide descriptions of the system at various levels of abstraction. Hence they can be used for understanding

! For the readers familiar with the work in [9]: A difference with the approach in this paper is that we dropt the a priori
requirement of soundness on processes. Instead we handle soundness as a property which can be transferred over
branching-bisimilar processes (Lemma 7).

the structure of a system and form a basis for a shared understanding of a system by all its stakeholders.
Zachman [45] came up with a view-based approach in which an architecture is considered as a set of archi-
tectural representations (or models) placed within two dimensions: the perspective and the description type.
The distinguished perspectives agree very well with the interests of different stakeholders in a software
development effort. A managers view on the system differs from that of an designer, a programmers view
may be completely different from both. Each of the participants views is, however, relevant to develop the
system successfully. To capture the various aspects of architectural information Kruchten [32] presented
a more concise model of architectural views consisting of the LogicaPtbeess the Physical the De-
velopmentand theScenarios-viewif we apply our work to Kruchten, then we can consistently relate the
Conceptuabnd theProcess-viewvith respect to behavior.

In general architectural problems are addressedishitecture Description LanguagéaDLs). For
different architectural problems often different ADLs are suited. Medvidovic [35] defined an ADL as a lan-
guage that provides a concrete syntax and a conceptual framework for characterizing architectures. In [9]
we related our approach based on C-nets to other ADLs such as ARMANI, Rapide, Aesop, MetaH, UniCon,
Darwin, Wright, C2 and SADL. In contrast with our approach these ADLSs typically view software archi-
tectures statically [34], i.e., analysis primarily focuses on syntactical and topological issues. Only Darwin
offers the possibility to execute “what if” scenarios and Rapide offers a constraint checker based on sim-
ulation. Several strategies to compare and to relate ADLs have been presented the last years. One strategy
is by using the architecture interchange language ACME [23]. Its purpose is to capture the similarities of
ADLs and to support the mapping of architectural specifications from one ADL to another. ACME is suited
to do this at the syntactical level, but not at the semantic level. Another strategy to classify ADLs is by
architectural domaingsi.e., the problems or areas of concern that need to be addressed by ADLs [34]. The
ADLs investigated in [34] are all supported by tools, which are tightly interwoven with the ADL. Another
approach, different to an ADL, but also used to incorporate dynamic behavior is the addition of process
specifications to existing middleware technology, e.g., in [16] CORBA IDLs are extended with Petri nets.

The use of patterns to handle architectures problems was first introduced by Gamma [22]. Buschmann
[19] also makes use of patterns. An approach by Klein [31] is to reuse reference models.

Notions of behavioral inheritance (also named subtyping or substitutability) are explored by several
researchers[12, 29, 30, 33]. Researchers in the domain of formal process models (e.g., Petri nets and process
algebras) have tackled similar questions based on the explicit representation of a process by using various
notions of (bi)simulation [25, 36, 38].

The theory developed in this paper has applicationgléxtronic Commercand Interorganizational
Workflow References to related work in these areas are given in [5].

3 Preliminaries

3.1 Place/Transition nets

In this section, we define a variant of the classic Petri-net model [20, 37, 41] called labeled Place/Transition
nets. The labeled P/T-net is used to describebleaviorof a component and its interactions with its
environment. Each transition has an action label, either visible or invisible. In the external behavior only
the firing of transitions with a visible label can be observed. L&k a set of visible action labels, and let

7,7 ¢ L, be the label used to indicate invisible actiohs.= L U {r}. In UML [18] or component-based
development [44] visible actions are those actions that are accessible on the interface of a component (i.e.
methods

Definition 1 (Labeled P/T-net).A labeled Place/Transition net is a tupl®, T, F, ¢) where:

1. Pis afinite set ofplaces

2. T is afinite set oftransitionssuch thatP N T = 0,

3. FC (P xT)U (T x P)is aset of directed arcs, called tfiew relation and
4. (T — L,,is alabeling functionthat assigns a label to a transition,

such thatP, T, F', and L.. are mutually disjoint.

Let (P, T, F, () be alabeled P/T-net. Elements®f) T are referred to asodes A nodex € PUT is called

aninput nodeof another nodg € P U T if and only if there exists a directed arc framto y; that is, if and

only if zFy. Nodez is called aroutput nodeof y if and only if there exists a directed arc fragrto . If «

is a place inP, it is called an input place or an output place; if it is a transition, it is called an input or an
output transition. The set of all input nodes of some nedecalled thepresetof «; its set of output nodes

is called thepostset Two auxiliary functionse_, e : (PUT) — P(PUT)? are defined that assign to each

node its preset and postset, respectively. For any mode® U T, ex = {y | yFz} andze = {y | zFy}.

The preset and postset functions depend on the context, i.e., the P/T-net the function applies to. If a node is
used in several nets, it is not always clear to which P/T-net the preset/postset functions refer. Therefore, we

augment the preset and postset notation with the name of the net whenever confusion is pjgssi'fbthe

preset of node in net N andz's is the postset of nodein netV.

We define often classes of objects by a tuple like: “an objeof the classz is denoted byy =
(A4, B,C)". We refer to the elements of the tuple by subscripting them with the name of the object, e.g.,
Ay, By, andC,. In particular the P/T-ned is denoted byV = (P, T, F, {) and the elements are denoted
byPNvT]\UFNyEN-

Definition 2 (Labeled P/T-net properties: union, cross-section, sub-net, disjoint).
Let U and W be two labeled P/T-nets such th@®y U Py) N (Ty U Tw) = @ and such that, for all
te Ty NTw, by(t) = Lw(t).

1. Theunionof U andW, denoted/ UW, is the labeled P/T-ndtP,; U Py, Ty UTw , Fy UFw, £y Ulw),
_ Jly@) for tely
Where(gU Y gW)(t) o {ew(t) for te TW\TU
2. Thecross-sectiorof U and W, denotedU N W, is the labeled P/T-netPy N Py, Ty N Tw, Fy N
Fw, lynly), wherely Nly = Ly |(PyN Py), i.e., the functioy restricted to the domaiiy N Py .
3. U is called asub-netof W, denoted/ C W if Py C Py, Ty C Tw and Fyy C Fyy.
4. If (Py UTy) N (Pw UTw) = 0, thenU and W are said to belisjoint

A bagover a setd is a functionA — IN. The set of all bags ovet is denoted3(A). Let X € B(A),
then X (a) denotes the number of occurrencesi@f X, often called the cardinality of in X. The empty
bag, which is the function yielding O for any element4n is denotedd. For the explicit enumeration
of a bag we use square brackets and superscripts to denote the cardinality of the elements. For example,
[a%,b, c®] denotes the bag with two elementsoneb, and three elements The operations we can perform
on a bag are addition, subtraction and comparison. In this paper, we allow the use of sets as bags, in fact we
identify in that case a set with the bag{(a,1)|a € A}, orif A ={ay,...,a,} A corresponds to the bag
[al, . ,an].

Definition 3 (Marking,). A marked labeled P/T-net is a paifV, s), whereN is a labeled P/T-net and
s is a bag overP denoting the marking (also called state) of the net. The set of all marked, labeled P/T-nets
is denotegV.

Definition 4 (Transition enabling). Let (IV, s) be a marked, labeled P/T-net i, whereN. A transition
t € T is enabled denoted(N, s)[t), if and only if each of its input placgs contains a token. That is,
(N,s)[t) & ot <s.

If a transitiont is enabled in marking (notation: (N, s)[t)), thent can fire. If, in addition} has labek
(i.e.,a = £(t) is the associated method, operation, or observable action) andtfigsglts in markings’,
then(N, s) [a) (I,) is used to denote the firing.

Definition 5 (Firing rule). The firing rule_[.) - C N x L x N is the smallest relation satisfying for any
(N, s)in N, with N a labeled P/T-net, and anye T,
(N, s)[t) = (N,s) [¢n(t)) (N,s — ot +te).

2P(X) is the power set oX ..

Definition 6 (Firing sequence).Let (N, sg) with (N, s¢) be a marked, labeled P/T-net . A sequence
o € T* is called afiring sequencef (N, sq) if and only ifc = ¢ or, for some positive natural number
n € IN, there exist markingss, ..., s, € B(P) and transitionsty,...,t, € T such thate = t;...¢,
and, for alli with0 < i < n, (N, s;)[ti+1) ands;;1 = s; — et; 11 + t; 110 . Sequence is said to be
enabledn markingsy, denoted NV, so)[o). Firing the sequence results in the unique marking denoted
(N, s0) [o) (N, s), wheres = sq if o = ¢ ands = s,, otherwise.

Definition 7 (Reachable markings).The set ofreachable markingsf a marked, labeled P/T-nélv, s) €
N, denoted N, s), is defined as the s¢t’ € B(P) | (3o :0€T*: (N,s) [o) (N,s))}.

Definition 8 (Directed path). Let N be a labeled P/T-net. A directed pathfrom a noden; to a nodeny,
is a sequencejns . ..ng such thatn;, n;4q) € Fyforl <i<k-—1.

Definition 9 (Strong Connectedness)A labeled P/T-netV is strongly connected and only if, every two
nodesr andy in Py U Ty are on a directed path.

Definition 10 (k-Boundedness)A marked, labeled P/T-nétV, s) € N is k-boundedf and only if, for
any reachable marking and any place» € Py, s(p) < k with k € IN.

A marked, labeled P/T-nétV, s) € N is boundedif and only if the set of reachable marking¥, s) is
k-bounded for somé € IN.

Definition 11 (Dead transition). Let (N, s) be a marked, labeled P/T-net.x. A transitiont € T is dead
in (N, s) if and only if there is no reachable markingsuch that NV, s’)[t).

Definition 12 (Deadlock).Let (V, s) be a marked, labeled P/T-net k(. IV is in a deadlockin s if and
only if there is na € Ty such that(N, s)[t).

Definition 13 (Liveness).A transitiont in a marked, labeled P/T-néfV, s) € N is live if and only if, for
every reachable marking € [N, s), there is a reachable marking’ such that(V, s”)[¢).
The net is live if all transition iV, s) are live.

3.2 Component nets

For the modeling of components we use labeled P/T-nets with a specific structure. We will name these nets
component netgC-nets).

Definition 14 (C-net, N=). A component nefC-net) N is a 6-tuple(P, T, F', ¢, i, 0) such that P, T, F, ¢)
is a labeled P/T-net and the following conditions are satisfied:

1. instance creation and completioR contains two specific placésand o, respectively source and sink
place, such thatei = () andoe = (), and

2. connectedness ¢ (T'U P): N = (P,TU{t}, FU{(o,1), (¢,4)},£U{(t,7)}) is strongly connected.
We will denote the class of marked C-nets wifp.

Analogously to previous notation we denote the source and sink place of/é néth iy andoy. The
connectedness requirement implies that there is one unique source and one unique sink place. For the
readers familiar with the work presented in [2, 15]: C-nets are labeled WF-nets. In this paper we drop the
additional requirement we imposed in [9] where start transitienand end transition® o should have a

non-r label. The structure of a C-net allows us to define the following functions.

Definition 15 (start, stop). Let N be a C-net.

1. start(N) ={t € T | iy € et} is the set of start transitions, and
2. stop(N) ={t € T | on € te } is the set of stop transitions.

Definition 14 only gives a static characterization of a C-net. Components will have a life-cycle which
satisfies the following requirements.

Definition 16 (Option to complete). A marked C-net N, [i%;]) has thek-option to completdor some
k € IN if and only if:
Vs : (s € [N, [i%]) = [0%] € [N, s)).

If (V, [i%]) has the k-option to complete for &llc IN, then N has theoption to completé

This requirement states that starting from the initial markifig, i.e., the activation of the component such
that there are: tokens placed in the source placet is always possible to reach the markifig;], i.e.,

the marking with precisely: tokens in place> and all the other places empty, which corresponds to the
possibility for a component to terminate without leaving tokens. In principle this leaves the possibility open
of the existence of a € [N, [i%]) such thats > [0%;]. The following lemma shows that this can not be the
case. Hence the option to complete is in factehgpty completion option

Lemma 1 (No tokens left).Let N be a C-net. For alk € IN we have:
If (V, [i%]) satisfies the k-option to complete, then for any reachable makiV, [i%]) with s(o) = k,
it follows thats = [0%;].

Proof. Suppose tha¢(o) = k for somek € IN and lets € [N, [i%]). Since(V, [i%;]) satisfies the k-option
to complete it follows thafoX;] € [N, s). Suppose there is a plape# o with s(p) > 0. So there are at
leastk + 1 tokens in the net. C-nets have directed pathsaad hence there is no transitiowith te = ().
HenceN keeps at least + 1 tokens ando¥;] will never be reached. Contradiction. O

Since Lemma 1 holds we will speak about thkempty completion propertinstead of thek-option to
completeand theempty completion properiystead of theoption to complete

Remark 1(Relation with soundness notion in [9])o compare thé&-empty completion option used in this
paper with the soundness notion in [9], we first extenditteenpty completion option té-soundness
A C-netN is ak-soundfor somek € IN if and only if:

1. (N, [i%]) has thek-empty completion property
2. (N, [i%]) is k-bounded
3. (N, [i%]) containsno dead transitions

Now Lemma 1 implies that 1-soundness, ike= 1, corresponds to the soundness notion used in [2, 9, 15].

The motivation for the use off)empty completion property in this paper over the previtresmnpty
completion property as a part of the soundness definition in [9] is that it allows for simple analysis for
various problems. These problems should have the property that the transitions are equal for all cases. This
is typically the case in batch-processing whereases are handled in parallel as if they were sequentially
processed. A necessary condition for these type of processes is thiaethpty completion property is
satisfied. Also processes in manufacturing and administrative automation often have this property. For in-
stance consider the example of the assembly process of bicycles. If we have two sets of parts to construct
two bicycles, then we may exchange the parts and we still get two bicycles. In a typical assembly process
each entry is a single frame of a bicycle and in each step a part is added. The final result at the exit of the
process is a complete bicycle. If there are multiple bicycles under construction at the same time, then the
k-soundness implies that each entry will yield a bicycle at the end of the process.

An example of an administrative process with multiple tokens is one where the tokens are anonymous.
One could think of a process where for instance for ten different couples the same journey is booked. Typical
steps are booking flights, hotel rooms, trips, etcetera. In such a process it is not important to which couple
which hotel room is attached, as long as each couple will have one in the end.

Another reason for not requiring 1-boundedness in this paper, whereas we did do this in [9], is the
following: In [9] we used the 1-boundedness in combination waithivation safeness avoid multiple

® Note that[i%;] and[o%;] arebagscontainingk tokens in the input respectively output placeldf

entrance of sub-components, whereas we do allow this in this paper. To overcome the absence of this
requirement, we impose the requirement over lihenching bisimulation for C-netas explained in the
following section.

Not requiring the absence of dead transition is motivated in [10]: In a composition of C-nets it might
occur that a dead transition is introduced, whereas they are not present yet in the isolated nets. We can deal
with this in two ways. Either we can use a soundness-definition including the absence of dead transitions,
or a weaker one without this condition. In the first case we need an operator to remove dead transitions from
composite nets. In this paper we choose the second option which is to ignore dead transitions.

3.3 Branching bisimilarity

To compare C-nets we need to formalize a notion of equivalence. In this paper, Wweanshing bisimi-
larity [25] as the standard equivalence relation on marked, labeled P/T-n¥ts in

The notion of asilent actionis pivotal to the definition of branching bisimilarity. Silent actions are
actions (i.e., transition firings) that cannot be observed. Silent actions are denoted with theilabainly
transitions in a P/T-net with a label different frormare observable. We assume thas an element of_,.
The 7-labeled transitions are used to distinguish between external, or observable, and internal, or silent,
behavior. A single label is sufficient, since all internal actions are equal in the sense that they do not have
any visible effects.

To define branching bisimilarity, an auxiliary definition is needed: a relation expressing that a marked,
labeled P/T-net can evolve into another marked, labeled P/T-net by executing a sequence of zera-or more
actions.

Definition 17. The relation. =— _ C N x N is defined as the smallest relation satisfying, for any
pp,p" € N,p=pand(p=p' Ap'[r)p") = p==1p".

Let [(«)) be the extension of the relatidn) defined in the following way: for any two marked, labeled
P/T-netyp,p’ € N and actio € L., p[(a)) p' ifandonlyif(a =7 Ap=9p) Vpla)p'.

Thus,p [(7)) p’ means that zere actions are performed, when the first disjunct of the predicate is
satisfied, or that one action is performed, when the second disjunct is satisfied. For any observable action
a € L, the first disjunct of the predicate is not satisfied. Hence in that gd$e)) p’ is simply equal to
p [a) p’, meaning that a single action is performed.

Definition 18 (Branching bisimilarity). A binary relationR C N x A is called abranching bisimulation
if and only if, for anyp, p’, ¢,¢' € N anda € L,

1. pRgApla)p =

(Hq/7q1/ . q/7q// EN. q :> q/I /\q// [(a)> q/ /\quI/ /\p/qu)7 and
2. pRqAqla) ¢ =

(Hp/7p// . p/7p// EN: p :>pl//\p// [(a)> p//\p//Rq/\p/Rq/).

Two marked, labeled P/T-nets are callbechnching bisimilardenotedp ~, ¢, if and only if there exists a
branching bisimulatiorR such thapRq.

Branching bisimilarity is an equivalence relation.&f i.e., ~, is reflexive, symmetric, and transitive. See
[14] for more details and references to other notions of branching bisimilarity.
Figure 3 shows the essence of a branching bisimulation. The firing rule is depicted by arrows. The dashed
lines represent a branching bisimulation. A marked, labeled P/T-net must be able to simulate any action
of an equivalent marked, labeled P/T-net after performing any number of silent actions, except for a silent
action which it may or may not simulate.

For marked C-nets we require a stronger concept of branching bisimilarity, namely that the bisimulation
relationR satisfies two additional properties.

Definition 19 (Branching bisimulation for C-nets). The bisimulation relatiorR C N¢ x N is abisim-
ulation relation for C-netif and only ifvk € IN, A, B € N¢:

Fig. 3. The essence of a branching bisimulation.

1. existence:
(A, i])R(B, [iB])A
(A, [oh])R(B, [0])
2. umqueness exceptsteps:

(Vo : (A, [i} AR(B, z) : [ip] = z)A
(Vo : (A, [04])R(B, z) : 2 = [0}])A
(Vo : (A, 2)R(B, [i} Bl) : [})/
(Va : (A, 2)R(B, [op]) : w:>[0’2])-

We write A ~;, B for the existence of a branching bisimulation relatiinfor C-nets. IfA ~;, B, then
(A, [i%]) ~p (B, [i%]) for all k € IN.

This definition allows us to include unreachable states in the relation. However, it is not very useful to
consider these states. Therefore we often only have reachable states ilRnGinfA, s4), (B, sp)|sa €
[A[K)) A sp € (B [i)}.

The requirements of Definition 19 are automatically satisfied in case both nets have the option to com-
plete. The requirements are a necessity in case one of the processes has not the ability to complete. Figure 4
shows two processes: one without the proper-completion property and one with the proper completion prop-
erty. In netA in Figure 4(a) one of the transitionsmay fire and then a token is either in plageor p-.

The state with one token in the sink plagg can never be reached. This can also be seen from the state
transition diagram by the absence of a transition to the &afe In net B in Figure 4(b) there is only one
transitionz. When it fires immediately the end stdtg | is reached. Clearly nét has the proper comple-
tion property, whereas net does not have this property. According to Definition 18 we related the states
[p1] with [og], [p2] With [og] and[o] with [og]. It is allowed to relatdo 4] with [op] because they are
both deadlocks. The procedsand B are branching bisimilar with respect to Definition 18, however with
respect to Definition 19 they are not, because sysecan deadlock in a state which is not the final one,
while systemB can only deadlock in the final state.

If we would have the proper completion property in both nets, we should have rglateahd|og]. Clearly

this relation is not possible in this example. However wherreggiirethe existence of this relation we are
able to show that the proper completion property transfers over branching bisimilar nets (cf. Lemma 7).

3.4 Abstraction and projection inheritance

To compare labeled P/T-nets we use the mechanisabstraction Abstraction means that we hide the
effects of certain action labels. For instance, when we compare two marked labeled PfTandtg, we

might abstract from the visible labels inthat are not present in. We used abstraction in the example of
Figure 2 to hide the functionality of the technical component. In [9] the mechanism of abstraction is used
to defineprojection inheritancg14]. The idea of projection inheritance can be characterized as follows: “If

it is not possible to distinguish the behaviors of two marked labeled P/Tzraatdy, when only transitions

of z that are also present inare executed, thenis a sub class of.”

Abstraction is defined by using an abstraction operator which redefines the labeling function of a P/T-net
such that a visible label is replaced by an invisible label. In this paper we will only apply the abstraction

10

net A net B

state transition A state transition B

@ (b)

Fig. 4. Two related processes, one with and one without the empty completion property. Both nets and both state
transition diagrams are depicted.

operator on entire P/T-nets. We will introduce this operator in the following definition and since it relabels
all transitions to the-label we will use the same-symbol for the operator.

Definition 20 (Abstraction operator). Let NV be a labeled P/T-net. Trabstraction operatoris a function
on labeled P/T-nets such thatN) = (P, T, F, {') wheredom(¢) = dom(¢') and¢'(t) = v forall t € T,
i.e., 7 renames all transition labels iV to the silent actiorr.

4 Construction rules for C-nets

In this section we consider compositions of C-nets. In our approach to software design we consider com-
ponents as independent parts of an architecture, each with their own thread of control and collaborating (by
message exchange) to form a working system. For the corresponding C-nets this implies that we do not
want to extend their behavior when we put them in an environment. Therefore, when we connect C-nets,
we use an interface that does rmttendthe behavior of the separate nets. In fact in Section 5 we give
conditions such that we do nbimit the behavior of the client-nets as well. The interface is introduced in
this section. Another design approach we explore in this paper iglith@-serverapproach. This implies
that in the relationship between connected components there is always one component which has the role
of control componenand one component that has the rolsefver componente., it is obliged to execute
tasks for the control component. This client-server approach is reflected in the additional requirements we
put on an interface.

We start by introducing an elementary client-server composition and then we define unions of elemen-
tary compositions. The unions enable us to create complex trees of connected C-nets. We end this section by
introducing a complete tree of C-nets; a structure that can be used to describe a complete component-based

11

system. The elementary composition is a composition of two C-nets and is caliedtaservercomposi-

tion because one C-net, the client, governs the transaction, and the other C-net, the server, delivers a service
to its client. The transaction that corresponds to this service is always executed within the scope of the
transaction of the client. Only the client has the ability to start its server and the server always reports back
to the client when it finished its transaction. Figure 5 illustrates the elementary client-server composition.

interface ¢
with places P
and arcs F

Fig. 5. Client-server composition of C-nets.

We require that this composition is a C-net. The figure depicts the two separate @-aets3. The inner
structures of nodes of and B are left out. Places that are connected to transition &md transitions in

B are callednterface placesnd in the figure these places are inside the shaded area, and denot&d with
Together with a set dhterface arcsF' these places are the glue between the Aedsd B and are the two
components of amterface¢. An additional requirement we may put on interface is that the start and stop
placesip andop of B are also interface places. In that cd3és activated by a transition id and after
deactivation ofB A may continue. Hence by constructidncontrols the start and stop behavior®f The

net in Figure 5 is the result of the composition of two nets and one interface.

Definition 21 (Interface, Client-server coupling, Composition operator).Let A and B be labeled P/T-
nets. Letp = (P, F) with FF C (P x (T4 UTR)) U (T4 UTgE) x P)andletN = (P4, UPgUP, Ty U
Tg, FAUFgUF,l4 UEB).

1. ¢ is aninterfaceof A and B if and only ifVp € P, :
() p=10c op#0,
(b) op =0 pe 0,
(©) sp=10cpe #0.
2. N is aclient-server compositioaf A, ¢ and B if ¢ is an interface.
3. The function« with %(A, ¢, B) = N is called thecomposition operatcand N is denoted b\ =, B.

Clearly A x4 B is a labeled P/T-net. By definitianis aplaceinterface which means that ortigansitionsin

A and B are externally connected. The requirementgaomply that there is no possibility to “pass-back”
tokens to the same net that produced them. Since there are no arcs from transitipths places inP4 and
not from transitions iff’4 to places inPg the connections onllymit the behavior of thel-part respectively
the B-partin A x4 B. Before we continue we make the following assumption.

Assumption In the remainder of this paper we assume that there are no name clashes, i.e., all C-nets and
interfaces use different identifiers for places and transitions.

12

Definition 22 (Union of Interfaces). Let ¢ and¢ be two interfaces witlP, N P, =) and Fy N F, = 0,
then theunion of the interfacesienotedp U ¢, is defined by P, U Py, Fiy U F,).

The union of an interface is again an interface. Without proof we state the following lemma.

Lemma 2 (Properties of the client-server composition)Let A, B andC be labeled P/T-nets with inter-
facesy betweemd and B, ¢ betweemd andC, and betweenB andC.

2. (Axgy B)U (Bx*y C) = Axy (Bxy C) = (Axg B) %y C, i.e., the operator is associative.

A xgu,y (BUC) s called thehorizontal uniorand A x4 (B 4, C) is called thevertical union
Note that in generall x, B # B x, A, i.e., the operator is not symmetric.

Lemma 3 (Composition of C-nets is a C-net)Let A and B be C-nets and an interface ofA and B and
let (P4 U Pg) NP, ={ip,op}. ThenA x4 B is a C-net.

Proof. We verify requirement (1) and (2) stated in Definition 14.

1. By second requirement of Definition 21 it follows that all place®jhave at least one input and output
arc in A x4 B to transitions inA and B, hence we only need to consider the input and output arcs of
the places in°4 U Pg. SinceA and B are C-nets the only places that do not have both an input and an
output arc in respectivelyl and B, are the placess ando4 andig andog. Composing4d and B does
not remove any arcs id or B, therefore ind x4 B alsois, 04,1 andop are the only possible source
and sink places.

By Definition 21ip andog are also places of the interface and thereforé i, B they both have input
and output arcs. Only, ando4 remain as the source and sink place.

2. It is sufficient to show that for any nodein A x4 B there is a directed path frouy to andx to
04. Whenz is a node of4, then this is true sincd is a C-net. There is a directed path framto i
becausé g is output place of some transition ih and there is a directed path framg to o4 because
op is input place of some transition iA. Therefore, when: is a node ofB, it is true becausés is a
C-net. Finally we have to show that all placesHp are on a directed path froin to o4. This follows
from the the fact that all input and output transitiongaf P, have this property. a

Next we will consider unions of client-server compositions. We will extend the client-server composition
in the “horizontal” and “vertical” direction. The combination of both unions is a handle to build trees of
C-nets.

Lemma 4 (Horizontal union of client-server compositions is a C-net)Suppose thatl x, B and A x,, C
are client-server compositions of the C-neitsB and C with the interfaces and« and let(P4 U Pg) N
P, = {ip,op} and(Ps U Pc) N Py = {ic,oc}, thenA x4 (B U C) is a C-net called théorizontal
union

Proof. We have'A*ipBUA*d,C: (PAUPBUP0UP¢UP¢,TAUTBUT0,FAUFB UF(;'UFLPU
Fy,l4 Ul U{c). By the assumption that there are no hame clashes it follows that this labeled P/T-net is
well defined. We now prove that () (B U C) is a C-net.

1. Ax, Bis a C-net with source pladgg and sink place 4 andA *,, C'is also a C-net with source place
i4 and sink place 4. Since the union ofl x, B and A x,, C does not remove any arcs and coincides
on all nodes of4 includingi 4 ando 4 it follows that the places,, 04 are the unique source and sink
place of A *(,uy) (BUC).

2. To prove thatd () (BUC) is strongly connected, note that each note idj3 or C and therefore
in Ax, BorA=xy C.Sinced x, B andA x, C are C-nets and coincide on all nodes4rit follows
directly that for any node there is a directed path froin to z andx to o 4. O

13

We will also show that the vertical union is a C-net.

Lemma 5 (Vertical union of client-server compositions is a C-net)Suppose thatl x, B and B x, C are
client-server compositions of the C-netsB andC and the interfaces and¢ and let(P4 U Pg) N P, =
{ip,op}and(Pp U Pc) N Py = {ic,oc}, thenAx, BU B x, C is a C-net called theertical union

Proof. A, BU B x4 C is a well defined labeled P/T-net. We now prove that, BU B *, C is a C-net.

1. SinceA x, B andB x4 C intersect on the nodes &f it follows thati 4, ando4 are the only two places
with eiy =040 = 0.

2. To prove thatd «, (B x4 C) is strongly connected, we have to show that for any nodiere is a
directed path fromi 4 to = and there is a directed path frarto o 4. For nodes in4 x,, B this follows
sinceA x, B is a C-net. For a node i %, C this is also easy to see: Sinékx, C is a C-net there
are directed paths frory to « and fromz to og. SinceA x, B is a C-net there are also directed paths
fromi toig andopg to 0 4. Combining the results yields that there are directed paths frotm 2 and
rt0o04. O

We do not only want to consider horizontal and vertical unions of C-nets, but complete trees of C-nets. A
C-net treecan be used to describe a complete system of components.

Definition 23 (C-net tree). Let C be a set of C-nets and be a set of interfaces. If the relatioR =
{(A,B) € C x C|3¢ € T N A%, Bis a client-server composition withi 3, op} € P4} has the structure
of atree, ther(C,Z) is called aC-net tree

By the lemma’s 3, 4 and 5 it follows that a C-net tree and all of its sub-trees are also C-nets. Figure 1 is an
example of a C-net tree. The set of C-nétsonsists of the C-netd, B, C, D, E, F, G, H, andl whereA

is the root C-net. The set of interfaces between the C:hédggiven by the arc§(A, B), (4, E), (4, F),
(B,C),(B,D),(F,G),(F,H),(F,I)}. There are two sub-trees in Figure 1: one consisting of the C-nets

B, C andD whereB is the root C-net and one consisting of the C-nféts7, H and/ where[" is the root

C-net. Clearly, due to the lemma’s, the sub-trees and the complete tree are C-nets as well, symbolized by
Y, Z and X respectively.

In this section we provided construction rules to build trees of C-nets. In the next section we will consider
the behavior of these trees.

5 Construction consistency for C-nets

In this section we will provide compositionality results of the client-server compositions we introduced
in the previous section. The compositionality results address the behavior of the composite C-net. It is
important in software development that the behavior of a composition of a number of C-nets incorporates
the behavior of the specifying root C-net. If that is the case, the system fulfils its requirements. We will
formalize this quality requirement of a system by introducing the notiarooétruction consistency

Definition 24 (Construction consistency)Let (C,Z) be a C-net tree. The tree is callednstruction con-
sistentif and only if for each sub-tree with corresponding C-étand root C-netd: A ~;, X, where all
transitions inX except those in the root C-ndtare relabeled tar.

In particular this definition is applicable to a single client-server composition. For example the C-net com-
posed of the two C-nets in Figure 2 is construction consistent@stiet 1in the same figure: the two C-nets
are glued together according to the rules of a client-server composiioet 2does not limitC-net 1in
its behavior, and therefore the composite net has the same behaGaratdlif we relabel all transition in
C-net 2to ther-label.
Now we will prove two cases of construction consistency: the clientthbas the same behavior as
the netsA x(,uy) 7(B U C) and A *, 7(B x4 C) under the assumption that x, 7(B) and A x,, 7(C)
behave externally the same.dsind thatB +,, 7(C') behaves a® in terms of branching bisimulation. These
compositionality results are key in constructing C-net trees. However they are not sufficient. Consider for

14

instance Figure 6. This figure depicts a horizontal union of two client-server compositionsB is a
composition of the C-netgl and B with interface¢ and A =, C' is a composition of the C-netd and

C with interfacew. Both compositions are sound C-nets (Remark 1) given an initial marking of a single
token in the source place. Moreovér~;, A x4 7(B) andA ~; A xy, 7(C). However the horizontal union
Ax4uy) (BUC) initially marked with a single token in the source place is not sound. This case is depicted
in the figure. Componemn® is limiting the behavior ofA: it forces ther-labeled transition in the upper part

Fig. 6. Two sound client-server compositions and an unsound union.

of net A to be executed before thelabeled transition in the lower part. When we consider the behavior of

A x4 B this is not “noted” since the labels can not be distinguished from each other. Also compariént
limiting the behavior ofd and this is not also not “noted” for the same reason. However in the union of both
client-server compositions the limitations result in a dead-lock of the process. Figure 6 is a motivation for
not allowingr-labeled transitions to be attached to the interface. If we replace in the example of Figure 6 the
7-labels by transitions with similar labels we find another erroneous example. In that case our conclusion is
that transitions with the same label may not be attached differently to the interfaces.

After the compositionality theorems we will in addition show that the empty completion property can
be transferred over branching bisimilar nets. This result enables us to construct systems with the empty
completion option provided the root C-net has this option and the system is construction consistent. In
the proofs of Theorem 1 and Theorem 2 we use that the related stefiesg; of the related procesd
and A x, B have theprojection propertyi.e.,sy|Ps = s4. Lemma 6 shows that a projection branching
bisimulation actually exists for compositions of C-nets where the transitions labels are unique. Note that in
a client-server composition of and B there are no arcs ifA x, B)\A to places inP4. Therefore, the
connections betweea to B can only limit the behavior of thel-part in A x, B and not extend it. Hence:

If s € [Ax*, B,[i%]) and(A, s4)R(A %, B, s), thens, € [4, [i%]).

Lemma 6 (Projection branching bisimulation). Let A x, B be a client-server composition of the C-nets
A and B and their interfacep and let(P4 U Pg) N P, = {ip,op}. If

1.Vt € Ta: La(t) # 7, l1.e., all transitions inA have a visible label,
2. Vty,to € Ty :if La(t1) = La(t2), thent; = to, i.e., all labels are unique, and
3. A~y Ax, 7(B),

then for all branching bisimulations for C-ne®8, for all ¥ € IN and for all s € [A x, B, [i%]) with
(A,54)R(A x4 T(B),s) we have:s|Py = s, i.e., the states restricted to the ne# is similar to the
internal states 4 of A.

15

Proof. We denoteN = A %, 7(B). Let R be an arbitrary branching bisimulation for C-nets andklée

an arbitrary number ifiN. We need to prove that all related states pugectionrelated. Since the initial
states ofA and IV are equal (implied by Definition 19 and the first two requirements of this lemma), it
follows that the projection property holds initially. Now suppose that for an arbitraryN, [i%]) we have

(A, s4)R(N, sn) with sy |Pa = s4. Then, since the label dfis unique (the first two requirements of this
lemma), for allt € T4: If (A,s4) [t) (A4,5,), then(N,sn) [(n(t)) (N, s’y) with (4, s’y)R(N, s'y). By

the structure of nedv it follows thats’'| P4 = /4. Sinces was an arbitrary reachable state, it follows that
the projection property holds for any reachable state. O

In the next two theorems we require that the transition labels are unique and not egsairtivar to the first
two requirement of Lemma 6. Lemma 6 then implies the existencepafjactionbranching bisimulation
for C-nets. However if we would drop these requirements on uniqueness and the abserebaléd
transitions, but we would have a relati@that is a projection branching bisimulation for C-nets, then we
would obtain the same results.

A A
A=U A=W ;5 A= N
L QA V
U A A W N A
B Cc B C

Fig. 7. The essence of Theorem 1.

Theorem 1 (Construction consistency of horizontal unions).
Let A x, B and A x, C be client-server compositions of the C-ndtsB andC and their interfacesg and
1 and Iet(PA U PB) N PL,D = {iB, OB} and(PA U Pc) NPy = {ic,Oc}. If

1.Vt € Ta:La(t) # 7, l1.e., all transitions inA have a visible label,
2. Vty,te € Ty :if La(t1) = La(t2), thent; = to, i.e., all labels are unique,
3. Ay, Ax,7(B)and A o~y Ay, 7(C),

thenA ~, A x(,uy) T(BUC).

Proof. We denotd/ = A x, 7(B), W = A xy 7(C), andN = A x,uy) T(BUC).

The states of the netd, U, W, and N and the interfaces and are bags. When we refer to a state
Sz, 8h, s, then alwayss,, s/, si € B(P,) where one of the characterss o, v, U, W, or N is substituted

for z. Since the interfaceg and1) also contain the source and sink places of the Beend C, we will
consider the states of the nesand C without their source and sink places. When we refer to a state

Sz, Sk, s, then we mean,, s/, s/ € B(P,\{i., 0. }) where a characteB or C is substituted for.

In this proof we will use the relations between the behaviord ehdU and A andW to prove a relation
between the behaviors df and N.

A ~, U andA ~;, W imply that there are branching bisimulatioRs andR, that satisfy all properties of
Definition 19 such thatk € IN: (A4, [i%]) Ry (U, [i%]) and(4, [i%]) Ra (W, [i%]).

By the construction of/ such thatd C U, the requirement on the uniqueness of the labeld,iand the
fact that all related states are reachable from the initial state Lemma 6 implies that for related states

16

andsy the equalitysy | P4 = s holds. Moreover it implies that if a transitiann A fires, then the same
transition inU fires. Therefore if two statesy andsy are related, we may split uf; in disjoint partss 4,

s, andsg, namelysy = s4 + s, + sp. Since the same holds farandl, we can also split up a statg,

in disjoint partss 4, s, andsc, namelysy = s4 + sy + s¢. By Lemma 4 it follows thatV is a C-net, and
by construction we have that C N, W C N andU NW = A. The latter implies that we can also split up
a statesy in disjoint partss 4, s,, sg, sy, s, hamelysy = s4 + s, + sp + sy + sc-

Based orR1, R4, and the property to split the states as explained before, we define the relati®nship

(A, 54)R(N,sn) <
35,,5B,8¢,5C 1 SN = S84 + S, + 8B+ 5y +Sc A
(A, 80)R1(U,54 + 54+ 5B) AN(A,54)Ra(W, 54 + 59 + 5¢)

We will first show thatR is a branching bisimulation that satisfies the requirements of Definition 18.
Consider markings4 andsy suchthat A, s4) R (N, sn).

1. Assume that € T4 and(A4, s4) [£a(t)) (4, s’,). We have to prove that there exists markirgsand
s%; such that

(N, SN) = (N, 81\/”) [EN(t» (N,SN,)A

(A, 84)R(N,sy") A (A, 8",)R(N, sn').
Recall labels of transitions are unique, therefore we deal with the same transitiotl and N.
The firing oft € T4 affects only places itP4, P, and Py and not the places i®z\{ig,0p} and
Pc\{ic,oc}. This implies that the states in & andC are unchanged whenfires (57, = s’z and
st = sp). Sincet € T4 and all transition labels of transitions i are visible we have 4(t) =
Ly(t) = bw(t) = €n(t) # 7. Moreover the third requirement of this theorem implies thateps are
only taken inB andC (s4 = s74). From (4, s4)R(N,sy) and(4,s4) [€a(t)) (4,s’,) and thatR

impliesR, it follows that there are/,, s'4, s/, ands’z such that

(U,54+ 54+ sB) =
(U,sa + sy, +sp) lu(t) (U, sy + s, + s5)

and

(A, 54)R1(U, 54 + 53 + BN
(A, s2)R1(U, sy + s, + s).

Analogously we find exactly the same expressionifomwhereB is replaced byC' andy by . Since

the interfaces are disjoint, thesteps inB andC do not influence each other. Therefore we may execute
them in arbitrary order as long as the order&iandC are not mixed up. Moreover for the same reason
the effects of the firing of can be considered separately for each interface. Therefore we may combine
these firing sequences:

(N,s4+ 5,4+ s+ Sp +5¢) =
(N, sa+ s, + 55+ sy +86) [In(t) (N, sy + s, + 55 + sy + 5¢).

According to the definition oR we have:

(A, 54)R(N, 54 + 8, + 85 + 53, + 5C)A
(A,8}4)R(N, 8y + 5, + s + 54 + 5¢).

This concludes the proof of this part.

17

2. Assume now that € Ty and(N, 54 + sy + sp + sy + sc) [In (1)) (N, s}y + si,+ s + 53 + s¢).
We can distinguish three different caseg T4, t € T, ort € Te. In the first caséy (t) = Ly (t) =
Ly (t) # 7 and in the last two casefg, (t) = 7. For each of these cases we need to prove that there
exists markings’, ands’; such that

(A,SA) - (A,SAU) [KA(t» (A,SA/)/\
(N,sN)R(N,s4") AN (N, s\)R(A, s4").

(a) Suppose € T4. Thensg = sz andsc = s¢.. By the structure of the nets it follows that the same
step can be made it andW. Therefore we have

(U,sa+ s, +5) [lu(t) (U,s4 + s, + s5)A
(W, sa+ sy + sc) [bw (1)) (W, sy + sy + 50).

By the properties oR; andR it follows that

(A, s})R1(U, sy + s, + sB)A
(A, S Ra(W, 5y + 5 + 5.

Hence by the definition oR this results in(A, s’)R(N, s’y + si, + sp + sy, + sc). We do not
need to consider-steps here because the step§iandI¥” are projections of the step iN.

(b) Suppose € Ts. Thenly (t) = 7 and we have 4 = sy sincer-transitions inB do not affect the
state of4, ands,, = s;, andsc = s(, since both the net8 andC and their interfaces are disjoint.
By the properties oR; and’R, we have

(U,sa+ s, +5) [lu(t)) (U,sa + s, + s5)A
(A, 54)R1(U, 54 + s, + s5)A
(A, 54)R2(W, 54 + sy + sc).

Hence,(A, s4)R(N,s4 + s, + s + 54 + 5C).
(c) Fort € T¢ a similar argument as fare T holds whereB is replaced by” andy by .

We now have proved th& is a branching bisimulation (Definition 18). In addition we have to provef&hat

is a branching bisimulation for C-nets which imposes additional constraints on the initial and final states as
formulated in Definition 19. Note that since we required that all transitions labejs aré follows that the

initial and final states areniquelyrelated;r steps are not possible in this case. In the following existence
and uniqueness proof we use similar arguments for the initial and final state. Therefore, for convenience,
instead of writing down the same proof twice we using the charactédich is a substitute for subsequently

7 ando.

1. We first prove existence.

SinceR, andR, are branching bisimulations for C-nets we hattec IN :
(A, [2K]) R (U, [25]) A (A, KD R (W, [24)).

By the definition ofR, this implies that’k € IN:

(A DRV, [25]),

2. Second we prove uniqueness, i.e., initial and final states are exclusively related to one ghatht:
Supposé A, [2X])R(N,y). Theny = [25]+s,+s5+sy+sc, butalso(A, [25]))R1 (U, [2K]+s,+sB)
and(A, [25]))R2(W, [25] + sy + s¢). Using the uniqueness propertiesif andR, this implies that
s, = sp = sy = s¢ = 0. Hencey = [24].

We may now conclude that ~;, A *(,uy) T7(BUC). O
It is easy to see that Theorem 1 can be extended to a horizontal unions that cogples IN) C-nets.

Without proof we generalize the horizontal union in the following corollary.

18

Corollary 1 (Construction consistency of horizontal unions).
Letfori =1,...,n Ax,, B; be client-server compositions of the C-ndtaind B; and their interfaces;
and let(P4 U Pg,) N P, = {ip,,0B,}. If

1.Vt € Ta:La(t) # 7, l1.e., all transitions inA have a visible label,
2. Vity,ta € Ty :if La(t1) = La(t2), thenty, = to, i.e., all labels are unique, and
3. Ay Ax,7(B)fori=1,...,n,

thenA ~, A *(p1U...Upn) (Bl U...UBy,).

A B A
A= U B=,W ;5 A= N
v
u A B w N A
B Cc B
C

Fig. 8. The essence of Theorem 2.

Now we have derived a result for the horizontal extension of C-net trees. In the following theorem we
will derive a result to extend a C-net tree vertically. With the combination of these results we are able to
define the construction rules in the next section that enable us to build a complete tree given a number of
client-server compositions.

Theorem 2 (Construction consistency of vertical unions).
LetAx, B and B x, C be client-server compositions of the C-ndtsB andC and their interfacesg and
v and let(P4 U Pg) N P, = {iB7 OB} and(Pg U Po) N Py, = {ic, Oc}. If

1.Vt € Ta: La(t) # 7,1.e., all transitions inA have a visible label,

2.Vt e Tp : Lp(t) # 7, 1.e., all transitions inB have a visible label,

3. Vty,ta € Ty :if La(th) = La(t2), thent; = to, i.e., all labels are unique,
4. Vit € T :if Lp(t1) = £ (ta), thent; = ¢, i.e., all labels are unique,
5. A~y Ax, 7(B)andB ~, By, 7(C),

thenA ~;, Ax, 7(B xy C).

Proof. This proof has similarities with the proof of Theorem 1, however to make it self-contained we repeat
them. We use almost the same notations as in the proof of Theorem 1, except for the following differences:
NOWW = B xy, 7(C) andN = Ax,, 7(B xy C).

In this proof we will use the branching bisimulations betweeandUU and B andW to prove the branching
bisimulation ofA and N.

A ~, U andB ~;, W imply that there are branching bisimulatioRs andR that satisfy all properties of
Definition 19 such thatk € IN: (4, [i%]) R1 (U, [i%]) and(B, [i%]) Ra (W, [i%]).

For the same reasons mentioned in the proof of Theorem 1 the conditions of Lemma 6 are satisfied. There-
fore, again, if two states, andsy are related, we may split up a state in disjoint partss 4, s, andsp.

19

Since the same holds fd8 and W, we can also split up a statgy in disjoint partssg, s, andsc. By
Lemma 4 it follows thatV is a C-net, and by construction we have thaE N, W C N andU NnW = B.
The latter implies that we can also split up a statein disjoint partss 4, s, sg, Sy, sc-

Based o1, R2, we define the relationshiR:

(A,SA)R(N, SN) =
3s,,5B,5¢4,5C 1 SN =854+ S, +Sp+ Sy +5¢ A\
(A, 54)R1(U, 54 + 5o+ sB) A (B, sg)Ra(W, sg + sy + s¢)-

We will first show thatR is a branching bisimilarity by verifying the two requirements of Definition 18 and
second we will show thaR satisfies the additional requirements for C-nets.
Consider two markingss andsy = s4 + s, + s + sy + s¢ suchtha({A,s4) R (N, sn).

1. Assume that € T4 and(A4, s4) [£a(t)) (4, s’,). We have to prove that there exists markisgsand
s%; such that

(N, SN) — (N, SN//) [(N(t» (N,SN/>/\
(A, 84)R(N,sy") A (A, 8",)R(N, sy’).

The firing oft € T4 only affects places inP4 and P,. This implies that the firing of does not

affect the state i3 (sp = sp), C (sc = s¢) andy (sy = s,). Sincet € T4 and we assumed
that all transition labels of transitions iA in U are visible we havé ,(¢) = ¢y (t) # . Moreover

in U 7-steps are only taken iB. From (A, s4)R (N, sx) and sinceR implies R4, it follows that

(A, 52)R1(U,54 + s, + sp). From(A,s4) [£a(t)) (A, s,) andR; it follows that

(Uysa+ s, +sp) = (Uysa+s,+sg) [lut) (U, sy + s, + s5)A

(A, 54)R1(U,54 + 55, + 85) A (A, 84)R1(U, 5%y + 50, + s5). (A)

This implies that there is a firing sequence of transitiofns. . ., ¢z, in I such that
(Ussa+ sy +58) [lu(ts,)) (U,sa+se +sp)[lu(ts,))

(Uv SA T Sp, 1 T+ Sanl) MU(tBn» (Ua 54+ 5:2 + 83/3) (B)

See Figure 9(a). By the requirements of the branching bisimulation definition for C-nets it follows that,
if sg =0, thensp + sy + s¢ = 0. In this case it follows directly that, Rs’, + s:a +sp+ sy + sc.
Suppose thaig # 0. By the definition ofR it follows that the statesg in B andsg + sy + s¢c in W

are related?

Using the definition ofR; it follows that there exists a row of markingsg + sy + sc, ..., sp,_, +

Syn_y +8C,_y, S + 8, + s¢; as indicated in Figure 9(b). Since W 7-steps only occur i’ and

4 For the readers that are familiar with the compositionality theorem in [9]: By the branching bisimulation relation
for C-nets of Definition 18 it follows that also in case of multiple entraatiestates are related. Therefore we do
not need thesafenes@ndactivation safenessequirements we used in [9] to ensure single entrance, which makes
analysis less complicated. However the class of nets which satisfy the stronger branching bisimilarity requirements
of Definition 18 is smaller.

20

(@)

B W
S 8 S Sy S
() Tl H
. IR SEEES
N
/B(tBZ) N Tl \L’@\ﬁm)
N ——
N ~—
N >~
N >~
Sg: N St Syt S
\\\ \\\
\\ \\
\\ N
\\ \\\
Sen-1 \\\ \ Ssl+s¢/1 +Se
NN AN
NN ~
4(tg,) \\\\\ \\\ lts,)
\ \\ \\
’” \ \\ AN
SE,\ \\\\ \\\\ SBZ+Sl//2+ %2
\\\ \\ \\\\
\ A ~
\\ \\\ \\\
\ \\
AN \\ SBn-1+S¢n—1+SCn—1

N\
\\ \
N N\
N N\
\ \
N N\
\ N\

\
\\ SBn—l-l-sz,bn—l +SCn—1
\ lmm)

12

N
\
N\
N

N ’” ’ ’”
‘g s, s

(b)

Fig. 9. Vertical union of branching bisimilar components.

21

firings in B do not affect places id’ and vice versa firings in’ do not affect places if3, we have:

(VV, Sp + Sy + Sc)
= (W,sp + SZZ/ + S/C’H) [KW(tBl)> (VV’ $B; T 8y, t 501)

" "

= Wysp, + sy, +5¢,) lw(tB,)) (W, sB, + 54, + 50,)

= (W,sp, , +s4,_, +5¢,) lw(ts,)) (W,sh + s, + sE)A

n—1

s¢ =soforallie{1,...,n—1} : s¢ =sc,,,, 8¢, = SGA

(B,sB)Ra(W,sp + 8, + 5¢)A
foralli e {1,...,n—1}: (B,sp,)Ra(W, sB, + Sy, + s,)A
forallie {1,...,n—1} : (B,sp,)Ra(W,sB, + sy, + 5¢,)A
(B, sB)R2(W, slg + sy, + 5¢)- ©
Composition of A), (B) and) is possible since all states reachedBnare related states iRs.
Composition yields:
(N,s4+ 5,4+ 8+ 8y +5¢) =
(N,sa+sp+sp+s) +s¢)n(ts,))
(N,sa4+ 8, + 5B, + 5S¢y +50,) =
(N,54 + 55, + 5B, + 57, + 5,) [In(tB,))
(N,84 4 S, + 5B, + 5y, + 5¢5,)
L=
(N,sa+58p,_, +5B,_, +50,_, +sC,_ n(ts,))
(N, 54+ 55+ 8% + 5+ 8E)[In (1))
(N, 8y + 55, + 8% + 53 + 8GN
recall, also here:

s¢ = scy,forallie {1,...,n—1} : s& = sc,,. ¢, , = S¢-
INnN¢n(tp,) =7 (i=1,...,n)and also all firings irC' arer-steps. Hence

(N,sa+ 5, +sp+ sy +sc) =
(N,SA—FSZ—I—S% —I—SZ, +)N (t))
(N,S'A—l—s;,—i—s’]; —l—S;L + st).

We now summarize the key-relations we foundA) and C):
(a) (Av SA)RI(Ua SA+ S:é + S’é)/\
(b) (A7 S{A)RI(U7 824 + Sfp + Slé)/\
(©) (B, sB)R2(W, s + 57, + 5¢).

By the definition ofR and by combining:

— (a) and (c) yield§ A, s4)R(N, sa + s + s + sy, + s¢) and

— (b) and (c) yieldg A, s’)R(N, sy + si, + s + sy, + 8¢).
This proves one side of the branching bisimulation.
. Let now be given thatA, sA)R(N, sa + s, + s + sy + sc). By the definition ofR it follows that
(A, 54)R1(N,s5a+5,+sp)and(B, sg)Ra(N, sp+ sy +sc). We now take a step in néf. Assume
that(N,s4 + s, + s + sy + sc) [In (1)) (N, sy + s, + s + 57, + s). We can distinguish three

22

different casest € Ty, t € Ty, ort € T¢. For each of these cases we need to prove that there exists
markingss’, ands’j such that

(A,84) = (A,SAN) [a(t)) (A, SA/)A
(N,sN)R(A,s4") N (N, s\)R(A, s4").

(a) Suppose € T4. It follows thatsg = s, sy = s;, andsc = si. By the structure of the nets the
same step can be madelinand therefore we hav@/, s + s, + sg) [lu(t)) (U, sy + s, + sB).
Since nor-steps can be made it we havel; (t) # 7 and hencéA, s’y)R1(N, s’y + si, + sB).
Using the relatiorR, this adds td A, s’y)R(N, sy + s, + sp + sy + 50).

(b) Suppose € Tg. Thensy = sy andsc = si. By the structure of the nets it follows that the
transition can be made as wellihand inW/. With respect td/ ¢ is ar-step and with respect i¢
tisnotar-step. Hencéy (t) = 7 andéw (t) # 7 and sAU, sa+s,+sp)[lu (1)) (U, sa+s,+5p)
and(W, sp+sy+sc) [lw (t)) (W, s+, +sc). FromR; and the fact that ne-steps are possible
in A this yields(A, s 4)R1(U, sa+s/,+sz) and fromR, this yields(B, s’z)Ra (W, sp +57,+5¢).
Adding these two relations givésl, s s)R(N, sa + si, + s + 57, + s¢).

(c) Finally suppose € Tc. Thensa = sy, s, = s, andsp = sz. By the structure of the nets
it follows (projection) that W, sp + sy + sc) [lw (t)) (W, sp + sy, + s¢). By Ro and the fact
that-steps inl¥ occur inC we have that B, sg)Ro(W, sp + sgz, + s). UsingR4 this adds to
(A, 54)R(N,sa + s, + 5B+ 8, + 5¢)-

We now have proved theR is a branching bisimulation. In addition we have to prove tRasatisfies

the additional requirements for C-nets which imposes additional constraints on the initial and final states.
We will use similar arguments for the initial and final state as we used in the proof of Theorem 1. For
convenience, instead of writing down the same proof twice we using the charagtéch is a substitute

for subsequently ando.

1. We first prove existence. Singe, andR, are branching bisimulations for C-nets we have
Vk € IN: (A, [24]) R1(U, [2%]) and
Vi€ N : (B, [2h]) Ra(W, [2h]).
Hence forl = 0, i.e., the empty net:
Vk € IN: (4, [25]) R(N, [24)).
2. Second we prove unigueness, i.e., initial and final states are exclusively related to one another. We have
to prove:
Vk € IN:Vy: (A [ZA])R(N,y) =y = [}4].
By definition we have
Vk € IN: (A, [2K]))R1(N, 54 + s, + sg). Thisimpliess, + sp = 0 ands4 = [2%]. Hencey = [24].
We only have to verify thatB, 0)R2(W, 0). This follows from takingk = 0 in the definition ofR,.
Adding R, andR, gives the desired result.

HenceA ~;, A, 7(B %y C). 0

The theorem for horizontal unions can be extended to an arbitrary number of nets (Corollary 1). In the verti-
cal union the ne€’ may be a result of unions as well. As a consequence multiple application of the branching
bisimilarity theorems is possible and construction consistency for a C-net tree as long as each node and all of
its child-nodes (and grand-child-nodes) is a client-server construction satisfying the conditions of one of the
branching bisimilarity theorems. For an example consider Figure 10f Axy 7(B), A ~ Ay 7(C),

B~y B *, T(D), andB ~ B xy T(E), thenB ~, B * U T(D U E) andA ~, A * pUnp T(B U C), and
hence A ~, Ax4uy T((B*,09 (DU E))UC). The construction consistency theorems can be extended to
more general theorems that allow in the client C-nets the use of transitions with non-uniceets. In

fact we claim that we may drop the first two requirements of Theorem 1 and Corollary 1 and the first four
requirements of Theorem 2. Instead to prove construction consistency, for Theorem 1, we should impose
the following weaker requirements:

23

B C
D E

Fig. 10.A tree of coupled C-nets with the same observable behavior as the net

LVteTy: (la(t)=7)= ((etUte)N (P, UP,) = 0),ie.r-labeled transitions are not connected
to the interface,

2. Vi1, to € Ty : (KA(tl) = EA(tQ)) = ((P¢ U Pq/)) n ety = (P¢ U Pw) N ety A (qu @] Pq/)) Ntie =
(Py U Py)Ntye), i.e., transition with the same label are similarly connected to the interface.

For Corollary 1 and Theorem 2 we could also adjust the requirements in a similar way.

Many properties are transferred from one system to another if they are branching bisimilar [43]. Here we
show that the empty completion property transfers between branching bisimilar nets.

Lemma 7 (Transfer of empty completion property for branching bisimilar nets). Let A and B be C-
nets. Suppose that all transitions thand B have a unique label except for thdabel and thatd ~; B.

Vk € IN: (Vs:s € [A[i}]) = [0h] € [A,8)) = (Vs : s € [B,[i%]) = [0%] € [B,s)), i.e., if A satisfies
the empty completion property, théhalso satisfies the empty completion property.

Proof. Pick an arbitrary: € IN and suppose we have a markisng € [B, [i%]). There is a firing sequence

op such that(B, [i%]) [o5)(B, sg). Since(A, [i%]) ~y (B, [i%]) there is a marking 4 € [A, [i%]) and,
since all transition labels are unique, there is a firing sequencsuch that(A, [i%]) [c4) (A4,s4) and
(A,s4) ~p (B, sg). If we remove allr-transitions from the firing sequences ando g, then we have

o4 = op. Clearly sinced satisfies thé:-empty completion property there is a firing sequesgesuch that
(A,s4) [04) (A, [04]). Using again the branching bisimilarity, there is also a firing sequefcsuch that

(B, sp) [o)s) (B, xp) with [o%] ~, x5. Since[o] is the end state, and end states are uniquely related, also
x should be the end state and:se= [0%]. HenceB also satisfies th&-empty completion property. Since

k was arbitrarily chosen we may conclude tliasatisfies the empty completion property. a

An important consequence of this lemma is the following: When a C-net tree has the same visible be-
havior as its root-net and the root-net has the empty completion option, then the complete tree the empty
completion option. Considering again Figure 10 this implies that, lifas the proper completion property,
thenA x40y 7((B *,u9 (D U E)) U C) also has the proper completion property. This is a desirable prop-
erty in software design. Intuitively it means that we can transfer the correctness of the specification to the
implementation as long as both have the same visible behavior.

6 A design pattern for C-net trees

In this section we will introduce one design pattern to create trees of C-nets as presented in Figure 1. In
future publication we hope to extend the number of design patterns. A C-net itself can be created in a
constructive manner [1] as well. In [8, 26] building-blocks are used to create nets with the theory of graph
grammars. Under certain assumptions these construction rules also apply to create C-nets. However the

24

creation of C-nets is not the subject of this paper. Once we have a number of C-nets, we are equipped with
the proper building blocks to create a tree of C-nets. To create a client-server composition we introduced the
operator “*”. This composition is not necessarily construction consistent. We can think of many examples
where an extension of one C-net with another would limit the behavior of the specification. To facilitate the
consistency requirement we try to find a pattern to extend a Ctveith another C-neB in a consistent
manner, i.e., the behavior of the composite Aiet, 7(B) is branching bisimilar to the behavior of the initial
C-netA in isolation. To limit the number of possibilities we assume that the extension, i.e3, iets the

proper completion property and that it is only connected with its source and sink places to the bése net
hence for the interface we haveP, = {ig, 0o }. Even under these assumptions it is not for granted that
the compositio «,, B is construction consistent with the initial nét In Figure 11 net4 is the base net

and netB is the extension ofd. In all three presented patterns bothand B have the proper completion
property in isolation. We consider the case in which there is initially one token in the source place.

In Figure 11(a) in addition the transitions that produce a token foBnahd consume a token from nBt

are on a path froni4 to o 4. However if the production t@& is skipped, then it is also not possible to fire

the transition that consumes frofh Moreover if the transition fires which producesiofollowed by the
transition which does not consume frdsn then a token is left in the sink places Bf Clearly the coupling

with B influences the behavior of.

In Figure 11(b) another problem occurs. The number of iterations in the first loop might not be equal to the
number of iterations in the second loop, causing to more tokens produdgthten consumed fronB, or

a dead-lock inA. Clearly also this coupling influences the behaviorof

Finally, in Figure 11(c), we consider an example in whitks acyclic in an attempt to prevent the errors in

the second example. However this example is not safe. Iniribe first transition produces three tokens:

one in the second place, one in the third place and one in the top place. At that moment the second and the
third transition are enabled. When the second transition fires once and the third transition fires twice we are
in the situation that there is still one token in the top place and there are two tokens in fourth sequential
place. In spite of the fact that the fourth place is marked with two tokens and an input place of the fourth
transition, this transition can only fire once since there is only one token in the top place. If this transition
fires, the last transition will be enabled with precisely one token in both of its input places. Hdraethe

proper completion option in isolation. When we consider the composite net we see that one token is put into
the source placeg of B. However the behavior ol is such that two tokens should be consumed fi®m
Clearly the transition attached tg; can only fire once and hence this results in a dead-lock. So we found
another example where the coupling4ofind B influences the behavior of.

All examples have in common that the number of production te not equal to the number of consump-

tions from B. This drawback is resolved in the following theorem.

Theorem 3 (Request-response pattern).et A+, B be a client-server composition of C-netsind B and
the interfacep and let(P4 U Pg) N P, = {ip, op}. Suppose thaB has the proper completion property
and suppose that there is a C-nétC A with Fo = F4 N ((Po x Te) U (Te x Pc)) and the proper
completion property. See Figure 12. If

1. all arcs fromA\C to C end ini¢c and all arcs fromC' to A\C start ino¢, and
2.Vt € start(C) :ip € te AVt € stop(C) : op € et,

thenA ~, A x, 7(B).

Proof. The proper completion property 6f implies that, separated from its environment, the sum of all
the firings of all the transitions in the seturt(C) equals the sum of all the firings of all the transitions in
the setstop(C).

Now we consider” in its environment. There are four types of connectiond {6’ and B:

1. the arcs from transitions iA\C to i¢,
2. the arcs from the transitions itart(C) toig,
3. the arcs fronv g to the transitions itop(C'), and

25

(b)

Fig. 11.Erroneous simple-structured patterns.

26

Fig. 12.Request-response pattern.

4. the arcs fromstop(C) to the transitions i\ C.

Type 1 and 4 imply that the behavior 6f, once a token has been placesdn can never be influenced by
tokens in the nefl\ C. Hence the only influences on the behaviordofan be raised bys.

Let us consideB. This net has the proper completion property in isolation, but also in its environment this
property holds since its only connections withare the type 2 and 3 connections.

Since all transitions istart(C') are connected tiy, this implies that the number of firings of all transitions

in 75 equals the number of tokens that comes acogssSince all transitions istop(C') are connected to

og, this implies that for any firing of a transition itop(C) there is a tokens available iy and that there

will be no tokens left inB.

This implies thatB at most postpones the behavior@but never limits this behavior. a

By means of this request-response pattern we are able to build construction consistent client-server compo-
sitions of C-nets without having to verify the branching bisimilarity. A direct consequence of this theorem
and Lemma 7 is that, il has the empty completion property, then alse, B has the empty completion
property. More general: If a root C-net of a C-net tree has the proper completion option and the tree is
constructed by repeatedly applying the pattern, then the C-net of the whole tree has the empty completion
option. This may be compared to thheritance-preserving transformation rulesconstructsub classes
of net presented in [4, 14].

The pattern presented in this section fits in an approach to process design which is applied occasionally.
In the first step a rough process is designed, then a more detailed specification follows and finally in the third
step, i.e., the implementation, various applications have to execute the transitions. Consider for example
Figure 13. It illustrates this approach with the decomposition of a transitibm the example depicted in
Figure 13 in the first step transitianis lifted out of the rough process. In the second step this transition is
decomposed in two sub-transitions:is used to start with the activities and the origindhbel is used to
mark the completion of the transition. The two transition are part of the client process. In the third step a
server process is designed that actually executes some of the activities that should be perfarnidaby
server process is attacheddcanda by using the design pattern. If necessary also transitions in the server
process can be decomposed in a similar way. If that happens, instead of the two layer of this example, we
will end up with a C-net tree.

7 Conclusion

The contribution of this paper is a more efficient approach towards designing construction consistent soft-
ware architectures. Whereas we were used to make constructions and execute exhaustive verifications of the
state space afterwards and if necessary correct the constructions, we now have “correctness by construc-
tion”. We demonstrated that we can build an entire tree of C-net by starting with a single component and

27

(1) transition - ~>E >

client process
transition decomposition

@

server process
deliver to transition

©)

Fig. 13.An approach to process design using the pattern.

step by step adding new components such that the complete system of components has the same visible
behavior as its specifying root component. We introduced an operator to compose C-nets and we presented
new compositionality results for this operator that at the same time prescribed the conditions for consistent
composition. Finally we introduced an easy way to satisfy the conditions of the compositionality theorems
by presenting a design pattern. Using the pattern to build C-nets trees guaranteed consistency.

A second result is that we showed that our construction rules conserve the empty completion property,
i.e., be able to finish a transaction and to finish without leaving any tokens. In the context of software de-
velopment this yields that if specification has this properly, then also the complete system has this property.

We conclude by pointing out our future investigations. In this paper we presented “correctness by con-
struction” as an alternative for a posteriori verification (i.e., “model checking”). In the future we will con-
tinue investigating this new course by constructing more sophisticated patterns to couple C-nets.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. &na and G. Balbo, editor8pplication and Theory
of Petri Nets 1997volume 1248 ol ecture Notes in Computer Scienpages 407-426. Springer-Verlag, Berlin,
1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Managem&ht Journal of Circuits, Systems
and Computers8(1):21-66, 1998.

3. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-based Techniques. In
Business Process Management: Models, Techniques, and Empirical Stualiese 1806 ofLecture Notes in
Computer Sciencages 161-183. Springer-Verlag, Berlin, 2000.

4. W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-based Approach. larRasnd G. Balbo,
editors,Application and Theory of Petri Nets 199mlume 1248 of ecture Notes in Computer Scienpages 62—

81. Springer-Verlag, Berlin, 1997.

5. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An approach to tackling problems related to change.
Theoretical Computer Scienc270(1-2):125-203, 2002.

6. W.M.P. van der Aalst, P. de Crom, R. Goverde, K.M. van Hee, W. Hofman, H. Reijers, and R.A. van der Toorn.
ExSpect 6.4: An Executable Specification Tool for Hierarchical Colored Petri Nets. In M. Nielsen and D. Simpson,
editors, Application and Theory of Petri Nets 200@lume 1825 of ecture Notes in Computer Scienpages 455—

464. Springer-Verlag, Berlin, 2000.

7. W.M.P. van der Aalst and K.M. van HeaNorkflow Management: Models, Methods, and Systelbd press,
Cambridge, MA, 2002.

8. W.M.P. van der Aalst, K.M. van Hee, and H.A. Reijers. Analysis of Discrete-time Stochastic PetriStististica
Neerlandica 54(2):237-255, 2000.

9. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Component-Based Software Architectures: A
Framework Based on Inheritance of Behavigtience of Computer ProgrammirgR(2-3):129-171, 2002.

10. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Erratum to Compositionality of Projection Inheri-
tance.Science of Computer Programmint(3):343—-344, 2002.

28

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

. C. Alexander, S. Ishikawa, and M. SilversteiA Pattern Language Oxford University Press, New York City,
1977.

P. America. Designing an Object-Oriented Programming Language with Behavioral Subtyping. In J.W. de Bakker,
W.P. de Roever, and G. Rozenberg, editéi@indation of Object-Oriented Language®lume 489 ofLecture
Notes in Computer Sciengeages 60—90. Springer-Verlag, Berlin, 1991.

L. Bass, P. Clements, and R. Kazm&aftware Architecture in Practic&eries in Software Engineering. Addison
Wesley, Reading, MA, USA, 1998.

T. BastenlIn Terms of Nets: System Design with Petri Nets and Process AlgehEthesis, Eindhoven University

of Technology, Eindhoven, The Netherlands, December 1998.

T. Basten and W.M.P. van der Aalst. Inheritance of Behavigwurnal of Logic and Algebraic Programming
47(2):47-145, 2001.

R. Bastide and P. Palanque et al. Petri-Net Based Behavioural Specification of CORBA Systépglidation

and Theory of Petri Nets 1999olume 1639 of_ecture Notes in Computer Scienpages 66—85. Springer-Verlag,
Berlin, 1999.

IEEE-SA Standards Board. IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems. Technical report, IEEE New York, October 2000. IEEE Std 1471-2000.

G. Booch, J. Rumbaugh, and I. Jacobsbhe Unified Modeling Language User Guidgddison Wesley, Reading,

MA, USA, 1998.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. $atern Oriented Software Architecture: A
system of Patternslohn Wiley and Sons, New York, 1996.

J. Desel and J. Esparzaree Choice Petri Netsyolume 40 ofCambridge Tracts in Theoretical Computer Science
Cambridge University Press, Cambridge, UK, 1995.

E.W. Dijkstra. The Structure of the ‘T.H.E. Multiprogramming SysteGommunications of the ACM8(8):453—

457, 1968.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns: Elements of Reusable Object-Oriented Soft-
ware Professional Computing Series. Addison Wesley, Reading, MA, USA, 1995.

D. Garlan, R.T. Monroe, and D. Wile. Acme: An Architecture Description Interchange LanguaBeodeedings

of CASCON'97pages 169-183, Toronto, Ontario, November 1997.

D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and G. Tortora, eAitlvemces

in Software Engineering and Knowledge Engineeripgges 1-39, Singapore, 1993. World Scientific Publishing
Company.

R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation Semaatiosal of the

ACM, 43(3):555-600, 1996.

G.Lei. Graph Grammars and Petri Nets with ReferencB&D thesis, University of Leiden, Leiden, Netherlands,
1990.

K.M. van Hee.Information System Engineering: a Formal Approa€ambridge University Press, 1994.

K.M. van Hee, R.A. van der Toorn, J. van der Woude, and P. Verkoulen. A Framework for Component Based
Software Architectures. In W.M.P. van der Aalst, J. Desel, and R. Kaschek, e@tftajare Architectures for
Business Process Management (SABPM'payes 1-20, Heidelberg, Germany, June 1999. Forschungsbericht Nr.
390, University of Karlsruhe, Institut AIFB, Karlsruhe, Germany.

H. Kilov and W. Harvey, editorsObject-Oriented Behavioral Specification®lume 371 ofThe Kluwer Interna-

tional Series in Engineering and Computer Scien€kiwer Academic Publishers, Boston, MA, USA, 1996.

H. Kilov, B. Rumpe, and |. Simmonds, editoBehavioral Specifications of Businesses and Systashane 523

of The Kluwer International Series in Engineering and Computer Scieikikever Academic Publishers, Boston,
MA, USA, 1999.

M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson. Attribute-Based Architecture Styles.
In Software Architecture, Proceedings of the First Working IFIP Conference on Software Architecture (WICSA1)
pages 225-243, San Antonio, TX, 1999.

P. Kruchten. The 4+1 View Model of ArchitecturlEEE Software12(6):42—-50, November 1995.

B. Liskov and J. Wing. A Behavioral Notion of SubtypindCM Transactions on Programming Languages and
Systemsl6(6):1811-1841, November 1994.

N. Medvidovic and D. Rosenblum. Domains of Concern in Software Architectures and Architecture Description
Languages . IProceedings of the USENIX Conference on Domain-Specific Langusagss 199-212, Santa
Barbara, October 1997.

N. Medvidovic and R.N. Taylor. A Framework for Classifying and Comparing Architecture Description Lan-
guages. InProceedings of the Sixth European Software Engineering Conference together with the Fifth ACM
SIGSOFT Symposium on the Foundations of Software Engineedggs 60—67, Zurich, Switzerland, 1997.

29

36

37.
38.

39.

40.

41.

42.

43.

44.
45.

R. Milner. A Calculus of Communicating Systems. volume 92 efture Notes in Computer Scien&pringer-
Verlag, Berlin, 1980.

T. Murata. Petri Nets: Properties, Analysis and Applicatidtreceedings of the IEEE7(4):541-580, April 1989.
D. Park. Concurrency and Automata on Infinite Sequence$Shéoretical Computer Science: 5th Gl-Conference
volume 104 ofLecture Notes in Computer Scienpages 167-183. Springer-Verlag, Berlin, 1981.

D. Parnas. On a “Buzzword”: Hierarchical Structure. Aroceedings IFIP Congress 7pages 336—339. North
Holland Publishing Company, 1974.

D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architect&¥€M SIG-SOFT17(4):40-52,
October 1992.

W. Reisig and G. Rozenberg, editorksectures on Petri Nets |: Basic Modelolume 1491 ofLecture Notes in
Computer Sciencépringer-Verlag, Berlin, 1998.

M. Shaw and D. GarlarSoftware Architecture: Perspectives on an Emerging Disciplfrentice-Hall, Inc., 1996.
C. Stirling. Model and temporal logics for processes. In F. Moller and G.M. Birtwistle, editogics for Concur-
rency - Structure versus Automata (8th Banff Higher Order Workshop, August 27 - September 3, 1995, Proceed-
ings), volume 1043 of_ecture Notes in Computer Scienpages 149-237. Springer-Verlag, Berlin, 1996.

C. SzyperskiComponent Software: Beyond Object-Oriented Programméraylison-Wesley, 1998.

J.A. Zachman. A Framework for Information Systems ArchitectliB®/ Systems JournaR6(3):276—292, 1987.

30

