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Abstract. Software architectures are shifting the focus from lines-of-code towards coarser-grained
“business-process-components” and their interconnecting structures. These components are not de-
signed and built from scratch, but composed from smaller components. The challenge in designing
these architectures is to preserve construction consistency, meaning that a complete system of com-
ponents has the same visible behavior as its specifying top-level component. We start with a single
component, which is the specification of the system, and we use construction rules to extend the com-
ponent architecture step by step with new components, while the construction consistency is preserved.
In addition we introduce one design pattern. The advantage of using the pattern is that we do not have
to verify construction consistency because it is implied by the pattern, i.e., it is introduced as an alterna-
tive for state space checking. Finally, we show that if a system is consistent and its specifying top-level
component has the option to complete transactions properly, then the complete system has this prop-
erty as well. The formalisms we use are Petri net theory and branching bisimilarity of transition systems.

Keywords:Software architectures; Component-based design; Correctness-by-construction; Design pat-
tern; Petri nets; Branching bisimulation

1 Introduction

In recent years there has been an increasing interest insoftware architectures, demonstrated by the large
number of publications and conferences on this subject and the various commercial activities that are un-
dertaken in this area. This interest can be explained from the development of information systems in the
past forty years and the complex status of today’s information systems.

In the development of information systems we can identify roughly the following four steps. The first
step, starting in the sixties, is that systems are developed as isolated applications dedicated to a single
specific purpose. Data is stored in files and the files are only accessed by stand-alone applications. In the
second step, starting in the seventies, data is separated from applications, and stored inData Base Man-
agement Systems. Shared data stored in databases couples applications. In the eighties, the focus shifts to
the end-user of a system. There is an interest foruser interfaces, visual programming languages and user
interface management systems emerge. In the nineties business processes and control flows are separated
from other aspects of information systems. This leads to the development ofWorkflow Management Systems
[7]. These systems are used to guide users according their business processes along the various transitions
they have to fulfill in the system. The result of this development is the separation of concerns and a modular
organization of information systems. Moreover these modules are managed by separated control flows.

Today’s information systems are often very complex mainly caused by the many technological pos-
sibilities to connect systems.Middleware productssuch asBizTalk, BEA Weblogic Integration, andTibco
andcomponent technology[44] such asCOM Components, CORBAandEnterprise Java Beansfacilitate
Enterprise Application Integration(EAI) by removing technical obstacles. Therefore information systems
with different business functionalities and possibility running on different platforms may be connected. For
instance a legacy system containing product data can be connected to a Customer Relationship Management
application and at the same time disclosed for the internet to facilitate on-line updates. Moreover a Workflow



Management System can be used to coordinate these systems. In fact there are often connections at vari-
ous levels, which increases the complexity even more: within applications between components, between
applications in a single organization, and across company borders. For business-to-business or business-to-
government integrationEDI andXML concepts are often used and for business-to-consumer integration the
internet plays a major role. Although technology is an enabler for an open systems environment it does not
answer all questions. We come across two key questions that remain unanswered: How do we structure a
complex network of interconnected systems such that it becomes manageable? And, how do we manage
transactions across interconnected systems?

Software architecturesare a mean to deal with the complexity of information systems and to reason
about various aspects of information systems at various levels of abstraction. In [13] a software architecture
is defined “as the structure, which comprises software components, the externally visible properties of those
components, and the relationships among them.” Software architectures havefunctionalandnon-functional
dimensions. The functional dimensions consists of thestructureand thebehaviorof an architecture. Non-
functional dimensions [13] are often captured by the so-calledquality attributesof an architecture. For
instance: performance, security, availability, usability, modifiability, portability, reusability, and integrabil-
ity. Often these qualities compete and any design decision involves trade-offs. In this paper we consider the
functional dimensions of software architectures. In particular we focus on thedynamic behaviorof compo-
nents rather than the passing of data, the signature of methods, and naming issues. Dealing with dynamic
behavior in a correct and efficient way is an architectural problem. We will use the topology of atree to
structure architectures and to express concurrent and interacting components. These components typically
have an internal state and interact by sending messages, i.e., asynchronous communication. We reason about
correctness of components with respect to their dynamics. The formal basis for modeling and analyzing the
dynamics of components is Petri nets [41]. The choice for Petri nets over other formal methods such as
process algebra and state charts is primarily motivated by the possibility to describe complex dynamic sys-
tems hierarchically [27, 28] and the availability of advanced inheritance notions [4, 5, 14]. Inheritance of
behavior is particularly used with respect to refinement and evolution of architectures rather than the reuse
of components. A large suite of Petri-net based tools is available to execute Petri-net based models [6]. The
foundation of this paper is a particular class of Petri nets calledComponent-nets (C-nets)also referred to as
Workflow-nets(WF-nets) [1–3]. These nets are very well suited to specify the transactions of a component.
Since the framework we introduced in [9] is also based on C-nets, the results of this paper are applicable
to this framework. This is advantageous since the dual concept of this framework in which a component
has aspecificationand anarchitectureallows for an understanding of the systems functionality by different
stakeholders at different levels of abstraction.

There are two different approaches to software design: top down or refinement and bottom up or com-
position. Given the specification of the component to be built one may refine this component into a network
of connected sub-components for which the specifications are derived, or one may look for existing com-
ponents that can be composed into a component that has a behavior that fits the specification of the original
one. In both cases one needs rules that guarantee that connected components preserve some behavioral
properties, like the correct treatment of transactions. In this paper we focus on rules to build systems of
components. We will use C-nets as elementary building blocks for systems. A system will be atreeof C-
nets. Figure 1 is an example of a system built from C-nets. In Figure 1 eachrectanglerepresents a C-net
and eacharrow represents aninterfacebetween two C-nets. The C-netA is called theroot C-net,B, E
andF are called thenon-leaveC-nets andC, D, G, H andI are called theleaveC-nets. In fact one may
consider such a tree as one compound component, consisting of the componentsA, B, C, D, E, F , G, H
andI, in which the root componentA is the only one that interfaces with the environment. In Figure 1Y is
used to indicate the net which is the composition ofB, C andD andZ is used to indicate the net which is
the composition ofF , G, H andI. The systemX itself is a net which is the result of composingY , E and
Z. The root componentA is used as the specification for the compound componentX. We will prove that
under certain conditions a C-net tree (such asX) is a C-net again.

With respect to the behavior of these constructed trees we will require that each non-leave C-net has
the same behavior as the composition of this C-net and all its “child” C-nets. In the example of Figure 1
this means that, for instance,B should have the same behavior as the netY , which is the composition

2



A

E FB

C D H IG

Y Z

X

Fig. 1. A C-net tree.

of B and its childrenC andD. Moreover the behavior of the root componentA should be similar to the
behavior ofX which is the composition of the childrenY , E andZ. Therefore applied to the complete C-
net tree this requirement means that the observable behavior of the tree is determined by the root C-net. In
component-based software development this corresponds to the notion that an interface specification should
describe the observable behavior of the complete component. We will prove that if this property holds for
all non-leave nodes in the tree, then the tree as a whole behaves as the root C-net. Hence the root C-net
is an interface specification for the complete system. We call a tree which has this propertyconstruction
consistent(Definition 24). Construction consistency is an important feature in component-based software
development. It ensures that the implementation of a system is consistent with the specification, i.e., respects
the users requirements. The main result of this paper is a set of construction rules and a pattern to design
complex trees of C-net that are construction consistent.

The client-servercomposition of C-nets is the elementary construction that is key to all construction
rules presented in this paper. (In fact a client-server composition is a very simple C-net tree consisting of
two nodes: the client-net is the root and the server net is the leave.) To create a client-sever composition we
start with a single C-net and we will attach it to another C-net. We will give the example of an embedded
software component to inspect and sort out letters. The device has two functionalities: it determines whether
a letter is stamped and it scans the address on the letter in order to sort the letter. The component has
two subcomponents: one interface component and one technical component. The interface component is
described in Figure 2 byC-net 1and the technical component is described byC-net 2. The composition
of the two C-nets is called a client-server composition when these nets are glued together under certain
conditions. One of the conditions that is vital to end up with a consistent system is that the behavior of

τ τ τ τ

C-net 1

C-net 2

start scan

stamped

unstamped

scan address

stop scan

calibrate save image register release

Fig. 2. The interface C-net and the technical C-net glued together.
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the client-server composition should be similar to the behavior of the client when wehide the behavior
of the server; we pretend thatcalibrate, save image, registerandreleaseare not visible to the user of the
system. In Figure 2 the invisible transitions have been indicated by using theτ -label. When we consider
the behavior of the first C-net in isolation, we see that this net has the following functionalities:start-scan,
stamped, unstamped, scan address, stop scan. If the client-server composition of the interface C-net and
the technical C-net is able to reproduce exactly the same behavior as the interface C-net in isolation when
we hide the behavior of the technical C-net, then we reached our goal, i.e., construction consistency. To
compare behaviors of different C-nets we will use the notion ofbranching bisimilarity[25, 36, 38], which
is introduced in Section 3.

In addition to the client-server construction we will introduce two other constructions: thehorizontal
and thevertical unionof client-server compositions. These constructions can be used to extend a C-net
tree. Suppose that, for instance in Figure 1, the composition of the netsB andC, respectivelyB andD
are client-server compositions, then the composite netY consisting of the C-netsB, C andD is called the
horizontal union of these two client-server compositions. Moreover, if we suppose that the composition of
A andB is a client-server composition, then the composition ofA, B andC is called a vertical union.

Finally we present an example of a design pattern which allows building consistent trees: therequest-
response pattern. The advantage of using the request-response pattern is that we do not have to execute an
exhaustive state space check on the bisimilarity of the extended tree and its specifying root C-net. Instead we
should verify if the conditions of the request-response pattern are satisfied, which are all graph conditions
(i.e., no “state explosion” problems). Compare this to the three inheritance-preserving transformation rules
based on the notion of branching bisimilarity for sound-processes defined [4, 5, 14]. These rules correspond
to design patterns when extending a super class to incorporate new behavior: (1) adding a loop, (2) inserting
methods in-between existing methods, and (3) putting new methods in parallel with existing methods.1

The structure of this paper is the following. Section 2 presents related work. Section 3 introduces the
concepts this paper builds upon. Section 4 discusses the construction rules for the composition of C-nets.
Section 5 presents two branching bisimilarity results to obtain construction consistency for C-nets. Section 6
presents a design pattern. Section 7 summarizes the results of this paper.

2 Related work

Software architecture originated in 1968 when Dijkstra [21] pointed out that not only the result but also
the structuring of software is important and carries benefits. Parnas contributed by concerning information-
hiding modules, software structures [39] and program families. The analogy to a building architecture was
due to Alexander [11] who stressed that architectures should be “timeless” and prove to be stable when
exposed to the introduction of the latest technologies. Research to software architecture has emerged as a
large-scale manifestation over the last years. However the area of software architecture is still quit young
considering the large number of definitions that are used simultaneously. Applicable to this paper is the def-
inition by Bass and others [13] quoted in Section 1. This definition is closely related to the de-factoIEEE
1471definition [17] agreed upon recently: “A software architecture can be defined as the fundamental or-
ganization of a system embodied in its components, their relationships to each other and to the environment
and the principles guiding its design and evolution.”

Perry and Wolf [40] provided foundation for the study of software architectures and Shaw and Garlan
[24, 42] defined and explored the advantages of the use ofarchitectural style, i.e., the voluntarily restriction
to a relatively small set of choices when it comes to component cooperation and interaction. In this paper, the
use of the C-net, the client-server coupling and the request-response pattern are an example of architectural
style.

Others stressed the importance of the use of multipleviews. Views are important because they pro-
vide descriptions of the system at various levels of abstraction. Hence they can be used for understanding

1 For the readers familiar with the work in [9]: A difference with the approach in this paper is that we dropt the a priori
requirement of soundness on processes. Instead we handle soundness as a property which can be transferred over
branching-bisimilar processes (Lemma 7).
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the structure of a system and form a basis for a shared understanding of a system by all its stakeholders.
Zachman [45] came up with a view-based approach in which an architecture is considered as a set of archi-
tectural representations (or models) placed within two dimensions: the perspective and the description type.
The distinguished perspectives agree very well with the interests of different stakeholders in a software
development effort. A managers view on the system differs from that of an designer, a programmers view
may be completely different from both. Each of the participants views is, however, relevant to develop the
system successfully. To capture the various aspects of architectural information Kruchten [32] presented
a more concise model of architectural views consisting of the Logical, theProcess, thePhysical, theDe-
velopment, and theScenarios-view. If we apply our work to Kruchten, then we can consistently relate the
Conceptualand theProcess-viewwith respect to behavior.

In general architectural problems are addressed byArchitecture Description Languages(ADLs). For
different architectural problems often different ADLs are suited. Medvidovic [35] defined an ADL as a lan-
guage that provides a concrete syntax and a conceptual framework for characterizing architectures. In [9]
we related our approach based on C-nets to other ADLs such as ARMANI, Rapide, Aesop, MetaH, UniCon,
Darwin, Wright, C2 and SADL. In contrast with our approach these ADLs typically view software archi-
tectures statically [34], i.e., analysis primarily focuses on syntactical and topological issues. Only Darwin
offers the possibility to execute “what if” scenarios and Rapide offers a constraint checker based on sim-
ulation. Several strategies to compare and to relate ADLs have been presented the last years. One strategy
is by using the architecture interchange language ACME [23]. Its purpose is to capture the similarities of
ADLs and to support the mapping of architectural specifications from one ADL to another. ACME is suited
to do this at the syntactical level, but not at the semantic level. Another strategy to classify ADLs is by
architectural domains, i.e., the problems or areas of concern that need to be addressed by ADLs [34]. The
ADLs investigated in [34] are all supported by tools, which are tightly interwoven with the ADL. Another
approach, different to an ADL, but also used to incorporate dynamic behavior is the addition of process
specifications to existing middleware technology, e.g., in [16] CORBA IDLs are extended with Petri nets.

The use of patterns to handle architectures problems was first introduced by Gamma [22]. Buschmann
[19] also makes use of patterns. An approach by Klein [31] is to reuse reference models.

Notions of behavioral inheritance (also named subtyping or substitutability) are explored by several
researchers [12, 29, 30, 33]. Researchers in the domain of formal process models (e.g., Petri nets and process
algebras) have tackled similar questions based on the explicit representation of a process by using various
notions of (bi)simulation [25, 36, 38].

The theory developed in this paper has applications toElectronic Commerceand Interorganizational
Workflow. References to related work in these areas are given in [5].

3 Preliminaries

3.1 Place/Transition nets

In this section, we define a variant of the classic Petri-net model [20, 37, 41] called labeled Place/Transition
nets. The labeled P/T-net is used to describe thebehaviorof a component and its interactions with its
environment. Each transition has an action label, either visible or invisible. In the external behavior only
the firing of transitions with a visible label can be observed. LetL be a set of visible action labels, and let
τ , τ 6∈ L, be the label used to indicate invisible actions.Lτ = L ∪ {τ}. In UML [18] or component-based
development [44] visible actions are those actions that are accessible on the interface of a component (i.e.
methods).

Definition 1 (Labeled P/T-net).A labeled Place/Transition net is a tuple(P, T, F, `) where:

1. P is a finite set ofplaces,
2. T is a finite set oftransitionssuch thatP ∩ T = ∅,
3. F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called theflow relation, and
4. ` : T → Lτ , is a labeling functionthat assigns a label to a transition,
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such thatP , T , F , andLτ are mutually disjoint.

Let (P, T, F, `) be a labeled P/T-net. Elements ofP ∪T are referred to asnodes. A nodex ∈ P ∪T is called
an input nodeof another nodey ∈ P ∪ T if and only if there exists a directed arc fromx to y; that is, if and
only if xFy. Nodex is called anoutput nodeof y if and only if there exists a directed arc fromy to x. If x
is a place inP , it is called an input place or an output place; if it is a transition, it is called an input or an
output transition. The set of all input nodes of some nodex is called thepresetof x; its set of output nodes
is called thepostset. Two auxiliary functions• , • : (P ∪T ) → P(P ∪T )2 are defined that assign to each
node its preset and postset, respectively. For any nodex ∈ P ∪ T , •x = {y | yFx} andx• = {y | xFy}.
The preset and postset functions depend on the context, i.e., the P/T-net the function applies to. If a node is
used in several nets, it is not always clear to which P/T-net the preset/postset functions refer. Therefore, we

augment the preset and postset notation with the name of the net whenever confusion is possible:
N•x is the

preset of nodex in netN andx
N• is the postset of nodex in netN .

We define often classes of objects by a tuple like: “an objecty of the classx is denoted byy =
(A,B,C)”. We refer to the elements of the tuple by subscripting them with the name of the object, e.g.,
Ay, By, andCy. In particular the P/T-netN is denoted byN = (P, T, F, `) and the elements are denoted
by PN , TN , FN , `N .

Definition 2 (Labeled P/T-net properties: union, cross-section, sub-net, disjoint).
Let U and W be two labeled P/T-nets such that(PU ∪ PW ) ∩ (TU ∪ TW ) = ∅ and such that, for all
t ∈ TU ∩ TW , `U (t) = `W (t).

1. TheunionofU andW , denotedU∪W , is the labeled P/T-net(PU∪PW , TU∪TW , FU∪FW , `U∪`W ),

where(`U ∪ `W )(t) =
{

`U (t) for t ∈ TU

`W (t) for t ∈ TW \TU .
2. Thecross-sectionof U and W , denotedU ∩ W , is the labeled P/T-net(PU ∩ PW , TU ∩ TW , FU ∩

FW , `U∩`W ), wherè U∩`W = `U |(PU∩PW ), i.e., the functioǹU restricted to the domainPU∩PW .
3. U is called asub-netof W , denotedU ⊆ W if PU ⊆ PW , TU ⊆ TW andFU ⊆ FW .
4. If (PU ∪ TU ) ∩ (PW ∪ TW ) = ∅, thenU andW are said to bedisjoint.

A bagover a setA is a functionA → IN. The set of all bags overA is denotedB(A). Let X ∈ B(A),
thenX(a) denotes the number of occurrences ofa in X, often called the cardinality ofa in X. The empty
bag, which is the function yielding 0 for any element inA, is denoted0. For the explicit enumeration
of a bag we use square brackets and superscripts to denote the cardinality of the elements. For example,
[a2, b, c3] denotes the bag with two elementsa, oneb, and three elementsc. The operations we can perform
on a bag are addition, subtraction and comparison. In this paper, we allow the use of sets as bags, in fact we
identify in that case a setA with the bag{(a, 1)|a ∈ A}, or if A = {a1, . . . , an} A corresponds to the bag
[a1, . . . , an].

Definition 3 (Marking, N ). A marked, labeled P/T-net is a pair(N, s), whereN is a labeled P/T-net and
s is a bag overP denoting the marking (also called state) of the net. The set of all marked, labeled P/T-nets
is denotedN .

Definition 4 (Transition enabling). Let (N, s) be a marked, labeled P/T-net inN , whereN . A transition
t ∈ T is enabled, denoted(N, s)[t〉, if and only if each of its input placesp contains a token. That is,
(N, s)[t〉 ⇔ •t ≤ s.

If a transitiont is enabled in markings (notation:(N, s)[t〉), thent can fire. If, in addition,t has labela
(i.e.,a = `(t) is the associated method, operation, or observable action) and firingt results in markings′,
then(N, s) [a〉 (N, s′) is used to denote the firing.

Definition 5 (Firing rule). The firing rule [ 〉 ⊆ N × L×N is the smallest relation satisfying for any
(N, s) in N , with N a labeled P/T-net, and anyt ∈ T ,
(N, s)[t〉 ⇒ (N, s) [`N (t)〉 (N, s− •t + t• ).

2 P(X) is the power set ofX.
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Definition 6 (Firing sequence).Let (N, s0) with (N, s0) be a marked, labeled P/T-net inN . A sequence
σ ∈ T ∗ is called afiring sequenceof (N, s0) if and only if σ = ε or, for some positive natural number
n ∈ IN, there exist markingss1, . . . , sn ∈ B(P ) and transitionst1, . . . , tn ∈ T such thatσ = t1 . . . tn
and, for all i with 0 ≤ i < n, (N, si)[ti+1〉 and si+1 = si − •ti+1 + ti+1• . Sequenceσ is said to be
enabledin markings0, denoted(N, s0)[σ〉. Firing the sequenceσ results in the unique markings, denoted
(N, s0) [σ〉 (N, s), wheres = s0 if σ = ε ands = sn otherwise.

Definition 7 (Reachable markings).The set ofreachable markingsof a marked, labeled P/T-net(N, s) ∈
N , denoted[N, s〉, is defined as the set{s′ ∈ B(P ) | (∃σ : σ ∈ T ∗ : (N, s) [σ〉 (N, s′))}.

Definition 8 (Directed path). LetN be a labeled P/T-net. A directed pathC from a noden1 to a nodenk

is a sequencen1n2 . . . nk such that(ni, ni+1) ∈ FN for 1 ≤ i ≤ k − 1.

Definition 9 (Strong Connectedness).A labeled P/T-netN is strongly connectedif and only if, every two
nodesx andy in PN ∪ TN are on a directed path.

Definition 10 (k-Boundedness).A marked, labeled P/T-net(N, s) ∈ N is k-boundedif and only if, for
any reachable markings and any placep ∈ PN , s(p) ≤ k with k ∈ IN.
A marked, labeled P/T-net(N, s) ∈ N is boundedif and only if the set of reachable markings[N, s〉 is
k-bounded for somek ∈ IN.

Definition 11 (Dead transition). Let (N, s) be a marked, labeled P/T-net inN . A transitiont ∈ T is dead
in (N, s) if and only if there is no reachable markings′ such that(N, s′)[t〉.

Definition 12 (Deadlock).Let (N, s) be a marked, labeled P/T-net inN . N is in a deadlockin s if and
only if there is not ∈ TN such that(N, s)[t〉.

Definition 13 (Liveness).A transitiont in a marked, labeled P/T-net(N, s) ∈ N is live if and only if, for
every reachable markings′ ∈ [N, s〉, there is a reachable markings′′ such that(N, s′′)[t〉.
The net is live if all transition in(N, s) are live.

3.2 Component nets

For the modeling of components we use labeled P/T-nets with a specific structure. We will name these nets
component nets(C-nets).

Definition 14 (C-net,NC). A component net(C-net)N is a 6-tuple(P, T, F, `, i, o) such that(P, T, F, `)
is a labeled P/T-net and the following conditions are satisfied:

1. instance creation and completion: P contains two specific placesi ando, respectively source and sink
place, such that•i = ∅ ando• = ∅, and

2. connectedness: t̄ 6∈ (T ∪ P ): N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}, ` ∪ {(t̄, τ)}) is strongly connected.

We will denote the class of marked C-nets withNC .

Analogously to previous notation we denote the source and sink place of a netN with iN andoN . The
connectedness requirement implies that there is one unique source and one unique sink place. For the
readers familiar with the work presented in [2, 15]: C-nets are labeled WF-nets. In this paper we drop the
additional requirement we imposed in [9] where start transitionsi• and end transitions•o should have a
non-τ label. The structure of a C-net allows us to define the following functions.

Definition 15 (start , stop). LetN be a C-net.

1. start(N) = {t ∈ T | iN ∈ •t} is the set of start transitions, and
2. stop(N) = {t ∈ T | oN ∈ t• } is the set of stop transitions.
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Definition 14 only gives a static characterization of a C-net. Components will have a life-cycle which
satisfies the following requirements.

Definition 16 (Option to complete). A marked C-net(N, [ikN ]) has thek-option to completefor some
k ∈ IN if and only if:

∀s : (s ∈ [N, [ikN ]〉 ⇒ [ok
N ] ∈ [N, s〉).

If (N, [ikN ]) has the k-option to complete for allk ∈ IN, thenN has theoption to complete.3

This requirement states that starting from the initial marking[ikN ], i.e., the activation of the component such
that there arek tokens placed in the source placei, it is always possible to reach the marking[ok

N ], i.e.,
the marking with preciselyk tokens in placeo and all the other places empty, which corresponds to the
possibility for a component to terminate without leaving tokens. In principle this leaves the possibility open
of the existence of as ∈ [N, [ikN ]〉 such thats > [ok

N ]. The following lemma shows that this can not be the
case. Hence the option to complete is in fact theempty completion option.

Lemma 1 (No tokens left).LetN be a C-net. For allk ∈ IN we have:
If (N, [ikN ]) satisfies the k-option to complete, then for any reachable markings ∈ [N, [ikN ]〉 with s(o) = k,
it follows thats = [ok

N ].

Proof. Suppose thats(o) = k for somek ∈ IN and lets ∈ [N, [ikN ]〉. Since(N, [ikN ]) satisfies the k-option
to complete it follows that[ok

N ] ∈ [N, s〉. Suppose there is a placep 6= o with s(p) > 0. So there are at
leastk + 1 tokens in the net. C-nets have directed paths too and hence there is no transitiont with t• = ∅.
HenceN keeps at leastk + 1 tokens and[ok

N ] will never be reached. Contradiction. ut
Since Lemma 1 holds we will speak about thek-empty completion propertyinstead of thek-option to
complete, and theempty completion propertyinstead of theoption to complete.

Remark 1(Relation with soundness notion in [9]).To compare thek-empty completion option used in this
paper with the soundness notion in [9], we first extend thek-empty completion option tok-soundness.
A C-netN is ak-soundfor somek ∈ IN if and only if:

1. (N, [ikN ]) has thek-empty completion property,
2. (N, [ikN ]) is k-bounded,
3. (N, [ikN ]) containsno dead transitions.

Now Lemma 1 implies that 1-soundness, i.e.,k = 1, corresponds to the soundness notion used in [2, 9, 15].

The motivation for the use of (k-)empty completion property in this paper over the previous1-empty
completion property as a part of the soundness definition in [9] is that it allows for simple analysis for
various problems. These problems should have the property that the transitions are equal for all cases. This
is typically the case in batch-processing wherek cases are handled in parallel as if they were sequentially
processed. A necessary condition for these type of processes is that thek-empty completion property is
satisfied. Also processes in manufacturing and administrative automation often have this property. For in-
stance consider the example of the assembly process of bicycles. If we have two sets of parts to construct
two bicycles, then we may exchange the parts and we still get two bicycles. In a typical assembly process
each entry is a single frame of a bicycle and in each step a part is added. The final result at the exit of the
process is a complete bicycle. If there are multiple bicycles under construction at the same time, then the
k-soundness implies that each entry will yield a bicycle at the end of the process.

An example of an administrative process with multiple tokens is one where the tokens are anonymous.
One could think of a process where for instance for ten different couples the same journey is booked. Typical
steps are booking flights, hotel rooms, trips, etcetera. In such a process it is not important to which couple
which hotel room is attached, as long as each couple will have one in the end.

Another reason for not requiring 1-boundedness in this paper, whereas we did do this in [9], is the
following: In [9] we used the 1-boundedness in combination withactivation safenessto avoid multiple

3 Note that[ikN ] and[ok
N ] arebagscontainingk tokens in the input respectively output place ofN .
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entrance of sub-components, whereas we do allow this in this paper. To overcome the absence of this
requirement, we impose the requirement over thebranching bisimulation for C-netsas explained in the
following section.

Not requiring the absence of dead transition is motivated in [10]: In a composition of C-nets it might
occur that a dead transition is introduced, whereas they are not present yet in the isolated nets. We can deal
with this in two ways. Either we can use a soundness-definition including the absence of dead transitions,
or a weaker one without this condition. In the first case we need an operator to remove dead transitions from
composite nets. In this paper we choose the second option which is to ignore dead transitions.

3.3 Branching bisimilarity

To compare C-nets we need to formalize a notion of equivalence. In this paper, we usebranching bisimi-
larity [25] as the standard equivalence relation on marked, labeled P/T-nets inN .

The notion of asilent actionis pivotal to the definition of branching bisimilarity. Silent actions are
actions (i.e., transition firings) that cannot be observed. Silent actions are denoted with the labelτ , i.e., only
transitions in a P/T-net with a label different fromτ are observable. We assume thatτ is an element ofLτ .
The τ -labeled transitions are used to distinguish between external, or observable, and internal, or silent,
behavior. A single label is sufficient, since all internal actions are equal in the sense that they do not have
any visible effects.

To define branching bisimilarity, an auxiliary definition is needed: a relation expressing that a marked,
labeled P/T-net can evolve into another marked, labeled P/T-net by executing a sequence of zero or moreτ
actions.

Definition 17. The relation =⇒ ⊆ N × N is defined as the smallest relation satisfying, for any
p, p′, p′′ ∈ N , p =⇒ p and(p =⇒ p′ ∧ p′ [τ〉 p′′) ⇒ p =⇒ p′′.

Let [(α)〉 be the extension of the relation[α〉 defined in the following way: for any two marked, labeled
P/T-netsp, p′ ∈ N and actionα ∈ Lτ , p [(α)〉 p′ if and only if (α = τ ∧ p = p′) ∨ p [α〉 p′.

Thus,p [(τ)〉 p′ means that zeroτ actions are performed, when the first disjunct of the predicate is
satisfied, or that oneτ action is performed, when the second disjunct is satisfied. For any observable action
a ∈ L, the first disjunct of the predicate is not satisfied. Hence in that case,p [(a)〉 p′ is simply equal to
p [a〉 p′, meaning that a singlea action is performed.

Definition 18 (Branching bisimilarity). A binary relationR ⊆ N ×N is called abranching bisimulation
if and only if, for anyp, p′, q, q′ ∈ N andα ∈ Lτ ,

1. pRq ∧ p [α〉 p′ ⇒
(∃ q′, q′′ : q′, q′′ ∈ N : q =⇒ q′′ ∧ q′′ [(α)〉 q′ ∧ pRq′′ ∧ p′Rq′), and

2. pRq ∧ q [α〉 q′ ⇒
(∃ p′, p′′ : p′, p′′ ∈ N : p =⇒ p′′ ∧ p′′ [(α)〉 p′ ∧ p′′Rq ∧ p′Rq′).

Two marked, labeled P/T-nets are calledbranching bisimilar, denotedp ∼b q, if and only if there exists a
branching bisimulationR such thatpRq.

Branching bisimilarity is an equivalence relation onN , i.e., ∼b is reflexive, symmetric, and transitive. See
[14] for more details and references to other notions of branching bisimilarity.
Figure 3 shows the essence of a branching bisimulation. The firing rule is depicted by arrows. The dashed
lines represent a branching bisimulation. A marked, labeled P/T-net must be able to simulate any action
of an equivalent marked, labeled P/T-net after performing any number of silent actions, except for a silent
action which it may or may not simulate.

For marked C-nets we require a stronger concept of branching bisimilarity, namely that the bisimulation
relationR satisfies two additional properties.

Definition 19 (Branching bisimulation for C-nets). The bisimulation relationR ⊆ NC ×NC is abisim-
ulation relation for C-netsif and only if∀k ∈ IN, A,B ∈ NC :

9



α

α

τ
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p′
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q′′ = q′

q

q′′

q′

Fig. 3. The essence of a branching bisimulation.

1. existence:
(A, [ikA])R(B, [ikB ])∧
(A, [ok

A])R(B, [ok
B ])

2. uniqueness exceptτ -steps:
(∀x : (A, [ikA])R(B, x) : [ikB ] =⇒ x)∧
(∀x : (A, [ok

A])R(B, x) : x =⇒ [ok
B ])∧

(∀x : (A, x)R(B, [ikB ]) : [ikA] =⇒ x)∧
(∀x : (A, x)R(B, [ok

B ]) : x =⇒ [ok
A]).

We writeA 'b B for the existence of a branching bisimulation relationR for C-nets. IfA 'b B, then
(A, [ikA])∼b (B, [ikB ]) for all k ∈ IN.

This definition allows us to include unreachable states in the relation. However, it is not very useful to
consider these states. Therefore we often only have reachable states in mind:R ⊆ {(A, sA), (B, sB)|sA ∈
[A, [ikA]〉 ∧ sB ∈ [B, [ikB ]〉}.

The requirements of Definition 19 are automatically satisfied in case both nets have the option to com-
plete. The requirements are a necessity in case one of the processes has not the ability to complete. Figure 4
shows two processes: one without the proper-completion property and one with the proper completion prop-
erty. In netA in Figure 4(a) one of the transitionsx may fire and then a token is either in placep1 or p2.
The state with one token in the sink placeoA can never be reached. This can also be seen from the state
transition diagram by the absence of a transition to the state[oA]. In netB in Figure 4(b) there is only one
transitionx. When it fires immediately the end state[oA] is reached. Clearly netB has the proper comple-
tion property, whereas netA does not have this property. According to Definition 18 we related the states
[p1] with [oB ], [p2] with [oB ] and [oA] with [oB ]. It is allowed to relate[oA] with [oB ] because they are
both deadlocks. The processA andB are branching bisimilar with respect to Definition 18, however with
respect to Definition 19 they are not, because systemA can deadlock in a state which is not the final one,
while systemB can only deadlock in the final state.
If we would have the proper completion property in both nets, we should have related[oA] and[oB ]. Clearly
this relation is not possible in this example. However when werequire the existence of this relation we are
able to show that the proper completion property transfers over branching bisimilar nets (cf. Lemma 7).

3.4 Abstraction and projection inheritance

To compare labeled P/T-nets we use the mechanism ofabstraction. Abstraction means that we hide the
effects of certain action labels. For instance, when we compare two marked labeled P/T-netsx andy, we
might abstract from the visible labels iny that are not present inx. We used abstraction in the example of
Figure 2 to hide the functionality of the technical component. In [9] the mechanism of abstraction is used
to defineprojection inheritance[14]. The idea of projection inheritance can be characterized as follows: “If
it is not possible to distinguish the behaviors of two marked labeled P/T-netsx andy, when only transitions
of x that are also present iny are executed, thenx is a sub class ofy.”
Abstraction is defined by using an abstraction operator which redefines the labeling function of a P/T-net
such that a visible label is replaced by an invisible label. In this paper we will only apply the abstraction
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net  A net  B

(b)

state transition A state transition B

[ p1 ]

[ iB ]

[ oB ]

x

(a)

[ iA ]

[ oA ]

[ p2 ]

xx

iA

x

oA

y

x

p1p2

iB

x

oB

Fig. 4. Two related processes, one with and one without the empty completion property. Both nets and both state
transition diagrams are depicted.

operator on entire P/T-nets. We will introduce this operator in the following definition and since it relabels
all transitions to theτ -label we will use the sameτ -symbol for the operator.

Definition 20 (Abstraction operator). LetN be a labeled P/T-net. Theabstraction operatorτ is a function
on labeled P/T-nets such thatτ(N) = (P, T, F, `′) wheredom(`) = dom(`′) and`′(t) = τ for all t ∈ T ,
i.e.,τ renames all transition labels inN to the silent actionτ .

4 Construction rules for C-nets

In this section we consider compositions of C-nets. In our approach to software design we consider com-
ponents as independent parts of an architecture, each with their own thread of control and collaborating (by
message exchange) to form a working system. For the corresponding C-nets this implies that we do not
want to extend their behavior when we put them in an environment. Therefore, when we connect C-nets,
we use an interface that does notextendthe behavior of the separate nets. In fact in Section 5 we give
conditions such that we do notlimit the behavior of the client-nets as well. The interface is introduced in
this section. Another design approach we explore in this paper is theclient-serverapproach. This implies
that in the relationship between connected components there is always one component which has the role
of control componentand one component that has the role ofserver component, i.e., it is obliged to execute
tasks for the control component. This client-server approach is reflected in the additional requirements we
put on an interface.

We start by introducing an elementary client-server composition and then we define unions of elemen-
tary compositions. The unions enable us to create complex trees of connected C-nets. We end this section by
introducing a complete tree of C-nets; a structure that can be used to describe a complete component-based
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system. The elementary composition is a composition of two C-nets and is called aclient-servercomposi-
tion because one C-net, the client, governs the transaction, and the other C-net, the server, delivers a service
to its client. The transaction that corresponds to this service is always executed within the scope of the
transaction of the client. Only the client has the ability to start its server and the server always reports back
to the client when it finished its transaction. Figure 5 illustrates the elementary client-server composition.

nodes of A

nodes of B

iA oA

iB oB

interface φ
with places P
and arcs F

Fig. 5. Client-server composition of C-nets.

We require that this composition is a C-net. The figure depicts the two separate C-nets,A andB. The inner
structures of nodes ofA andB are left out. Places that are connected to transitions inA and transitions in
B are calledinterface placesand in the figure these places are inside the shaded area, and denoted withP .
Together with a set ofinterface arcsF these places are the glue between the netsA andB and are the two
components of aninterfaceφ. An additional requirement we may put on interface is that the start and stop
placesiB andoB of B are also interface places. In that caseB is activated by a transition inA and after
deactivation ofB A may continue. Hence by constructionA controls the start and stop behavior ofB. The
net in Figure 5 is the result of the composition of two nets and one interface.

Definition 21 (Interface, Client-server coupling, Composition operator).Let A andB be labeled P/T-
nets. Letφ = (P, F ) with F ⊆ (P × (TA ∪ TB)) ∪ ((TA ∪ TB) × P ) and letN = (PA ∪ PB ∪ P, TA ∪
TB , FA ∪ FB ∪ F, `A ∪ `B).

1. φ is an interfaceof A andB if and only if∀p ∈ Pφ :

(a)
A•p = ∅ ⇔ B•p 6= ∅,

(b)
A•p = ∅ ⇔ p

A• 6= ∅,
(c)

B•p = ∅ ⇔ p
B• 6= ∅.

2. N is a client-server compositionof A, φ andB if φ is an interface.
3. The function∗ with ∗(A,φ, B) = N is called thecomposition operatorandN is denoted byA ∗φ B.

ClearlyA∗φ B is a labeled P/T-net. By definitionφ is aplaceinterface which means that onlytransitionsin
A andB are externally connected. The requirements onφ imply that there is no possibility to “pass-back”
tokens to the same net that produced them. Since there are no arcs from transitions inTB to places inPA and
not from transitions inTA to places inPB the connections onlylimit the behavior of theA-part respectively
theB-part inA ∗φ B. Before we continue we make the following assumption.

Assumption In the remainder of this paper we assume that there are no name clashes, i.e., all C-nets and
interfaces use different identifiers for places and transitions.

12



Definition 22 (Union of Interfaces).Letφ andϕ be two interfaces withPφ ∩ Pϕ = ∅ andFφ ∩ Fϕ = ∅,
then theunion of the interfaces, denotedφ ∪ ϕ, is defined by(Pφ ∪ Pφ, Fφ ∪ Fϕ).

The union of an interface is again an interface. Without proof we state the following lemma.

Lemma 2 (Properties of the client-server composition).LetA, B andC be labeled P/T-nets with inter-
facesφ betweenA andB, ϕ betweenA andC, andψ betweenB andC.

1. (A ∗φ B) ∪ (A ∗ϕ C) = A ∗(φ∪ϕ) (B ∪ C),
2. (A ∗φ B) ∪ (B ∗ψ C) = A ∗φ (B ∗ψ C) = (A ∗φ B) ∗ψ C, i.e., the operator is associative.

A ∗(φ∪ϕ) (B ∪ C) is called thehorizontal unionandA ∗φ (B ∗ψ C) is called thevertical union.

Note that in generalA ∗ϕ B 6= B ∗ϕ A, i.e., the operator is not symmetric.

Lemma 3 (Composition of C-nets is a C-net).LetA andB be C-nets andφ an interface ofA andB and
let (PA ∪ PB) ∩ Pφ = {iB , oB}. ThenA ∗φ B is a C-net.

Proof. We verify requirement (1) and (2) stated in Definition 14.

1. By second requirement of Definition 21 it follows that all places inPφ have at least one input and output
arc inA ∗φ B to transitions inA andB, hence we only need to consider the input and output arcs of
the places inPA ∪ PB . SinceA andB are C-nets the only places that do not have both an input and an
output arc in respectivelyA andB, are the placesiA andoA andiB andoB . ComposingA andB does
not remove any arcs inA or B, therefore inA ∗φ B alsoiA, oA, iB andoB are the only possible source
and sink places.
By Definition 21iB andoB are also places of the interface and therefore inA∗φ B they both have input
and output arcs. OnlyiA andoA remain as the source and sink place.

2. It is sufficient to show that for any nodex in A ∗φ B there is a directed path fromiA to x andx to
oA. Whenx is a node ofA, then this is true sinceA is a C-net. There is a directed path fromiA to iB
becauseiB is output place of some transition inA and there is a directed path fromoB to oA because
oB is input place of some transition inA. Therefore, whenx is a node ofB, it is true becauseB is a
C-net. Finally we have to show that all places inPφ are on a directed path fromiA to oA. This follows
from the the fact that all input and output transitions ofp ∈ Pφ have this property. ut

Next we will consider unions of client-server compositions. We will extend the client-server composition
in the “horizontal” and “vertical” direction. The combination of both unions is a handle to build trees of
C-nets.

Lemma 4 (Horizontal union of client-server compositions is a C-net).Suppose thatA∗ϕ B andA∗ψ C
are client-server compositions of the C-netsA, B andC with the interfacesϕ andψ and let(PA ∪ PB) ∩
Pϕ = {iB , oB} and(PA ∪ PC) ∩ Pψ = {iC , oC}, thenA ∗(ϕ∪ψ) (B ∪ C) is a C-net called thehorizontal
union.

Proof. We have:A ∗ϕ B ∪A ∗ψ C = (PA ∪ PB ∪ PC ∪ Pϕ ∪ Pψ, TA ∪ TB ∪ TC , FA ∪ FB ∪ FC ∪ Fϕ ∪
Fψ, `A ∪ `B ∪ `C). By the assumption that there are no name clashes it follows that this labeled P/T-net is
well defined. We now prove thatA ∗(ϕ∪ψ) (B ∪ C) is a C-net.

1. A ∗ϕ B is a C-net with source placeiA and sink placeoA andA ∗ψ C is also a C-net with source place
iA and sink placeoA. Since the union ofA ∗ϕ B andA ∗ψ C does not remove any arcs and coincides
on all nodes ofA including iA andoA it follows that the placesiA, oA are the unique source and sink
place ofA ∗(ϕ∪ψ) (B ∪ C).

2. To prove thatA∗(ϕ∪ψ) (B∪C) is strongly connected, note that each note is inA, B or C and therefore
in A ∗ϕ B or A ∗ψ C. SinceA ∗ϕ B andA ∗ψ C are C-nets and coincide on all nodes inA it follows
directly that for any nodex there is a directed path fromiA to x andx to oA. ut
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We will also show that the vertical union is a C-net.

Lemma 5 (Vertical union of client-server compositions is a C-net).Suppose thatA∗ϕ B andB ∗φ C are
client-server compositions of the C-netsA, B andC and the interfacesϕ andφ and let(PA ∪PB)∩Pϕ =
{iB , oB} and(PB ∪ PC) ∩ Pφ = {iC , oC}, thenA ∗ϕ B ∪B ∗φ C is a C-net called thevertical union.

Proof. A ∗ϕ B ∪B ∗φ C is a well defined labeled P/T-net. We now prove thatA ∗ϕ B ∪B ∗φ C is a C-net.

1. SinceA ∗ϕ B andB ∗φ C intersect on the nodes ofB it follows thatiA andoA are the only two places
with •iA = oA• = ∅.

2. To prove thatA ∗ϕ (B ∗φ C) is strongly connected, we have to show that for any nodex there is a
directed path fromiA to x and there is a directed path fromx to oA. For nodes inA ∗ϕ B this follows
sinceA ∗ϕ B is a C-net. For a node inB ∗φ C this is also easy to see: SinceB ∗φ C is a C-net there
are directed paths fromiB to x and fromx to oB . SinceA ∗ϕ B is a C-net there are also directed paths
from iA to iB andoB to oA. Combining the results yields that there are directed paths fromiA to x and
x to oA. ut

We do not only want to consider horizontal and vertical unions of C-nets, but complete trees of C-nets. A
C-net treecan be used to describe a complete system of components.

Definition 23 (C-net tree). Let C be a set of C-nets andI be a set of interfaces. If the relationR =
{(A,B) ∈ C × C|∃φ ∈ I ∧ A ∗φ B is a client-server composition with{iB , oB} ∈ Pφ} has the structure
of a tree, then(C, I) is called aC-net tree.

By the lemma’s 3, 4 and 5 it follows that a C-net tree and all of its sub-trees are also C-nets. Figure 1 is an
example of a C-net tree. The set of C-netsC consists of the C-netsA, B, C, D, E, F , G, H, andI whereA
is the root C-net. The set of interfaces between the C-netsI is given by the arcs{(A, B), (A,E), (A, F ),
(B, C), (B, D), (F,G), (F, H), (F, I)}. There are two sub-trees in Figure 1: one consisting of the C-nets
B, C andD whereB is the root C-net and one consisting of the C-netsF , G, H andI whereF is the root
C-net. Clearly, due to the lemma’s, the sub-trees and the complete tree are C-nets as well, symbolized by
Y , Z andX respectively.
In this section we provided construction rules to build trees of C-nets. In the next section we will consider
the behavior of these trees.

5 Construction consistency for C-nets

In this section we will provide compositionality results of the client-server compositions we introduced
in the previous section. The compositionality results address the behavior of the composite C-net. It is
important in software development that the behavior of a composition of a number of C-nets incorporates
the behavior of the specifying root C-net. If that is the case, the system fulfils its requirements. We will
formalize this quality requirement of a system by introducing the notion ofconstruction consistency.

Definition 24 (Construction consistency).Let (C, I) be a C-net tree. The tree is calledconstruction con-
sistentif and only if for each sub-tree with corresponding C-netX and root C-netA: A 'b X, where all
transitions inX except those in the root C-netA are relabeled toτ .

In particular this definition is applicable to a single client-server composition. For example the C-net com-
posed of the two C-nets in Figure 2 is construction consistent withC-net 1in the same figure: the two C-nets
are glued together according to the rules of a client-server composition,C-net 2does not limitC-net 1in
its behavior, and therefore the composite net has the same behavior asC-net 1if we relabel all transition in
C-net 2to theτ -label.

Now we will prove two cases of construction consistency: the client netA has the same behavior as
the netsA ∗(ϕ∪ψ) τ(B ∪ C) andA ∗ϕ τ(B ∗ψ C) under the assumption thatA ∗ϕ τ(B) andA ∗ψ τ(C)
behave externally the same asA and thatB∗ψ τ(C) behaves asB in terms of branching bisimulation. These
compositionality results are key in constructing C-net trees. However they are not sufficient. Consider for
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instance Figure 6. This figure depicts a horizontal union of two client-server compositions.A ∗φ B is a
composition of the C-netsA andB with interfaceφ andA ∗ψ C is a composition of the C-netsA and
C with interfaceψ. Both compositions are sound C-nets (Remark 1) given an initial marking of a single
token in the source place. MoreoverA 'b A ∗φ τ(B) andA 'b A ∗ψ τ(C). However the horizontal union
A∗(φ∪ψ) (B∪C) initially marked with a single token in the source place is not sound. This case is depicted
in the figure. ComponentB is limiting the behavior ofA: it forces theτ -labeled transition in the upper part

�

�

�

�

�

�

�

Fig. 6. Two sound client-server compositions and an unsound union.

of netA to be executed before theτ -labeled transition in the lower part. When we consider the behavior of
A∗φ B this is not “noted” since theτ labels can not be distinguished from each other. Also componentC is
limiting the behavior ofA and this is not also not “noted” for the same reason. However in the union of both
client-server compositions the limitations result in a dead-lock of the process. Figure 6 is a motivation for
not allowingτ -labeled transitions to be attached to the interface. If we replace in the example of Figure 6 the
τ -labels by transitions with similar labels we find another erroneous example. In that case our conclusion is
that transitions with the same label may not be attached differently to the interfaces.

After the compositionality theorems we will in addition show that the empty completion property can
be transferred over branching bisimilar nets. This result enables us to construct systems with the empty
completion option provided the root C-net has this option and the system is construction consistent. In
the proofs of Theorem 1 and Theorem 2 we use that the related statessARsU of the related processA
andA ∗φ B have theprojection property, i.e.,sU |PA = sA. Lemma 6 shows that a projection branching
bisimulation actually exists for compositions of C-nets where the transitions labels are unique. Note that in
a client-server composition ofA andB there are no arcs in(A ∗φ B)\A to places inPA. Therefore, the
connections betweenA to B can only limit the behavior of theA-part inA ∗φ B and not extend it. Hence:
If s ∈ [A ∗φ B, [ikA]〉 and(A, sA)R(A ∗φ B, s), thensA ∈ [A, [ikA]〉.

Lemma 6 (Projection branching bisimulation). LetA ∗ϕ B be a client-server composition of the C-nets
A andB and their interfaceϕ and let(PA ∪ PB) ∩ Pϕ = {iB , oB}. If

1. ∀t ∈ TA : `A(t) 6= τ , i.e., all transitions inA have a visible label,
2. ∀t1, t2 ∈ TA : if `A(t1) = `A(t2), thent1 = t2, i.e., all labels are unique, and
3. A 'b A ∗ϕ τ(B),

then for all branching bisimulations for C-netsR, for all k ∈ IN and for all s ∈ [A ∗ϕ B, [ikA]〉 with
(A, sA)R(A ∗φ τ(B), s) we have:s|PA = sA, i.e., the states restricted to the netA is similar to the
internal statesA of A.
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Proof. We denoteN = A ∗ϕ τ(B). LetR be an arbitrary branching bisimulation for C-nets and letk be
an arbitrary number inIN. We need to prove that all related states areprojectionrelated. Since the initial
states ofA andN are equal (implied by Definition 19 and the first two requirements of this lemma), it
follows that the projection property holds initially. Now suppose that for an arbitrarys ∈ [N, [ikA]〉 we have
(A, sA)R(N, sN ) with sN |PA = sA. Then, since the label oft is unique (the first two requirements of this
lemma), for allt ∈ TA: If (A, sA) [t〉 (A, s′A), then(N, sN ) [`N (t)〉 (N, s′N ) with (A, s′A)R(N, s′N ). By
the structure of netN it follows thats′|PA = s′A. Sinces was an arbitrary reachable state, it follows that
the projection property holds for any reachable state. ut
In the next two theorems we require that the transition labels are unique and not equal toτ , similar to the first
two requirement of Lemma 6. Lemma 6 then implies the existence of aprojectionbranching bisimulation
for C-nets. However if we would drop these requirements on uniqueness and the absence ofτ -labeled
transitions, but we would have a relationR that is a projection branching bisimulation for C-nets, then we
would obtain the same results.

A ~b U

A

B

A

C C

A

B

A ~b N

U W N

A A

A ~b W_ _ _

Fig. 7. The essence of Theorem 1.

Theorem 1 (Construction consistency of horizontal unions).
LetA ∗ϕ B andA ∗ψ C be client-server compositions of the C-netsA, B andC and their interfacesϕ and
ψ and let(PA ∪ PB) ∩ Pϕ = {iB , oB} and(PA ∪ PC) ∩ Pψ = {iC , oC}. If

1. ∀t ∈ TA : `A(t) 6= τ , i.e., all transitions inA have a visible label,
2. ∀t1, t2 ∈ TA : if `A(t1) = `A(t2), thent1 = t2, i.e., all labels are unique,
3. A 'b A ∗ϕ τ(B) andA 'b A ∗ψ τ(C),

thenA 'b A ∗(ϕ∪ψ) τ(B ∪ C).

Proof. We denoteU = A ∗ϕ τ(B), W = A ∗ψ τ(C), andN = A ∗(ϕ∪ψ) τ(B ∪ C).
The states of the netsA, U , W , andN and the interfacesϕ andψ are bags. When we refer to a state
sx, s′x, s′′x, then alwayssx, s′x, s′′x ∈ B(Px) where one of the charactersA,ϕ, ψ, U,W , or N is substituted
for x. Since the interfacesϕ andψ also contain the source and sink places of the netsB andC, we will
consider the states of the netsB andC without their source and sink places. When we refer to a state
sx, s′x, s′′x, then we meansx, s′x, s′′x ∈ B(Px\{ix, ox}) where a characterB or C is substituted forx.
In this proof we will use the relations between the behaviors ofA andU andA andW to prove a relation
between the behaviors ofA andN .
A 'b U andA 'b W imply that there are branching bisimulationsR1 andR2 that satisfy all properties of
Definition 19 such that∀k ∈ IN: (A, [ikA])R1 (U, [ikA]) and(A, [ikA])R2 (W, [ikA]).
By the construction ofU such thatA ⊆ U , the requirement on the uniqueness of the labels inA, and the
fact that all related states are reachable from the initial state Lemma 6 implies that for related statessA
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andsU the equalitysU |PA = sA holds. Moreover it implies that if a transitiont in A fires, then the same
transition inU fires. Therefore if two statessA andsU are related, we may split upsU in disjoint partssA,
sϕ andsB , namelysU = sA + sϕ + sB . Since the same holds forA andW , we can also split up a statesW

in disjoint partssA, sψ andsC , namelysW = sA + sψ + sC . By Lemma 4 it follows thatN is a C-net, and
by construction we have thatU ⊆ N , W ⊆ N andU ∩W = A. The latter implies that we can also split up
a statesN in disjoint partssA, sϕ, sB , sψ, sC , namelysN = sA + sϕ + sB + sψ + sC .
Based onR1,R2, and the property to split the states as explained before, we define the relationshipR:

(A, sA)R(N, sN ) ⇔
∃sϕ, sB , sψ, sC : sN = sA + sϕ + sB + sψ + sC ∧
(A, sA)R1(U, sA + sϕ + sB) ∧ (A, sA)R2(W, sA + sψ + sC)

We will first show thatR is a branching bisimulation that satisfies the requirements of Definition 18.
Consider markingssA andsN such that(A, sA)R (N, sN ).

1. Assume thatt ∈ TA and(A, sA) [`A(t)〉 (A, s′A). We have to prove that there exists markingss′N and
s′′N such that

(N, sN ) =⇒ (N, sN
′′) [`N (t)〉 (N, sN

′)∧
(A, sA)R(N, sN

′′) ∧ (A, s′A)R(N, sN
′).

Recall labels of transitions are unique, therefore we deal with the same transitiont in U and N .
The firing of t ∈ TA affects only places inPA, Pϕ andPψ and not the places inPB\{iB , oB} and
PC\{iC , oC}. This implies that the states in ofB andC are unchanged whent fires (s′′B = s′B and
s′′C = s′C). Sincet ∈ TA and all transition labels of transitions inA are visible we havèA(t) =
`U (t) = `W (t) = `N (t) 6= τ . Moreover the third requirement of this theorem implies thatτ -steps are
only taken inB andC (sA = s′′A). From (A, sA)R(N, sN ) and(A, sA) [`A(t)〉 (A, s′A) and thatR
impliesR1 it follows that there ares′ϕ, s′′A, s′′ϕ, ands′′B such that

(U, sA + sϕ + sB) =⇒
(U, sA + s′′ϕ + s′′B) [`U (t)〉 (U, s′A + s′ϕ + s′′B)

and

(A, sA)R1(U, sA + s′′ϕ + s′′B)∧
(A, s′A)R1(U, s′A + s′ϕ + s′′B).

Analogously we find exactly the same expression forW whereB is replaced byC andϕ by ψ. Since
the interfaces are disjoint, theτ -steps inB andC do not influence each other. Therefore we may execute
them in arbitrary order as long as the orders inB andC are not mixed up. Moreover for the same reason
the effects of the firing oft can be considered separately for each interface. Therefore we may combine
these firing sequences:

(N, sA + sϕ + sB + sψ + sC) =⇒
(N, sA + s′′ϕ + s′′B + s′′ψ + s′′C) [`N (t)〉 (N, s′A + s′ϕ + s′′B + s′ψ + s′′C).

According to the definition ofR we have:

(A, sA)R(N, sA + s′′ϕ + s′′B + s′′ψ + s′′C)∧
(A, s′A)R(N, s′A + s′ϕ + s′′B + s′ψ + s′′C).

This concludes the proof of this part.
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2. Assume now thatt ∈ TN and(N, sA + sϕ + sB + sψ + sC) [`N (t)〉 (N, s′A + s′ϕ+ s′B + s′ψ + s′C).
We can distinguish three different cases:t ∈ TA, t ∈ TB , or t ∈ TC . In the first casèN (t) = `U (t) =
`W (t) 6= τ and in the last two cases̀N (t) = τ . For each of these cases we need to prove that there
exists markingss′A ands′′A such that

(A, sA) =⇒ (A, sA
′′) [`A(t)〉 (A, sA

′)∧
(N, sN )R(N, sA

′′) ∧ (N, s′N )R(A, sA
′).

(a) Supposet ∈ TA. ThensB = s′B andsC = s′C . By the structure of the nets it follows that the same
step can be made inU andW . Therefore we have

(U, sA + sϕ + sB) [`U (t)〉 (U, s′A + s′ϕ + sB)∧
(W, sA + sψ + sC) [`W (t)〉 (W, s′A + s′ψ + sC).

By the properties ofR1 andR2 it follows that

(A, s′A)R1(U, s′A + s′ϕ + sB)∧
(A, s′A)R2(W, s′A + s′ψ + sC).

Hence by the definition ofR this results in(A, s′A)R(N, s′A + s′ϕ + sB + s′ψ + sC). We do not
need to considerτ -steps here because the steps inU andW are projections of the step inN .

(b) Supposet ∈ TB . Then`U (t) = τ and we havesA = s′A sinceτ -transitions inB do not affect the
state ofA, andsψ = s′ψ andsC = s′C since both the netsB andC and their interfaces are disjoint.
By the properties ofR1 andR2 we have

(U, sA + sϕ + sB) [`U (t)〉 (U, sA + s′ϕ + s′B)∧
(A, sA)R1(U, sA + s′ϕ + s′B)∧
(A, sA)R2(W, sA + sψ + sC).

Hence,(A, sA)R(N, sA + s′ϕ + s′B + sψ + sC).
(c) For t ∈ TC a similar argument as fort ∈ TB holds whereB is replaced byC andϕ by ψ.

We now have proved thatR is a branching bisimulation (Definition 18). In addition we have to prove thatR
is a branching bisimulation for C-nets which imposes additional constraints on the initial and final states as
formulated in Definition 19. Note that since we required that all transitions labels are6= τ , it follows that the
initial and final states areuniquelyrelated;τ steps are not possible in this case. In the following existence
and uniqueness proof we use similar arguments for the initial and final state. Therefore, for convenience,
instead of writing down the same proof twice we using the characterz which is a substitute for subsequently
i ando.

1. We first prove existence.
SinceR1 andR2 are branching bisimulations for C-nets we have∀k ∈ IN :
(A, [zk

A])R1(U, [zk
A]) ∧ (A, [zk

A])R2(W, [zk
A]).

By the definition ofR, this implies that∀k ∈ IN:
(A, [zk

A])R(N, [zk
A]),

2. Second we prove uniqueness, i.e., initial and final states are exclusively related to one another.∀k ∈ IN:
Suppose(A, [zk

A])R(N, y). Theny = [zk
A]+sϕ+sB+sψ+sC , but also(A, [zk

A])R1(U, [zk
A]+sϕ+sB)

and(A, [zk
A])R2(W, [zk

A] + sψ + sC). Using the uniqueness properties ofR1 andR2 this implies that
sϕ = sB = sψ = sC = 0. Hencey = [zk

A].

We may now conclude thatA 'b A ∗(ϕ∪ψ) τ(B ∪ C). ut
It is easy to see that Theorem 1 can be extended to a horizontal unions that couplesn (n ∈ IN) C-nets.
Without proof we generalize the horizontal union in the following corollary.
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Corollary 1 (Construction consistency of horizontal unions).
Let for i = 1, . . . , n A ∗ϕi Bi be client-server compositions of the C-netsA andBi and their interfacesϕi

and let(PA ∪ PBi
) ∩ Pϕi

= {iBi
, oBi

}. If

1. ∀t ∈ TA : `A(t) 6= τ , i.e., all transitions inA have a visible label,
2. ∀t1, t2 ∈ TA : if `A(t1) = `A(t2), thent1 = t2, i.e., all labels are unique, and
3. A 'b A ∗ϕ τ(Bi) for i = 1, . . . , n,

thenA 'b A ∗(ϕ1∪...∪ϕn) (B1 ∪ . . . ∪Bn).

A ~b U

A

B

B

B ~b W

C

A ~b N

U W

A B A

A

B

N

B

C

__ _

Fig. 8. The essence of Theorem 2.

Now we have derived a result for the horizontal extension of C-net trees. In the following theorem we
will derive a result to extend a C-net tree vertically. With the combination of these results we are able to
define the construction rules in the next section that enable us to build a complete tree given a number of
client-server compositions.

Theorem 2 (Construction consistency of vertical unions).
LetA ∗ϕ B andB ∗ψ C be client-server compositions of the C-netsA, B andC and their interfacesϕ and
ψ and let(PA ∪ PB) ∩ Pϕ = {iB , oB} and(PB ∪ PC) ∩ Pφ = {iC , oC}. If

1. ∀t ∈ TA : `A(t) 6= τ , i.e., all transitions inA have a visible label,
2. ∀t ∈ TB : `B(t) 6= τ , i.e., all transitions inB have a visible label,
3. ∀t1, t2 ∈ TA : if `A(t1) = `A(t2), thent1 = t2, i.e., all labels are unique,
4. ∀t1, t2 ∈ TB : if `B(t1) = `B(t2), thent1 = t2, i.e., all labels are unique,
5. A 'b A ∗ϕ τ(B) andB 'b B ∗ψ τ(C),

thenA 'b A∗ϕ τ(B ∗ψ C).

Proof. This proof has similarities with the proof of Theorem 1, however to make it self-contained we repeat
them. We use almost the same notations as in the proof of Theorem 1, except for the following differences:
nowW = B ∗ψ τ(C) andN = A∗ϕ τ(B ∗ψ C).
In this proof we will use the branching bisimulations betweenA andU andB andW to prove the branching
bisimulation ofA andN .
A 'b U andB 'b W imply that there are branching bisimulationsR1 andR2 that satisfy all properties of
Definition 19 such that∀k ∈ IN: (A, [ikA])R1 (U, [ikA]) and(B, [ikA])R2 (W, [ikA]).
For the same reasons mentioned in the proof of Theorem 1 the conditions of Lemma 6 are satisfied. There-
fore, again, if two statessA andsU are related, we may split up a statesU in disjoint partssA, sϕ andsB .
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Since the same holds forB andW , we can also split up a statesW in disjoint partssB , sψ andsC . By
Lemma 4 it follows thatN is a C-net, and by construction we have thatU ⊆ N , W ⊆ N andU ∩W = B.
The latter implies that we can also split up a statesN in disjoint partssA, sϕ, sB , sψ, sC .
Based onR1,R2, we define the relationshipR:

(A, sA)R(N, sN ) ⇔
∃sϕ, sB , sψ, sC : sN = sA + sϕ + sB + sψ + sC ∧
(A, sA)R1(U, sA + sϕ + sB) ∧ (B, sB)R2(W, sB + sψ + sC).

We will first show thatR is a branching bisimilarity by verifying the two requirements of Definition 18 and
second we will show thatR satisfies the additional requirements for C-nets.
Consider two markingssA andsN = sA + sϕ + sB + sψ + sC such that(A, sA)R (N, sN ).

1. Assume thatt ∈ TA and(A, sA) [`A(t)〉 (A, s′A). We have to prove that there exists markingss′N and
s′′N such that

(N, sN ) =⇒ (N, sN
′′) [`N (t)〉 (N, sN

′)∧
(A, sA)R(N, sN

′′) ∧ (A, s′A)R(N, sN
′).

The firing of t ∈ TA only affects places inPA and Pϕ. This implies that the firing oft does not
affect the state inB (sB = s′B), C (sC = s′C) andψ (sψ = s′ψ). Sincet ∈ TA and we assumed
that all transition labels of transitions inA in U are visible we havèA(t) = `U (t) 6= τ . Moreover
in U τ -steps are only taken inB. From (A, sA)R(N, sN ) and sinceR impliesR1, it follows that
(A, sA)R1(U, sA + sϕ + sB). From(A, sA) [`A(t)〉 (A, s′A) andR1 it follows that

(U, sA + sϕ + sB) =⇒ (U, sA + s′′ϕ + s′′B) [`U (t)〉 (U, s′A + s′ϕ + s′′B)∧
(A, sA)R1(U, sA + s′′ϕ + s′′B) ∧ (A, s′A)R1(U, s′A + s′ϕ + s′′B). (A)

This implies that there is a firing sequence of transitionstB1 , . . . , tBn in TB such that

(U, sA + sϕ + sB) [`U (tB1)〉 (U, sA + sϕ1 + sB1)[`U (tB2)〉
. . .

(U, sA + sϕn−1 + sBn−1) [`U (tBn)〉 (U, sA + s′′ϕ + s′′B). (B)

See Figure 9(a). By the requirements of the branching bisimulation definition for C-nets it follows that,
if sB = 0, thensB + sψ + sC = 0. In this case it follows directly thats′ARs′A + s′ϕ + sB + sψ + sC .
Suppose thatsB 6= 0. By the definition ofR it follows that the statessB in B andsB + sψ + sC in W
are related.4

Using the definition ofR2 it follows that there exists a row of markingssB + sψ + sC , . . . , sBn−1 +
sψn−1 + sCn−1 , s′′B + s′′ψ + s′′C as indicated in Figure 9(b). Since inW τ -steps only occur inC and

4 For the readers that are familiar with the compositionality theorem in [9]: By the branching bisimulation relation
for C-nets of Definition 18 it follows that also in case of multiple entranceall states are related. Therefore we do
not need thesafenessandactivation safenessrequirements we used in [9] to ensure single entrance, which makes
analysis less complicated. However the class of nets which satisfy the stronger branching bisimilarity requirements
of Definition 18 is smaller.
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Fig. 9. Vertical union of branching bisimilar components.
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firings inB do not affect places inC and vice versa firings inC do not affect places inB, we have:

(W, sB + sψ + sC)
=⇒ (W, sB + s′′′ψ + s′′′C ) [`W (tB1)〉 (W, sB1 + sψ1 + sC1)

=⇒ (W, sB1 + s′′′ψ1
+ s′′′C1

) [`W (tB2)〉 (W, sB2 + sψ2 + sC2)

. . .

=⇒ (W, sBn−1 + s′′′ψn−1
+ s′′′Cn−1

) [`W (tBn
)〉 (W, s′′B + s′′ψ + s′′C)∧

s′′′C = sC1 , for all i ∈ {1, . . . , n− 1} : s′′′Ci
= sCi+1 , s

′′′
Cn−1

= s′′C∧
(B, sB)R2(W, sB + s′′′ψ + s′′′C )∧
for all i ∈ {1, . . . , n− 1} : (B, sBi

)R2(W, sBi
+ sψi

+ sCi
)∧

for all i ∈ {1, . . . , n− 1} : (B, sBi)R2(W, sBi + s′′′ψi
+ s′′′Ci

)∧
(B, s′′B)R2(W, s′′B + s′′ψ + s′′C). (C)

Composition of (A), (B) and (C) is possible since all states reached inB are related states inR2.
Composition yields:

(N, sA + sϕ + sB + sψ + sC) =⇒
(N, sA + sϕ + sB + s′′′ψ + s′′′C )[`N (tB1)〉
(N, sA + sϕ1 + sB1 + sψ1 + sC1) =⇒
(N, sA + sϕ1 + sB1 + s′′′ψ1

+ s′′′C1
)[`N (tB2)〉

(N, sA + sϕ2 + sB2 + sψ2 + sC2)
. . . =⇒
(N, sA + sϕn−1 + sBn−1 + s′′′ψn−1

+ s′′′Cn−1
)[`N (tBn)〉

(N, sA + s′′ϕ + s′′B + s′′ψ + s′′C)[`N (t)〉
(N, s′A + s′ϕ + s′′B + s′′ψ + s′′C)∧
recall, also here:

s′′′C = sC1 , for all i ∈ {1, . . . , n− 1} : s′′′Ci
= sCi+1 , s

′′′
Cn−1

= s′′C .

In N `N (tBi) = τ (i = 1, . . . , n) and also all firings inC areτ -steps. Hence

(N, sA + sϕ + sB + sψ + sC) =⇒
(N, sA + s′′ϕ + s′′B + s′′ψ + s′′C)[`N (t)〉
(N, s′A + s′ϕ + s′′B + s′′ψ + s′′C).

We now summarize the key-relations we found in (A) and (C):
(a) (A, sA)R1(U, sA + s′′ϕ + s′′B)∧
(b) (A, s′A)R1(U, s′A + s′ϕ + s′′B)∧
(c) (B, s′′B)R2(W, s′′B + s′′ψ + s′′C).

By the definition ofR and by combining:
– (a) and (c) yields(A, sA)R(N, sA + s′′ϕ + s′′B + s′′ψ + s′′C) and
– (b) and (c) yields(A, s′A)R(N, s′A + s′′ϕ + s′′B + s′′ψ + s′′C).

This proves one side of the branching bisimulation.
2. Let now be given that(A, sA)R(N, sA + sϕ + sB + sψ + sC). By the definition ofR it follows that

(A, sA)R1(N, sA +sϕ +sB) and(B, sB)R2(N, sB +sψ +sC). We now take a step in netN . Assume
that(N, sA + sϕ + sB + sψ + sC) [`N (t)〉 (N, s′A + s′ϕ+ s′B + s′ψ + s′C). We can distinguish three
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different cases:t ∈ TA, t ∈ TB , or t ∈ TC . For each of these cases we need to prove that there exists
markingss′A ands′′A such that

(A, sA) =⇒ (A, sA
′′) [`A(t)〉 (A, sA

′)∧
(N, sN )R(A, sA

′′) ∧ (N, s′N )R(A, sA
′).

(a) Supposet ∈ TA. It follows thatsB = s′B , sψ = s′ψ andsC = s′C . By the structure of the nets the
same step can be made inU and therefore we have(U, sA + sϕ + sB) [`U (t)〉 (U, s′A + s′ϕ + sB).
Since noτ -steps can be made inA we havè U (t) 6= τ and hence(A, s′A)R1(N, s′A + s′ϕ + sB).
Using the relationR2 this adds to(A, s′A)R(N, s′A + s′ϕ + sB + sψ + sC).

(b) Supposet ∈ TB . ThensA = s′A andsC = s′C . By the structure of the nets it follows that the
transition can be made as well inU and inW . With respect toU t is aτ -step and with respect toW
t is not aτ -step. HencèU (t) = τ and`W (t) 6= τ and so(U, sA+sϕ+sB)[`U (t)〉(U, sA+s′ϕ+s′B)
and(W, sB+sψ+sC)[`W (t)〉(W, s′B+s′ψ+sC). FromR1 and the fact that noτ -steps are possible
in A this yields(A, sA)R1(U, sA+s′ϕ+s′B) and fromR2 this yields(B, s′B)R2(W, s′B+s′ψ+sC).
Adding these two relations gives(A, sA)R(N, sA + s′ϕ + s′B + s′ψ + sC).

(c) Finally supposet ∈ TC . ThensA = s′A, sϕ = s′ϕ, andsB = s′B . By the structure of the nets
it follows (projection) that(W, sB + sψ + sC) [`W (t)〉 (W, sB + s′ψ + s′C). By R2 and the fact
thatτ -steps inW occur inC we have that(B, sB)R2(W, sB + s′ψ + s′C). UsingR1 this adds to
(A, sA)R(N, sA + sϕ + sB + s′ψ + s′C).

We now have proved thatR is a branching bisimulation. In addition we have to prove thatR satisfies
the additional requirements for C-nets which imposes additional constraints on the initial and final states.
We will use similar arguments for the initial and final state as we used in the proof of Theorem 1. For
convenience, instead of writing down the same proof twice we using the characterz which is a substitute
for subsequentlyi ando.

1. We first prove existence. SinceR1 andR2 are branching bisimulations for C-nets we have
∀k ∈ IN : (A, [zk

A])R1(U, [zk
A]) and

∀l ∈ IN : (B, [zl
B ])R2(W, [zl

B ]).
Hence forl = 0, i.e., the empty net:
∀k ∈ IN : (A, [zk

A])R(N, [zk
A]).

2. Second we prove uniqueness, i.e., initial and final states are exclusively related to one another. We have
to prove:
∀k ∈ IN : ∀y : (A, [zk

A])R(N, y) ⇒ y = [zk
A].

By definition we have
∀k ∈ IN : (A, [zk

A])R1(N, sA + sϕ + sB). This impliessϕ + sB = 0 andsA = [zk
A]. Hencey = [zk

A].
We only have to verify that(B,0)R2(W,0). This follows from takingk = 0 in the definition ofR2.
AddingR1 andR2 gives the desired result.

HenceA 'b A ∗ϕ τ(B ∗ψ C). ut

The theorem for horizontal unions can be extended to an arbitrary number of nets (Corollary 1). In the verti-
cal union the netC may be a result of unions as well. As a consequence multiple application of the branching
bisimilarity theorems is possible and construction consistency for a C-net tree as long as each node and all of
its child-nodes (and grand-child-nodes) is a client-server construction satisfying the conditions of one of the
branching bisimilarity theorems. For an example consider Figure 10. IfA 'b A ∗φ τ(B), A 'b A ∗ψ τ(C),
B 'b B ∗ϕ τ(D), andB 'b B ∗ϑ τ(E), thenB 'b B ∗ϕ∪ϑ τ(D ∪ E) andA 'b A ∗φ∪ψ τ(B ∪ C), and
hence,A 'b A ∗φ∪ψ τ((B ∗ϕ∪ϑ (D∪E))∪C). The construction consistency theorems can be extended to
more general theorems that allow in the client C-nets the use of transitions with non-unique orτ -labels. In
fact we claim that we may drop the first two requirements of Theorem 1 and Corollary 1 and the first four
requirements of Theorem 2. Instead to prove construction consistency, for Theorem 1, we should impose
the following weaker requirements:
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A

A

CB

ED

Fig. 10.A tree of coupled C-nets with the same observable behavior as the netA.

1. ∀t ∈ TA : (`A(t) = τ) ⇒ (( •t ∪ t• ) ∩ (Pφ ∪ Pψ) = ∅), i.e.,τ -labeled transitions are not connected
to the interface,

2. ∀t1, t2 ∈ TA : (`A(t1) = `A(t2)) ⇒ ((Pφ ∪ Pψ) ∩ •t1 = (Pφ ∪ Pψ) ∩ •t2 ∧ (Pφ ∪ Pψ) ∩ t1• =
(Pφ ∪ Pψ) ∩ t2• ), i.e., transition with the same label are similarly connected to the interface.

For Corollary 1 and Theorem 2 we could also adjust the requirements in a similar way.

Many properties are transferred from one system to another if they are branching bisimilar [43]. Here we
show that the empty completion property transfers between branching bisimilar nets.

Lemma 7 (Transfer of empty completion property for branching bisimilar nets). Let A andB be C-
nets. Suppose that all transitions inA andB have a unique label except for theτ label and thatA 'b B.
∀k ∈ IN : (∀s : s ∈ [A, [ikA]〉 ⇒ [ok

A] ∈ [A, s)〉 ⇒ (∀s : s ∈ [B, [ikB ]〉 ⇒ [ok
B ] ∈ [B, s)〉, i.e., if A satisfies

the empty completion property, thenB also satisfies the empty completion property.

Proof. Pick an arbitraryk ∈ IN and suppose we have a markingsB ∈ [B, [ikB ]〉. There is a firing sequence
σB such that(B, [ikB ]) [σB〉(B, sB). Since(A, [ikA]) ∼b (B, [ikB ]) there is a markingsA ∈ [A, [ikA]〉 and,
since all transition labels are unique, there is a firing sequenceσA such that(A, [ikA]) [σA〉 (A, sA) and
(A, sA) ∼b (B, sB). If we remove allτ -transitions from the firing sequencesσA andσB , then we have
σA = σB . Clearly sinceA satisfies thek-empty completion property there is a firing sequenceσ′A such that
(A, sA) [σ′A〉 (A, [ok

A]). Using again the branching bisimilarity, there is also a firing sequenceσ′B such that
(B, sB) [σ′B〉 (B, xB) with [ok

A]∼b xB . Since[ok
A] is the end state, and end states are uniquely related, also

x should be the end state and sox = [ok
B ]. HenceB also satisfies thek-empty completion property. Since

k was arbitrarily chosen we may conclude thatB satisfies the empty completion property. ut
An important consequence of this lemma is the following: When a C-net tree has the same visible be-
havior as its root-net and the root-net has the empty completion option, then the complete tree the empty
completion option. Considering again Figure 10 this implies that, ifA has the proper completion property,
thenA ∗φ∪ψ τ((B ∗ϕ∪ϑ (D ∪ E)) ∪ C) also has the proper completion property. This is a desirable prop-
erty in software design. Intuitively it means that we can transfer the correctness of the specification to the
implementation as long as both have the same visible behavior.

6 A design pattern for C-net trees

In this section we will introduce one design pattern to create trees of C-nets as presented in Figure 1. In
future publication we hope to extend the number of design patterns. A C-net itself can be created in a
constructive manner [1] as well. In [8, 26] building-blocks are used to create nets with the theory of graph
grammars. Under certain assumptions these construction rules also apply to create C-nets. However the
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creation of C-nets is not the subject of this paper. Once we have a number of C-nets, we are equipped with
the proper building blocks to create a tree of C-nets. To create a client-server composition we introduced the
operator “*”. This composition is not necessarily construction consistent. We can think of many examples
where an extension of one C-net with another would limit the behavior of the specification. To facilitate the
consistency requirement we try to find a pattern to extend a C-netA with another C-netB in a consistent
manner, i.e., the behavior of the composite netA∗ϕ τ(B) is branching bisimilar to the behavior of the initial
C-netA in isolation. To limit the number of possibilities we assume that the extension, i.e., netB, has the
proper completion property and that it is only connected with its source and sink places to the base netA,
hence for the interfaceϕ we havePϕ = {iB , oB}. Even under these assumptions it is not for granted that
the compositionA ∗ϕ B is construction consistent with the initial netA. In Figure 11 netA is the base net
and netB is the extension ofA. In all three presented patterns bothA andB have the proper completion
property in isolation. We consider the case in which there is initially one token in the source place.
In Figure 11(a) in addition the transitions that produce a token for netB and consume a token from netB
are on a path fromiA to oA. However if the production toB is skipped, then it is also not possible to fire
the transition that consumes fromB. Moreover if the transition fires which produces toB followed by the
transition which does not consume fromB, then a token is left in the sink places ofB. Clearly the coupling
with B influences the behavior ofA.
In Figure 11(b) another problem occurs. The number of iterations in the first loop might not be equal to the
number of iterations in the second loop, causing to more tokens produced toB then consumed fromB, or
a dead-lock inA. Clearly also this coupling influences the behavior ofA.
Finally, in Figure 11(c), we consider an example in whichA is acyclic in an attempt to prevent the errors in
the second example. However this example is not safe. In netA the first transition produces three tokens:
one in the second place, one in the third place and one in the top place. At that moment the second and the
third transition are enabled. When the second transition fires once and the third transition fires twice we are
in the situation that there is still one token in the top place and there are two tokens in fourth sequential
place. In spite of the fact that the fourth place is marked with two tokens and an input place of the fourth
transition, this transition can only fire once since there is only one token in the top place. If this transition
fires, the last transition will be enabled with precisely one token in both of its input places. HenceA has the
proper completion option in isolation. When we consider the composite net we see that one token is put into
the source placeiB of B. However the behavior ofA is such that two tokens should be consumed fromB.
Clearly the transition attached tooB can only fire once and hence this results in a dead-lock. So we found
another example where the coupling ofA andB influences the behavior ofA.
All examples have in common that the number of productions toB is not equal to the number of consump-
tions fromB. This drawback is resolved in the following theorem.

Theorem 3 (Request-response pattern).LetA∗ϕB be a client-server composition of C-netsA andB and
the interfaceϕ and let(PA ∪ PB) ∩ Pϕ = {iB , oB}. Suppose thatB has the proper completion property
and suppose that there is a C-netC ⊆ A with FC = FA ∩ ((PC × TC) ∪ (TC × PC)) and the proper
completion property. See Figure 12. If

1. all arcs fromA\C to C end iniC and all arcs fromC to A\C start inoC , and
2. ∀t ∈ start(C) : iB ∈ t• ∧ ∀t ∈ stop(C) : oB ∈ •t,

thenA∼b A ∗ϕ τ(B).

Proof. The proper completion property ofC implies that, separated from its environment, the sum of all
the firings of all the transitions in the setstart(C) equals the sum of all the firings of all the transitions in
the setstop(C).
Now we considerC in its environment. There are four types of connections toA\C andB:

1. the arcs from transitions inA\C to iC ,
2. the arcs from the transitions instart(C) to iB ,
3. the arcs fromoB to the transitions instop(C), and

25



A

B

iA

oBiB

oA

(b)

A

B

iA

oBiB

oA

(a)

A

B

iA

oBiB

(c)

oA

Fig. 11.Erroneous simple-structured patterns.
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Fig. 12.Request-response pattern.

4. the arcs fromstop(C) to the transitions inA\C.

Type 1 and 4 imply that the behavior ofC, once a token has been places iniC , can never be influenced by
tokens in the netA\C. Hence the only influences on the behavior ofA can be raised byB.
Let us considerB. This net has the proper completion property in isolation, but also in its environment this
property holds since its only connections withC are the type 2 and 3 connections.
Since all transitions instart(C) are connected toiB , this implies that the number of firings of all transitions
in iB equals the number of tokens that comes acrossoB . Since all transitions instop(C) are connected to
oB , this implies that for any firing of a transition instop(C) there is a tokens available inoB and that there
will be no tokens left inB.
This implies thatB at most postpones the behavior ofC but never limits this behavior. ut
By means of this request-response pattern we are able to build construction consistent client-server compo-
sitions of C-nets without having to verify the branching bisimilarity. A direct consequence of this theorem
and Lemma 7 is that, ifA has the empty completion property, then alsoA ∗ϕ B has the empty completion
property. More general: If a root C-net of a C-net tree has the proper completion option and the tree is
constructed by repeatedly applying the pattern, then the C-net of the whole tree has the empty completion
option. This may be compared to theinheritance-preserving transformation rulesto constructsub classes
of net presented in [4, 14].

The pattern presented in this section fits in an approach to process design which is applied occasionally.
In the first step a rough process is designed, then a more detailed specification follows and finally in the third
step, i.e., the implementation, various applications have to execute the transitions. Consider for example
Figure 13. It illustrates this approach with the decomposition of a transitiona. In the example depicted in
Figure 13 in the first step transitiona is lifted out of the rough process. In the second step this transition is
decomposed in two sub-transitions:a′ is used to start with the activities and the originala label is used to
mark the completion of the transition. The two transition are part of the client process. In the third step a
server process is designed that actually executes some of the activities that should be performed bya. The
server process is attached toa′ anda by using the design pattern. If necessary also transitions in the server
process can be decomposed in a similar way. If that happens, instead of the two layer of this example, we
will end up with a C-net tree.

7 Conclusion

The contribution of this paper is a more efficient approach towards designing construction consistent soft-
ware architectures. Whereas we were used to make constructions and execute exhaustive verifications of the
state space afterwards and if necessary correct the constructions, we now have “correctness by construc-
tion”. We demonstrated that we can build an entire tree of C-net by starting with a single component and
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Fig. 13.An approach to process design using the pattern.

step by step adding new components such that the complete system of components has the same visible
behavior as its specifying root component. We introduced an operator to compose C-nets and we presented
new compositionality results for this operator that at the same time prescribed the conditions for consistent
composition. Finally we introduced an easy way to satisfy the conditions of the compositionality theorems
by presenting a design pattern. Using the pattern to build C-nets trees guaranteed consistency.

A second result is that we showed that our construction rules conserve the empty completion property,
i.e., be able to finish a transaction and to finish without leaving any tokens. In the context of software de-
velopment this yields that if specification has this properly, then also the complete system has this property.

We conclude by pointing out our future investigations. In this paper we presented “correctness by con-
struction” as an alternative for a posteriori verification (i.e., “model checking”). In the future we will con-
tinue investigating this new course by constructing more sophisticated patterns to couple C-nets.
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