

Asynchronous communication in process algebra : extended
abstract
Citation for published version (APA):
Boer, de, F. S., Klop, J. W., & Palamidessi, C. (1991). Asynchronous communication in process algebra :
extended abstract. (Computing science notes; Vol. 9135). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f23cab3f-8b6a-4f79-a2be-9dfb248705a5

Eindhoven University of Technology

Department of Mathematics and Computing Science

Asynchronous Communication in Proces Algebra
Extended Abstract

by

F.S. de Boer, J.W. Kiop, C. Palamidessi
91/35

Computing Science Note 91/35
Eindhoven, December 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Asynchronous Communication in Process Algebra
(Extended Abstract)

Frank S. de Boer~ Jan Willem Klopl~ Catuscia Palamidessi1§

Abstract

We study the paradigm of asynchronous process communication, as contrasted with the syn
chronous communication mechanism which is present in process algebra frameworks such
as CCS, CSP and ACP. We investigate semantics and axiomatizations with respect to var
ious observability criteria: bisimulation, traces and abstract traces. OUf aim is to develop
a process theory which can be regarded as a kernel for languages based on asynchronous
communication, like data flow, concurrent logic languages and concurrent constraint pro
gramming.

1 Introduction

In order to introduce the framework of asynchronous communication that will be adopted and
investigated in this paper, we will first give an informal comparison with synchronous communi
cation as in ACP [BK86]. Synchronous communication is modeled in ACP by a binary function
I on actions. In the case of value transmission the typical equation is ctd I c!d = c:(J:d, where
the actions cid and cld are interpreted as "send datum d along channel c" and "receive datum
d at channel c" respectively, and c:(J:d represents the completion of the communication action.
As an example, consider the parallel composition

a{cld,c)d} (a· dd· b II a' · cTd· b').

Here a is the encapsulation operator, enforcing the intended communication by acting as a
garbage collector for attempted but failed communications. According to the axioms of ACP
this expression corresponds to the process graph represented in Figure l(a). In this figure, the
dashed parts express the unintended traces that are pruned by a{cld,cjd}'

Note that there is no difference in directionality between the communication partners dd, cTd.
In the asynchronous setting, on the other hand, there is an asymmetry between cld and ci d:
one of them, cid, is now supposed to precede its partner dd, for an indeterminate amount of
'time' (i.e. number of steps). Due to the temporal split between cid, dd, we need now two
actions signifying their completion; let them be c.ij.d and c11"d, respectively. Furthermore, some
memory mechanism, in the form of a state operator, must now be available to convey the effect

·Department of Computer Science, Eindhoven Technical University P.O. Box 513, 5600 MB Eindhoven, The
Netherlands email: wsinfdb@tuewsd.win.tue.nl ,.

fCWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands email: jwk@cwi.nl.katuscia@cwi.nl
:Department of Computer Science, Free University. De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
§Department of Computer Science. State University of Utrecht, P.O. Box 80089, 3508 TB Utrecht, The

Netherlands

1

a c!d b -- ---<;>------+0 , ,
a' a a: a:

a -~!<i_<!r--q-~
, ,

c~:
,

i~ cN ci~ , c

Q---~-_<!r---- b
, ,

b/: b/: b' b'

b---~-~-~{<i b
b' b' b' b'

a ~. b

(a) (b)

Figure 1: Synchronous versus asynchronous communication.

a b -----+0 a b -----+0 , ,
a a a: a a " a:

a b a b
,

b/: , b' b' b' b' b'

6.---- b a b

(a) (b)

Figure 2: Synchronous versus asynchronous communication with abstraction.

of the event cid during the interval from cid to cld. Let us now consider the asynchronous
counterpart of the example above. The evaluation of

JL~(a· cld· b II a' . cid· b'),

where JL is the state operator, by using the axioms in aprPAs,~ (see Table 2) gives now the
process graph in Figure l(b). Again the dashed parts express the unintended traces, originating
by free interleaving, that are pruned away by JL.

Just as in the synchronous case, one might wish to abstract from these completed actions.
The representation of the processes from the example above 'shrinks' by this abstraction to the
process graphs in Figure 2.

Note that both the operators &,JL, can be viewed as 'actualization' operators, that make the
process actually run. So we refer to c 11' d, c.IJ. d actions as being completed, or realized, and to
cid, cLd actions as being intended, or possible.

In specifying the send and receive data transmission scheme there is a choice to be made,
concerning the nature of the channels. In this paper we will treat the two main cases of 'sequential
access' and 'random access'. Of the first we have chosen as a typical representant the queue
(but we may also have investigated the case of stack); in the second, the bag is a natural choice.

Our point of departure is the paper [BKT85] where the send/receive mechanism is axioma
tized, both for queues and bags as channels. We show that this axiomatization is complete for
the 'minimal' setting of bisimulation semantics. Here the specific nature of the communication
channels does not yet influence the axiomatization which can be given in a uniform way.

2

The next notion we investigate is the 'maximal trace-respecting congruence'!. We give a
characterization of this congruence in terms of a fully abstract model which is a version of the
usual failure semantics for synchronous communication ([BHR84]), and we provide a complete
axiomatization. Remarkably, for this more abstract notion the above uniformity between queues
and bags disappears.

Finally we consider traces with abstraction from the completed communication actions. As
usual, the phenomenon of abstraction introduces some quite intricate problems. At this point
the difference between bags and queues becomes very prominent: the case of bags requires the
introduction of many new axioms, thus identifying more expressions. Therefore we can call the
latter theory (for bags) more abstract than the former (for queues). A priori this was to be
expected since a bag in itself is already an 'abstraction' of a queue.

1.1 Comparison with related work

A theory for asynchronous communication has also been developed in [JHJ90]. That theory is
more abstract than ours; the main reasons are that in [JHJ90] there are, first, some restrictions
on processes to be composed in parallel, and, second, communication is modeled in such a way
that when a process receives an item from a buffer, that item remains available for the other
processes. Such a mechanism can be implemented in our language by means of a copying process;
therefore all the contexts which can be specified in [JHJ90] can be specified also in our language.
On the other hand, some of our contexts cannot be defined in [JHJ90] (i.e. our congruence is
strictly less coarse).

The relatively 'low degree of abstraction' of our language has the advantage that we can
regard it as a kernel for the axiomatization of other languages based on asynchronous com
munication. It is possible to show, in fact, that with respect to both observability criteria we
have considered in this paper our axioms are correct for data flow [Kah74], concurrent logic
programming [Sha89], and concurrent constraint programming [Sar89]. In other words, the
communication mechanisms of those languages can be implemented in ours. Completeness can
then be obtained by adding some specific axioms.

The fact that we construct a fully abstract model based on failure sets might look surpris
ing, and in contrast with the claim, often made, that asynchronous communication does not
require refusal information. In fact, recent studies have shown that several languages based
on asynchronous communication have linear models: see for instance [Jon85, Jos90] for data
flow, [BP90] for concurrent logic languages, [BP91] for concurrent constraint programming and
[BKPR91] for a general semantic framework based on reactive sequences. The explanation of
this apparent contradiction is that also these last models encode some hidden refusal informa
tion. In this paper we have opted for a model in which the refusals are explicitly represented
because it facilitates the proof of the completeness of the axiomatization.

2 Bisimulation semantics for asynchronous communication

In this section, that is the basis of our paper, our starting point is [BKT85]. After fixing the
notation and the syntax of the language to be considered, we provide a set of transition rules
defining its operational semantics.

1 By 'traces' we mean the 'completed' ones, i.e. the traces associated to the transition sequences which end in
a point from which no further transitions are possible.

3

--------------------m-- Cj - - - ---- ---------

mkmiiii intended
: :!!.lP!!E output

A
::nd= actzons

C.I). Cit
co,!,pleted completed

mput output
actzons actzons

proper actions communication actions

Figure 3: The set of actions. Shaded: dependent actions; unshaded: independent actions.

2.1 Syntax

The set of actions is structured as follows.

1. A is a set of proper actions, notation: a, b, a1, a2,

2. Let D be a set of data: d, d1, d2 . .. , and let C be a set of channel names: c, e, C1, C2,' ...
For all c E C and d E D we have communication actions

• cld (intended input action)

• cid (intended output action)

• c.l).d (completed input action)

• citd (completed output action)

The set of all intended input actions is C t; likewise C i, C .I). , C it contain the intended
output actions, the completed input actions and the completed output actions respectively.

The action alphabet Act is now defined to be

Act = AU Ct u Cj u C.I). u C1l'.

We will write u, v, ... for general actions from Act. Intended input actions from C t are also
called dependent actions (Dep); all the other actions are independent (IntI) (see Figure 3). In
Section 2.2 we give motivation for this terminology.

The set Exp of (process) expressions is generated by the following grammar:

The constant 6 represents the inaction or deadlock. For any u E Act, u· is an action prefixing.
The operators +, II and IL are the sum (or alternative choice), the merge (or parallel com

position), and the left-merge respectively. For any c E C and state a, I'~ is an encapsulation
operator (a represents the 'initial state' of c). Finally for f : Act --+ Act respecting the partition
of Act, P f is a renaming operator.

Bracket conventions are employed as usual. Instead of u· x we also will write u x. Often we
will omit the 'end marker' 0 in an expression, and render e.g. a 6 as just a.

4

2.2 Operational semantics

In order to define the operational semantics of our processes in a uniform way, i.e. not depending
upon the specific kind of channels that are intended, we treat channels as given by some abstract
data type. To describe the meaning of the actions cld and cj d we introduce two operations
get: State X D -+ State U { 1-} and put: State x D -+ State, where State is the set of states (of the
channel), and 1- stands for undefined. The understanding is that get(a,d) checks if the datum
d is available in a and in that case it retrieves it. It is undefined otherwise. This is the reason
why we call the actions in C! 'dependent': their being enabled or not depends upon the content
of the buffers, hence upon the actions performed by the environment. The operation put(a, d)
in general modifies a by adding the datum d. We assume that it is always defined, and this
is the reason why we call the actions in Cj 'independent'. One could wonder what happens,
in the case of bounded channels, when the channel is full. We assume that in such a case the
datum is simply lost. The reason is that in general a test on the state of the channel, before
perfoming a send action, is very expensive to implement. However, our theory can be modified
so as to include such a test by adding the possibility that put(a, d) is undefined and by treating
the actions in Cj as dependent.

The operational semantics of an expression x E Exp is defined by the transition system T in
Table 1, where x, y, z are meta-variables ranging over Exp.

To each process expression x E Exp the transition system T assigns a transition graph (also
called process graph), as illustrated in the examples shown in Figure 4. The symbol (denotes
the state of an empty channel. We denote by '" the well known bisimulation equivalence, which
identifies expressions with the same transition graph (disregarding the labels in the nodes).
Examples of bisimilar processes are the pairs (i), (ii) and (v) in Figure 4.

2.3 Axioms

The bisimulation equivalence '" is a congruence and it is completely axiomatized by the system
aprPA8,~ in Table 2, which is the one from [BKT85] restricted to action prefixing. In our paper
we don't consider sequential composition, just for reasons of technical convenience. We expect
that all results in the present paper can be obtained also in that more general case, but at the
cost of sometimes having to include 'degenerate' versions of some axioms. The name aprPA6,~
means 'action prefixing process algebra with constant 8 and operator It'; it is based on the
nomenclature proposal in [BB91].

Theorem 2.1 Let x, y E Exp. Then

x '" Y iff aprPA6,~ f- x = y

3 Trace semantics

In this section we study the observability criterion which consists of observing all the possible
traces generated by a process in a sequence of transition steps. It is convenient to introduce the
following notation. For x, y E Exp, S E Act', x ~ y represents a sequence of transition steps
from x to y and it is defined as follows:

.\
1. x ---» X (where A is the empty sequence),

'f U h U 2. 1 X -----1- Y t en x ------* y,

5

R1 u
U x -----+ x

u u
R2 x --+ 11 x ------t 11.

u u x+z--+y z+x--+y

u u
R3 x --+ 11. x --+ 11..

x II z ~ y II z z II x ~ z II y

u
R4 x --+ 11..

x ILz ~ y II z

c1d
R5 x ------t '!J. if a' = put(a, d)

cjtd '
I-'~(x) --+ I-'~ (y)

cjd

R6 x --+ '!L if a' = get(a,d) ",1-
U() ,jJd U'() 1-', x --+ 1-', y

u

R7 x --+ Y.. if u'" cjd, c!d
I-'~(x) ~ I-'~(y)

u
RS x -----7 y..

j(u)
PJ(x) --+ pj(Y)

Table 1: The transition system T.

6

(i)

(ii)

(iii)

(v)

c.lJ.d
, 6

aM

(iv)

'cd·6 cd·6

citd

Figure 4: Examples of transitions.

7

b

Al x+y = y+x
A2 (x+y)+z = x+(y+z)
A3 x+ x = x
A4 x + 0 = x

MI x II y = x lly + y II x
M2 ollx = 0
M3 uxlly=u(xlly)
M4 (x+y)llz = xllz+yllz

EI Jl~(0) = 0
E2 Jl~ (u x) = U· Jl~ (x) if u t- cld, cld
E3 Jl~(cld·x) = c1rd'Jl~'(x) if a' = put(a, d)
E4 Jl~ (cld . x) = c JJ. d . Jl~' (x) if a' = get(a, d) t-.L
E5 Jl~ (cld . x) = 0 if get(a, d) =.L
E6 Jl~(x + y) = Jl~(x) + Jl~(Y)

RNI Pf(o) = 0
RN2 Pf(u'x) = f(u)·PJ(x)
RN3 Pf(x + y) = Pf(x) + Pf(Y)

Table 2: apr P A"w

8

x y

cld b

Figure 5: Example of trace-equivalent processes x and y which can be distinguished by a 11-
context.

'f' d t h ,t 3. I X ---l> Y an Y ---l> Z t en x ---l> Z.

Now we can define the traces of a process and the corresponding equivalence relation.

Definition 3.1 For x E Exp, the truces of x are given by:

T(x) = {sl 3y.x~y +}

The notation y + indicates that for no u, z we have y':.. z.

The relation l' is the equivalence induced by the traces:

x l' y iff T(x) = T(y).

This relation is not a congruence, essentially due to the presence of the encapsulation operator

11 which enforces a dependency upon the state of the channels, as determined by the initial state
and by the actions performed by the environment.

Example 3.2

1. The processes x and y represented by the transition graphs in Figure 5 have the same traces,
but their encapsulation with respect to the channel c yields different results: T(I1~(x)) =
{ab}, whereas T(I1~(Y)) = {a, ab}.

2. The processes x and y represented in Figure 6, have the same traces, but if we now
consider them in parallel with the process z then encapsulation with respect to c, e yields
a difference: dtd· C1[d· c.(l.d E T(I1~I1;(Y liz)) \ T(I1~I1;(x II z)).

In the following, C[] indicates an arbitrary (unary) context, i.e. an expression containing
one occurrence of a 'hole'. We define the congruence relation ~ as the maximal truce-respecting
congruence, i.e.

x ~ y iff VC[]. C[x] l' Cry]·

In the rest of this section we will investigate a concrete model corresponding to this congru
ence, and its axiomatization.

9

x y z
o

cid cjd cid eid

a a a a a

Figure 6: Example of processes x and y which can be distinguished by a parallel process z.

3.1 Failure semantics

It has been shown in [BK088] that in the synchronous case of ACP with one-to-one communi
cation failure semantics ([BHR84]) is fully abstract with respect to trace equivalence. We will
show how to modify it so that this property is maintained. We first construct the failure model
for bags and then we show how to adapt it to the case of queues.

Let us first show why the standard failure model is not fully abstract.

Example 3.3 Figure 7 shows three examples of pairs of processes x, y which are not identified
by the standard failure model; yet their traces are the same in every context.

The main reason why the expressions x and y in Figure 7 are trace-congruent is that the
independent actions are always enabled regardless of the state. This is not true for the input
actions.

Example 3.4 Figure 8 shows that the input counterparts x' and y' of the processes x and yin
Figure 7 can be distinguished by a parallel process z. In all cases there is a trace generated by
Jl;(Y' II z), which is not generated by Jl;(x' II z).

The relevant information is associated with the resting points, those points from where the
process can only proceed by input actions, and consists of the trace which leads to such a point
and the state which make such a point stable, i.e., none of the initial input actions are enabled.
As such, we can represent a state by a subset of the complement of the ready set, i.e., the set
of initial actions, associated with a resting point. We call such a representation a refusal set.
However, the intuition is that when an input action cld occurs in the refusal set this indicates
that the value d is available on channel c.

Definition 3.5 The failure set of x is

Fix] = {{s,R} I 3y. x ~ y, Init(y) <;, Dep, R <;, Dep \ Init(y)}

where Init(x) = {u I 3y. x --"-. y}.

The relation =y is the equivalence induced by the failure sets, i.e.

x =y Y iff Fix] = Fly]

10

x y

o

a a

1

0

2
;/ a

~~ ejd

0

a a

3
cjd b

Figure 7: Examples of trace-congruent processes x, y with different standard failure semantics.

11

X' y' z distinguishing

trace

aI

0

etdI a a a· citd
1

7~ cld eld

aI ;/ a a
2

7~ 7~ eld

aI

0

a a a
3

7~ cld b

Figure 8: Examples of processes x', y' which can be distinguished by a process z.

12

This relation ~ is actually a congruence. To show this, it is sufficient to prove that the definition
of F is compositional with respect to all the operators of the language, i.e. every operator of
the language has a semantical counterpart. We give only the definition for action prefixing and
encapsulation, the other operators are as in the standard case.

Definition 3.6 Let P, Q range over the domain of F.

{

{(us,R) I (s,R) E P}
Prefixing u: P =

{(us,R) I (s,R) E P} U {(A,R) I R ~ Dep\ {u}}

ifu¢Dep

otherwise,

Encapsulation. We first define the operator p,~: Act' -+ Act' U Act'" as the operator on
traces which transforms communication actions on c into completed ones, and the auxiliary
operator St~ : Act' -+ State which computes the current state (on c) at every point of
the trace:

P,~(A) A St~(A) "
P,~(us) U· P,~(s) St~(us) St~(s) if u # cid, ctd
P,~ (cid . s) citd· P,~' (s) St~(cid·s) St~'(s) if ,,' = put(", d)
P,~(c1d· s) = c.lJ,d. P,~' (s) St~(c!d. s) St~'(s) if ,,' = get(",d) #1.
P,~ (ctd . s) = " St~(c!d. s) 1. if get(",d) =1.

Next we extend P,~ on pairs as follows:

P,~(P) = {(JL~(s),R) I 3(s,R') E P.
R~R'U{c1dl dED},
St~(s) #1.,
(cld ¢ R' =? St~(s· cld) =1.)}

The failure semantics is correct with respect to the traces, in fact T(x) = {s I (s,Dep) E F[xn.
Since "'Ie is a trace-respecting congruence, it is at least as fine as =r (which, by definition, is
the maximal trace-respecting congruence).

3.2 Axioms

We now present the axioms to add to aprPA.,~ in order to obtain a complete axiomatization of
the failure semantics introduced above.

In the synchronous case a complete axiomatization for failure semantics has been obtained by
adding to the theory of ACP the ready axioms and the failure axiom ([BK088]) which, restricted
to the case of aprPA., are respectively the axioms Rand S in Table 3. Our failure semantics is at
least as abstract as that semantics in [BK088J, in fact it can be retrieved by considering (only)
those pairs in which the refusal set contains all independent actions. Therefore the axioms R
and S are valid in our semantics. On the other hand, our semantics is strictly more abstract
because it cancels branching points from which an independent action exits. Axiomatically this
is modeled by factorizing the plus operator with respect to the independent actions: see axiom
I in Table 3, where i stands for any independent action, i.e. i E Act \ C 1.

Note that if we generalize i in the axiom I to be any action we obtain a system equivalent to
the one presented in [vGla90J as the axiomatization of (completed) trace semantics for aprPA •.

13

S ux+u(y+z) = ux+u(x+y)+u(y+z)

I u(ix+y) = u(ix+y)+uix

Table 3: The failure axioms for asynchronous communication.

Theorem 3.7 (Completeness) For all x,y E Exp we have

x ~ y iff aprPAs,~ U {R, S, I} I- x = y

3.3 Full abstraction of failure semantics

In this section we show how to specialize the failure semantics given above to the cases of random
access (bags) and sequential access (queues).

Bags. In the case of bags the fully abstract semantics is just the failure semantics F.

Proposition 3.8 (Full abstraction) If channels are bags then ~ <;; ~.

Corollary 3.9 If channels are bags then for x, y E Exp the following are equivalent.

1. x =p y,

2. x~ y,

3. aprPA6,~ U {R, S,I} I- x = y.

Queues. The distinguishing feature of sequential access is that only one of the items stored in
a channel can be read and consumed. As a consequence, the failure semantics as defined above
is not fully abstract. For instance, it distinguishes the processes x = a· cM! + a· cld2 + a· c!da
and y = a(cld! + cldz) + a(cldz + clda) + a(cld3 + cldd which in case of sequential access
are observationally identical. Since for each channel only one item is relevant for the observable
behaviour of a process, we must consider only those refusal sets in which no more than one input
on the same channel is present.

Definition 3.10 The queue failure set of x E Exp is

F'[x] = {(s,R) E F[x] I c!d,c!d' E R => d = d'}

Let =F'< be the associated equivalence relation. It is possible to show that "'F'l is a congruence
and that it is as coarse as ~.' We will specify now a subset of the language for which the
completeness holds. Consider the subset Exp' of expressions in which an input action on a
channel c can occur only in contexts of the form 'EdEDC! d· Xd. So, the typical feature of
this su blanguage is that it cannot perform anymore a blocking test on the presence of a specific

14

datum. Expressions of this forms are used in Process Algebra to implement 'input on a variable',
Le. CSP-like actions of the form c1 V . xlV], where V is a variable of type D. For expressions in
Exp' the semantics F and f'l are the same, i.e. f'l[x] = f'l[y] iff F[x] = F[y]. Therefore we
obtain:

Corollary 3.11 If channels are queues then for x, y E Exp' the following are equivalent

1. x =F' y,

2. x "'Ie y,

3. x "'r y,

4. aprPA6,~ U {R,S,I} I- x = y.

4 Abstraction from communication

In this section we investigate an axiomatic characterization of the proper behaviour of a process,
Le., we want to encapsulate all communications and treat them as invisible (silent) steps. To
this end we extend the set Act to contain a special internal action T, which corresponds to
the standard notion of silent step in languages like CCS and ACP. In the following, we will
use the notation p,(x) as an abbreviation for the encapsulation of the process x with respect
to all channels, with initial content empty, i.e., if C = {C1, .. " cn}, then p,(x) = p,~, .. , P,~n (x).
Furthermore, we use the notation p(x) to denote the process x where all the completed actions
are renamed into T. To define the proper traces we need an operator Q which removes from a
trace s E Act' all the T actions. The proper traces of a process are then defined as follows:

The relation ""rT is the equivalence induced by the proper traces:

X ""rT y iff T,.(x) = T,.(y)

The congruence relation "'rT is the maximal proper-trace-respecting congruence:

X "'rT y iff VC(]. C(x] ""rT C(y]

We now investigate an axiomatization for ~T' The axioms for T-abstraction which have
been studied for the failure semantics (and therefore for the maximal proper-trace-respecting
congruence) in the presence of synchronous communication ([BK088j) are, of course, still valid in
our asynchronous case. Restricted to the case of action prefixing only (i.e. no general sequential
composition) these axioms are the ones shown in Table 4.

Note that the presence ofT1 and T2 makes the axiom S of Table 3 superfluous (cf. [BK088]).
However, these axioms for T-abstraction are not complete in the presence of independent

actions. When T is prefixed to an independent action i, it can be deleted. Formally, this is
captured by the axiom in Table 5. In the presence of the axiom T3, the axiom I of Table 3 can
be shown to be derivable.

Furthermore we observe that processes like 'cid· a and cid· a + a' cid are now observably
equivalent. This identification is captured axiomatically by the law in Table 6.

Note that the reverse of this law is not correct (an output cannot be anticipated). For
instance, a· ci d and a· ci d + ci d· a are not observably equivalent. A distinguishing context

15

T1 UTX = UX

T2 T X + y = T X + T (x + y)

Table 4: T-abstraction laws for the failure semantics in the synchronous case.

Table 5: Additional T-abstraction law for independent actions.

is C(] = c!d. b II []. The process C(a· cid] will produce ab only, whereas C(a· cjd + cjd· a] will
produce additionally ba.

In the full paper we show that the above axiom system completely characterizes 1:,. in the
case of queues.

Theorem 4.1 (Completeness for queues) For all x,y E Exp' we have

X ~T Y iff aprPA6,~ U {R, T1 - 3, OP} I- x = y

However, when we consider abstraction from communication in the case of bags, many
additional identifications have to be made. First we observe that we have to abstract from the
order between (intended) output actions, Le., the processes cjd· ejd' and ejd' . cjd are observably
equivalent. A simple axiomatization of this phenomenon can be given in terms of multisets of
output actions, so-called combined actions, which we denote by c. The intended meaning of a
combined action is that of a concurrent execution of its components. 'In Table 7 the multiset
union is denoted by u.

Another class of identifications stems from the fact that in the case of bags we are not in
general able to detect whether a process intends to read an item.

Example 4.2 The process a . c!d is observably equivalent to the process a· c!d + a. Note that in
the case of queues these processes can be distinguished by the process cjd· cid'· c!d'· b (d of d'),
which will always produce b when put in parallel with the first process, while the input action
cld' can be blocked in case the second process chooses the branch a.

OP cjd(ax+y)=cjd(ax+y)+a·cjd·x

Table 6: Delay axiom for output actions.

16

1"0 cex = (cUe)x

Table 7: Abstraction axiom for output actions.

13 u(£6+x) = u(£6+x)+ux

15 ~iU· ~j£ij Xij = ~iU· ~j£ij Xij + U· ~k£k Xk

(V! E 1-+ J. 3£k <; Ui£i!Ci»)

Table 8: Abstraction axioms for input actions.

Example 4.3 Another characteristic example is that of the process dd· e1d' + eld' which is
observably equivalent to eld' . cld + cld. Note that cld· e!d' and eld' . cld are not observably
equivalent: cld· eld' in parallel with cTd· cld· a can produce the empty sequence while putting
cTd· cld· a in parallel with eld' . c1d will always produce a.

These and other related identifications we describe in terms of combined input actions, which
we denote by £. Below we give an informal explanation of the axioms of Table 8.

Axiom 11 introduces combined input actions, and states that, when both £ and!!. are enabled,
the process £ (!!.x + y) can always select the branch !!.x. It should be noted that the equality
£ (~xo + !!.l xI) = (£ U ~) Xo + (£ U !!.l) Xl does not hold: the first process, when put in
parallel with c· £ . a can generate the empty sequence by "stealing" the data.

Axiom 12 allows to determine an order in the input actions of £ U !!., say, executing £ before !!.,
in the presence of an alternative starting with £.

Axiom 13 can be informally justified as follows: suppose the process U x deadlocks after u. In
that case the process u (£ 6 + x) either deadlocks immediately after u or it can select the
branch £ 6 and so will deadlock eventually.

Axiom 14 The auxiliary operator 0 in this axiom reveals the "hidden eager nature" of a process.
It is axiomatized in Table 9.

Axiom 15 Here i is to be understood to range over I, j over J, and k over K <; {ij liE
I,j E J}. This axiom can be justified as follows: suppose the process ~k£k Xk deadlocks

17

~oax=~ax

fO(X+Y)=fOX+fOY

Table 9: Axioms for the operator o.

or c(§.x + y) c(§.X + y) + §.cx

OP c(ax+y) c(ax + y) + acx

Table 10: Abstraction from the order of events.

after u, so all the fk are disabled. This deadlock possibility then should be covered by a
process u· L;jfij Xij' that is, all the fij are disabled, for some i. Otherwise we would have
that there exists for every i E I a j E J such that fij is enabled, which, in its turn, would
imply the existence of an enabled Ck.

The axioms of Table 10 allow abstraction from the order of certain events.
The first axiom of Table 11 allows the abstraction from an output action immediately followed

by its corresponding input. The second axiom is a slightly stronger version of the first one. The
last axiom states that putting a read datum immediately back, is essentially, unobservable.

In the full paper we prove the completeness of the above axiom system for normal processes,
i.e., processes in which there occur no combined input or output actions.

T5 c(ix+y)+rz==c(ix+Y+fZ)

T6 X=X+fCX

Table 11: Abstraction from cancelled output and input actions.

18

Theorem 4.4 (Completeness for bags) For all normal processes x and y we have

X ~r y iff aprPAs,~ U {R, Tl- 6,0,11- 5,0I,OP,PI} I- x = y

The main idea of this proof is the semantic modelling of the additional identifications intro
duced by each axiom by means of a corresponding closure condition. We then show that for the
resulting compositional model ~ the following holds: for every process x there exists a process
y such that ~[x] = F[y] and x = y is derivable from the axioms.

References

[BB91] J.C.M. Baeten and J.A. Bergstra. A survey of axiom systems for process algebras.
Tech. rep., (UVA), Amsterdam, 1991.

[BHR84] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential
processes. Journal of ACM, 31:499-560, 1984.

[BK86] J.A. Bergstra and J.W. Klop. Process algebra: specification and verification in
bisimulation semantics. In Mathematics and Computer Science II, CWI Monographs,
pp. 61 - 94. North-Holland, 1986.

[BK088] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the algebra of
communicating processes. SIAM J. on Computing, 17(6):1134 - 1177,1988.

[BKPR91] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The failure of failures:
Towards a paradigm for asynchronous communication. In J.C.M. Baeten and J.F.
Groote, editors, Proc. of CONCUR 91, LNCS 527, pp. 111 - 126. Springer-Verlag,
1991.

[BKT85] J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process algebra with asynchronous
communication mechanisms. In S.D. Brookes, A.W. Roscoe, and G. Winskel, editors,
Pmc. Seminar on Concurrency, LNCS 197, pp. 76 - 95. Springer-Verlag, 1985.

[BP90] F.S. de Boer and C. Palamidessi. Concurrent logic languages: Asynchronism and
language comparison. In Proc. of the North American Conference on Logic Program
ming, pp. 175-194. The MIT Press, 1990.

[BP91] F.S. de Boer and C. Palamidessi. A fully abstract model for Concurrent Con
straint Programming. In S. Abramsky and T.S.E. Maibaum, editors, Pmc. of TAP
SOFT/CAAP, LNCS 493, pp. 296-319. Springer-Verlag, 1991.

[vGla90] R.J. van Glabbeek. The linear time - branching time spectrum. In J .C.M. Baeten and
J.W. Klop, editors, Proc. of CONCUR 90, LNCS 458, pp. 278 - 297. Springer-Verlag,
1990.

[Jon85] B. Jonsson. A model and a proof system for asynchronous processes. In Pmc. of the
4th ACM Symp. on Principles of Distributed Computing, pp. 49-58, 1985.

[Jos90] M.B. Josephs. Receptive process theory. Tech. rep. CS 90/8, Eindhoven University
of Technology, 1990. To appear in Acta Informatica.

19

[JHJ90] M.B. Josephs, C.A.R. Hoare, and He Jifeng. A theory of asynchronous processes.
Tech. rep., Oxford University Computing Laboratories, 1990.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In In
formation Processing 74: Proc. of IFIP Congress, pages 471-475, New York, 1974.
North-Holland.

[Sar89] V.A. Saraswat. Concurrent Constraint Programming languages. PhD thesis,
Carnegie-Mellon University, January 1989. To be published by The MIT Press.

[Sha89] E.Y. Shapiro. The family of Concurrent Logic Programming languages. ACM Com
puting Surveys, 21(3):412-510, 1989.

20

Tn this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
KM. van Hee

89/9 KM. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
KM. van Hee

89/13 A.T.M.Aerts
KM. van Hee
M.W.H. Hesen

89/14 H. C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
KM. van Hee

89/17 M.J. van Diepen
KM. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C. Courcoubetis-D. Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wo1per

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J .A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/l3 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 11 O.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 RP. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 RC. Backhouse
P.J. de Bruin
G.Malcolm
E. Voennans
J. van der Woude

91/12 E. vander Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,tben ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 2l.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
LJ. Somers
M. V oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
1. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
tbe representation of aritbmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus witb subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM witb examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On tbe
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 I. Coenen

91/35 F.S. de Boer
I.W. Klop
C. Palamidessi

92/01 I. Coenen
I. Zwiers
W.-P. de Roever

92/02 I. Coenen
I. Hooman

92/03 I.C.M. Baeten
I.A. Bergstra

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

	Abstract
	1. Introduction
	1.1 Comparison with related work
	2. Bisimulation semantics for asynchronous communication
	2.1 Syntax
	2.2 Operational semantics
	2.3 Axioms
	3. Trace semantics
	3.1 Failure semantics
	3.2 Axioms
	3.3 Full abstraction of failure semantics
	4. Abstraction from communication
	References

