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Asynchronous Communication in Process Algebra 
(Extended Abstract) 

Frank S. de Boer~ Jan Willem Klopl~ Catuscia Palamidessi1§ 

Abstract 

We study the paradigm of asynchronous process communication, as contrasted with the syn
chronous communication mechanism which is present in process algebra frameworks such 
as CCS, CSP and ACP. We investigate semantics and axiomatizations with respect to var
ious observability criteria: bisimulation, traces and abstract traces. OUf aim is to develop 
a process theory which can be regarded as a kernel for languages based on asynchronous 
communication, like data flow, concurrent logic languages and concurrent constraint pro
gramming. 

1 Introduction 

In order to introduce the framework of asynchronous communication that will be adopted and 
investigated in this paper, we will first give an informal comparison with synchronous communi
cation as in ACP [BK86]. Synchronous communication is modeled in ACP by a binary function 
I on actions. In the case of value transmission the typical equation is ctd I c!d = c:(J:d, where 
the actions cid and cld are interpreted as "send datum d along channel c" and "receive datum 
d at channel c" respectively, and c:(J:d represents the completion of the communication action. 
As an example, consider the parallel composition 

a{cld,c)d} ( a· dd· b II a' · cTd· b' ). 

Here a is the encapsulation operator, enforcing the intended communication by acting as a 
garbage collector for attempted but failed communications. According to the axioms of ACP 
this expression corresponds to the process graph represented in Figure l(a). In this figure, the 
dashed parts express the unintended traces that are pruned by a{cld,cjd}' 

Note that there is no difference in directionality between the communication partners dd, cTd. 
In the asynchronous setting, on the other hand, there is an asymmetry between cld and ci d: 
one of them, cid, is now supposed to precede its partner dd, for an indeterminate amount of 
'time' (i.e. number of steps). Due to the temporal split between cid, dd, we need now two 
actions signifying their completion; let them be c.ij.d and c11"d, respectively. Furthermore, some 
memory mechanism, in the form of a state operator, must now be available to convey the effect 
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Figure 1: Synchronous versus asynchronous communication. 

a b -----+0 a b -----+0 , , 
a a a: a a " a: 

a b a b 
, 

b/: , b' b' b' b' b' 

6.---- b a b 

(a) (b) 

Figure 2: Synchronous versus asynchronous communication with abstraction. 

of the event cid during the interval from cid to cld. Let us now consider the asynchronous 
counterpart of the example above. The evaluation of 

JL~( a· cld· b II a' . cid· b'), 

where JL is the state operator, by using the axioms in aprPAs,~ (see Table 2) gives now the 
process graph in Figure l(b). Again the dashed parts express the unintended traces, originating 
by free interleaving, that are pruned away by JL. 

Just as in the synchronous case, one might wish to abstract from these completed actions. 
The representation of the processes from the example above 'shrinks' by this abstraction to the 
process graphs in Figure 2. 

Note that both the operators &,JL, can be viewed as 'actualization' operators, that make the 
process actually run. So we refer to c 11' d, c.IJ. d actions as being completed, or realized, and to 
cid, cLd actions as being intended, or possible. 

In specifying the send and receive data transmission scheme there is a choice to be made, 
concerning the nature of the channels. In this paper we will treat the two main cases of 'sequential 
access' and 'random access'. Of the first we have chosen as a typical representant the queue 
(but we may also have investigated the case of stack); in the second, the bag is a natural choice. 

Our point of departure is the paper [BKT85] where the send/receive mechanism is axioma
tized, both for queues and bags as channels. We show that this axiomatization is complete for 
the 'minimal' setting of bisimulation semantics. Here the specific nature of the communication 
channels does not yet influence the axiomatization which can be given in a uniform way. 
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The next notion we investigate is the 'maximal trace-respecting congruence'!. We give a 
characterization of this congruence in terms of a fully abstract model which is a version of the 
usual failure semantics for synchronous communication ([BHR84]), and we provide a complete 
axiomatization. Remarkably, for this more abstract notion the above uniformity between queues 
and bags disappears. 

Finally we consider traces with abstraction from the completed communication actions. As 
usual, the phenomenon of abstraction introduces some quite intricate problems. At this point 
the difference between bags and queues becomes very prominent: the case of bags requires the 
introduction of many new axioms, thus identifying more expressions. Therefore we can call the 
latter theory (for bags) more abstract than the former (for queues). A priori this was to be 
expected since a bag in itself is already an 'abstraction' of a queue. 

1.1 Comparison with related work 

A theory for asynchronous communication has also been developed in [JHJ90]. That theory is 
more abstract than ours; the main reasons are that in [JHJ90] there are, first, some restrictions 
on processes to be composed in parallel, and, second, communication is modeled in such a way 
that when a process receives an item from a buffer, that item remains available for the other 
processes. Such a mechanism can be implemented in our language by means of a copying process; 
therefore all the contexts which can be specified in [JHJ90] can be specified also in our language. 
On the other hand, some of our contexts cannot be defined in [JHJ90] (i.e. our congruence is 
strictly less coarse). 

The relatively 'low degree of abstraction' of our language has the advantage that we can 
regard it as a kernel for the axiomatization of other languages based on asynchronous com
munication. It is possible to show, in fact, that with respect to both observability criteria we 
have considered in this paper our axioms are correct for data flow [Kah74], concurrent logic 
programming [Sha89], and concurrent constraint programming [Sar89]. In other words, the 
communication mechanisms of those languages can be implemented in ours. Completeness can 
then be obtained by adding some specific axioms. 

The fact that we construct a fully abstract model based on failure sets might look surpris
ing, and in contrast with the claim, often made, that asynchronous communication does not 
require refusal information. In fact, recent studies have shown that several languages based 
on asynchronous communication have linear models: see for instance [Jon85, Jos90] for data 
flow, [BP90] for concurrent logic languages, [BP91] for concurrent constraint programming and 
[BKPR91] for a general semantic framework based on reactive sequences. The explanation of 
this apparent contradiction is that also these last models encode some hidden refusal informa
tion. In this paper we have opted for a model in which the refusals are explicitly represented 
because it facilitates the proof of the completeness of the axiomatization. 

2 Bisimulation semantics for asynchronous communication 

In this section, that is the basis of our paper, our starting point is [BKT85]. After fixing the 
notation and the syntax of the language to be considered, we provide a set of transition rules 
defining its operational semantics. 

1 By 'traces' we mean the 'completed' ones, i.e. the traces associated to the transition sequences which end in 
a point from which no further transitions are possible. 
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Figure 3: The set of actions. Shaded: dependent actions; unshaded: independent actions. 

2.1 Syntax 

The set of actions is structured as follows. 

1. A is a set of proper actions, notation: a, b, a1, a2, .... 

2. Let D be a set of data: d, d1, d2 . .. , and let C be a set of channel names: c, e, C1, C2,' ... 
For all c E C and d E D we have communication actions 

• cld (intended input action) 

• cid (intended output action) 

• c.l).d (completed input action) 

• citd (completed output action) 

The set of all intended input actions is C t; likewise C i, C .I). , C it contain the intended 
output actions, the completed input actions and the completed output actions respectively. 

The action alphabet Act is now defined to be 

Act = AU Ct u Cj u C.I). u C1l'. 

We will write u, v, ... for general actions from Act. Intended input actions from C t are also 
called dependent actions (Dep); all the other actions are independent (IntI) (see Figure 3). In 
Section 2.2 we give motivation for this terminology. 

The set Exp of (process) expressions is generated by the following grammar: 

The constant 6 represents the inaction or deadlock. For any u E Act, u· is an action prefixing. 
The operators +, II and IL are the sum (or alternative choice), the merge ( or parallel com

position), and the left-merge respectively. For any c E C and state a, I'~ is an encapsulation 
operator (a represents the 'initial state' of c). Finally for f : Act --+ Act respecting the partition 
of Act, P f is a renaming operator. 

Bracket conventions are employed as usual. Instead of u· x we also will write u x. Often we 
will omit the 'end marker' 0 in an expression, and render e.g. a 6 as just a. 
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2.2 Operational semantics 

In order to define the operational semantics of our processes in a uniform way, i.e. not depending 
upon the specific kind of channels that are intended, we treat channels as given by some abstract 
data type. To describe the meaning of the actions cld and cj d we introduce two operations 
get: State X D -+ State U { 1-} and put: State x D -+ State, where State is the set of states (of the 
channel), and 1- stands for undefined. The understanding is that get(a,d) checks if the datum 
d is available in a and in that case it retrieves it. It is undefined otherwise. This is the reason 
why we call the actions in C! 'dependent': their being enabled or not depends upon the content 
of the buffers, hence upon the actions performed by the environment. The operation put( a, d) 
in general modifies a by adding the datum d. We assume that it is always defined, and this 
is the reason why we call the actions in Cj 'independent'. One could wonder what happens, 
in the case of bounded channels, when the channel is full. We assume that in such a case the 
datum is simply lost. The reason is that in general a test on the state of the channel, before 
perfoming a send action, is very expensive to implement. However, our theory can be modified 
so as to include such a test by adding the possibility that put( a, d) is undefined and by treating 
the actions in Cj as dependent. 

The operational semantics of an expression x E Exp is defined by the transition system T in 
Table 1, where x, y, z are meta-variables ranging over Exp. 

To each process expression x E Exp the transition system T assigns a transition graph (also 
called process graph), as illustrated in the examples shown in Figure 4. The symbol ( denotes 
the state of an empty channel. We denote by '" the well known bisimulation equivalence, which 
identifies expressions with the same transition graph (disregarding the labels in the nodes). 
Examples of bisimilar processes are the pairs (i), (ii) and (v) in Figure 4. 

2.3 Axioms 

The bisimulation equivalence '" is a congruence and it is completely axiomatized by the system 
aprPA8,~ in Table 2, which is the one from [BKT85] restricted to action prefixing. In our paper 
we don't consider sequential composition, just for reasons of technical convenience. We expect 
that all results in the present paper can be obtained also in that more general case, but at the 
cost of sometimes having to include 'degenerate' versions of some axioms. The name aprPA6,~ 
means 'action prefixing process algebra with constant 8 and operator It'; it is based on the 
nomenclature proposal in [BB91]. 

Theorem 2.1 Let x, y E Exp. Then 

x '" Y iff aprPA6,~ f- x = y 

3 Trace semantics 

In this section we study the observability criterion which consists of observing all the possible 
traces generated by a process in a sequence of transition steps. It is convenient to introduce the 
following notation. For x, y E Exp, S E Act', x ~ y represents a sequence of transition steps 
from x to y and it is defined as follows: 

.\ 
1. x ---» X (where A is the empty sequence), 

'f U h U 2. 1 X -----1- Y t en x ------* y, 
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R1 u 
U x -----+ x 

u u 
R2 x --+ 11 x ------t 11. 

u u x+z--+y z+x--+y 

u u 
R3 x --+ 11. x --+ 11.. 

x II z ~ y II z z II x ~ z II y 

u 
R4 x --+ 11.. 

x ILz ~ y II z 

c1d 
R5 x ------t '!J. if a' = put( a, d) 

cjtd ' 
I-'~(x) --+ I-'~ (y) 

cjd 

R6 x --+ '!L if a' = get(a,d) ",1-
U( ) ,jJd U'() 1-', x --+ 1-', y 

u 

R7 x --+ Y.. if u'" cjd, c!d 
I-'~(x) ~ I-'~(y) 

u 
RS x -----7 y.. 

j(u) 
PJ(x) --+ pj(Y) 

Table 1: The transition system T. 
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(i) 

(ii) 

(iii) 

(v) 

c.lJ.d 
, 6 

aM 

(iv) 

'cd·6 cd·6 

citd 

Figure 4: Examples of transitions. 
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Al x+y = y+x 
A2 (x+y)+z = x+(y+z) 
A3 x+ x = x 
A4 x + 0 = x 

MI x II y = x lly + y II x 
M2 ollx = 0 
M3 uxlly=u(xlly) 
M4 (x+y)llz = xllz+yllz 

EI Jl~( 0) = 0 
E2 Jl~ ( u x) = U· Jl~ (x) if u t- cld, cld 
E3 Jl~(cld·x) = c1rd'Jl~'(x) if a' = put( a, d) 
E4 Jl~ ( cld . x) = c JJ. d . Jl~' (x) if a' = get( a, d) t-.L 
E5 Jl~ ( cld . x) = 0 if get( a, d) =.L 
E6 Jl~(x + y) = Jl~(x) + Jl~(Y) 

RNI Pf(o) = 0 
RN2 Pf(u'x) = f(u)·PJ(x) 
RN3 Pf(x + y) = Pf(x) + Pf(Y) 

Table 2: apr P A"w 
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x y 

cld b 

Figure 5: Example of trace-equivalent processes x and y which can be distinguished by a 11-
context. 

'f' d t h ,t 3. I X ---l> Y an Y ---l> Z t en x ---l> Z. 

Now we can define the traces of a process and the corresponding equivalence relation. 

Definition 3.1 For x E Exp, the truces of x are given by: 

T(x) = {sl 3y.x~y +} 

The notation y + indicates that for no u, z we have y ....':.. z. 

The relation l' is the equivalence induced by the traces: 

x l' y iff T(x) = T(y). 

This relation is not a congruence, essentially due to the presence of the encapsulation operator 

11 which enforces a dependency upon the state of the channels, as determined by the initial state 
and by the actions performed by the environment. 

Example 3.2 

1. The processes x and y represented by the transition graphs in Figure 5 have the same traces, 
but their encapsulation with respect to the channel c yields different results: T(I1~( x)) = 
{ab}, whereas T(I1~(Y)) = {a, ab}. 

2. The processes x and y represented in Figure 6, have the same traces, but if we now 
consider them in parallel with the process z then encapsulation with respect to c, e yields 
a difference: dtd· C1[d· c.(l.d E T(I1~I1;(Y liz)) \ T(I1~I1;(x II z)). 

In the following, C[] indicates an arbitrary (unary) context, i.e. an expression containing 
one occurrence of a 'hole'. We define the congruence relation ~ as the maximal truce-respecting 
congruence, i.e. 

x ~ y iff VC[]. C[x] l' Cry]· 

In the rest of this section we will investigate a concrete model corresponding to this congru
ence, and its axiomatization. 
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x y z 
o 

cid cjd cid eid 

a a a a a 

Figure 6: Example of processes x and y which can be distinguished by a parallel process z. 

3.1 Failure semantics 

It has been shown in [BK088] that in the synchronous case of ACP with one-to-one communi
cation failure semantics ([BHR84]) is fully abstract with respect to trace equivalence. We will 
show how to modify it so that this property is maintained. We first construct the failure model 
for bags and then we show how to adapt it to the case of queues. 

Let us first show why the standard failure model is not fully abstract. 

Example 3.3 Figure 7 shows three examples of pairs of processes x, y which are not identified 
by the standard failure model; yet their traces are the same in every context. 

The main reason why the expressions x and y in Figure 7 are trace-congruent is that the 
independent actions are always enabled regardless of the state. This is not true for the input 
actions. 

Example 3.4 Figure 8 shows that the input counterparts x' and y' of the processes x and yin 
Figure 7 can be distinguished by a parallel process z. In all cases there is a trace generated by 
Jl;(Y' II z), which is not generated by Jl;(x' II z). 

The relevant information is associated with the resting points, those points from where the 
process can only proceed by input actions, and consists of the trace which leads to such a point 
and the state which make such a point stable, i.e., none of the initial input actions are enabled. 
As such, we can represent a state by a subset of the complement of the ready set, i.e., the set 
of initial actions, associated with a resting point. We call such a representation a refusal set. 
However, the intuition is that when an input action cld occurs in the refusal set this indicates 
that the value d is available on channel c. 

Definition 3.5 The failure set of x is 

Fix] = {{s,R} I 3y. x ~ y, Init(y) <;, Dep, R <;, Dep \ Init(y)} 

where Init(x) = {u I 3y. x --"-. y}. 

The relation =y is the equivalence induced by the failure sets, i.e. 

x =y Y iff Fix] = Fly] 
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Figure 7: Examples of trace-congruent processes x, y with different standard failure semantics. 

11 
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trace 

aI 
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etdI a a a· citd 
1 

7~ cld eld 

aI ;/ a a 
2 

7~ 7~ eld 

aI 

0 

a a a 
3 

7~ cld b 

Figure 8: Examples of processes x', y' which can be distinguished by a process z. 
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This relation ~ is actually a congruence. To show this, it is sufficient to prove that the definition 
of F is compositional with respect to all the operators of the language, i.e. every operator of 
the language has a semantical counterpart. We give only the definition for action prefixing and 
encapsulation, the other operators are as in the standard case. 

Definition 3.6 Let P, Q range over the domain of F. 

{ 

{(us,R) I (s,R) E P} 
Prefixing u: P = 

{(us,R) I (s,R) E P} U {(A,R) I R ~ Dep\ {u}} 

ifu¢Dep 

otherwise, 

Encapsulation. We first define the operator p,~: Act' -+ Act' U Act'" as the operator on 
traces which transforms communication actions on c into completed ones, and the auxiliary 
operator St~ : Act' -+ State which computes the current state (on c) at every point of 
the trace: 

P,~(A) A St~(A) " 
P,~(us) U· P,~(s) St~(us) St~(s) if u # cid, ctd 
P,~ (cid . s) citd· P,~' (s) St~(cid·s) St~'(s) if ,,' = put( ", d) 
P,~(c1d· s) = c.lJ,d. P,~' (s) St~(c!d. s) St~'(s) if ,,' = get(",d) #1. 
P,~ (ctd . s) = " St~(c!d. s) 1. if get(",d) =1. 

Next we extend P,~ on pairs as follows: 

P,~(P) = {(JL~(s),R) I 3(s,R') E P. 
R~R'U{c1dl dED}, 
St~(s) #1., 
(cld ¢ R' =? St~(s· cld) =1.)} 

The failure semantics is correct with respect to the traces, in fact T(x) = {s I (s,Dep) E F[xn. 
Since "'Ie is a trace-respecting congruence, it is at least as fine as =r (which, by definition, is 
the maximal trace-respecting congruence). 

3.2 Axioms 

We now present the axioms to add to aprPA.,~ in order to obtain a complete axiomatization of 
the failure semantics introduced above. 

In the synchronous case a complete axiomatization for failure semantics has been obtained by 
adding to the theory of ACP the ready axioms and the failure axiom ([BK088]) which, restricted 
to the case of aprPA., are respectively the axioms Rand S in Table 3. Our failure semantics is at 
least as abstract as that semantics in [BK088J, in fact it can be retrieved by considering (only) 
those pairs in which the refusal set contains all independent actions. Therefore the axioms R 
and S are valid in our semantics. On the other hand, our semantics is strictly more abstract 
because it cancels branching points from which an independent action exits. Axiomatically this 
is modeled by factorizing the plus operator with respect to the independent actions: see axiom 
I in Table 3, where i stands for any independent action, i.e. i E Act \ C 1. 

Note that if we generalize i in the axiom I to be any action we obtain a system equivalent to 
the one presented in [vGla90J as the axiomatization of (completed) trace semantics for aprPA •. 

13 



S ux+u(y+z) = ux+u(x+y)+u(y+z) 

I u(ix+y) = u(ix+y)+uix 

Table 3: The failure axioms for asynchronous communication. 

Theorem 3.7 (Completeness) For all x,y E Exp we have 

x ~ y iff aprPAs,~ U {R, S, I} I- x = y 

3.3 Full abstraction of failure semantics 

In this section we show how to specialize the failure semantics given above to the cases of random 
access (bags) and sequential access (queues). 

Bags. In the case of bags the fully abstract semantics is just the failure semantics F. 

Proposition 3.8 (Full abstraction) If channels are bags then ~ <;; ~. 

Corollary 3.9 If channels are bags then for x, y E Exp the following are equivalent. 

1. x =p y, 

2. x~ y, 

3. aprPA6,~ U {R, S,I} I- x = y. 

Queues. The distinguishing feature of sequential access is that only one of the items stored in 
a channel can be read and consumed. As a consequence, the failure semantics as defined above 
is not fully abstract. For instance, it distinguishes the processes x = a· cM! + a· cld2 + a· c!da 
and y = a( cld! + cldz) + a( cldz + clda) + a( cld3 + cldd which in case of sequential access 
are observationally identical. Since for each channel only one item is relevant for the observable 
behaviour of a process, we must consider only those refusal sets in which no more than one input 
on the same channel is present. 

Definition 3.10 The queue failure set of x E Exp is 

F'[x] = {(s,R) E F[x] I c!d,c!d' E R => d = d'} 

Let =F'< be the associated equivalence relation. It is possible to show that "'F'l is a congruence 
and that it is as coarse as ~.' We will specify now a subset of the language for which the 
completeness holds. Consider the subset Exp' of expressions in which an input action on a 
channel c can occur only in contexts of the form 'EdEDC! d· Xd. So, the typical feature of 
this su blanguage is that it cannot perform anymore a blocking test on the presence of a specific 
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datum. Expressions of this forms are used in Process Algebra to implement 'input on a variable', 
Le. CSP-like actions of the form c1 V . xlV], where V is a variable of type D. For expressions in 
Exp' the semantics F and f'l are the same, i.e. f'l[x] = f'l[y] iff F[x] = F[y]. Therefore we 
obtain: 

Corollary 3.11 If channels are queues then for x, y E Exp' the following are equivalent 

1. x =F' y, 

2. x "'Ie y, 

3. x "'r y, 

4. aprPA6,~ U {R,S,I} I- x = y. 

4 Abstraction from communication 

In this section we investigate an axiomatic characterization of the proper behaviour of a process, 
Le., we want to encapsulate all communications and treat them as invisible (silent) steps. To 
this end we extend the set Act to contain a special internal action T, which corresponds to 
the standard notion of silent step in languages like CCS and ACP. In the following, we will 
use the notation p,(x) as an abbreviation for the encapsulation of the process x with respect 
to all channels, with initial content empty, i.e., if C = {C1, .. " cn}, then p,( x) = p,~, .. , P,~n (x). 
Furthermore, we use the notation p(x) to denote the process x where all the completed actions 
are renamed into T. To define the proper traces we need an operator Q which removes from a 
trace s E Act' all the T actions. The proper traces of a process are then defined as follows: 

The relation ""rT is the equivalence induced by the proper traces: 

X ""rT y iff T,.(x) = T,.(y) 

The congruence relation "'rT is the maximal proper-trace-respecting congruence: 

X "'rT y iff VC(]. C(x] ""rT C(y] 

We now investigate an axiomatization for ~T' The axioms for T-abstraction which have 
been studied for the failure semantics (and therefore for the maximal proper-trace-respecting 
congruence) in the presence of synchronous communication ([BK088j) are, of course, still valid in 
our asynchronous case. Restricted to the case of action prefixing only (i.e. no general sequential 
composition) these axioms are the ones shown in Table 4. 

Note that the presence ofT1 and T2 makes the axiom S of Table 3 superfluous (cf. [BK088]). 
However, these axioms for T-abstraction are not complete in the presence of independent 

actions. When T is prefixed to an independent action i, it can be deleted. Formally, this is 
captured by the axiom in Table 5. In the presence of the axiom T3, the axiom I of Table 3 can 
be shown to be derivable. 

Furthermore we observe that processes like 'cid· a and cid· a + a' cid are now observably 
equivalent. This identification is captured axiomatically by the law in Table 6. 

Note that the reverse of this law is not correct (an output cannot be anticipated). For 
instance, a· ci d and a· ci d + ci d· a are not observably equivalent. A distinguishing context 
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T1 UTX = UX 

T2 T X + y = T X + T (x + y) 

Table 4: T-abstraction laws for the failure semantics in the synchronous case. 

Table 5: Additional T-abstraction law for independent actions. 

is C(] = c!d. b II []. The process C(a· cid] will produce ab only, whereas C(a· cjd + cjd· a] will 
produce additionally ba. 

In the full paper we show that the above axiom system completely characterizes 1:,. in the 
case of queues. 

Theorem 4.1 (Completeness for queues) For all x,y E Exp' we have 

X ~T Y iff aprPA6,~ U {R, T1 - 3, OP} I- x = y 

However, when we consider abstraction from communication in the case of bags, many 
additional identifications have to be made. First we observe that we have to abstract from the 
order between (intended) output actions, Le., the processes cjd· ejd' and ejd' . cjd are observably 
equivalent. A simple axiomatization of this phenomenon can be given in terms of multisets of 
output actions, so-called combined actions, which we denote by c. The intended meaning of a 
combined action is that of a concurrent execution of its components. 'In Table 7 the multiset 
union is denoted by u. 

Another class of identifications stems from the fact that in the case of bags we are not in 
general able to detect whether a process intends to read an item. 

Example 4.2 The process a . c!d is observably equivalent to the process a· c!d + a. Note that in 
the case of queues these processes can be distinguished by the process cjd· cid'· c!d'· b (d of d'), 
which will always produce b when put in parallel with the first process, while the input action 
cld' can be blocked in case the second process chooses the branch a. 

OP cjd(ax+y)=cjd(ax+y)+a·cjd·x 

Table 6: Delay axiom for output actions. 
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1"0 cex = (cUe)x 

Table 7: Abstraction axiom for output actions. 

13 u(£6+x) = u(£6+x)+ux 

15 ~iU· ~j£ij Xij = ~iU· ~j£ij Xij + U· ~k£k Xk 

(V! E 1-+ J. 3£k <; Ui£i!Ci») 

Table 8: Abstraction axioms for input actions. 

Example 4.3 Another characteristic example is that of the process dd· e1d' + eld' which is 
observably equivalent to eld' . cld + cld. Note that cld· e!d' and eld' . cld are not observably 
equivalent: cld· eld' in parallel with cTd· cld· a can produce the empty sequence while putting 
cTd· cld· a in parallel with eld' . c1d will always produce a. 

These and other related identifications we describe in terms of combined input actions, which 
we denote by £. Below we give an informal explanation of the axioms of Table 8. 

Axiom 11 introduces combined input actions, and states that, when both £ and!!. are enabled, 
the process £ (!!.x + y) can always select the branch !!.x. It should be noted that the equality 
£ (~xo + !!.l xI) = (£ U ~) Xo + (£ U !!.l) Xl does not hold: the first process, when put in 
parallel with c· £ . a can generate the empty sequence by "stealing" the data. 

Axiom 12 allows to determine an order in the input actions of £ U !!., say, executing £ before !!., 
in the presence of an alternative starting with £. 

Axiom 13 can be informally justified as follows: suppose the process U x deadlocks after u. In 
that case the process u (£ 6 + x) either deadlocks immediately after u or it can select the 
branch £ 6 and so will deadlock eventually. 

Axiom 14 The auxiliary operator 0 in this axiom reveals the "hidden eager nature" of a process. 
It is axiomatized in Table 9. 

Axiom 15 Here i is to be understood to range over I, j over J, and k over K <; {ij liE 
I,j E J}. This axiom can be justified as follows: suppose the process ~k£k Xk deadlocks 
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~oax=~ax 

fO(X+Y)=fOX+fOY 

Table 9: Axioms for the operator o. 

or c(§.x + y) c(§.X + y) + §.cx 

OP c(ax+y) c(ax + y) + acx 

Table 10: Abstraction from the order of events. 

after u, so all the fk are disabled. This deadlock possibility then should be covered by a 
process u· L;jfij Xij' that is, all the fij are disabled, for some i. Otherwise we would have 
that there exists for every i E I a j E J such that fij is enabled, which, in its turn, would 
imply the existence of an enabled Ck. 

The axioms of Table 10 allow abstraction from the order of certain events. 
The first axiom of Table 11 allows the abstraction from an output action immediately followed 

by its corresponding input. The second axiom is a slightly stronger version of the first one. The 
last axiom states that putting a read datum immediately back, is essentially, unobservable. 

In the full paper we prove the completeness of the above axiom system for normal processes, 
i.e., processes in which there occur no combined input or output actions. 

T5 c(ix+y)+rz==c(ix+Y+fZ) 

T6 X=X+fCX 

Table 11: Abstraction from cancelled output and input actions. 
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Theorem 4.4 (Completeness for bags) For all normal processes x and y we have 

X ~r y iff aprPAs,~ U {R, Tl- 6,0,11- 5,0I,OP,PI} I- x = y 

The main idea of this proof is the semantic modelling of the additional identifications intro
duced by each axiom by means of a corresponding closure condition. We then show that for the 
resulting compositional model ~ the following holds: for every process x there exists a process 
y such that ~[x] = F[y] and x = y is derivable from the axioms. 
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