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Abstract: We consider the standard Abelian sandpile process on the Bethe
lattice. We show the existence of the thermodynamic limit for the finite volume
stationary measures and the existence of a unique infinite volume Markov process
exhibiting features of self-organized criticality.

1 Introduction

Global Markov processes for spatially extended systems have been around for
about 30 years now and interacting particle systems have become a branch of
probability theory with an increasing number of connections with the natural
and human sciences. While standard techniques and general results have been
collected in a number of books such as [Liggett (1985), Chen (1992), Toom (1990)]
and are capable to treat the infinite volume construction for stochastic systems
with locally interacting components, some of the most elementary questions for
long range and nonlocal dynamics have remained wide open. We have in mind
the class of stochastic interacting systems that during the last decade have in­
vaded the soft condensed matter literature and are sometimes placed under the
common denominator of self-organizing systems.

Since the appearance ofthe paper [BTW (1988)], the concept of self-organized
criticality (SOC) has suscited much interest, and is applied in a great variety of
domains (see e.g. [Turcotte (1999)] for an overview). From the mathematical
point of view, the situation is however quite unsatisfactory. The models ex­
hibiting SOC are in general very boundary condition dependent (especially the
BTW model in dimension 2), which suggests that the definition of an infinite
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volume dynamics poses a serious problem. Even the existence of a (unique)
thermodynamic limit of the finite volume stationary measure is not clear. From
the point of view of interacting particle systems no standard theorems are at
our disposal. The infinite volume processes we are looking for will be non-Feller
and cannot be constructed by monotonicity arguments as in the case of the
one-dimensional BTW model (see [MRSV (2000)]) or the long-range exclusion
process (see [Liggett (1980)]). On the other hand in order to make mathemati­
cally exact statements about SOC, it is necessary to have some kind of infinite
volume limit, both for statics and for dynamics.

In this paper we continue our study of the BTW-model for the case of the
Bethe lattice, this is the abelian sandpile model on an infinite tree. For this
system, many exact results were obtained in [DM (1990b)). In contrast to the
one-dimensional case this system has a non-trivial stationary measure. We show
here that the finite volume stationary measures converge to a unique measure J.l
which is not Dirac and exhibits all the properties of a SOC-state. We then turn
to the construction of a stationary Markov process starting from this measure
J.l. The main difficulty to overcome is the strong non-locality: Adding a grain at
some lattice site x can influence the configuration far from x. In fact the cluster
of sites influenced by adding at some fixed site has to be thought of as a critical
percolation cluster which is almost surely finite but not of integrable size. The
process we construct is intuitively described as follows: At each site x of the
Bethe lattice we have an exponential clock which rings at rate <p(x). At the
ringing of the clock we add a grain at x. Depending on the addition rate <p(:1:) ,
we show existence of a stationary Markov process which corresponds to this
description. We also extend this stationary dynamics to initial configurations
which are typical for a measure J.l1 that is stochastically below J.l.

The paper is organized as follows. In section 2 we introduce standard results
on finite volume abelian sandpile models, and summarize some specific results
of [DM (1990b)) for the Bethe lattice which we need for the infinite volume
construction. In section 3 we present the results on the thermodynamic limit
of the finite volume stationary measures and on the existence of infinite vol­
ume Markovian dynamics. Section 4 is devoted to proofs and contains some
additional remarks.

2 Finite Volume Abelian Sandpiles

In this section we collect some results on abelian sandpiles on finite graphs which
we will need later on. Most of these results are contained in the review paper
[Dhar (1999)), or in [IP (1998)].

2.1 Toppling Matrix

Let V denote a finite set of sites and b.v = (6.~,y)X,YEV a matrix indexed by
the elements of V satisfying the conditions :

1. For all x,y E V, x #- y, 6.~y = 6.~x ::; 0,

2. For all x E V, 6.;',x ;:::: 1,

3. For all x E V, I:yEv 6.;',y ;:::: 0,
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(2.1)

4. L~',YEV ~~y > O.

Such a matrix ~v is called a toppling matrix. The fourth condition ensures that
there are sites (so called dissipative sites) for which the inequality in the third
condition is strict. This is fundamental for having a well defined toppling rule
later on. In the rest of the paper we will choose ~v to be the lattice Laplacian
with open boundary conditions on a finite simply-connected set V C S, where
S is a regular graph, like the d-dimensional lattice 7ld , or the infinite rootless
tree T d of degree d + 1. More explicitly:

~~x = 2d ifVC71d
,

d + 1 if V CTd,

~~,y = -1 if x and yare nearest neighbors.

The dissipative sites then correspond to the boundary sites of V.

2.2 Configurations

A height configuration 'T] is a mapping from V to IN = {I, 2, ... } assigning to
each site a natural number 'T](x) :::: 1 ("the number of sand grains" at site x). A
configuration'T] E lNv is called stable if, for all x E V, 'T](x) :::; A~,x' Otherwise
7J is unstable. We denote by f2 v the set of all stable height configurations. For
7J E lNv and V' C V, 7Jlv' denotes the restriction of'T] to V'.

2.3 Toppling Rule

The toppling rule corresponding to the toppling matrix ~V is the mapping

Tt.,v : lNv x V -+ lNv

defined by

Tt.,v('T], x)(y) = 7J(Y) - A~,y if'T](x) > ~~x,

= 7J(Y) otherwise. (2.2)

In words, site x topples if and only if its height is strictly larger than ~~x, by
transferring -~~y grains to site y ¥- x and losing itself ~~x grains. Toppling
rules commute on unstable configurations. This means for x, Z E V and 'T] such
that 'T](x) > ~~ x' 'T](z) > ~~ z,, ,

(2.3)

We write [Tt.,v (-, Z)Tt., v (., x)]('T]) = [Tt.,v (., x)Tt., v (., z)]('T]).
Choose some enumeration {Xl, ... ,xn } of the set V. The toppling transfor­

mation is the mapping

defined by

Tt.,v('T]) = lim (rrTt.,V(',Xi))N ('T]).
Njoo

i=l

In [IP (1998)] it is recalled that

3
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1. The limit in (2.4) exists, i.e. there are no infinite cycles, due to the presence
of dissipative sites.

2. The stable configuration Tti. v (TJ) is independent of the chosen enumeration
of V. This is the abelian property and follows from (2.3).

2.4 Addition Operators

For TJ E lNv and x E V, let TJx denote the configuration obtained from 1} by
adding one grain to site x, i.e. ryX(y) = 1}(Y) + 8x ,y. The addition operator
defined by

ax,v: Ov -+ OV;1} 1-+ ax,vTJ = Tti.v(1}X) (2.5)

represents the effect of adding a grain to the stable configuration TI and letting
the system topple until a new stable configuration is obtained. By (2.3), the
composition of addition operators is commutative: For allTJ E Ov, x, Y E V,

2.5 Finite Volume Dynamics

Let P denote a non-degenerate probability measure on V, i.e. numbers Px,
o < Px < 1 with L:xEV Px = 1. We define a discrete time Markov chain
{1}n : n 2: O} on Ov by picking a point x E V according to P at each discrete
time step and applying the addition operator ax,v to the configuration. This
Markov chain has the transition operator

Pv f(1}) = L pxf(ax,vTJ)· (2.6)
xEV

We can equally define a continuous time Markov process {1]t t > O} with
infinitesimal generator

Ltf(1]) = L lp(x)[f(ax,v1]) - f(TJ)], (2.7)
xEV

generating a pure jump process on Ov, with addition rate lp(x) > 0 at site x.

2.6 Recurrent Configurations, Stationary Measure

We see here that the Markov chain {1}n,n 2: O} has only one recurrent class and
its stationary measure is the uniform measure on that class.

Let us call Rv the set of recurrent configurations for {77n, n 2: O}, i.e. those
for which P1/(77n = 77 infinitely often) = 1, where P1/ denotes the distribution of
{1}n, n 2': O} starting from 770 = ry E Ov. In the following proposition we list
some properties of Rv. For the sake of completeness we include a proof which
we could not find worked out completely in the literature.

Proposition 2.1

1. Rv contains only one recurrent class.

2. The composition of the addition operators ax,v restricted to Rv defines
an abelian group G.
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3. IGI = IRvl·

4· For any x E V, there exists nx such that for any 'T/ E Rv, a~~v7J = "I.

5. IRvl =det 6Y.

Proof: 1. We write 'T/ '---+ ( if in the Markov chain ( can be reached from "I with
positive probability. Since sand is added with positive probability on all sites
(P:c > 0), the maximal configuration "Imax defined by

7Jmax(x) = .6.~,x

can be reached from any other configuration. Hence, if 7J E Rv then 'T/ '---+ 7Jmax,
therefore 'T/max E Rv and 7Jmax '---+ "I (see e.g. [Chung (1960)] p.19).

2. Fix "I E Rv; then there exist n y ;:: 1 such that

and
- n:t- 1 II n y

Yx - ax,v ay,v
yEV,y#x

satisfies (ax,vyx)("I) = (yxax,v)("I) = 'T/. The set

R X = {( E R v : (ax,vYx)(() = (}

is closed under the action of ax, v, contains 'T/, hence also 7Jmax: it is a recurrent
class. By part 1, R X = R v , ax,vYx is the neutral element e, and Yx = a;,\.r if
we restrict ax,v to R V.

3. Fix ( E Rv and put 'l1( : G --+ Rv;y t-4 y((). As before 'l1«(G) is a
recurrent class, hence "IJIdG) = Rv. If for g,h E G, "IJIdg) = 1J!«(h), then
gh- 1 (() = (, and by commutativity yh- 1(g'() = y'( for any g' E G. Therefore
gh -1 (0 = ~ for all ~ E Rv, thus y = h. This proves that "IJI( is a bijection from
G to R v .

4. Since G is a finite group, for any x E V there exists n x ;:: 1 such that
a~"v = e .

." 5. Adding 6.~x particles at a site x E V makes the site topple, and -.6.~y
particles are transferred to y. This gives

Ll. v _Ll. v
a z.z - II z.yx,v - ay,v'

y#x

On R v the ax,v can be inverted and we obtain the closure relation

II Ll.:;.y_
ay,v - e,

yEV

which completely determines the one-dimensional representations of the group
of addition operators, and in particular the cardinality of the latter, as obtained
in [Dhar (1990a)]. •

Remark. R v does not depend on the Px, and does not change by going from
discrete to continuous time, i.e. from (2.6) to (2.7).

The main consequence of the group property of G is the fact that the unique
stationary measure is uniform on R v .
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Proposition 2.2

1. The measure

(2.8)

is invariant under the action of ax ,v, x E V (811 is the Dirac measure on
configuration "1).

2. On L2 (f..Lv) the adjoint of ax ,v is

(2.9)

Proof: Since ax,v : nv ~ nv can be inverted, we have

L f(ax ,v"1)g("1) = L !("1)g(a;,\-"1),
l1E"R.v l1E"R.v

hence (2.9). By choosing g == 1, part 1 follows. •
Remark. This shows that f..Lv is invariant under the Markov processes gener­
ated by (2.6) and (2.7).

2.7 Burning Algorithm

The burning algorithm determines whether a stable configuration TJ E flv is
recurrent or not. It is described as follows: Pick "1 E fl v and erase all sites
x E V satisfying the inequality

"1(x) > L (-A~y).
yEV,y#x

This means "erase the set E 1 of all sites x E V with a height strictly larger than
the number of neighbors of that site in V". Iterate this procedure for the new
volume V \ E 1 , and the new matrix 6.V\E 1 defined by

A~~El = 6.~,y if x, y E V \ E1

= 0 otherwise,

and so on. If at the end some non-empty subset VI is left, TJ satisfies, for all
x E Vi,

rJ(x) S L (-6.~y).
yEVj,y#x

The restriction rJlvj is called a forbidden subconfiguration. If Vi is empty, the
configuration is called allowed, and the set Av of allowed configurations satisfies

Proposition 2.3

Av = nv·
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The main ingredient to prove this result (see [IP (1998)], [Speer (1993)]) is
the fact that toppling or adding cannot create a forbidden subconfiguration.
The set Av is thus closed under the dynamics and contains the maximal con­
figuration "'max.

Remark that the burning algorithm implies that for V' :::) V, and ." E Ov,
." (j. Rv, then any ( E ny, such that (Iv = ." satisfies ( (j. R v '. Indeed,
the property of having a forbidden subconfiguration in VJ only depends on
the heights at sites x E VJ. Therefore." E Rv' implies ."Iv E Rv. This
"consistency" property will enable us to define allowed configurations on infinite
sets.

2.8 Expected Toppling Numbers

For x,y E V and." E nv, let nv(x,y,.,,) denote the number oftopplings at site
y E V by adding a grain at x E V, i.e. the number of times we have to apply
the operator Tt:. v (., y) to relax ."x. Define

Gv(x,y) = f J.w(d.,,) nv(x,y,.,,). (2.10)

Writing down balance between inflow and outflow at site y, one obtains (cf.
[Dhar (1990a)])

L ~~,zGv(z, y) = 8x ,y,
zEV

which yields
Gv(x,y) = (~v);,~.

In the limit ViS (where S is tld or the infinite tree), Gv converges to the
Green's function of the simple random walk on S.

2.9 Some specific results for the tree

When ~J, is a binary tree of n generations, many explicit results have been
obtained in [DM (1990b)]. We summarize here the results we need for the
construction in infinite volume.

1. When adding a grain on a particular site 0 E Vn of height 3, the set of
toppled sites is the connected cluster C3 (0,.,,) of sites including 0 having
height 3. This cluster is distributed as a random animal (i.e. its distribu­
tion only depends on its cardinality, not on its form). Moreover

(2.11)

as k goes to infinity. The notation ~ means that if we multiply the left
hand side of (2.11) by k 3/ 2 , then the limit k -+ 00 is some strictly positive
constant C.

2. When adding a grain on site x, the expected number of topplings at site
y satisfies

(2.12)
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(2.13)

(2.14)

(2.15)

where G(x, y) is the Green's function of the simple random walk on the
infinite tree, i.e.

G(O, x) = CTlxl,

and Ixl is the "generation number" of x in the tree.

3. The correlations in the finite volume measures j1.Vk can be estimated in
terms of the eigenvalues of a product of transfer matrices. This formalism
is explained in detail in [DM (1990b)], section 5: Let j, g be two local func­
tions whose dependence sets (see below a precise definition) are separated
by n generations. To estimate the truncated correlation function

J.tVk (J; g) = ! jgdJ.tVk - Jjdj1.Vk! gdj.Lvk ,

consider the product of matrices

M~ = TI (1 +;;,n ~ ~ ~~:: ) ,
where ..,,;,n E [0,1]. Let A;rik (resp. Ar;/) denote the smallest (resp.
largest) eigenvalue of M~. Then

An,k
J.tVk (J;g) :s C(j,g) A':,k' (2.16)

M

If j and 9 have dependence sets "deep within" Vk, then ..,,;,n is very close
to one, and the correlations are governed by the maximal and minimal

(
2 2)neigenvalues of M n = 1 3

3 Main results

3.1 Notation, definitions

From now on, S denotes the infinite rootless binary tree, V C S a finite subset
of s; nv is the set of stable configurations in V, i.e. Ov = {7J: V ~ {I, 2, 3}},
and the set of all infinite volume stable configurations is n = {1,2,3}s. The
set n is endowed with the product topology, making it into a compact metric
space. For 7J E 0, 7Jlv is its restriction to V, and for 17, ( E n, 7Jv(vc denotes the
configuration whose restriction to V (resp. VC) coincides with 17lv (resp. (lve).
As in the previous section, Rv c nv is the set of all allowed (or recurrent)
configurations in V, and we define

R = {TJ En: \IV c S finite, TJlv E Rv}. (3.17)

A function j : 0 ~ lR is local if there is a finite V C S such that 17lv = (Iv
implies j(TJ) = j((). The minimal (in the sense of set ordering) such V is called
dependence set of j and is denoted by Df. A local function can be seen as a
function on nv for all V ::) D f and every function on Ov can be seen as a local
function on n. The set £ of all local functions is uniformly dense in the set C(O)
of all continuous functions on n.

All along the paper, we use the following notion of limit by inclusion for a
function j on the finite subsets of the tree with values in a metric space (K, d):

8



Definition 3.1 Let S = {V c 5, V finite}, and f : S ---7 (K, d). Then

lim f(V) = f\,
ViS

if for all E > 0, there exists Vo E 5 such that for all V ~ Vo, d(f(V) , f\,) < E.

Definition 3.2 A collection of probability measures Vv on Ov is a Cauchy net
if for any local f and for any E > °there exists Vo ~ Df such that for any
11, V' ~ 110 I! f(1])vv(d1]) - ! f(1])vv' (d1])I::; E.

A Cauchy net converges to a probability measure v in the following sense:
The mapping

W: £, ---7 IR; f ........ \J!(f) = lim! fdvv
ViS

defines a continuous linear functional on £, (hence on C(O» which satisfies
w(f) 2:: °for f 2:: °and w(l) = 1. Thus by Riesz representation theorem
there exists a unique probability measure on 0 such that \l!(f) = J fdv. We
denote v", ---7 v, and call this v the infinite volume limit of vv.

We will also often consider an enumeration of the tree 5, {xo, Xl, •.. , X n , ...},

and put
Tn = {xo, ... , xn }. (3.18)

3.2 Thermodynamic limit of stationary measures

Theorem 3.1 The set n defined in (3.17) is an uncountable perfect set, i.e.

1. n is compact,

2. The interior of n is empty,

.'J. For all 1] E n there exists a sequence 1]n =1= 1], 1]n E n, converging to "1.

For 7] E 0, we denote by C3 (O, "1) the nearest neighbor connected cluster of
sites containing the origin and having height 3.

Theorem 3.2 The finite volume stationary measures ILl' defined in (2.8) form
a Canchy net. Their infinite volume limit IL satisfies

1. lL(n) = 1,

2. IL is translation invariant and exponentially mixing,

.'J. IL ('11 : IC3 (0, "1)1 < 00) = 1,

4- J IC3 (0, "1)IIL(d1]) = 00.

Remark: Point 3. above remains true for the set C I (0, "1), the nearest neighbor
connected cluster of sites containing the origin and having height 1, and probably
also for C2 (0, "1) but this we have not been able to prove.
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3.3 Infinite volume dynamics

The finite volume addition operators ax'y (cf. (2.5)) can be extended to n via

Proposition 3.1

1. There exists a subset n' of R with f.,l(n') = 1 on which the limit

lim ax v7J = ax'fJ
VTS '

exists, and ax 7J E n/.

(3.19)

(3.20)

2. The measure f.,l of theorem 3.2 is invariant under the action of ax .

3. For every 7J En', ax(ay7J) = ay(ax'fJ), for all x,y E S.

Part 2 implies that the infinite volume addition operators (/"" (d. (3.20))
define norm 1 operators on LP(f.,l), for 1 ::; p ::; 00 via

We now construct a Markov process on f.,l-typical infinite volume configura­
tions which can be described intuitively as follows. Let r.p : S --+ (0, (0); this
function will be the addition rate function. To each site xES we associate
a Poisson proces N~'x (for different sites these Poisson processes are mutually
independent) with rate r.p(x). At the event times of N~'x we "add a grain" at x,
Le. we apply the addition operator ax to the configuration. Then Lt introduced
in (2.7) generates a pure jump Markov process on n. Indeed, this operator is
well-defined and bounded on any LP(f.,l) space by Proposition 3.1, which implies

Proposition 3.2 Lt is the LP(f.,l) generator of the stationary Markov process
defined by

exp(tL'f;)f = f (II a:~'~ f) dlP,
xEV

where lP denotes the joint distribution of the independent Poisson processes
N~'x, and f E LP(f.,l).

The following condition on the addition rate r.p is crucial in our construction.
Remember Ixl is the generation number of x:

Summability Condition: 2: r.p(x)2- lxj < 00

xES

(3.21)

This condition ensures that the number of topplings at any site xES
remains finite during the addition process.

Theorem 3.3 If r.p satisfies condition (3.21), then we have

1. The semigroups Sv (t) = exp(tLt) converge strongly in £l (f.,l) to a semi­
group Scp(t).

10



2. 5cp(t) is the L 1 (f-L) semigroup of a stationary Markov process {1]t : t ~ O}
on n.

3. For any f E .c,

. 5cp(t)f - f - CPf - L ()[ f f]hm - L - cp x ax - ,
t!O t

xES

where the limit is taken in L 1(f-L).

Remarks.
1. In Proposition 4.1, we show that Scp(t) is a strongly continuous function of
cpo
2. In Proposition 4.2, we show that condition (3.21) is in some sense optimal.

Theorem 3.4 The process {1]t : t ~ O} of Theorem 3.3 admits a cadlag version
(right-continuous with left limits).

The intuitive description of the process {1]t : t ~ O} is actually correct
under condition (3.21), Le. the process has a representation in terms of Poisson
processes:

Theorem 3.5 If cp satisfies condition (3.21), for J.L x IP almost every (TI, w) the
limit

II Nt·"(w)
lim ax '" 1] = 1]t
V1S

xEV

e:rists. The process {Tit: t ~ O} is a version of the process of Theorem 3.3, i.e.
its L1(Jl) semigroup coincides with 5cp(t).

Finally, we can slightly generalize Theorem 3.5 in order to define the dy­
namics starting from a measure stochastically below f-L. For TI, ( E n, 1] ~ (

if for all x E 5, TI(x) ~ ((x). A function f : n ---+ IR is monotone if 1] ~ (

implies f(1]) ~ f(O· Two probability measures f-L and v satisfy J.L ~ v if for all
monotone functions, f fdJ.L ~ f fdv.

Theorem 3.6 Let f-L' ~ J.L. If cp satisfies condition (3.21), for J.L' X IP almost
every (1], w) the limit

. N~'"(w)
hm II ax 1] = 1]t
V1S

xEV

exists. The process {Tit : t ~ O} is Markovian with Tlo distributed according to
f-L' .

Remark. The last Theorem implies that 1] == 1 can be taken as initial configu­
ration.

4 Proofs

This section is devoted to the proofs of the results described above. Some of
them will be put in a slightly more general framework so that they can be ap­
plied to other cases (where 5 is not a binary tree or where we have other addition
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operators ax) as soon as the existence of a thermodynamic limit of the finite
volume stationary measures is guaranteed. The essential cause of difficulty is
the non-locality of the addition operators. The essential simplification is the
abelian property which enables us to think of the ax as complex numbers of
modulus one.

4.1 Thermodynamic limit of stationary measures

Proof of Theorem 3.1:
1,2. If T] E n and ( 2: T], then ( E R (by the burning algorithm (Iv 2: ''1lv
implies that (Iv E Rv). Since "I == 2 is in R (again by the burning algorithm), we
conclude that n is uncountable. To see that R has empty interior, notice that if
ry E R, there does not exist x, yES nearest neighbors such that "1(:1:) = TJ(Y) :::: 1
(that way, ryl{x,y} would be a forbidden subconfiguration). Finally R is closed
as intersection of closed sets.

3. Let TJmax be the maximal configuration, rymax(x) = 3 for all xES. If
rylv E Rv, then ryV(TJmax)Vc E R. Therefore any "I E n containing an infi­
nite number of sites x for which ry(x) '" 3 has property 3 of Theorem 3.1. If
ry E n contains only a finite number of sites having height 1 or 2, then we
choose a sequence E = {xn : n E IN} C {x E S : ry(x) :::: 3 and ry(y) =
3 for any neighbor of x} such that two elements of E are never nearest neigh­
bors, and Ixnl is strictly increasing in n. We then define TJn(x) = ry(x) for
x E S\ {Xk E E: 0::; k::; n} and TJn(Xk):::: 2 for Xk E E, k 2: n+ 1. These 7/"

belong to R by the burning algorithm, and TJn ----> TJ. •

Proof of Theorem 3.2:

We use Tn introduced in (3.18), but with the Xi such that n ::; m implies that
the generation numbers satisfy Ixnl ::; Ixml. Then we have

(4.22)

To prove that the probability measures 1.Lv form a Cauchy net, it is sufficient to
show that for any local function f : n ----> lR we have

L I f fdJ-LTn - fdJ-LTn+tl < 00.

n

(4.23)

We do it for f(T]) = TJ(xo) (a general local function can be treated in the same
way), by giving an upper bound of the difference JfdJ-LTn - J fdJ-LTn+t by a
truncated correlation function (cf. (2.14)). Then we estimate the latter by the
transfer matrix method (cf. Section 2.9, part 3). We abbreviate in what follows
J-Ln = J-LTn , nn = R Tn ·

Lemma 4.1

12



Proof: By the burning algorithm, every 'fJ E R n can be extended to an element
of R n+ 1 by putting 7J(Xn+l) = 3. Moreover

{'fJITn : 'fJ E R n+1 , 'fJ(xn+d = 3} = R n,

thus

(4.24)

which yields

=

Therefore

I ( ( )) _ « ))1 < J.Ln+d7J(xo); I(7J(xn+d = 3)]
J.LnH 7J Xo J.Ln 'fJ Xo - [( + 1) - 3]J.Ln+l 7J Xn -

The Lemma follows now from (4.24), and the fact that IRnl grows like ecn for
some c ::::: log 2. •

Recalling Section 2.9, part 3, we have

(4.25)

LeIllma 4.2

Proof: We abbreviate A~) = A~nl,lxnl, A~) = At-nl,lxnl, M(n) = MI~nl' "Ii =

'Yl'Cn ,,'Xn '. Remember 0 :::; 1'1Xn' ,'Xn' :::; 1 is close to one for i «: nand n large. In
terms of the trace and the determinant of M (n) we have

A~) = ~ (Tr(M(n)) + J[Tr(M(n))J2 - 4det(M(n)))

A~) ~ (Tr(M(n)) - J[Tr(M(n))J2 -4det(M(n))).

Therefore,

lim (A~)) ([Tr(M(n))j2) - 1
nToo A~) det(M(n)) -.

To prove the Lemma we show that (cf. (4.22))

(
det(M(n))) (~)Ixnl

[Tr(M(n))]2 :::; 9 .

13
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Use
Ix,,1

det(M(n)) = II (1 + 'Yi?,
i=1

and

Tr(M(n))
(

Ix,,' (
> Tr g 1 ~ 'Yi 2 ~ 'Yi

Ix,,1 Ix,,1

= rr (1 + 'Yi) + II (2 + 'Yi),

i=1 i=1

to estimate (for 1 ~ i ~ Ixnl, 2(2 + 1';) 2: 3(1 + 'Yi))

(
det(M(n)) )
[Tr(M(n))]2

< (1+2 Irrxn' [2+'Yi] +Irrx
nl

[2+'Yi]2)-1
i=1 1 + 'Yi i=1 1+ 'Yi

< (1 + 2.(3/2)lxnl + (3/2)*nl)-1

< (4/9) IX n I,

For a general local function f, we have to replace Ixnl by Ixnl - No, where
No is the number of generations involved in the dependence set of f· Since f is
local, No is finite, hence the convergence in (4.23) is unaffected. •

4.2 Infinite volume toppling operators

Definition 4.1 Given the finite volume addition operators ax,v (defined in
(3.19)) acting on 0, we call a configuration", E 0 normal if for every xES
there exists a minimal finite set Vx (1]) C S such that for all V' :J V ::> V,(",)

In other words, for a normal"" outside Vx ("'), no sites are affected by adding
a grain at x. In our case, when a particle is added at some site ;1: E S, the
cluster of toppled sites coincides with the cluster C3 (x, 1]) of sites having height
3 including x, thus

(4.27)

where oe denotes the exterior boundary, Notice that for a normal configuration
1], by definition,

(4.28)

Proof of Proposition 3.1:
1. We show that there is a full measure set 0' of normal configurations. From
(2.11) and Theorem 3.2,

.I I(IC3 (x,,,,)! =n)dp ~ Cn- 3
/

2
,

14



Therefore /l concentrates on the set 0' of configurations for which all the clusters
C3 (x,7]) are finite, hence for which 7] is normal. Moreover this set 0' is closed
under the action of the addition operators ay , since (cr. (4.27))

(4.29)

2. Choose E > 0, pick a local function f, fix Vn l' S and no such that n 2: no
implies

(4.30)

This no exists since J1, concentrates on normal configurations. We estimate

I./ f(a,r7])d/l - f(7])dJLI < 1./ f(ax,vn 7])dJL - I f(7])d/l1

+ 21Ifll=J1,{7] EO: Vx (7]) ct Vn }

< l~ II f(ax,vn7])dJ1,Vm -I f(7])d/lvm I+ ~

< -2
E + 211fll00 limJ1,Vm (ax,vn (7]) i= aX,Vm (7]))

m

~ + 211flloo (1 -1~J1,Vm (Vx(7]) CVn ))

E
= "2 + 211flloo (1 - J1,(Vx(1]) C Vn )) ~ E.

In the last step we used that the indicator I(V.,;(1J) C Vn ) is a local function.
3. Let 1] EO', x, yES be two different sites and V :::> Vx (7]) U Vx (ax 1]) U

Vx(ay1]). Since ax,v and ay,v commute, we have

ax(ay1]) = ax (ay,v1]) = ax ,v(ay,V1])

= ay,v(ax,v1]) = ay,v(ax1]) = ay(ax1]).

•

4.3 Infinite volume semigroup

We now turn to the proofs of Theorems 3.3 and 3.4.

Definition 4.2 We define the cluster of 7] E 0 at xES as

C(x,1]) = {y E S: ay1](x) i= 1](X)},

and put

G1,(x,y) =! I(y E C(x,1]))d/l(1]).

Finally for rp : S -t [0, (0), write

Ilfll<p = L cp(x) I J1,(d7]) If(ax1]) - f(1])I,
xES

S<p = {j: n -t Ill: f bounded, Ilfll';? < oo}.

15
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(4.33)
Lemma 4.3 If

L cp(x)G/-L(Y'x) < 00 for all YES,
xES

then all local functions are in 13'1"

Proof: Let I be a local function with dependence set D t · Then f(axry) i- f("I)
iffor Y EDt, ax"l(Y) i- ry(y), i.e. x E C(y, "1):

1111/'1' = L cp(x) / laxl - Iidp
xES

/ L <p(x)laxl - Iidp
xEUyED f C(y,1))

::; 21111100 L <p(x) Jl(x E UyEDfC(y, ry»dp
xES

< 21111100 L L G/-L(Y, x)<p(x) < 00.

YEDf xES

•
The next lemma provides a link between GI-' and the Green's function for

simple random walk on S, i.e., between conditions (4.33) and (3.21).

Lemma 4.4

where z '" x means that z and x are neighbors.

Proof: We have to estimate the probability that ax'f/(Y) #- ry(y). If by adding
a grain at x we influence y, this can only be achieved by the toppling of one of
the nearest neighbor sites of y. Since p concentrates on normal configurations,

p (axry(y) i- "I(y» vn p (axry(y) i- ry(y), V",(ry) U Vy(ry) c V)

= vn tjTsPW (ax,vry(y) i- ry(y), Vx(ry) U V;,(ry) c V)

= VntjTspw(ax,w"I(Y) #-ry(y),Vz(ry)uV:,,(ry) c V)

< tjrrspw (ax,wry(y) i- "I(y»

< lim PW (3 z E W,z '" y,nw(z,y,ry) ? 1)
W1S

< lim"! dpw (1/)nw (z, Y, "1)WTS LJ
Zf'Vy

L G(z,y), (4.34)

where we used (2.10),(2.12), (4.27) and (4.29). •
The following Lemma finishes the proof of Theorem 3.3 and shows that B", is

a natural core for the domain of the generator of the infinite volume semigroup.

16



Lemma 4.5

1. FOT f E B<p the net

st(t)f = exp(tLt)J = exp (t L <p(x) (ax - I)) f (4.35)
xEV

converges in L1(fL) (as ViS) to a function S<p(t)f E L1(fL)· f ~ Scp(t)J
defines a semigroup on Bcp which is a contraction in both L1(fL) and Bcp
norms.

2. Under condition (4.33), the semigroup Scp(t) corresponds to a unique Markov
process on n.

Proof: We denote by Ilfll the L1(fL)-norm of f, and we abbreviate Sv(t) =
st(t), S(t) = SCP(t), Lv = Lt·
1. First note that Sv (t) is well-defined on L 1 (fL) by Proposition 3.2. By the
abelian property (Proposition 3.1, part 3) we can write for V c V' C S:

IISv(t)f - Sv,(t)fll = II(Sv'\v(t) - I)Sv(t)fll

By Proposition 3.2, Sv(t) is the semigroup of a stationary Markov process and
hence a contraction on L 1(fL). Therefore

IISv(t)(Sv'w(t) - I)fll ::; II(Sv'\v(t) - I)fll

= lilt Lv,wSv'w(s)fdsll

< lt

IILV'w fllds

< t L <p(x) JI(ax - I)fldfL -t 0 as v, V'i S, (4.36)
xEV'\V

where the last step follows from f E Bcp. Hence Sv(t)f -t S(t)f in L1(J..L). We
show that S(t)f E Bcp:

L <p(x) JIS(t)f(ax1]) - S(t)f(1])lfL(d1])
xES

< L <p(x)JS(t)laxf - fldfL
xES

!L <p(x)laxf - fldfL = Ilfll<p'
xES

Thus S(t) is also a contraction for the II· II <p-norm. We finish with the semigroup
property:

S(t)S(s)f = lim Sv(t)[S(s)f]
ViS

= lim lim Sv(t)Sw(t)f,
ViS WiS

17



(4.38)

and
S(t + s)f = lim Sv(t)Sv(s)j.

VTS

Then, since Sv(t) is a contraction in L1(f-L),

IISv(t)Sw(t)j - Sv(t)Sv(s)jll ::; IISw(s)j - Sv(s)jll, (4.37)

By (4.36), the right hand side of (4.37) goes to zero as V, WiS.
2. If condition (4.33) is met, then B", contains all local functions by Lemma
4.3. Therefore, by contractivity the semigroup S(t) on !3", uniquely extends
to a semigroup of contractions on L1(f-L). Since by Proposition 3.2, Sv(t) is a
Markov semigroup, so is S(t), i.e. S(t)l = 1, S(t)j ;::: 0 if j :;::: O. Hence, by
Kolmogorov's theorem there is a unique Markov process with semigroup S(t).•

Remark. When cp == 1, condition (4.33) is equivalent to

L / f-L(dry)I(x E C(y,ry)) = / IC(y,ry)If-L(dry) < +00,

xES

i.e., the clusters must be integrable under f-L. For models which exhibit "self­
organized criticality", C(y, ry) is usually a "finite but critical percolation cluster",
implying that JIC(y,ry)ldf-L = 00 (cf. Theorem 3.2 part 4, because C(y,ry) :J
8eC3 (y, ry)). Therefore this formalism breaks down for addition rate cp == l.

The following Lemma proves Theorem 3.4.

Lemma 4.6 Under condition (4.33), the process {ryt : t :;::: O} oj Theorem 3.3
is almost surely right-continuous, i. e.

IP IL [lim d(ryt, ryo) ;::: f] = 0,
tlO

where IP IL is its path-space measure, and the distance d is defined below (in
(4·41)).

Proof: Pick a function IlJ : S -; (0,1) such that

L llJ(x) = 1,
xES

and
L cp(x)GI, (x, y)llJ(y) < 00

x,yES

The distance

(4.39)

(4.40)

(4.41)d(ry, () = L Iry(x) - ((x)lllJ(x)
xES

generates the product topology. Denote by lElL the expectation w.r.t. IP JI' For
jy(ry) = ry(y),

jy(ryt) - jy(ryo) = I t

L"'jy(rys)ds +Ml,

where Ml is a centered martingale with quadratic variation

18



Using stationarity of TIs and

JdfL IL"'gI $ 211gll00 'L L cp(x)Gt,(y, x),
xES yEDg

for a local bounded function on n, we obtain from (4.42)

lEI' [(Mi')Z] $ Ct L cp(x)Gtt(y,x).
xES

Now we can estimate

lPt, [3S $ t : 'L l1Js(Y) - Tlo(y)I'!J(y) ~ E]
yES

< lPl' [ (t ds L IU' fy (TIs) 1'!J(y) ~ E/2] + lPtt [sup L M%'!J(y) ~ E/2]
Jo yES O~s~t yES

2

< (12t/E) L cp(x)Gtt(y, x)'!J(y) + (2/E)ZlEt , L Mi'!J(y)
""yES yES

< (12t/E) L cp(x)Gtt(y,x)'!J(y) + (2/E)ZlEtt [L(Mi')Z'!J(y)]
x,yES yES

< tC, L cp(x)Gtt(y,x)'!J(y).
,",yES

Here we used Markov's and Doob's inequalities in the second step and the
Cauchy-Schwarz inequality combined with (4.39) in the third step. The result
(4.38) follows. •

4.4 Poisson representation

In this section we prove Theorems 3.5 and 3.6. Intuitively it is clear from the
abelian property that the process of which we showed existence in the previ-

Nt.~

ous subsection can be represented as ITxES ax'" TI, where N~'x are independent
Poisson processes of intensity cp(x).

We take Tn as in (3.18). We say that the product IIxEs a~~TI exists if for
every yES there exists Ny such that for all m, n ~ Ny

[II a~~1J] (y) - [ II a~~17] (y) = O.
xETn xETm

This is equivalent to the convergence of the sequence ITxET
n
a~~ 17 in the product

topology.

Lemma 4.7 Under condition (4.33), the product
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exists for /.l-almost every realization of N~'x and almost every 'T). The process
{fit : t :::: D} is a version of the Markov process of Lemma 4·5.

Proof: Choose a realization of N~'x such that

L N~,xGIJ(x,y) < 00

xES

(4.43)

for every y. This happens with probability one by condition (4.33). Define for
'T) EO'

(4.44)

Under /.l, 'T)Tn(t) is stationary in nand t. We have

/.l [I ('T)Tn(t))(y) - ('T)Tn+l (t))(y)1 :::: 1]

:s f I[a~:~'ln+l 'T)Tn(t)] (y) - (1]Tn(t)) (y) I/.l(d'T))

= f I[a~:~'ln+l1]] (y) -7J(y)1 /.l(d'T))

Nt'~n+l

< f t I[aL+l7J] (y) - [a~:~l1]] (y)! /.l(d'T))
j=l

< 6N~,Xn+lGJL(Xn+1'Y)'

In the second and last steps we used the invariance of /.l under ax. By the
Borel Cantelli Lemma, (4.43) implies that for almost every realization of N~'x

/.l [3no : \In:::: no (1]Tn(t))(y) = (1]Tn o (t))(y)] =1.

This proves /.l-a.s. convergence of the product. To see that ilt is a version of the
Markov process with semigroup S<p(t), combine Proposition 3.2 with Theorem
3.3, part 1 to get, for any local function f,

f d/.lll dJPf(ilt) - S<p(t)fl = D.

In the preceding argument we used a particular enumeration of the countable
set S. But changing it gives again a process with semigroup S", (t). Therefore
the limiting process will not depend (up to sets of measure zero) on the chosen
enumeration of S. •

Proof of Theorem 3.6:
For 1] E 0' and yES we have the relation (remember (4.44))

1]v(t)(y) = 1](Y) + I(y E V)N~'X - 6.nt,(y) , (4.45)

where nt,(x), an integer valued random variable, is the number of topplings at
site x in the time interval [0, t], when sand is added in V. For Tn defined in (3.18)
we will first prove that n~n increases /.l x lP almost surely to an L1 (/.l x IP) random
variable nt, interpreted as the number of topplings in [D, t] when we add grains
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according to N~'x. By the abelian property the sequence nh (0) is increasing in
k. The following estimate is similar to (4.34)

(f.l x lP)

<

<

<

<

Inh (0) - nh+1 (0) I 2: f) = (f.l xlP) (n~k+1 (0) 2: f)
~! n~k+1 (O)f.l(d1]) x lP(dw)

~ V¥1.1 n~k+I (O)I(Vxk+1 (1]) U %(1]) C V)f.l(d1]) x lP(dw)

~ lim !ntt,(xk+l,O,1])f.lW(d1]) x lP(dw)
f WTS

1
-ttp(xk+dG(O, xk+d. (4.46)
f

In the fourth line, ntt,(xk+l' 0, 1]) denotes the number of topplings up to time t
at site °E W by adding grains at site Xk+l E W. By the Borel Cantelli Lemma,
condition (3.21) implies the a.s. convergence of nh (0), and analogously of every
nh. (x). Pick (1], w) such that nh (1], w') converges, Le. such that sUPk nh (1], w) =
n t (1],w) is finite (indeed, nh(1],w) is an integer). If 1]' ::; 1], then nh(1]',w)::;
nh ('11, w) because we can obtain 1] from 1]' by adding sand at sites xES for which
17'(x) < T/(x) thereby increasing the number of topplings. We thus conclude that
the convergence of nh (1], w) implies the convergence of nh (1]' , w) for all 1]' ::; 1].

Now let p,' ::; p, in the FKG sense. There is a coupling lP12 of f.l' x lP and
p x lP such that

Le. we use the same Poisson events and couple p,' and f.l according to the optimal
coupling (see [Strassen (1965)]). Then

(p' x lP) (nh (1],w) -+ n t (1], w)) =lP12 (nh (1]1, WI) -+ n t (1]l ,wd)

lP12 (nh (1]1 ,wd -+ n t (1]I,wl),nh(T/2,w2) -+ n t (1]2,w2),Wl =W2,1]1 ::; 1]2)

> lP12 (nh (1]2, W2) -+ nt (1]2, W2))

(p x lP) (nh(1],w) -+ nt (1],w)) = 1.

This shows the p,' x lP-almost sure convergence of nh, hence by (4.45) the prod­
Nt,·(w)

uet fIXES ax 'P 1]' converges f.l' x lP almost surely. •

As a further result we show that the semigroup S<p(t) is continuous as a
function of the addition rate tp. We define

E1 = {ep : S -+ [0, (0) : Iltpll = L tp(x)G(O, x) < oo}.
xES

It is a complete metric space (as a closed subset of a Banach space) with the
property: If tpn E £1, epn i tp (pointwise), and tp E E1 then tpn -+ tp in £1'

Proposition 4.1 The semigroup S<p(t) of Theorem 3.3 is a strongly continuous
fu.nction of tp, i. e. if epn -+ tp in E1 , then for any local function f, S<pn (t) f -+

S<p(t)f·
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Proof: Let n~ = limk->oo nh be the number of topplings in [0, t] from sand
addition at rate tp. In the proof of Theorem 3.5 we have shown that this random
variable is J.L x 1P almost surely well defined and, after taking limits in (4.45),
satisfies

1}t = 170 + N~ - ~n~, (4.47)

where N~ = limvTs L-XEV N~'x. Note that if 'lPt ~ '¢2, the Poisson processes
N~l and N~2 can be coupled in such a way that for all XES, N~;1; ~ N~;~c, and
hence, by the abelian property, n~l (x) ~ n~2(x), Consider a coupling of the
four Poisson processes N&, N&I\'Pn' N&v'Pn and N~n under which the inequalities
Xl(t) ;::: X 2 (t), X 2 (t) ~ X 3 (t), X 3 (t) ;::: X 4 (t), are satisfied with probability one.
Let lP denote the law of the marginal (Xl, X 4 ). We have, by a reasoning similar
to (4.46),

I dJ.L (illln~JO) - n~(O)I) < JdJ.L (ill (n~JO) - n~nl\'P(O))
- ( t t)+ IE n'PV'Pn (0) - ntpl\tpn (0)

+ ill (n~v'PJO) - n~ (0») )

< t L Itpn(x) - tp(x)jG(O, :1:), (4.48)
xES

which tends to zero for tpn ----4 tp in £1. Take now a local function f, and denote
15, = D, U OeD"

IStpn(t)(f) - Stp (t) (f) I < lP (n~Jx) =I- n~(x) for some xED,)
< L illln~(x) - n~" (x)l·

xED!

Combining this with (4.48) concludes the proof. •
One might ask whether we can go beyond condition (3.21), which essentially

guarantees that the expected number of topplings stays finite in the addition
process. In the following proposition we show that it is impossible to keep
integrable toppling numbers and "rate I" addition. The relation (4.49) should
be regarded as the infinitesimal version of (4.47), where a(x) replaces the rate
<p(x). We then show that <p has to depend on x.

Proposition 4.2 Let a : S ----4 {O, I} be a stationary and ergodic random field
distributed according to v. Denote by Ja(O)v(d17) = p its density. Suppose
there exists a measurable transformation T : {O, l}s x n ----4 n which satisfies the
conditions

1. The measure J.L of Theorem 3.2 is invariant under T(a,') for' any a.

2.
T(a,1})(x) = 1}(x) + a(x) - ~n(a, 17, x),

with n(a,17,.) E Ll(J.L) for v almost every a.

Then, p = O.

22
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Proof: Taking expectation over j.L in (4.49) gives

6'!J(a, x) = a(x), (4.50)

where '!J(a,x) = fn(a,'T},x)j.L(d'T}). By stationarity of j.L and v, '!J(a,x) is a
stationary random field. Let (Xt : t ~ 0) denote continuous time simple random
walk on 5, starting at O. From (4.50),

Divide this last line by t and let t 1" +00. As v is ergodic (making the last term
equal to p) and as the process '!J(a,xt) is stationary, we conclude that p = O.•
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