

A taxonomy of maximally elastic buffers

Citation for published version (APA):
Mak, R. H. (2004). A taxonomy of maximally elastic buffers. (Computer science reports; Vol. 0426). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/a98dd482-5964-4cc6-87e5-ac877ab0302a

A taxonomy of maximally elastic buffers

Rudolf H. Mak

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail R.H.Mak@tue.nl

September 20, 2004

Abstract

In most producer-consumer (sender-receiver) systems buffers are used
for traffic smoothing. To perform that task optimally it is required that
these buffers can maintain a high throughput for a wide range of occu-
pancies, a property called elasticity. The maximal elasticity obtainable
is a function of two design parameters of the buffer, viz. its storage ca-
pacity and its average i/o-distance. Whether maximal elasticity is indeed
obtained by a particular buffer design depends, however, on the detailed
structure of the buffer. In this paper we investigate for which parameters
optimally elastic buffers exist and what the structural complexity of those
buffers is. To address the latter issue we adopt a compositional approach
in which buffers are constructed according to prescribed rules from fixed
sets of basic building blocks. By variation of the construction methods
and the base sets a taxonomy of buffer classes is obtained that guides the
search for maximally elastic buffers of a certain complexity.

1 Introduction

Consider a producer-consumer system in which both production and consump-
tion rate fluctuate mildly, but independently, around a common rate. If in
such a system the producer and consumer are connected directly to each other,
the system incurs a performance penalty. At any time the slowest component
dictates the system throughput, which will be less than the common production-
consumption rate.

To avoid this penalty, it is common practice to insert a FIFO-buffer between
producer and consumer. The observed buffer behavior is then the following.
On average half of the storage elements of the buffer are occupied and the
buffer runs at the common rate. When the consumer temporarily slows down
(or the producer speeds up), the buffer adjusts its communication rate at the
appropriate side to cater for this change. At the opposite side the buffer keeps its
communication rate unchanged. As a consequence the occupancy of the buffer
increases. If after a short enough period the consumer resumes its original rate,

1

the producer will not notice the temporary drop in consumption rate. The only
trace left is that the occupancy of the buffer has increased. If on the other hand
the decrease of consumption rate lasts too long, the buffer becomes completely
filled, and the slower consumption rate determines the system throughput. In
fact this degradation of performance is not abrupt. When the occupancy of
the buffer rises above a certain level, the throughput starts to drop towards the
current consumption rate. A similar phenomenon occurs when the production
rate decreases (consumption rate increases) and the occupancy of the buffer
drops below a certain level. Hence there is a range of occupancies centered
around a half-filled buffer in which the buffer will keep the system throughput
optimal. In general the extent of this range depends on the buffer’s structure.
E.g. it is well-known (see [7]) that linear buffers only operate at maximum
throughput at a single occupancy level, i.e. when half-filled. Tree buffers that
consist of a fan-out tree followed by a fan-in tree, on the contrary, run at
maximal throughput for most occupancy levels. One can therefore say that
tree buffers are more flexible or elastic than the linear buffers.

Clearly large elasticity is a desirable property for buffers when used as in-
terconnect between a producer and a consumer. In [6] it has been shown that
the maximum elasticity of a buffer is determined by only two parameters, viz.
the storage capacity of the buffer and the i/o-distance of the buffer, which, as
we will see in section 5, can be perceived as a dynamic diameter of the buffer.
This upper bound is consistent with known results such as the one for linear
buffers.

In general there are many buffer designs with identical storage capacity
and i/o-distance. Whether any particular design indeed achieves maximum
elasticity depends on structural details. So, from a design perspective, we
can ask whether for a given capacity and i/o-distance there exists a maximally
elastic buffer, if it is unique, and if not what the optimal buffer of least structural
complexity looks like. To address the latter question we take the following
approach. All buffers will be constructed from a (small) set of basic building
blocks using a (small) set of construction rules. By varying the the set of
building blocks and the set of construction rules we obtain a taxonomy of buffer
classes. For each of these classes we investigate the presence or absence of
maximally elastic buffers.

The remainder of this paper is organized as follows. In sections 2 and 3 we
define the basic building blocks and the construction methods respectively. Sec-
tion 4 defines a taxonomy of buffer classes based on their structural complexity.
Sections 5 and 6 discuss design parameters and performance metrics respec-
tively. Section 7 introduces an optimality criterion for buffers and indicates
which optimal buffers we are looking for. Section 8 defines contour functions
that can be used to search for optimal buffers of specified structural complexity.
Section 9 explains how these contour functions can be computed and presents
some results.

2

2 Basic building blocks

The buffers we shall consider throughout this paper are composed of instances
of a fixed set of basic building blocks. In this section we define this set of
components. The simplest component of all is the one-place buffer. It consumes
a stream A of input values and produces a stream B of output values such that
B = A. Figure 1 shows both a diagram and a VLSI program for this component.
The diagram shows component Buf , its input stream A, and its output stream

A a b BB
Buf =
proc (in a,out b)·
|[var x |〉 (a?x; b!x)∗]|

Figure 1: A one-place buffer.

B. The program text resembles a procedure declaration such as one might
encounter in any higher level programming language and serves to define the
buffer process. It consists of a heading and a body. The heading specifies
that the component is named Buf and that it has an input port a along which
it receives the stream of input values A from its environment and an output
port b along which its sends the stream of output values B to its environment.
The body consists of a declaration part and a command. The declaration part
declares a single variable x in which the buffer can store values. Hence it is a one-
place buffer. The command defines the order of the communication events in
which the component is involved. It expresses that Buf is capable of an infinite
repetition, denoted by the Kleene star ‘∗’, of an input action a?x followed by,
denoted by the sequential composition operator ‘;’, an output action b!x.

Besides components that store values, we also need components that divide
and recombine streams. Such components are depicted in fig. 2. For 0 ≤ k <

l ≤ 1 component Splitk
l outputs the k-th1 out of every l inputs along port c,

and the remaining ones along port d. Note that in the diagram the output port
that produces the selected input is marked with a black dot. Moreover, note
that for l = 1 output port d is never used and the component behaves as if it
would be the one-place buffer Buf (a, c). Component Mergek

l is the opposite of
component Splitk

l in the sense that it inputs the k-th of every l outputs along
port e and the remaining ones at port f . It can be verified by inspection of
the program texts that connecting a merge component to the corresponding
split component in such a way that the black dots match will yield the original
stream again.

Given these basic building blocks we arrange them into an infinite sequence
{Cl | 1 ≤ l} of sets of increasing complexity. We define

C1 = {Buf }

Cl+1 = Cl ∪
⋃

0≤k≤l

{Splitk
l+1} ∪

⋃

0≤k≤l

{Mergek
l+1}

1Beware that numbering starts at zero

3

kSl

A

a

Cc

D

d

Splitk
l =

proc (in a,out c, d)·
|[var x

|〉 ((a?x; d!x)k

; (a?x; c!x)
; (a?x; d!x)l−k−1

)∗

]|

E

e

Mk
l

b

B

F f

Mergek
l =

proc (in e, f,out b)·
|[var x

|〉 ((f?x; b!x)k

; (e?x; b!x)
; (f?x; b!x)l−k−1

)∗

]|

Figure 2: Split and merge components.

The set C of all basic building blocks is of course the union of these sets, i.e.

C =
⋃

1≤l

Cl

3 Construction methods

So far we have encountered precisely one buffer, the single basic building block
Buf . In general a buffer will be a single-input single-output (SISO) system
of interconnected basic building blocks that has the first-in first-out (FIFO)
property. The interconnection mechanism used is parallel composition. As an
example consider the four-place buffer in fig. 3 which is a system that consists
of a Splitk

l component, a Mergek
l component, and two Buf components. These

components are connected by four internal channels c, d, e, and f . Each channel
connects precisely one input port of a subcomponent with precisely one output
port of another subcomponent. In the diagram these channels are represented
by arrows and in the program text they appear as the actual parameters that
instantiate the port names in the component definitions. The latter reflects
the fact that we adopt a CSP-like [5] communication model, viz. point-to-point
communication with synchronous message passing.

Parallel composition is a general method to construct arbitrary systems
(not necessarily buffers) from a set of basic components. As such it allows

4

B
b

A
a

kSl

Mk
lB

B

d

c

e

f

Buf4 =
proc (in a,out b)·
|[chan c, d, e, f

|〉 Splitk
l (a, c, d)

‖ Buf (c, e)
‖ Buf (d, f)

‖ Mergek
l (e, f, b)

]|

Figure 3: A four-place buffer.

the construction of buffers with arbitrary complex interconnection patterns. In
this paper we demonstrate that this unbridled complexity is superfluous for
the design of maximally elastic buffers. To this end we restrict the application
of parallel composition. In particular we distinguish three simple construction
methods that all have the property that when they are applied to buffers they
yield another buffer. The first construction method is serial composition.

Definition 3.1 (Serial composition) Let X and Y be systems each with a
single input port and a single output port. Then the serial composition SER(X, Y)
of X and Y is obtained by connecting the output port of X to the input port of
Y .

SER(X, Y) =
proc (in a,out b)·
|[chan c |〉 X(a, c) ‖ Y (c, b)]|

2

Obviously, the serial composition of two buffers is again a buffer.
The next construction method is wagging composition. It can be used to

create buffers in the following manner. First the input stream is divided into
two substreams each of which is fed through a buffer. Thereafter the two sub-
streams are recombined into a single output stream. When the recombination
process exactly matches the way in which the input stream is divided, the FIFO
property is retained and the resulting system is again a buffer.

Definition 3.2 (Wagging composition) Let X and Y be systems, each with
a single input port and a single output port. Then for 2 ≤ l and for 0 ≤ k < l

the wagging composition WAGk
l (X, Y) is obtained by surrounding these systems

5

with a pair consisting of a Splitk
l component and a Mergek

l component.

WAGk
l (X, Y) =

proc (in a,out b)·
|[chan c, d, e, f

|〉 Splitk
l (a, c, d)

‖ X(c, e)
‖ Y (d, f)

‖ Mergek
l (e, f, d)

]|

2

Note that the number of items passing through subsystem Y is l−1 times the
number of items passing through subsystem X.

The four-place buffer described at the start of this section is an example of
a wagging composition, viz. Buf 4 = WAGk

l (Buf ,Buf).
The third and last construction method is a variation of wagging. Instead

of only two substreams it allows an arbitrary number of substreams. Each sub-
stream, however, now carries the same fraction of items from the original input
stream. Moreover, the subsystems responsible for division and recombination
of the input stream are of a specific nature. The system used for division is
called a multi-split component and is defined by

Msplit1 =
proc (in a,out c[0 .. 1))·
|[Buf (a, c[0])]|

Msplit l+1 =
proc (in a,out c[0 .. l+1))·
|[chan d

|〉 Split l
l+1(a, c[l], d)

‖ Msplit l(d, c[0 .. l))
]|

Assume that the input stream is partitioned into consecutive blocks of l items.
Then the output stream produced at port c[k] of Msplit l consists of the k-th
values of these blocks. The system used for recombination is called a multi-
merge component and is defined by

Mmerge1 =
proc (in e[0 .. 1),out b)·
|[Buf (e[0], b)]|

Mmerge l+1 =
proc (in e[0 .. l+1),out b)·
|[chan f

|〉 Mmerge l(e[1 .. l + 1), f)
‖ Merge0

l+1(e[0], f, b)
]|

6

a

c[3] c[2] c[0]c[1]

B2S3
3S4

1S2A

C3 C2 C1 C0

B M0
2

3E 2E 1E

M0
3 M0

4 B

0E

b

e[3] e[2] e[1] e[0]

Figure 4: 4-way multi-split component (top) and multi-merge component (bot-
tom).

Figure 4 contains diagrams of the 4-way versions of these components. Given
these components we can now define multi-wagging composition by

Definition 3.3 (Multi-wagging composition) For 2 ≤ l, let {Xi | 0 ≤ i <

l} be a collection of systems each with a single input port and a single output
port. Then the multi-wagging composition of these systems is given by

MWl(X0, . . . , Xl−1) =
proc (in a,out b)·
|[chan c[0 .. l), e[0 .. l)
|〉 Msplit l(a, c)
‖ (‖i : 0 ≤ i < l : Xi(c[i], e[i]))
‖ Mmerge l(e, b)
]|

2

Because Split1
2(a, d, c) = Split0

2(a, c, d), multi-wagging coincides with wagging
for l = 2, i.e.

MW2(X0, X1) = WAG1
2(SER(X1,Buf), SER(Buf , X0)) (1)

For l ≥ 3, however, multi-wagging can not be expressed in terms of wagging,
because the initial split component Split l−1

l does not match the final merge
component Merge0

l .

4 Buffer classes

In this section we define a number of buffer classes. Each class is characterized
by a set of basic building blocks and a set of construction methods. This is
done in an incremental fashion. Hence the buffer classes can be ordered by
set-inclusion, resulting in a lattice of buffer classes. Classes in the lower part of

7

the lattice contain only buffers of low structural complexity, whereas classes in
the upper part of the lattice contain “complicated” buffers as well.

Definition 4.1 For 1 ≤ n the class Un of all systems that can be constructed
from the set of basic building blocks Cn using the parallel composition operator
is the smallest class such that

1. Cn ⊆ Un,

2. If X, Y ∈ Un, then X ‖ Y ∈ Un
2.

2

Then the universe U , i.e. the set of all systems that can be constructed
using all basic building blocks C, is the union of all sets Un,

U =
⋃

1≤n

Un

Furthermore, define B ⊆ U as the set of all buffers, and define Bn = B ∩ Un as
the set of buffers composed of basic building blocks from Cn.

By restriction of the construction methods and limitation of the set of basic
building blocks we now define a numbers of buffer classes. The simplest of these
classes uses only serial composition.

Definition 4.2 The class S of all buffers that can be constructed using only
one-place buffers and serial composition is the smallest class such that

1. Buf ∈ S,

2. If X, Y ∈ S, then SER(X, Y) ∈ S.

2

Since the only way to interconnect one-place buffers is by serial composition,
we have S = B1. The buffers of class S are also known as linear buffers.

Definition 4.3 (Linear buffers) The family of linear buffers {LBUF l | 1 ≤
l} is defined by

LBUF 1 = Buf

LBUF l+1 = SER(LBUF l,Buf)

2

Allowing also wagging composition results in many more buffer classes. To
be precise, one for each class of basic components.

2There may be many valid ways to interconnect ports of X and Y . It should be understood

that every one of these interconnection patterns yields a new element of the class.

8

Definition 4.4 For 1 ≤ n the class Wn of all buffers that can be constructed
using serial and wagging composition and using only basic building blocks from
Cn is the smallest class such that

1. Buf ∈ Wn,

2. If X, Y ∈ Wn, then SER(X, Y) ∈ Wn,

3. If X, Y ∈ Wn, then WAGk
l (X, Y) ∈ Wn, for all 0 ≤ k < l ≤ n.

2

Note that W1 = S, because clause 3 in this definition is inapplicable, since
WAGk,l is not defined for l ≤ 1. The class W of all buffers that can be con-
structed using the set of all basic building blocks C, but using only serial and
wagging composition, is given by

W =
⋃

1≤n

Wn

An important family of buffers that can be constructed using wagging is the
family of tree buffers.

Definition 4.5 (Tree buffers) The family of tree buffers {TBUF l | 1 ≤ l} is
defined by

TBUF 1 = Buf

TBUF 2 = SER(Buf ,Buf)

TBUF l+2 = WAG0
2(TBUF l,TBUF l)

2

As an example fig. 5 depicts the 10-place tree buffer TBUF 5.

M0
2

0S2

B

B

0S2 M0
2

B

B

0S2 M0
2

Figure 5: The tree buffer TBUF 5.

9

Whereas class S contains only linear buffers, class W contains much more
than the tree buffers. To get some impression of the possibilities consider the
following buffer

Diamond = WAG0
3(LBUF 5,TBUF 5)

a diagram of which is given in fig. 6.

B BB B B

0S2

0S3 M0
3

M0
2

B

B

0S2 M0
2

B
0S2 M0

2

B

Figure 6: The diamond buffer.

Finally, allowing also multi-wagging results in yet another buffer class per
class of basic building blocks.

Definition 4.6 For 1 ≤ n the class Mn of all buffers that can be constructed
using serial composition, wagging composition, and multi-wagging composition
and using only basic building blocks from Cn is the smallest class such that

1. Buf ∈ Mn,

2. If X, Y ∈ Mn, then SER(X, Y) ∈ Mn,

3. If X, Y ∈ Mn, then WAGk
l (X, Y) ∈ Mn, for 0 ≤ k < l ≤ n,

4. If Xi ∈ Mn, for all 0 ≤ i < n, then MWk(X0, . . . , Xk−1) ∈ Mn, for
2 ≤ k < n.

2

Because for l = 1 multi-wagging is not defined and for l = 2 multi-wagging
is a special case of wagging (see formula ??), the first two multi-wagging classes
coincide with the first two wagging classes, i.e. M1 = W1 and M2 = W2. Let
M be the class of all buffers that can be constructed using all basic building
blocks C and all three construction methods. Then

M =
⋃

1≤n

Mn

An example of buffers that require multi-wagging for their construction is
given by the family of square buffers introduced by Brunvand [2].

10

Definition 4.7 (Square buffers) The family of square buffers {SBUF l | 1 ≤
l} is defined by

SBUF 1 = Buf

SBUF 2 = WAG0
2(Buf ,Buf)

SBUF l+2 = MWl+2(LBUF l, . . . ,LBUF l)

2

Figure 7 contains a diagram of SBUF 5.

B M0
2

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

4S5
3S4

2S3
1S2

M0
5M0

4M0
3

Figure 7: The square buffer SBUF 5. The building blocks of the top row consti-
tute a Msplit5 component and the building blocks of the bottom row constitute
a Mmerge5 component.

When we order the buffer classes defined above using set inclusion ⊆, a
lattice of buffer classes emerges (see figure 8). In this lattice three chains can
be distinguished, viz. the W-chain, the M-chain, and the B-chain. For X ∈
{W,M,B} we call Xl the class of index l in chain X .

With the exception of the equalities already mentioned above all inclusions
between buffer classes in the lattice are proper. Within the chains and between
classes of the W-chain and the M-chain with the same index this is obvious
from the class definitions. To demonstrate that the inclusions between classes
of the M-chain and the B-chain with the same index are proper as well, we
indicate for each index l, 2 ≤ l, a buffer that belongs to Bl but not to Ml.

Consider component RWl displayed in fig. 9. Somewhat surprising this com-
ponent is a buffer. This can be seen by following an item on its path through
the system. After the merge component has accepted an item from the envi-
ronment along port a, it passes the item to the split component along channel

11

W ⊂ M ⊂ B

∪ ∪ ∪

...
...

...

∪ ∪ ∪

W3 ⊂ M3 ⊂ B3

∪ ∪ ∪

W2 = M2 ⊂ B2

∪ ∪ ∪

S = W1 = M1 = B1

Figure 8: A lattice of buffer classes.

M0
l

l−1Sl

h g

b

a

RWl =
proc (in a,out b)·
|[chan g, h,

|〉 Merge0
l (a, h, g)

‖ Split l−1

l (g, b, h)
]|

Figure 9: Two-place reverse-wagging buffer.

g. Subsequently the split component returns the item to the merge component
along channel h, whereafter it is again forwarded to the split component along
channel g. This happens l−1 times, until finally the split component deliv-
ers the item to the environment along port b. Thus each item passes l times
through both the merge and the split component before leaving the system.
Only when an item has entered the split component for the last time can the
system accept a new item. Therefore successive items cannot overtake each
other and the system is a FIFO buffer. By definition this buffer is a member of
class Bl, but clearly it is neither a member of class Wl nor of class Ml.

In fact {RWl | 2 ≤ l} can be seen as a family of increasingly clumsy two-
place buffers. Compared to the standard two-place buffer SER(Buf, Buf)
they run at lower throughput (see section 6 for a definition of this quantity). In
addition they consume more energy and have larger latencies, because they
circulate the data items. They are, however, maximally elastic, but so is
SER(Buf, Buf). Hence they illustrate one of the main conclusions of this

12

paper, that there is no added value in searching for maximally elastic buffers
outside class M.

5 Design parameters

In this section we adopt the point of view that a buffer is nothing but a graph
whose nodes are one-place storage components and whose edges are the channels
that connect these storage components. When we know the number of nodes of
this graph and its diameter we have already a good indication of the structure of
a buffer. We are interested in the diameter of a buffer is, because it represents
the length of the longest path. Assuming this path runs from the input to
the output, it is an indication of the maximal number of storage cells visited
by any data item on its passage through the buffer. Note, however, that by
the very nature of the split and merge components used, all buffers satisfy the
property that the path taken by a data item is only a function of the rank of
that data item in the input stream. So instead of just the maximum number
of storage locations it is possible to compute the average number of storage
location visited. The relevance of this quantity will become apparent in the
next section (lemma 6.1).

So the design parameters of a buffer that we are interested in are the total
storage capacity and the average number of storage cells visited by a data item
on its passage through the buffer.

Definition 5.1 (Capacity) The (storage) capacity κ(X) of a system X is the
sum of the number of storage locations (represented by variables in the program
texts) of each of its basic building blocks.

Since each basic building block contains a single variable, the capacity of a
buffer is equal to the number of its basic building blocks.

Definition 5.2 (I/o-distance) The i/o-distance δ(X) of a system X is the
average number of storage locations visited by any data item on its passage
through the system. When all data items visit the same number of storage
locations, we say that the system is equidistant. 2

Whereas the capacity of a buffer is always a natural number, the i/o-distance
of a buffer can also be fractional. E.g. the buffer depicted in fig. 10 has i/o-
distance 3l−1

l
, since one item out of every l items visits 2 storage locations

and the other ones 3. Of course the i/o-distance of an equidistant buffer is an
integer.

Obviously linear buffers are equidistant, and it is not hard to verify that
tree buffers are equidistant as well. Moreover, notice that in a multi-wagging
composition MWl the k-th input item out of every input block of length l visits
precisely l−k storage locations of the multi-split component and k+1 storage
locations of the multi-merge component. Hence the total number of storage
locations visited in both these components equals l+1 for every data item.
Therefore also the square buffers are equidistant.

13

a g

d f

bkSl

B

Mk
l

Figure 10: Buffer with fractional i/o-distance.

Definition 5.3 ((κ, δ)-buffers) A buffer with capacity κ and i/o-distance δ is
called a (κ, δ)-buffer. The set of all (κ, δ)-buffers is denoted by B

κ

δ
. 2

As an example, LBUF l is a (l, l)-buffer, SBUF l is a (l2, 2l−1)-buffer, and
for TBUF l it depends on the parity of l. TBUF 2m is a (2m+1−2, 2m)-buffer,
and TBUF 2m+1 is a (3 · 2m−2, 2m+1)-buffer.

In general there will be (κ, δ)-buffers for almost any pair of (κ, δ)-coordinates.
Also given a pair of coordinates there will be many buffers with those coordi-
nates. Amongst these we are interested in the ones with high elasticity and
preferably low structural complexity. Forgetting about elasticity for the mo-
ment, we first investigate whether constraining the structural complexity limits
the number of admissible (κ, δ)-pairs.

The following properties state the effects of the various construction meth-
ods with respect to the design parameters. For serial composition we have

Property 5.1 For arbitrary buffers X and Y , let Z = SER(X, Y). Then

κ(Z) = κ(X) + κ(Y)

δ(Z) = δ(X) + δ(Y)

2

An immediate consequence of this property is that for any buffer of class S the
i/o-distance and capacity are equal. For wagging composition we have

Property 5.2 For 2 ≤ l and arbitrary buffers X and Y , let Z = WAGk
l (X, Y).

Then

κ(Z) = 2 + κ(X) + κ(Y)

δ(Z) = 2 +
δ(X) + (l−1)δ(Y)

l
2

For multi-wagging composition we have

Property 5.3 For 2 ≤ l and a family of arbitrary buffers {Xi ∈| 0 ≤ i < l},
let Z = MWl(X0, . . . , Xl−1). Then

κ(Z) = 2l +
∑

0≤i<l

κ(Xi)

δ(Z) = l + 1 +
1

l

∑

0≤i<l

δ(Xi)

14

2

Combination of these three properties shows that restricting the construc-
tion of a buffer to these methods will result in a buffer whose i/o-distance cannot
exceed its capacity.

Theorem 5.1 For all buffers X ∈ M, the i/o-distance δ(X) is at most the
capacity κ(X).

Proof. By structural induction. For X = Buf the statement is obviously true.
Simple computations using properties 5.1, 5.2, and 5.3 show that neither by
serial composition nor by wagging or multi-wagging composition a buffer can
be constructed with i/o-distance larger than its capacity, unless already one of
the composing parts has an i/o-distance larger than its capacity. 2

First of all note that this bound can not be improved upon by limiting the
class of basic components, since the linear buffers already have i/o-distance
equal to their capacity. Furthermore, note that for buffers outside class M
the i/o-distance is in fact unbounded, because component RWl is a (2, 2l)-
buffer, and serial composition with a linear buffer of capacity m yields buffer
SER(LBUFm, RWl), which is a (m+2, m+2l)-buffer. Hence for every capacity
κ ≥ 2 there exists a (κ, κ+2(l−1))-buffer, for all l ≥ 2.

Having established an upper bound for the i/o-distance of buffers of class M,
we now investigate whether there exists a non-trivial, i.e. larger than constant,
lower bound for the i/o-distance of buffers of that class. In general this is not
the case, not even for buffers of subclass W, because it follows from property
5.2 that WAG0

l (LBUF l+1,Buf) is a (l+4, 4)-buffer. For equidistant buffers the
situation, however, is slightly better. For those buffers there exists a logarithmic
lower bound.

Theorem 5.2 Let X be an equidistant buffer with capacity κ and i/o-distance

δ. If δ is even, then κ ≤ 2
δ
2
+1 − 2 and if δ is odd, then κ ≤ 3 · 2

δ−1

2 − 2.

Proof. Let X be an arbitrary equidistant buffer. Assign each basic component
of X to a layer according to the following procedure. Layer 0 consists of the
basic component that contains the input port of X. Layer l+1 contains the
basic components that have not yet been assigned to a layer and that are
connected to a basic component in layer l by an internal channel. Since every
basic component has at most two output ports, the number of components in
layer l+1 is at most twice the number of basic components in layer l. Because
the storage capacity of each basic component is 1, it therefore follows that the
storage capacity of the first m layers is at most 2m−1. Of course a similar result
can be obtained for the last m layers, when we start the layer assignment at
the the basic component that contains the output port of the buffer. Because
X is equidistant the number of layers is at most δ. Hence a combination of the
forward and backward layer assignments yields the desired result. 2

Because equality holds for the tree buffer TBUF δ, the upper bound in this
theorem is tight. Combination of theorems 5.1 and 5.2 yields

15

Corollary 5.1 Let X be an equidistant buffer in class M. Then E(κ(X)) ≤
δ(X) ≤ κ(X), where function E is defined 3 by

E(κ) = ↓ {δ | δ is even ∧ κ ≤ 2
δ
2
+1 − 2}

↓ ↓ {δ | δ is odd ∧ κ ≤ 3 · 2
δ−1

2 − 2} (2)

2

Based on the above corollary, the (κ, δ)-space can be partitioned into three
areas, see fig. 11. In the following sections it will be shown that the buffers
in area A3 perform poorly with respect to throughput and that for the buffers
in area A1 there is strong indication that they can not be maximally elastic.
Therefore our prime interest is in the buffers of area A2.

ca
pa

ci
ty

 κ

i/o−distance δ

A
1

A
2

A
3

δ = E(κ) δ = κ

Figure 11: Three-partition of the (κ, δ)-space.

Sofar only the effect of restricting the construction methods to those of
class M have been considered. The next theorem shows that neither a further
restriction of the construction methods to those of class W nor limiting the set
of basic building blocks to a subclass Cl ⊆ C, provided 2 ≤ l, will lead to more
stringent bounds for the i/o-distance.

Theorem 5.3 For all (κ, δ)-pairs with E(κ) ≤ δ ≤ κ there exists an equidistant
(κ, δ)-buffer in class W2.

Proof. First of all note that the same range of (κ, δ)-pairs is considered, when

3Here and elsewhere in this paper the down-arrow ‘↓’ denotes a minimum operator, either

in its monadic form as the minimum over a set or in its dyadic form as the minimum of two

numbers. The minimum over the empty set is defined as +∞. Likewise the up-arrow ‘↑’

denotes a maximum operator.

16

we replace constraint E(κ) ≤ δ ≤ κ by δ ≤ κ ≤ E−1(δ). Next, for arbitrary
δ, consider TBUF δ, the tree buffer with i/o-distance δ. Recall that this tree
buffer is equidistant and that its capacity is E−1(δ). Therefore, if we can show
that there exists a sequence of transformations that transforms TBUF δ into the
linear buffer LBUF δ, which has the same i/o-distance δ, but also has capacity
δ, in such a way that each transformation in the sequence has the property
that:

1. it reduces the capacity by 1

2. it preserves the i/o-distance

3. it preserves equidistance

4. it preserves membership of W2

then we are done, because then we have shown that for each (κ, δ)-pair in the
range δ ≤ κ ≤ E−1(δ) there exists an equidistant buffer in class W2. For δ = 1
and δ = 2 the sequence is empty, because for those values the tree buffers and
the linear buffers are identical. For δ = 3 the sequence consists of the sin-
gle transformation that replaces TBUF 3 by LBUF 3. For δ ≥ 4 we proceed
by recursion. First we transform TBUF δ = WAG0

2(TBUF δ−2,TBUF δ−2) into
WAG0

2(LBUF δ−2,LBUF δ−2) by application of a sequence of transformations to
each of the two sub-buffers TBUF δ−2. Then we transform the resulting buffer
WAG0

2(LBUF δ−2,LBUF δ−2) into LBUF δ by pushing the split-component to-
wards the merge-component by a series of push-transformations, see fig. 12,
until we have obtained buffer SER(LBUF δ−3,TBUF 3), upon which we apply
a final transformation that replaces TBUF 3 by LBUF 3. 2

B

B

0S2 B 0S2

Figure 12: Push transformation.

This theorem suggests that it is sufficient to consider only very simple
buffers. So apparently class W2 is already rich enough to provide us with
an equidistant buffer for any (κ, δ)-pair in area A2. Once we take the elasticity
of buffers into account, however, this is no longer the case and the classes of
the lattice that lie between W2 and M become of interest.

6 Performance metrics

The performance metrics introduced in this section assume a discrete timing
model. A proper formal treatment (see [6]) requires the introduction of so-called

17

schedules that map every communication event of a system onto a specific time-
slot in such a manner that the communication order of the basic building blocks,
as specified by their program texts, is respected. Since the metrics of interest
can be defined and understood without the introduction of these schedules,
and the crucial relationships between them hold for all schedules, we will take
this theoretical foundation for granted, and make do with slightly less formal
definitions. The reader who is nevertheless interested in the technical details is
referred to [6].

The first performance metric considered is the average throughput.

Definition 6.1 (Average throughput) For system X the average through-
put Θ(X) is the average number of items accepted (or delivered) per unit of
time. 2

There is a close relationship between the average throughput of a system and
the average throughput of its basic building blocks.

Lemma 6.1 Let X be a system with i/o-distance δ, and let {Cj | 0 ≤ j < n}
be the set of basic building blocks from which X is composed. Furthermore, let
θj be the average throughput of block Cj, when the system X runs at average
throughput θ. Then

θδ =
∑

0≤j<n

θj

Proof. Let φj be the fraction of all data items that visit component Cj on
their passage through the system. Then, by definition, the contribution of Cj

to the i/o-distance of X is φj . Since θj = φjθ, the result follows. 2

The second performance metric considered is the average occupancy.

Definition 6.2 (Average occupancy) For system X we define the instan-
taneous occupancy ωt(X) at time slot t as the number of items accepted by the
system before time slot t minus the number of items delivered by the system
before time slot t. The average occupancy Ω(X) is given by

Ω(X) = lim
t→∞

1

t

∑

0≤τ<t

ωτ (X)

2

Note that the average occupancy of a system is the sum of the average occu-
pancies of the basic building blocks from which it is constructed.

Lemma 6.2 Let X be a system, and let {Cj | 0 ≤ j < n} be the set of basic
building blocks from which X is composed. Furthermore, let ωj be the average
occupancy of block Cj, when the system X runs at average occupancy ω. Then

ω =
∑

0≤j<n

ωj

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized occupancy Ω(X) / κ(X)

th
ro

ug
hp

ut

 Θ
(X

)

X = LBUF
7

X = SBUF
4

X = TBUF
7

X = Diamond

Figure 13: Throughput as function of the normalized occupancy, for some buffer
designs.

Proof. Consider the instantaneous occupancy ωt at any time slot t. This
counts the number of items present in the system at the beginning of time slot
t. Each of these items must be present in precisely one of the basic building
blocks Cj . Hence the instantaneous occupancy of the buffer equals the sum
of the instantaneous occupancies of its building blocks and therefore the same
holds for the average occupancy. 2

Obviously the instantaneous occupancy, and therefore also the average oc-
cupancy, varies between zero and the storage capacity of a buffer. Therefore it
is sometimes convenient to express the average occupancy as a fraction of the
storage capacity. We shall refer to this fraction as the normalized occupancy.

Figure 13 shows the average throughput of various buffer designs as a func-
tion of the normalized occupancy. Note that all buffers have i/o-distance 7, but
that their capacities increase from 7 for the linear buffer, via 16 for the square
buffer, and 17 for the diamond buffer, to 22 for the tree buffer. As already
indicated in the introduction we see that when the (normalized) occupancy of
a buffer drops below, or rises above, a certain level the average throughput
of that buffer decreases. Between these levels the buffers maintain a constant
maximal throughput, which for all buffers in fig. 13 apparently equals 1

2
. It can

be observed that this plateau of maximal average throughput becomes longer
with increasing κ, or, more accurately, with increasing κ

δ
. Why the maximal

throughput is at most 1

2
will be explained below.

The curves shown in fig. 13 have been derived from theoretical considerations
given in the remainder of the paper. It is, however, not difficult to define an
experiment that obtains similar curves from measurements on real hardware

19

buffers. In such an experiment one connects the output of the buffer to its input,
thus creating an oscillator [8]. This oscillator is then loaded with data items
to the required normalized occupancy. If one subsequently let the oscillator
run free, it will oscillate at its maximum frequency from which the maximum
throughput can be derived. For square buffers such experiments have been
done, see [3], and the results correspond with high accuracy to the theoretical
predictions [6].

Hence we define Ω↓Θ=θ(X) as the minimal average occupancy for which
buffer X can maintain average throughput θ. Using results from [6] it can be
proved that for any buffer X

θδ(X) ≤ Ω↓Θ=θ(X) (3)

Similarly we define Ω↑Θ=θ(X) as the maximum average occupancy for which the
buffer can maintain average throughput θ. For this quantity it can be proved
that

Ω↑Θ=θ(X) ≤ κ(X) − θδ(X) (4)

Most buffers can attain neither lower bound 3 nor upper bound 4, because
of synchronization that occurs inside the buffer. This synchronization usually
takes place to prevent data items that follow a short path through the buffer
from overtaking data items that follow a longer path, which would manifest
itself in the environment of the buffer as a violation of the FIFO-property.
However, when a buffer attains any one of its extreme occupancy levels, then
so do all its basic building blocks.

Theorem 6.1 Let X be a buffer, and let {Cj | 0 ≤ j < n} be the set of basic
building blocks from which X is composed. If, for any given average throughput
θ, the buffer assumes its minimal average occupancy θδ(X) (or maximal average
occupancy κ(X)−θδ(X)), then all basic building blocks Cj assume their minimal
average occupancy θjδ(Cj) (or maximal average occupancy κ(Cj)−θjδ(Cj)).

Proof. We only prove the case of minimal average occupancy. The other case
can be proved by similar reasoning.

Let X run at average throughput θ and at average occupancy θδ(X). Fur-
thermore, let θj be the corresponding average throughput and ωj the corre-
sponding average occupancy of Cj . Then by formula 3

ωj − θjδ(Cj) ≥ 0 (5)

for all j, 0 ≤ j < n. Because Cj is a basic building block we have δ(Cj) = 1.
Hence by lemma 6.1

∑

0≤j<n

θjδ(Cj) =
∑

0≤j<n

θj = θδ(X)

By assumption Ω(X) = θδ(X). Hence by lemma 6.2

∑

0≤j<n

ωj = Ω(X) = θδ(X)

20

Combination of these equations gives
∑

0≤j<n

(ωj − θjδ(Cj)) = 0 (6)

Since the sum of nonnegative numbers is zero if and only if all numbers are
zero, it follows from formulae 5 and 6 that ωj = θjδ(Cj). So each basic building
block assumes its minimal possible average occupancy. 2

Next we define the elasticity as the length of the plateau of maximal average
throughput in the throughput versus normalized occupancy plot, i.e.

Definition 6.3 (Elasticity) For system X we define the elasticity εθ(X) at
average throughput θ by

εθ(X) =
Ω↑Θ=θ(X) − Ω↓Θ=θ(X)

κ(X)

2

From bounds 3 and 4 we immediately obtain an upper bound for the elas-
ticity

εθ(X) ≤ 1 −
2θδ(X)

κ(X)
(7)

This bound implies that linear buffers are totally inelastic, when run at
θ = 1

2
, i.e. ε 1

2

(LBUF l) = 0 irrespective of the size of the buffer. For square

buffers on the other hand we find that ε 1

2

(SBUF l) ≤ 1− 2l−1

l2
. So for increasing

l the upper bound on the elasticity of a square buffer goes to 1. The same holds
for the tree buffers.

Inequality 7 also has important implications for the average throughput of a
buffer. Since by definition the elasticity is at least zero, the average throughput
is bounded by

θ ≤
κ

2δ
(8)

Because all basic components have capacity and i/o-distance equal to one,
it follows that θ ≤ 1

2
for all basic components. This can be understood as

follows. The behavior of all basic components consists of an alternation of
input and output communications, and a data item accepted at an input event
is passed on immediately at the following output event. When these components
operate at their maximum throughput, by definition no time is wasted between
successive communication events. Hence, taking the time of a communication
event as the unit of time, all basic components require exactly two time units to
process one item, or (which is the same) have a throughput of halve an item per
time unit. Note that this result also implies that for every single-input single-
output (SISO) system, like a buffer, the average system throughput is at most
1

2
, because the throughput of the system is limited by the average throughput

of the basic components via which it communicates with its environment.

21

From formula 8 we also derive that for buffers with an i/o-distance larger
than their capacity, like the reverse-wagging buffers RWl, the maximum attain-
able average throughput drops below 1

2
. Since this is clearly undesirable, we

shall restrict our attention to buffers whose i/o-distance is at most their capac-
ity. Note that by theorem 5.1 all buffers in class M satisfy this constraint!

7 Optimal buffers

As we have seen in the previous section, the elasticity of a buffer is bounded from
above, and the upper bound depends only on the capacity and the i/o-distance
of a buffer. Amongst the many buffers with a given capacity and i/o-distance
we are interested in the ones that are maximally elastic.

Definition 7.1 (Optimal buffer) A buffer X is optimal, if it achieves max-
imal elasticity at every throughput, i.e. for all θ

εθ(X) = 1 −
2θδ(X)

κ(X)

For any buffer class X we denote the class of optimal buffers in X by ♥X .
Hence ♥B is the class of all optimal buffers. 2

Let X be an optimal buffer that can be viewed as the composition of a buffer
Y and a component Z, i.e. X = Y ‖ Z. Then theorem 6.1 implies that buffer
Y exhibits maximal elasticity for any throughput θ that it can attain in the
context of Z. In particular assume that τ is the throughput of Y , when X runs
at its maximum throughput θmax. Then Y runs at throughput θ

θmax
τ , when X

runs at throughput θ ≤ θmax. So Y is almost, but not quite, an optimal buffer.
The only thing that can prevent Y from being optimal is that there exists a
throughput θ, τ ≤ θ for which Y is not maximally elastic. Currently the author
is not aware of the existence of such buffers.

The above observation suggests that we should construct optimal buffers
using optimal buffers as subcomponents. To get started we need at least one
optimal buffer.

Theorem 7.1 The one-place buffer Buf is optimal, i.e.

εθ(Buf) = 1 − 2θ (9)

Proof. Let Buf run at average throughput θ. Consider a single iteration of the
buffer process, i.e. a period of time in which the buffer processes precisely one
data item. Such a period can be divided into 4 smaller periods, viz. two periods
in which the communication events a?x and b!x take place and two periods, one
after each communication event (see fig. 14), in which the buffer is idle. Next
assume that each communication event takes 1 unit of time, and that the two
“idle” periods take α and β time units respectively, with α ≥ 0 and β ≥ 0.
Hence it follows that the average throughput θ = 1

2+α+β
. Next assume that

22

0 α1+ α β2+ +1 α2+

a?x idle b!x idle

Figure 14: Timing of a single period of the one-place buffer Buf .

the buffer becomes occupied (vacant) the moment the input (output) action
completes. Then the average occupancy ω is given by

(1+α)θ = ω = 1 − (1+β)θ

Hence Ω↓Θ=θ = θ, when α = 0, and Ω↑Θ=θ = 1 − θ, when β = 0, from which
formula 9 follows. 2

Next we investigate under what conditions optimality is preserved by the
various construction methods. For serial composition there are no additional
constraints.

Theorem 7.2 Let X and Y be optimal buffers. Then the serial composition
SER(X, Y) is also an optimal buffer. 2

As an immediate consequence of this theorem we have ♥S = S.
Note that both wagging and multi-wagging can be seen as special cases

of a more general construction which involves selecting a set of channels that
cut a buffer in two parts in such a way that the input and output port are
in distinct parts and subsequently inserting buffers in the selected channels.
If both the original buffer and the inserted buffers are optimal and certain
conditions regarding the capacities and i/o-distances of the inserted buffers are
met, the result will be another optimal buffer.

Lemma 7.1 (Bisection lemma) Let B be an optimal (κ, δ)-buffer, with struc-
ture

B =
proc (in a,out b)·
|[chan c[0 .. n) |〉 U(a, c) ‖ V (c, b)]|

where all c-channels are directed from subsystem U to subsystem V . Moreover,
for 0 ≤ j < n, let φj be the fraction of the data that passes from U to V along
channel c[j], and let Bj be an optimal (κj , δj)-buffer. Then

B′ =
proc (in a,out b)·
|[chan c[0 .. n), d[0 .. n)

|〉 U(a, c) ‖
(

‖
0≤j<n Bj([c[j], d[j])

)

‖ V (d, b)

]|

is an optimal buffer if and only if there exists δ′ and κ′ such that δj = δ′ and
κj = φjκ

′, for all 0 ≤ j < n. In that case buffer B′ is a (κ+κ′, δ+δ′)-buffer.

23

Proof. First of all we prove that it is necessary that the capacities and i/o-
distances of the inserted buffer satisfy the specified conditions. So let buffer B

run at average throughput θ. To begin with note that instead of being passed
from subcomponent U to subcomponent V directly, as in buffer B each item in
the newly constructed buffer B′ has to traverse one of the buffers Bj . If all items
require the same traversal time ∆t irrespective of the buffer Bj they traverse,
then buffer B′ will run at the same average throughput θ as B. Furthermore
note that the number of items entering (or leaving) buffer Bj in a period ∆t

equals φjθ∆t, i.e. the throughput φjθ of buffer Bj times the period. So ∆t after
the arrival of the first data item at buffer Bj the instantaneous occupancy of Bj

equals φjθ∆t. Thereafter, the same number of data items per time slot enter
and leave the buffer on average, so Bj runs at average occupancy φjθ∆t.

Now consider the situation in which buffer B′ assumes its minimal average
occupancy, and let the corresponding traversal time for the inserted buffers
be (∆t)min. Then by theorem 6.1 also buffer Bj assumes its minimal average
occupancy. Because Bj is itself an optimal buffer, its minimal occupancy is
given by φjθδj . Hence it follows that φjθδj = φjθ(∆t)min. Since this holds for
any buffer Bj , we derive

∀0≤j<n δj = (∆t)min (10)

Next consider the situation in which Bj assumes it maximal occupancy
with corresponding transversal time (∆t)max. By similar reasoning as above
it follows that κj = φjθ(∆t)max + φjθδj . Since we already have shown that
δj = (∆t)min we derive

∀0≤j<n κj = φjθ((∆t)max + (∆t)min) (11)

To prove that the conditions are also sufficient we need to show that

Θ(B′)(δ+δ′) ≤ Ω(B′) ≤ (κ+κ′) − Θ(B′)(δ+δ′)

This is a trivial consequence of lemma 6.2, formulae 3 and 4, and the fact that
Θ(B′) = Θ(B). 2

Application of the bisection lemma with U instantiated by Splitk
l and V

instantiated by Mergek
l yields

Theorem 7.3 Let X and Y be optimal buffers such that δ(X) = δ(Y) and
(l−1)κ(X) = κ(Y). Then for all k, 0 ≤ k < l, the wagging composition
WAGk

l (X, Y) is also an optimal buffer.

Proof. Straight-forward, provided that component

SM k
l =

proc (in a,out b)·

|[chan g, h |〉 Splitk
l (a, g, h) ‖ Mergek

l (g, h, b)]|

is an optimal buffer. The latter follows from results in [6, 9]. 2

24

Among other things this theorem implies that tree buffers are optimal.
Likewise application of the bisection lemma, with U instantiated by Msplit l

and V instantiated by Mmerge l, yields

Theorem 7.4 Let {Xi | 0 ≤ i < l} be a collection of optimal (κ, δ)-buffers.
Then the multi-wagging composition MWl(X0, . . . , Xl−1) is also an optimal
buffer with capacity l(κ+2) and i/o-distance δ+l+1.

Proof. Straight-forward, provided that component

MSMM l =
proc (in a,out b)·
|[chan d[0 .. l) |〉 Msplit l(a, d) ‖ Mmerge l(d, b)]|

is an optimal buffer. The latter follows from results in [6, 9]. 2

Among other thing this theorem implies that the square buffers are optimal.
Since these buffers belong to M but not to W, this indicates that it is relevant
to distinguish between the two classes. Another consequence of theorems 7.2,
7.3, and 7.4 is that there exists a lattice similar to that of fig. 8 in which all
classes are replaced by their respective subclasses of optimal buffers.

The phenomenon of optimal buffers raises a number of interesting questions.
First and foremost there is the question of the existence of these buffers.

In view of the bisection lemma which provides a very general equidistance
preserving construction for optimal buffers, and given the fact that in spite of
a thorough search we have not been able to construct an optimal buffer that is
not equidistant, we formulate the following conjecture.

Conjecture 7.1 Every maximally elastic buffer is equidistant. 2

A consequence of this conjecture is that we can restrict the search for optimal
buffers to those with integral (κ, δ)-coordinates. So for capacity κ and i/o-
distance δ both integral, we ask:

Question 7.1 Given E(κ) ≤ δ ≤ κ does there exist an optimal (κ, δ)-buffer,
i.e. does ♥B

κ

δ
6= ∅ hold?

Next, given the existence of one or more optimal buffers of a specific i/o-
distance and capacity, we are interested in optimal buffers with low structural
complexity. As we have seen, we distinguish two ways to achieve that: restric-
tion of the construction methods, and reduction of the set of basic building
blocks. Starting with the construction methods we ask:

Question 7.2 Given the existence of an optimal (κ, δ)-buffer, does there exist
a “simple” optimal (κ, δ)-buffer? Here simple means constructed using only a
restricted set of construction methods. So we ask whether ♥B

κ

δ
∩ M 6= ∅ or

even ♥B
κ

δ
∩ W 6= ∅ holds.

Finally, for those (κ, δ)-coordinates for which simple optimal (κ, δ)-buffers
exist, we are interested in the minimal set of the basic building blocks from
which such a buffer can be constructed. So we ask:

25

Question 7.3 When there exists a simple optimal (κ, δ)-buffer, what is then the
smallest set of basic building blocks from which such a buffer can be constructed?

The latter question depends on the construction methods we consider.

Definition 7.2 (Minimal indices) Let W κ
δ be defined as the index of the

minimal class of the W-chain that contains an optimal (κ, δ)-buffer, and let
Mκ

δ be defined as the index of the minimal class of the M-chain, i.e.

W κ
δ = ↓ {l | ♥B

κ

δ
∩ Wl 6= ∅}

Mκ
δ = ↓ {l | ♥B

κ

δ
∩ Ml 6= ∅}

2

With this definition question 7.3 reduces to the computation of the minimal
indices Mκ

δ and W κ
δ . Since Wl ⊆ Ml, we have Mκ

δ ≤ W κ
δ . In particular

cases in which Mκ
δ < W κ

δ < ∞ are interesting, because then we can make a
trade-off in structural complexity between simpler building blocks or simpler
construction methods.

8 Contour functions

In this section we show that the questions relating to the existence and structure
of maximally elastic buffers raised in the previous section can be answered by
means of so-called contour functions. To that end a contour function will be
associated with each buffer class in the lattice of fig. 8. This will be done in such
a way that these contour functions themselves also constitute a lattice. Given
a specific capacity κ and i/o-distance δ, inspection of the contour function of a
single class enables us to determine whether that class contains optimal (κ, δ)-
buffers. Comparison of contour functions of the classes in a chain allows us to
determine the minimal indices.

Note that in this section we will merely define the contour functions and
show how they are used. The rationale behind these definitions will be explained
in the next section where we are concerned with the computation of contour
functions.

Definition 8.1 (Contour function) Let X be a class of buffers. Then the
contour function C(X) : N → N ∪ {+∞} is defined by

C(X)(ρ) = ↓ {δ | ♥B
ρ+δ

δ
∩ X 6= ∅}

2

Since all buffers of class S have an i/o-distance equal to their capacity, the
contour function of class S is given by

C(S)(ρ) =

{

1 if ρ = 0

+∞ if ρ > 0

26

For the other buffer classes there is no explicit definition of the contour function.
Only an algorithm for the computation of the function values can be given. This
is the topic of the next section, however.

To begin with we demonstrate how the existence of an optimal (κ, δ)-buffer
for class X can be established by inspection of C(X).

Theorem 8.1 Assume 1 ≤ δ ≤ κ and let X be a class of buffers from the lattice
of buffer classes defined in section 4. Then there exists an optimal (κ, δ)-buffer
in X, if and only if C(X)(κ−δ) ≤ δ.

Proof. If there exists an optimal (κ, δ)-buffer, then ♥B
κ

δ
∩ X 6= ∅, so by

definition C(X)(κ−δ) ≤ δ. Next consider the only if case. So assume that
C(X)(κ−δ) = γ, with γ ≤ δ. By definition of contour C(X) this means that

♥Bκ−δ+γ
γ ∩ X 6= ∅. So let B ∈ ♥Bκ−δ+γ

γ ∩ X . If γ = δ, then B is an
optimal (κ, δ)-buffer. If γ < δ, then Z = SER(B,LBUF δ−γ) is a (κ, δ)-buffer.
Moreover, by theorem 7.2, Z is optimal. Finally Z is a member of X , since
LBUF δ−γ ∈ S ⊆ X and X is closed under serial composition. 2

Since the minimum over a set is at most the minimum over any of its subsets,
it follows that C viewed as a function of the buffer class is antitonic, i.e. for all
buffer classes X and Y function C satisfies

Y ⊆ X ⇒ C(X) ⊑ C(Y)

where the partial order on (contour) functions is defined by

C(X) ⊑ C(Y) = ∀0≤ρ C(X)(ρ) ≤ C(Y)(ρ)

Hence the contour functions can be arranged into a lattice isomorphic to the
lattice of buffer classes (see fig. 15). Moreover, note that the contours C(W)

C(B1) = C(M1) = C(W1) = C(S)

⊑ ⊑ ⊑

C(B2) ⊑ C(M2) = C(W2)

⊑ ⊑ ⊑

C(B3) ⊑ C(M3) ⊑ C(W3)

⊑ ⊑ ⊑

...
...

...

⊑ ⊑ ⊑

C(B) ⊑ C(M) ⊑ C(W)

Figure 15: A lattice of contour functions.

27

and C(M) are the limits of their corresponding chains, i.e.

lim
l→∞

C(Wl) = C(W) lim
l→∞

C(Ml) = C(M)

Not only can contour functions be used to establish the existence of (κ, δ)-
buffers, but also the minimal indices W κ

δ and Mκ
δ can be computed from them,

as the following theorem shows.

Theorem 8.2 For 1 ≤ δ ≤ κ the minimal indices W κ
δ and Mκ

δ are given by

W κ
δ = ↓ {l | C(Wl)(κ−δ) ≤ δ}

Mκ
δ = ↓ {l | C(Ml)(κ−δ) ≤ δ}

Proof. Let l = ↓ {k | C(Wk)(κ−δ) ≤ δ}. Then C(Wl)(κ−δ) ≤ δ and
C(Wk)(κ−δ) > δ, for k < l. So by definition 8.1 it follows that ♥B

κ

δ
∩ Wl 6= ∅

and ♥B
κ

δ
∩ Wk = ∅, for k < l. Hence l = W κ

δ . 2

We conclude this section with the introduction of one final contour. Since all
contours indicate the existence of optimal, hence equidistant, buffers, it follows
that the contours belonging to a subclass of M must lie in the area of the
(κ, δ)-space that we have called A2 in section 5. So let us define C= as the
contour that separates area A2 from A3 (see fig. 11), i.e. for all ρ we define

C=(ρ) = E(ρ + δ) (12)

where E is defined by equation 2 in corollary 5.1. Then C= ⊑ C(M), and the
area between these contours is the part of the design space where no simple
optimal buffers can be found.

9 Computation results

In this section we show how contours can be computed and present some in-
teresting results. The basis for the computation of the various contours is
given by theorems 7.2, 7.3, and 7.4. Recall that theorem 7.2 states that serial
composition of optimal buffers yields another optimal buffer. So in particular
serial composition of any optimal buffer with the one-place buffer Buf yields
another optimal buffer. This way of constructing optimal buffers can succinctly
be captured by the following production rule for optimal (κ, δ)-pairs,

(κ, δ) 7→ (κ+1, δ+1)

which should be interpreted as a shorthand of

♥B
κ

δ
⇒ ♥B

κ+1

δ+1

Switching to a slightly different coordinate system (ρ, δ), where ρ = κ−δ, this
rule becomes even simpler, viz.

(ρ, δ) 7→ (ρ, δ+1)

28

N

0

ρ

N1 δ

N

1

κ

Figure 16: Design space with both coordinate systems. The grey area indicates
the part of the design space for which optimal buffers of class X are known. It
is demarcated by two lines: on the right by the diagonal δ = κ ,or equivalently
ρ = 0, and by the contour C(X) on the left.

So in the (ρ, δ)-coordinate system it suffices to determine for each ρ the smallest
i/o-distance δ for which an optimal buffer exists. Moreover, if we can show that
there exists an optimal (ρ, δ)-buffer in class X , then it follows that there also
exists an optimal (ρ, δ′)-buffer in X , for all δ′ ≥ δ.

The contour functions in the previous section have been defined in such a
way as to exploit this fact. In particular, if we want to know all optimal (κ, δ)-
buffers of class X in the range 1 ≤ δ ≤ κ ≤ N , then it suffices to compute the
contour C(X) for the argument values 0 ≤ ρ < N , i.e. an initial segment of the
contour of length N . Note that the number of (κ, δ)-pairs in the specified range
is quadratic in the length of the contour. Figure 16 shows the design space in
both coordinate systems.

Just as theorem 7.2 can be captured by a production rule, so can theorems
7.3 and 7.4. In terms of (κ, δ)-coordinates we obtain the production rules

(κ, δ)
((l−1)κ, δ)

7→ (lκ+2, δ+2)

(κ, δ) 7→ (l(κ+2), δ+l+1)

Switching to the (ρ, δ)-coordinate system these become

(ρ, δ)
((l−1)ρ + (l−2)δ, δ)

7→ (lρ + (l−1)δ, δ+2)

(ρ, δ) 7→ (lρ + (l−1)(δ+1), δ+l+1)

Note that in the (ρ, δ)-coordinate system all rules share two properties:

1. each newly produced pair has an i/o-distance that is greater than that of
the pairs from which it is produced,

29

2. in case two pairs are needed to produce a new one both these pairs have
the same i/o-distance.

Hence given an arbitrary class of buffers closed under serial composition, rep-
resented by some contour C, and a set of construction methods, represented by
a set of production rules R, the contour of the closure of that class under the
construction methods can be computed by the following procedure:

For increasing i/o-distance δ, starting with contour C and δ = 1, check
for each production rule in R whether it can be applied to current set
of buffers with i/o-distance δ, and if so check whether application of the
rule yields a buffer with coordinates (ρ′, δ′) below the current contour,
i.e. δ′ < C(ρ′). If this is indeed the case, then adjust the current contour,
thereby implicitly adjusting the current set of buffers.

For a given i/o-distance the order in which the production rules are applied is
irrelevant as long as all possibilities for that i/o-distance are considered. More-
over, when the contours of a chain are computed by increasing order, it is not
hard to extend this procedure in such a way that also the minimal indices are
obtained.

We have used the procedure sketched above to compute an initial segment
of 1000 values of the contours of several buffer classes. The results are pre-
sented in the original (κ, δ)-coordinates; the (ρ, δ)-coordinates are merely used
for computational purposes.

Figure 19 shows the contours of the first six classes of the W-chain. As
one can see, contour C(W2) is roughly logarithmic, which means that for the
vast majority of (κ, δ)-pairs there is already an optimal buffer in class W2. To
be precise, there are only 2477 (κ, δ)-pairs in area A2 for which there is no
optimal (κ, δ)-buffer in W2. This is approximately 5� of the total number
of (κ, δ)-pairs in that area. Going from class W2 to class W3 the amount of
additional optimal buffers is still substantial, but thereafter only occasionally
new optimal buffers appear. Moreover, the pattern of appearance, i.e. the shape
of the difference curves, is quite irregular, both with respect to the number of
additional optimal buffers and with respect to the capacity at which the first
new optimal buffer is found. For class W3 the first new optimal buffer is a
buffer with (κ, δ)-coordinates (17, 7). This is the diamond buffer displayed in
fig. 6.

Figure 20 shows the contours of the first ten classes of the M-chain. Because
the contours of class M6, M8, M9, and M10 are identical to those of their
immediate predecessors (at least for values of ρ below 1000), only six distinct
contours are displayed. For the M-chain roughly the same observations can be
made as for the W-chain. Going from class M2 to class M3 the improvement is
substantial, but thereafter only occasionally new buffers appear and the pattern
seems irregular. Although difficult to infer by inspection of the plots, it can be
verified that the contours of the M-chain indeed lie below the corresponding
contours of the W-chain. The smallest buffer in M3 is an interesting one. It is
the square buffer SBUF 3 with (κ, δ)-coordinates (9, 5).

30

E

e

b

B

F f BAl

BAM l =
proc (in e, f,out b)·
|[var x

|〉 ((e?x; b!x)l

; (f?x; b!x)l

)∗

]|

Figure 17: A block-wise alternating merge component.

Finally fig. 21 shows the results for the classes W and M. These contours
have been obtained by computing the contours of a sufficiently long initial
segment of the chains for which they are the limiting cases. In addition contour
C= defined in formula 12 is drawn. The area between this contour and contour
M is “unknown territory”. It contains the (κ, δ)-pairs for which it is not known
whether there exists an optimal (κ, δ)-buffer. Of course, when they exist, these
buffers must have complex structures, since they do not belong to M.

The smallest (κ, δ)-pair for which we do not know whether B contains an
optimal buffer is the pair (13, 6). Such a buffer can be constructed, however,
if one is willing to extend the set of basic building blocks. The building block
we need is a component that merges two streams in a block-wise alternating
fashion. In strict alternation, it copies data from its two input streams to the
output stream in blocks of length l. Its diagram and program text are given
in fig. 17. With this additional building block an optimal (13, 6)-buffer can be
constructed as a variation of the square buffer SBUF 3, The resulting design is
displayed in fig. 18. Note that the one-place buffers that in SBUF 3 connect
the multi-split to the multi-merge component, have been replaced by Split0

2

components. As a consequence we now need two multi-merge components and
an additional BAM 3 component to merge the output streams of the multi-
merge components into a single output stream. Although we shall not do so
here, it can be shown by scheduling of communication events that this buffer is
indeed optimal.

Having obtained this new optimal buffer we can of course apply the bisection
lemma to see if we can generate more new optimal buffers. In particular there
exists a cut containing 6 channels that bisects the (13, 6)-buffer. Since each
of these channel carries the same fraction of data items, application of the
bisection lemma with this cut yields the production rule

(κ, δ) 7→ (6κ+13, δ+6)

which can be used to show the existence of an optimal (19,7)-buffer.
Similar constructions can be applied to find optimal buffers for other (κ, δ)-

pairs in the unknown territory. We shall not pursue this line of investigation,
however, because the unknown territory is already very small. For contours

31

B

M0
2

M0
2B M0

3

M0
3

BA3

0S2

0S2

0S2

B1S2
2S3

Figure 18: Optimal (13, 6)-buffer.

truncated at length 1000 it contains only 1478 (κ, δ)-pairs, which is roughly
3� of the entire area A2. As we increase the contour length the proportion of
the unknown territory becomes vanishingly small.

Summarizing, we find that for almost all (κ, δ)-pairs there exists an optimal
buffer and that in the overwhelming majority of the cases there is an optimal
buffer with a very simple structure, i.e. an optimal buffer that belongs to class
W2. Moreover, all these buffers are equidistant by construction.

10 Conclusions

This paper is concerned with the high-level design of maximally elastic buffers.
We call the designs high-level, because the buffers are described by small pro-
grams written in a high-level language. Although we have not chosen any
particular language, it is a trivial exercise to reformulate the designs in ex-
isting hardware description languages such as Tangram [1] or Balsa [4], from
which there is an automated route to silicon. Also specification and perfor-
mance metrics are given by quantities defined in terms of these program texts.
In particular we have avoided detailed timing considerations. Nevertheless, we
have obtained accurate predictions of the elasticity of our designs, on which
high-level design decisions can be made.

We have classified buffers according to their structural complexity. For

32

this purpose a taxonomy based on allowed building block and construction
methods. The construction methods appear to be well-suited, because there
exists a class, viz. class M, that on the one hand is sufficiently large to contain
buffers that perform optimal in terms of metrics like elasticity and throughput
for all possible specifications, but on the other hand excludes most buffers that
for some reason are less desirable. Furthermore, the taxonomy is fine-grained
enough to distinguish a lot of structural detail within class M.

The classification effort shows that for almost any combination of desired
capacity and i/o-distance a maximally elastic buffer with a very simple structure
is available. Indeed the tree buffers, which provide the highest capacity for a
fixed i/o-distance and therefore are the most elastic buffers of all, are also
amongst the most simple buffers. Occasionally designs incorporating square
buffers perform better. So for practical designs it is best to consider only a few
families of optimal buffers that have the property that the elasticity goes to 1
as the capacity increases. Furthermore it turns out that all maximally elastic
buffers found are equidistant, which we suspect to be a fundamental property.

Although the classification is not complete, the part of the design space for
which it is not known whether the classes of the taxonomy contain maximally
elastic buffers is vanishingly small. From a theoretical point of view it would
be satisfying to explore this unknown territory further, but it is certainly not
of practical interest.

It should be stressed that we have not merely presented a taxonomy, but
in fact a framework to create taxonomies. This framework is open-ended in
the sense that we can easily extend the given taxonomy by the introduction of
additional basic building blocks and additional construction methods. As an
example we have shown that adding block-alternating mergers makes it possible
to construct new optimal buffers, but there are other possibilities as well. E.g.
one can consider basic building blocks with storage capacity 2 and i/o-distance
1. This will result in smaller contours, i.e. for the same capacity optimal buffers
with smaller i/o-distance can be constructed. Moreover, since such building
blocks are capable of performing input and output events simultaneously, it also
becomes possible to construct buffers that can run at throughput 1. Another
possible extension is the introduction of three-way splitters and mergers. This
enables the design of cubic buffers. An initial investigation into these extensions
has been done in [9], where also the diamond buffer has been presented for the
first time.

11 Acknowledgements

I would like to thank Peter Hilbers and Johan Lukkien for many fruitful dis-
cussions and their comments on draft versions of this paper.

References

[1] K. v. Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI-
programming language Tangram and its translation into handshake circuits. In

33

Proc. European Conference on Design Automation (EDAC), pages 384–389, 1991.
[2] E. Brunvand. Low latency self-timed flow-through FIFOs. In W. J. Dally, J. W.

Poulton, and A. T. Ishii, editors, Advanced Research in VLSI, pages 76–90. IEEE
Computer Society Press, 1995.

[3] J. Ebergen. Squaring the FIFO in GasP. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 194–205. IEEE
Computer Society Press, Mar. 2001.

[4] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis language.
The Computer Journal, 45(1):12–18, 2002.

[5] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[6] R. H. Mak. Design and performance analysis of buffers: a constructive approach.

In Proc. International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 137–148, Apr. 2002.

[7] C. E. Molnar, I. W. Jones, B. Coates, and J. Lexau. A FIFO ring oscillator
performance experiment. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 279–289. IEEE Computer Society
Press, Apr. 1997.

[8] C. E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau, S. M. Fairbanks, and I. E.
Sutherland. Two FIFO ring performance experiments. Proceedings of the IEEE,
87(2):297–307, Feb. 1999.

[9] A. M. Smets. Design of optimal buffers. Master’s thesis, Technische Universiteit
Eindhoven, 2002.

34

0

100

200

300

400

500

600

700

800

900

1000
−11 −9 −7 −5 0 5 10 15 20 25

ca
pa

ci
ty

 κ

i/o−distance δ

17

426

557

692

93

Figure 19: Plot of the first six contour functions C(Wl), for 2 ≤ l ≤ 7. The
rightmost curve represents C(W2). To avoid cluttering the plot the other
contour functions are given in the form of a separate difference curve to the
left of the δ=0 axis. From right to left the curves C(W3)−C(W2) up to
C(W7)−C(W6)−11 are plotted. We see that C(W3) differs substantially from
C(W2), but thereafter the differences are minute, until C(W7).

35

0

100

200

300

400

500

600

700

800

900

1000
−11 −9 −7 −5 0 5 10 15 20 25

ca
pa

ci
ty

 κ

i/o−distance δ

211 205
220

682

9

Figure 20: Plot of the contour functions C(Ml), for l = 2, 3, 4, 5, 7, 11. The
rightmost curve represents C(M2) = C(W2). The other contour functions
are given in the form of a separate difference curve to the left of the δ=0
axis. From right to left the curves C(M3)−C(M2), C(M4)−C(M3)−5,
C(M5)−C(M4)−7, C(M7)−C(M5)−9, and C(M11)−C(M7)−11 are plot-
ted.

36

0

100

200

300

400

500

600

700

800

900

1000
−10 −5 0 5 10 15 20 25

ca
pa

ci
ty

 κ

i/o−distance δ

C(M)

C
=

C(W)

C
=

Figure 21: Plot of the contour functions C(M) and C(W), the latter shifted by
-10. Also contour C= to the left of which no equidistant buffers exist is drawn.
Note that the gap between this contour and the other two is very small indeed.
For any capacity the gap involves at most 4 i/o-distances.

37

	Abstract
	1. Introduction
	2. Basic building blocks
	3. Construction methods
	4. Buffer classes
	5. Design parameters
	6. Performance metrics
	7. Optimal buffers
	8. Contour functions
	9. Computation results
	10. Conclusions
	11. Acknowledgements
	References

