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J.H. van Lint
Eindhoven University of Technology

IN MEMORY OF MARSHALL HALL, JR.

Abstract
An expository lecture on a few recent results connecting coding
theory with the theory of combinatorial designs.

1 Introduction

It is by now well known that there are many connections between coding
theory and the theory of combinatorial designs. During the past ten years
Marshall Hall was extremely interested in some of these connections. His
interest presumably originated with the celebrated result of MacWilliams,
Sloane, and Thompson [17] that the code generated by the rows of the in-
cidence matrix of a projective plane of order 10 (if it exists) can have no
words of weight 15 (cf.,[6]). Hall contributed to the attack on this projective
plane in a paper on configurations in a plane of order 10 [8]. As we all know,
these methods and an extensive computer search led to the “proof” of the
nonexistence of the plane of order 10; for an account of this proof see [12].

Hall and several coauthors used similar methods for the plane of order
12 [10],in an attempt to show that a 2-(22,8,4) design does not exist [4)], [9],
and by such methods discovered a new block design, namely a 2-(41,16,6)
design [4]. The methods, based on one of the most important results in
coding theory: MacWilliams’ Theorem (cf.,[13, 17]), are by now well known
and occur in text books (e.8.,[7]). The equally important Assmus-Mattson
Theorem (cf.,[6, 16]), which depends on MacWilliams’ Theorem, led to several
new 5-designs constructed from codes. At the time of their discovery these
designs were quite sensational. Again, this is by now fairly well known. For
an excellent survey of some of the “older” links between coding theory and
combinatorics we refer to [1].

In this expository lecture we wish to concentrate on a few less well known
links between these theories, including some recent results. Also we shall
illustrate a few personal favorites from this still growing area of research. We
shall assume that the reader is familiar with the standard definitions and
theorems from coding theory and from the theory of combinatorial designs.
Standard references are [6, 7, 13, 16].
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2 The uniqueness of S5(5,8,24)

First some well known facts. The famous [23, 12, 7] binary Golay code, a
perfect code, is unique and so is its extension Gas, a [24, 12, 8] code. The
equally famous Steiner system S(5, 8, 24) is also unique and it can be obtained
from G4 as the set of words of weight 8. Not well known is the following
uniqueness proof, starting with the extended Golay code.

Theorem 2.1 Let C be a binary code of length 24 with minimum distance
8, and suppose that 0 € C and |C| = 2'2. Then C is G4 (i.e. the eztended
Golay code is unigue).

Proof.

(i) Puncturing on any position leads to & (23,2!2,7) code. Since such a
code is perfect, its weight enumerator is determined. In fact 49 =
Aza = 1, A'r = A16 = 253, As = A]_s = 506, Au = A12 = 1288. This
immediately implies that the code C only has words of weight 0,8,12,16,
and 24. However, the same is true for the code C + ¢ for any ¢ € C.
Therefore not only all the weights in C are divisible by 4 but also all
the distances between codewords are divisible by 4. This implies that
(e, ¢’} = 0 for any two codewords ¢, ¢’ in C. So, the words of C span a
(doubly even) self-orthogonal code. Such a code has dimension at most
12 and thus we see that the code C was already linear!

(ii) Take any codeword c of weight 12 as & basis vector for C. The residual
code must have dimension 11 and it has only even weights. So, the
residual code is the [12, 11, 2] even-weight code. Therefore C has a
generator matrix G of the form

0 1
G = (I3 P), where P=(1T A)’ (1)

(so Ais of size 11 by 11).

(iii) Since C has minimum distance 8, every row of A has at least six 1’s.
From the top row of G we see that every row of A therefore must have
exactly six 1’s. Clearly, any two rows of A have at most three 1’s in
common. Again using the top row, we see that any two rows of 4 have
exactly three 1’s in common. This forces A to be the incidence matrix of
a 2-(11,6,3) design. The uniqueness of that design is well known (easily
proved by hand). ]

From the words of weight 8 of Ga4 one finds a Steiner system S(5, 8, 24).
We show that only one such design exists.

Theorem 2.2 The Steiner system S(5,8,24) is unigue.
Proof.,
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(i) Let S be such a system. The intersection numbers of such a design
show that the code C spanned by the blocks of $ is self-orthogonal
and doubly even (if two distinct blocks of § meet, then in twe or four
points). To see that C has minimum distance 8, observe that C+ musi
have minimum distance at least 6. This follows from the fact that the
blocks of S assume all possible 0-1 configurations on a given 5-set of
points.

(ii) Fix three points. The derived design with respect to these points is a
2-(21,5,1) design, i.e. the plane PG(2,4). Again, it is well known that
the rows of the incidence matrix of PG(2,4) span a code of dimension
10 (cf.,[6]). This implies that C has dimension 12 and by Theorem 1
we are done. o

For more details and several more facts about the related designs, we refer
to [5, 22].

We remark that Tonchev [23] has shown that if we replace I12 by Isg in
(1) and replace A by the incidence matrix of a 2-(35,18,9) Hadamard design,
the resulting code is again doubly even with minimum weight at least 8 and
self-orthogonal. If however the minimum weight were 16, then we would
have found a solution to a famous open problem, namely the existence of
a [72,36,16] extremal selfdual code. In a recent preprint it was shown that
such a code does not exist but the latest news is that there is an error in a
calculation in the preprint. It appears that the problem is siill open. We do
not know if the construction of the extremal code using a Hadamard design
has been tried in a systematic way.

3 Designs from quadratic residue codes

Several authors have generalized the quadratic residue codes. A simple de-
scription was given in [14]. There the codes have length ¢ = p™ (m > 1)
and the alphabet is F = GF(l), where for odd m it is required that [ is a
quadratic residue of p. Codewords are described as elements 3" cyg of FG,
where G is the additive group of GF(q). As usual, the sets U, respectively
V, of squares, respectively nonsquares, in GF(q) play a special réle. First, a
special character ¥; from @ into the set of p-th roots of unity over F is defined
and then, for kb € G, we define ¥n(9) := ¥1(gh). The character is extended
in the obvious way to FG. Generalized quadratic residue codes (GQR codes)
are defined as follows.

Definition 1 The code A% consisis of all ¢ = Y cyg for which Yu(e) = 0,
for allu € U. The code Bt is defined in the same way, replacing U by V.

It is clear that these codes have dimension 3(g + 1). These codes are ex-
tended to codes of length g + 1 by adding a “parity check” symbol in a new
coordinate position labeled co. This is done in such a way that the extended
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codes are invariant under a group of monomial transformations, of which the
permutation part is PSL(2, q).
This work (done in 1978) led to a sequence of 3-designs but only for the

special case ¢ = p?.

Theorem 8.1 Let Ay, Bo be the eziended GQR codes of length p* + 1.
Each of these codes contains 1p(p* + 1)(I — 1) codewords of minimum weight
p+ 1. The supports of these codewords form a $-(p* + 1,p+ 1,1) design.

In order to prove this theorem for the case p* (¢ > 1), we needed a proof of
the following conjecture.

Conjecture 1 If A is a subset of GF(q®) with |A|=q,0€ A, 1 € A, and
such that for all z € A and all y € A, the difference ¢ — y is a square in
GF(q?), then A = GF(q).

We, and subsequently several others, tried in vain to prove this conjecture.
In 1984 A. Blokhuis [2] found an ingenious and elegant proof. The result and
the proof deserve to be better known than they seem to be. We formulate
the result in geometric terms.

Theorem 8.2 Consider the affine plane AG(2,q) as (the additive structure
of) GF(g®). Let A be a subset of the plane with |4| = q, 0 € A, and such
that the difference € —y of any two elements z,y of A is a square in GF(¢?).
Then A is a line through the origin.

The result implies that Theorem 3.1 is true if we replace p by p?, i.e. consider
GQR codes of length p? + 1.

A possibly interesting case of designs derived from words of minimum
weight in a GQR code is length 7° because 7° = 182418 + 1 and an optimist
would be tempted to try to find a plane of order 18 in this way. In fact it
was suggested that it might be possible to find an abelian group difference set
that would yield the plane. The following theorem of Jungnickel and Vedder-
[11] and Wilbrink [24] rules that out.

Theorem 3.3 If a projective plane of order n =2 (mod 4) has an abelian
regular automorphism group, then it is the plane of order 2.

By now, the theorem has at least four different proofs. Pless [19] pointed
out that for the cyclic case, the theorem can be proved using methods from

coding theory.
4 Nonembeddable quasi-residual designs

In [15] & sequence of nonembeddable quasi-residual designs was constructed.
We illustrate the method by an example.
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Let A be the 10 by 30 incidence matrix of a 2-(10,3,2) design. Denote by E;
a 10 by 11 matrix with 1’s in row i and 0’s elsewhere. The permutation matrix
corresponding to the permutation (1,2,..., 11) is denoted by C. Define B by

o A E, By Eig 2)
=N\ 0 I+C 1+C* ... I4cw ) (

The complement B is the 21 by 140 incidence matrix of a quasi-residuﬂ
design corresponding to a symmetric 2-(141,120,102) design. Suppose that B

is embeddable in a design
O B
J D

Let C be the binary code generated by the rows of B. Since A = 102 is even,
every row of D is a codeword in Ct. From (2) we see that the sum of the
first 10 rows of B is 1. Hence every word in C1 has even weight. However,
every row of D has weight 119, a contradiction.

This is a rather simple application of ideas from coding theory. Neverthe-
less, there are many situations where clever use of a code, its dual, and the
all-one vector has led to nice results.

5 Memories with restrictions

A fairly new area of research is the construction of “codes” for memories
for which there are certain restrictions on updates. We shall discuss two
such problems and for each of them show an interesting connection to design
theory.

A Write-Once-Memory (WOM) of length n consists of n so-called wits
(write once bit positions). Each of these is initially 0. At each writing wits
that are 0 can be updated to 1 but the process is irreversible. An example
is paper tape for a computer into which holes are punched or a compact disc
on which pits are created by a laser. Conventional write-once-memories are
used only once. The idea of reusing such memories was introduced by Rivest
and Shamir [20].

Let there be M “messages” my,...,mpy that can be stored in the WOM.
Suppose that we wish to use the WOM on ¢ successive occasions. An update
consists of changing certain 0’s to 1’s. In order to describe this, we define for

xek yerR?
x<y if {ite;=1}C{i:gn=1} 3)
Sometimes it is convenient to interpret elements of F,” as characteristic fune-

tions of subsets of N := {1,2,..., n}. Then (3) states that x is a subset of

¥
As a first rule we state that if message m; is stored in the WOM and at

the next usage one wishes to store the same message, then one simply does
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not change the WOM. What we need is to associate with each message m;
alist IY (1 <v <t), where LY C L¥*' (1< v < t) and any two lists with
different lower indices are disjoint. If the memory contains an element from a
list with lower index i then w interpret this as message m;. The requirement
that we should always be able to update implies that if x € LY and v < ¢,
then for any j (1< j < M) thereisay € L;"H such that x < y. Note that
we do not require to be able to determine “time” from the memory (because
of our first rule).

Rivest and Shamir called such a set of lists a (M)t/n WOM code and
used the notation w(({£)*) for the least n for which such a WOM code exists.
They derived lower bounds for w({M)!). In particular they showed that
w({7)*) > 7 and w((8)%) > 8. Note that in conventional (not reusable) write-
once-memories we would require twelve bits to store one of seven messages
on four successive occasions (only the number of the message is stored of
course). So a WOM code of length 7 would mean a saving of nearly 50%.
The following example, due to one of my former students F. Merkx [18],
has turned out to be a particularly good “motivating” example in a discrete
mathematics course for computer science students.

Example 1 4 (7)*/7 WOM code.

We number the seven wits with the points Py, P,, ..., Py of the Fano plane.
We proceed as follows. Since the memory is not changed for successive stor-
ages of the same message, we only have to show what to do if a different
message is to be stored. We list the configurations that the reading device
can encounter, with their interpretation. The reader should convince himself
that all updates are possible.

Generation 1: a point P; represents my;

Generation 2: two points P;, P; represent m; if {P;, P;, Pi} is a line of the
plane.

Generation 3: a line {P;, P;, P} and a fourth point P, represents my.
Generation 4: two lines that intersect at P; represent m; and this message is
also represented by the complement of the set {~}.

Note that there are 74 possible sequences of messages that can be stored
although only 27 — 2 states of the memory occur. This is possible because
the “memory” actually does not remember the previous state. In the same
paper [18], several other nice applications of finite geometries to WOM codes
are given.

Our next example concerns so-called WUM codes. Now we are interested
in & write-unidirectional-memory. The motivation for these memories came
from the updating of magneto-optical discs. In the early versions, the updat-
ing depended on a magnetic field for which reorientation was a slow process.
This implied that for an update one could either only change 0’s to 1’s or
only 1’s to 0’s. For an introduction see [3, 25].
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Suppose that we have a memory of n bits and that we wish to store one of
M possible messages at each usage. Again we interpret codewords as subsets
of N. For each message m; we must have a subset S; of F," such that

() SinS;=0ii#j,
(ii) foralli # jand all x € S; thereisay € S; withx <yory<=x.

The rate R of a WUM code is defined as R := n~!log, M. Borden [3] showed
that B < 1log,(1+ +/5) if n > 5. He also showed that R — 3 is trivially
achievable if n-.= 2k. Simply define

Si o= {(1,x); (x; + 1,0)}

for each x; € F;*.
Although it is no longer a record holder for R we mention the following

interesting example due to Simonyi [21].
Example 2 A WUM code with R = 0.525...
Let k|n. Then it is well known (Baranyai’s Theorem) that the design of

all k-subsets of an n-set is resolvable. Now we take n = k(k+1), M = (321
and with each message m; we associate the k+1 blocks of a parallel class and
their complements (each of course interpreted as its characteristic function).
To show that updating is possible we can, by symmetry, assume that a block
B in class i is stored in the memory and that we wish to update to a message
corresponding to class j (j # i). Since |B| = k, there is a block B’ in class
J that does not meet B, i.e. B is a subset of the complement of B'. This
shows that the update is possible by a 0 to 1 writing. In fact the argument
still goes through if we pick one of the points of the n-set and remove it from
all the subsets (so the memory now has length n — 1). For k = 3 we find
M= (121) = 55 messages storable in a memory of length 11, corresponding
to a rate 0.525...

At present better codes exist. These were constructed with methods that
are not of a combinatorial nature. Our goal was to interest the reader in these
subjects and to show how designs and codes often influence each other.

References

(1] E.F. Assmus, Jr. and H.F. Mattson, Jr., Coding and combinatorics,
SIAM Review 16 (1974) 349-388,

[2] A. Blokhuis, On subsets of GF(¢®) with square differences, Proc. Kon.
Ned. Akad. v. Wetensch. (A) 87 (1984) 369-372.

[3] 3.M. Border, Coding for write-unidirectional memories, JEEE Trans.
Inform. Theory, submitted.

o L



38 J.H. van Lint

[4] W.M. Bridges, M. Hall, Jr. and J.L. Hayden, Codes and Designs, J.
Comb. Theory (A) 81 (1981) 155-174.

[5] A.E. Brouwer, The Witt designs, Golay codes and Mathieu groups, to
appear in Handbook of Combinatorics (in preparation).

[6] P.J. Cameron and J.H. van Lint, Graphs, codes and designs, London
Math. Soc. Lecture Note Series 48, Cambridge University Press, London,
1980.

[7] M. Hall, Jr., Combinatorial Theory, Wiley Interscience, New York, 1986.

[8] M. Hall, Jr., Configurations in a plane of order ten, Annals of Discrete
Math., 6 (1980) 157-174.

[9] M. Hall, Jr., R. Roth, G.H.J. van Rees and S.A. Vanstone, On Designs
(22,33,12,8,4), J. Comb. Theory (A) 47 (1988) 157-175.

[10] M. Hall, Jr. and J. Wilkinson, Termary and Binary Codes for a Plane of
Order 12, J. Comb. Theory (A) 36 (1984) 183-203.

[11] D. Jungnickel and K. Vedder, On the geometry of planar difference sets,
Bur. J. Comb. 5 (1984) 143-148.

[12] C.W.H. Lam, The search for a finite projective plane of order 10, Amer.
Math. Monthly 98 (1991) 305-318.

[13] J.H. van Lint, Iniroduction to Coding Theory, Graduate Texts in Math-
ematics 88, Springer Verlag, New York, 1982,

(14] J.H. van Lint and F.J. MacWilliams, Generalized Quadratic Residue
Codes, IEEE Trans. Inform. Theory IT-24 (1978) 730-737.

(15] J.H. van Lint and V.D. Tonchev, Nonembeddable Quasi-residual Designs
with Large K, J. Comb. Theory (A) 37 (1984) 359-362.

[16] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, North Holland, Amsterdam, 1977.

[17] F.J. MacWilliams, N.J.A. Sloane and J.G. Thompson, On the Existence
of a Projective Plane of Order 10, J. Comb. Theory (A) 14 (1973) 66-78.

[18] F. Merkx, Womcodes constructed with projective geometries, Traitement
du Signal 1 (1984) 227-231.

[19] V. Pless, Cyclic Projective Planes and Binary Extended Cyeclic Self-Dual
Codes, J. Comb. Theory (A) 43 (1986) 331-333.

[20] R.L. Rivest and A. Shamir, How to reuse a Write-Once-Memory, Infor-
mation and Control 55 (1982) 1-19.




E—

Codes and Combinatorial Designs 39

[21] G. Simonyi, On Write-Unidirectional Memories, IEEE Trans. Inform.
Theory IT-35 (1989) 663-669. .

[22] V.D. Tonchev, A Characterization of Designs Related to Dodecads in
the Witt System S(5, 8,24), J. Comb. Theory (A) 43 (1986) 219-227.

[23] V.D. Tonchev, Self-Orthogonal Designs and Extremal Doubly Even
Codes, J. Comb. Theory (A) 52 (1989) 197-205.

[24] H.A. Wilbrink, A Note on Planar Difference Sets, J. Comb. Theory (A)
88 (1985) 94-95.

[25] F.M.J. Willems and A.J. Vinck, Repeated recording for an optical disk,
in Proc. 7th Symp. Inform. Theory in the Beneluz (1986) 49-53.



