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Chapter 1

Introduction

In 1946 the first electronic computer, the so-called ENIAC (see Figure 1.1), was built
using vacuum tubes. It occupied 167 m2, weighed 30 tonnes, consumed 160 kilowatts of
electrical power and costed almost $ 487,000 (in 1946). Nevertheless, its computing power
was less than that of a simple programmable engineering calculator of today. Vacuum tubes
show several limitations such as the fact that they are fragile, they burn out after several
thousand hours of use, are bulky and give off considerable heat. In reaction, the transistor
was invented by Bardeen, Brattain and Shockley at ATT Bell Labs in 1947 [8, 49]. In 1956
the inventors received the Nobel Price in physics for their invention. Because a transistor
enables the flow of electrons in a solid-material (a so-called semiconductor) instead of in
vacuum, they can be made much smaller and more reliable. Until the invention of the
integrated circuit (IC) in 1958, many transistors were made on a wafer (a round substrate

Figure 1.1: The ENIAC (left) vs. the Cell processor (right).
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Figure 1.2: Moore’s law.

made of silicon) with the intention to cut them from this wafer and to package them
individually. The IC leaves all transistors on the wafer where they are interconnected. The
most important reason for the IC industry to have grown so rapidly is that the decreasing
feature size has continuously decreased the cost of chips, relative to their performance and
functionality. In 1965 Gordon Moore predicted that the number of transistors on a chip
would roughly double every 18 months [38]. This so-called Moore’s law is still very accurate,
although the doubling occurs every 24 months as illustrated in Figure 1.2. Nowadays one
of the drivers behind the decreasing feature size is the gaming industry. For example, Sony
PlayStation 3 makes use of the IBM/Toshiba/Sony Cell processor. This processor contains
234 million transistors on 221 mm2 using only some watts of electrical power.

The decreasing feature sizes of computer chips have largely been possible due to advances
in photolithography. To understand the motivation of this project, we will briefly dwell on
why lithography is the most critical part of the chip-making process.

1.1 Lithography

An IC is the result of a multi-step photochemical manufacturing process. Figure 1.3 shows
all steps within the chip making proces in the order of occurrence. The production of an IC
starts with a cylinder of mono-crystalline silicon that is cut into slices (1). Next, the slice
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Figure 1.3: The chip making process.

is polished to obtain an ultra-flat wafer (2). This wafer is the basis on which the circuit
elements like transistors, resistors and capacitors are built. In step (3) a BARC (Bottom
Anti-Reflective Coating) layer is deposited on the wafer to reduce unwanted light reflections
in the lithography step. After a deposition of a thin layer of light sensitive material called
photoresist (4), the actual lithography step occurs (5), where a circuit pattern is projected
onto a section of the wafer. During the exposure, the photoresist undergoes a chemical
reaction. Depending on whether positive or negative resist is used, the composition of
the resist becomes less or more chemically robust. After exposure, the wafer is developed,
which implies that the remaining solvents are removed and the photoresist is hardened.
The exposed resist is washed away (6). In this way the photolithography step transfers the
circuit image onto the wafer. Etching and implantation of ions are done to create vertical
and horizontal paths between layers on the wafer (7). The last process is to remove the less
chemically robust part of the photoresist (8). Steps (3) to (8) are repeated 20-30 times in
order to build up an entire IC. An example of such an IC is shown in Figure 1.4. The wafer
contains several ICs (9) and therefore it should be cut into individual ICs (10). Finally, the
ICs are packaged and connector pins are added to produce the final chip (11). For a more
detailed description about the processes to make computer chips see [52].

In process steps (3) to (8) it is crucial that each new pattern is placed on top of the
previously made pattern as accurately as possible. The only process for which the position
on the wafer is critical is the photolithography step (step (5)). All other processes affect
the wafer as a whole. For example, resist spinning (step (3)) is a process where a droplet
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Figure 1.4: An enhanced view of an IC as it is manufactured nowadays. The
lines have typical dimensions of a couple of nanometers. (Bron: IBM)

of liquid resist is put in the centre of a wafer while it is spinning at high speed such that
the resist spreads out over the wafer. Photolithography creates a pattern onto a wafer by
imaging a mask , which is a sheet of glass, partially covered by an opaque material. By
shining light onto the mask, it exposes a pattern onto the photoresist. Since an IC is built
up layer after layer, the patterns of every layer have to be placed exactly on top of each
other to ensure that the IC performs well. The quality of this positioning is expressed by the
term overlay , which describes the positional accuracy of a new lithographic pattern relative
to the existing pattern on the wafer. To minimize overlay, accurate knowledge about the
position on the wafer should be available.

To measure a position on a wafer with nanometer precision, special structures are put on
the wafer. An example of such a structure is a diffraction grating, which is a repetitive
array of either apertures or obstacles that has the effect of producing periodic alterations in
the phase, the amplitude or both of a scattered wave. In this thesis, we will consider phase
gratings and in practice this phase grating will typically be a binary diffraction grating (see
Figure 1.5). There are several reasons to use such a diffraction grating and particularly

Figure 1.5: Representation of a binary diffraction grating.
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a binary one. Gratings have the property that a plane wave will be diffracted in multiple
diffraction orders that propagate in well-defined directions determined by the wavelength of
the light and the period of the grating. The diffraction orders have a phase, which ensures
that the position of this periodic structure can be found with a high accuracy [11]. By
scanning the grating structure one is able to find the center of symmetry with an accuracy
in the order of nanometers. Note that a pre-align step is required to indicate roughly the
position of the grating, since the signal will also be periodic. The reason to prefer a periodic
grating over a single structure is that, the more periods the grating has, the sharper the
peaks of the intensity profile of the diffraction orders become as is illustrated in Figure
1.6. This implies that we can apply spatial filtering where only the peaks of the signal
are allowed to pass and other parts are blocked to reduce the influence of noise. The
reason why the grating usually is chosen to be a binary one is that it is relatively easy to
manufacture. Finally, the reason why the grating structure should be small is that wafers
are very expensive and, since gratings are not part of the final chip, a chip manufacturer
does not want to use too much space on them.

1.2 Problem description

The objective of lithography is to produce an IC image. Although this process faces many
difficulties, this thesis will treat only two of them. The first problem concerns measuring
the position on a wafer as discussed in the previous section. In this context the gratings are
called alignment markers. The second problem is the resolution of the lithography process,
which is defined as the ability to produce a resist line that meets its requirements.

The first challenge is to correct for the effects on alignment markers caused by other pro-
cesses such as etching or polishing. Ideally, an alignment marker is symmetric and the
position found by all diffraction orders is its center of symmetry. But these markers are
influenced by other processes, which cause the actual shape of the marker to deviate from
its presumed shape. In Figure 1.7 a processed grating is shown where locally the symme-
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Figure 1.7: A representation of an alignment marker (left) and a magnification
of one of its periods (right) (Source: ASML).

try is affected. When the marker becomes asymmetric, one cannot define the center of
symmetry anymore and all diffraction orders will give different "positions" of the marker.
Therefore, we would like to find the actual shape of these damaged gratings. Together with
the knowledge of what kind of process caused the damage, we can reconstruct the shape
of the original grating and estimate its position more accurately.

The second challenge concerns the resolution of a lithography process. The features to
determine this resolution are the linewidth (midCD), the side-wall-angle (SWA) and the
height of a trapezoidal grating structure (see Figure 1.8). For the same reasons as for
the alignment markers, we have a periodic array of these trapezoids such that we can use
the benefits of diffraction gratings here as well. Two important parameters that influence
the shape of the trapezoidal lines are the distance between the image plane and the wafer
(focus) and the intensity of the light (dose). The dose has an effect on the linewidth of the
resist line after development, because the photoresist only reacts to light when this light
has a certain intensity. Focus has an effect on the side-wall-angle, but also on the linewidth
of the trapezoid (see Figure 1.9). To know whether the focus and dose were good enough
to let the resist structure satisfy our requirements, we need to know its shape. For more
details on focus and dose, see [24].

In this thesis we focus on the question whether we can reconstruct a diffraction grating.

SWA

h
e

ig
h

t

midCD

Figure 1.8: The definition of the shape parameters for a symmetric trapezoid.
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Figure 1.9: The effect of focus on the shape of the resist line. The figure in
the middle is the result of producing trapezoidal lines when the wafer is in focus,
while the left and right figures are the results of printing the lines when the wafer
was out of focus because it has been placed above and below the imaging plane,
respectively (Source: ASML).

This question has three aspects which we want to answer, namely

� Possibility
Can we reconstruct the actual shape?

� Efficiency
Can we do this reconstruction in a reasonable short time?

� Stability
Can we ensure that our method is mathematically robust?

The last two questions are equally important, because a stable method which takes too
much time is useless in practice, but a fast method with wrong answers is useless as well.

To have an answer in the first place, we have to make some additional assumptions. Of
course, this answer still has to represent the physics. Let us assume that

� the shape parameters behave periodically to ensure that we can apply periodic bound-
ary conditions. This implies that also damages of the alignment mark or misprints of
the resist lines are assumed to be identical over all periods.

� the initial shape parameters for the inverse process are estimates of the actual grat-
ing configuration which are close enough to the actual shape parameters, such that
convergence of the iterative optimization process is ensured. In other words, a part
of the robustness of our method is ensured by this assumption.
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1.3 Outline

Finding the shape parameters from a measured scattered field can be defined as an inverse
problem. It is easier to find the scattered field for a given grating structure, which we
will define as the forward problem. This forward problem is used iteratively in a so-called
optimization process or inverse problem as illustrated in Figure 1.10. This process starts
with an initial guess of the shape parameters. Substitution of this initial guess in the for-
ward problem gives a computed scattered field, which is compared to a measured one. The
difference between them and the computed gradient of the scattered field with respect to
the shape parameters lead to an improved guess of the shape parameters. This iterative
process is repeated until the computed scattered field matches the measured one.

Chapters 2, 3 and 4 deal with the forward model. The fundamental physics is described in
Chapter 2, where the incident field is defined and the equations which the field has to satisfy
together with the boundary conditions are discussed. Next, two methods are discussed to
solve the forward problem to find the scattered field for a given incident field and grating
structure. These two methods are the rigorous coupled-wave analysis (RCWA) and the C
method , which are explained in Chapter 3 and 4, respectively. Both methods are discussed
in detail and both methods are preferred for a certain type of grating. However, RCWA is
applicable to any type of grating while the C method cannot. This is the reason why the
remaining chapters of this thesis will use RCWA as the forward model.

The inverse model requires knowledge about how the field reacts to small changes of the
shape parameters. Chapter 5 describes two methods to compute first-order derivatives
of the scattered field with respect to a shape parameter, namely finite differences and a

Measured
signal

Initial guess
of shape

parameters

FORWARD
MODEL

COMPARISON

NO YESCOMPUTE
GRADIENT

INFORMATION

ESTIMATION
OF SHAPE

PARAMETERS

Gradient

Finish

New set
of shape

parameters

Computed
diffraction

efficiencies

Figure 1.10: Schematic representation of the inverse process.
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new method based on straightforward differentiating the relations within RCWA. The new
method is derived to avoid solving additional eigenvalue problems, which are the most com-
putationally expensive part of the RCWA algorithm. Instead, we need the derivatives of
the eigenvalues and eigenvectors. Chapter 6 shows how these derivatives can be found in
a mathematically correct way.

The final step of the inverse problem is the actual optimization. Chapter 7 will address
several important issues in the optimization methods to perform an reconstruction of the
shape parameters. Finally, Chapter 8 summarizes the main results of this thesis and dis-
cusses the issues that have to be investigated in the future.
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Chapter 2

Modelling

2.1 Physical model

A typical grating we consider is infinitely periodic in the x-direction, while it is independent
of the y -direction. In practice, this implies that the laser does not see the edges of the
grating. Although all grating structures are three-dimensional in space, we speak of a one-
dimensional diffraction grating when the periodicity of the grating is in one direction only.
Examples of such one-dimensional diffraction gratings are given in Figure 2.1.

Let a grating be illuminated by a laser beam, which is approximated by a plane wave.
The scattering of the wave by a grating structure can be explained by the wave nature of

Figure 2.1: Examples of one-dimensional diffraction gratings. The left picture
shows a top view of an etched grating profile and the right picture shows a
cross-section of a grating consisting of resist lines (Source: ASML).
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Figure 2.2: Illustration of the wave phenomena diffraction (left) and interference
(right).

light. Since we want to consider light as an electromagnetic phenomenon, we will use the
term field instead of light. A grating causes interference and diffraction, which are both
typical phenomena of waves. Interference is the superposition of multiple wave fronts, while
diffraction is the deviation of light from rectilinear propagation, which occurs whenever a
portion of a wavefront is somehow obstructed. To have a clear picture of what happens
physically, one can imagine the dips of the reflection grating as apertures of a transmission
grating. The phenomena diffraction and interference are depicted in Figure 2.2. Diffrac-
tion of a wave can be explained by Huygens’s principle, which states that every point on a
propagating wavefront serves as the source of spherical secondary wavelets, such that the
wavefront at some later time is the envelope of these wavelets [20]. Fresnel was able to
account for interference by supplementing Huygens’s principle that became famous as the
Huygens-Fresnel principle, which states that the amplitude of the optical field at any point
is the superposition of all these wavelets (considering their amplitudes and relative phases).

Let the incident field be given as a monochromatic plane wave with wavelength �0, which
is linearly polarized. The latter implies that the orientation of the field is constant. Also let
the incident field be time-harmonic , which means that the time-dependence of the field is
given by a periodic function. The angle under which the field is incident upon the grating
structure can be specified by three quantities, namely the polar angle � and the azimuthal
angle �, which indicate the direction of the field, and the polarization angle  , which is
the angle denoting the orientation of the electric field (see Figure 2.3). If � = 0 we speak
of planar diffraction and if � 6= 0 we call it conical diffraction. The plane of incidence is
defined as that plane which contains the incident field and the scattered field. If the electric
field component of a linearly polarized wave is perpendicular to the plane of incidence, that
is  = �=2, we speak of a transverse electric wave. Similarly a field is a transverse mag-
netic wave if the magnetic field component of the linearly polarized wave is perpendicular
to the plane of incidence. The TE-component is also referred to as s-component and the
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Figure 2.3: Graphical representation of the polar angle �, the azimuthal angle �
and the angle between the incident electric field vector and the plane of incidence
 .

TM-component is the p-component. Any other polarization state can be described as a
linear combination of both the TE- and TM-component.

By considering a periodic grating, the secondary waves of the reflected field will cause
constructive and destructive interference. In terms of superposition this means that in the
first case all waves add up, while in the latter case the waves will cancel each other out.
The infinite number of periods of the grating ensures that the regions of constructive in-
terference are narrowed to certain angles only. For planar diffraction these angles can be
found by the so-called grating equation given by

�(sin �out � sin �) = n�0; (2.1)

where � is the period of the grating, � and �out are the angles of the incident and scattered
field, respectively, n denotes the diffraction order and �0 is the wavelength. This equation is
illustrated in Figure 2.4, where the optical path length AB�CD is equal to a multiple of the
wavelength �0. From (2.1) it can be observed that large wavelengths have less diffraction
orders than small wavelengths.

The grating equation only gives the angle of the diffraction order. What we would like
to know is the amplitude and phase of the field in the direction of these diffraction or-
ders. Among others, the Huygens-Fresnel principle was given a mathematical formulation
by Kirchhoff which resulted in Kirchhoff’s scalar diffraction theory [10]. It uses the fact that
if the field and its normal derivative are known on a surface, the field at any point can be
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Figure 2.4: Definition of the parameters for deriving the grating equation. It
holds that the optical path length AB � CD = � (sin �out � sin �).

calculated. However, the exact evaluation of the field on a surface, such as the field in an
aperture is difficult. When the aperture size is large in terms of the wavelength Kirchhoff’s
approximation can be applied, which states that the aperture field may be approximated by
that of the incident field. Because diffraction gratings are used with a period of the same
order of magnitude as the wavelength of the light, we can only use rigorous methods which
solve Maxwell’s equations directly. Only then we can be sure that diffraction effects are
taken into account and we obtain the correct amplitude and phase.

In the next section we will derive a mathematical model to obtain the field above the
grating starting from Maxwell’s equations.

2.2 Mathematical model

The mathematical model consists of a field description inside the domain, a description of
the incident field and boundary conditions, which are discussed in in this section.

2.2.1 Maxwell’s equations

A general electromagnetic field is described by Maxwell’s equations [19, 48]. In the setting
of diffraction grating theory we can simplify these equations significantly as will be shown
in this section. The time-dependent Maxwell equations in Cartesian coordinates are given
by

r� e(x; t) = �@b(x; t)
@t

; (Faraday’s law) (2.2a)

r� h(x; t) = j(x; t)+
@d(x; t)

@t
; (Ampère’s law) (2.2b)

r � b(x; t) = 0; (Gauss’s law for magnetic field) (2.2c)

r � d(x; t) = �(x; t): (Gauss’s law for electric field) (2.2d)



2.2 Mathematical model 15

Faraday’s law (2.2a) describes how an electric field e (in V/m) is created when the magnetic
flux density b (in Vs/m2) changes. Similarly, Ampère’s law (2.2b) describes how a magnetic
field h (in A/m) is created by a current density j (in A/m2) and a change in the electric
flux density d (in As/m2). Gauss’s law for electric fields gives the relationship between the
electric flux density and the sources of that flux, the charge density � (in As/m3). The
magnetic equivalence of Gauss’s law (2.2c) states that no free magnetic poles exist. Fur-
thermore, x is the position vector in Cartesian coordinates and t denotes the time variable.

To formulate Maxwell’s equations in terms of the electric and magnetic fields only, we
will introduce some additional relations. These so-called constitutive relations describe the
influence of the material under consideration on the electromagnetic fields. We assume
the materials to be source-free, linear with respect to the electromagnetic fields, isotropic,
time-invariant, dispersion-free and non-magnetic. The source-free property means that no
external currents or charges are present, which implies that the current density j and the
charge density � consist only of those (internal) parts caused by the electromagnetic fields,
which are denoted by jint and �int respectively. In other words:

j(x; t) = jint(x; t); �(x; t) = �int(x; t): (2.3)

The linearity with respect to the fields means that the electric flux density d and the internal
current density jint are proportional to the electric field e and the magnetic flux density b
is proportional to the magnetic field h. Materials are isotropic when their properties are
independent of the direction and polarization. By letting the material properties to be
independent of time, the materials are time-invariant. Finally, assume that the materials
are dispersion-free, which means that the response of the medium is instantaneous. All
these properties are summarized in the following constitutive relations, viz.

d(x; t) = "(x)e(x; t);

b(x; t) = �0h(x; t);

j(x; t) = jint(x; t) = �(x)e(x; t):

(2.4)

Here, " is the permittivity (in As/Vm), �0 is the permeability of vacuum (in Vs/Am) and
� is the conductivity (in A/Vm). In (2.4) we used the property that all materials are non-
magnetic , which says that the permeability is equal to the permeability of vacuum � = �0
for all materials.

When these constitutive relations are substituted in Faraday’s law (2.2a) and Ampère’s
law (2.2b) we obtain two relations with only the electric and magnetic field as unknowns.

r� e(x; t) = ��0 @h(x; t)
@t

; (2.5a)

r� h(x; t) = �(x)e(x; t) + "(x)
@e(x; t)

@t
: (2.5b)

Let the time dependency of the electromagnetic fields be time-harmonic , that is

e(x; t) = Re f~e(x) exp[i!t]g ; h(x; t) = Re
{
~h(x) exp[i!t]

}
; (2.6)
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where ~e and ~h denote the part of the electric and magnetic field that only depend on the
position x. The variable ! is the angular temporal frequency (in rad/s). Introducing the
time-harmonic property for the electromagnetic fields in (2.5) gives

r� ~e(x) = �i!�0~h(x); (2.7a)

r� ~h(x) = i!

(
"(x)� i

�(x)

!

)
~e(x): (2.7b)

Note that we omitted to take the real part, since taking the real part of the complex-valued
solution of (2.7) gives the same as when we solve (2.7) for only the real parts of the elec-
tromagnetic fields [46]. For notational convenience, the tilde in the electromagnetic fields
is discarded and "� i(�=!) is written as ~".

Since Maxwell’s equations in the form of (2.7) will be used frequently in the remainder
of this thesis, we will give these equations in Cartesian coordinates, viz.

@

@y
ez(x; y ; z)� @

@z
ey (x; y ; z) = �i!�0hx(x; y ; z); (2.8a)

@

@z
ex(x; y ; z)� @

@x
ez(x; y ; z) = �i!�0hy (x; y ; z); (2.8b)

@

@x
ey (x; y ; z)� @

@y
ex(x; y ; z) = �i!�0hz(x; y ; z); (2.8c)

@

@y
hz(x; y ; z)� @

@z
hy (x; y ; z) = i!~"(x; y ; z)ex(x; y ; z); (2.8d)

@

@z
hx(x; y ; z)� @

@x
hz(x; y ; z) = i!~"(x; y ; z)ey (x; y ; z); (2.8e)

@

@x
hy (x; y ; z)� @

@y
hx(x; y ; z) = i!~"(x; y ; z)ez(x; y ; z): (2.8f)

We can decouple the electric and magnetic field by taking the curl of both (2.7a) and
(2.7b). Using the identities r� (r�a) = r(r�a)�r2a and r� (r�a) = 0, the relation
between the wave number k0 and the angular temporal frequency ! given by

k0 = !
p
"0�0; (2.9)

and introducing the relative permittivity ~"r as

~"r(x; z) := ~"(x; z)="0; (2.10)

we can write

r2e(x) + k20 ~"
r(x)e(x) = r

(
1

~"r(x)
((r~"r(x)) � e(x))

)
; (2.11a)

r2h(x) + k20 ~"
r(x)h(x) = ~"r(x)

((
r 1

~"r(x)

)
� (r� h(x))

)
: (2.11b)

If our domain consists of a homogeneous material as is the case above and below the grating
structure, identities (2.11a) and (2.11b) become Helmholtz equations, viz.

r2e(x) + k20 ~"
re(x) = 0; (2.12a)

r2h(x) + k20 ~"
rh(x) = 0: (2.12b)
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Note that (2.12a) and (2.12b) are exactly the same for both the electric and magnetic field.

In case of planar diffraction, both the incident field and the grating structure are indepen-
dent of the y -coordinate and therefore the entire field is independent of the y -coordinate.
As a result, (2.11) gives two relations when we consider the y -components of both electric
and magnetic field, viz.

@2

@x2
ey (x; z) +

@2

@z2
ey (x; z) = �k20 ~"r(x; z)ey (x; z); (2.13a)

@

@x

(
1

~"r(x; z)

@

@x
hy (x; z)

)
+
@

@z

(
1

~"r(x; z)

@

@z
hy (x; z)

)
= �k20hy (x; z): (2.13b)

TE polarization implies that only the y -component of the electric field is present and there-
fore, only (2.13a) should be considered. Similarly, for TM polarization only (2.13b) has to
be solved. Any other case of planar diffraction can be considered as a linear combination of
TE and TM polarization. For conical diffraction, where the azimuthal angle is nonzero, it
is not possible to uncouple the x- or y -component of a field directly and we have to solve
the combination of (2.11a) and (2.11b).

2.2.2 Incident field

In Section 2.1 the angles describing the incident field have been defined (see Figure 2.3).
For conical diffraction the normalized incident electric field is given by

einc(x; y ; z) = exp[�ik � x]u
= exp [�ik0nI(x sin � cos�+ y sin � sin�+ z cos �)]u; (2.14)

with

u =

 cos sin 0

� sin cos 0

0 0 1

 cos � 0 sin �

0 1 0

� sin � 0 cos �

 cos� sin� 0

� sin� cos� 0

0 0 1

10
0


= (cos cos � cos�� sin sin�)ux

+ (cos cos � sin�+ sin cos�)uy � cos sin � uz : (2.15)

The matrices are rotation matrices with the polar angle �, the azimuthal angle � and the
polarization angle  , respectively. They describe the way the incident electric field is de-
composed in x-, y - and z-direction. The vectors ux , uy and uz are unit vectors in the x-,
y - and z-direction, respectively.

Although planar diffraction is merely a special case of conical diffraction, the TE and TM
polarizations are frequently used in the context of one-dimensional diffraction grating theory,
because of their simplicity and because any other polarization for planar diffraction is a linear
combination of them. For TE polarization ( = �=2 and � = 0) only the y -component of
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the electric field e incy is present, which is given by

e incy (x; z) = exp [�ik0nI(x sin � + z cos �)] : (2.16)

Similarly for TM polarization ( = 0 and � = 0) the incident magnetic field is perpendicular
to the plane of incidence and therefore, only the y -component of the magnetic field hincy is
present. This follows from substitution of  = 0 and � = 0 in (2.14), which results in

einc(x; z) = (cos � ux � sin � uz) exp[�ik0nI(x sin � + z cos �)]: (2.17)

The magnetic field can be found by using Maxwell’s equation (2.8b).

hincy (x; z) =
i

!�0

(
@e incx (x; z)

@z
� @e incz (x; z)

@x

)
= nI

√
"0=�0 exp [�ik0nI(x sin � + z cos �)] : (2.18)

2.2.3 Boundary conditions

Diffraction of a grating is a boundary value problem, which means that boundary conditions
are required to find a unique solution. Since the boundary conditions are similar for both
the electric and magnetic field, let us define f as

f(x; y ; z) :=

{
e(x; y ; z)

h(x; y ; z)
; (2.19)

depending on which field is under consideration. The one-dimensional diffraction grating
considered here has three types of boundary conditions:

� Outgoing wave condition
As Sommerfeld said [50]:

The energy which is radiated from the sources must scatter to infinity; no
energy may be radiated from infinity into ... the field.

This implies that the reflected field, which is defined as the total field minus the
incident field, and the transmitted field, which is the field that passes through the
grating, should be outgoing waves or decaying waves only. Note that in the halfspace
above the grating the outgoing wave condition holds for the reflected field only and
not for the incident field.

� Pseudo-periodic boundary condition
The periodicity of the grating allows us to restrict the domain to one period only.
The idea of this boundary condition is given in Figure 2.5. The distance between the
wave fronts at (x; y ; z) and (x + �; y ; z) is equal to � sin � cos�. For the phase, we
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Figure 2.5: Illustration of the pseudo-periodic boundary condition or Floquet
condition.

have to express this distance in terms of the number of wavelengths, which is equal
to (�=�0) sin � cos�. The phase difference is zero if this number is a natural number.
The pseudo-periodic boundary condition or Floquet condition is given by [43]

f(x + �; y ; z) = f(x; y ; z) exp[�ik0nI� sin � cos�]: (2.20)

For a positive polar angle � the phase of the wavefront at (x + �; y ; z) leads the
wavefront at (x; y ; z).

� Continuity at the interface
Since the tangential field components of the electric field should always be continuous
and the same holds for the magnetic field when the materials are assumed to be non-
magnetic, the boundary condition at an interface is given by

n(x; y ; z)�(f+(x; y ; z)� f�(x; y ; z)
)
= 0; for (x; y ; z) on the interface, (2.21)

where f+ and f� are the fields above and below the interface, respectively, and n is the
normal pointing in the positive z-direction as illustrated in Figure 2.6. A mathematical
derivation of this boundary condition can be found in [22].

Figure 2.6: Definition of the normal and the field above and below an
interface.
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With the outgoing wave condition, the Floquet condition and the continuity of the tangential
field components a unique solution exists to the problem of diffraction by a periodic structure
[43].

2.3 Rayleigh expansion

To find the reflected and the transmitted field, we use the fact that above and below the
grating profile (media I and II of Figure 2.7) the so-called Rayleigh expansion is valid [43].
For the halfspaces above and below the grating structure, only one material is present and
therefore the fields satisfy the Helmholtz equations (2.12a) and (2.12b). The field also
has to obey the outgoing wave condition and the Floquet condition (2.20). This will be
sufficient to derive the Rayleigh expansion.

I

III

II

Figure 2.7: Identification of the domains where the Rayleigh expansion is valid.
The Rayleigh expansion holds in media I and II, but not in III.

Consider the electric or magnetic field for conical diffraction. Because the Helmholtz equa-
tions (2.12) are identical for both fields, we use f instead as has been defined in (2.19).
Since f satisfies the pseudo-periodic boundary condition (2.20), we can define ~f as

~f(x; y ; z) := f(x; y ; z) exp[ik0nI sin � cos� x ]; (2.22)

which is a periodic function in x with period �. We can represent ~f by its Fourier series as

~f(x; y ; z) =

1∑
n=�1

�n(y ; z) exp

[
i
2�n

�
x

]
: (2.23)

Here �n are the Fourier coefficients of ~f. The field f is then given by

f(x; y ; z) =

1∑
n=�1

�n(y ; z) exp [�ikxnx ]; (2.24)

with

kxn := k0nI sin � cos�� 2�n

�
: (2.25)
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When we substitute this expansion of f in the Helmholtz equation (2.12), we find by using
separation of variables that both the part depending on y and the one depending on z

should be exponential functions. The shape of the exponential function depending on y
is determined by the boundary condition at the grating interface which states that all
tangential field components should be continuous at this interface for all y . Because of this
boundary condition the exponential function inherits the exponential function depending on
y of the incident field. Thus, the field can be given by

f(x; y ; z) =

1∑
n=�1


n(z) exp [�i (kxnx + kyy)]; (2.26)

with

ky := k0nI sin � sin�: (2.27)

Finally, substitution of (2.26) in the Helmholtz equation yields

1∑
n=�1

{
@2
n(z)

@ z2
+ (k20n

2
m � k2xn � k2y )
n(z)

}
exp[�i(kxnx + kyy)] = 0; (2.28)

where m = I; II denotes the upper or lower medium. This relation is valid for any value of
x and y and therefore every term of the Fourier series must be equal to zero.

d2 
n(z)

d z2
+ (k20n

2
m � k2xn � k2y )
n(z) = 0: (2.29)

Let

km;zn :=
√
k20n

2
m � k2xn � k2y ; (2.30)

so that 
n(z) can be written as


n(z) = r�n exp[�ikm;znz ] + r+n exp[ikm;znz ]: (2.31)

The coefficients r�n represent incoming plane waves propagating toward the grating surface
and r+n represent the outgoing plane waves. Because of the outgoing wave condition, the
incoming waves should be zero (except for the wave representing the incident field). Thus
the field fI can be expressed as a series of (decaying) plane waves, viz.

fI(x; y ; z) := f inc(x; y ; z) +

1∑
n=�1

rn exp[�i (kxnx + kyy � kI;znz)]: (2.32)

Analogously the transmitted field fII valid for z � D, where D represents the thickness of
the grating, is given by

fII(x; y ; z) :=

1∑
n=�1

tn exp[�i (kxnx + kyy + kII;zn(z �D))]: (2.33)

The quantities rn and tn are called the reflected and transmitted field amplitudes, re-
spectively. This concludes the derivation of the Rayleigh expansion for the reflected and
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transmitted field.

For planar TE and TM polarization, the Rayleigh expansions reduce to

eI;y (x; z) = e incy (x; z) +

1∑
n=�1

rn exp[�i (kxnx � kI;znz)]; (2.34a)

hI;y (x; z) = hincy (x; z) +

1∑
n=�1

~rn exp[�i (kxnx � kI;znz)]; (2.34b)

with rn and ~rn are the reflected field amplitudes belonging to the electric and magnetic field,
respectively. As a direct consequence of Maxwell’s equations, they are related by

~rn := � 1

!�0
(kI;znrxn + kxnrzn) : (2.35)

In a similar way the Rayleigh expansions for the transmitted orders are given by

eII;y (x; z) =

1∑
n=�1

tn exp[�i (kxnx + kII;zn(z �D))]; (2.36a)

hII;y (x; z) =

1∑
n=�1

~tn exp[�i (kxnx + kII;zn(z �D))]; (2.36b)

with

~tn :=
1

!�0
(kII;zntxn � kxntzn) : (2.37)

For conical diffraction we can find rzn when rxn and ryn are known, because both the total
electric field above the grating and the incident electric field are divergence-free, viz.

r � eI = �i (kxnrxn + ky ryn � kI;znrzn) exp[�i(kxnx + kyy � kI;znz)] = 0: (2.38)

Thus

rzn =
kxnrxn + ky ryn

kI;zn
: (2.39)

Similarly, we can derive that

tzn = �kxntxn + ky tyn
kII;zn

: (2.40)

More often we are not interested in rxn or ryn, but in rsn and rpn, which are the components
of the amplitudes of the electric and magnetic fields normal to the diffraction plane, which
is the xz-plane rotated by the angle �n given by

�n := arctan(ky=kxn): (2.41)
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Note that rsn and rpn and analogously tsn and tpn may be considered as the TE and TM
components of the reflected and transmitted field. They are defined as

rsn := ryn cos�n � rxn sin�n; (2.42a)

rpn := � 1

k0nI
f(kI;znrxn + kxnrzn) cos�n+(ky rzn + kI;znryn) sin�ng ; (2.42b)

tsn := tyn cos�n � txn sin�n; (2.42c)

tpn :=
1

k0nI
((kII;zntxn � kxntzn) cos�n�(ky tzn � kII;zntyn) sin�n) : (2.42d)

The relation of rpn and tpn can be written in terms of rxn and ryn or txn and tyn, viz.

rpn = � k0nI
kI;zn

(rxn cos�n + ryn sin�n) : (2.43a)

tpn =
k0n

2
II

kII;znnI
(txn cos�n + tyn sin�n) : (2.43b)

The derivation of (2.43a) can be found in Appendix A.1. The derivation of (2.43b) is
similar. Notice that for planar diffraction rsn coincides with the y -component of the electric
field and rpn coincides with the y -component of the magnetic field.

2.4 Diffraction efficiencies

The quantity that is frequently used for comparison with actual measurements is the diffrac-
tion efficiency. The diffraction efficiency for the reflected or transmitted field is defined as
the modulus of the ratio of the flux of the Pyonting vector of the reflected or transmitted
field and the flux of the Pyonting vector of the incident field through a surface parallel to
the mean plane of the grating [41]. The reflected electric field above the grating structure
for conical diffraction is given by

eref(x; y ; z) :=
∑
n

rn exp[�i (kxnx + kyy � kI;znz)]: (2.44)

From Maxwell’s equations (2.8) it follows that the reflected magnetic field href can be
derived from the reflected electric field.

hrefx (x; y ; z) =
1

!�0

N∑
n=�N

(ky rzn + kI;znryn) exp[�i(kxnx + kyy � kI;znz)]; (2.45a)

hrefy (x; y ; z) =
1

!�0

N∑
n=�N

�(kI;znrxn + kxnrzn) exp[�i(kxnx + kyy � kI;znz)]; (2.45b)

hrefz (x; y ; z) =
1

!�0

N∑
n=�N

(kxnryn � ky rxn) exp[�i(kxnx + kyy � kI;znz)]: (2.45c)



24 Modelling

To compute the diffraction efficiency, we need the Poynting vector s, which is defined as
the power per unit of area with unit Watt/m2 [10]. In mathematical terms s is given by

s := Re
{
e� �h

}
: (2.46)

The bar indicates the conjugate of a complex number or complex vector. The power p
through a surface defined by 0 � x � �, 0 � y � 1 and z = constant, which is parallel to
the mean plane of the grating (parallel to the x- and y -axis), can be computed by taking the
inner product of the Poynting vector with the normal of this surface and integrating over
it. The normal points in the positive z-direction and therefore we take the inner product
with the z-component of the Poynting vector which is given by

s refz (x; y ; z)

= Re
{
erefx (x; y ; z)�h

ref
y (x; y ; z)� erefy (x; y ; z)�h

ref
x (x; y ; z)

}
= �Re

{
1

!�0

N∑
n=�N

N∑
m=�N

(
�kI;zmrxn�rxm + kxmrxn�rzm + ky ryn�rzm

+�kI;zmryn�rym
)
exp[�i (kxn � kxm) x + i

(
kI;zn � �kI;zm

)
z ]

}
: (2.47)

When we integrate s refz (x; y ; z) over the specified area, we see that the terms where m 6= n

drop out because of the exponential term in x . To distinguish between orders consider the
power prefn of diffraction order n, viz.

prefn (z) := Re
{

1

!�0

(��kI;znrxn�rxn � �kI;znryn�ryn � kI;znrzn�rzn
) �

� exp[i(kI;zn � �kI;zn)z ]
}
: (2.48)

If the refractive index in the upper halfspace is a real number, the dependence on z drops
out. If we have an absorbing material with a complex-valued refractive index the dependence
on z remains. As already indicated in the previous section, the field amplitudes are normally
not expressed in the x-, y - and z coordinates, but by their s- and p-polarized counterparts,
viz.

prefn (z) = Re
{

�

!�0

(��kI;znrsn�rsn � kI;znrpn�rpn
)
exp[i(kI;zn � �kI;zn)z ]

}
: (2.49)

The derivation of this relation is given in Appendix A.1.

The diffraction efficiency also requires that the power of the incident field is computed.
The incident field is given by (2.14) and (2.15). The incident magnetic field hinc can be
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computed as follows

hincx (x; y ; z) = � k0nI
!�0

(cos sin�+ sin cos � cos�)

� exp[�ik0nI(x sin � cos�+ y sin � sin�+ z cos �)] (2.50a)

hincy (x; y ; z) =
k0nI

!�0
(cos cos�� sin cos � sin�)

� exp[�ik0nI(x sin � cos�+ y sin � sin�+ z cos �)] (2.50b)

hincz (x; y ; z) =
k0nI

!�0
sin sin �

� exp[�ik0nI(x sin � cos�+ y sin � sin�+ z cos �)] (2.50c)

As in the case of the reflected field, the power of the incident field after integration of the
z-component of the Poynting vector, is given by

s incz (x; y ; z) = Re
{
e incx (x; y ; z)�h

inc
y (x; y ; z)� e incy (x; y ; z)�h

inc
x (x; y ; z)

}
=
k0nI

!�0
cos �: (2.51)

Integration gives

pinc =
�k0nI

!�0
cos �: (2.52)

Now we can derive an expression for the diffraction efficiency of the reflected field �rn. We
compute them for z = 0:

�rn :=

∣∣∣∣prefn (0)

pinc

∣∣∣∣ = rsn�rsnRe
{

kI;zn

k0nI cos �

}
+ rpn�rpnRe

{
kI;zn

k0nI cos �

}
: (2.53)

Analogously, the diffraction efficiency �tn for the transmitted orders can be computed for
z = D by

�tn :=

∣∣∣∣ptransn (D)

pinc

∣∣∣∣ = tsn�tsnRe
{

kII;zn

k0nI cos �

}
+ tpn�tpnRe

{
kII;znnI

k0n
2
II cos �

}
: (2.54)

For planar TE polarization the diffraction efficiencies (2.53) and (2.54) reduce to

�rn = rn�rnRe
{

kI;zn

k0nI cos �

}
; (2.55a)

�tn = tn�tnRe
{

kII;zn

k0nI cos �

}
: (2.55b)

Similar, for planar TM polarization the diffraction efficiencies (2.53) and (2.54) reduce to

�rn = ~rn�~rnRe
{

kI;zn

k0nI cos �

}
; (2.56a)

�tn = ~tn
�~tnRe

{
kII;znnI

k0n
2
II cos �

}
: (2.56b)
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Diffraction efficiencies have a nice property. Because of conservation of energy it holds that
if the diffraction efficiencies of all reflected and transmitted orders are summed, the result
is 1 if all materials have a real-valued refractive index and is smaller than 1 if at least one
of the materials has a complex-valued refractive index.

2.5 Propagating and evanescent diffraction orders

In Section 2.1 the grating equation has been derived, which provides a way to find the
angle for the reflected diffraction orders. However, this equation is only given for planar
diffraction. Although it is possible to extend this grating equation for conical diffraction,
we will treat it here from a different point of view.

When nI is a real number, it holds from its definition (2.25) that kI;zn is either real or
purely imaginary. When kI;zn is purely imaginary, �rn is equal to 0. We speak of evanescent
diffraction orders in that case. If kI;zn is real, we speak of propagating diffraction orders.
Let us find that n for which kI;zn = 0. Because of the square root in (2.30) consider k2I;zn
instead.

k2I;zn = k20n
2
I � k2xn � k2y

= k20
(
n2I � (nI sin � cos�� n(�0=�))2 � (nI sin � sin�)

2
) � 0: (2.57)

Since this is a quadratic equation with argument n, the solution after some goniometric
simplifications is given by

n = �nI �
�0

(
sin � cos��

√
1� sin2 � sin2 �

)
: (2.58)

Since n = 0 always results in a real-valued kI;zn, the interval where kI;zn is real-valued and
therefore a non-zero diffraction efficiency for the reflected field is obtained, is given by

nI
�

�0

(
sin � cos��

√
1� sin2 � sin2 �

)
� n

� nI
�

�0

(
sin � cos�+

√
1� sin2 � sin2 �

)
: (2.59)

For planar diffraction (� = 0) this inequality is reduced to:

nI
�

�0
(�1� sin �) � n � nI

�

�0
(1� sin �) : (2.60)

In conclusion, the propagating diffraction orders must satisfy (2.59) in case of conical
diffraction and (2.60) in case of planar diffraction.



Chapter 3

RCWA

In 1981 the rigorous coupled-wave analysis (RCWA) was introduced [35] to compute a
solution of Maxwell’s equations for diffraction by grating structures. This method uses the
fact that the field above and below the grating can be described by the Rayleigh expansion
as derived in Section 2.3. To find the reflected and transmitted field amplitudes of these
Rayleigh expansions, an expression should be found for the field inside the grating. Since the
tangential field components are continuous, the field inside the grating can be connected
to the Rayleigh expansions such that we can find the field amplitudes. The main problem
inside the grating is that the refractive index depends on both x and z , while the periodicity
of the grating is only in the x-direction. Applying Fourier techniques to obtain an algebraic
system is not possible unless we eliminate this z-dependence. A possible way to eliminate
this direction is to divide the grating domain into thin horizontal layers in which the per-
mittivity can be assumed piecewise constant. Expansions in Fourier series of both the field
and the permittivity lead to an algebraic eigenvalue system for every layer. Connecting the
solutions of the fields at the layer interfaces by means of the continuity of the tangential
field components ensures that a linear system can be found with only the reflected and
transmitted field amplitudes as unknowns. Solving this system directly appears to be un-
stable for thick layers and it took until 1995 to find a stable way of solving this system by
the so-called enhanced transmittance matrix approach [36, 37].

Since the introduction of the RCWA algorithm, questions have arisen how many terms
or harmonics in the Fourier series should be taken into account and how many layers are
required to approximate the geometry sufficiently accurate. In 1996 a correction was intro-
duced to handle products of truncated series [25]. This improved the convergence of the
solution for TM polarization with respect to the number of harmonics. Nowadays RCWA is
an easy to use algorithm, which is applicable to a wide range of multi-layer grating structures.

In this chapter the RCWA algorithm will be discussed for both planar and conical diffraction.
The convergence issues are treated at the end of this chapter.
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3.1 The key feature of RCWA

To obtain algebraic eigenvalue systems, the dependence of all other directions than the
periodic x-direction should be removed. RCWA removes this dependency by introducing K
horizontal layers in the grating domain (see Figure 3.1) such that the relative permittivity ~"r

inside such a layer is approximated by a piecewise constant function of x only. This implies
that the field is computed for a staircase approximation of the grating profile. In general,
the permittivity of an arbitrary grating is given by

~"ri (x) =


~"ri ;1; ��=2 � x � ti1;

~"ri ;2; ti1 � x � ti2;
...

...
~"ri ;M ; ti(M�1) � x � �=2;

(3.1)

for ��=2 < ti1 < ::: < ti(M�1) < �=2, where tik is the kth position of a material transition
inside layer i and M is the number of blocks inside a layer. The elimination of the z-
coordinate ensures that the expansions in Fourier series of the relative permittivity and its

Figure 3.1: The definition of the RCWA shape parameters.
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reciprocal have constant coefficients, viz.

~"ri (x) =
∑
n

�i ;n exp[i
2�

�
nx ]; �i ;n =

1

�

∫ �=2

��=2

~"ri (x) exp[�i
2�

�
nx ]dx; (3.2a)

1

~"ri (x)
=
∑
n

�i ;n exp[i
2�

�
nx ]; �i ;n =

1

�

∫ �=2

��=2

1

~"ri (x)
exp[�i 2�

�
nx ]dx: (3.2b)

Note that the sum over n can represent an infinite sum in theory, but in practice it will
be a finite sum. Because of the piecewise constant approximation of the permittivity the
convergence of these Fourier series will be similar to that of the series 1=n.

Also the electric and magnetic field can be defined for every layer, viz.

e(x) = ei(x) and h(x) = hi(x); (3.3)

where ��=2 � x � �=2, y 2 R and Di�1 < z < Di and i = 2; : : : ; K + 1. The layer
thickness of layer i is denoted by Di . Note that the fields still depend on all coordinates.
In contrast to the permittivity, the fields are not periodic, but pseudo-periodic as indicated
in Section 2.2.3. This implies that we can perform an expansion in a Fourier series with an
additional phase factor in the x-direction. Because the grating structure is independent of
the y -direction, the incident field ensures a phase factor in this direction. As a result the
fields can be described by

ei(x; y ; z) =
∑
n

si ;n(z) exp[�i(kxnx + kyy)]; (3.4a)

hi(x; y ; z) = �i
√
"0=�0

∑
n

ui ;n(z) exp[�i(kxnx + kyy)]; (3.4b)

where si ;n and ui ;n are called the electric or magnetic field components. The correction
factor for the magnetic field is from Maxwell’s equations.

Before we discuss how the RCWA algorithm finds the field amplitudes, a mathematical
issue has to be addressed first. When dealing with finite series, special attention has to be
given to multiplications. This issue will be discussed in the next section.

3.2 General theory of truncating Fourier series

Any periodic function can be expanded in a Fourier series, resulting in an (infinite) sum of
modes. In practice only finite sums can be handled and special care should be taken when
products occur between two truncated Fourier series. Let us introduce two definitions.

Definition 3.1 Two piecewise continuous functions f and g are said to have a pair of
concurrent jump discontinuities at x0 if

lim
x#x0

f (x) 6= lim
x"x0

f (x) and lim
x#x0

g(x) 6= lim
x"x0

g(x): (3.5)
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Definition 3.2 If two functions f and g have a pair of concurrent jump discontinuities, the
jumps are said to be complementary if

lim
x"x0

f (x)g(x) = lim
x#x0

f (x)g(x): (3.6)

The use of Laurent’s rule, which is always valid when dealing with infinite series, is not
always the best choice for truncated Fourier series as indicated by the following rules [25].

Property 3.3 If f or g has no concurrent jump discontinuities, then h(x) = f (x)g(x) can
be expanded in a Fourier series by Laurent’s rule, viz.

hn = lim
N!1

N∑
m=�N

fn�mgm; (3.7)

where fn, gn and hn are the Fourier coefficients of f , g and h, respectively.

Property 3.4 If all the concurrent jump discontinuities of f and g are pairwise complemen-
tary, then h(x) = f (x)g(x) can be expanded in a Fourier series by the inverse rule, viz.

hn = lim
N!1

N∑
m=�N

~fnmgm; (3.8)

where ~fnm is the (n;m)th element of the inverse matrix of the Toeplitz matrix where the
(n;m)th element equals fn�m, provided that the inverse matrix exists.

Property 3.5 If f and g have concurrent but noncomplementary jump discontinuities, then
h(x) = f (x)g(x) cannot be expanded in a Fourier series by either Laurent’s rule or the
inverse rule.

The proof of these rules can be found in [28]. These rules play a crucial role in the RCWA
algorithm as will be shown in the next section.

3.3 The field inside a layer

In Section 2.2.1 relations were derived to describe the electric and magnetic field for both
planar and conical diffraction. This section discusses the substitution of the Fourier series
of the fields and material properties into relations (2.11) or (2.13), for conical or planar
diffraction, respectively. The way to derive an algebraic eigensystem for every layer differs
significantly for both cases. Therefore we will treat them separately.
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3.3.1 Planar diffraction: TE polarization

For TE polarization the relation for the y -component of the electric field is given by (2.13a).
Let us introduce the slicing of the grating domain, which means that (3.1) is used for the
permittivity and (3.3) for the electric field. As a result the governing equation for the
electric field becomes

@2

@x2
ei ;y (x; z) +

@2

@z2
ei ;y (x; z) = �k20 ~"ri (x)ei ;y (x; z); (3.9)

for i = 2; : : : ; K+1. The right-hand side of this relation contains a product of two functions
of which only the relative permittivity is a discontinuous function. Thus, no concurrent jump
discontinuities occur and we can apply Laurent’s rule to the finite Fourier series of the y -
component of the electric field (3.4a) and the relative permittivity, viz.

N∑
n=�N

d2

dz2
si ;n(z) exp[�ikxnx ]

= �k20
N∑

n=�N

N∑
m=�N

�i ;n�msi ;m exp[�ikxnx ] +
N∑

n=�N

k2xnsi ;n(z) exp[�ikxnx ]: (3.10)

Since (3.10) holds for all x in ��=2 � x � �=2, it follows that

d2

dz2
si ;n(z) = �k20

N∑
m=�N

�i ;n�msi ;m(z) + k
2
xnsi ;n(z); (3.11)

for �N � n � N. The relation above can be read as a matrix relation of dimension
(2N +1)� (2N +1) for the unknown electric field coefficients si ;n collected in a (2N +1)-
vector si(z). Introducing a new variable z 0 := k0z and dividing all terms by k20 results in
the following matrix equation

d2

dz 02
si(z

0) =AAAisi(z
0); (3.12)

with the auxiliary matrix

AAAi := K2
x � Ei ; (3.13)

where Kx is a diagonal matrix with the entries kxn=k0 on its diagonal for �N � n � N and
Ei is a Toeplitz matrix where the (n;m)th entry equals �i ;n�m for �N � n;m � N.

Relation (3.12) is a system of second-order differential equations with constant coefficients.
In Appendix A.2.2 we derive the solution of such a second-order differential equation. As a
result, the field component vector si ;n(z) is given by

si(z) =

2N+1∑
n=1

wi ;n

(
c+i ;n exp[�k0qi ;n(z �Di�1)] + c

�
i ;n exp[k0qi ;n(z �Di)]

)
; (3.14)
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where qi ;n is the square root with a positive real part of the nth eigenvalue of AAAi and wi ;n

is its nth eigenvector . The field constants c+i ;n and c�i ;n are still unknown. Let us define
matrix Wi as the matrix with the eigenvectors wi ;n as its columns and Qi as a diagonal
matrix with the square roots qi ;n on its diagonal. When all field constants c+i ;n and c�i ;n are
collected in the vectors c+i and c�i , respectively, (3.14) can be written as

si(z) = Wi

(
exp[�k0Qi(z �Di�1)]c

+
i + exp[k0Qi(z �Di)]c

�
i

)
: (3.15)

Thus, the problem of finding the field inside a layer has been reduced to finding the field
constants.

3.3.2 Planar diffraction: TM polarization

For TM polarization, relation (2.13b) holds for the y -component of the magnetic field.
After the substitution of the slicing of the grating domain, which means that (3.1) is used
for the permittivity and (3.3) for the magnetic field, the governing equation for the magnetic
field becomes

@2

@z2
hi ;y (x; z) = �k20 ~"ri (x)hi ;y (x; z)� ~"ri (x)

@

@x

(
1

~"ri (x)

@

@x
hi ;y (x; z)

)
; (3.16)

for i = 2; : : : ; K + 1. When we introduce the Fourier series, we have to take care of the
theory of products of truncated series as given in Section 3.2. On the right-hand side of
(3.16) some discontinuous quantities appear such as ~"ri and (@hi ;y )=(@x). Since Maxwell’s
equation (2.8f) says that

ei ;z(x; z) =
1

i!"0~"
r
i (x)

@

@x
hi ;y (x; z); (3.17)

and since ei ;z is continuous, we have complementary concurrent jump discontinuities for the
reciprocal of the permittivity and the partial derivative of the y -component of the magnetic
field with respect to x . Also @2hi ;y=@z2 is continuous, which implies that the entire right-
hand side of (3.16) has concurrent jump discontinuities that are complementary. Applying
the inverse rule (3.8) twice to (3.16) gives

N∑
n=�N

d2

dz2
ui ;n(z) exp[�ikxnx ]

=

N∑
n=�N

N∑
m=�N

~�i ;nm

(
�k20ui ;m(z)+

N∑
r=�N

kxm~�i ;mrkxrui ;r (z)

)
exp[�ikxnx ]; (3.18)

where ~�i ;nm is the (n;m)th element of the inverse matrix of Ei with entries (Ei)nm = �i ;n�m
and ~�i ;nm is similarly defined as the (n;m)th element of the inverse matrix of Pi with entries
(Pi)nm = �i ;n�m. Since (3.18) holds for ��=2 < x < �=2, we have

d2

dz2
ui ;n(z) =

N∑
m=�N

~�i ;nm

(
�k20ui ;m(z) +

N∑
r=�N

kxm~�i ;mrkxrui ;r (z)

)
; (3.19)
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for �N � n � N. Similar to the TE polarization case, the relation above can be read as a
matrix relation of dimension (2N+1)�(2N+1) for the unknown magnetic field coefficients
ui ;n(z) collected in a (2N+1)-vector ui(z). Introducing a new variable z 0 := k0z and dividing
all terms by k20 gives the following matrix relation

d2

dz 02
ui(z

0) = P�1
i BBBiui(z

0); (3.20)

with the auxiliary matrix

BBBi :=
(
KxE

�1
i Kx � I

)
: (3.21)

Similar to TE polarization, the field component vector ui ;n(z) can be found by using the
method described in Appendix A.2.2 to obtain the solution of a second-order differential
equation with constant coefficients, viz.

ui(z) =

2N+1∑
n=1

wi ;n

(
c+i ;n exp[�k0qi ;n(z �Di�1)] + c

�
i ;n exp[k0qi ;n(z �Di)]

)
; (3.22)

where qi ;n is the square root with a positive real part of the nth eigenvalue and wi ;n is the
nth eigenvector of P�1

i BBBi . The field constants c+i ;n and c�i ;n are still unknown. Similarly to
TE polarization (3.22) can be written as a matrix relation, viz.

ui(z) = Wi

(
exp[�k0Qi(z �Di�1)]c

+
i + exp[k0Qi(z �Di)]c

�1
i

)
: (3.23)

The problem of finding the field inside a layer has been reduced to finding the field constants.

3.3.3 Conical diffraction

The decoupling of the electric and magnetic field is not as straightforward as in planar
diffraction. Only after the introduction of the slicing of the grating domain we are able to
find two relations for only one component of the electric and magnetic field. When (3.1) is
used for the permittivity and (3.3) for the electromagnetic fields, (2.11) give two decoupled
relations for the x-components of the electric and magnetic field. In other words,

@2

@x2
ei ;x(x; y ; z) +

@2

@y2
ei ;x(x; y ; z) +

@2

@z2
ei ;x(x; y ; z)

= �k20 ~"ri (x)ei ;x(x; y ; z)�
@

@x

(
1

~"ri (x)

@

@x
~"ri (x)ei ;x(x; y ; z)

)
; (3.24a)

@2

@x2
hi ;x(x; y ; z) +

@2

@y2
hi ;x(x; y ; z) +

@2

@z2
hi ;x(x; y ; z)

= �k20 ~"ri (x)hi ;x(x; y ; z); (3.24b)

for i = 2; : : : ; K+1. The relations of the y - or z-components of the electric and magnetic
field are still coupled to other components. The first relation has to be reorganized to
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ensure that we handle products of truncated Fourier series in a correct way. Thus,

@2

@z2
ei ;x(x; y ; z) = � @2

@y2
ei ;x(x; y ; z)� k20 ~"ri (x)ei ;x(x; y ; z)

+
@

@x

(
1

~"ri (x)

@

@x
(~"ri (x)ei ;x(x; y ; z))

)
: (3.25)

The right-hand side of the relation above contains complementary concurrent jump discon-
tinuities. That ~"ri (x)ei ;x(x; y ; z) is continuous, is a direct consequence of using Maxwell’s
equation (2.8d). To see that also (1=~"ri (x))(@=@x)

(
~"ri (x)ei ;x(x; y ; z)

)
is continuous, first

substitute (2.8d) and then use (2.8e) and (2.8f) to show that

1

~"ri (x)

@

@x
(~"ri (x)ei ;x(x; y ; z)) =

@ei ;y (x; y ; z)

@y
+
@ei ;z(x; y ; z)

@z
: (3.26)

Since the right-hand side of this relation consists only of continuous functions, the left-hand
side has a complementary pair of discontinuities. To conclude, we can apply the inverse rule
(3.8) to the products of the Fourier series. Similarly as for planar diffraction, introduce ~�i ;nm
as the (n;m)th elements of the inverse matrix of Ei and ~�i ;nm as the (n;m)th elements of
the inverse matrix of Pi . Then (3.25) becomes

N∑
n=�N

d2

dz2
si ;xn(z) exp[�i(kxnx + kyy)]

= k2y

N∑
n=�N

si ;xn(x; y ; z) exp[�i(kxnx + kyy)]

� k20
N∑

n=�N

N∑
m=�N

~�i ;nmsi ;xm(z) exp[�i(kxnx + kyy)]

�
N∑

n=�N

N∑
m=�N

N∑
r=�N

kxn~�i ;nmkxm~�i ;mr si ;xr exp[�i(kxnx + kyy)]: (3.27)

Similar to planar diffraction, the relation above can be read as a matrix relation of dimension
(2N+1)�(2N+1) for the unknown electric field coefficients si ;xn(z) collected in a (2N+1)-
vector si ;x(z). Introducing a new variable z 0 := k0z and dividing all terms by k20 gives the
following matrix equation

d2

dz 02
si ;x(z

0) = CCC isi ;x(z 0); (3.28)

with auxiliary matrix

CCC i := K2
y +BBBiP

�1
i ; (3.29)

where BBBi is given by (3.21) and Ky = (ky=k0)I.
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Relation (3.24b) contains a product of two functions where only one function is discontin-
uous. This implies that Laurent’s rule can be applied to all products.

N∑
n=�N

ui ;xn(z) exp[�i(kxnx + kyy)]

=

N∑
n=�N

k2xnui ;xn(z) exp[�i(kxnx + kyy)] + k2y
N∑

n=�N

ui ;xn(z) exp[�i(kxnx + kyy)]

� k20
N∑

n=�N

N∑
m=�N

�i ;nmui ;xm(z) exp[�i(kxnx + kyy)]: (3.30)

Introduce a (2N + 1)-vector ui ;x with ui ;xn as its entries for �N � n � N. Let z 0 := k0z

and divide (3.30) by k20 to obtain

d2

dz 02
ui ;x(z

0) = DDDiui ;x(z
0); (3.31)

with auxiliary matrix

DDDi :=
(
K2

y +AAAi

)
: (3.32)

Matrix AAAi is defined in (3.13). Like for planar diffraction, the field component vectors
si ;x(z) and ui ;x(z) can be found by using Appendix A.2.2, where we derive a form of the
solution of a second-order differential equation with constant coefficients, viz.

si ;x(z) =

N∑
n=�N

w2;i ;n

(
c+2;i ;n exp[�k0q2;i ;n(z �Di�1)]

+c�2;i ;n exp[k0q2;i ;n(z �Di)]
)
; (3.33)

ui ;x(z) =

N∑
n=�N

w1;i ;n

(
c+1;i ;n exp[�k0q1;i ;n(z �Di�1)]

+c�1;i ;n exp[k0q1;i ;n(z �Di)]
)
; (3.34)

where qi ;1;n and qi ;2;n are the square roots with a positive real part of the nth eigenvalue
and w1;i ;n and w2;i ;n are the nth eigenvectors of CCC i and DDDi , which are defined by (3.29) and
(3.32), respectively. The field constants c+1;i ;n, c

�
1;i ;n, c

+
2;i ;n and c�2;i ;n are still unknown. Let

all eigenvectors w1;i ;n and w2;i ;n be collected in the matrices W1;i and W2;i , respectively,
and all eigenvalues q1;i ;n and q2;i ;n be the diagonal entries of Q1;i and Q2;i , respectively.
When the unknown field constants c+1;i ;n, c

�
1;i ;n, c

+
2;i ;n and c�2;i ;n are collected in vectors c+1;i ,

c�1;i , c
+
2;i and c�2;i , respectively, the field components si ;x and ui ;x can be given as

si ;x(z) = W2;i

(
exp[�k0Q2;i(z �Di�1)]c

+
2;i + exp[k0Q2;i(z �Di)]c

�
2;i

)
; (3.35)

ui ;x(z) = W1;i

(
exp[�k0Q1;i(z �Di�1)]c

+
1;i + exp[k0Q1;i(z �Di)]c

�
1;i

)
: (3.36)

This concludes the description of the fields inside a layer. The field constants remain to be
determined and for this purpose we will use boundary conditions at the interface as will be
discussed in the next section.
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3.4 Boundary conditions

To connect the solutions of the fields inside every layer to each other, boundary conditions
are required. From the boundary conditions discussed in Section 2.2.3 we have not yet
used the continuity of the tangential field components. When the layers are connected, the
tangential field components are the x- and y -components of both the electric and magnetic
field. Thus,

ei ;x(x; y ;Di) = ei+1;x(x; y ;Di); (3.37a)

ei ;y (x; y ;Di) = ei+1;y (x; y ;Di); (3.37b)

hi ;x(x; y ;Di) = hi+1;x(x; y ;Di); (3.37c)

hi ;y (x; y ;Di) = hi+1;y (x; y ;Di); (3.37d)

for i = 1; : : : ; K+1. Because the fields above and below the grating structure are described
by their Rayleigh expansion, we have to reformulate the boundary conditions in terms of field
amplitudes (from the Rayleigh expansions) and the field component (from the expansions
of the fields inside a layer). We will again make a distinction between planar and conical
diffraction.

3.4.1 Planar diffraction

For planar diffraction only the y -component of the electric or magnetic field is present.
From Maxwell’s equations (2.8b) and (2.8e) we can find the x-component of the magnetic
field when the y -component of the electric field is present and the x-component of the
electric field if we have a y -component of the magnetic field, viz.

hi ;x(x; z) = � i

!�0

@

@z
ei ;y (x; z); (3.38a)

ei ;x(x; z) =
i

!~"i(x)

@

@z
hi ;y (x; z): (3.38b)

For TE polarization only ei ;y and hi ;x are present and therefore boundary conditions (3.37b)
and (3.37c) are the only relevant ones. Since we have only the field components si ;n available
that belong to the y -component of the electric field, we use (3.38a) to eliminate the x-
component of the magnetic field from boundary condition (3.37c). As a result, boundary
conditions (3.37b) and (3.37c) become

ei ;y (x;Di) = ei+1;y (x;Di); (3.39a)

@

@z
ei ;y (x;Di) =

@

@z
ei+1;y (x;Di): (3.39b)

Since for TE polarization the y -component of the electric field has been expressed either
by the Rayleigh expansion in the upper and lower halfspace or by its expansion in Fourier
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series inside a layer, we can express the boundary equations (3.39) in terms of the field
amplitudes and field components, viz.

d0 + r = s2(0); (3.40a)

�id0nI cos � + iYIr =
1

k0

d

dz
s2(0); (3.40b)

si(Di) = si+1(Di); (3.40c)

1

k0

d

dz
si(Di) =

1

k0

d

dz
si+1(Di); (3.40d)

sK+1(D) = t; (3.40e)

1

k0

d

dz
sK+1(D) = �iYIIt; (3.40f)

where YI and YII are diagonal matrices with kI;zn=k0 and kII;zn=k0 on its diagonal for
�N � n � N. The vector d0 is an all-zero vector of size (2N + 1) except for entry
N + 1 which is equal to 1.

Similarly, for TM polarization only solutions of the field components ui ;n are available that
belong to the y -component of the magnetic field. Therefore, the x-component of the elec-
tric field should be removed from boundary condition (3.37a). This is done by substituting
(3.38b) in this boundary condition. Together with the boundary condition (3.37d) they are
written as

hi ;y (x;Di) = hi+1;y (x;Di); (3.41a)

1

~"ri (x)

@

@z
hi ;y (x;Di) =

1

~"ri+1(x)

@

@z
hi+1;y (x;Di): (3.41b)

Note that ~"ri is a discontinuous function in x , but @hi ;y=@z is not. Therefore Laurent’s rule
(3.7) can be applied here. Like for TE polarization, we can express the y -component of
the magnetic field by either its Rayleigh expansion or its Fourier series. As a result, we can
write boundary equations (3.41) in terms of the field amplitudes and field components, viz.

d0 + r = u2(0); (3.42a)

�id0 cos �
nI

+ iZIr =
1

k0
P2

d

dz
u2(0); (3.42b)

ui(Di) = ui+1(Di); (3.42c)

1

k0
Pi
d

dz
ui(Di) =

1

k0
Pi+1

d

dz
ui+1(Di); (3.42d)
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uK+1(D) = t; (3.42e)

1

k0
PK+1

d

dz
uK+1(D) = �iZIIt; (3.42f)

where ZI and ZII are diagonal matrices with kI;zn=k0n2I and kII;zn=k0n2II on their diagonal for
�N � n � N.

3.4.2 Conical diffraction

To implement the boundary conditions (3.37b) and (3.37d) we have to find an expression
for the y -components of both electric and magnetic field, ei ;y and hi ;y , respectively. As
stated before, Maxwell’s equations (2.8c) and (2.8f) enable us to remove the z-component
of the electric and magnetic field. As a result Maxwell’s equations (2.8b) and (2.8e) become

@

@z
ei ;x(x; y ; z) = �i!�0hi ;y (x; y ; z)

+
i

!

@

@x

(
1

~"i(x)

@

@y
hi ;x(x; y ; z)� 1

~"i(x)

@

@x
hi ;y (x; y ; z)

)
; (3.43a)

@

@z
hi ;x(x; y ; z) = i!~"i(x)ei ;y (x; y ; z)

+
i

!�0

@

@x

(
@

@x
ei ;y (x; y ; z)� @

@y
ei ;x(x; y ; z)

)
; (3.43b)

which are two coupled equations with only the x- and y -components of the electric and
magnetic fields. As can be seen it is not possible to isolate the x- or y -components of the
electric and magnetic field as we did in the planar diffraction case. This implies that all
four boundary conditions (3.37) remain in their original form. Substituting the expansions in
Fourier series for the x- and y -components of the electric and magnetic field into (3.37) and
collecting all field components in the (2N + 1)-vectors si ;x , si ;y , ui ;x and ui ;y , respectively,
gives

d0 (cos cos � cos�� sin sin�) + rx = s2;x(0); (3.44a)

d0 (cos cos � sin�+ sin cos�) + ry = s2;y (0); (3.44b)

id0nI (� cos sin�� sin cos � cos�) + iKyrz + iYIry = u2;x(0); (3.44c)

id0nI (cos cos�� sin cos � sin�)� iYIrx � iKxrz = u2;y (0); (3.44d)

si ;x(Di) = si+1;x(Di); (3.44e)

si ;y (Di) = si+1;y (Di); (3.44f)

ui ;x(Di) = ui+1;x(Di); (3.44g)

ui ;y (Di) = ui+1;y (Di); (3.44h)
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sK+1;x(D) = tx ; (3.44i)

sK+1;y (D) = ty ; (3.44j)

uK+1;x(D) = iKytz � iYIIty ; (3.44k)

uK+1;y (D) = iYIItx � iKxtz : (3.44l)

The field components si ;yn and ui ;yn can be computed from (3.43a) and (3.43b) after
substitution of the Fourier series. The first equation (3.43a) gives

N∑
n=�N

d

dz
si ;xn(z) exp[�i(kxnx + kyy)]

= �k0
N∑

n=�N

ui ;yn(z) exp[�i(kxnx + kyy)]

� 1

k0

(
ky

N∑
n=�N

N∑
m=�N

kxn~�i ;nmui ;xm exp[�i(kxnx + kyy)]

+

N∑
n=�N

N∑
m=�N

kxn~�i ;nmkxmui ;ym exp[�i(kxnx + kyy)]
)
; (3.45)

where the inverse rule (3.8) has been used, since the right-hand side of (3.43a) contains
several complementary concurrent jump discontinuities. Since (3.45) holds for ��=2 � x �
�=2 and y 2 R, it holds that

d

dz
si ;xn(z) = �k0ui ;yn(z)� ky

k0

N∑
m=�N

kxn~�i ;nmui ;xm

+
1

k0

N∑
m=�N

kxn~�i ;nmkxmui ;ym; (3.46)

for �N � n � N. When this relation is written in matrix form and rearranged to obtain a
matrix relation for the magnetic field component vector ui ;y , we have

ui ;y (z) = KyBBB�1
i KxE

�1
i ui ;x(z) +

1

k0
BBB�1
i

d

dz
si ;x(z): (3.47)

In a similar way we can derive a matrix relation for the electric field components si ;y .
Substitute the expansions in Fourier series into (3.43b) to obtain

N∑
n=�N

d

dz
ui ;xn(z) exp[�i(kxnx + kyy)]

= �k0
N∑

n=�N

N∑
m=�N

�i ;n�msi ;ym(z) exp[�i(kxnx + kyy)]

+
1

k0

N∑
n=�N

(
k2xnsi ;yn � kxnsi ;xn

)
exp[�i(kxnx + kyy)]: (3.48)
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Note that (3.43b) contains no concurrent jump discontinuities. Therefore, Laurent’s rule
(3.7) has been applied. Since (3.48) holds for ��=2 � x � �=2 and y 2 R, we have

d

dz
ui ;xn(z) = �k0

N∑
m=�N

�i ;n�msi ;ym(z) +
1

k0

(
k2xnsi ;yn � kykxnsi ;xm

)
; (3.49)

for �N � n � N. When this relation is written in matrix form and rearranged to obtain a
matrix relation for the electric field component vector si ;y , we have

si ;y (z) =
1

k0
AAA�1

i

d

dz
ui ;x(z) +KyAAA�1

i Kxsi ;x(z): (3.50)

The substitution of (3.47) and (3.50) into the boundary conditions (3.44) leaves us with
only 4N + 4 unknown vectors and 4N + 4 matrix relations.

3.5 Final system

The field components that are found in Section 3.3 and the boundary conditions derived in
the previous section are used to obtain a system of equations to find the field amplitudes.
For planar diffraction, we use the solution of si , given by (3.15), and the solution of ui ,
given by (3.23), in the boundary conditions (3.40) and (3.42), respectively. Let us introduce
the matrix Vi for every layer i = 2; : : : ; K + 1 as

Vi :=

{
WiQi for TE polarization;

PiWiQi for TM polarization;
(3.51)

and define matrix Xi as

Xi := exp[�k0Qidi ]; (3.52)

with di the thickness of layer i . The boundary conditions (3.40) and (3.42) can now be
written in a unified manner as

for z = 0

d +

[
I

M

]
r =

[
W2 W2X2

V2 �V2X2

] [
c+2
c�2

]
; (3.53a)

for i = 3; : : : ; K + 1 and z = Di�1[
Wi�1Xi�1 Wi�1

Vi�1Xi�1 �Vi�1

] [
c+i�1

c�i�1

]
=

[
Wi WiXi

Vi �ViXi

] [
c+i
c�i

]
; (3.53b)

for z = D[
WK+1XK+1 WK+1

VK+1XK+1 �VK+1

] [
c+K+1

c�K+1

]
=

[
I

N

]
t; (3.53c)
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where the vector d and matrices M and N depend on the kind of diffraction. For planar
diffraction with TE polarization they are given by

d :=

[
d0

id0nI cos �

]
; (3.54a)

M := �YI; (3.54b)

N := YII; (3.54c)

while for planar diffraction with TM polarization they are defined as

d :=

[
d0

id0
cos �
nI

]
; (3.55a)

M := �ZI; (3.55b)

N := ZII: (3.55c)

For conical diffraction, we have the solutions of si ;x , given by (3.35), and ui ;x , given by
(3.36). In Section 3.4.2 we derived expressions of si ;y and ui ;y in terms of si ;x and ui ;x .
Therefore, we can also express si ;y and ui ;y in terms of the field constants by using (3.47)
and (3.50), viz.

ui ;y (z) = KyBBB�1
i KxE

�1
i W1;i

� (exp[�k0Q1;i(z�Di�1)]c
+
1;i + exp[k0Q1;i(z�Di)]c

�
1;i

)
�BBB�1

i W2;iQ2;i

� (exp[�k0Q2;i(z�Di�1)]c
+
2;i�exp[k0Q2;i(z�Di)]c

�
2;i

)
; (3.56)

si ;y (z) = �AAA�1
i W1;iQ1;i

� (exp[�k0Q1;i(z�Di�1)]c
+
1;i � exp[k0Q1;i(z�Di)]c

�
1;i

)
+KyAAA�1

i KxW2;iQ2;i

� (exp[�k0Q2;i(z�Di�1)]c
+
2;i + exp[k0Q2;i(z�Di)]c

�
2;i

)
: (3.57)

Let us introduce some matrices to keep the notation short after substitution of the latter
relations in the boundary conditions (3.44). First introduce matrices X1;i and X2;i as

X1;i := exp[�k0Q1;idi ]; (3.58a)

X2;i := exp[�k0Q2;idi ]; (3.58b)

and combine them in one overall matrix Xi as

Xi :=

[
X1;i 0

0 X2;i

]
: (3.59)

Secondly, define matrices Wi and Vi as

Wi :=

[
0 W2;i

V11;i V12;i

]
; (3.60)

Vi := �
[
W1;i 0

V21;i V22;i

]
: (3.61)
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with

V11;i :=AAA�1
i W1;iQ1;i ; (3.62a)

V12;i := KyAAA�1
i KxW2;i ; (3.62b)

V21;i := KyBBB�1
i KxE

�1
i W1;i ; (3.62c)

V22;i := BBB�1
i W2;iQ2;i ; (3.62d)

where the definitions of V11;i , V12;i , V21;i and V22;i are direct consequences of relations
(3.56) and (3.57). Finally, let us define vector d and matrices M and N as

d :=


d0 (cos cos � cos�� sin sin�)

d0 (cos cos � sin�+ sin cos�)

id0nI (� cos sin�� sin cos � cos�)

id0nI (cos cos�� sin cos � sin�)

 ; (3.63a)

M :=

[
KyY

�1
I Kx

(
YI +KyY

�1
I Ky

)
� (YI +KxY

�1
I Kx

) �KxY
�1
I Ky

]
; (3.63b)

N :=

[ �KyY
�1
II Kx � (YII +KyY

�1
II Ky

)(
YII +KxY

�1
II Kx

)
KxY

�1
II Ky

]
: (3.63c)

The matrices M and N are the result of eliminating rz and tz by means of (2.39) and
(2.40) from the boundary conditions for conical diffraction. When the field coefficients and
the field amplitudes are collected in

c+i :=

[�c+1;i
c+2;i

]
; c�i :=

[
c�1;i
c�2;i

]
; r :=

[
rx
ry

]
; t :=

[
tx
ty

]
; (3.64)

the boundary conditions (3.44) give the K+1 systems given by (3.53) such that we unified
the notation for planar and conical diffraction and we can discuss the solution procedure
for both diffraction cases simultaneously.

From the K + 1 systems given by (3.53) we can eliminate the vectors c+i and c�i for
i = 2; : : : ; K + 1 such that we have sufficiently many equations for the two unknown
vectors consisting of the reflected and transmitted field amplitudes, r and t, respectively.

d +

[
I

M

]
r =

K+1∏
i=2

([
Wi WiXi

Vi �ViXi

] [
WiXi Wi

ViXi �Vi

]�1
)[

I

N

]
t: (3.65)

Note that, although the notation for planar and conical diffraction are similar, the matrices
are twice as large for conical diffraction as for planar diffraction. Unfortunately, obtaining
a direct solution of r and t is unstable for thick layers. The reason for the instability can
be found by studying the matrix Xi , which is the only matrix where the layer thickness
appears. Although the inverse matrix of Xi can be computed analytically, round-off errors
cause numerical instabilities. Therefore, taking the inverse of this matrix should be avoided
and this can be achieved by the enhanced transmittance matrix approach which is discussed
in the next section.
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3.6 Enhanced transmittance matrix approach

To avoid the usage of X�1
i , the enhanced transmittance matrix approach has been developed

which uses a well chosen substitution of the transmitted field amplitudes t, namely

ti+1 := A�1
i Xiti for i = 2; :::; K + 2; (3.66)

where tK+2 := t. After the substitution of (3.66) in (3.65), we can define matrices AK+1,
BK+1, FK+1 and GK+1, viz.

d +

[
I

M

]
r =

K∏
i=2

([
Wi WiXi

Vi �ViXi

] [
X�1
i 0

0 I

] [
Wi Wi

Vi �Vi

]�1
)

�
([

WK+1 WK+1XK+1

VK+1 �VK+1XK+1

] [
X�1
K+1 0

0 I

] [
WK+1 WK+1

VK+1 �VK+1

]�1
)[

FK+2

GK+2

]
︸ ︷︷ ︸

=:

AK+1

BK+1



A�1
K+1XK+1

︸ ︷︷ ︸
=:

FK+1

GK+1



tK+1; (3.67)

where

FK+2 := I and GK+2 := N: (3.68)

In the same manner matrices Ai , Bi , Fi and Gi can be computed for all layers i = 2; : : : ; K+

1.

Ai =
1

2

(
W�1

i Fi+1 + V�1
i Gi+1

)
; (3.69a)

Bi =
1

2

(
W�1

i Fi+1 � V�1
i Gi+1

)
; (3.69b)

Fi = Wi

(
X�1
i Ai + XiBi

)
A�1
i Xi = Wi

(
I+ XiBiA

�1
i Xi

)
; (3.69c)

Gi = Vi

(
X�1
i Ai � XiBi

)
A�1
i Xi = Vi

(
I� XiBiA

�1
i Xi

)
: (3.69d)

As can be seen, the computations of these four matrices do not involve X�1
i , but reduce

(3.65) at each substitution of (3.66). In other words,

d +

[
I

M

]
r =

k∏
i=2

([
Wi WiXi

Vi �ViXi

] [
WiXi Wi

ViXi �Vi

]�1
)[

Fk+1

Gk+1

]
tk+1; (3.70)

and after the substitution of (3.66) for all i = 2; : : : ; K + 1 in (3.65) the final system we
have to solve is

d +

[
I

M

]
r =

[
F2

G2

]
t2: (3.71)
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Finally, we can find the reflected field amplitudes and the auxiliary t2 when we solve the
following system[ �I F2

�M G2

] [
r

t2

]
= d: (3.72)

If the transmitted field amplitudes are important to know, we can find them by using (3.66)
recursively, viz.

t = A�1
K+1XK+1 : : :A

�1
i Xi : : :A

�1
2 X2t2: (3.73)

By using the enhanced transmitted matrix approach we can compute the reflected and
transmitted field amplitudes in a stable way.

3.7 Influence of the number of harmonics and layers

Until now we have not mentioned what values the numbers K (number of layers) and N
(number of harmonics) should have. Intuitively, the more harmonics one takes into ac-
count in the Fourier series of both the electromagnetic field and the permittivity, the more
accurate the solution. Similarly, the more layers to approximate the grating structure will
give more accurate solutions. On the other hand, an increasing number of harmonics and
layers will also rapidly increase the computational effort for obtaining such solution. Since
eigenvalues have to be solved for every layer, the complexity of the RCWA algorithm is
O(KN3). Since we want good results fast, it is important to find a criterion for the number
of harmonics and layers to ensure that we have an answer that still matches with the physics.

We will discuss the convergence with respect to the number of layers and harmonics by
considering a symmetric trapezoid on two homogeneous layers (testcase 7 of Table 5.1).
When we consider the reflected field amplitudes obtained by the RCWA algorithm with a
high number of harmonics (N = 100) and a high number of layers (K = 100) as the true
reflected field amplitudes, we can compare this "true" value with our simulations for a lower
amount of harmonics and/or layers. In Figure 3.2 we have displayed the logarithm of the
absolute error between the computed diffraction efficiencies and our reference values as a
function of the number of layers and the number of harmonics. The error also depends
on which order you consider. As long the ratio between K and N is kept constant, the
error decreases when more layers and harmonics are takes into account. It is a waste of
computation time to take 100 layers for 2 harmonics and vice versa.

The difference in convergence behaviour between TE and TM polarization is generally pre-
sumed to be caused by the convergence properties of the Fourier series of the permittivity
and the field [32]. In general we can say that the Fourier series converge as the series 1=n.
From numerical simulations, we can show that the eigenvalues of the auxiliary matrices AAAi

converge like 1=n3, while the eigenvalues of P�1
i BBBi converge like 1=n2. This is seen as the

major contribution to the difference in convergence of the diffraction efficiencies for planar
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Figure 3.2: Logarithmic representation of the absolute error made in the com-
putation of the zeroth and first order diffraction efficiencies of the reflected field
compared to the diffraction efficiencies for 100 harmonics and 100 layers. This
error is given as a function of the number of layers and the number of harmonics.

TE and TM polarization.

For the zeroth diffraction order we observe that for a specific combination of K and N
we have an even better accuracy than when we would take more layers or harmonics into
account. This phenomenon is still a mystery, but it offers potential to reduce the number
of layers and harmonics drastically when only the zeroth order is of importance.
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Chapter 4

The C method

The C method is an alternative method to compute the diffracted field coming from a grat-
ing structure. The method is named after its inventor Jean Chandezon, who came up with
this method in the late ’80’s [13, 30]. The method is also known as the coordinate trans-
formation method . At that time, the RCWA algorithm was already widely used and tested.
However, especially for smooth grating profiles such as sinusoidal gratings the RCWA algo-
rithm has the drawback that it has to use many layers to approximate the grating structure
sufficiently accurately. The essential resemblance between the C method and RCWA is that
both methods try to eliminate the dependence of the refractive index on directions other
than the direction the periodicity is in. As RCWA cuts its region into slices, the C method
uses a coordinate transformation to obtain this. Both methods have their advantages and
disadvantages and in the end, the C method is not meant as a substitute for RCWA, but
an alternative for gratings with a smooth profile [2].

Since the C method has similar features as the RCWA method, it profitted from the progress
of the RCWA algorithm. For example, the mathematics of taking a product of truncated
series as discussed in Section 3.2 can also be implemented in the C method [29].

Although the C method is meant for gratings with a smooth profile, the method as it
is known today can only be applied to profiles that can be described by a function of the
x-direction. In practice we are also dealing with overhanging grating profiles, e.g. when a
resist line is exposed when it was out of focuss. When the C method is not applicable to all
grating profiles common in practice, the method is not useable for reconstruction purposes.
In this thesis we will only study planar diffraction with TE and TM polarization for a two
media problem only. This means that we have one interface between two homogeneous
layers with refractive indices nI and nII, respectively, as is illustrated in Figure 4.1.

The extension to more media is treated in among others [31] and conical diffraction has
been discussed in [27]. Although generalizations of the coordinate transformation have
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medium II

medium I

Figure 4.1: Illustration of a two medium grating structure.

been addressed in the literature [17, 44], the C method can still not solve diffraction by
overhanging grating profiles. In Section 4.4 this extension to overhanging grating profiles
will be discussed briefly.

4.1 The key feature of the C method

The C method does not introduce artificial interfaces; the only interface is the grating
profile itself. The two media are homogeneous, which implies that each medium has a
constant refractive index. Therefore, the electric and magnetic field satisfy the Helmholtz
equations (2.12), the outgoing wave condition and the pseudo-periodic boundary condition
as discussed in Section 2.2.3.

The key feature of the C method is the coordinate transformation. To eliminate the
z-dependence of the refractive index, introduce the coordinate transformation where the
interface is described as z = a(x), viz.

u := x;

v := y ;

w := z � a(x):
(4.1)

To use this coordinate transformation in the Helmholtz equation, we have to know its effect
on unit vectors, partial derivatives and field magnitudes. These identities are summarized
below. For notational convenience the derivative of a(u) with respect to u will be denoted
as a0(u).

� Unit vectors

ux =
@u

@x
uu +

@v

@x
uv +

@w

@x
uw = uu � a0(u)uw ; (4.2a)

uy =
@u

@y
uu +

@v

@y
uv +

@w

@y
uw = uv ; (4.2b)

uz =
@u

@z
uu +

@v

@z
uv +

@w

@z
uw = uw : (4.2c)
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� Partial derivatives

@

@x
=
@u

@x

@

@u
+
@v

@x

@

@v
+
@w

@x

@

@w
=

@

@u
� a0(u) @

@w
; (4.3a)

@

@z
=
@u

@z

@

@u
+
@v

@z

@

@v
+
@w

@z

@

@w
=

@

@w
: (4.3b)

� Magnitudes of the fields

ex = e � ux = feuuu + evuv + ewuwg � (uu � a0(u)uw )
= eu � a0(u)ew ; (4.4a)

ey = e � uy = feuuu + evuv + ewuwg � uv = ev ; (4.4b)

ez = e � uz = feuuu + evuv + ewuwg � uw = ew : (4.4c)

Just like the electric field, the magnetic field components can be described in this
way:

hx = hu � a0(u)hw ; hy = hv ; hz = hw : (4.5)

Note that the components in the u- and v -directions are tangential to the interface, but the
w -component is not normal to the interface. The periodicity is preserved in the u-direction.

Next, the way the C method uses this coordinate transformation to solve the diffraction
problem for a two media grating will be discussed.

4.2 The details of the C method

4.2.1 Coordinate transformation of the Helmholtz equation

Because the C method considers the media separately and inside a medium the refractive
index is constant, Maxwell’s equations reduce to the Helmholtz equations (2.13a) and
(2.13b) for planar diffraction. Since both variants are identical, introduce fy to represent
the y -component of either the electric field or the magnetic field, cf. (2.19), such that

@2

@x2
fy (x; z) +

@2

@z2
fy (x; z) = �k20n2m(x; z)fy (x; z); (4.6)

for m = I; II and where we use the refractive index instead of the relative permittivity, which
are related by

n2m(x; z) = ~"rm(x; z): (4.7)
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Substituting the coordinate transformation as given by (4.1) in the Helmholtz equation and
using the identities for the derivatives (4.3) and for the field amplitudes (4.4) result in{(

@

@u
� a0(u) @

@w

)2

+
@2

@w2
+ k20n

2
m

}
fv (u; w) = 0: (4.8)

4.2.2 The shape of the solution

Since the electric and magnetic field satisfy the Floquet condition (2.20) and u = x , the
field in the new coordinate system has to satisfy

fv (u + �; w) = fv (u; w) exp[�ik0nI� sin �]; (4.9)

which implies that the field fv can be expanded in a Fourier series with respect to the
u-coordinate as long as the phase correction is taken into account. Thus

fv (u; w) =

N∑
n=�N

~fvn(w) exp[�ikunu]; (4.10)

where ~fvn are the Fourier coefficients of fv and kun are defined identically as kxn (2.25) for
�N � n � N, thus

kun := k0nI� sin � � n2�
�
: (4.11)

Since (4.8) contains a0(u) we also need the expansion in Fourier series of the derivative of
the profile function, which is given by

a0(u) =

N∑
n=�N

an exp[in
2�

�
u]; an =

1

�

∫ �=2

��=2

a0(u) exp[�in2�
�
u]du: (4.12)

Substitution of the Fourier series (4.10) and (4.12) in the transformed Helmholtz equation
(4.8) is the first step of transforming the partial differential equation into an algebraic
eigenvalue system. When we truncate the Fourier series, we have to make sure we can
apply Laurent’s rule (3.7) or the inverse rule (3.8) to the products of these Fourier series.
Inside a medium the refractive index does not change, but since the profile function a

occurs in the coordinate transformation (4.1), discontinuities in this profile function also
have an effect inside a medium. Physically all components of the electric and magnetic field
are continuous, but the introduction of the coordinate transformation can cause artificial
discontinuities. When the profile function a0 has discontinuities like for a trapezoidal grating,
the u-component of the field has a discontinuity because of the coordinate transformation.
Similarly, the derivative of any field component with respect to u is discontinuous. However,
the Helmholtz equation (4.8) contains the term @=@u � a0(u)(@=@w), which is continuous
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because it is the same as the derivative with respect to x . To conclude, computing products
of the truncated Fourier series can be performed by using Laurent’s rule (3.7).

The substitution of the Fourier series in the Helmholtz equation (4.8) gives

�
N∑

n=�N

k2unfvn(w) exp[�ikunu]+ i

N∑
n=�N

N∑
m=�N

am�nkum
d

dw
fvm(w) exp[�ikunu]

+ i

N∑
n=�N

kun

N∑
m=�N

an�m
d

dw
fvm(w) exp[�ikunu]

+

N∑
n=�N

N∑
m=�N

an�m

N∑
r=�N

am�r
d2

dw2
fvr (w) exp[�ikunu]

+

N∑
n=�N

d2

dw2
fvn(w) exp[�ikunu] + k20n2m

N∑
n=�N

fvn(w) exp[�ikunu] = 0: (4.13)

Projection on the exponential basis function yields

� k2unfvn(w) + i

N∑
m=�N

am�nkum
d

dw
fvm(w) + i

N∑
m=�N

kunan�m
d

dw
fvm(w)

+

N∑
m=�N

N∑
r=�N

an�mam�r
d2

dw2
fvr (w) +

d2

dw2
fvn(w) + k20n

2
mfvn(w) = 0: (4.14)

Let us define km;wn for m = I; II and �N � n � N identically to km;zn as

km;wn :=

√
k20n

2
m � k2un: (4.15)

We collect fvn for �N � n � N in the vector fv . Moreover, Ku is defined as a diagonal
matrix consisting of kun, Km;w as a diagonal matrix consisting of km;wn and A as a Toeplitz
matrix consisting of the Fourier coefficients of the profile function derivative a0(u). As a
result (4.14) can be written as

�K2
m;wfv (w) + (AKu +KuA)

d

dw
fv (w) +

(
I+ A2

) d2

dw2
fv (w) = 0: (4.16)

Introduce a new vector qv defined as

qv (w) :=
d

dw
fv (w); (4.17)

such that we can write (4.16) as a system of first-order derivatives only, viz.

H

[
fv (w)

qv (w)

]
=

d

dw

[
fv (w)

qv (w)

]
; (4.18)

with

H :=

[
K�2

m;w (KuA� AKu) K�2
m;w

(
I+ A2

)
I 0

]�1

: (4.19)
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This is a system of first-order differential equations of which the general solution can be
found in Appendix A.2.1. The eigenvalues of H can be divided in two sets of size 2N+1 each,
such that the first set contains all eigenvalues which are real and positive or imaginary with
a positive imaginary part. The other consists of all eigenvalues which are real and negative
or imaginary with a negative imaginary part. To let the solution satisfy the outgoing wave
condition, medium I only uses the former, while medium II only uses the latter. The real
eigenvalues correspond to the propagating orders, while the imaginary eigenvalues belong to
the evanescent orders. To describe the field components fv let us define matrix WI which
contains the first 2N + 1 entries of those eigenvectors that belong to the real negative
eigenvalues or the imaginary eigenvalues with a negative imaginary part. The eigenvalues
are collected in the 2N + 1 diagonal matrix �I and therefore

fI;v (w) = WIcI exp[�Iw ]; (4.20)

where cI are the unknown field coefficients of medium I. Similarly we can define the ma-
trix WII which contains the first 2N + 1 entries of those eigenvectors that belong to the
real positive eigenvalues or the imaginary eigenvalues with a positive imaginary part. The
eigenvalues are collected in the 2N + 1 diagonal entries of the matrix �II and therefore

fII;v (w) = WIIcII exp[�IIw ]: (4.21)

where cII contains the unknown field coefficients of medium II. The eigenvalues of matrix H

have to be linked to their diffraction order. It can be shown numerically [12] and analytically
[26], that the real eigenvalues of H converge to the values km;wn as the dimensions of H

grow. Since the values of km;wn are already linked to a diffraction order, this property
ensures that the propagating orders are also assigned. As a consequence the eigenvectors
belonging to the propagating orders can be computed analytically. Still the eigenvalues and
eigenvectors of the evanescent orders are needed for the boundary condition. However,
since we are only interested in the amplitudes and phases of the propagating orders, it is
irrelevant to which diffraction order these evanescent waves belong.

4.2.3 Boundary conditions

The previous section described the field of the upper and lower medium in terms of unknown
field coefficients. In this section the boundary conditions are discussed to find these field
coefficients. The boundary condition we have not used so far is the condition that the
tangential components are continuous at the interface, viz.

n� (eI(u; 0)� eII(u; 0)) = 0; n� (hI(u; 0)� hII(u; 0)) = 0 (4.22)

with n = a0(x)ux + uz . Note that n 6= uw and uu is tangential to the interface. If n is
substituted in equation (4.22) and transformed to the (u; v ; w)-coordinates, the results is

fI;v (u; 0) = fII;v (u; 0); (4.23a)

gI;u(u; 0) = gII;u(u; 0); (4.23b)
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where gu represents the u-component of the magnetic field for TE polarization and the
u-component of the electric field for TM polarization. To use the continuity of the fields
at the interface, also the incident field has to be transformed, viz.

f incv (u; w) = exp[�i(ku0u + kI;w0(w + a(u)))]

= exp[�ikI;w0a(u)] exp[�i(ku0u + kI;w0w)]: (4.24)

To obtain an algebraic system, expand the exponential term containing a(u) in its Fourier
series. For notational convenience introduce

Hn(�) :=
1

�

∫ �

0

exp[i�a(u)� in
2�

�
u]du; (4.25)

to describe the Fourier coefficients. For the incident field this implies that

f incv (u; w) =
∑
n

Hn(�kI;w0) exp[�i(kunu + kI;w0w)]: (4.26)

For the two-media problem, the interface lies at w = 0 and therefore, the dependence of
the w -coordinate can be ignored.

Let us use the fact that the real eigenvalues of H converge to the values km;wn as the
dimensions of H grow. This implies that for the propagating diffraction orders the eigen-
value and its eigenvector may be replaced. Thus for the propagating orders, the Rayleigh
expansion (2.36a) should also be transformed. Let us denote the set of propagating orders
by Um with m = I; II. Then, the propagating orders are transformed according to∑

n2UI

rn exp[�i(kxnx � kI;znz)]

=
∑
n2UI

rn exp[�i(kunu � kI;wn(w + a(u)))]

=
∑
n2UI

rn exp[ikI;wna(u)] exp[�i(kunu � kI;wnw)]

=
∑
n2UI

N∑
m=�N

rnHm(kI;wn) exp[�i(ku(n+m)u � kI;wnw)]

=
∑
n2UI

N∑
m=�N

rnHm�n(kI;wn) exp[�i(kumu � kI;wnw)]: (4.27)

When we define Vm as the set of evanescent orders inside medium m, the total field of
medium I at the interface where w = 0 is given by

fI;v (u; 0) =
∑
n

Hn(�kI;w0) exp[�ikunu]

+
∑
n2UI

N∑
m=�N

rnHm�n(kI;wn) exp[�ikumu]

+
∑
n2VI

N∑
m=�N

wI;mncI;n exp[�ikunu]: (4.28)



54 The C method

In a similar way the field of medium II at the interface where w = 0 is given by

fII;v (u; 0) =
∑
n2UII

N∑
m=�N

tnHm�n(�kII;wn) exp[�ikumu]

+
∑
n2VII

N∑
m=�N

wII;mncII;n exp[�ikunu]: (4.29)

Substituting the expansions (4.28) and (4.29) in this boundary condition with w = 0 gives

Hm(�kI;w0) +
∑
n2UI

Hm�n(kI;wn)rn +
∑
r2VI

wI;mqcI;r

=
∑
n2UII

Hm�n(�kII;wn)tn +
∑
r2VII

wII;mrcII;r : (4.30)

This equation can be written in matrix form. Introduce MI and MII as the number of
propagating diffraction orders in media I and II, respectively. Define the following matrices

� Fprop
I 2 C2N+1�MI for the propagating orders in medium I;

� Fevan
I 2 C2N+1�2N+1�MI for the evanescent orders in medium I;

� Fprop
II 2 C2N+1�MII for the propagating orders in medium II;

� Fevan
II 2 C2N+1�2N+1�MII for the evanescent orders in medium II;

� f incI 2 C2N+1�1 for the incident field.

The entries of these matrices are given by

(Fprop
I )np = Hn�p (kI;wp) ; p 2 UI; (4.31a)

(Fevan
I )nq = wI;nq; q 2 VI; (4.31b)

(Fprop
II )ns = Hn�s (�kII;ws) ; s 2 UII; (4.31c)

(Fevan
II )nt = wII;nt ; t 2 VII; (4.31d)

(f incI )n1 = Hn (�kI;w0) ; (4.31e)

with �N � n � N. The first boundary condition in matrix form then becomes

[
Fprop
I Fevan

I �Fprop
II �Fevan

II

] 
r

cI
t

cII

 = �f incI ; (4.32)

where r and t contain those field amplitudes that belong to the propagating orders. In other
words, the vector r consists of rn where n 2 UI and the vector t consists of tn where n 2 UII.
Vectors cI and cII are the unknown field coefficients corresponding to the evanescent orders
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inside medium I and II, respectively. This boundary condition is valid for both TE and TM
polarization.

The second boundary condition is more troublesome. The only field available tangential to
the interface is the u-component, but there is no u-component of the f-field. However,
by means of the Maxwell equations (2.8), the electric field can be written as a function
of magnetic field components and vice versa. By using the identities for the unit vectors
(4.2), the partial derivatives (4.3) and the field magnitudes (4.4) expressions are derived
for eu and hu, viz.

eu(u; w) =
1

i!~"m

[
a0(u)

@hv (u; w)

@u
� (1 + (a0(u))2

) @hv (u; w)

@w

]
; (4.33a)

hu(u; w) = � 1

i!�0

[
a0(u)

@ev (u; w)

@u
� (1 + (a0(u))2

) @ev (u; w)

@w

]
: (4.33b)

Since both expressions have a similar form, introduce field gu, which is defined as

gu(u; w) :=

{ √
"0=�0~"

r
meu(u; w); for TM polarization,

�
√
�0="0hu(u; w); for TE polarization,

(4.34)

which is similar as in (4.23b) with some correction terms for notational convenience. If the
expansions for fv are substituted in (4.33) and w is set to zero, this gives

gI;un(u; 0)

=
1

k0

N∑
m=�N

{
an�mkum +

(
�nm +

N∑
r=�N

an�rar�m

)
kI;w0

}
Hm (�kI;w0)

+
1

k0

∑
p2UI

N∑
m=�N

{
an�mkum �

(
�nm +

N∑
r=�N

an�rar�m

)
kI;wp

}
Hm�p (kI;wp)ap

+
1

k0

∑
q2VI

N∑
m=�N

{
an�mkum +

(
�nm +

N∑
r=�N

an�rar�m

)
�I;q

}
wI;mqcI;q: (4.35)

Similarly for medium II:

gII;un(u; 0)

=
1

k0

∑
s2UII

N∑
m=�N

{
an�mkum +

(
�nm +

N∑
r=�N

an�rar�m

)
kII;ws

}
Hm�s (�kII;ws)

+
1

k0

∑
t2UII

N∑
m=�N

{
an�mkum �

(
�nm +

N∑
r=�N

an�rar�m

)
�II;t

}
wII;mt : (4.36)

Since w = 0 is already implemented, the two equations (4.35) and (4.36) are identical.
This equality can be given in matrix form. Therefore introduce the following matrices:

� Gprop
I 2 C2N+1�MI for the propagating orders in medium I;
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� Gevan
I 2 C2N+1�2N+1�MI for the evanescent orders in medium I;

� Gprop
II 2 C2N+1�MII for the propagating orders in medium II;

� Gevan
II 2 C2N+1�2N+1�MII for the evanescent orders in medium II;

� gincI 2 C2N+1�1 for the incident field.

The entries of these matrices are given by

(Gprop
I )np =

1

k0

N∑
m=�N

{
an�mkumHm�p (kI;wp)

�
(
�nm+

N∑
r=�N

an�rar�m

)
Hm�p (kI;wp) kI;wp

}
; p 2 UI (4.37a)

(Gevan
I )nq =

1

k0

N∑
m=�N

{
an�mkumwI;mq

�
(
�nm+

N∑
r=�N

an�rar�m

)
wI;mq�I;q

}
; q 2 VI (4.37b)

(Gprop
II )ns =

1

k0

N∑
m=�N

{
an�mkumHm�s (kII;ws)

+

(
�nm+

N∑
r=�N

an�rar�m

)
Hm�s (kII;ws) kII;ws

}
; s 2 UII (4.37c)

(Gevan
II )nt =

1

k0

N∑
m=�N

{
an�mkumwII;mt

�
(
�nm+

N∑
r=�N

an�rar�m

)
wII;mt�II;t

}
; t 2 VII; (4.37d)

(gincI )n1 =
1

k0

N∑
m=�N

{
an�mkumHm (�kI;w0)

+

(
�nm+

N∑
r=�N

an�rar�m

)
Hm (�kI;w0) kI;w0

}
: (4.37e)

The matrix equation then becomes

[
Gprop
I Gevan

I �Gprop
II �Gevan

II

] 
r

cI
t

cII

 = �gincI : (4.38)
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Combining equations (4.32) and (4.38) gives

[
Fprop
I Fevan

I �Fprop
II �Fevan

II

Gprop
I Gevan

I �Gprop
II �Gevan

II

]
r

cI
t

cII

 = �
[
f incI

gincI

]
: (4.39)

Solving this last equation gives the reflected and transmitted field for a two-media problem
in case of planar diffraction.

4.3 RCWA vs. C method

The main difference between RCWA and the C method is the way they remove the z-
dependence as summarized in Figure 4.2. As a consequence of this difference RCWA solves
one eigenvalue system per layer of size 2N + 1 if planar diffraction is considered, while the
C method solves one per medium of size 4N +2. This is because RCWA can decouple the
relations for the field components, while the C method cannot. For conical diffraction the
size of the eigensystem for RCWA is also 4N +2. Note that N is the number of harmonics
of the truncated Fourier series, but the Fourier series in the RCWA algorithm are expansions
of the permittivity distribution inside a layer, while for the C method they are expansions of
the interface function.

The RCWA algorithm approximates the grating structure by slicing it, while the C method
does not. But the C method is restricted to interfaces which can be described by a function
of the periodicity coordinate, while the RCWA algorithm can be applied to any type of
grating. Because the C method uses the grating profile itself as an interface, the C method
can also handle a perfect electric conductor or PEC material, which is very hard to do with
RCWA.

An example of a grating structure that is ideal for the C method is a sinusoidal grating. Let
the grating be illuminated by a field with wavelength �0 = 0:7� and polar angle � = 15�.
The lower medium consists of silicon (nII = 3:77 � 0:01i) and the upper medium of air

RCWA
C

method

z

x

z

x

w

u

Figure 4.2: Illustration of how RCWA and the C method remove the z-
dependency.
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Figure 4.3: The diffraction efficiencies of the zeroth and first diffraction order,
where for the RCWA algorithm the convergence with respect to the number of
layers is shown.

(nI = 1). Let us consider planar diffraction with TE polarization. The C method uses
N = 20 to obtain the reflected diffraction efficiencies. To illustrate the results of RCWA,
we use N = 10 and N = 50 for the number of harmonics inside the truncated Fourier series
and K = 5; : : : ; 100 to approximate the sinusoidal profile. The results are illustrated in
Figure 4.3. To have 4 significant digits for both methods, we need approximately 50 layers
for the RCWA algorithm. For this number of layers, the RCWA algorithm is more than 4
times slower with N = 10 than the C method with N = 20. Note that the convergence
behaviour with respect to the number of layers could be improved significantly when the
layers no longer have identical layer thicknesses.

We showed here that the C method has the potential to be faster and more accurate
for the situation where the grating profile can be described by a continuously differentiable
function. However, when we want to compute the inverse problem, the C method should
be compatible with any type of grating structure. With the coordinate transformation as
defined in (4.1) we cannot use the C method for binary grating structures or overhanging
gratings. This issue is addressed in the next section.

4.4 Extension to overhanging gratings

An overhanging diffraction grating cannot be described by a function of the coordinate the
periodicity is in, but by a parametrization. Examples of overhanging gratings are given in
Figure 4.4. The binary grating can be considered as a limit case for the C method, since a
binary structure can be approximated very closely by a trapezoidal structure as illustrated
in [17]. To show an example of how an overhanging grating is described, let us consider
case (d) of Figure 4.4 of which its profile is given by{

x(t) = au + b sin(2Kt);

z(t) = c=2 + c=2 cos(Kt):
(4.40)
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(a)

(c)

(b)

(d)

Figure 4.4: Examples of overhanging gratings: the binary grating (a), a one-side
overhanging grating (b), an overhanging trapezoidal grating (c) and a smooth
overhanging grating (d).

The coordinate transformation (4.1) is a general applicable coordinate transformation as
long as a(x) is a function and is available. Of course the number of harmonics that has to
be taken into account to obtain an accurate solution depends on the smoothness of this
function. The general coordinate transformation can be given by

u = f (x; z);

v = y ;

w = g(x; z);

(4.41)

where we have to find the functions f and g. In [45] gratings have been considered that are
only overhanging on one side only, such that we can rotate the grating in order to describe
the grating profile by a function again. In [16, 44] attempts have been made to generalize
the coordinate transformation (4.1) by assuming a special case of (4.41), viz.

u = f (x) + cuz;

v = y ;

w = g(x) + cwz:

(4.42)

However, diffraction of a grating structure as described by (4.40) still cannot be computed.
Figure 4.5 shows the main idea of the original coordinate transformation (4.1) where for
each value of w the grating profile function appears but translated. If we apply the same
idea to the overhanging grating described above, the lines will intersect, which implies
that we can have multiple values of (u; w) to describe a point (x; z), or in other words, the
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Figure 4.5: Illustration of the coordinate transformation if the grating profile
can be described by a function of the coordinate the periodicity is in (a) and
how applying the same idea to an overhanging grating does not give a bijec-
tive transformation (b). Figure (c) gives an example of how the generalized
coordinate transformation should look like.

transformation is no longer bijective. For overhanging gratings we have to find a coordinate
transformation that is generally applicable and is bijective.

As a feasibility study, [53] tried to find such a coordinate transformation for two special
cases, namely the overhanging trapezoidal grating and the overhanging grating described
by (4.40). The algorithm of the C method does not show any limitations to the coordinate
transformation except that this transformation must be available in an analytical form and
it should ensure that we have a bijective match between (x; y ; z) and (u; v ; w).



Chapter 5

Sensitivity

Chapter 3 describes the RCWA algorithm to obtain the diffracted field when a grating struc-
ture and incident field is given. In practice, however, the grating shape can deviate from
its idealized form. To find out how the deviations of the grating shape parameters affect
the diffracted field, the behavior of the field with respect to such a grating shape should be
found.

A method to compute the sensitivity of a diffracted field with respect to a grating shape
parameter is finite differences (e.g. [33]) where RCWA is evaluated once more for slightly
different settings of the parameters. The differences between the fields give approximations
of the field derivatives. Remark that the choice of the number of layers should be fixed. If
finite differences is performed with two different numbers of layers, an additional discreti-
sation error is introduced. Since RCWA solves eigenvalue problems to obtain the diffracted
field, every other setting requires additional eigenvalue problems to be solved. Reevaluat-
ing eigensystems is computationally expensive, so undesirable and an alternative has to be
found. Differentiation of the matrix relations of the RCWA algorithm directly with respect to
a shape parameter, provides a way to circumvent those reevaluations of eigensystems [1, 3].

This chapter discusses finite differences in Section 5.1. Next, the outline of the analyt-
ical method is presented in Section 5.2 and finally, both methods are compared on accuracy
of the outcomes and the computational speed.

5.1 Finite differences

Finite differences is one of the two methods discussed in this chapter to obtain first-order
derivatives of the field amplitudes with respect to some grating shape parameter. A physical
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model is usually available to describe the shape of a grating profile. An example is the sym-
metric trapezoidal grating, where the shape is given by a height, width and angle. Although
RCWA introduces its own set of shape parameters (see Figure 3.1), finite differences can be
applied directly to the physical model. The result will be approximations of the first-order
derivatives with respect to some physical parameter.

Finite differences is an intuitive and simple to implement method to compute sensitivity
information of the field amplitudes. This method computes a quantity at neighbouring
points to obtain first-order derivatives. It is therefore directly applicable to the physical
model. We restrict ourselves to using forward finite differences for approximating first-
order derivatives of the field amplitudes r and t with respect to some shape parameter p,
viz.

@r

@p
=
r(p + �p)� r(p)

�p
+O(�p);

@t

@p
=
t(p + �p)� t(p)

�p
+O(�p): (5.1)

To have higher order accuracy, we can also use central finite differences, which has O(�p2)

accuracy. However, central finite differences require two additional RCWA evaluations in-
stead of one. Because all variants of finite differences require solving additional eigensystems
and solving an eigensystem is the most time-consuming part of the RCWA algorithm, it is
desirable to keep these additional evaluations to a minimum.

5.2 Analytical RCWA sensitivity

The alternative is an analytical approach yielding first-order derivatives of the field ampli-
tudes with respect to the RCWA shape parameters such as a layer thickness or a block
width. This implies that the conversion to the physical parameters has to be made after-
wards. However, the method avoids reevaluations of eigensystems at neighbouring values
of p because it differentiates (3.72) directly with respect to a shape parameter p at p = p0,
viz. [ �I F2

�M G2

][ @r
@p
@t2
@p

]
= �

[
@F2
@p
@G2

@p

]
t2: (5.2)

Since t2 is already available from the RCWA algorithm, the right-hand side of (5.2) is known
if we are able to compute (@F2)=(@p) and (@G2)=(@p). Note that solving system (5.2)
requires the same inverse matrix as in (3.72).

5.2.1 Sensitivity with respect to RCWA shape parameters

In order to compute (@F2)=(@p) and (@G2)=(@p), we have to compute all derivatives of
Ai , Bi , Fi and Gi with respect to p for i = 2; : : : ; K+1. It is crucial for the computational
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speed to know on which shape parameter(s) each matrix depends before rushing into the
differentiation. Matrices Ai , Bi , Fi and Gi are updated per layer as in (3.69) and the
dependencies are given by

Ai = Ai (xi ; : : : ; xK+1; di+1; : : : ; dK+1) ; Wi = Wi (xi) ; (5.3a)

Bi = Bi (xi ; : : : ; xK+1; di+1; : : : ; dK+1) ; Vi = Vi (xi) ; (5.3b)

Fi = Fi (xi ; : : : ; xK+1; di ; : : : ; dK+1) ; Qi = Qi (xi) ; (5.3c)

Gi = Gi (xi ; : : : ; xK+1; di ; : : : ; dK+1) ; Xi = Xi (xi ; di) ; (5.3d)

where di is the layer thickness of layer i and where the vector xi consists of all block widths
inside layer i . Differentiating Ai , Bi , Fi and Gi with respect to dj or xjk (the kth entry
of xj) differs significantly because of the way the matrices depend on both parameters.
Additionally, the derivatives also depend on the layer to which the RCWA shape parameter
corresponds. First consider the derivatives with respect to layer thicknesses, viz.

@Ai

@dj
=

{
1
2

(
W�1

i

@Fi+1

@dj
+ V�1

i

@Gi+1

@dj

)
if j > i ;

0 if j � i ;
(5.4a)

@Bi

@dj
=

{
1
2

(
W�1

i

@Fi+1

@dj
� V�1

i

@Gi+1

@dj

)
if j > i ;

0 if j � i ;
(5.4b)

@Fi

@dj
=


WiXi

(
@Bi

@dj
A�1
i + Bi

@A�1

i

@dj

)
Xi if j > i ;

Wi

(
@Xi

@di
BiA

�1
i Xi + XiBiA

�1
i

@Xi

@di

)
if j = i ;

0 if j < i ;

(5.4c)

@Gi

@dj
=


�ViXi

(
@Bi

@dj
A�1
i + Bi

@A�1

i

@dj

)
Xi if j > i ;

�Vi

(
@Xi

@di
BiA

�1
i Xi + XiBiA

�1
i

@Xi

@di

)
if j = i ;

0 if j < i ;

(5.4d)

where the derivative of Xi with respect to di is given by

@Xi

@di
= �k0QiXi : (5.5)

In a similar way we can find the derivatives of Ai , Bi , Fi and Gi with respect to the block
widths inside a layer, viz.

@Ai

@xjk
=


1

2

(
W�1

i

@Fi+1

@xjk
+ V�1

i

@Gi+1

@xjk

)
if j > i ;

1

2

(
@W�1

i

@xik
Fi+1 +

@V�1
i

@xik
Gi+1

)
if j = i ;

0 if j < i ;

(5.6a)

@Bi

@xjk
=


1

2

(
W�1

i

@Fi+1

@xjk
� V�1

i

@Gi+1

@xjk

)
if j > i ;

1

2

(
@W�1

i

@xik
Fi+1 �

@V�1
i

@xik
Gi+1

)
if j = i ;

0 if j < i ;

(5.6b)
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@Fi

@xjk
=



WiXi

(
@Bi

@xjk
A�1
i +Bi

@A�1
i

@xjk

)
Xi if j > i ;

@Wi

@xik

(
I+ XiBiA

�1
i Xi

)
+Wi

(
@Xi

@xik
BiA

�1
i Xi

+Xi
@Bi

@xik
A�1
i Xi+XiBi

@A�1
i

@xik
Xi+XiBiA

�1
i

@Xi

@xik

)
if j = i ;

0 if j < i ;

(5.6c)

@Gi

@xjk
=



�ViXi

(
@Bi

@xjk
A�1
i +Bi

@A�1
i

@xjk

)
Xi if j > i ;

@Vi

@xik

(
I� XiBiA

�1
i Xi

)�Vi

(
@Xi

@xik
BiA

�1
i Xi

+Xi
@Bi

@xik
A�1
i Xi+XiBi

@A�1
i

@xik
Xi+XiBiA

�1
i

@Xi

@xik

)
if j = i ;

0 if j < i ;

(5.6d)

where xjk denotes the kth block width inside layer j . The computation of the derivatives of
Wi , Vi and Xi and their inverses with respect to block width k are discussed later in this
section and in the next chapter.

To find the right-hand side of (5.2) we consider two different approaches. The first method
is to update matrices (@Fi)=(@p) and (@Gi)=(@p) for each layer according to (5.4) or (5.6)
simultaneously as Fi and Gi . Finally we obtain F2, G2, (@F2)=(@p) and (@G2)=(@p). Next,
compute r and t2 first and use t2 to compute the right-hand side of (5.2). The second
method takes advantage of the fact that t2 has to be known before we can evaluate the
right-hand side. Therefore r and t2 can be computed by an RCWA evaluation. Next, the
products (@F2)=(@p)t2 and (@G2)=(@p)t2 can be found by first finding (@Fj)=(@pj)tj and
(@Gj)=(@pj)tj for j = 2; : : : ; K+1 and using the matrices already computed in the ordinary
RCWA evaluation to link them to each other. This second method uses matrix-vector prod-
ucts, while the first method only has matrix-matrix products. For this reason we will call
the first method the matrix-matrix approach and the second the matrix-vector approach.
The order in which both approaches are executed is summarized in Figure 5.1.

Let us consider the matrix-vector approach in more detail. If we write out the formulas of
(@F2)=(@pj)t2 and (@G2)=(@pj)t2, we have the following result for the derivative @F2

@pj

@G2

@pj

 t2 =
1

2j�2

j�1∏
i=2

{[
Wi

�Vi

]
Xi

([
W�1

i �V�1
i

]� BiA
�1
i

[
W�1

i V�1
i

])}

�
[
Aj

Bj

] 2∏
i=j�1

{
A�1
i Xi

}
t2; (5.7)

where pj is a shape parameter inside layer j . Matrices Aj and Bj depend on whether the
shape parameter is a layer thickness dj or a block width xjk . The matrices Aj and Bj for
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Figure 5.1: Illustration of the order in which the matrix-matrix and matrix-vector
approach computes its derivatives of the field amplitudes.

the layer thickness are given by

[
Aj

Bj

]
:=

[
Wj

�Vj

](
@Xj

@dj
BjA

�1
j Xj + XjBjA

�1
j

@Xj

@dj

)
: (5.8)

For a block width xjk the relation becomes more complicated, because more matrices depend
on this parameter (see (5.3)), viz.

[
Aj

Bj

]
:=

[
Wj

�Vj

]{
1

2
Xj

((
I�BjA

�1
j

)@W�1
j

@xjk
Fj+1�

(
I+BjA

�1
j

)@V�1
j

@xjk
Gj+1

)

+
@Xj

@xjk
BjA

�1
j Xj+XjBjA

�1
j

@Xj

@xjk

}
+


@Wj

@xjk

(
I+XjBjA

�1
j Xj

)
@Vj

@xjk

(
I�XjBjA

�1
j Xj

)
 : (5.9)

When the right-hand side of (5.2) has been found, the derivatives of the field amplitudes with
respect to the shape parameter can be computed by solving (5.2). To find the derivatives of
the transmitted field amplitudes, (3.73) should be differentiated with respect to the shape
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parameter p, viz.

@t

@p
= A�1

K+1XK+1 : : :A
�1
i+1Xi+1

(
@A�1

i

@p
Xi+A

�1
i

@Xi

@p

)
A�1
i�1Xi�1 : : :A

�1
2 X2t2

+ A�1
K+1XK+1 : : :A

�1
i Xi

((
@A�1

i�1

@p
Xi�1

)
A�1
i�2Xi�2 : : :A

�1
2 X2 + : : :

+A�1
i�1Xi�1 : : :A

�1
3 X3

(
@A�1

2

@p
X2

))
t2 + : : :

+ A�1
K+1XK+1 : : :A

�1
2 X2

@t2

@p
; (5.10)

where the parameter p is assumed to be defined for layer i with 2 � i � K + 1. Regard-
less of whether the matrix-matrix or the matrix-vector approach has been used to obtain
the derivatives of the field amplitudes, the final step is to compute the derivatives of the
diffraction efficiencies as defined in (2.53). Straightforward differentiation with respect to
a shape parameter p gives

@�rn

@p
=2Re

{
@rsn

@p
�rsn

}
Re
{

kI;zn

k0nI cos �

}
+2Re

{
@rpn

@p
�rpn

}
Re
{

kI;zn

k0nI cos �

}
; (5.11a)

@�tn

@p
=2Re

{
@tsn

@p
�tsn

}
Re
{

kII;zn

k0nI cos �

}
+2Re

{
@tpn

@p
�tpn

}
Re
{

kII;znnI

k0n
2
II cos �

}
: (5.11b)

Note that if the shape parameter under consideration is a layer thickness, we have now
derived the complete method. For a block width we still have to find the derivatives of Wi ,
Vi , Xi and their inverse matrices.

When the RCWA shape parameter under consideration is a block width, first-order deriva-
tives of the eigenvalues and eigenvectors have to be computed. It is important to realize
that the matrices discussed from this point are only defined for one layer only. Therefore,
they only depend on the shape parameters defined for that layer. The actual computation
of the eigenvalue and eigenvector derivatives are postponed to Chapter 6, but we will do
some preliminary work. As will be shown in Chapter 6, the computation of eigenvalues and
eigenvectors require the derivative of the matrix from which the eigenvalues and eigenvec-
tors have to be computed. This implies that we need the derivatives of AAAi , BBBi , CCC i and DDDi ,
which are defined by (3.13), (3.21), (3.29) and (3.32). These derivatives in turn require the
derivatives of the Toeplitz matrices Ei and Pi . RCWA allows for analytical expressions of
the Fourier coefficients of the relative permittivity and/or its reciprocal. Since the formulas
for Pi are similar to those of Ei , we restrict ourselves to Ei . The piecewise-constant relative
permittivity ~"ri (x) is given by

~"ri (x) :=


~"ri ;1; ��=2 � x � ti1;

~"ri ;2; ti1 � x � ti2;
...

...
~"ri ;M ; ti(M�1) � x � �=2;

(5.12)

with ��=2 < ti1 < ::: < ti(M�1) < �=2, where tik is the kth position of a material transition
inside layer i . Note that the number of transitions M can vary between layers. The Fourier
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coefficients �i ;m of this relative permittivity can be found by

�i ;m =



i
2�m ~"ri ;1

(
exp[�i 2�� mti1]� exp[i�m]

)
+ i

2�m ~"ri ;2
(
exp[�i 2�� mti2]� exp[�i 2�� mti1]

)
+ :::

+ i
2�m ~"ri ;M

(
exp[�i�m]� exp[�i 2�� mti(M�1)]

)
; m 6= 0;

1
� ~"

r
i ;1 (ti1 + �=2) + 1

� ~"
r
i ;2 (ti2 � ti1)

+ : : :+ 1
� ~"

r
i ;M

(
�=2� ti(M�1)

)
; m = 0:

(5.13)

The derivatives of the Fourier coefficients with respect to a position of a material transition
can now easily be found, viz.

@�i ;m

@ti r
=

1

�
exp[�i 2�

�
mtr ]

(
~"ri r � ~"ri(r+1)

)
: (5.14)

Instead of positions of material transitions, we prefer to use block widths instead. It reduces
the number of significant shape parameters. For example, a binary grating can be described
by one block, while in general it has 2 transitions. Because a block width xik is related to
the transitions as xik := tik � ti(k�1), we have

@�i ;m

@xik
=
@�i ;m

@tik
� @�i ;m

@ti(k�1)
; (5.15)

for k = 1; : : : ;M. For the RCWA algorithm the Fourier coefficients are collected in the
Toeplitz matrix Ei with element (m; n) equal to �i ;m�n. Similarly the derivative of this matrix
with respect to a block width xik has element (m; n) equal to (@�i ;n�m)=(@xik). To find the
derivatives with respect to a block width xik of the matrices of which the eigenvalues and
eigenvectors have to be found, first the derivatives of the matrices AAAi and BBBi as defined in
(3.13) and (3.21), respectively, will be computed. For notational convenience denote the
derivative with respect to a block width xik by a prime.

AAAi
0 = �E0i ; (5.16a)

BBBi
0 = Kx(E

�1
i )0Kx: (5.16b)

The derivative of the inverse matrix E�1
i can easily be found by differentiating the matrix

relation I = E�1
i Ei , viz.

(E�1
i )0 = �E�1

i E0iE
�1
i : (5.17)

Since AAAi is already the matrix of which eigenvalues and eigenvectors have to be computed
for planar TE polarization, we only have to consider the matrices for TM polarization and
conical diffraction as defined by (3.20), (3.29) and (3.32), respectively.

(P�1
i BBBi)

0 = (P�1
i )0BBBi + P�1

i BBBi
0; (5.18a)

CCC i 0 = BBBi
0P�1

i +BBBi(P
�1
i )0; (5.18b)

DDDi
0 =AAAi

0: (5.18c)
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Here, (5.17) can be used to compute the derivatives of the inverse matrices.

Although the eigenvalue and eigenvector derivatives will be treated in Chapter 6, let us
assume that the derivatives of the eigenvalue and eigenvector matrix �0i and W0

i , respec-
tively, are available. To compute the derivatives of Vi and Xi with respect to a block width
xik , first the derivative of Qi should be computed. Since Qi is a diagonal matrix consisting
of the square roots with a positive real part of the eigenvalue matrix �i , its derivative with
respect to a block width xik is given by

Q0
i =

1

2
Q�1

i �0i : (5.19)

Matrix X0
i can now be computed by

X0
i = �k0diXiQ

0
i : (5.20)

Note that for conical diffraction, Xi and Qi consist of X1;i , X2;i , Q1;i and Q2;i and their
derivatives are computed similarly.

Computation of V0
i for planar diffraction yields

V0
i =

{
W0

iQi +WiQ
0
i for TE polarization;

P0iWiQi + PiW
0
iQi + PiWiQ

0
i for TM polarization:

(5.21)

For conical diffraction the matrices Wi and Vi contain four block matrices of which the
derivatives are given by

V0
11;i = (AAAi

�1)0W1;iQ1;i +AAAi
�1W0

1;iQ1;i +AAAi
�1W1;iQ

0
1;i ; (5.22a)

V0
12;i = Ky(AAAi

�1)0KxW2;i +KyAAAi
�1KxW

0
2;i ; (5.22b)

V0
21;i = Ky(BBBi

�1)0KxE
�1
i W1;i +KyBBBi

�1Kx(E
�1
i )0W1;i +KyBBBi

�1KxE
�1
i W0

1;i ; (5.22c)

V0
22;i = (BBBi

�1)0W2;iQ2;i +BBBi
�1W0

2;iQ2;i +BBBi
�1W2;iQ

0
2;i : (5.22d)

The derivatives of the inverse matrices of Wi , Vi and Xi can be found by using (5.17).

This completes the description of the analytical approach. By avoiding solving additional
eigensystems, the analytical approach is faster than finite differences. Another feature of
the analytical approach is that it does not need any additional approximations other than
those already made within RCWA itself.

5.2.2 Sensitivity with respect to physical shape parameters

In practice a grating shape is described by a set of physical shape parameters. Although
RCWA needs a conversion step to the RCWA shape parameters and we can compute the
first-order derivatives of the field amplitudes with respect to those shape parameters, we
would like to find a method to compute these derivatives with respect to the physical shape
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Test case 1: Binary grating (resist) Test case 6: Asymmetric trapezoid (silicon)

Parameter values
h = 0:5�

X = 0:5�

nblock = 1:51

nsub = 3:77� 0:01i
h X

D
1

nblock

nsub
D

2
A

Parameter values
h = 0:5�

X = 0:5�

�1 = 0:05�

�2 = 0:10�

A = 0

nblock = 3:77� 0:01i

nsub = 3:77� 0:01i

Test case 2: Binary grating (silicon) Test case 7: Symmetric trapezoid on homogeneous layers

h X

nblock

nsub

Parameter values
h = 0:5�

X = 0:5�

nblock = 3:77� 0:01i

nsub = 3:77� 0:01i

Parameter values
h1 = 0:4� nblock = 1:51

X = 0:14� nlayer1 = 1:56� 0:01i

� = 0:04� nlayer2 = 1:46

h2 = 0:18� nsub = 3:77� 0:01i

h3 = 0:004�

Test case 3: Symmetric trapezoid (resist) Test case 8: Stack of symmetric trapezoids

Parameter values
h = 0:5�

X = 0:5�

� = 0:05�

nblock = 1:51

nsub = 3:77� 0:01i

Parameter values
h1 = 0:02� nblock1 = 1:51

h2 = 0:15� nblock2 = 1:51

h3 = 0:03� nblock3 = 1:51

h4 = 0:1� nlayer = 1:56� 0:01i

X1 = 0:075� nsub = 3:77� 0:01i

X2 = 0:1� �1 = 0:02�

X3 = 0:135� �2 = 0:005�

�3 = 0:01�

Test case 4: Symmetric trapezoid (silicon) Test case 9: Two symmetric trapezoids next to each other

h X

D

nblock

nsub

Parameter values
h = 0:5�

X = 0:5�

� = 0:05�

nblock = 3:77� 0:01i

nsub = 3:77� 0:01i

Parameter values
h1 = 0:78� h2 = 0:80�

X1 = 0:25� X2 = 0:25�

�1 = 0:05� �2 = 0:05�

A1 = 0 nblock1 = 1:51

A2 = 0:5� nblock2 = 1:51

nsub = 3:77� 0:01i

Test case 5: Asymmetric trapezoid (resist) Test case 10: Coated symmetric trapezoid

Parameter values
h = 0:5�

X = 0:5�

�1 = 0:05�

�2 = 0:10�

A = 0

nblock = 1:51

nsub = 3:77� 0:01i

h1
X1

D
1

nblock1

nsub

h2

X2

D
2

nblock2

A

Parameter values
h1 = 0:55� h2 = 0:50�

X1 = 0:35� X2 = 0:25�

�1 = 0:05� �2 = 0:05�

A1 = 0 nblock1 = 1:51

A2 = 0 nblock2 = 1:75

nsub = 3:77� 0:01i

Table 5.1: Definition of the shape parameters and their values for ten grating
profiles to test the sensitivity theory.



70 Sensitivity

parameters. In Table 5.1 ten test cases are defined which will be used in this chapter and
in Chapter 7. Each test case has a physical model of the grating structure.

The binary grating (test cases 1 and 2) can be approximated geometrically by one layer
only and the physical parameters X and h are also the RCWA shape parameters x22 and d2.
The other test cases involve more extensive physical models. For the symmetric trapezoid
(test cases 3 and 4) the RCWA shape parameters can be described in terms of the physical
parameters, i.e.

di :=
h

K
; (5.23a)

xi2 := X +
K � 2i + 3

K
�; (5.23b)

for i = 2; :::; K +1. We assume here that all K layers have the same layer thickness. Note
that xi1 and xi3 are not considered because they are irrelevant for describing the symmetric
trapezoidal grating because of the symmetry. By using (5.23) and the quotient rule for
differentiation we can express the derivatives with respect to the physical parameters in
terms of derivatives with respect to RCWA shape parameters, viz.

@

@h
=

K+1∑
i=2

@di

@h

@

@di
+
@xi2

@h

@

@xi2
=

1

K

K+1∑
i=2

@

@di
; (5.24a)

@

@X
=

K+1∑
i=2

@

@xi2
; (5.24b)

@

@�
=

K+1∑
i=2

K � 2i + 3

K

@

@xi2
: (5.24c)

As can be seen from (5.24b) and (5.24c) the derivatives with respect to X and � are
closely related. As a consequence of the choice of the physical parameters eigenvalue and
eigenvector derivatives are not involved in the derivatives with respect to the height of the
trapezoid. The test cases 5 until 8 are similar to the symmetric trapezoid.

For test cases 9 and 10 we have to do an additional step to express the field amplitude
derivatives with respect to the physical parameters in terms of the derivatives with respect to
the RCWA shape parameters. We define two symmetric trapezoids to have two trapezoids
next to each other or to have a coated trapezoid. Since RCWA introduces horizontal layers
over the entire period, both trapezoids share the same set of layers. The highest trapezoid
has some additional layers. By dividing the highest trapezoid into two smaller trapezoids as
has been done in Figure 5.2 we can express the RCWA shape parameters in terms of these
intermediate parameters defined by

ha = h1 � h2; hb = h2; (5.25a)

Xa = X1 � h2

h1
�1; Xb = X2 � h1 � h2

h1
�1; Xc = X2; (5.25b)

�a =
h1 � h2
h1

�1; �b =
h2

h1
�1; �c = �2: (5.25c)



5.2 Analytical RCWA sensitivity 71

Figure 5.2: Definition of the physical shape parameters (left) and intermediate
shape parameters (right) of two trapezoids next to each other.

However, eventually we want to have the derivatives with respect to the actual physical
parameters and not these intermediate parameters. Therefore, we have to express the
derivatives with respect to the physical shape parameters in terms of the intermediate
parameters as

@

@h1
=

@

@ha
+
h2

h21
�1

(
@

@�a
� @

@�b
+

@

@Xa
+

@

@Xb

)
; (5.26a)

@

@h2
= � @

@ha
+

@

@hb
+

�1

h1

(
� @

@�a
+

@

@�b
� @

@Xa
� @

@Xb

)
; (5.26b)

@

@X1
=

@

@Xa
+

@

@Xb
; (5.26c)

@

@X2
=

@

@Xc
; (5.26d)

@

@�1
=
h1 � h2
h1

(
@

@�a
+

@

@Xb

)
+
h2

h1

(
@

@�b
� @

@Xa

)
; (5.26e)

@

@�2
=

@

@�c
: (5.26f)

The computation of the field amplitude derivatives with respect to the intermediate pa-
rameters can be found similarly as when we compute the field amplitude derivatives of a
symmetric trapezoid. We use (5.26) to find the derivatives with respect to the physical
parameters.

We are now ready to compare the analytical method to the finite differences method,
since finite differences find the field amplitude derivatives immediately with respect to the
physical shape parameters. The test cases from Table 5.1 will be used in Section 5.4 to
compare both methods.
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5.2.3 Sensitivity with respect to other parameters

Besides derivatives with respect to shape parameters also derivatives with respect to the
refractive index, period of the grating or the angle of incidence can be computed. The idea
of the analytical method remains the same except for the derivative of the matrix from
which the eigenvalues and eigenvectors have to be computed. In this section we will discuss
only the derivatives with respect to the refractive index and the angle of incidence.

The refractive index is encapsulated inside the Fourier coefficients of the relative permittivity
and its reciprocal. Therefore, the derivative with respect to the refractive index appears in
matrices Ei and Pi . The derivative will be considered with respect to the real and imaginary
part of the refractive index, ni r and ki r respectively. The relative permittivity ~"ri ;r can be
related to the refractive index according to

~"ri ;r = (ni r � iki r )
2: (5.27)

The first-order derivatives of the Toeplitz matrix Ei are given by

(
@Ei

@ni r

)
nm

=


i

�(n�m) (ni r � iki r )

� (exp [�i 2�� mxr ]� exp
[�i 2�� (n �m)xr�1

])
; m 6= 0;

2 (ni r � iki r ) (xr � xr�1) ; m = 0;

(5.28)

(
@Ei

@ki r

)
nm

=


1

�(n�m) (ni r � iki r )

� (exp [�i 2�� mxr ]� exp
[�i 2�� (n �m)xr�1

])
; m 6= 0;

�2i (ni r � iki r ) (xr � xr�1) ; m = 0;

(5.29)

and similarly the first-order derivatives of Pi are given by

(
@Pi

@ni r

)
nm

=


� i

�(n�m)
1

(ni r�iki r )
3

� (exp [�i 2�� mxr ]� exp
[�i 2�� (n �m)xr�1

])
; m 6= 0;

� 2

(ni r�iki r )
3 (xr � xr�1) ; m = 0;

(5.30)

(
@Pi

@ki r

)
nm

=


� 1

�(n�m)
1

(ni r�iki r )
3

� (exp [�i 2�� mxr ]� exp
[�i 2�� (n �m)xr�1

])
; m 6= 0;

2i

(ni r�iki r )
3 (xr � xr�1) ; m = 0:

(5.31)

To compute the derivatives of the reflected and transmitted field amplitudes, we can sub-
stitute these derivatives in (5.16) and (5.18) and proceed similar as when a block width is
under consideration.

Another parameter that can be considered is the angle of incidence. This can be the
azimuthal angle � or the polar angle �. These angles only occur at matrices Kx and Ky

inside the layers, but also in YI, YII, ZI and ZII. This implies that when such an angle is
under consideration, the matrix of which the eigenvalues have to be computed will change
for every layer, including layers 1 and K+2. Let us first consider the derivatives of matrices
Kx and Ky with respect to an angle of incidence. Since matrix Kx consists of entries kxn
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and matrix Ky of entries ky , let us focus on those entries:

kxn = nI sin � cos�� n�
�
; (5.32a)

@kxn

@�
= nI cos � cos�; (5.32b)

@kxn

@�
= �nI sin � sin�; (5.32c)

ky = nI sin � sin�; (5.32d)

@ky

@�
= nI cos � sin�; (5.32e)

@ky

@�
= �nI sin � cos�: (5.32f)

The angle of incidence also plays a role above and below the grating profile, namely in the
matrices YI, YII, ZI and ZII, which contain kI;zn or kII;zn:

km;zn =
√
k20n

2
m � k2xn � k2y ; (5.33a)

@km;zn

@�
= �kxn

@kxn

@� + ky
@ky

@�

km;zn
= �nI cos � (kxn cos�+ ky sin�)

km;zn
; (5.33b)

@km;zn

@�
= �kxn

@kxn

@� + ky
@ky

@�

km;zn
=
nI cos � (kxn sin�+ ky cos�)

km;zn
: (5.33c)

A difficulty arises when a propagating order becomes evanescent. Since the term of which
the square root is taken in the definition of km;zn (5.33a) can be either positive of negative,
the derivative of km;zn does not exist for those values of � and � for which km;zn is zero.
These values indicate the transition of a propagating order to an evanescent order and vice
versa. In Section 2.5 we showed when an order is propagating or evanescent for a specific
value of � and �. Similarly, we can find values of � as a function of � for which km;zn is
zero, viz.

sin � =
n� cos��

√
�n2�2 sin2 �+ �2n2m

�nI
: (5.34)

This relation gives � as a function of � for different orders. Figure 5.3 gives an example of
those combinations of � and � for which (5.34) holds when we consider test case 7, the
symmetric trapezoid on two homogeneous layers. As can be seen, the diffraction efficiencies
have several discontinuities and several of them can be found directly from (5.34). There
are more discontinuities, but these are caused by the grating profile and the used materials.
We should be careful not to be too close to such a line when we differentiate.

Also derivatives with respect to the wavelength of the field or the period of the grating can
be considered, but in general these parameters are given and will therefore not be considered
here.
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Figure 5.3: Illustration of the diffraction efficiency computed for test case 7 of
Table 5.1 for polar angle 0 � � � 80� and 0 � � � 90� and the combinations
of � and � for which kI;zn = 0.

5.3 Complexity of the algorithms

To understand the reason why the matrix-vector approach will be faster than the matrix-
matrix approach or finite differences, the complexity of the algorithm has to be considered.
A plain RCWA computation requires the computation of F2 and G2 before the linear system
(3.72) can be solved. These two matrices are found by updating matrices Ai , Bi , Fi and Gi

for every layer i (i = 2; :::; K+1) as in (3.69). Besides the multiplications and summations
of matrices, every layer requires matrices Wi , Vi and Xi which are the result of solving
an eigensystem. Also their inverse matrices should be available. Both the matrix-matrix
multiplications and solving the eigensystems ensures that the complexity of a plain RCWA
evaluation takes O(KN3) flops where K is the number of layers and N is the number of
harmonics after the truncation of the series.

For the field amplitude derivatives we have to solve the linear system (5.2). To do so
we have to compute the matrices (@F2)=(@p) and (@G2)=(@p). As indicated in Section
5.2.1, there are two ways of finding the field amplitude derivatives. The first one is the
matrix-matrix approach where first the matrices (@F2)=(@p) and (@G2)=(@p) are computed
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and next they are multiplied by the vector t2 which is already available from a plain RCWA
evaluation. This approach requires matrix-matrix multiplications which require O(N3) flops.
The second approach (matrix-vector approach) makes use of the fact that we have to mul-
tiply by this vector t2 anyway and therefore we make use of matrix-vector products only.
These matrix-vector products have a complexity of O(N2).

Another feature from Section 5.2.1 is that finding the derivative with respect to a layer
thickness essentially differs from finding the derivative with respect to a block width. The
main reason for this is that the eigensystems to be solved in a plain RCWA evaluation do
not depend on the layer thickness. This implies that for a layer thickness only the derivative
of Xi has to be computed. However, this computation requires no more than O(N) flops
and therefore finding the derivative with respect to the layer thickness by using the matrix-
vector approach has a complexity of O(K N2).

Finding the derivative with respect to a block width requires the derivatives of Wi , Vi

and Xi and of their inverse. As will be discussed in Chapter 6, the eigenvector derivative
computations still require matrix-matrix multiplications and therefore finding the derivative
with respect to a block width, even with the matrix-vector approach, takes O(K N3) flops.
However, the factor C in CKN3 will be reduced because solving eigensystems will not be
carried out.

5.4 Comparison of analytical method vs. finite differences

The analytical method with the matrix-matrix and matrix-vector approach will be compared
to finite differences on two different aspects. The first one is accuracy because a method
that is not accurate is useless. The second one is speed, because this is the main reason
why we considered the analytical approach in the first place. The accuracy of the analytical
method vs. finite differences will be considered first in Section 5.4.1 and the speed of the
method in Section 5.4.2.

5.4.1 Accuracy

In the comparison of the methods to compute first order derivatives, we do not have to
make a distinction between the matrix-vector and matrix-matrix approach since the results
for the diffraction efficiencies will be the same. Table 5.2 gives the results of the compar-
ison between the diffraction efficiency derivatives with respect to all physical parameters
obtained by both the analytical method and finite differences. Since the refractive index of
the substrate is complex-valued for all test cases of Table 5.1, no diffraction efficiencies will
be present for the transmitted orders. For the chosen wavelength (� = 0:7�) and the angle
of incidence we have three propagating orders, which are the �1st, 0th and 1st diffraction



76 Sensitivity

order. We have used multiple step sizes � in finite differences. The optimal step size for
finite differences equals the square root of the machine precision (� 10�16) [18], but to
show the effect of other step sizes we included � = 10�4� and 10�6�. We see that the
difference in accuracy between the two methods for a fixed number of layers to approximate
the grating structure can be found in the 5th or 6th decimal when � approximates the square
root of the machine precision. Since the analytical method does not make any additional
approximations besides the approximations already made by the RCWA algorithm itself,
Table 5.2 actually validates how well finite differences performs. To conclude the accuracy
comparison, we can state that the accuracy is no issue for both methods as long as we take
the step size small enough for finite differences.

An important warning is at place here. Finite differences evaluate RCWA once more for
every shape parameter and it is crucial that for both evaluations the number of layers to
approximate the grating structure remain the same. The analytical method computes the
derivatives of a layered structure instead of the actual structure. When we vary the number
of layers in finite differences, we are also dealing with the approximation errors of the RCWA
algorithm itself. The effects are serious. When we consider test case 3: the symmetric
trapezoid made of resist, we see that using finite differences with 10 layers for the first eval-
uation and 11 for the second one gives a maximum error of 103 compared to the derivative
of the analytical method. If we had used finite differences with a fixed number of layers 10
or 11, this error was of the order 10�5.

test case Maximum absolute error
� = 10�4� � = 10�6� � = 10�8�

1 1:0187� 10�3 1:0190� 10�5 1:3371� 10�6

2 7:5013� 10�3 7:5007� 10�5 1:2534� 10�6

3 1:0400� 10�3 1:0403� 10�5 1:6798� 10�6

4 2:7523� 10�3 2:7526� 10�5 1:0886� 10�6

5 1:0303� 10�3 1:0305� 10�5 1:0730� 10�6

6 1:0792� 10�3 1:0790� 10�5 1:3760� 10�6

7 2:9156� 10�3 2:9146� 10�5 4:9997� 10�7

8 5:4494� 10�3 5:4458� 10�5 5:1701� 10�7

9 1:8953� 10�3 1:8910� 10�5 1:5488� 10�6

10 3:7740� 10�3 3:7748� 10�5 8:2360� 10�7

Table 5.2: Maximum absolute error between the derivatives of the diffraction
efficiencies of all propagating orders obtained by the analytical method and those
obtained by finite differences for various step sizes �. These derivatives are com-
puted for planar diffraction TM polarization with polar angle � = 10�, wavelength
� = 0:7� and N = 25.
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5.4.2 Speed

To compare the computational speed of the two methods we measure three different times:
the time one RCWA evaluation takes, the time the analytical approach takes to compute
both the diffraction efficiencies of the reflected field and their derivatives with respect to
all shape parameters and the time finite differences take to compute the same. These
times are denoted by tRCWA, tanalytical and tFD, respectively. To compare the speed of the
analytical method to finite differences, we define a factor f indicating the ratio between the
time the analytical method takes to compute the derivatives and the time finite differences
take to do the same. In mathematical terms, the factor is defined by

f :=
tanalytical � tRCWA

tFD � tRCWA
: (5.35)

The computational time depends on the number of harmonics taken into account. For a
binary grating given by a width and a height, Figure 5.4 gives this factor as a function of
the number of harmonics for both the matrix-matrix and matrix-vector approach as pre-
sented in Section 5.2.1. Although the matrix-vector approach is the absolute winner, the
matrix-matrix approach is also faster than finite differences. For an increasing number of
harmonics we see that the matrix-vector approach becomes increasingly faster, while the
matrix-matrix approach becomes slower with respect to the finite difference approach. The
main reason of the decreasing factor f as a function of the number of harmonics for the
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Figure 5.4: The factor f as a function of the number of harmonics (N) for
a binary grating using both the matrix-matrix and matrix-vector approach for
planar (TE and TM) and conical diffraction.
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matrix-vector approach is the complexity O(K N2) to find the right-hand-side of (5.2) when
we discard the computations of the eigenvalue and eigenvector derivatives. This agrees with
the complexity analysis of the previous section.

The binary grating is approximated geometrically by one layer only and is the only grat-
ing where the discretization does not introduce additional errors. To see how the number
of layers influences the speed, we have to look at more complex structures such as the
other eight test cases of Table 5.1. Before the diffraction efficiencies can be computed by
RCWA a conversion has to be made from the physical shape parameters to RCWA shape
parameters as has been done in Section 5.2.2.

In Figure 5.5 the factor f as defined in (5.35) has been plotted for the symmetric trape-
zoid as a function of the number of harmonics for the analytical method using both the
matrix-matrix and the matrix-vector approach. To consider the influence of the number of
layers RCWA uses to approximate the trapezoid, Figure 5.5 gives the results in case the
trapezoid is sliced up in 10 and 25 layers, respectively. As can be seen from Section 5.3
and Figure 5.5 the number of layers does not influence f , since the computations are linear
in the number of layers. Also, a similar trend like in the binary grating can be seen for the
trapezoid.
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symmetric trapezoidal grating, which is approximated by 10 and 25 layers. Both
the matrix-matrix and matrix-vector approach has been used for planar (TE and
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In the reconstruction of the shape parameters as will be discussed in Chapter 7 derivatives
of the diffraction efficiencies with respect to all shape parameters have to be computed si-
multaneously. Since the matrix-vector approach is faster than the matrix-matrix approach,
we will only consider the speed results of the matrix-vector approach. When we consider
the factor f for all test cases defined in Table 5.1 as a function of the number of harmonics
N, we get the results of Figure 5.6. From the test cases, we can make several observations,
namely

� The more shape parameters are required to describe the grating structure, the smaller
the factor will be. This implies that the analytical method becomes relatively faster
than finite differences when more parameters are under consideration. The reason for
this is that all derivatives with respect to the RCWA shape parameters are computed
anyway, but they are distributed over more parameters. For finite differences this
implies that more RCWA evaluations have to be carried out. Notice that for the test
cases 9 and 10 of Table 5.1 the derivatives with respect to the physical parameters
are computed by dividing the highest trapezoid into two trapezoids. Although finite
differences computes only 6 derivatives, the analytical method has to compute 8
derivatives as is shown in Section 5.2.2. These derivatives are translated afterwards
to the 6 derivatives with respect to the actual physical parameters. Because of this
the factor f for test cases 9 and 10 will be higher than expected.

� The more harmonics are taken into account, the more gain, or lower factor f , we have
by using the matrix-vector approach compared to finite differences. This is because
the eigensystems grow larger and become more and more the dominant part of the
computation.

� The factor f will be lower (and thus the analytical method faster than finite differ-
ences) for a structure with a complex-valued refractive index than for a structure with
a real-valued index. Although the differences are minimal in general, this difference is
larger for planar diffraction with TE polarization than for the other diffraction types.
This is because the eigensystem for TE polarization has a special structure. The
matrix is Hermitian if the refractive indices inside a layer are real-valued, which speeds
up the computation of the eigenvalues and eigenvectors. The amount of work of the
analytical method stays the same.

� For conical diffraction the factor f will be smaller than for planar diffraction. This is
due to the fact that for conical diffraction the eigensystems are twice as large as for
planar diffraction.

To conclude we see that using analytical over numerical derivatives of the field amplitudes
results in a considerable reduction in computational time, no matter what structure one
considers. To quantify the reduction we can say that for simple structures as in test cases
1 to 7 of Table 5.1 and N = 20 we have

f � 0:11� (# parameters heights) + 0:28� (# parameters other)
# total parameters

; (5.36)
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Figure 5.6: Time comparison for planar and conical diffraction of the simple
structures (left) and the complex structures (right), where the computation
time to compute the derivatives with the analytical method is compared to the
computation time finite differences takes to compute the same.
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where ”# parameters heights” are those physical parameters that only depend on layer
thicknesses and ”# parameters other” are those physical parameters that depend also on
block widths. For example, for the symmetric trapezoid, the height h depends only on the
layer thicknesses, while the parameters X and � depend on the block widths. For the more
complex structures such as those defined in test cases 8 to 10, we have a coupling between
the structures. For example, the stacked grating consists of three trapezoidal structures
on top of each other. Because of this coupling, the actual factor f will be lower than
the estimate given by (5.36). Note that the number of layers do not affect the factor f
significantly as is shown in Figure 5.5.

The matrix-vector approach of the analytical method will be used in Chapter 7, where
the shape parameters will be reconstructed from a measured signal.
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Chapter 6

Eigenvalue and eigenvector
sensitivity

Eigenvalue and eigenvector derivatives are crucial for the analytical method discussed in
the previous chapter. In this chapter we will discuss how they can be computed. Let
A 2 CN�N be a non-defective matrix given as a function of a certain parameter p. The
non-defectiveness means that A has N linearly independent eigenvectors. Let � 2 CN�N

be the eigenvalue matrix of A and W 2 CN�N a corresponding eigenvector matrix of A, i.e.

A(p)W(p) = W(p)�(p): (6.1)

Our goal is to compute �0(p0) and W0(p0) for one specific value p0 of parameters p. In the
remainder of this chapter, the p-dependence is discarded for notational convenience. It is
well-known that eigenvectors are not uniquely determined. If the eigenvalues are distinct,
the eigenvectors are determined up to a constant multiplier, whereas if an eigenvalue has
geometric multiplicity higher than 1, any linear combination of the associated eigenvectors
will be an eigenvector again. This implies that an eigenvector derivative cannot be com-
puted uniquely as long as the eigenvectors are not fixed.

If all eigenvalues are distinct, one of the first methods to compute eigenvector derivatives
analytically for real-valued A at p = p0 can be found in [40]. A numerical way of retrieving
the eigenvector derivatives is given in [6, 47]. This numerical method is fast when only a
small number of eigenvalue derivatives and their corresponding eigenvector derivatives have
to be computed. If all eigenvalues and eigenvectors of A are already available and all corre-
sponding derivatives should be computed, an analytical approach will be much faster. For
an overview of the methods available for a complex-valued matrix with distinct eigenvalues
see [39].

Repeated eigenvalues have also been analyzed before, though not for an arbitrary complex-
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valued matrix. For real-valued matrices, the eigenvector derivatives for a symmetric real-
valued matrix can be found [34]. However, it is assumed that the eigenvalue derivatives are
distinct. In [15] the theory is extended by assuming that there are still eigenvalue derivatives
which are repeated, but the second-order derivatives of the eigenvalues have to be distinct.
In [7] this theory is generalized to Hermitian matrices, where it is assumed that for an
eigenvalue with multiplicity r , all its eigenvalue derivatives up to kth-order are all assumed
to be equal and the (k + 1)st-order derivatives are distinct again.

The generalization towards a general non-defective matrix has been provided in [4], which
presents an algorithm to compute the first-order analytical derivatives of both eigenvalues
and eigenvectors for such a general non-defective matrix. It is assumed that all eigenvalues
and their associated eigenvectors are known either analytically or from a numerical proce-
dure and that the eigenvector derivatives exist.

Before we start computing the derivatives, we will show that they exist indeed. Section 6.2
will discuss the simple cases known from the literature, Section 6.3 presents the general-
ization of the theory of computing eigenvalue and eigenvector derivatives and Section 6.4
will show examples of the theory presented in this chapter. Finally, the need of this theory
for the RCWA algorithm will be discussed.

6.1 Existence of eigenvalue and eigenvector derivatives

Because the eigenvectors are not uniquely determined, they have to be fixed in some way,
which we will call the normalization of the eigenvectors. Let for k = 1; : : : ; N the mth
element of eigenvector wk be denoted by wmk . In this thesis we will choose for every
eigenvector m an element k equal to 1 for all values of p in a neighbourhood D of p = p0,
viz.

wmk(p) = 1; k = 1; : : : ; N; 1 � m � N; p 2 D: (6.2)

To explain the choice of m and for the theory presented in this chapter, we need the
left-eigenvector matrix , which is defined as

Y :=
(
W�1

)�
: (6.3)

Note that � denotes the complex conjugate transpose, that is Y� = �YT . When the mth
element of the kth left-eigenvector is denoted by ymk , the index m is chosen as follows

jwmk jjymk j = max
1�j�N

jwjk jjyjk j: (6.4)

This prevents both wmk and ymk from becoming very small. In general, the choice of m will
not be unique.

Let us first consider the existence and uniqueness of the eigenvalue and eigenvector deriva-
tives for distinct eigenvalues only.
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Theorem 6.1 Let w(p0) be an eigenvector belonging to a distinct eigenvalue �(p0) of
A(p0). Then for every p in a neighbourhood of p0 there exist functions w(p) and �(p) such
that they are continuously differentiable.

We will prove this theorem by using the Implicit Function Theorem, which is stated.

Theorem 6.2 (Implicit Function Theorem) Let D be an open subset of CN+1, and sup-
pose that the mapping F : D ! CN+1 is continuously differentiable. Suppose that
F(z0; p0) = 0 and that the partial derivative matrix (@F)(@p)(z0; p0) is nonsingular at
the point (z0; p0) 2 D. Then there is a continuously differentiable mapping z(p) such that

F(z(p); p) = 0 for all p 2 D; (6.5)

and

@z(p0)

@p
= �

[
@F

@z(p)
(z(p0); p0)

]�1
@F

@p
(z(p0); p0): (6.6)

The proof of this theorem can be found in [14]. Let us consider the proof of Theorem 6.1.

Proof. Proof of Theorem 6.1
Define a function F as

F(z; p) :=

[
A(p)w � �w
uTw � 1

]
and z :=

[
w

�

]
: (6.7)

It is clear that with z = (w(p0)
T ; �(p0))

T it holds that

F(z; p0) = 0: (6.8)

The Jacobian (@F=@z)(z(p); p) is given by

@F

@z
(z; p) =

[
(A(p)� �I) w

uT 0

]
: (6.9)

To prove that the Jacobian is nonsingular for p = p0, let us assume that it is singular, thus[
(A(p)� �I) w

uT 0

] [
w

�

]
=

[
0

0

]
: (6.10)

Since (A(p0) � �I)w + w� = 0 it holds that A(p0)w = 0 and thus w 2 N (A(p0)). The
second equation provides

uTw = 0 (6.11)

Since w 6= 0 we have a contradiction, which shows that the Jacobian is nonsingular.

The Implicit Function Theorem gives us the existence and uniqueness of the eigenvalue and
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eigenvector derivatives for distinct eigenvalues. Because F(z0; p0) = 0 and (@F=(@z)(z0; p0)

is nonsingular, this theorem says that there exists a unique continuously differentiable z(p)
such that F(z(p); p) = 0 and (@F=@z)(z(p); p) is nonsingular. The derivative of z(p) can
be found by

@z(p0)

@p
= �

[
@F

@z(p)
(z(p0); p0)

]�1
@F

@p
(z(p0); p0); (6.12)

which completes the existence and uniqueness of the eigenvalue and eigenvector derivatives
for distinct eigenvalues.

The generalization of the existence of eigenvalue and eigenvector derivatives for repeated
eigenvalues are given in [21]. In the following sections we will focus on the mathematical
method to actually compute the eigenvalue and eigenvector derivatives.

6.2 Simple cases

Before rushing into the generalization, let us consider the basic features of computing
eigenvalue and eigenvector derivatives in the context of some simple cases. Let the non-
defective matrix A and its eigenvalue and eigenvector matrix � and W be differentiable in
a neighbourhood of p = p0. Differentiate the eigensystem (6.1) directly with respect to p.
The derivative with respect to p is denoted by a prime. So from (6.1) we have

A0W �W�0 = �AW0 +W0�: (6.13)

In (6.13) both the eigenvalue derivative matrix �0 and the eigenvector derivative matrix W0

occur. To find an expression for �0, premultiply (6.13) by the left-eigenvector matrix as
defined in (6.3), viz.

Y�A0W � �0 = �Y�AW0 + Y�W0�: (6.14)

Since A is assumed to be non-defective, the eigenvectors span the complete CN�N . For
ease of notation let us define a matrix C := W�1W0, i.e.

W0 = WC: (6.15)

Rather than determining W0, we will try to find C. From (6.14) we derive

Y�A0W � �0 = ��C+ C�: (6.16)

In Section 6.1 we showed that there exists a continuously differentiable eigenvector matrix,
but the eigenvector matrix is computed for a fixed value of p and therefore the continuously
differentiability is not guaranteed. This is shown by the following example.
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Example 6.3 Let

A(p) :=

[
1 p

p 1

]
: (6.17)

Then the eigenvalue matrix �(p) and an eigenvector matrix W(p) can be found as

�(p) =

[
1� p 0

0 1 + p

]
; W(p) =

[ �1 1

1 1

]
; (6.18)

respectively. For p = 0, the eigenvalues become repeated and a valid eigenvector matrix
would be

W(0) =

[
1 0

0 1

]
: (6.19)

Note that for p = 0 the right-hand side of (6.16) vanishes completely and therefore

�0(0) = Y�(0)A0(0)W(0) =

[
0 1

1 0

]
; (6.20)

but �0(0) should be a diagonal matrix. Of course, the problem is caused by a wrong choice
of W.

The main focus of this and the following section is choosing an eigenvector matrix such
that �0 is continuous with respect to parameter p. To do this let us trivially assume that
an eigenvector matrix ~W has already been found, e.g. by Lapack [5]. Then there exists a
non-unique matrix � 2 CN�N such that

W =: ~W�; (6.21)

with � 2 CN�N . Since W should also be an eigenvector matrix of A it has to satisfy (6.1)
and therefore � has to satisfy the following condition

�� = ��: (6.22)

Substitution of (6.21) into (6.16) results in

~Y�A0 ~W�� ��0 = ���C+ �C�: (6.23)

To find the eigenvector derivative matrix, we first have to determine �. Relation (6.23)
will be the starting point for the computation of eigenvalue and eigenvector derivatives.
Since the derivation of a general formulation is rather involved, we start with the three
simplest situations: distinct eigenvalues, repeated eigenvalues with distinct derivatives and,
finally, repeated eigenvalues with repeated first-order derivatives and distinct second-order
derivatives.
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6.2.1 Distinct eigenvalues

For distinct eigenvalues, it follows from (6.22) that � must be a diagonal matrix. If (6.23)
is considered element by element, we have

~y�kA
0 ~wl
l � �kl
l�0l = 
k (�l � �k) ckl ; (6.24)

where �k is the kth element on the diagonal of �, ~y�k and ~wk are the kth left- and right-
eigenvector, respectively, ckl is the entry (k; l) of matrix C and �kl = 1 if k = l and 0

otherwise.

�0k = ~y�kA
0 ~wk ; k = 1; : : : ; N; (6.25)

ckl =
~y�kA

0 ~wl
l


k (�l � �k) ; k; l = 1; : : : ; N; k 6= l : (6.26)

Note that 
k 6= 0 has been used in (6.25), which is justified since � is a regular matrix. For
distinct eigenvalues all eigenvalue derivatives can be found and the off-diagonal entries of
matrix C are determined when the entries of � are known. There are no relations for the
diagonal entries of � and therefore they can be chosen arbitrary. This corresponds to the
fact that eigenvectors are unique up to a multiplicative constant for distinct eigenvalues,
i.e. these constants can be chosen freely. As mentioned in the previous section, we will use
(6.2) to choose the diagonal entries of �. For all k = 1; : : : ; N there is a m chosen by using
condition (6.2) such that

wmk = 1) ~wmk
k = 1) 
k =
1

~wmk
: (6.27)

With this normalization condition there is always an m such that eigenvector wk is uniquely
determined, as wk 6= 0. At this point the eigenvectors are uniquely determined and since the
normalization condition (6.27) applies to each eigenvector and all values of p, the following
holds

w 0
mk(p) = 0 for all p: (6.28)

By using (6.15) an expression can be found for the coefficient ckk in terms of the off-diagonal
entries of the matrix C.

w 0
mk =

N∑
l=1

wmlclk = 0 ) ckk = � 1

wmk

N∑
l=1
l 6=k

wmlclk = �
N∑
l=1
l 6=k

wmlclk : (6.29)

In terms of the given eigenvectors this implies that

ckk = �
N∑
l=1
l 6=k

~wml
lclk : (6.30)

Thus also the diagonal coefficients ckk can be determined uniquely and the matrix W0 can
be computed by (6.15).
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6.2.2 Repeated eigenvalues with distinct eigenvalue derivatives

For repeated eigenvalues, condition (6.22) indicates that matrix � does not need to be
diagonal. Every linear combination of such eigenvectors is still an eigenvector. Let now
e.g. �1 = : : : = �M for some M � N. Introduce the following partitioning of � and of the
corresponding matrices ~W, ~Y� and �:

� =

[
�1 0

0 �2

]
; ~W =

[
~W1

~W2

]
; ~Y� =

[
~Y�
1

~Y�
2

]
; (6.31)

� =

[
�1 0

0 �2

]
; C =

[
C11 C12

C21 C22

]
;

where �2 = �I 2 CM�M consists of all M repeated eigenvalues. The other eigenvalues
are in �1 2 C(N�M)�(N�M). Note that �1 can still contain repeated eigenvalues, but none
of the eigenvalues of this matrix is equal to �. The block ~W2 2 CN�M consists of the
right-eigenvectors belonging to the repeated eigenvalues and ~W1 2 CN�(N�M) consists of
the right-eigenvectors belonging to the other eigenvalues. Likewise the matrix ~Y� is divided
into two block rows ~Y�

1 2 C(N�M)�N and ~Y�
2 2 CM�N respectively. The matrices � and C

are partitioned in a similar way, but note that (6.22) implies that the off-diagonal blocks of
� are 0. As a result (6.23) can be described by a set of four equations:

~Y�
1A

0 ~W1�1 � �1�
0
1 = ��1�1C11 + �1C11�1; (6.32a)

~Y�
1A

0 ~W2�2 = �1 (�I� �1)C12; (6.32b)

~Y�
2A

0 ~W1�1 = ��2C21 (�I� �1) ; (6.32c)

~Y�
2A

0 ~W2�2 � �2�
0
2 = 0: (6.32d)

Clearly (6.32d) is an eigenvalue problem itself, �02 containing the eigenvalues of ~Y�
2A

0 ~W2

and �2 being the eigenvector matrix. Assuming that all eigenvalues of �02 are distinct, the
column vectors of �2 are determined up to a constant multiplier. Since ~�2 can be computed
by e.g. Lapack [5], we have �2 = ~�2	, with 	 a diagonal matrix. Now, the choice (6.2)
gives an expression for the diagonal entries of �2:

wmk = 1)
(

M∑
l=1

~wml
lk

)
 k = 1)  k =

1∑M
l=1 ~wml
lk

: (6.33)

If �1 still contains repeated eigenvalues, the same procedure can be performed until �1 has
been determined uniquely.

Since � is known, the continuously differentiable eigenvectors are determined uniquely and
the eigenvector derivatives can be computed. Matrices C12 and C21 can be found from
(6.32b) and (6.32c) and by using Y�

m = ��1
m

~Ym for m = 1; 2, viz.

C12 = (�I� �1)
�1
Y�
1A

0W2; (6.34a)

C21 = �Y�
2A

0W1 (�I� �1)
�1 : (6.34b)
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Since the eigenvalues of �2 are repeated, but their derivatives are not, (6.13) needs to be
differentiated once more to determine C22. When the result is premultiplied by ~Y�, (6.21)
and (6.15) are used for W and W0, respectively, and matrix D is introduced to write W00 in
a similar way as in (6.15) such that

W00 = WD; (6.35)

we have

Y�
2A

00W2 � �002 = �2 (�02C22 � C22�
0
2)� 2Y�

2A
0W1C12: (6.36)

Then (6.36) gives an expression for the off-diagonal entries of C22, since C12 is already
available from (6.34a).

6.2.3 Repeated eigenvalue with repeated eigenvalue derivatives

If eigenvalue system (6.32d) has repeated eigenvalues too, which implies that some of the
derivatives of the repeated eigenvalue under consideration are also equal, the column vectors
of �2 are not unique either. As a consequence introduce a partitioning for �, ~W, ~Y�, � and
C:

� =

 �1 0 0

0 �̂2 0

0 0 �̂3

 ; ~W =
[

~W1
~̂W2

~̂W3

]
; ~Y� =

 ~Y�
1

~̂Y�
2

~̂Y�
3

 ; (6.37)

� =

 �1 0 0

0 �̂2 0

0 0 �̂3

 ; C =

 C11 Ĉ12 Ĉ13

Ĉ21 Ĉ22 Ĉ23

Ĉ31 Ĉ32 Ĉ33

 ;
where �̂3 2 CP�P , with P � M, is the eigenvalue matrix containing those eigenvalues
whose derivatives are equal. Then �̂2 2 C(M�P )�(M�P ) is the eigenvalue matrix that con-
tains the remaining repeated eigenvalues.

The primary goal is to determine �. To determine �̂3, relation (6.13) is differentiated
once more with respect to p and is premultiplied by the left-eigenvector matrix ~Y�. Next,
relations (6.21), (6.15) and (6.35) are substituted, which are the expressions for W, W0

and W00, respectively. To find �̂3 we use the partitioning given by (6.37).

~̂Y�
3A

00 ~̂W3�̂3 � �̂3�
00
3 = 2�̂3Ĉ31 (�I� �1) Ĉ13: (6.38)

For simplicity of notation, which will be of high importance in the generalization of the
theory, we omit the hat again. Unfortunately C31 and C13 cannot be computed since �3
is not yet determined. However, (6.32c) and (6.32b) give expressions for C13 and C31 in
terms of �1 and �3. Insertion of these expressions into (6.38) again gives an eigenproblem
with �3 the eigenvector matrix and �003 the eigenvalue matrix. Hence(

~Y�
3A

00 ~W3 + 2~Y�
3A

0 ~W1 (�I� �1)
�1 ~Y�

1A
0 ~W3

)
�3 � �3�

00
3 = 0: (6.39)
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If the second-order derivatives of the eigenvalues are distinct, �3 consists of column vectors
that are unique up to a multiplicative constant. Again, (6.2) ensures an expression for the
diagonal entries of �3. Since �2 has already been determined in (6.32d) and for �1 the same
procedure can be performed until �1 has been determined uniquely, the desired continuously
differentiable eigenvector matrix has been found.

To determine the eigenvector derivatives, the coefficient matrix C needs to be computed.
The blocks C12, C13, C21, C31 are computed like in (6.32b) and (6.32c), respectively. The
matrices C23 and C32 can be found from

Y�
2A

00W3 = 2 (�0I� �02)C23 + 2C21 (�I� �1)C13; (6.40a)

Y�
3A

00W2 = �2C32 (�
0I� �02) + 2C31 (�I� �1)C12: (6.40b)

The matrix C33 follows from differentiating equation (6.13) twice, viz.

Y�
3A

000W3 � �0003 = �6C31 (�I� �1)C11C13 � 6C31 (�I� �1)C12C23

� 6C31 (�I� �1)C13C33 + 3D31 (�I� �1)C13

+ 3C31 (�I� �1)D13 + 6C31 (�
0I� �01)C13

+ 6C32 (�
0I� �02)C23 + 3 (C33�

00
3 � �003C33) : (6.41)

Note that D has the same partitioning as C. Now that all off-diagonal entries of C have
been found, we use (6.29) to determine the diagonal entries to fill the coefficient matrix
completely.

6.3 Generalization

The cases discussed in the previous section provide us a way to generalize the theory of
finding the first-order derivatives of the eigenvectors for eigenvalues with the property that
(some of) their derivatives up to the kth order are repeated, but the (k+1)st-order deriva-
tives are distinct. This generalization will be given in this section and for readability we try
to keep the notation as simple as possible.

Let A, its eigenvalue and eigenvector matrix � and W, be n times continuously differ-
entiable. Then from Leibniz’ rule we have

A(n)W �W�(n) = �
n∑

k=1

(
n

k

)(
A(n�k)W(k) �W(k)�(n�k)

)
: (6.42)

As before, let the non-uniqueness of W be expressed by

W = ~W�; (6.43)

where � is a nonsingular matrix to be determined. Note that � has to satisfy (6.22). Since
A is non-defective, the kth-order derivative of the eigenvector matrix can be expressed in
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terms of the eigenvectors of A.

W(k) := WCk ; k = 1; :::; n: (6.44)

Upon substituting (6.43) and (6.44) into (6.42) we obtain

~Y�A(n) ~W�� ��(n) =

� �

n�1∑
k=0

�0

(
�(k)Cn�k � Cn�k�

(k)
)

+ �

n�1∑
k=0

n∑

=1

�1∑
m1=1

: : :

�
�1∑
m
=1

(�1)
�

(
�(k)Cm1

�Cm1
�(k)

)
Cm2

� � �Cm

Cm
+1

; (6.45)

where

�r := n � k �
r�1∑
j=1

mj � 1; r = 1; :::; 
; (6.46a)

�0 :=

(
n

k

)
; (6.46b)

�
 :=

(
n

k

)(
n�k
m1

)(
n�k�m1

m2

)
� � �
(
n�k�m1� : : :�m
�1

m


)
; (6.46c)

m
+1 := n � k �

∑

j=1

mj : (6.46d)

To determine �, a generalization of the partitioning of the matrices �, W, Y� and Ck for
k = 1; :::; n � 1 has to be introduced. Thus, let the eigenvalue matrix � be partitioned as

� =


�1 0 0 � � � 0

0 �2 0 � � � 0

0 0 �3 � � � 0
...

...
...

. . .
...

0 0 0 : : : �n+1

 ; (6.47)

such that

� =

[
�1 0

0 �I

]
;�0 =

 �01 0 0

0 �02 0

0 0 �0I

 ; : : : ;

�(n) =


�
(n)
1 0 0 � � � 0

0 �
(n)
2 0 � � � 0

0 0 �
(n)
3 � � � 0

...
...

...
. . .

...
0 0 0 : : : �

(n)
n+1

 : (6.48)

Notice that �1 in (6.48) can still contain repeated eigenvalues, but not the eigenvalue �.
On the other hand nothing is prescribed anymore for the derivatives, which means that
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some diagonal entry of �01 might be equal to �0. According to the partitioning of � the
following partitioning of ~W, ~Y� and Ck is introduced.

~W =
[

~W1 � � � ~Wn+1

]
; ~Y� =

 ~Y�
1
...

~Y�
n+1

 ;

Cm =


Cm;11 Cm;12 � � � Cm;1(n+1)

Cm;21 Cm;22 � � � Cm;2(n+1)

...
...

. . .
...

Cm;(n+1)1 Cm;(n+1)2 � � � Cm;(n+1)(n+1)

 : (6.49)

To determine �n+1, the partitioning of �, ~W, ~Y� and C has to be substituted in (6.45).
Then �n+1 will follow from the (n + 1; n + 1) block.

~Y�
n+1A

(n) ~Wn+1�n+1 � �n+1�
(n)
n+1 =

�

n�1∑
k=0

n∑

=1

�1∑
m1=1

: : :

�
∑
m
=1

n+1∑
p1=1

: : :

n∑
p
=1

(�1)
�


� Cm1;(n+1)p1

(
�(k)I� �(k)

p1

)
Cm2;p1p2 � � �Cm
+1;p
(n+1): (6.50)

Not all coefficient matrices can be computed since the eigenvectors are still not fixed.
However, an analytical expression for each coefficient matrix can be derived from (6.45) by
considering the right derivative and block matrices. As a result we obtain the following.

~Y�
n+1A

(n) ~Wn+1�n+1 � �n+1�
(n)
n+1 = �L(n; n � 1; n + 1; n + 1)�n+1; (6.51)

where the right-hand-side is found by using the following recurrence relation for L:

L(n;m; p; q) :=
m∑
`=1

n�1∑
k=`


k`

`

(
Ŷ�
pA

(k)Ŵ`��p`�(k)I+L(k; `� 1; p; `)
)(
�(`�1)I��(`�1)

`

)�1

�
(
L(n�k+`�1; `; `; q)+Ŷ�

`A
(n�k+`�1)Ŵq��`q�(n�k+`�1)I

)
: (6.52)

In this relation the constant 
k` is defined as


k` :=

{(
n
k

)
if k � n � k + `� 1;(

n
n�k+`�1

)
if k < n � k + `� 1;

(6.53)

and

Ŵq :=


~W1 if q = 1;

~Wq�q if 1 < q < n + 1;

~Wn+1 if q = n + 1:

(6.54)

By computing the eigenvalues and eigenvectors of (6.51) the matrix �n+1 can be deter-
mined for every n.
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To determine an eigenvector matrix that is continuously differentiable for repeated eigen-
values, (6.51) has to be solved several times for different values of n. When repeated
eigenvalues occur, (6.51) has to be evaluated for the first-order derivative. If (some of)
the eigenvalues of the resulting matrix are still the same, (6.51) has to be evaluated once
more for the second-order derivative. This process has to be repeated until (6.51) does
not result in any repeated eigenvalues anymore. At each iteration step the eigenvectors
have to be updated by multiplication of the � matrix. This iterative proces is illustrated in
Figure 6.1. After that all the blocks of � have been determined, the only thing left is the
normalization of the eigenvectors as in (6.2) taking (6.4) into account and computing the
coefficient matrix C1.

After a continuously differentiable eigenvector matrix has been found, i.e. in fact �, the
coefficient matrix C1 can be determined. For this the same recurrence relation as in the
conjecture is used. Also these relations are a result of extending the procedure of the simple
cases presented in the previous section.

C1;mn :=
1

m

(
�(m�1)I� �(m�1)

m

)�1

�
{
Y�
mA

(m)Wn + L(m;m � 1; m; n)
}

if m < n; (6.55a)

C1;mn :=
1

n

{
Y�
mA

(n)Wn + L(m;m � 1; m; n)
}

�
(
�(n�1)I� �(n�1)

n

)�1

if m > n: (6.55b)

Figure 6.1: A flowchart representation of the way to compute �.
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For the diagonal matrices C1;mm for m = 1; : : : ; n + 1 it holds that only the off-diagonal
entries can be determined by the following formula

�(m�1)
m C1;mm � C1;mm�

(m�1)
m :=

1

m

{
Y�
mA

(m)Wm � �(m)
m + L(m;m � 1; m;m)

}
: (6.56)

Finally, the diagonal entries of C1 can then be found by

ckk = �
N∑
l=1
l 6=k

wmlclk ; (6.57)

analogously as for the simple cases in the previous section. After the determination of C1,
the first-order derivative of the eigenvector matrix W0 can be found.

The only thing that still has to be done is to find �01. If �1 still contains repeated eigenval-
ues, the whole process described in this section has to be performed for �1 again. If �1 only
consists of distinct eigenvalues, �1 is computed by determining the diagonal of Y�

1A
0W1,

as is done similarly in (6.25).

Finally, a last remark has to be given. The fact that �1 can still contain repeated eigen-
values ensures that �1 does not have to be a diagonal matrix, but this matrix is unknown.
However, the fact that � commutes with � and that no higher-order derivative of �1 occurs,
�1 disappears from (6.51) and therefore definition (6.54) is justified.

6.4 Examples

In this section the generalization of the method presented in the previous section will be
illustrated by some examples. The first three examples show that the three simple cases
discussed in Section 6.2 fit with the general algorithm. The fourth example is a numerical
example.

Example 6.4 If all eigenvalues of � are distinct, the only thing left for the eigenvectors
is to normalize them according to (6.2) taking (6.4) into account. To compute the coef-
ficient matrix C1 and the eigenvalue derivative matrix �0, we have to write out (6.56) in
coordinates for m = 1. This results in (6.25) and (6.26), but now the values of 
k for
k = 1; : : : ; N are already known from the normalization. The diagonal entries of C1 do
not follow from (6.56), but from (6.57) which is identical to (6.29) where again all 
k are
known.
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Example 6.5 If � contains a repeated eigenvalue, a partitioning (6.47) has to be performed
on � for n = 1 and a similar one on the eigenvector matrix ~W and coefficient matrix C. This
partitioning is equal to (6.31). Next, (6.51) has to be evaluated for n = 1. In this case L is
equal to zero and therefore (6.51) indeed reduces to (6.32d). Since this eigensystem does
not yield any repeated eigenvalues again, also here the normalization of the eigenvectors
takes place and the computation of C1 can be carried out by using (6.55b), (6.55a), (6.56)
and (6.57) again.

Example 6.6 If both � and the eigenvalues of system (6.32d) contain repeated eigenvalues,
partitioning (6.47) has to be performed for n = 2. Similarly, partitioning (6.49) is applied to
the eigenvector matrix ~W and coefficient matrix C. The result resembles the partitioning
of (6.37). The evaluation of (6.51) returns the first nontrivial case, since L is nonzero, viz.

L(2; 1; 3; 3) = 2Y�
3A

0W1 (�I� �1)
�1
Y�
1A

0W3

= 2~Y�
3A

0 ~W1 (�I� �1)
�1 ~Y�

1A
0 ~W3�3: (6.58)

With this L, (6.51) reduces to (6.39). Because this eigensystem is assumed to have only
distinct eigenvalues, we can proceed by normalizing the eigenvectors and computing C1 in
a similar way as in the previous simple case.

Example 6.7 The last example considers the computation of eigenvalue and eigenvector
derivatives with respect to parameter p at p0 for a matrix A for which

�1(p0) 6= �2(p0) = �3(p0) = �4(p0) = �5(p0); (6.59a)

�02(p0) 6= �03(p0) = �04(p0) = �05(p0); (6.59b)

�003(p0) 6= �004(p0) = �005(p0); (6.59c)

�
(3)
4 (p0) 6= �

(3)
5 (p0): (6.59d)

We construct a matrix A by constructing an eigenvalue matrix � with these properties and
defining an eigenvector matrix W by

�(p) = diag


1

�1+11i + sin(2�p)+sin(6�p)

(1�11i) cos(6�p)�3 sin(2�p)+sin(6�p)

7i+(1�4i) cos(2�p)�3 sin(2�p)+sin(6�p)

7i+(6�4i) cos(2�p)+8 cos(4�p)+3 cos(6�p)

 ; (6.60)

W(p) =


i 0 0 1 2p

1 0 i 2p 0

1 i 2p 0 0

1 2p 0 0 1

2p 0 0 1 0

 : (6.61)
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Then the matrix A is defined as

A = W�W�1: (6.62)

Clearly, we have analytical expressions for the eigenvalues and eigenvectors. Therefore,
the results of the numerical method presented in this chapter can be verified immediately,
because the derivatives of the eigenvalues and eigenvectors are also available analytically.

In general, the analytical expressions for the eigenvalues and eigenvectors are hard, if not
impossible to obtain. However, the repeated eigenvalues only occur at p = 0:5 and A for
this value becomes

A(0:5) =

 �6:5 + 10:0i �5:5� 1:0i �1:0 + 5:5i 5:5 + 1:0i 11:0 + 2:0i
�1:0 + 5:5i �2:0 + 16:5i 5:5 + 1:0i 1:0� 5:5i 2:0� 11:0i
�1:0 + 5:5i �1:0 + 5:5i 4:5 + 12:0i 1:0� 5:5i 2:0� 11:0i
�1:0 + 5:5i �1:0 + 5:5i 5:5 + 1:0i 5:5i 2:0� 11:0i
�1:0 + 5:5i �1:0 + 5:5i 5:5 + 1:0i 1:0� 5:5i 1:0


To find a continuously differentiable eigenvector matrix we use the algorithm illustrated in
Figure 6.1. The ingredients of this algorithm such as A0(0:5), A00(0:5), etc. can be evalu-
ated since A is known as a function of p. Note that in this example outcomes are given in
4 decimals.

Initialization step

�1 = 1;�2 = (�1 + 11i)I4�4;W1(0:5) =

 i
1
1
1
1

 ;
~W2(0:5) =

 0:0640 + 0:3378i 0:3344� 0:2241i 0:7454 0:8347
0:2113� 0:0292i 0:0417 + 0:4298i 0:2981� 0:1491i �0:5274� 0:0162i
0:0783 + 0:5921i 0:6093 0:2981� 0:1491i 0:0314 + 0:0154i
0:6762 0:3739 + 0:2131i 0:2981� 0:1491i 0:1076� 0:0159i
0:0956 + 0:1152i 0:0011� 0:3083i 0:2981� 0:1491i 0:1076� 0:0159i

 :
Step 2

�02(0:5) = �8�;�03(0:5) = 03�3;W2 =

 0
0
1
�i
0

 ;
~W3(0:5) =

 0:1121� 0:0237i 0:6333 + 0:1628i 0:0069 + 0:0062i
�0:0689 + 0:0204i 0:1039� 0:1054i �0:3404� 0:1994i
0:2719� 0:0366i �0:1329 + 0:1467i �0:3422 + 0:2390i
0:2175 + 0:2279i 0:3827 + 0:1353i 0:1082� 0:1366i

�0:1054� 0:2515i 0:2506 + 0:0275i �0:1014 + 0:1428i

 :
Step 3

�003(0:5) = (36� 396i)�2;�004(0:5) = (4� 16i)�2I2�2;

W3(0:5) =

 0
1
�i
0
0

 ; ~W4(0:5) =

 0:2591 + 0:3698i 0:0886� 0:0603i
�0:0133� 0:0239i �0:1805� 0:1802i

0 0
0:2725 + 0:3937i 0:2691 + 0:1200i

�0:0133� 0:0239i �0:1805� 0:1802i

 :
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Step 4

�
(3)
4 (0:5) = 192�3;�

(3)
5 (0:5) = 02�2;W4(0:5) =


0
1
1
0
0
1

 ;

~W5(0:5) =


0:2730� 0:2679i 0:1196� 0:1276i

�0:1154� 0:2560i 0:1529 + 0:0069i
0 0
0 0

0:0170� 0:1525i 0:1265� 0:2805i
0 0

 :

Step 5

�
(4)
5 (0:5) =

[
0 0

0 192�3

]
;W5 =

1 1
0 1
0 0
1 0
0 1

 :

Since no repeated eigenvalues occur anymore, the continuously differentiable eigenvector
matrix has been determined, which is equal to (6.61) for p = 0:5. Note that the normal-
ization (6.2) has already been performed and the eigenvector matrix that is continuously
differentiable at p = 1=2 taking into account the normalization is given by

W(0:5) =


i 0 0 1 1

1 0 1 0 1

1 1 �i 0 0

1 �i 0 1 0

1 0 0 0 1

 : (6.63)

The next step is to determine C. The blocks Cmk for m; k = 1; : : : ; 6 with m 6= k and
the off-diagonal entries of Cmm can be determined by using (6.55a), (6.55b) and (6.56),
respectively. The diagonal entries of C can be computed by using (6.57). As a consequence
C equals

C =


0 �i 1 �1 �1

�2� 2i 0 �1� i 1 1 + 2i

�2 0 0 0 2

�2i �1� i 1� i 0 �1 + i

0 i �1 1 0

 : (6.64)
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To conclude this example, the eigenvalue and eigenvector derivative matrix are given by

�0(0:5) =


0 0 0 0 0

0 �8� 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ; (6.65)

W0(0:5) = W(0:5)C =


�2i 0 0 1� i �1
�2 0 0 0 1

�2 �i �2i 0 0

�2 �1� 2i 0 �1� i 0

0 0 0 0 �1

 : (6.66)

Note that this eigenvector derivative matrix belongs to the continuously differentiable eigen-
vector matrix with the normalization (6.2) taken into account.

6.5 Consequences for RCWA

A mathematical theory has been derived in this chapter to obtain all eigenvectors of A with
the property that they have to be continuously differentiable at p = p0. In this section we
will discuss its relevance to the RCWA algorithm by means of two questions, namely whether
repeated eigenvalues occur inside RCWA at all and secondly whether the normalization of
eigenvectors is needed.
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Figure 6.2: Illustration of the crossing of eigenvalues inside a layer consisting
of a block with refractive index 1.5 and a block with air. The incident field is
TE polarization with a wavelength of 0:4� and the angle of incidence satisfies
relation (6.68). The figure on the right gives the eigenvalues as a function of the
block width, while the left figure is a close-up of the crossing of two eigenvalues.
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6.5.1 The occurrence of repeated eigenvalues

Let us first discuss whether repeated eigenvalues occur in the RCWA algorithm at all. For
planar and conical diffraction the matrix of which the eigenvalues have to be computed are
defined in (3.13), (3.21), (3.29) and (3.32). Appendix A.3 shows that when the refractive
index inside a layer is real-valued, the eigenvalues will also be real-valued. Because of this
fact, we use real-valued refractive indices for illustration purposes.

For TE polarization, the matrix of which the eigenvalues and eigenvectors have to be
computed is defined in (3.13). It consists of a sum of two matrices. The first one, K2

x ,
is diagonal, while the second one, Ei , is a Toeplitz matrix. For homogeneous layers, Ei

becomes a constant times the identity matrix and it is easily shown that repeated eigenvalues
occur when k2xn = k2x(n+p), which gives

2nIp sin � =
(
2np + p2

) �
�
: (6.67)

Since two diagonal entries should be equal, it holds that p 6= 0 and we can divide both sides
of (6.67) by p. As a result, we find an expression for sin � in terms of the ratio between the
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Figure 6.3: Illustration of the phenomena avoidance of crossing of eigenvalues.
Four evaluations with different angles of incidence (11�, 11.537�, 12� and 17�)
have been carried out to show the eigenvalues as a function of the block width
of a binary grating structure with refractive index 1.5.
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wavelength and the period of the grating, viz.

sin � =
(2n + p)

2nI

�

�
: (6.68)

The question whether repeated eigenvalues still occur when we have material transitions
inside a layer, can be answered affirmatively. From Figure 6.2 we can see that repeated
eigenvalues only occur when � satisfies (6.68). Furthermore, the eigenvalues show the
avoidance of crossing phenomena as described by [23]. This phenomena is shown in Figure
6.3, where we deviate just slightly from the optimal � satisfying (6.68).

In the TM polarization case no repeated eigenvalues occur due to the matrix definition
(3.21), unless the layer is homogeneous. The matrix of which the eigenvalues have to be
computed for conical diffraction is a compilation of the matrices for TE and TM polariza-
tion and, therefore, repeated eigenvalues can occur there as well. The following section
discusses whether repeated eigenvalues really give problems.

6.5.2 The redundance of normalizing the eigenvectors

Within RCWA the goal is to find the derivatives of the field amplitudes or the diffraction
efficiencies. Although we tried to make the necessity of normalizing the eigenvectors clear in
this chapter, Chapter 3 manages to describe the complete RCWA algorithm without using
this at all. This is because the normalization matrix � drops out. A physical argument
for this is that within RCWA the computations of eigenvalues and eigenvectors are merely
a mathematical way to obtain the field amplitudes, which are physical quantities that can
be measured. The choice of the eigenvectors should not and also does not matter for the
values of the field amplitudes.

Theorem 6.8 (Redundancy of �)
The reflected or transmitted field amplitudes, obtained by solving (3.65), are independent
of the choice of eigenvectors and therefore are independent of the choice of �.

To give a formal proof, two lemmas will be needed.

Lemma 6.9
If � commutes with �i , it also commutes with Xi and Qi .

Proof. Let us start with Qi , which is a diagonal matrix with diagonal elements qi ;n =√
�i ;n. Because � and � commute, we have that �i ;n
nm = 
nm�i ;m. This gives two pos-

sibilities, namely 
nm = 0 or �i ;n = �i ;m. Both possibilities ensure that qi ;n
nm = 
nmqi ;m
and therefore Qi commutes with �.

The matrix Xi is also a diagonal matrix with elements xi ;n = exp[�k0dqi ;n]. By using



102 Eigenvalue and eigenvector sensitivity

a Taylor expansion Xi = I+ k0dQi + (k0d)
2Q2

i + : : :+ (k0d)
nQn

i + : : : and using the fact
that Qi� = �Qi repetitively, proves that Xi� = �Xi .

For planar diffraction we can write the eigenvector matrixWi as in (6.21), that isWi = ~Wi�.
The matrix Vi is defined for planar diffraction by (3.51). For conical diffraction matrices
Wi and Vi are defined by (3.60) and (3.61). These matrices consist of block matrices W1;i

and W2;i . Both of them can be written as Wm;i = ~Wm;i�m for m = 1; 2. Matrices Wi and
Vi also contain block matrices V11;i , V12;i , V21;i and V22;i , where we can also extract � as
shown by the following lemma:

Lemma 6.10
For planar diffraction define ~Vi := ~WiQi for TE polarization and ~Vi := Pi

~WiQi for TM
polarization. For conical diffraction let us define ~Wi and ~Vi as

~Wi =

[
0 ~W2;i

~V11;i
~V12;i

]
and ~Vi = �

[
~W1;i 0
~V21;i

~V22;i

]
; (6.69)

with

~V11;i := A�1
i

~W1;iQ1;i ; ~V12 := KyA
�1
i Kx

~W2;i ; (6.70)

~V21;i := KyB
�1
i KxE

�1
i

~W1;i ; ~V22;i := B�1
i

~W2;iQ2;i : (6.71)

Then we can write for both types of diffraction Wi as ~Wi� and Vi as ~Vi�.

Proof. The lemma is a result of using (6.21) and Lemma 6.9.

TE polarization : Vi = WiQi = ~Wi�Qi = ~WiQi� � ~Vi�; (6.72)

TM polarization : Vi = PiWiQi = Pi
~Wi�Qi = Pi

~WiQi� � ~Vi�; (6.73)

Conical diffraction : Wi =

[
0 W2;i

V11;i V12;i

]
=

[
0 ~W2;i

~V11;i
~V12;i

] [
�1 0

0 �2

]
; (6.74)

Vi = �
[
W1;i 0

V21;i V22;i

]
= �

[
~W1;i 0
~V21;i

~V22;i

] [
�1 0

0 �2

]
; (6.75)

since 
V11;i = A�1

i W1;iQ1;i = A�1
i

~W1;i�1Q1;i = A�1
i

~W1;iQ1;i�1 � ~V11;i�1

V12;i = KyA
�1
i KxW2;i = KyA

�1
i Kx

~W2;i�2 � ~V12;i�2;

V21;i = KyB
�1
i KxE

�1
i W1;i = KyB

�1
i KxE

�1
i

~W1;i�1 � ~V21;i�1

V22;i = B�1
i W2;iQ2;i = B�1

i
~W2;iQ2;i�2 � ~V22;i�2;

(6.76)

which completes the proof.

Let us return to the proof of Theorem 6.8.
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Proof. Consider (3.65). Consider the eigenvalues and eigenvectors inside layer k , which
implies that only the following block has to be considered, viz.[

Wi WiXi

Vi �ViXi

] [
WiXi Wi

ViXi �Vi

]�1

=
1

2

[
Wi

(
X�1
i + Xi

)
W�1

i Wi

(
X�1
i � Xi

)
V�1
i

Vi

(
X�1
i � Xi

)
W�1

i Vi

(
X�1
i + Xi

)
V�1
i

]
: (6.77)

Discard the i-dependence for notational convenience. Assume the eigenvector matrix ~W

has been found, then by using (6.21) we have W = ~W�. Because of Lemma 6.10 only the
first block of (6.77) has to be considered, the other blocks are similar. Using Lemma 6.9
this block can be written without the occurrence of �, viz.

~W�
(
X�1 + X

)
��1 ~W�1 = ~W

(
X�1 + X

)
~W�1: (6.78)

Therefore, it can be seen that � is redundant.

Since both the ordinary and enhanced transmittance matrix approach both have relation
(3.65) as their starting point, the results of either algorithm do not depend on the choice
of the eigenvectors.

In the computations of the derivatives of the field amplitudes, the eigenvector derivatives
are also required. Intuitively, the normalization of the eigenvectors should not play a role
here as well. However, the eigenvectors computed by the RCWA algorithm do not ensure
that they are continuously differentiable as shown in Section 6.1. Before we give the proof
of the normalization redundancy, we need another lemma first.

Lemma 6.11
Define ~�, ~Q and ~X as follows

(~�)kl :=

{
( ~W�1)kA

0 ~Wl if �k = �l

0 if �k 6= �l
; (6.79)

~Q :=
1

2
Q�1~� and ~X := �k0d

2
Q�1~�X: (6.80)

Then

��0 = ~��;�Q0 = ~Q� and �X0 = ~X�: (6.81)

Proof. Differentiate the original eigensystem with respect to the shape parameter

( ~W�1)A0 ~W�� ��0 = �� (�C� C�) (6.82)

If the right-hand side is written out in components, we can see that

(�C� C�)kl = 0 if �k = �l (6.83)
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and since � only has nonzero elements at those positions, the right-hand-side has zeros
exactly at those positions where ��0 has not.

The matrix Q consists of the square roots of � with a positive real part and therefore
its derivative with respect to the shape parameter is

Q0 =
1

2
Q�1�0; (6.84)

and thus

�Q0 =
1

2
�Q�1�0 =

1

2
Q�1��0 =

1

2
Q�1~�� = ~Q�: (6.85)

In a similar way, matrix X consists of the exponential of Q, therefore

X0 = �k0dQ0X (6.86)

and therefore

�X0 = �k0d�Q0X = �k0d ~Q�X = �k0d ~QX� = ~X�; (6.87)

which completes the proof.

Theorem 6.12 (Redundancy of � in RCWA sensitivity)
The first order derivatives of the reflected or transmitted field amplitudes, obtained by
solving the differentiated version of (3.65), are independent of the choice of eigenvectors
and therefore independent of the choice of �.

Proof. As in the proof of Theorem 6.8, consider only (6.77). Differentiate this block with
respect to a shape parameter of layer i and denote this derivative by ’.

W0
(
X�1 + X

)
W�1 +W

(
(X�1)0 + X0

)
W�1 +W

(
X�1 + X

)
(W�1)0: (6.88)

Assume that � can be partitioned into m blocks with m = N if all eigenvalues are distinct
and m < N if repeated eigenvalues occur.

� =


�1

�2

. . .
�m

 where �k = �kI: (6.89)

Then matrix C can be partitioned similarly as � such that

Ckl =
1

�l � �k y
�
kA

0wl =
1

�l � �k �
�1
k

~Y�
kA

0 ~Wl�l : (6.90)
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The equality above only holds for k 6= l , thus we need another relation for Ckk . Analyze
the first and third term of (6.88) together:

W0
(
X�1 + X

)
W�1 +W

(
X�1 + X

)
(W�1)0

= ~W�C
(
X�1 + X

)
��1 ~W�1 � ~W�

(
X�1 + X

)
C��1 ~W�1

= ~W�
(
C
(
X�1 + X

)� (X�1 + X
)
C
)
��1 ~W�1: (6.91)

Consider the following term(
C
(
X�1 + X

)� (X�1 + X
)
C
)
kl

=

{
1

�l��k

(
1
xl
� 1

xk
� xl + xk

)
��1
k

~Y�
kA

0 ~Wl�l if k 6= l

0 if k = l
: (6.92)

Note that Xk = xk I as for the eigenvalues.

When we define a new matrix ~C by

~Ckl :=

{
1

�l��k

~W�1
k A0Wl if k 6= l

0 if k = l
; (6.93)

the matrix ~C does not depend in any way on the normalization matrix �. Take another look
at (6.91). We see now that

~W�
(
C
(
X�1 + X

)� (X�1 + X
)
C
)
��1 ~W�1

= ~W
(
~C
(
X�1 + X

)� (X�1 + X
)
~C
)
~W�1; (6.94)

and clearly the result has no dependence on � anymore.

For the second block we need Lemma 6.11. Because the product of � and X0 can be
rewritten, the dependency of � will drop out.

Also for the other blocks of (3.65) it can be shown that the � drops out after using
Lemma 6.11. This completes the proof.

To conclude this chapter, we can state that by deriving a mathematically sound theory
for the computation of eigenvalue and eigenvector derivatives, we can formally prove that
we can compute sensitivity information in RCWA much less complicated. Furthermore,
repeated eigenvalues do not give additional problems if they arise.

6.5.3 Eigenvalue and eigenvector derivatives in RCWA

In Chapter 5 we promised that this chapter provides the formulae for the eigenvalue and
eigenvector derivatives. Let ~W be the eigenvector matrix computed by the RCWA algorithm.
The eigenvalue derivatives �0i are given by

�0i = ~y�i A
0 ~wi ; i = 1; : : : ; N: (6.95)
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For the eigenvector derivatives, we have to compute C. Since entries (k; l) of C for which
�k = �l are redundant for the derivative computations, let those entries be chosen equal
to zero, viz.

ckl =

{
~y�
k
A0(p0)~wl

�l��k
if �k 6= �l ;

0 if �k = �l :
(6.96)

Finally, the eigenvector derivative matrix W0 can be found by

W0 = ~WC: (6.97)



Chapter 7

Shape parameter reconstruction

Since inversion of the RCWA algorithm is not possible, we have to use optimization methods
to reconstruct shape parameters from a measured field. These optimization methods find
the shape parameters iteratively by a process as illustrated in Figure 7.1. The process starts
with an initial guess of the shape parameters under consideration. One of the assumptions
is that we are close enough to the actual solution, such that we can guarantee that the
optimization algorithm provides us the true shape parameters. The RCWA algorithm is
used to compute the diffraction efficiencies. When these computed diffraction efficiencies
are compared with the measured ones and their differences are smaller than a user-defined
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Figure 7.1: Schematic representation of the inverse process.
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threshold, we have an approximation of the true shape parameters, assuming a proper for-
mulation of the inverse problem. When the diffraction efficiencies do not match, the initial
guess has to be adapted. The first-order derivatives of the field amplitudes with respect
to the shape parameters determine the direction of the adaptation. Thus a new estimate
of the shape parameters is obtained. The whole procedure is repeated until the computed
diffraction efficiencies match the measured ones.

Let the measured field be taken such that we take a set of shape parameters satisfying
a physical model and use this set to compute the diffraction efficiencies. This implies that
the parameters that are searched for have to match them and the "measured" signal is free
of noise. In this chapter we will show that even with this crude assumption, we already
encounter some robustness issues.

7.1 Method of inversion

There are many optimization algorithms available and all of them have their advantages and
disadvantages. To show what kind of algorithm is best for the diffraction problem described
in this thesis, we will compare several of them. The way these algorithms are different from
each other is the way they generate steps towards to optimum.

The algorithms are either line search methods or trust-region methods, which both gener-
ate steps with the help of a quadratic model of the objective function. Line search models
use this model to generate a search direction, and then find a suitable step length along
this direction. Trust-region methods define a region around the current iterate within which
they trust the model to be an adequate representation of the objective function, and then
choose the step to be the approximate minimizer of the model in this region. If a step is
not acceptable, they reduce the size of the region and find a new minimizer.

In the optimization we want to compare the given diffraction efficiencies, which in practice
will be measured, with computed diffraction efficiencies using our estimates of the shape
parameters as input. Let the objective function be given by

f (p) := kr(p)k2 =
1

2

N∑
j=�N

rj(p)
2; (7.1)

with

r(p) := �simr (p)� �measured
r : (7.2)

Since this objective function is a sum of squares, we speak of least-squares optimization.
Although the function can be minimized using a general unconstrained minimization tech-
nique, certain characteristics of the problem can be exploited to improve the efficiency of
the solution procedure. The gradient and Hessian matrix of (7.1) have a special structure.



7.1 Method of inversion 109

Denoting the Jacobian matrix of r(p) as J(p), we have

rf (p) =

m∑
j=1

rj(p)rrj(p) = J(p)T r(p); (7.3)

r2f (p) =

m∑
j=1

rrj(p)rrj(p)T +

m∑
j=1

rj(p)r2rj(p)

= J(p)T J(p) +

m∑
j=1

rj(p)r2rj(p): (7.4)

We will consider two methods for nonlinear least-squares problems, namely the Gauss-
Newton method and the Levenberg-Marquardt method. For comparison we will also look
at Nelder-Mead, which is a derivative-free method, steepest descent and the BFGS (Broy-
den, Fletcher, Goldfarb, and Shanno) method, which is a quasi-Newton method. Without
going into subtle details of every method, we would only like to state the basic features.

The Nelder-Mead method is a derivative-free method that keeps track of N + 1 points
in RN , whose convex hull forms a simplex. In a single iteration of the algorithm, we remove
that vertex (point of the simplex) with the worst function value and replace it with another
point with a better value. The new point is obtained by reflecting, expanding, or contract-
ing the simplex along the line joining the worst vertex with the centroid of the remaining
vertices. If we cannot find a better point in this manner, we retain only the vertex with the
best function value, and we shrink the simplex by moving all other vertices toward this value.

The steepest-descent method , BFGS method and Gauss-Newton method are line search
methods. These methods use a Taylor expansion to obtain a search direction p and a
step-length parameter �, viz.

f (xk + �p) = f (xk) + �p
Trf (xk) + 1

2
�2pTr2f (xk) +O(�3): (7.5)

The steepest-descent method has descent direction �rfk , while the other two methods
have descent direction � (r2fk

)�1rfk . The last one follows from setting � = 1, differen-
tiating (7.5) with respect to p, neglecting the higher order terms of � and setting the result
equal to zero. The difference between the BFGS method and the Gauss-Newton method lies
in the way they compute the Hessianr2f (xk). The BFGS uses the so-called secant equation
Bk+1(xk+1�xk) = rfk+1�rfk , which mimics the property r2fk(xk+1�xk) � rfk+1�rfk .
The Gauss-Newton method exploits the fact that the objective function is a least-squares
problem and therefore uses the special structure of the Hessian as given in (7.4). The Hes-
sian is in this case approximated by JTk Jk . Finally, the step size � has to be computed such
that it satisfies the Wolfe conditions which ensure that this step size gives a substantial
reduction of f .

Finally, we also consider the Levenberg-Marquardt method . This method uses the same
Hessian approximation as the Gauss-Newton method, but the line search is replaced by a
trust-region strategy. For an overview of these and other optimization methods, including
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the details, see [42]. We used the implementation of these methods as in the Optimization
Toolbox V3.1 of Matlab V7.3 (R2006b).

7.2 Preliminary results

In this section we will only show some preliminary results. The reason for calling them
"preliminary" is that we made two assumptions in this thesis, which are not strictly valid
in practice. The first assumption was given in Section 1.2, where we assumed that the
initial estimates of the shape parameters are close "enough" to the actual shape parame-
ters. With this assumption we ensure that the minimum found by the optimization method
under consideration gives the actual shape parameters. Another assumption made here is
that we measure the diffraction efficiencies noise-free. In this section we will discuss some
issues we encounter in the inverse problem of reconstructing the shape parameters.

Let us first look at the assumption of the initial guess being close enough to the actual
shape. Consider testcase 2: the binary grating consisting of silicon (see Table 5.1). Let the
incident field have a wave length �0 = 0:7�. When we consider the diffraction efficiencies
as a function of the height and width of the binary grating for only one angle of incidence
(� = 0, � = 0 and  = �=2), we see that there are two optima very close to each other as
is illustrated in Figure 7.2.

Figure 7.2 immediately gives insight in the seriousness of noise in our problem. Most likely,
any value in the blue bar near the actual shape will be a candidate for a local optimum when
noise is considered. A remedy can be to consider more angles of incidence simultaneously.
Other angles of incidence give rise to other local minima and combining the diffraction effi-
ciencies for several angles simultaneously, makes it more likely that the minimum we obtain
is the actual shape of the grating profile. There are several questions to be asked at this
point. How many angles should we take to ensure that the minimum is the actual shape
of the grating and which angles should we take? The first question is a fundamental one
and depends on the amount of independent information of a measurement. From a math-
ematical point of view one should take as many angles of incidence as possible to ensure
that the minimum is the actual shape. Especially for the comparison with measurements
which are not free of noise, taking more points will reduce the influence of noise. However,
from a more practical point of view, one would like to use as few angles of incidence as
possible to keep the computation time per iteration to a minimum without increasing the
number of iterations in the optimization routine. The latter occurs for example when noise
is dominant. Therefore, the practical application will determine the number of angles.

The second question involves more insight. Figure 7.4 illustrates the objective function
as defined in (7.1) for several settings of the polar angle �, the azimuthal angle � and the
polarization  for test case 2 of Table 5.1: the binary grating consisting of silicon. Using
angles which are very close to each other only makes sense when the influence of noise has
to be reduced, but in this thesis we have no noise. The angles that reduce the number of
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(0.5 ,0.5 )L L

(0.4985464 ,0.50029286 )L L

Figure 7.2: Illustration of the diffraction efficiencies as a function of the param-
eter space of a binary grating for one angle of incidence (� = 0, � = 0 and
 = �=2) and its local minima.

Figure 7.3: Logarithm of the objective function for all angles used in Figure 7.4
as a function of the parameters of the binary diffraction grating and the direction
the deviations are admitted for the initial guesses of the shape parameters.
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Figure 7.4: Logarithm of the objective function for one angle of incidence at
the time as a function of the parameters of the binary diffraction grating.

local minima should be further away from each other. These angles can be chosen such
that different diffraction orders are present. From relation (2.59) we can select different
areas to choose these angles. The redistribution of the energy will cause the distinction for
those angles as is done in Figure 7.4.

In the previous section we discussed five optimization methods, each with its own features.
As an example to show the convergence behaviour, we change the initial shape parameter
along the line indicated in Figure 7.3. When we apply those methods to the binary grating
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structure made of silicon with only one angle of incidence (� = 0, � = 0 and  = �=2),
we see that even for a deviation of 0.001, all methods accept Nelder-Mead converge to
another local minimum, since there are two local minima situated very close to each other
as illustrated in Figure 7.2. When we take the angles of incidence into account as used in
Figure 7.4, all methods converge to the actual shape parameters as long as the deviation
is less than 0.01. Besides the convergence to the actual shape parameters, an important
feature is how fast a method reaches this convergence. Consider Figure 7.5 where the
convergence behaviour of all methods is illustrated when the three angles of incidence and
two polarization states from Figure 7.4 are used. The convergence results show what the
methods predict: when we are close enough to a minimum there is fast convergence for
the Gauss-Newton and Levenberg-Marquardt method, the BFGS method is a little slower,
but still faster than steepest descent and the slowest method is the Nelder-Mead method.
Also the convergence behaviour of the method when we move further away with our initial
guess from the actual shape is intuitive, since the quadratic convergence of Gauss-Newton,
Levenberg-Marquardt and BFGS only starts when we are close enough to a minimum. Tak-
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Figure 7.5: Convergence behaviour of the residual for several initial guesses by
using the three angles of incidences each with two polarization states of Figure
7.4. The initial guesses are defined by � such that the width is the actual width
- � and the height is the height - �.
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ing multiple angles does not ensure there are no other local minima, but the more angles
one takes into account, the less the change is that two local minima are very close to each
other. But if we are too far away from the actual shape, we can have convergence to other
values.

In Chapter 5 we derived an analytical method to speed up the computations of the field
amplitude derivatives with respect to the grating shape parameters. Since the optimization
process requires that for every iteration the derivatives have to be computed with respect
to all shape parameters, the analytical approach will decrease the computation time for
each iteration drastically. Similar to the results shown in Section 5.4.2, the speed increase
compared to finite differences will be more when we have a higher number of harmonics
and shape parameters.



Chapter 8

Conclusions and future work

8.1 Conclusions

In the reconstruction of the shape parameters of a grating structure, the computation of the
field derivatives with respect to those parameters plays an important role. An intuitive and
simple to implement method is finite differences, which recomputes the field with RCWA for
a slightly changed shape parameter. However, RCWA incorporates solving eigensystems,
which is computationally expensive. In this thesis we provide an alternative method to
compute first-order derivatives of the field faster and more accurately. The speed increase
is mainly due to avoiding the solution of additional eigensystems. The better accuracy is
due to the fact that no additional approximations are made besides those of the RCWA
algorithm itself.

The analytical method computes the derivatives of the field with respect to the shape
parameters by straightforward differentiating all relations within RCWA, including all eigen-
values and eigenvectors. In general, eigenvectors are not continuously differentiable, because
they are not even uniquely determined. In this thesis a mathematical basis is provided for
finding that eigenvector that is differentiable irrespective of the eigenvalues being distinct
or repeated. Employing this mathematical basis, we show that the normalization of the
eigenvectors is redundant in the field derivative computations. As a result we can use the
eigenvectors obtained in the RCWA algorithm immediately in our sensitivity theory.

Both finite differences and the analytical approach compute the sensitivity for a discretized
grating structure. This implies that the number of layers should be kept the same for both
RCWA evaluations in finite differences and in the comparison between both methods to
avoid additional errors.

A grating shape is described by a number of physical parameters. For finite differences
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every derivative with respect to such a parameter requires at least one additional RCWA
evaluation. The analytical method computes the derivatives of the field with respect to
the RCWA parameters first and converts them to derivatives with respect to the physical
parameters. If a structure is described by many (physical) parameters, the computational
effort is significantly lower than that of finite differences. For the binary structure the an-
alytical method computes the derivatives twice as fast as finite differences do, while for
a stacked grating consisting of a homogeneous layer with three symmetric trapezoids, the
analytical method is more than ten times faster.

Under the assumptions that the initial guess is close enough to actual shape parameters, we
are able to reconstruct the shape parameters. To make the optimization process more ro-
bust, we have to take more angles of incidence into account to eliminate other local minima.
Because of the structure of the objective function, least-squares optimization methods like
Gauss-Newton and Levenberg-Marquardt converge fastest to the actual shape parameters
(< 5 iterations).

The RCWA algorithm is applicable to any type of grating. The C method shows faster
convergence than RCWA for smooth grating profiles, but this method is not applicable to
overhanging gratings. The main reason why the C method fails for overhanging gratings is
that it does not remove the dependence of the material properties on all other coordinates
than the coordinate the periodicity is in. Therefore the homogeneity of the medium cannot
be used and the relations of the C method are not solvable.

8.2 Future work

As Arthur Bloch said: "Every solution breeds new problems" [9]. This thesis made a start
with some of the issues encountered in the inverse diffraction problem. There are still many
questions to be answered and many other questions raised during the project. We can
categorize the questions under three headings: the forward model, the sensitivity analysis
and the optimization procedure.

One major question in the forward model is how many terms we have to take into ac-
count in the Fourier series of the relative permittivity or its reciprocal and of the field to
obtain a sufficiently accurate answer of the field amplitudes. Related to this issue is the
question whether we can speed up the RCWA algorithm by performing other expansions
as is done in the adaptive spatial resolution technique [51]. Another issue is to avoid the
assumption that the grating structures are periodic, since damages or misprints can also
occur at one location only and gratings have a finite number of periods. For this reason we
have to consider aperiodic gratings as well.

Next consider the sensitivity analysis. For the reconstruction of parameters, it could be
worthwhile to investigate second-order derivatives of the field with respect to the shape
parameters. If these second-order derivatives can be computed fast and reliable, it can
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improve the convergence rate of the optimization process. Another advantage of having
this second-order derivative is that it is an indication of how the field behaves around an
optimum. An important grating structure in practice is the two-dimensional diffraction
gratings which is periodic in two directions. They have already been investigated in the
literature and are important for applications in lithography. Since the computation time
for two-dimensional gratings grows as the sixth power of the number of harmonics instead
of the third power for one-dimensional gratings, the analytical sensitivity theory should be
extended to two-dimensional gratings to reduce the computation time drastically.

The major questions are dealing with the optimization. Our basic assumption is that our
initial guess is "close enough" to the actual solution to guarantee convergence of the so-
lution. We have not given a formal definition of "enough", which requires a good insight
in the solution domain. The objective function can have multiple optima and the distances
between those optima can be very different. Global optimization should be researched to
overcome the assumption of "close enough". A second issue is the objective function, which
is chosen such that it has the advantage that it characterizes the optimization as a least-
squares optimization problem. But the question whether this is the best one, or whether
some diffraction orders are more important than others have not been considered yet. Re-
lated to this topic is the number of angles one should take into account for the incident
field and their positions to ensure that the local minima in the vicinity of the actual shape
parameters are removed. It might be possible that using other wavelengths ensures the ac-
tual shape parameters are found. Finally, the simulated diffraction efficiencies are compared
to "measured" data. In this thesis we assumed that the measured data is coming from an
ideal sensor, that is the data has no noise. Also, our measured data are derived from a
shape that satisfies the physical model, but in practice the structure will contain features
that are not modeled. Therefore among others stop criteria have to be investigated such
as the relative residual (indication of progress in the objective function) and regularization
techniques should be used to match the solution to known a priori information.
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Appendix A

Mathematical derivations

A.1 Conversion of x- and y - to s- and p-components

A.1.1 Proof of (2.43a)

Let rxn, ryn, rzn be given. Although rsn and rpn are defined already in Section 2.3, we will
state them here again.

rsn = � sin�nrxn + cos�nryn; (A.1a)

rpn = � 1

k0nI
f(kI;znrxn + kxnrzn) cos�n + (ky rzn + kI;znryn) sin�ng : (A.1b)

Eliminate rzn from (A.1b) by using (2.39).

rpn = � 1

k0nI
((kI;znrxn + kxnrzn) cos�n + (ky rzn + kI;znryn) sin�n)

= � 1

k0nI

((
kI;znrxn + kxn

kxnrxn + ky ryn

kI;zn

)
cos�n

+

(
ky
kxnrxn + ky ryn

kI;zn
+ kI;znryn

)
sin�n

)
= � 1

k0nIkI;zn

(
k2I;znrxn cos�n + k

2
xnrxn cos�n + kxnky ryn cos�n

+kykxnrxn sin�n + k
2
y ryn sin�n + k

2
I;znryn sin�n

)



120 Mathematical derivations

y
= � 1

k0nIkI;zn

(
k2I;znrxn cos�n + k

2
xnrxn cos�n + k

2
xnryn sin�n

+k2y rxn cos�n + k
2
y ryn sin�n + k

2
I;znryn sin�n

)
= � 1

k0nIkI;zn

(
k2xn + k

2
y + k2I;zn

)
(rxn cos�n + ryn sin�n)

z
= � k0nI

kI;zn
(rxn cos�n + ryn sin�n) : (A.2)

For the equality indicated by y, the definition of the angle �n is used in the identity

kxn sin�n = ky cos�n; (A.3)

and for z the identity

k20n
2
I = k2xn + k

2
y + k2I;zn; (A.4)

has been used. This completes the proof of relation (2.43a).

A.1.2 Proof of (2.49)

For notational convenience define A as

A := � k0nI
kI;zn

: (A.5)

For the diffraction efficiency we have to write (2.48) in terms of rsn and rpn. We can do
this in parts. The first part is

rxn�rxn + ryn�ryn

=

(
�rsn sin�n + 1

A
rpn cos�n

)(
��rsn sin�n +

1
�A
�rpn cos�n

)
+

(
rsn cos�n +

1

A
rpn sin�n

)(
�rsn cos�n +

1
�A
�rpn sin�n

)
= rsn�rsn sin

2 �n � 1
�A
rsn�rpn sin�n cos�n �

1

A
rpn�rsn sin�n cos�n

+
1

A �A
rpn�rpn cos

2 �n + rsn�rsn cos
2 �n +

1
�A
rsn�rpn sin�n cos�n

+
1

A
rpn�rsn sin�n cos�n +

1

A �A
rpn�rpn sin

2 �n

= rsn�rsn +
1

A �A
rpn�rpn: (A.6)
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The part where rzn is in is more involved, since rpn and rsn are given in terms of rxn and ryn
only.

rzn�rzn =
kxnrxn + ky ryn

kI;zn
� kxn�rxn + ky�ryn

�kI;zn

=
k2xnrxn�rxn + kxnky rxn�ryn + kykxnryn�rxn + k

2
y ryn�ryn

kI;zn�kI;zn

=
1

kI;zn�kI;zn

� {(k2xn sin2 �n�2kykxn sin�n cos�n+k2y cos2 �n) rsn�rsn
+
1

A

((
k2y�k2xn

)
sin�n cos�n+kykxn

(
cos2 �n�sin2 �n

))
rpn�rsn

+
1
�A

((
k2y�k2xn

)
sin�n cos�n+kxnky

(
cos2 �n�sin2 �n

))
rsn�rpn

+
1

A �A

(
k2xn cos

2 �n+2kxnky sin�n cos�n+k
2
y sin

2 �n
)
rpn�rpn

}
=

1

A �A

k2xn + k
2
y

kI;zn�kI;zn
rpn�rpn: (A.7)

The latter equality is the result of using identity (A.3). Combining the two result gives

�kI;zn
(
rxn�rxn + ryn�ryn

)
+ kI;znrzn�rzn

= �kI;zn

(
rsn�rsn +

1

A �A
rpn�rpn

)
+

1

A �A

k2xn + k
2
y

�kI;zn
rpn�rpn

= �kI;znrsn�rsn +
1

A �A

1
�kI;zn

(
k2I;zn + k

2
xn + k

2
y

)
rpn�rpn

= �kI;znrsn�rsn +
1

A �A

k20n
2
I

�kI;zn
rpn�rpn: (A.8)

Substitution of the definition of A (A.5) in the latter relation completes the proof of (2.49).

A.2 Solving systems of differential equations with con-
stant coefficients

Both RCWA and the C method have to solve a system of differential equations with constant
coefficients at some point. In this section a general shape of the solution of such a system
will be derived.
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A.2.1 1st order differential equations with constant coefficients

Let A 2 CN�N be a matrix with constant entries and s(z) 2 CN�1 be the column vector
we have to solve for which depends on a parameter z . The system under consideration is
given by

d

d z
s(z) = As(z); z0 � z � z1: (A.9)

Since A is a non-defective matrix, it can be diagonalized as A = W�W�1 with � the
eigenvalue matrix of A and W the eigenvector matrix. Substitution of this diagonalization
in (A.9) and premultiplying with the inverse eigenvector matrix W�1 results in

W�1 d

d z
s(z) = �W�1s(z); z0 � z � z1: (A.10)

Since A consists of only constant coefficients, also the eigenvalue and eigenvector matrix
consists merely of constants. Therefore,

d

d z

(
W�1s(z)

)
= �W�1s(z); z0 � z � z1: (A.11)

The next step is to substitute y(z) := W�1s(z) into (A.11), viz.

d

d z
y(z) = �y(z); z0 � z � z1: (A.12)

This relation results in N first-order differential equations

d

d z
yk(z) = �kyk(z); z0 � z � z1; (A.13)

for k = 1; : : : ; N. Element yk(z) is the kth element of y(z) and �k is the kth diagonal
element of �. The solution of (A.13) is given by

yk(z) = c exp[�kz ]; k = 1; : : : ; N: (A.14)

In matrix form this is

y(z) = c exp[�z ]: (A.15)

Because we want the shape of s instead of y, we have to substitute s(z) = Wy(z) again,
viz.

s(z) = Wc exp[�z ] =

N∑
k=1

wkck exp[�kz ]: (A.16)
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A.2.2 2nd order differential equations with constant coefficients

For a system of second-order differential equations, the system under consideration is given
by

d2

d z2
s(z) = As(z); z0 � z � z1: (A.17)

Similar as in the first-order differential equations, A can be diagonalized as A = W�W�1.
Substitution of this diagonalization in (A.17) and premultiplying with the inverse eigenvector
matrix W�1 results in

W�1 d
2

d z2
s(z) = �W�1s(z); z0 � z � z1: (A.18)

Since A consists of only constant coefficients, also the eigenvalue and eigenvector matrix
consists merely of constants. Therefore,

d2

d z2

(
W�1s(z)

)
= �W�1s(z); z0 � z � z1: (A.19)

The next step is to substitute y(z) := W�1s(z) into (A.19), viz.

d2

d z2
y(z) = �y(z); z0 � z � z1: (A.20)

This relation results in N second-order differential equations

d2

d z2
yk(z) = �kyk(z); z0 � z � z1; (A.21)

for k = 1; : : : ; N. Element yk(z) is the kth element of y(z) and �k is the kth diagonal
element of �. The characteristic equations of these second-order differential equations are
given by

r2 � �k = 0; k = 1; : : : ; N; (A.22)

with r1 =
p
�k and r2 = �p�k as its roots. In this thesis we choose the roots with a

positive real part. The general solution of (A.21) can be given as

yk(z) = c1 exp[
√
�kz ] + c2 exp[�

√
�kz ]; k = 1; : : : ; N: (A.23)

In matrix form this is

y(z) = c1 exp[
p
�z ] + c2 exp[�

p
�z ]: (A.24)

Because we want the shape of s instead of y, we have to substitute s(z) = Wy(z) again,
viz.

s(z) = W
(
c1 exp[

p
�z ] + c2 exp[�

p
�z ]
)

=

N∑
k=1

wk

(
c1k exp[

√
�kz ] + c2k exp[�

√
�kz ]

)
: (A.25)

This is the general shape of the solution of the system.
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A.3 Properties of the eigenvalues

A complex-valued matrix A is called Hermitian if A� = A. For planar diffraction where the
field is TE polarized the matrix of which the eigenvalues and eigenvectors are computed is
given by (3.13):

AAAi = K2
x � Ei ; (A.26)

where Kx is a diagonal matrix with real-valued entries kxn=k0 on its diagonal for �N � n �
N. The matrix Ei is a Toeplitz matrix of which the entries are given by

(Ei)nm = �i ;n�m; 1 � n;m � 2N + 1; (A.27)

where �i ;nm are the Fourier components of the complex-valued relative permittivity expansion
of layer i given by (5.13). To be Hermitian, the off-diagonal entries �i ;m and �i ;�m have to
be the complex conjugate of each other for m = 1; : : : ; N. So, it holds that

��i ;�m =

{
i

2�(�m)
~"ri ;1

(
exp[�i 2�

�
(�m)t1]� exp[i�(�m)]

)
+

i

2�(�m)
~"ri ;2

(
exp[�i 2�

�
(�m)t2]� exp[�i 2�

�
(�m)t1]

)
+ :::

+
i

2�(�m)
~"ri ;M

(
exp[�i�(�m)]� exp[�i 2�

�
(�m)tM�1]

)}�
=

i

2�m

(
~"ri ;1
)�(

exp[�i 2�
�
mt1]� exp[i�m]

)
+

i

2�m

(
~"ri ;2
)�(

exp[�i 2�
�
mt2]� exp[�i 2�

�
mt1]

)
+ :::

+
i

2�m

(
~"ri ;M

)�(
exp[�i�m]� exp[�i 2�

�
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)
= �i ;m if

(
~"ri ;p
)�

= ~"ri ;p for p = 1; :::;M (A.28)

Since the relative complex permittivity is related to the refractive index for a non-magnetic
medium as ~"ri ;p = n2i ;p, the refractive index may have a real or purely imaginary value to
ensure ~"ri ;p to be real-valued.

Another feature the matrix has to obey to be Hermitian, is to have real diagonal entries.
The terms for which m = 0 from equation (5.13) imply that the diagonal elements are real
only if all materials have a real relative permittivity or, in other words, are dielectric.

For planar diffraction where the field is TM polarized, the matrix of which the eigenval-
ues and eigenvectors are computed is given by P�1

i BBBi of which BBBi is given by (3.21)

BBBi =
(
KxE

�1
i Kx � I

)
: (A.29)

and the matrix Pi is a Toeplitz matrix similar to Ei of which the entries are given by

(Pi)nm = �i ;n�m; 1 � n;m � 2N + 1: (A.30)
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In a similar way, we can show that Pi is Hermitian. However, the matrix of the eigensystem
consists of a product of two Hermitian matrices and in general such a product is not Her-
mitian anymore. However, we can prove that the eigenvalues of a product of two Hermitian
matrices have real-valued eigenvalues.

Let A and B be Hermitian matrices. It holds that

ABw = �w: (A.31)

Taking the conjugate transpose of both sides, we have

w�B�A� = w��� ) w�BA = ��w�: (A.32)

By premultiplying (A.31) by w� and postmultiply (A.32) by w, we have

�w�w = ��w�w: (A.33)

Therefore it holds that � = �� and thus � 2 R.
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Summary

Periodic structures, called diffraction gratings, play an important role in optical lithography.
The diffraction of the incident field in multiple diffraction orders provides a way to accu-
rately determine a position on a wafer on one hand and on the other hand it provides a test
method to determine the quality of the photolithographic process. For both applications
it is crucial to be able to find the actual shape of the structure to correct for damages or
imperfections.

When besides the incident field also the shape of a diffraction grating is known, we can
compute the diffracted field by using the rigorous coupled-wave analysis (RCWA) or the C
method. These methods solve Maxwell’s equations for time-harmonic fields directly, which
is required because such a grating typically has a period smaller than the wavelength of the
incident field. The basic idea of both methods is that they transform Maxwell’s equations
into algebraic eigensystems, which have to be solved in order to obtain the diffracted field.

The reconstruction of the grating shape is carried out by first making an initial guess
of its shape. Next the computed diffracted field is compared to actual measurements and
the difference between them determines how the shape parameters should be adjusted. For
the reconstruction we make use of standard optimization techniques such as quasi-Newton
methods to find local optima. We assume that the initial guess of the grating shape is close
enough to its actual shape such that the optimum that is found is the actual shape and
take more angles of incidence to make the optimization more robust.

The focus of this thesis is finding the first-order derivative information of the diffracted
field with respect to the shape parameters. This is possible using finite differences where
the diffracted field is computed again for a neighbouring value of the shape parameter under
consideration. However, straightforward differentiation of the relations within RCWA or the
C method gives a more accurate, but also faster way to find this derivative information.
When straightforward differentiation is used, we also have to find eigenvalue and eigenvec-
tor derivatives, but to determine these derivatives no additional eigenvalue systems have to
be solved. This implies that the reconstruction process can be performed faster and more
accurate. Besides the speed-up of the reconstruction, we also provide a firm mathematical
basis to this sensitivity theory.
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The sensitivity of RCWA is tested for some specific grating structures, such as the bi-
nary grating, the trapezoidal grating and more advanced structures as the coated trapezoid
and a stacked grating of multiple trapezoids. The simulations show that for the most simple
structure, the binary grating, we have the derivatives with respect to shape parameters up
to twice as fast as obtained with finite differences, depending on the truncation number of
the Fourier series. When the number of physical shape parameters increases, the analytical
method becomes increasingly faster than finite differences. For the stacked trapezoids, the
analytical method is more than 10 times faster than finite differences. In practice, the
grating shapes will be more and more complex and therefore, the analytical approach offers
a more and more significant speed increase in the computations of the derivatives without
loss of accuracy.



Samenvatting

Diffractieroosters zijn periodieke structuren die een grote rol spelen in de optische lithografie.
Doordat het rooster het invallende veld verstrooit over meerdere diffractie-ordes, geeft het
aan de ene kant een zeer nauwkeurige manier om een positie op een wafer te bepalen en aan
de andere kant de mogelijkheid om de kwaliteit van het resultaat van de lithografie stap te
kwantificeren. Voor beide applicaties is het belangrijk dat de vormparameters nauwkeurig
gereconstrueerd kunnen worden om imperfecties of beschadigingen te identificeren.

Als behalve het invallende veld ook de vorm van het diffractierooster bekend is, kunnen
we het verstrooide veld berekenen met behulp van het RCWA-algoritme of de C-methode.
Beide methoden lossen rechtstreeks de Maxwell vergelijkingen voor tijdharmonische velden
op, omdat de roosters typisch een periode hebben die kleiner is dan de golflengte van het
invallende veld. Het basis idee van beide methoden is dat de Maxwell vergelijkingen ge-
transformeerd worden in een algebraïsch eigenwaarde probleem dat opgelost moet worden
om het verstrooide veld te berekenen.

De reconstructie van het diffractierooster begint met het maken van een initiële schat-
ting van de vorm. Vervolgens wordt het verstrooide veld berekend en vergeleken met het
gemeten verstrooide veld. Het verschil tussen beiden bepaald hoe de initiële schatting van
de vormparameters aangepast dient te worden. Voor het reconstrueren van de vormparam-
eters maken we gebruik van standaard optimalisatie routines als het quasi-Newton algoritme
om de lokale minima te vinden. We veronderstellen dat de initiële vormparameters dicht
genoeg bij de echte vormparameters zitten zodanig dat het gevonden optimum ook de
daadwerkelijke vormparameters zijn. Verder nemen we meerdere hoeken van inval mee om
de optimalisatie meer robuust te maken.

Het belangrijkste deel van dit proefschrift gaat over het berekenen hoe het verstrooide veld
reageert op kleine veranderingen in de vormparameters, d.w.z. het vinden van de eerste
orde afgeleiden van het verstrooide veld naar de vormparameters. Deze afgeleiden kunnen
berekend worden door middel van eindige differenties waar het verstrooide veld nogmaals
wordt berekend voor een iets gewijzigde parameter en het verschil tussen beide verstrooide
velden geeft informatie over de afgeleide met betrekking tot deze parameter. Echter, door
rechtstreeks de formules in het RCWA-algoritme te differentiëren, kunnen we de afgelei-
den nauwkeuriger en sneller berekenen. Rechtstreeks differentiëren wil ook zeggen dat we
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afgeleiden van de eigenwaarden en eigenvectoren moeten berekenen. Dit kan zonder het
oplossen van extra eigenwaarde systemen als in eindige differenties. Dit betekent dat de
reconstructie van de vormparameters sneller en nauwkeurig kan worden gedaan. Naast de
snelheids- en nauwkeurigheidswinst, is hiermee ook een wiskundige basis voor deze methode
gelegd.

De gevoeligheid van het RCWA-algoritme is getest aan de hand van specifieke diffrac-
tieroosters, zoals binaire roosters, trapeziumvormige roosters en meer geavanceerde struc-
turen als gelaagde trapezia of opgestapelde trapezia. De simulaties laten zien dat voor de
meest simpele structuur, het binaire rooster, we de eerste orde afgeleiden met betrekking
tot de vormparameters tot twee keer zo snel kunnen berekenen met onze analytische meth-
ode dan met eindige differenties, afhankelijk van het aantal termen in de Fourierreeksen.
Als het aantal fysische parameters toeneemt, wordt de analytische methode relatief sneller
vergeleken met eindige differenties. Voor het samengestelde rooster waarbij elke periode uit
een opstapeling van trapezia bestaat, is de analytische methode meer dan 10 keer sneller
dan eindige differenties. In de praktijk zullen de diffractieroosters steeds complexer worden
en voor deze gevallen zal de analytische methode een steeds hogere snelheidswinst opleveren
in het berekenen van de eerste orde afgeleiden zonder verlies in nauwkeurigheid.
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