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Summary. In transient analysis of electrical circuits the solution is computed by
means of numerical integration methods. Adaptive stepsize control is used to con-
trol the local errors of the numerical solution. For optimization purposes smoother
stepsize controllers can ensure that the errors and stepsizes also behave smoothly.
For onestep methods, the stepsize control process can be viewed as a digital (i.e.
discrete) linear control system for the logarithms of the errors and steps. For the
multistep BDF-method this control process can be approximated by such a linear
control system.

1 Introduction

Electrical circuits can be modelled by the following Differential-Algebraic
Equation

d

dt
[q(t,x)] + j(t,x) = 0, (1)

where q, j : R × R
n → R

n represent the charges on capacitors and currents
through resistors and sources in the circuit and x is the state vector. In tran-
sient analysis an Initial Value Problem has to be solved for this DAE, which
is done by implicit integration methods (usually BDF methods).

The accuracy of integration methods depends on the magnitude of the
stepsizes. Adaptive stepsize control is used to handle with the trade-off be-
tween the computational work load and the accuracy. Therefore, each iteration
the magnitude of the local error must be estimated. If this estimate r̂n is larger
than a given tolerance level TOL, the current step is rejected. Otherwise, the
numerical solution can be computed at a next timepoint tn+1 = tn + hn.

The following stepsize controller is very commonly used for integration
methods of order p:

hn =

(

ε

r̂n−1

)
1

p+1

hn−1. (2)
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This controller tries to keep the error r̂n close to a reference level ε by means
of the stepsize hn. The reference level ε is equal to θ TOL, where 0 < θ < 1
is a safety factor, which reduces the number of rejections.

The stepsize controller is based on the assumption that the error estimate
satisfies the model

r̂n = ϕ̂nhp+1
n , (3)

where ϕn is an unknown variable which is independent of hn. This model is
a good description for onestep methods and also a first order approximation
for the multistep BDF-methods. In practice, always some bounds and limiters
are added to this controller in order to avoid numerical problems.

Important properties of a good simulator are speed, accuracy and robust-
ness. It appears that the controller (2) produces rather irregular error and
stepsize sequences, which will decrease the robustness.

2 Application of control theory

It seems attractive to use control-theoretic techniques for error control. In
[1, 4] this idea has been applied to onestep methods where we have the simple
model (3). Figure 1 shows the block diagram of this feedback control system.
The process model G(q) and the controller model C(q) are described in the
next subsections.

+
+

+
-
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log r̂

log r̂
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Controller Process

Fig. 1. Diagram of adaptive stepsize control viewed as a feedback control system.

2.1 Process model G(q)

The logarithmic version of the onestep error model (3) is

log r̂n = (p + 1) log hn + log ϕ̂n. (4)

Writing log r̂ = {log r̂n}n∈N, log h = {log hn}n∈N and log ϕ̂ = {log ϕ̂n}n∈N,
this implies that the sequence log r̂ can be viewed as the output of a digital
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(i.e. discrete) linear control system, where log h is the input signal and log ϕ̂ is
an unknown output disturbance. In general, we can denote all linear models
with finite recursions for log r̂ by

log r̂ = G(q) log h + log ϕ̂, (5)

where q is the shift-operator, with q(log hn) = log hn+1 and where G(q) is a
rational function of q:

G(q) =
L(q)

K(q)
=

λ0q
M + · · · + λM

qM + κ1qM−1 + · · · + κM

. (6)

For the onestep model, we just have that G(q) = p + 1. However, it is not
possible to derive a linear model of this form for the multistep BDF methods.
In this case for a p-step method, we have the following nonlinear model for
log r̂ [5]

log r̂n = 2 log hn+log(hn−1+hn)+· · ·+log(hn−p+1+· · ·+hn)+log ϕ̂n−log p!.
(7)

Note that log r̂n also depends on the previous stepsizes, because it is a mul-
tistep method. In [7] it is tried to approximate this model by the previous
model for onestep methods. If the stepsizes only have small variations, also
linearization can be used [3]. In [5] it is proved that the linearized model is
equal to

log r̂n = (1+γp) log hn+(γp−γ1) log hn−1+· · ·+(γp−γp−1) log hn−p+1+log ϕ̂n,
(8)

where γm =
∑m

n=1
1
n

for m ∈ N.
This model can also be cast in (5), where

G(q) =
(1 + γp)q

p−1 + (γp − γ1)q
p−2 + · · · + (γp − γp−1)

qp−1
. (9)

2.2 Controller model C(q)

The logarithmic version of the controller in eqn. (2) is

log hn − log hn−1 =
1

p + 1
(log ε − log r̂n−1). (10)

So, also the control action can be viewed as a linear feedback controller for
the same linear system. The input log h is computed on base of the previous
values of the output log r̂ and the reference log ε. All linear controllers can be
denoted by

log h = C(q)(log ε − log r̂), (11)

where C(q) is a rational function of q:

C(q) =
B(q)

A(q)
=

β0q
N−1 + · · · + βN−1

qN + α1qN−1 + · · · + αN

. (12)

For the controller of eqn. (2) we just have that C(q) = 1
p+1

1
q−1 .
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3 Design of finite order digital linear stepsize controller

Consider the error model (5), which is controlled by the linear controller (11).
It is assumed that the error model is already available, while the controller still
must be designed. This means that K, L are known, while A, B are unknown.
Now, the closed loop dynamics are described by the following equations:

{

log h = Ur(q) log ε + Uw(q) log ϕ̂,
log r̂ = Yr(q) log ε + Yw(q) log ϕ̂.

(13)

The transfer functions satisfy

Ur(q) = B(q)K(q)
R(q) , Uw(q) = −B(q)K(q)

R(q) ,

Yr(q) = B(q)L(q)
R(q) , Yw(q) = A(q)K(q)

R(q) ,
(14)

where R(q) = A(q)K(q) + B(q)L(q). In this section we will derive conditions
for A, B such that the closed loop dynamics have some preferred properties.

3.1 Adaptivity and filter properties

The output log r̂ depends on the reference signal log ε and the disturbance
log ϕ̂. This means that in general the control error log ε − log r̂ is unequal to
zero. However, there is no control error if Yw(q) log ϕ̂ = 0 and Yr(1) = 1 [5]. If
log ϕ̂ is a polynomial of degree pA − 1 and Yw(q) log ϕ̂ = 0, we call the order
of adaptivity pA. It is always required that pA ≥ 1 in order to have no control
error for a constant disturbance. For higher order adaptivity the controller is
capable to follow linear or other polynomial trends of the disturbance log ϕ̂.
It can be proved that the controller is adaptive with adaptivity order pA if
(q − 1)pA is a divisor of A(q).

A(q) = (q − 1)pAÂ(q)

Because of numerical errors, the disturbance log ϕ̂ can contain alternating
noise with frequency near π. The controller acts like a filter for the stepsizes
or the errors if

|Uw(eiω)| = O(|ω − π|pF ), ω → π

or
|Yw(eiω)| = O(|ω − π|pR), ω → π.

Here pF and pR are the orders of the stepsize filter and the error filter. It is
not possible combine an error filter with a stepsize filter. The controller is a
stepsize filter of order pF if (q + 1)pF is a divisor of B(q).

B(q) = (q + 1)pF B̂(q)

The controller is an error filter of order pR if (q + 1)pR is a divisor of A(q).

A(q) = (q + 1)pRǍ(q)
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3.2 Position of the poles

The poles of the system are determined by the N + M roots of the character-
istic equation

A(q)K(q) + B(q)L(q) = 0.

If the poles lay inside the complex unity circle, the closed loop system is stable.
The absolute values determine the reaction speed of the controllers, while the
angles determine the eigenfrequencies. This means that real positive poles will
produce smoother behaviour.

If the controller is adaptive, we know that the error always will be equal
to the reference level if the disturbance is a low degree polynomial. However,
this will be never the case in practice. Thus it is still possible that the next
error will be larger than the tolerance level TOL.

Let R, S be polynomials of degree N + M , such that

S(q) = A(q)K(q) = qN+M + σ1q
N+M−1 + · · · + σN+M

R(q) = A(q)K(q) + B(q)L(q) = qN+M + ρ1q
N+M−1 + · · · + ρN+M

In [5] it is proved that there are no rejections, such that r̂n ≥TOL if

• The disturbance ϕ̂ satisfies the inequality:

θR(1)ϕ̂nϕ̂σ1
n−1 · · · ϕ̂

σN+M

n−N−M ≤ 1. (15)

• The coefficients of R(q) satisfy: ρi ≤ 0, i ∈ {1, . . . , N + M}, e.g. R(q) =
qN+M − rN+M .

• The previous N + M stepsizes have been accepted.
• The real behaviour of the error estimate r̂ is sufficiently modelled by the

process model.

The first condition for the disturbance also depends on θ. Note that a small
θ will indeed decrease the number of future rejections. The second condition
is not true if all poles are real positive. However, if

R(q) = qN+M − rN+M , (16)

this property is satisfied.

3.3 Computation of the control parameters

Assume that A, B can be factorized like A(q) = (q − 1)pA(q + 1)pRÃ(q) and
B(q) = (q + 1)pF B̃(q). Then the order of adaptivity is equal to pA, while the
filter orders are pR and pF . Let R(q) be the polynomial which roots are equal
to the wanted poles, then the polynomials A, B are determined by

(q − 1)pA(q + 1)pRÃ(q)K(q) + (q + 1)pF B̃(q)L(q) = R(q). (17)

The coefficients of A, B are the control parameters, which can be computed
from (17).
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4 Numerical experiments

Consider the initial value problem (VandePol equation) for the following elec-
trical circuit:

dV1

dt
+ iL + 30V1(

V 2
1

3 − 1) = 0 V1(0) = 0
diL

dt
− V1 = 0 iL(0) = 1

PSfrag replacements

0 1

C = 1

L = 1

R(vR) = 1
30

(
v2

R
3
− 1)−1

iR

iC

iL

This IVP is solved on [0, 100] by means of the BDF2 method with tolerance
level TOL = 1e-4 and reference level ε = 0.3TOL. A frequently used controller
is (2) with pA = 1 and having a pole equal to zero.

I: hn =

(

ε

r̂n−1

)
1
3

hn−1 (pA = 1)

Often, this controller is used in combination with a buffer, e.g.

hn

hn−1
∈ [0.8, 2] ⇒ hn = hn−1.

Consider the next second order adaptive stepsize controller, which poles are
equal to 0.2. This means that it is able to predict linear trends of the distur-
bance log φ̂.

II:
hn

hn−1
=

(

ε

r̂n−1

)
8
15

(

r̂n−2

r̂n−1

)−
8
25 hn−1

hn−2
(pA = 2)

The IVP has been solved by controller I with buffer (case 1) and Con-
troller II (case 2). These cases require 1000, 1080 stepsizes and 1686, 2054
Newton iterations, respectively. Figure 2 shows the resulting stepsize and er-
ror sequences. The best results are obtained in case 2, because of the better
adaptivity at the cost of an increase of Newton iterations. Because of the
higher smoothness of case 2, the safety factor could be increased for case 2.
Indeed, for ε = 0.6TOL, the cases need 1847 and 1667 Newton iterations,
respectively.

An important question is whether the new designed controllers also have
a better performance for a real circuit simulator. Therefore, in the next three
cases a real circuit is simulated, while a variable integration order is used [5].
In case 1 the default stepsize controller of the simulator is used. In the other
cases, the stepsize controllers are based on digital linear control theory having
the properties pA = 1 and pF = pR = 0. For all three cases, the safety factor
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Fig. 2. Stepsize and error sequences for the two tested controllers.

is variable. The smoothness of the stepsize and error sequences is quantified

by means of the number s(x) =

√

∑N

m=1(xm − xm−1)2/‖x‖2. Table 1 shows

the results of these three cases. Note that for the cases 2 and 3 the smoothness
of the results is improved, while the computational work is about the same.
Furthermore the performance is even better (8%) than for case 1.

Table 1. Numerical results for perf mos7 qubic 6953 (pA = 1,pF = pR = 0).

Case # stepsizes # rejections
# Newton
iterations

s(r̂) s(h)

1 6465 947 43232 0.85 0.58
2 6934 777 40234 0.79 0.48
3 6423 714 39619 0.74 0.85

5 Conclusions

It has been tried to derive a linear model for the behaviour of the local error.
For onestep methods this is less complex, because then the local error only
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depends on the last stepsize. But because circuit simulators use the multistep
BDF-methods, also the application for BDF-methods has been studied. In
that case, a linearized linear model can be derived, which is only correct for
small variations of the stepsizes.

From the experiments it seems not always attractive to use higher order
adaptive controllers. However, filtering appears to be attractive because it
reduces the high-frequent noise, which makes the behaviour of the stepsizes
and the errors much smoother.

Because the described method is only developed for a fixed order of inte-
gration, the theoretical results for a variable integration order are not known
yet. Clearly the local error also depends on the integration order and this
affects the process model. It seems not possible to describe this behaviour by
means of a linear model. Despite this application in the variable integration
order case works satisfactory.

To deal with the trade-off between the smoothness and the speed, optimal
control could be applied. In this case, a cost function should be defined which
is dependent on the stepsize sequence and the error sequence.
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