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Experimental Study of Geometric t-Spanners:
A Running Time Comparison
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joachim.gudmundsson@nicta.com.au

Abstract. The construction of ¢t-spanners of a given point set has re-
ceived a lot of attention, especially from a theoretical perspective. We
experimentally study the performance of the most common construction
algorithms for points in the Euclidean plane. In a previous paper [10]
we considered the properties of the produced graphs from five common
algorithms. We consider several additional algorithms and focus on the
running times. This is the first time an extensive comparison has been
made between the running times of construction algorithms of ¢-spanners.

1 Introduction

Consider a set V' of n points in the plane. A network on V' can be modeled as
an undirected graph G with vertex set V of size n and an edge set E of size m
where every edge e = (u, v) has a weight wt(e). A geometric (Euclidean) network
is a network where the weight of the edge e = (u,v) is the Euclidean distance
|uv| between its endpoints u and v. Let ¢ > 1 be a real number. We say that
a geometric network G(V, E) is a (geometric) t-spanner for V, if for each pair
of points u,v € V, there exists a path in G between u and v of weight at most
t - |uv|. We call this path a ¢-path between u and v. The minimum ¢ such that
G is a t-spanner for V is called the stretch factor, or dilation, of G. Finally, a
subgraph G’ of a given graph G is a t-spanner for G if for each pair of points
u,v € V, there exists a path in G’ of weight at most ¢ times the weight of the
shortest path between u and v in G.

Complete graphs represent ideal communication networks, but they are ex-
pensive to build; sparse spanners are low-cost alternatives. The weight of the
spanner is a measure of its sparseness; other sparseness measures include the
number of edges, the maximum degree, and the number of crossings. Span-
ners for complete FEuclidean graphs as well as for arbitrary weighted graphs
find applications in robotics, network topology design, distributed systems, de-
sign of parallel machines, and many other areas and have been a subject of
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considerable research. Recently low-weight spanners found interesting practical
applications in areas such as metric space searching [I6] and broadcasting in
communication networks [I4]. Well-known theoretical results also use the con-
struction of t-spanners as a building block, for example, Rao and Smith [I7] made
a breakthrough by showing an optimal O(nlogn)-time approximation scheme
for the Euclidean traveling salesperson problem, using t-spanners (or banyans).
The problem of constructing spanners has received considerable attention from
a theoretical perspective, see the recent book by Narasimhan and Smid [I5], but
almost no attention from a practical or experimental perspective [10, [16] [I8].

In this paper we consider the most well-known algorithms for the construction
of t-spanners in the plane: variants of greedy spanners and @-graphs, spanners
constructed from the well-separated pair decomposition (WSPD), skip-list span-
ners, sink spanners and some hybrid algorithms. Due to the space limitation we
only compare the running times of these algorithms (in the full version the graph
properties are also studied) for point sets of size up to 10K points, four different
distributions; only two are discussed in this paper, and with values of ¢ between
1.1 and 2. The properties of the standard greedy graph, the (ordered) ©@-graph,
the WSPD-graph and the hybrid graphs were discussed in [I0].

The paper is organized as follows. Next we briefly go through the desirable
properties for t-spanners. In Section 2] we describe the implemented algorithms
together with the theoretical bounds and implementation details. In Section B we
discuss the results and finally discuss possible improvements and future research.

Throughout the paper ¢ will be assumed to be a small constant. In the exper-
iments we used values of ¢ between 1.1 and 2. For larger values of ¢ one can use
the Delaunay triangulation which is known to have dilation ~ 2.42 [13].

1.1 Spanner Properties

As input we are given a set V' of n points in the plane and a real value ¢ > 1.
The aim is to compute a t-spanner for V' with some good properties where the
quality measurements that one consider are as follows:

Size: The number of edges in the graph. This is the most important measure-
ment and all the implemented algorithms produce spanners with O(n) edges.

Degree: The maximum number of edges incident to a vertex.

Weight: The weight of a Euclidean network G is the sum of the edge weights.
The best that can be achieved is a constant times the weight of the minimum
spanning tree, denoted wt(MST(V)).

Spanner Diameter: Defined as the smallest integer d such that for any pair of
vertices u and v in V, there is a path of length at most ¢ - [uv| between u and v
containing at most d edges.

2 Spanner Construction Algorithms

Here we give a short description of each of the implemented algorithms together
with their theoretical bounds. Note that some of the properties are competing,
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e.g., a graph with constant degree cannot have constant spanner diameter, and
a graph with small spanner diameter cannot have a linear number of edges [2].

2.1 The Original Greedy Algorithm and an Improvement

The greedy algorithm was discovered independently by Bern in 1989 and Althofer
et al. [I]. The graph constructed using the greedy algorithm will be called a
greedy graph. The original algorithm starts with the complete graph G while
maintaining a partial spanner graph G’ of G. All the edges of G are sorted with
respect to their length in increasing order. Next the edges are processed in sorted
order. Processing an edge (p, q) entails a shortest path query in G’ between p
and ¢. If there is no ¢-path between p and ¢ in G’ then (p,q) is added to G’
otherwise it is discarded. The time complexity of the original greedy algorithm
is O(n®logn) and it uses O(n?) space.

In [I0] we proposed a modifications of the greedy algorithm, denoted improved
greedy, that we conjectured should have a running time of O(n?logn). The idea
is that every time a shortest path query is performed from p to ¢ Dijkstra’s
algorithm computes the shortest distance from p to all other points in V. Instead
of neglecting all this information we store it in a matrix. When the next shortest
path query, say between v and v, is performed we first look in the matrix if there
is a t-path between u and wv; if there is then discard (u,v) otherwise perform
the query on G’ as above. We experimentally compare the running time of the
original greedy algorithm with the modified version.

Implementation. The implementations of the algorithms are straight-forward.
The shortest path queries are done by using the Dijkstra function in LEDA.

2.2 The Approximate Greedy Algorithm

In [I0] only the original greedy implementation was considered. It was shown that
the quality of the networks produced by the greedy algorithm was superior to
the other approaches in terms of number of edges, weight and degree. However, a
naive implementation of it has a running time of O(n®logn), thus any approach
that can speed-up the algorithm would be of great interest. The running time is
mainly due to the fact that ©(n?) shortest path queries needed to be answered
in a graph with O(n) edges, each of which could take O(nlogn) time.

Das and Narasimhan [§] showed how to use clustering to speed up shortest
path queries. The approximate greedy algorithm starts with a \/ t/t'-spanner G’
with O(n) edges and constant degree generated by an O(nlogn)-time algorithm.
Note that this network does not have to have small weight. Then it computes
a V/tt'-spanner of G’ using an approximate variant of the greedy algorithm. To
obtain G(V, E) from G’ the approximate algorithm starts with £ = () and adds
all the short edges (i.e. those of length at most D/n, where D is the distance
between the farthest pair of points) to E. For the remaining edges, the algorithm
sorts them by increasing weight and processes them in log n phases. Processing an
edge e = (u,v) entails a shortest path query which is answered by performing an
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approximate shortest path query on a “cluster graph” H, which is simultaneously
maintained. The cluster graph H has the following properties:

1. distances in H “closely” approximate distances in the current graph G’.
2. every vertex in H has bounded degree, and
3. “specialized” shortest path queries in H can be answered in constant time.

For more details see [8] or [I5]. The time complexity of this algorithm is
O(nlog®n). Note that the graph generated by this algorithm is an approxi-
mate version of the graph generated by the original greedy algorithm since the
algorithm prunes a graph with linear number of edges and answers shortest path
queries using an approximate shortest path query procedure.

Gudmundsson et al. [I1] later improved the running time to O(nlogn) but the
modified version is quite involved and therefore we decided to only implement
the above version. The following theorem states the theoretical bounds.

Theorem 1. The approxzimate greedy graph is a t-spanner of V with O(n/(t —
1)%) edges, O((tjl)S) mazimum degree and weight O(wt(MST(V))/(t — 1)%),
and can be computed in time O( (t—1)7 108 n).

Implementation. The initial \/ t/t'-spanner G’ was constructed using the sink-
spanner algorithm (Section 7). This guarantees that the number of edges is
O(n) and that the graph has constant degree. We implemented a variant of
Dijkstra’s algorithm which answers shortest path queries in constant time in the
cluster graph. The query time can be achieved since the maximum degree of the
cluster graph is constant and there is a constant upper bound B on the number
of edges along a shortest path in the cluster graph, thus we may discard any
path containing more than B edges in the priority queue. The bound B can be
obtained by choosing the size of the clusters in the cluster graph appropriately.

2.3 The ©-Graph

The O-graph was discovered independently by Clarkson [7] and Keil [12]. Keil
only considered the graph in two dimensions while Clarkson extended his con-
struction to also include three dimensions.

Initially we set 6 such that t = !

cosf_sing- For each point u € V' consider

k non-overlapping cones, C;,1 < i < k, with angle § = 2,: and with apex u.
For each cone C; we add an edge between u and the point within C; whose
orthogonal projection onto the bisector of C; is closest to u. Note that instead
of the bisector of C;, we can use any line in the cone passing through the apex

of the cone. We use one of the boundary lines of the cone instead of the bisector.

Theorem 2. The O-graph is a t-spanner of V for t = Cos9£sin6’ with O(kn)
edges and can be computed in O(knlogn) time.

Implementation. To implement the @-graph algorithm, we need a dynamic
data structure, see [15] for more details, that can perform a point query in a cone
in O(logn) time. This data structure is implemented using red-black trees. Since
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there is no dependence between the cones, one can work on one cone direction
at a time, which means that in practice only O(n) work space is needed.

A problem that we do not consider in the ©-graph implementation is rounding
errors, which may cause some edges not to be added. For example, if a point lies
on the boundary of an, otherwise empty, cone then a small rounding error may
“move” the point outside the cone. One way to get rid of this error is to use
exact arithmetics. A different possibility is to allow the cones to slightly overlap.

2.4 The Ordered ©@-Graph

A simple variant of the ©-graph that has been shown to have good theoretical
performance is the ordered ©-graph by Bose et al. [B]. An ordered @-graph of V'
is obtained by inserting the points of V' in some order. When a point p is inserted,
we draw the cones around p and connect p to the previously inserted point with
closest orthogonal projection in each cone, like the ©-graph algorithm.

The order is decided as follows. Initially choose an arbitrary vertex v, €V and
set its order to n, i.e. this is the last point that will be added to the graph.
Process v,, by placing k cones with apex at v, and then adding the edges as in
the ©-graph algorithm. In a generic step, assume we have processed i —1 vertices.

In the ith step, choose a point with maximum degree from V —{vy,, ..., vp_i—1)}
and set its order to n — ¢ and then process v, _; assuming that we have the point
set V.—{vn, ..., Up—it1}. This decides an order on the point set.

Theorem 3. The ordered ©-graphs is a t-spanner of V' for t = cos@isinﬁ with
O(kn) edges and O(klogn) degree, and can be computed in O(knlogn) time.

Implementation. For the implementation we use a data structure which is
somewhat more complicated than the data structure used for the ©-graph, since
we require the structure to allow for deletions. Due to [5], we use k range trees,
one for each cone with apex at the origin. In each range tree we store all points
represented in the coordinate system of the two boundaries of the cone. To find
the suitable point in a cone with apex at w, it is sufficient to perform a range
query with coordinates of u as keys and choose the suitable point between the
points reported by the query. We add one extra pointer to each node of the range
tree which shows the point with minimum y (or z) coordinate in the subtree.
Using this pointer, we can find the suitable point without going through all
reported points of the range query. Each range query requires (9(log2 n) time, so
the total time complexity of the implemented algorithm is O(nlog® n) which is
slightly more than the theoretical time bound but much simpler to implement.

In each step of the ordered @-graph algorithm the node with maximum degree
has to be selected. To find this point, we used a priority queue of all the points.
Initially all the nodes have priority n. When an edge (p, q) is added to the partial
spanner graph, the priority of p and ¢ is decreased by 1. The point with minimum
priority in the queue is the point with maximum degree in the graph.

There is a major difference between the @-graph algorithm and the ordered
O-graph algorithm when it comes to the space complexity. One can construct
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the ©-graph by working on one cone direction at a time, while the ordered ©-
graph algorithm requires us to keep all the cones (range trees) in memory. This
is due to the fact that the order is not known in advance. During the processing
of one node, we need to check all the cones and add edges if necessary, thus
O(kn) space is needed. For small values of ¢ this might cause a major problem.
To be more precise, the @-graph algorithm used roughly 2% of the memory
when constructing a 1.05-spanner on a set with 10,000 points, while the ordered
©-graph algorithm used almost 85%.

2.5 The Random Ordered @-Graph

The ordered ©-graph algorithm inserts points into the graph in a specific or-
der. However, if the points are processed in random order then the spanner
diameter will be bounded by O(logn) with high probability [5]. Unfortunately,
the degree bound does not hold in this case. There are two reasons why we
implemented the random ©@-graph. (1) Random ordered @-graphs and skip-list
spanners (Section [Z8) are the only two spanners guaranteed to have bounded
spanner diameter. Thus a comparison in practice between the two graphs is in-
teresting. (2) Since the vertices are processed in random order we may fix a
random order at the beginning which implies that the algorithm only requires
O(n) space, compared to O(kn) space needed to construct ordered @-graphs.

Implementation. The implementation is the same as for the ordered @-graph.
We only make a random permutation on the input point set and then process
the points in the order they appear in after permutation.

2.6 The WSPD-Graph

The well-separated pair decomposition (WSPD) was developed by Callahan and
Kosaraju [6].

Definition 1. Let s > 0 be a real number and let A and B be two finite sets of
points in RE. We say that A and B are well-separated with respect to s, if there
are two disjoint d-dimensional balls C'y and Cp, having the same radius, such
that (i) Ca contains A, (ii) Cp contains B, and (i) the distance between Cy
and Cp is at least s times the radius of Cy.

Definition 2. Let V be a set of n points in R%, and let s > 0 be a real number.
A WSPD for V. with respect to s is a sequence of pairs of non-empty subsets
of V,, {4;, B}, such that (i) A; and B; are well-separated w.r.t. s, for all
i=1,...,m. (ii) for any two distinct points p and q of V, there is exactly one
pair {A;, B;} in the sequence, such that p € A; and ¢ € B;, or q € A; and
p € B;. The integer m is called the size of the WSPD.

Callahan and Kosaraju showed that a set of well-separated pairs of size m =
O(s%n) can be computed in O(s%n + nlogn) time. Constructing a t-spanner
using the WSPD is surprisingly easy. It is sufficient to compute a WSPD of V/
w.r.t. s = 4(tt_+11) and then for every well-separated pair (4, B) in the WSPD an
edge is added between an arbitrary point in A and an arbitrary point in B.
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Theorem 4. The WSPD-graph is a t-spanner for V. C R? with O((,*

t—1
edges, O(logn-wt(MST(V))) weight and can be constructed in time O((,*,)
nlogn).

)*n)
2

t n+

We also implemented two versions of the algorithm to improve the degree [2]
and the spanner diameter [3]. However, since the experiments showed no im-
provements for any of these properties we decided not to include them in this

paper.

Implementation. We used a split tree for the construction of the WSPD. The
points stored at a node is partitioned into two sets by partitioning the non-
empty bounding box along its longest side into two boxes of equal size. The tree
construction only requires a few percent of the total running time in all our tests.

To decide in constant time if two sets are well-separated we save the smallest
enclosing circle of the points in each node. However, their smallest enclosing
circles may have different radius so one way to handle this is to say that two sets
are well-separated w.r.t. s if the distance between the smallest enclosing circles
is at least s times the maximum radius of the two smallest enclosing circles.

2.7 The Sink-Spanner

The sink-spanner construction was defined by Arya et al. in [2] which construct
t-spanners with constant degree. The main idea is as follows. We start with a
directed v/t-spanner with bounded out-degree, denoted G. We will use the O-
graph which easily can be seen to have out-degree k, but linear in-degree. For
each vertex ¢ in 5), replace every “star” (the subgraph consisting of all edges
in G pointing to ¢) in el by a \/t-g-sink spanner. A \/t-g-sink spanner is a
directed graph where each point has a directed v/t-path to ¢. It can be obtained
by processing each node ¢ in G as follows. Consider all points which have an
edge pointing to ¢. Let Ay be the set of all such a nodes. We replace all the
edges pointing to ¢ by a \/t-path using the partial sink spanner procedure. In
the partial sink spanner procedure we look at k cones with apex at ¢ and we
partition the points in A, based on the cones. Let S; be the points in the ith
cone. For each cone i, add an edge between ¢ and the closest point in S;, say ¢;,
and then recurse on the partial sink spanner procedure on ¢; and S; \ {g;}. In the
case that one cone contains more than half of the points, split the points in the
cone to two almost equal parts and do the same thing as above. This guarantees
that the subproblems half in size, thus we get:

Theorem 5. The sink-spanner is a t-spanner for V.C R? with O(kn) edges and
(9((t_11)2) mazimum degree, and can be constructed in time O(knlogn).

Implementation. To construct the first directed v/¢-spanner, we use the O-
graph algorithm, with the modification that we add directed edges instead of
undirected edges. Then for each node ¢ in the directed graph, we look at all
points which has an edge pointing to g. Let A, be the set of all such a nodes. We
replace all the edges pointing to ¢ by a v/t-path using the partial sink spanner
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procedure. In the partial sink spanner procedure we look at k cones with apex
at ¢ and we partition the points in A, based on the cones. Let \S; be the points
in the ith cone. For each cone i, add an edge between ¢ and the closest point
in S;, say ¢;, and then recurse on the partial sink spanner procedure on ¢; and
Si \ {¢:}. In the case that one cone contains more than half of the points, split
the points in the cone to two almost equal parts and do the same thing as above.
This guarantees that the subproblems half in size.

2.8 Skip-List Spanner

To obtain a spanner with bounded spanner diameter, one can use skip-list span-
ners as suggested by Arya et al. [4]. The idea is to generalize skip-lists and apply
them to the construction of ¢-spanners.

To construct a t-spanner of V| we construct a sequence of subsets of V, V =
Vo2 Vi DDV, =0. To construct V;41, we flip a fair coin for each element
of V; and then add the point to V;41 if the flip produce heads. The construction
ends when the set is empty. Now we construct a ¢-spanner using the ©-graph
algorithm for each V; and the union of all these graphs is the skip-list spanner
of V.

Theorem 6. The skip-list spanner is a t-spanner for V.C R? with O(kn) edges,
O(logn) spanner diameter and can be constructed in time O(knlogn). All the
bounds are expected with high probability.

Implementation. To construct a skip-list spanner, we construct a t-spanner
on V using the @-graph algorithm. Then for each point in the set we produce a
random number between 0 and 10,000 using random source type in LEDA and
remove the point if the outcome is less than 5,000. Then again we construct the
©-graph on the remaining points and we add the generated edges to the previous
graph. We continue this procedure until we have no remaining points in the set.

2.9 The Hybrid Algorithms

In [10] it was experimentally shown that the greedy algorithm produced graphs
whose size, weight and degree are superior to the graphs produced from the other
approaches. However the running time of the greedy algorithm is O(n3logn). A
way to improve the running time while, hopefully, still obtaining the high-quality
graphs is to first compute a t*-spanner (0 < a < 1) G(V, E) of the input set and
then compute a (t!~%)-spanner of G(V, E) using the greedy pruning algorithm
(in the experiments we use the improved greedy algorithm). The resulting graph
will have dilation at most t'~*-t® = t. The greedy pruning algorithm is identical
to the greedy algorithm, but instead of considering the edges in the complete
graph the algorithm only considers the edges in E. The time complexity of the
implemented greedy pruning is O(mn logn), where m is the number of edges in
the input graph.
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Table 1. Summarizing the known bounds for the algorithms presented in the paper.
The entries marked (*) implies that the values are expected with high probability. The
entries marked with (}) indicates that the versions implemented in this paper has an
additional log n-factor in their running times.

- Edges Weight Degree Diameter Time
Greedy-graph  O(,%,) O(, Y, - wt(MST))  O(,1) O(n) O(n®logn)
Apx. greedy-graph O(, " 3) O(, 4 ~wt(MST)) O(, % 5)  O(n) O, M7 logn)?

©-graph O(n/6)  O(n-wt(MST)) o(n) o(n) O(n/010gn)

O. ©-graph O(n/0) O(n - wt(MST)) O(1/0 -logn) O(n) O(n/0log n)T
WSPD-graph  6(, ", ;) O(logn - wi(MST))  O(n) O(n)  O((,*,)*n +nlogn)
Sink-spanner e(n/0) O(n - wt(MST)) (9( (t—11)2 ) O(n) O(n/0logn)

Skip-list spanner  ©(n/0)* O(n - wt(MST))* O(n) O(logn)™ O(n/flogn)™

3 Experimental Results

In this section we discuss the experimental results in more detail by considering
the running times of the algorithms. The experiments were done on point sets
ranging from 100 to 10,000 points with four different distributions:

— uniform distribution,

— normal distribution with mean 500 and deviation 100,

— gamma distribution with shape parameter 0.75, and

— /n uniformly distributed unit squares with y/n uniformly distributed points.

Below we will focus on the uniform distribution and the cluster distribution. A
discussion considering all the distributions will be available in the full version
of the paper together with a comparison of all the graphs produced by the
algorithms. To avoid the effect of specific instances, we ran the algorithms on
many different instances and took the average of the results.

3.1 Implementation Details

The algorithms were implemented in C++4 using the LEDA 5.01 library. In the
cases when LEDA did not contain the required data structure needed for the
algorithms, we implemented it ourselves.

The experiments were performed on an AMD Opteron 250 (2.4 GHz), 1GB
L2 cache and 4GB RAM. The OS was Fedora 3.4 and it used g++ 3.4.4 for
compiling the program using -02 option. All sample points sets were generated
by NEWRANO3 [9] pseudo random number generator.
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3.2 Uniform Distribution

The running times of all the implemented algorithms for ¢t = 2 and ¢ = 1.1 are de-
picted in Fig.[Il As the theoretical bounds suggest the original greedy algorithm
has the highest time complexity of the implemented algorithms and it shows
clearly in the experiments. However, the suggested improvement, the improved
greedy algorithm, performed very well in the experimental study and the results
corroborate our conjecture that only a linear number of shortest path queries are
needed. Figure [Ik shows the number of shortest path queries performed by the
algorithm for ¢ = 2. As an example of the improved running time we constructed
a greedy 2-spanner on a set of 4K uniformly distributed points; the original al-
gorithm required 12K seconds while the improved algorithm needed roughly 34
seconds. The improved greedy algorithm performed approximately 13K shortest
path queries while the original algorithm performs roughly 8 million queries.
Using the improved algorithm we are able to construct greedy graphs for much
larger points sets than earlier. For instance for a set of 10K points we can con-
struct 2-spanner greedy graph in about 300 seconds. Figures Bl and @l illustrates
the quality of the obtained graphs using different quality measures.

Based on the experiments, the running time of the improved greedy algorithm
is comparable to the running times of the hybrid algorithms using a = 0.5
for t = 2 and it performs even better for smaller values of ¢, see Fig. [1l for a
comparison. Thus, if high quality networks is a priority the improved greedy
algorithm is probably the best choice, especially for small values of ¢, see Fig. [3]
and Fig. @l Note that the improved greedy algorithm generates the same graph
as the original greedy algorithm.

For the hybrid approach, three different values of a were used, 0.1,0.5 and
0.9, and the results can be seen in Fig. Zh. By increasing «, less time is used to
build the initial graph while more time is needed for the pruning process, see
Fig. 2b. However, in [I0] it was clearly shown that the decrease in speed gave a
better quality network, i.e. small size, low degree and low weight.
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Fig. 1. Comparing the running times of the implemented algorithms for Uniform dist.,
(a) t = 2and (b) t = 1.1. Note the difference between the approximate greedy algorithm
and the improved greedy algorithm for the two values of ¢. (¢) Number of shortest paths
queries performed by the improved greedy algorithm with ¢ = 2.
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Fig. 2. (a) The performance of the hybrid algorithms for different values of o (Uniform
distr. and ¢ = 2). (b) Comparing the construction time of the initial graph with the
pruning time (Uniform distr., ¢ = 2 and n = 8000). (c) The running time for the
O(nlogn)-time algorithms in the experiments for Uniform distr. with ¢ = 1.1.

The remaining algorithms all have a theoretical O(n log? n), or even
O(nlogn), time complexity. However, the difference in their actual running times
is quite substantial and for some a bit surprising. The ©-graph algorithm is su-
perior to the others with respect to the running time. For sets containing 10K
points and for t between 1.5 and 2 the ©-graph was constructed in less than
two seconds. For ¢ = 1.1 the running time increased to approximately 6.5 sec-
onds, which is to be expected since its running time is highly dependent on the
value of 1/(t — 1)?. The fastest algorithms after the ©-graph construction were
the sink-spanner algorithm, the skip-list spanner algorithm and the random Or-
dered @-graph algorithm which basically all are modified @-graph algorithms.
Again for 10K points they required a couple of seconds for ¢ = 2 and approxi-
mately half a minute for ¢ = 1.1. These three algorithms almost show a linear
time behavior in our experiments, see Fig. 2.

For uniform sets the ordered @-graph algorithm and the WSPD algorithm
clearly show a superlinear behavior but they are still fast enough to handle 8K
points with ¢ = 1.1 in roughly one minute. For smaller values of ¢ and larger point
sets the ordered ©-graph algorithm ran into memory problems. The simplified
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Fig. 3. Comparing the size of the produced graphs for uniform point sets and (a) t = 2,
and (b) t = 1.1. (c) Comparing the size of the high-quality spanners using different
values of t.
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Fig. 4. (a) The weight of the produced graphs for uniform point sets and ¢ = 2. (b) The
average maximum degree of the produced graphs for uniform distributions and t = 2.
(c) The running time for the WSPD algorithm for ¢ = 1.1 for different distributions.

version that we implemented uses £2(* nlogn) space (instead of £2(* n) space)
and for small values of ¢ and large values of n this function grows rapidly.

The approximate greedy algorithm works well for large values of ¢. For ¢ = 2
the running time is comparable to the fastest hybrid algorithms but the produced
graphs can be shown to have slightly better quality. When ¢ decreases the running
time of the algorithm deteriorates rapidly and for ¢ = 1.1 the algorithm performs
even worse than the improved algorithm which is conjectured to have a running
time of O(n?logn) (see Fig. [)). The reason is that the approximate greedy
approximates the greedy algorithm in two steps; first the complete graph is
approximated using a dense t’-spanner G’ and then the shortest path queries in
G’ are approximated using a cluster graph H. This works well for large values
of t, and in theory for any constant, however, in practice ¢ becomes too small
at some point and the error when doing the approximation becomes too large.
As a result the initial graph G’ will be very dense (but still linear in n) and the
approximation factor used for the approximate shortest path query will be so
small that it is equivalent to the exact shortest path query in many cases.

Finally, the produced graphs most often contain many “redundant” edges,
i.e., edges that could be removed while still keeping the dilation bounded by ¢.
Table 2] clearly shows this, e.g., the skip-list spanner, sink-spanner and @-graph
all produce spanners of dilation approximately 1.2 in the case when t = 2.

3.3 Clustered Distributions

Most of the algorithms perform slightly better on the clustered point sets, ex-
cept the WSPD-algorithm and the approximate greedy algorithm which both
show a considerable improvement. For example, to construct a 2-spanner on a
uniformly distributed set which contains 8K points, the WSPD algorithm needs
roughly 11 seconds while the corresponding running time for the clustered set
is about 1.6 seconds. For ¢ = 1.1 the improvement is even bigger; 88 seconds
compared to 2.5 seconds, see Fig. @c. The WSPD algorithm was expected to
perform slightly better for clustered sets since it uses a clustering approach, but
the improvement was greater than predicted. Especially for small values of ¢ the
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Table 2. The maximum dilation of graphs generated by different algorithms

Maximum Dilation (Uniform distribution)
t=2 t=1.1

n 500 1000 2000 4000 8000 500 1000 2000 4000 8000
Original greedy 1.99 2 2 2 2 11 11 1.1 1.1 11
Improved greedy 1.99 2 2 2 2 11 11 1.1 1.1 11

Approximate greedy 1.68 1.68 1.68 1.68 1.68 1.07 1.07 1.07 1.07
O-graph 1.18 1.2 1.21 1.23 1.22 1.02 1.02 1.03 1.03 1.03
O. ©-graph 1.37 14 1.43 1.46 1.47 1.06 1.07 1.07 1.07 1.07
Random O. ©-graph 1.35 1.38 1.42 1.41 1.47 1.06 1.06 1.07 1.07 1.07
WSPD-graph 1.35 1.39 1.44 1.49 1.47 1.04 1.04 1.05 1.05 1.05
Skip-list 1.17 1.18 1.21 1.21 1.21 1.02 1.02 1.03 1.03 1.03
Sink-spanner 1.19 1.19 1.21 1.23 1.23 1.03 1.03 1.03 1.03 1.04

algorithm performs better, it is even comparable to the ©-graph algorithm for
the clustered set with 10K points and t = 1.1. A similar observation can be made
for the approximate greedy where the corresponding running times for ¢t = 1.1
and n = 8K are 1500 seconds and 128 seconds. As for the WSPD-approach
the approximate greedy algorithm also uses a clustering approach however the
main gain comes from the fact that the algorithm does not process any edges in
the initial graph G’ of length at most D/n (they are just added to the partial
spanner graph), where D is the diameter of the point set. In the clustered case
there will be many such edges and thus only “long” edges has to be processed.

An interesting observation that can be seen in Fig. Ik is that the number of
shortest path queries performed by the improved greedy algorithm in uniformly
distributed sets is considerably smaller than for the clustered points set, while
the running time is almost the same. Consider the case when the input contains
10K points. The number of shortest path queries performed on the uniform set
is approximately 33K while it is about 57K for the clustered set. The number of
clusters is 100, with 100 points per cluster. From the experiments it follows that
the number of shortest-path queries performed between two points within the
same cluster of uniformly distributed points is approximately 300. Since there are
100 clusters the number of shortest path queries needed for the “intra-cluster”
edges in the clustered set is approximately 30K. These queries are all performed
on very small graphs and are therefore processed extremely fast. Next approx-
imately 27K “inter-cluster” queries are performed. We believe that the smaller
number of “inter-cluster” queries together with the fact that the 2-spanner of
the clustered set is slightly smaller than for the uniform set explains why the
running times for the two different distributions are almost identical.

4 Concluding Remarks and Acknowledgements

We studied the running time of the most common construction algorithm
for t-spanners. In addition to the algorithms presented in [I0] we also tested
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sink-spanners, skip-list spanners and, most importantly, the approximate greedy
spanner. Unfortunately, the approximate greedy algorithm performs worse than
expected in most cases, even though the theoretical bounds are very good.

In general the @-graph construction algorithm is the fastest algorithm, how-
ever if it is important to obtain a high quality network then the improved greedy
algorithms seems to be the most suitable choice. The main question that remains
to be answered experimentally is the dependency on the number of dimensions,
i.e. how the algorithms and the quality of the produced graphs depends on the
number of dimensions.

The authors would like to thank the anonymous reviewers for comments on a
earlier version of this paper.
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