

Generalizing Needham-Schroeder-Lowe for multi-party
authentication
Citation for published version (APA):
Cremers, C. J. F., & Mauw, S. (2006). Generalizing Needham-Schroeder-Lowe for multi-party authentication.
(Computer science reports; Vol. 0604). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/4062b393-c168-443a-b60b-53199b139647

Generalizing Needham-Schroeder-Lowe
for Multi-Party Authentication

C.J.F. Cremers S.Mauw
Eindhoven University of Technology,

Department of Mathematics and Computer Science,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

{ccremers,sjouke}@win.tue.nl

Abstract

We propose a protocol for multi-party authentica-
tion for any number of parties, which generalizes
the well-known Needham-Schroeder-Lowe proto-
col. We show that the protocol satisfies authen-
tication of the communicating parties (by proving
injective synchronisation) and secrecy of the gen-
erated challenges. For p parties, the protocol con-
sists of 2p − 1 messages, which we show to be the
minimal number of messages required to achieve
the desired security properties in the presence of a
Dolev-Yao style intruder. The underlying commu-
nication structure of the generalized protocol can
serve as the backbone of a range of authentication
protocols.

1 Introduction

In the context of Dolev-Yao style modeling
of security protocols, several protocols have been
proposed in order to satisfy forms of mutual au-
thentication (for an overview of authentication
protocols see [9, 25]). Of these, the best known
is Needham-Schroeder-Lowe (NSL) from [21,23].
The NSL protocol satisfies even the strongest
forms of authentication [15], and has been studied
extensively.

The operation of the three-message base proto-
col is as follows (see Figure 1). In the first step,
the initiator of the protocol, executing the a role,
creates a random value (often called a nonce or a
challenge) na. He encrypts this value along with
his name with the public key pkb of the intended
responder. When the responder, executing the b
role, receives such a message, he generates his own

random value nb. He responds to the challenge by
encrypting both nonces as well has his own name,
with the public key of the initiator. In the third
step, the initiator sends back the random value nb
to the responder, encrypted by the public key of
the responder.

na

a

nb

b

{na, a}pkb

{na, nb, b}pka

{nb}pkb

Figure 1. The Needham-Schroeder-
Lowe protocol with public keys.

This protocol was designed for two parties who
want to authenticate each other, which is often re-
ferred to as bilateral authentication. In many set-
tings such as modern e-commerce protocols there
are three or more parties that need to authenticate
each other. In such a setting we could naively in-
stantiate multiple NSL protocols to mutually au-
thenticate all partners. For p parties, such mutual
authentication would require (p×(p−1))/2 instan-
tiations of the protocol, and three times as many
messages. In practice, when multi-party authen-
tication protocols are needed, protocol designers
instead opt to design new protocols (often 3 or 4-

n0

R0

n1

R1

n2

R2

n3

R3

{ R0, R2, R3, n0 }pk1

{ R0, R1, R3, n0, n1 }pk2

{ R0, R1, R2, n0, n1, n2 }pk3

{ R1, R2, R3, n0, n1, n2, n3 }pk0

{ n1, n2, n3 }pk1

{ n2, n3 }pk2

{ n3 }pk3

Figure 2. Four-party generalized NSL.

way handshakes, see e.g. [18]), which possibly in-
troduces new faults.

The goal of the current paper is to improve upon
this approach and to generalize the NSL protocol
as to obtain a multi-party authentication protocol
with optimal message complexity (which turns out
to be 2p − 1 for p parties).

Since the development of correct security pro-
tocols has proven to be a notoriously difficult task
we use the framework introduced in [14–16] to
prove the proposed protocol correct.

Although many methodologies and tools for
verifying security protocols in a Dolev-Yao setting
have been developed, these have been focussed
on protocols with a fixed number of parties. The
challenge is in proving the proposed parameterized
protocol correct.

We proceed as follows. In Section 2 we gen-
eralize the Needham-Schroeder-Lowe protocol for
any number of parties. In Section 3 we show the
security properties that the protocol satisfies and
sketch proofs of correctness and preconditions.
We discuss some variations of the pattern of the
generalized protocol in Section 4. Related work is
discussed in Section 5. We draw conclusions and
discuss further work in Section 6.

2 A multi-party authentication proto-
col

The basic idea behind the NSL protocol is
that each agent has a challenge-response cycle
to validate the other agent’s identity. These two

challenge-response cycles are linked together by
identifying the response of the second agent with
its challenge.

Its generalization follows the same line of
thinking. Every agent conducts a challenge-
response cycle with its neighbouring agent, while
combining its own challenge with a response to an-
other agent’s challenge whenever possible.

We will first explain the four-party version of
the protocol in some detail. Afterwards we give a
generalized specification for p parties.

The four-party protocol goes as follows (see
Figure 2). First, the initiating agent chooses which
parties he wants to communicate with. He creates
a new random value, n0, and combines this with
his name and the names of agents R2 and R3. The
resulting message is encrypted with the public key
of R1, and sent to R1. Upon receipt and decryp-
tion of this message, the second agent adds his own
name and a fresh nonce, and removes the name of
the next agent in the line from the message. This
modified message is then encrypted with the pub-
lic key of the next agent and sent along. This
continues until each agent has added his nonce,
upon which the message is sent back to the initiat-
ing agent. This agent checks whether the message
contains the nonce he created earlier, and whether
all agent names match. Then he can conclude that
the other agents are authenticated. Next, in or-
der to prove his own identity, he sends a message
containing the other agents’ nonces to R1. The
subsequent agents again check whether their own
nonces are in the message, remove this nonce, and

2

n(0)

R0

n(i)

Ri (0 < i < p − 1)
n(p − 1)

R(p − 1)

MsgA(0)

MsgA(i − 1)

MsgA(i)

MsgA(p − 2)

MsgA(p − 1)

MsgB(0)

MsgB(i − 1)

MsgB(i)

MsgB(p − 2)

Figure 3. Generalized NSL pattern

pass the resulting message on.
This four-party protocol can be generalized to

any number of agents p. In Figure 3 we schemat-
ically describe the communication structure of the
protocol. The abstract messages are defined below.
The function next determines the next role in the
list of participants in a cyclic way. The ordered list
AL(x) contains all roles, except for role x. The
protocol makes use of two types of messages. The
first p messages are of type MsgA and the final
p − 1 messages are of type MsgB.

next(i) = R((i + 1) mod p)

AL(x) = [R0, R1, . . . , R(p − 1)] \ x

MsgA(i) = { [n(0) . . . n(i)], AL(next(i)) }pk(next(i))

MsgB(i) = { [n(i + 1) . . . n(p − 1)] }pk(next(i))

For i such that 0 ≤ i < 2p − 1, protocol mes-
sage labeled with (p, i) is now defined by

Msg(i) =

{

MsgA(i) if 0 ≤ i < p,

MsgB(i − p) if p ≤ i < 2p− 1.

The purpose of the protocol is to achieve au-
thentication of all parties and secrecy of all nonces,
in the presence of a Dolev-Yao intruder, that has
full control over the network. We will make this
precise in the next section, but first we make two
observations. First, agent Rx reads messages with
labels (p, x− 1) and (p, x + p− 1), and sends out
messages with labels (p, x) and (p, x + p). Sec-
ond, a nonce created by agent Rx occurs in p − 1

messages: to be exact, it occurs in the messages
labeled with (p, i), where x ≤ i < x + p.

The protocol can be deployed in two main
ways. First, it can be instantiated for a specific
number of parties, to yield e.g. a four-party authen-
tication protocol. In this way it can be used instead
of custom n-way handshake protocols.

Second, it can be used in its most generic form,
and have the initiating role R0 choose the number
of participants p. Agents receiving messages can
deduce the chosen p at runtime from the number of
agents in the first message, and their supposed role
from the number of nonces in the message. For
the analysis in the next section we use the generic
form, where the number of parties p is not fixed:
the properties that we prove will then automati-
cally hold for specific instantiations as well, where
only a certain number of parties is allowed.

3 Analysis

In this section we will prove that the protocol
satisfies injective synchronisation. Informally, for
a two-party protocol, it states the following:

Initiator I considers a protocol synchro-
nising, whenever I as initiator completes
a run of the protocol with responder R,
then R as responder has been running
the protocol with I . Moreover, all mes-
sages are received exactly as they were
sent, in the order as described by the pro-

3

tocol. Initiator I considers a protocol
injectively synchronising if the protocol
synchronizes and each run of I corre-
sponds to a unique run of R.

This definition extends in a natural way to
multi-party protocols. We refer the reader to [15,
16] for a detailed definition of injective synchroni-
sation and a proof that the more common notion of
agreement is implied by injective synchronisation.

Important to the approach here is that we con-
sider local synchronisation claims. That means
that an agent may decide that the complete pro-
tocol has been executed exactly as expected, based
on his local observations only. These observations
only take into account the contents of the commu-
nications that the agent was involved in. When-
ever such an agent successfully completes a run of
a synchronising protocol, all other parties involved
in the protocol have executed their part exactly as
expected.

We notice that the proposed multi-party authen-
tication protocol performs an all or none authen-
tication. This means that whenever an agent fin-
ishes his part of the protocol successfully, he will
be sure that all other parties are authenticated to
him. On the other hand, if any of the communi-
cation partners is not able to authenticate himself,
the protocol does not terminate successfully. So,
this protocol does not establish authentication of a
subset of the selected agents.

A second observation concerning this protocol
is the fact that authentication is only guaranteed if
all agents indicated in the first message of the ini-
tiator are trusted. This means that if the decryption
key of any of the agents is compromised, the other
agents in the list can be falsely authenticated. The
reason is that e.g. agent R0 only verifies the au-
thenticity of agent R1. Verification of the identity
of agent R2 is delegated to agent R1, and so on.
This chain of trust is essential to the design of an
efficient multi-party authentication protocol.

Finally we want to mention that the proof does
not only imply correctness for any specific choice
of p: rather, we prove that the protocol is correct
when p is chosen at run-time by the initiator. Put
differently, we prove correctness of the protocol in
an environment with all p-party variants running in
parallel.

3.1 Properties of generalized NSL

The multi-party authentication protocol de-
scribed above has a number of interesting proper-

ties. It satisfies secrecy of each of the nonces, and
injective synchronisation for all parties (and there-
fore also agreement). Furthermore, it uses a min-
imal number of messages to achieve these proper-
ties.

Correctness holds in the presence of an ac-
tive Dolev-Yao intruder, thus assuming per-
fect cryptographic primitives, but with compro-
mised/dishonest agents in the system. It is pos-
sible that agents start a protocol session with dis-
honest agents, in which case no security properties
are guaranteed. We prove that even though hon-
est agents sometimes communicate with dishonest
agents, the communications among groups of hon-
est agents remain secure.

3.2 Proof of correctness

We will show the proofs of the security claims
of the generalized version of Needham-Schroeder-
Lowe in some detail. For these proof descriptions
we rely on the concepts introduced in [14–16].
Although it is our intention that this paper is as
self-contained as possible, many subtleties are ex-
plained more clearly in the papers mentioned.

We briefly introduce some of the concepts in-
volved. Black box modeling of security protocols
starts from a term algebra with at least two con-
structors: tupling of terms t1 and t2, denoted as
(t1, t2), and encryption of a term t with a term k,
denoted as { t }k.

We assume a typed model, in other words we
assume the messages are constructed in such a way
that the recipient can distinguish e.g. a nonce from
an agent name. This assumption is addressed in
more detail in Section 3.3

The subterm relation v concerns all terms in-
volved in the construction of a term. It therefore
also contains the keys used in the construction.

Definition 1 The subterm relation v is the least
reflexive, transitive relation satisfying t1, t2 v
(t1, t2) and t1, t2 v { t1 }t2 .

We also define a subterm with an encryption
depth parameter, that signals the number of en-
cryptions applied to a term, using a subscript no-
tation. Thus we still have t v0 t. We have
t1 v0 (t1, t2) and t1 v1 { t1 }t2 . Note that we
have t2 v0 { t1 }t2 because the key is not en-
crypted itself. If a term occurs at more levels of
encryption, we refer to the lowest level.

We consider an unbounded number of agents,
each executing one or more instances of one or

4

more roles of the protocol in parallel. An instan-
tiated role is called a run. Agents communicate
via a network that is under complete control of the
(Dolev-Yao) intruder. The operational semantics
describes all possible behaviours of such a system.
This gives rise to a set of traces: each trace is a
sequence of (instantiated) send and read events. A
send (or read) event executed in run rx is denoted
by send]rx (or read]rx). So, an execution trace
consists of a possible interleaving of the send and
read events of the runs. In this model, the net-
work is equated with the intruder. Therefore a send
event implies that the intruder learns the contents
of the sent message, and possibly decomposes it
using available decryption keys. A read event im-
plies that the intruder was able to construct the
contained message. The intruder knowledge mod-
els the collection of messages that the intruder is
able to construct.

Definition 2 The initial knowledge of the intruder
is denoted as M0. Given a trace α and an index i,
the knowledge of the intruder before an event αi is
denoted as:

M(α, i) = M0 ∪ {m | ∃j < i : αj = send(m)}

The intruder knowledge is closed with respect to
the available operators, such as tupling/projection
and encryption/decryption. We assume perfect en-
cryption: an encrypted term can only be decrypted
if the intruder is in possession of the key. Thus we
have { x }k ∈ M ∧ k−1 ∈ M ⇒ x ∈ M .

Fresh values (nonces) created in runs are not
known to the intruder initially. Even if the intruder
learns them at some point, there is a point before
which the nonce was not known.

Lemma 1 Given a trace α, and a nonce n that
was created by a run rx in role y, we have that:

∃j : n ∈ M(α, j) ⇒

∃i : n 6∈ M(α, i) ∧ n ∈ M(α, i + 1)

If a fresh value is not known to the intruder, he
cannot construct terms that have this fresh value
as a direct subterm himself. Thus, these messages
must have been learned somewhere before.

Lemma 2 Assume a protocol model with explicit
type checking for terms. Given a trace α, terms
t, m, k and an index i:

(t v0 m ∧ t 6∈ M(α, i) ∧ αi = read({ m }k)

⇒ ∃(j < i : m v m′ ∧ αj = send(m′))

The proof of this Lemma is not detailed here.
The following lemmas only hold for the specific

protocol under investigation.
Based on Lemma 2 we can establish the follow-

ing property:

Lemma 3 Consider the generalized version of
NSL Let α be a trace, and rx be a run executing
role x, in which a nonce n was created. Let ry be
a run and m a message such that n v1 m. If we
have

n 6∈ M(α, i) ∧ αi = send(m)]ry

then we have

ry = rx ∨

(∃m′, j, j′, rz : j < j′ < i ∧ n v1 m′ ∧

αj = send(m′)]rz ∧ αj′ = read(m′)]ry)

Intuitively, the lemma states that if an agent sends
out a nonce that the intruder does not know, it is ei-
ther its own nonce or it is one that it learned before
from the send of some other agent.

The previous lemma gives us a preceding run
for a message that is sent. If we repeatedly apply
this lemma on a similar situation where a nonce
is received, we can establish a sequence of events
that must have occurred before a nonce is received.
We introduce the notation run(e) to denote the run
that executes the trace event e.

Lemma 4 Consider the generalized version of
NSL. Let α be a trace, and rx be a run execut-
ing role x in which a nonce n was created. Let ry
be a run and m be a message such that n v1 m.
If we have

n 6∈ M(α, i) ∧ αi = read(m)]ry

then there exists a non-empty finite sequence of
events β such that the events in β are a subset of
the events in α, and

run(β0) = rx ∧ β|β|−1 = send(m) ∧

(∀n : 0 ≤ n < |β| : ∃m′, j, r : n v1 m′ ∧

βn = αj = send(m′)]r ∧

(∃rr, j′ : j < j′ < i : αj′ = read(m′)]rr ∧

(n < |β| − 1 ⇒ rr = run(βn+1))))

The resulting sequence of events is a chain of send
events that include the nonce: each sent message
is read by the run of the next send. This lemma is
used to trace the path of the nonce from the cre-
ator of a nonce to a recipient of a message with

5

the nonce, as long as the nonce is not known to the
intruder. In other words, β represents a subset of
send events of α through which the nonce n has
passed before αi.

Given a run identifier r, we denote the local
mapping of roles to agents (which is used to de-
note the intended communication partners of a
run) with ρ(r). We use AT to denote the set of
trusted agents: these are the agents that are “hon-
est”, and thus not compromised by, or conspiring
with, the intruder. Intuitively, we prove the follow-
ing: even though not all agents in the system can
be trusted, we still want the communications be-
tween trusted agents to be secure. For a run r that
wants to communicate with trusted agents we have
that ρ(x) ⊆ AT , whereas for a run r2 that sets up
a communication with an untrusted agent we have
that ρ(r2) 6⊆ AT . We use this terminology in the
next lemma.

Lemma 5 For the generalized version of NSL,
given a trace α, and a nonce n that was created
by a run rx, and a trace index k:

ρ(rx) ⊆ AT ∧ n ∈ M(α, k) ⇒

(∃ry, j, m : ρ(ry) 6⊆ AT ∧ j < k ∧

n 6∈ M(α, j) ∧ n ∈ M(α, j + 1) ∧

n v m ∧ αj = send(m)]ry)

Intuitively, this lemma expresses that the pro-
tocol only reveals any terms to the intruder in
runs that communicate with an untrusted agent.
The lemma follows from the notion of untrusted
agents, Lemma 1 and Lemma 2.

We now return to the sequence of events β as
established by Lemma 4. Given a send event e, the
type of message is either A or B, and is denoted as
mtype(e).

Lemma 6 Given a sequence of run events β es-
tablished by application of Lemma 4, we have that
there exists a k, where 1 ≤ k ≤ |β| such that

(k < |β| ⇒ role(βk) = R0) ∧

∀n : 0 ≤ n < |β| :

mtype(βn) =

{

A if n < k

B if n ≥ k

This lemma follows from the protocol rules: When
a run creates a nonce, it is sent out first as part of
a message of type A. Messages of type A contain
agent names, whereas messages of type B do not.
The run that receives such a message, sends it out

again within a type A message (containing agent
names), unless it is executing role R0, in which
case it sends out the nonce within a type B mes-
sage, without agent names. After receiving a mes-
sage without agent names (type B), runs only send
out type B messages.

This allows us to draw some further conclu-
sions: because the messages in the sequence β are
received as they were sent, and because the mes-
sages before k include a list of agents, we deduce:

• The runs executing the events β0 . . . βk have
the same parameter p (the number of agents
in the messages plus one) and each run has
the same agent lists ρ.

• Given the parameter p and the number of
nonces in a message, we can uniquely deter-
mine the role of a message.

This leads to the following result:

Lemma 7 Given a sequence β resulting from ap-
plying Lemma 4 for a nonce created in a run rx
executing role x, and an index k resulting from
Lemma 6 we have

(k < |β| ⇒ role(βk) = R0) ∧

∀n : 0 ≤ n < k : ρ(run(βn)) = ρ(rx) ∧

role(βn) = R(n + x)

3.2.1 Secrecy of nonces created in role R0

Lemma 8 Given a trace α, a nonce n created by
a run rx in role R0, we have that

ρ(rx) ⊆ AT ⇒ ∀i : n 6∈ M(α, i)

Proof by contradiction. We assume the generated
nonce is leaked to the intruder, and establish a con-
tradiction, from which we conclude the nonce can-
not be leaked.

Assume that there exists a trace α in which a
nonce n was generated in a run rx executing role
R0, and that this run tries to communicate with
trusted agents only. In other words, ρ(rx) ⊆ AT .
Assume the nonce is learned by the intruder at
some point. We apply Lemma 5 to find an event αj

of a run ry where the nonce is first leaked. Thus
we have n 6∈ M(α, j) and n ∈ M(α, j+1)). Note
that rx 6= ry: the nonce could not have been cre-
ated in run ry because that would imply ry only
communicates with trusted agents, contradicting
the lemma. In fact, in all sub case we will arrive at
a contradiction of the type ρ(rx) = ρ(ry) com-
bined with the communication with (un)trusted

6

agents in the runs. We apply Lemmas 4 and 6 to
yield a sequence of events β and an index k.

We split cases based on the type of message of
the send event at αj . We distinguish two cases, and
show that both lead to a contradiction.

• The message sent at αj is of type A. Thus we
conclude k = |β|, and from Lemma 7 we have
that ρ(ry) = ρ(rx). Because rx communicates
with trusted agents only, and ry does not, we
arrive at a contradiction.

• The message sent of αj is of type B, so it does
not contain agent names. Because the nonce
n was not created by the run ry, it must have
been received before. If we look at the protocol
definitions, we see that each send of message
B is preceded by a read of a message contain-
ing one extra nonce: the one created by the run.
Thus, there must be a read event αj2, j2 < j,
with message { [ny, . . . , n, . . .] }pk(...), where
ny is the nonce created by run ry. Because this
message again contains n, the intruder could not
have created this message himself, and an agent
must have sent it. If we look at the messages
in the sequence β and the protocol rules, we
find that there must exist an index k2, such that
run(βk2) = ry (where ny was sent out first),
and that k2 < k on the basis of Lemma 6. If
we combine this with Lemma 7, we arrive at
ρ(ry) = ρ(rx), which yields a contradiction.

3.2.2 Non-injective synchronisation of role R0

Given that the secrecy of nonces generated by role
R0 holds, the following is straightforward:

Lemma 9 Non-injective synchronisation holds
for role R0.

As stated before, a full definition of synchronisa-
tion is given in [15]. Briefly, it states that when
an agent reaches the end of its role, there are
other runs, that fulfil the other roles of the proto-
col, with which messages are exchanged exactly as
prescribed by the protocol. We have to prove that
all communications that precede the end of the role
have occurred correctly: in this case, for role R0
we only have to prove that the communications of
type A have occurred as expected, because from
the viewpoint of role R0, we cannot be sure that
any messages of type B ever arrive.

Here we sketch the proof, which is not diffi-
cult given the secrecy of the nonce: Given a trace
α with a run rx executing role R0, we have that

the nonce n generated by this role is secret on
the basis of Lemma 8. Thus, if the agent com-
pletes his run, there must have been two indices
j and i, j < i such that αj = send(p,0)(m) and
αi = read(p,p−1)(m

′). If we use Lemma 4 and
Lemma 6 we find that the events in the sequence
β are exactly the events that are required to ex-
ist for the synchronisation of the role R0: they
are received exactly as they were sent, which is
required for synchronisation. This leaves us with
only one proof obligation: we have to show that
the sequence β contains all the messages of type A,
in the right order, after the start of run rx, and be-
fore the end of run rx. This follows directly from
the role assignment in Lemma 7.

3.2.3 Secrecy of nonces created in role Rx for
x > 0

Lemma 10 Given a trace α, a nonce n created by
a run rx executing role Rx with x > 0, we have
that

ρ(rx) ⊆ AT ⇒ ∀i : n 6∈ M(α, i)

Proof by contradiction, similar to that of Lemma 8.
Assume the nonce n was created by a run rx ex-
ecuting role x, and is leaked by a run ry to the
intruder in some trace α. We have ρ(rx) ⊆ AT

and ρ(ry) 6⊆ AT . We use Lemma 4 and Lemma 6
to yield a sequence β and index k. We distinguish
two cases:

• k = |β| : We derive ρ(rx) = ρ(ry), leading to
a contradiction.

• k < |β| : Because role(βk) = R0, we use
Lemma 9 to extend the sequence β backwards,
by merging the sequence from the leaking of
the nonce with the sequence from the synchro-
nisation. From the messages in the initial seg-
ment, which now includes all roles, we find that
ρ(rx) = ρ(ry), leading to a contradiction.

3.2.4 Non-injective synchronisation of role Rx
for x > 0

For non-injective synchronisation of role Rx for
x > 0, we not only have to prove that all mes-
sages of type A have occurred as expected, but also
all messages MsgB(x), and that there is so-called
run-consistency: for each role Ry we want there
to be a single run that sends and receives the actual
messages.

7

Lemma 11 Non-injective synchronisation holds
for role Rx, where x > 0.

Proof sketch: based on the secrecy of the nonce
generated in such a role, we determine an index k,
and sequence β that precedes the last read event
of the role, with role(β0) = Rx. Because the se-
quence must include an event of role R0, for which
non-injective synchronisation holds, we merge the
sequences for both (as in the previous lemma).
This gives us a complete sequence of send and
events which exactly meet the requirements for
non-injective synchronisation: they are received
exactly as they were sent. The requirement of the
existence of all messages of type A follows from
Lemma 7: thus there is a run for each role in the
protocol. Furthermore, the nonce of each these
runs is present in the message sent at αk. If we
examine the protocol rules, we see that the mes-
sage of type B is only accepted by runs whose own
nonce is contained in the message: therefore we
have that the run executing role R1 must be equal
to run(αk+1), and that the read event must be la-
beled as the MsgB(0). Similarly, we establish that
the correct messages have been consistently read
and sent by the runs that created the nonces. Thus
all conditions for non-injective synchronisation are
met.

3.2.5 Injective synchronisation of all roles

The additional requirement of injectivity ensures
that a security protocol is not vulnerable to a cer-
tain class of replay attacks. In [16] we formalised
the notion of injectivity and proved that for syn-
chronising protocols inspection of the protocol at
a syntactic level suffices to conclude injectivity.
This syntactic criterion, the loop-property, roughly
states that there must be a sequence of messages
from the claiming role to each of the other roles,
and back. For the proposed protocol this boils
down to verifying that each role has a challenge-
response loop to each of the other roles, which is
obviously the case. Therefore, the synchronisation
proof presented above implies injective synchroni-
sation as well.

3.3 Observations

The Needham-Schroeder protocol If we in-
stantiate the generalized protocol for p = 2, we
get exactly the three message version of the NSL
protocol. The NSL protocol was designed to fix
a flaw in the Needham-Schroeder protocol, shown

in Figure 4. If we compare our generalized version
with the original Needham-Schroeder protocol, we
see that the second message of the Needham-
Schroeder protocol does not contain the agent list
(AL(a)). Therefore we cannot conclude all the
contradictions based on the matching agent lists,
as we did in the proof of our protocol.

na

a

nb

b

{na, a}pkb

{na, nb}pka

{nb}pkb

Figure 4. The Needham-Schroeder
protocol with public keys.

Type-flaw attacks We have assumed that type-
flaw attacks are not possible, i.e. agents can verify
whether an incoming message is correctly typed.
There are several reasons for doing this.

Without this assumption, there are type-flaw at-
tacks on the generalized version of the protocol:
not only simple ones for specific instances of p,
but also multi-protocol type-flaw attacks involving
instances for several choices of p in one attack, as
in [13]. Thus, we find that typing is crucial. So-
lutions for preventing type flaw attacks using type
information is examined in detail in e.g. [19]. Such
type information can be easily added to each mes-
sage, but a simple labeling will also suffice. If we
add a tuple (p, l) before each message inside the
encryption, where p is the number of participants
for this instance, and l is the label of the mes-
sage, the protocol becomes robust against type-
flaw attacks and multi-protocol attacks with other
instances of itself.

Using an automatic protocol verification tool
(Scyther, [12]) we have established that the type-
flaw attacks are not due to the specific ordering of
the nonces and agent names within the messages.
In particular, we examined different options for the
message contents (without adding labels): revers-
ing the order of either the agent or the nonce list,

8

interleaving the lists, etc. We established the ex-
istence of type-flaw attacks for some choices of p
for all variants we constructed.

3.4 Message minimality

As discussed in Section 3.2.5, the loop-property
is instrumental to achieve injectivity. Moreover, in
the context of a unicast communication model with
a Dolev-Yao intruder, this loop-property turns out
to be a necessity. Phrased in terms of challenge-
response behaviour: in order to achieve injective
synchronisation, each role must send a challenge
that is replied to by all other roles.

From this requirement we can easily derive the
minimal number of messages to achieve injective
synchronisation. Consider the first message sent
by some role Rx, and call this message m. In or-
der to achieve a loop to all other roles after this
first message, every role will have to send at least
one message after m. Including message m this
will yield at least p messages. Next we observe
that every role must take part in the protocol and
we consider the first message sent by each of the
roles. If we take Rx to be the last of the p roles
that becomes active in the protocol, it must be the
case that before Rx sends his first message, at least
p−1 messages have been sent. Adding this to the p
messages that must have been sent after that mes-
sage, yields a lower bound of 2p− 1 messages.

4 Variations on the pattern

The communication structure from Figure 3 can
be instantiated in several different ways as to ob-
tain authentication protocols satisfying different
requirements. In this section we list some of the
more interesting possibilities. Due to space limita-
tions, we present the protocols without analysing
their properties in detail.

Generalized Bilateral Key Exchange First, we
observe that the nonces generated in the proto-
col are random and unknown to the adversary,
which makes them suitable keys for symmetric en-
cryption. Furthermore, if we examine the proofs,
the authentication of the messages is only derived
from the encryption of the messages of type A, not
of type B. Similar to the Bilateral Key Exchange
protocol (BKE) as described in [10] we can opt
to replace the asymmetric encryption for the mes-
sages of type B by symmetric encryption with the
nonce of the recipient. We can then omit this nonce

from the list. We use ε to denote a constant repre-
senting the empty list. This yields the following
message definitions.

nlist(i) =

{

[n(i + 2) . . . n(p − 1)] if i < p − 1

ε if i = p − 1

MsgA(i) = { [n0 . . . ni], AL(next(i)) }pk(next(i))

MsgB(i) = { nlist(i) }n(i+1)

Using private keys If secrecy of the nonces is
not required, we can use the private key of the
sender of a message for encryption, instead of the
public key of the receiver. This gives the following
protocol.

MsgA(i) = { AL(Ri), [n0, . . . , ni] }sk(Ri)

MsgB(i) = { AL(Ri), [n(i + 1), . . . , n(p − 1)] }sk(Ri)

Although this protocol is minimal in the number
of messages, it is not minimal in the complexity of
the messages. In the first message of role R0, e.g.,
we can take the role names outside the encryption
operator. Although there are some other local op-
timizations, we prefer to present this more regular
protocol. Finding such a protocol with minimal
complexity of the messages is still an open ques-
tion.

Rearranging message contents In the proofs of
correctness, we have used some (but not all) infor-
mation that distinguishes the messages in the pro-
tocol. In particular, we used:

• The ordered agent list AL(). We used this
to derive the parameter p from an incoming
message, and the order in the list is required
to be able to derive that the agent list of the
sender is identical to the agent list of the re-
cipient.

• The list of nonces. We used the number of
nonces to derive the role an agent is supposed
to assume (given p).

A direct consequence of this is that the exact
order of the agent list and nonce list is not relevant,
as long as it is consistent. We could e.g. redefine
messages of type A as to start with a reversed list
of roles, followed by the list of nonces.

Furthermore we did not require in the proof of
the protocol, that there was nothing else inside the
encrypted terms besides names and nonces. Thus,

9

we can add any payload inside the encryption, as
long as we ensure that it cannot be confused with
an agent term or a nonce.

This opens up several possibilities for establish-
ing e.g. keys between pairs of agents inside of the
generalized NSL protocol. We discuss one such
option in the next paragraphs.

Key agreement protocols In the field of cryp-
tographic protocols many, so-called, group key
agreement protocols have been developed. Al-
though these have different goals from the protocol
mentioned here, we see some possibilities to use
the underlying structure of the protocol for these
purposes.

The generalized NSL presented here can be
turned into a naive group key agreement protocol
by deriving a session key using a hash function
over all the nonces, e.g. h(n(0) . . . n(p−1)). This
would constitute a fresh authenticated session key,
which is shared by all the participants. However,
the resulting protocol would not satisfy e.g. for-
ward secrecy of the session key: if one of the pri-
vate keys of one of the participants is leaked after
a session, the nonces that were used can be de-
termined. From this the original session key can
be retrieved, which allows an intruder to decrypt a
session afterwards.

To establish forward secrecy of a session key,
derivatives of the Diffie-Hellman key agreement
protocol are used, as e.g. in [27]. We envisage
that such an approach would be possible here as
well: either by adding Diffie-Hellman derivatives
as payload, or more efficiently, by replacing the
nonces that are sent by the public halves of the
Diffie-Hellman constructs.

5 Related Work

In Dolev-Yao style analysis of security pro-
tocols, where black-box abstractions of crypto-
graphic operators are considered, protocols usu-
ally consist of two or three roles only. There are
many recent successful methodologies [17,28] and
analysis tools [3, 4, 11, 12, 24] that can be used to
analyse protocols in the Dolev-Yao model. All the
tools mentioned assume the protocols have a fixed
number of participants. Therefore, they cannot be
used to analyze multi-party protocols in general,
but they can be used to analyze specific instances
of such protocols. For example, Proverif [4] has
been used to analyze instances of the GDH proto-
cols from [2], and here we have used Scyther [12]

to analyze instances of our protocol.
In spite of the success of these methods, few

multi-party protocols have been constructed in the
Dolev-Yao setting. As a notable exception we
would like to mention [7], where the authors con-
struct a challenge-response protocol for any num-
ber of parties. However, the protocol described
there does not satisfy synchronisation or agree-
ment.

On the other hand, many multi-party protocols
have been constructed and analyzed in a crypto-
graphic setting, e.g. [1, 2, 5]. These protocols are
typically assumed to employ a multicast primitive,
and based on this primitive their complexity can
be analyzed, as in e.g. [20, 22]. Unfortunately the
protocols in this category are designed to meet dif-
ferent goals than the protocol presented here, and
therefore cannot be used to compare with our ap-
proach.

Recently, a corpus of multi-party protocols
have been established as part of the Coral project
[26], aiming to establish a reference set for multi-
party protocol analysis.

Regarding proving authentication protocols
correct, there have been some recent attempts to
simplify such proofs. For example, one success-
ful approach is to use static analysis of the proto-
col to prove authentication properties, as described
in e.g. [6]. However, the notions of authentica-
tion used there are weaker than synchronisation
or agreement, and the methods used there do not
seem suitable for proving synchronisation.

Another approach to proving authenticity is
taken in [8], where a simple logic is developed to
prove authentication, assuming that some secrecy
properties hold. The idea is then to delegate the
proof of the secrecy properties to a dedicated se-
crecy logic. While a promising idea, in this case
we have seen that the lemmas used to prove se-
crecy (i.e. yielding a sequence of send events) are
also used to prove authenticity: thus, in this par-
ticular case, the proof structure seems to suggest
that splitting the proof strictly into two (one for se-
crecy, one for authentication) leads to duplication
of a large part of the proof. It would be interesting
to see how a dedicated proof in this authentication
logic would differ from our proof.

6 Conclusions and Future Work

We proposed a security protocol for multi-party
authentication and proved it correct, i.e. the pro-
tocol satisfies injective synchronisation and all

10

nonces are secret. The proof is formulated in
terms of the operational semantics framework in-
troduced in [14–16] and takes the number of par-
ties p as a parameter. This is in line with more re-
cent attempts (e.g. [26]) to develop methodologies
for such (parameterised) multi-party protocols, for
which this protocol could be used as a case study.

Correctness of the protocol is subject to the as-
sumption that the messages include enough infor-
mation as to allow a receiving agent to check if a
message is correctly typed.

As has been shown by history, constructing cor-
rect security protocols is not trivial. Even knowing
this, we were surprised to find that all variants of
the proposed protocol (irrespective of the ordering
of nonces and role names in the messages) suffer
from type-flaw attacks. We found this out by us-
ing the Scyther tool [12]. In fact, we extensively
used this tool to investigate instances of the proto-
col for a specific number of participants to guide
us in our research and to study the variations pre-
sented in Section 4. A simple (and standard) ex-
tension of the messages will make the protocol re-
silient against such type-flaw attacks.

The communication structure underlying the
protocol can serve as a generic pattern for multi-
party challenge-response mechanisms, in which
we can capture generalized NSL, BKE, and sev-
eral other variants.

References

[1] G. Ateniese, M. Steiner, and G. Tsudik. Au-
thenticated group key agreement and friends.
In ACM Conference on Computer and Com-
munications Security, pages 17–26, 1998.

[2] G. Ateniese, M. Steiner, and G. Tsudik. New
multiparty authentication services and key
agreement protocols. IEEE Journal on Se-
lected Areas in Communications, 18(4):628–
639, 2000.

[3] D. Basin, S. Mödersheim, and L. Viganò.
OFMC: A symbolic model checker for secu-
rity protocols. International Journal of Infor-
mation Security, 4:181–208, 2005.

[4] B. Blanchet. An efficient cryptographic pro-
tocol verifier based on prolog rules, 2001.

[5] E. Bresson, O. Chevassut, D. Pointcheval,
and J.J. Quisquater. Provably authenticated
group diffie-hellman key exchange. In CCS
’01: Proceedings of the 8th ACM conference

on Computer and Communications Security,
pages 255–264, New York, NY, USA, 2001.
ACM Press.

[6] M. Bugliesi, R. Focardi, and M. Maffei. Au-
thenticity by tagging and typing. In FMSE
’04: Proceedings of the 2004 ACM work-
shop on Formal methods in security engi-
neering, pages 1–12, New York, NY, USA,
2004. ACM Press.

[7] L. Buttyn, A. Nagy, and I. Vajda. Effi-
cient multi-party challenge-response proto-
cols for entity authentication. 45(1):43–64,
April 2001.

[8] I. Cervesato, C. Meadows, and D. Pavlovic.
An encapsulated authentication logic for rea-
soning about key distribution protocols. In
CSFW, pages 48–61, 2005.

[9] J.A. Clark and J.L. Jacob. A survey of au-
thentication protocol literature. Technical re-
port.

[10] J.A. Clark and J.L. Jacob. A survey of au-
thentication protocol literature. Technical
Report 1.0, 1997.

[11] R. Corin and S. Etalle. An improved
constraint-based system for the verification
of security protocols. In M. V. Hermenegildo
and G. Puebla, editors, 9th Int. Static
Analysis Symp. (SAS), volume LNCS 2477,
pages 326–341, Madrid, Spain, Sep 2002.
Springer-Verlag, Berlin.

[12] C.J.F. Cremers. Scyther: Automatic verifica-
tion of security protocols.

[13] C.J.F. Cremers. Verification of multi-
protocol attacks. Computer science report
csr-05-10, Department of Mathematics and
Computer Science, Technische Universiteit
Eindhoven, Mar 2005.

[14] C.J.F. Cremers and S. Mauw. Operational se-
mantics of security protocols. In S. Leue and
T. Systä, editors, Scenarios: Models, Trans-
formations and Tools, International Work-
shop, Dagstuhl Castle, Germany, September
7-12, 2003, Revised Selected Papers, volume
3466 of LNCS. Springer, 2005.

[15] C.J.F. Cremers, S. Mauw, and E.P. de Vink.
Defining authentication in a trace model.
In Theo Dimitrakos and Fabio Martinelli,

11

editors, FAST 2003, pages 131–145, Pisa,
September 2003. IITT-CNR technical report.

[16] C.J.F. Cremers, S. Mauw, and E.P. de Vink.
A syntactic criterion for injectivity of au-
thentication protocols. In P. Degano and
L. Vigano, editors, Arspa 2005, volume
135(1) of ENTCS, pages 23–38, July 2005.

[17] A. Datta, A. Derek, J.C. Mitchell, and
D. Pavlovic. Secure protocol composition.
In FMSE ’03: Proceedings of the 2003 ACM
workshop on Formal methods in security
engineering, pages 11–23, New York, NY,
USA, 2003. ACM Press.

[18] C. He and J.C. Mitchell. Analysis of the
802.11i 4-way handshake. In WiSe ’04:
Proceedings of the 2004 ACM workshop on
Wireless security, pages 43–50, New York,
NY, USA, 2004. ACM Press.

[19] J. Heather, G. Lowe, and S. Schneider.
How to prevent type flaw attacks on secu-
rity protocols. Journal of Computer Security,
11(2):217–244, 2003.

[20] J. Katz and M. Yung. Scalable protocols for
authenticated group key exchange, 2003.

[21] G. Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In
Proceedings of TACAS, volume 1055, pages
147–166. Springer Verlag, 1996.

[22] D. Micciancio and S. Panjwani. Optimal
communication complexity of generic mul-
ticast key distribution. In Jan Camenisch and
Christian Cachin, editors, Advances in cryp-
tology - EUROCRYPT 2004, proceedings of
the internarional conference on the theory
and application of cryptographic techniques,
volume 3027 of Lecture Notes in Computer
Science, pages 153–170, Interlaken, Switzer-
land, May 2004. Springer-Verlag.

[23] R. Needham and M. Schroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,
21(2):120–126, February 1978.

[24] D. Song, S. Berezin, and A. Perrig. Athena:
A novel approach to efficient automatic secu-
rity protocol analysis. Journal of Computer
Security, 9(1/2):47–74, 2001.

[25] Security protocols open repository (spore).

[26] G. Steel. Coral project: Group
protocol corpus, 2004. http:
//homepages.inf.ed.ac.uk/
gsteel/group-protocol-corpus.

[27] Michael Steiner, Gene Tsudik, and Michael
Waidner. Diffie-hellman key distribution ex-
tended to group communication. In ACM
Conference on Computer and Communica-
tions Security, pages 31–37, 1996.

[28] F.J. Thayer Fábrega, J.C. Herzog, and J.D.
Guttman. Strand spaces: Why is a security
protocol correct? In Proc. 1998 IEEE Sym-
posium on Security and Privacy, pages 66–
77, Oakland, California, 1998.

12

