
 

Recent results on Coxeter groups

Citation for published version (APA):
Cohen, A. M. (1994). Recent results on Coxeter groups. In T. Bisztriczky (Ed.), Polytopes: abstract, convex and
conceptual (Proceedings of the NATO Advanced Study Institute, Scarborough, Ontario, Canada, August 20-
September 3, 1993) (pp. 1-19). (NATO ASI Series, Series C: Mathematical and Physical Sciences; Vol. 440).
Kluwer Academic Publishers.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/5ba423ba-c7e1-419b-975a-cc1b80747927


for ASI on Polytopes, 18 pages 1

Recent Results on Coxeter Groups

Arjeh Marcel Cohen

Fac. Wisk. en Inf.
TUE
5600 MB Eindhoven
The Netherlands

Keywords: Coxeter group, conjugacy problem, chamber system, reflection group, metric complex, word problem

Abstract

The last few years have been good for the knowledge of Coxeter groups: the conjugacy
problem has been solved, Coxeter groups have been shown to be automatic, and the
structure of subgroups has been further exploited. In these notes, we survey some of
these results, thus providing a sequel to three earlier ASI lectures on Coxeter groups.

(version of 26 Nov 1993)

1. Basic definitions

Although this paper updates (Cohen [1991]), we facilitate its reading by repeating some
of the basic definitions. The “classical” reference for Coxeter groups is (Bourbaki [1968]).
Besides that, the recent introductions in (Humphreys [1990]; Scharlau [1993]) are recom-
mended.

1.1. Coxeter groups

A Coxeter matrix of rank n is an n × n matrix M = (mi,j)1≤i,j≤n with mi,i = 1 and
mi,j = mj,i > 1 (possibly ∞) for all i, j ∈ {1, . . . , n} with i �= j. The Coxeter group
associated with the Coxeter matrix M is the group generated by a set R of elements ρi

(i = 1, . . . , n) subject only to the relations

(ρiρj)mi,j = 1.

It is denoted by W (M) or just W . Since ρi �= ρj for i �= j, the two sets I and R will often
be identified by means of the map i �→ ρi. The pair (W, R) is called a Coxeter system of
type M . The number n is called the rank of the system. The rank will be assumed finite
throughout these notes.

It is common practice to provide a pictorial presentation of M by means of the labeled
graph (I, M) with vertex set I; the pair {i, j} is an edge whenever mi,j > 2 and this edge is
labeled mi,j . If mi,j = 3, the label is often omitted.
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1.2. Chamber systems

Let (W, R) be a Coxeter system of type M . The free monoid on the alphabet R with unit is
denoted by R∗, and ρ : R∗ → W (R) stands for the monoid morphism determined by ρ(r) = r
(r ∈ R). A typical element r ∈ R∗ of length q will be written [r1, . . . , rq] to distinguish it
from its image ρ(r) = r1 · · · rq in W . We shall write �(r) to indicate the length q of r. In
particular, [ ] denotes the unit of R∗.

The length of an element w ∈ W , denoted by �R(w) or just �(w) if no confusion is
imminent, is min{�(r) | ρ(r) = w}. Each element r ∈ R∗ with ρ(r) = w, is called an
expression for w; if �(r) = �(w), the expression is called reduced.

The chamber system associated with (W, R), denoted by C, is the labeled graph whose
vertex set is W and in which the edges labeled r (for r ∈ R) are all {w, wr} for w ∈ W . Note
that the edges are undirected as r2 = 1 for all r ∈ R. The (label-preserving) automorphism
group of C contains W via left multiplication, and is actually equal to W . The graph-
theoretic distance between the ‘chambers’ w, w′ ∈ W of C, denoted by dC(w, w′), equals
�R(w−1w′).

Given r = [r1, . . . , rq] ∈ R∗ and c ∈ C, there is a unique path in the graph starting at
c along edges with subsequent labels r1, . . . , rq. It runs through cr1, cr1r2, . . . and ends at
cρ(r); it is denoted by c · r. Thus, if w = ρ(r), the chamber wc is the image of c ∈ C under
w ∈ W in the isometric regular action of W on C from the left, and the image cw of c under
w (in the regular action on W from the right) is the end point of the path c · r in C.

The chamber system can be given the structure of a combinatorial cell complex by
letting its cells be the empty set and all subsets of the form c〈J〉 := {cw | w ∈ 〈J〉}, where
J runs through all subsets of R and c ∈ C. Instead of 〈J〉, we also write WJ . Observe that
cWJ is a coset of WJ in W .

The cell complex construction works because of some beautiful properties of Coxeter
groups, the most remarkable of which are

• for each subset J of R, the pair (〈J〉, J) is again a Coxeter system; its type is M |J×J ,
and �J(w) = �R(w) for each w ∈ 〈J〉;

• for every pair J, K of subsets of R and every pair x, y of elements of W , the intersection
xWJ ∩ yWK is either empty or of the form zWJ∩K , for some z ∈ W .
By leaving out all cells with infinitely many vertices, one arrives at a topological de-

scription of the metric cell complex that will be described in §2. Obviously, the cell cWJ

has finitely many vertices if and only if 〈J〉 is a finite group.

1.3. Examples

For the time being, let M be a Coxeter matrix of rank n, and let (W, R) be a Coxeter system
of type M , so that n = |R|.

(o) If n = 0, then W is generated by the empty set, and so W is the trivial group.

(i) If n = 1 then M = (1) and W = {1} ∪ R ∼= Z/(2), the group of order 2.

(ii) If n = 2, then

M =
(

1 m
m 1

)
= ◦

r
m ◦

s
for some m ∈ N ∪ {∞},
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and W (M) = 〈r, s | r2 = s2 = (r s)m = 1〉 is the dihedral group of order 2m, where, if
m = ∞, the relation (r s)m = 1 is void. If m = 2h with h ∈ N odd, then

M ′ = ◦
a

h ◦
b

◦
c

satisfies W (M ′) ∼= W (M), so the Coxeter diagram of a Coxeter group is not uniquely
determined by the group.

(iii) If M = An, where

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 · · · · · · 2
3 1 3 2 · · · 2
2 3 1 3 · · · 2
... 2

. . . . . . . . .
...

...
...

. . .
. . . 1 3

2 · · · · · · 2 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

or, in diagram form

An = ◦
1

◦
2

◦
3
· · · · · · ◦

n − 1
◦
n

,

then W (M) is the symmetric group Symn+1 on n + 1 letters. The evident morphism
W (An) → Symn+1 sending ρi to (i, i + 1) for each i ∈ I is in fact an isomorphism.

(iv) Take

ρ1 = ±
(

0 1
1 0

)
, ρ2 = ±

(
−1 1
0 1

)
, ρ3 = ±

(
1 0
0 −1

)
in PGL(2,Z).

Then, putting R = {ρ1, ρ2, ρ3} and W = 〈R〉, we obtain a Coxeter system (W, R) of type

M =

⎛
⎝ 1 3 2

3 1 ∞
2 ∞ 1

⎞
⎠ = ◦

1
◦
2

∞ ◦
3

,

so that W (M) ∼= PGL(2,Z).

(v) If R = R1∪R2 is a partition of (R, M) into disjoint graphs (here disjoint means: mi,j = 2
whenever i ∈ R1 and j ∈ R2), then W (M) = W (M1)×W (M2), where Mk is the restriction
of M to Rk × Rk (k = 1, 2). This explains why, in addressing many questions concerning
Coxeter groups, we can restrict to the case where M is connected.

1.4. The Reflection Representation

Consider a Coxeter system (W, R) of type M = (mrs)r,s∈R. Let V be a real vector space
with basis (er)r∈R. There is a real linear representation σ : W → GL(V ) such that, for
r ∈ R, the transformation σ(r) is a reflection. We shall give a more specific description of
this important representation.
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Denote by B the symmetric bilinear form on V defined by

B(er, es) = −2 cos(π/mrs) (r, s ∈ R)

with the understanding that B(er, es) = −2 if mrs = ∞. We call B the symmetric bilinear
form associated with M . For each r ∈ R, consider the linear transformation σr of V defined
by

σr(x) = x − B(x, er)er (x ∈ V )

This defines a reflection of GL(V ) in the hyperplane e⊥r with root (i.e., eigenvector with
eigenvalue −1) er.

A representation is called faithful if it is an injective morphism of groups. Faithfulness
of the reflection representation is due to Tits, cf. (Bourbaki [1968]).

1.5. Proposition. Let B be the symmetric bilinear form associated with the Coxeter matrix
M , and let σr (r ∈ R) be as above. Then the mapping σ on R given by σ(r) = σr extends
to a faithful orthogonal representation σ : W → O(V, B).

1.6. The Tits cone

Tits’ proof that the above representation σ is faithful makes use of the representation of W
on V ∗, the dual of V . The action σ∗ of W on V ∗ is induced from its action on V . Explicitly,
for w ∈ W , the image σ∗(w)f of f ∈ V ∗ is given by

(σ∗(w)f)x = f(σ(w−1)x) for x ∈ V.

Let f1, . . . , fn be the basis of V ∗ that is dual to e1, . . . , en. Then

A = R≥0f1 + · · · + R≥0fn

is called the fundamental chamber of (W, R). The stabilizer in W of a vector a =
∑n

i=1 aifi

in A is WJ , where J = {1 ≤ i ≤ n | ai = 0}. This shows there is some control over the
part T =

⋃
w∈W wA of V that is covered by images of A under W . This set is a cone and

is called the Tits cone.

1.7. Finite Coxeter groups

A Coxeter group W is finite if and only if the quadratic form x �→ B(x, x) on V for V and
B as in Proposition 1.4 is positive definite. This, combined with Example 1.3(v), gives a
straightforward method of classifying the finite Coxeter groups.

For instance, a Coxeter system (W, R) of type⎛
⎝ 1 p q

p 1 r
q r 1

⎞
⎠

is finite if and only if the quadratic form with matrix⎛
⎝ 2 −2 cos(π/p) −2 cos(π/q)

−2 cos(π/p) 2 −2 cos(π/r)
−2 cos(π/q) −2 cos(π/r) 2

⎞
⎠
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is positive definite, which in turn is straightforwardly checked to be equivalent to

1
p

+
1
q

+
1
r

> 1.

Let T be the Tits cone as above. In the finite case, T = V ∗ and V ∗ can be identified
with V as B (being positive definite) is non-degenerate. Conversely, if −v lies in T for some
v in the interior of A, then W is finite.

1.8. Connection with diagram geometry

The chamber system C of a Coxeter system is residually connected. That means that, for
any collection pairwise non-disjoint cells c1〈J1〉, . . . , ct〈Jt〉 of C, the intersection is a cell of
the form cWJ where J = J1∩· · ·∩Jt. This condition, which is a direct consequence of what
has been said at the end of §1.2, gives rise to the construction of a residually connected
geometry from the chamber system (cf. (Tits [1981])), which, in the case where M is a
string diagram, is an abstract polytope.

2. The conjugacy problem

The conjugacy problem for Coxeter groups is the question of finding an algorithm that, upon
input a Coxeter matrix M of rank n and two words v, w ∈ R∗, decides if ρ(v) and ρ(w)
are conjugate in W = W (M). The solution we present finds numbers K, L ∈ N such that,
whenever v = ρ(v) and w = ρ(w) are conjugate in W , they are conjugate by an element
g ∈ W of length at most nKmax(�(v),�(w))+L. Thus, the solution is far from efficient, and
leaves much in the direction of implementation to be desired. Yet, the setting of the proof,
the Moussong complex to be defined below, gives hope for improvements.

We describe the construction of a metric complex that is based on (Moussong [1988]).
It will lead to a solution of the conjugacy problem for Coxeter groups. In fact, in his PhD
thesis, Moussong does almost all of the work leading to the solution, but does not draw the
conclusion. I gratefully acknowledge the help of Michael Shapiro and Daan Krammer, to
whom I owe much of the content of this section.

Throughout this section, we take M to be a fixed Coxeter diagram and (W, R) a Coxeter
system of type M .

2.1. Cells

A Euclidean cell is a metric space (X, dX) which is isometric to a compact subset of Euclidean
m-space Em (for some m < ∞) which is the intersection of finitely many closed halfspaces.
Without loss of generality we may assume X ⊆ Em (with induced metric) and X spans
Em. A face of a Euclidean cell X is, by definition, either X or X ∩H for H a hyperplane of
Em which is disjoint from the interior of X . Thus faces, with the induced metric, are again
Euclidean cells. The faces do not depend on the isometric embedding of X in Em.

We recall that a Coxeter matrix M is called spherical if W is finite. The spherical
Coxeter matrices have been classified. A subset J of R is said to be spherical if M |J×J is
spherical. If W is finite and M is connected, the reflection representation in Rn is irreducible
and leaves invariant a positive definite form (·, ·), which is a positive scalar multiple of B as in
§1.4. Thus, the reflection representation can be seen as an isometric action on the Euclidean
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space En = E(Rn), with Euclidean distance |x − y| =
√

(x − y, x − y) (x, y ∈ Rn). The
origin of the linear reflection representation is recovered from the metric action as the unique
fixed point.

2.2. Proposition. Let M be a spherical Coxeter matrix of rank n, and (W, R) a Coxeter
system of type M . Let W act on En = E(Rn) via the reflection representation on Rn.
Then there is a W -equivariant injective map κ : W → En such that:
(i) |κ(w) − κ(wr)| = 1 for all w ∈ W , r ∈ R;
(ii) the metric space E(W ) consisting of the convex hull of κ(W ), with metric induced from

En, is a Euclidean cell;
(iii) the nonempty faces of E(W ) are precisely the convex hulls of κ(xWJ ) for x ∈ W and

J ⊆ R.

The cell E(W ) is unique in E(Rn), the map κ is unique up to W -isometries.

Proof. Let ωi (i ∈ I) be the fundamental weights in the reflection representation space
Rn in the sense that they form a dual basis to the normalised fundamental roots with
respect to the W -invariant positive-definite form. Take v ∈ Rn to be half the sum of all
ωi for i ∈ R, and put κ(w) = w · v. Then |ρi(v) − v| = 1 for all i. Since the stabiliser
of v in W is trivial, κ embeds the chamber system C(W, R) into Euclidean space E(Rn).
Moreover, vertices corresponding to adjacent chambers have distance 1, and, for any 2-set
{i, j} ⊆ J , the subsystem C(W{i,j}, {i, j}) is a regular 2mij-gon whose angles at the vertices
are π − π/mij . Letting E(W ) be the convex hull of κ(W ), (i) and (ii) follow.

For J ⊆ R, let vJ be half the sum of all ωi for i ∈ R \ J , so that v∅ = v. Then
(wv − v, vJ ) ≤ 0 with equality only if w ∈ WJ . This yields that the convex hull of κ(WJ ) is
the face v⊥J ∩E(W ) of E(W ). A little more effort gives that each face on κ(1) is of this form for
some J ⊆ R. The rest of the proof follows from transitivity of W on the vertex set κ(W ). ��

2.3. Corollary. Each face of the Euclidean cell E(W ) is of the form xE(WJ ) for some
Coxeter subsystem (WJ , J) of (W, R). Two such faces xE(WJ ) and yE(WK) intersect non-
emptily if and only if xWJ and yWK do, in which case there is z ∈ W with xWJ ∩ yWK =
zWJ∩K . Such an element z also satisfies xE(WJ ) ∩ yE(WK) = zE(WJ∩K).

Proof. By (i) and (iii) of the proposition, the convex hull of κ(xWJ ) equals xE(WJ ),
and multiplication by x is an isometry between E(WJ ) and xE(WJ ). ��

2.4. Complexes

A Euclidean complex is a pair M = (U,X ) consisting of a set U and a collection X of metric
spaces (X, dX) where X is a subset of U , and is called a cell of M, such that
(i) U =

⋃
X∈X X ;

(ii) each member of X is a Euclidean cell;
(iii) if Y is a face of a cell (X, dX), then Y is again a cell, and dY = dX |Y ×Y ;
(iv) if (X, dX) and (Y, dY ) are cells, then X ∩ Y is a face of either cell.
Observe that, due to (iii), each cell has a unique metric. A Euclidean complex M = (U,X )
has a natural topology in which N is open if and only if N ∩X is open for each cell X ∈ X .

The chamber system of a Coxeter system can be turned into a Euclidean complex by
viewing its edges as Euclidean line segments of length 1.
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2.5. The Moussong complex

We now construct a Euclidean complex from the Coxeter system (W, R) of type M . Let Û be
the collection of all triples (x, J, u) with x ∈ W , J a spherical subset of R, and u ∈ E(WJ ).
On Û , define the relation ∼ by

(x, J, u) ∼ (y, K, v) ⇐⇒ ∃z ∈ W

{
xWJ ∩ yWK = zWJ∩K and
(z−1x)u = (z−1y)v.

Observe that, whenever xWJ ∩ yWK �= ∅, the point (z−1x)u lies in E(WJ∩K) and does not
depend on the choice of z. Using that (x, J, u) ∼ (y, K, v) implies

(x, J, u) ∼ (z, J ∩ K, (z−1x)u) = (z, J ∩ K, z−1yv) ∼ (y, K, v),

one can show that ∼ is an equivalence relation. Define U to be the quotient of Ũ by this
relation, and denote the ∼-class of (x, J, u) by [x, J, u].

In order to define Euclidean cells on U , we let X be the collection of subsets of U
consisting of the empty set and all

xEJ := {[x, J, u] | u ∈ E(WJ )}

for x ∈ W and spherical J ⊆ R. Then, as a set, xEJ bijectively corresponds to E(WJ ), and
xEJ∩yEK is either empty, or of the form zEJ∩K for some z ∈ W . Using this correspondence,
each member of X can be given the structure of a Euclidean cell. If K ⊂ J and y ∈ xWJ

then the embedding of yWK into xWJ corresponds to an embedding of the cell yEK into
xEJ via the mapping [y, K, v] �→ [x, J, (x−1y)v] (v ∈ E(WK)).

We shall refer to the pair (U,X ) as the Moussong complex of type M or the Moussong
complex of (W, R), and denote it by M. This definition is justified by the following claim.

2.6. Lemma. The Moussong complex M = (U,X ) is a locally finite Euclidean complex.
There are finitely many W -orbits on X and W acts discretely as a group of isometries on
M with compact quotient and finite point stabilizers. The 1-skeleton of M coincides with
the Euclidean complex defined by the chamber system C(W, R).

Proof. Straightforward. For example, the quotient of U by W is the union of the cells
EJ for J ⊆ R, J spherical, hence compact. ��

The complex has been first constructed in (Moussong [1988]), whence its name. Prior
to this, a non-metric version was given by (Davis [1983]).

2.7. Paths

Let N be a Euclidean complex. A path in N is a continuous map α : T → U defined on
a real interval T with the property that, for any t ∈ T , there is ε > 0 such that α|T∩[t,t+ε]

and α|T∩[t−ε,t] are differentiable paths with continuous derivatives, each contained in a cell.
(In fact, it suffices for our purposes to restrict attention to paths that are piecewise linear.)
Thus, if T is bounded and closed, the speed of α, that is, the absolute value of the derivative
of α, is defined at all but a finite number of points. If T = [0, 1] and the speed of α is
constant, then α is said to be normalised. The length of the path α : T → U is the integral
of the speed of α over T . We shall write �N (α) for the length of α.
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2.8. Proposition. Let N = (U,X ) be a locally finite connected Euclidean complex having
only a finite number of isomorphism types of cells. Then the function d : U × U → R
determined by

d(x, y) = inf {�N (γ) | γ a path of N from x to y}

is a metric on U .

2.9. Geodesics

A geodesic in a Euclidean complex N is a path α : T → N such that

�N (α|[t,u]) = d(α(t), α(u)) for all t, u ∈ T.

If N is as in Proposition 2.8, then geodesics exist between any two points in the same
connected component.

Now let M be the Moussong complex of the Coxeter system (W, R), and let C be
the chamber system of (W, R). Then, by Lemma 2.6 and Proposition 2.8, both are metric
spaces. In C, the distance d(x, y) between two chambers x, y is an integer coinciding with
the graph-theoretic distance dC(x, y). The path x · r, where r ∈ R∗ has length q, can be
viewed as a path α : [0, q] → W of the Euclidean complex C by extending it to a path with
constant speed on the edges. It occurs in the Moussong complex as its 1-skeleton, so, for
any two elements x, y ∈ W ,

dM(x, y) ≤ dC(x, y) = �R(x−1y).

Since W acts discretely on M with compact quotient, an argument of Milnor’s gives a bound
in the other direction, see below. In the metric space on C, geodesics exist, but need not be
unique. For instance, if M = A2, the paths 1 · [r, s, r] and 1 · [s, r, s] are distinct geodesics,
both starting at 1 and ending at rsr. In the Euclidean cell E(W (A2)), there is a straight line
from 1 to rsr = srs; it is the unique geodesic between the two chambers. This illustrates
one reason why the metric space on the Moussong complex is useful.

The following result shows that geodesics can be “approximated” by paths in the cham-
ber system.

2.10. Proposition. Let M be the Moussong complex of type M , so that the chamber
system C of (W, R) embeds in M. Then the following hold.

(i) Milnor’s inequality (Milnor [1968]) holds, i.e., there are non-negative constants K, L,
such that, for every pair of chambers x, y of C, we have

dC(x, y) ≤ KdM(x, y) + L.

(ii) There exists a constant A such that for each normalised geodesic γ with end points
c = γ(0), d = γ(1) in C, a path c · r of length q ∈ N and a strictly monotonous function
f : [0, 1] → [0, q] can be found satisfying, for all t ∈ [0, 1],

dM(c · r(f(t)), γ(t)) ≤ A.
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2.11. Links

Instead of Euclidean cells, other kinds of cells could have been employed. For instance, if
“Euclidean” is replaced by “spherical” in the above sections 2.1, 2.4, 2.7, 2.8 and 2.9, most
constructions and properties continue to hold. We shall need the notion of spherical complex
to cope with a metric space capturing the local structure around a point of M. Here, as
usual, the star of a point (or a face) is the union of all cells containing it.

Let x be a point of a Euclidean cell X of M. By the definition of Euclidean cell, we
may think of X as a convex part of a Euclidean space E. Then the link of x in X , notation
Lk(x, X), is the spherical cell obtained by taking all points y of the unit sphere around x
in X such that xy contains a segment of X of positive length. If, for example, X is the
regular m-gon with sides of length 1, the distance of the two vertices of the spherical cell is
π − π/m. The link of a Euclidean complex M at a point x is the spherical complex whose
cells are obtained by taking the union of all links Lk(x, X) for X in the star of x, with
proper identifications.

A closed geodesic is the image of an isometric embedding of a circle of strictly positive
length. We have angular distances in spherical complexes. A Euclidean complex M is said
to satisfy the link condition if there are no closed geodesics of length < 2π in links.

2.12. Moussong’s theorem. For each Coxeter system (W, R), the Euclidean complex M
is simply connected and satisfies the link condition.

Idea of proof. Tits’ rewrite rules:
[ρi, ρi] ⇒ [ ]

[ρi, ρj , ρi, . . .]︸ ︷︷ ︸
mij

⇒ [ρj , ρi, ρj , . . .]︸ ︷︷ ︸
mij

are known to solve the word problem. Consequently, any closed path of C starting and ending
at 1 is homotopic to the trivial path 1 in the 2-skeleton of M. Since any closed path in M
is homotopic to a path in C, this gives simple connectedness. For the link condition, the
main idea is that, in the link of a point, each closed geodesic goes via the 1-skeleton, where
it can easily be seen to have length ≥ 2π. Here an inductive argument on links is needed.
See the examples below for an impression of what happens in the low-dimensional cases. ��
2.13. Examples

(i). Let n = 2, say R = {r, s}. If mrs < ∞, then M has a single 2-cell: the metric regular
2mrs-gon. The link at a point of M is a circle if the point is in the interior, an arc of length
π − π/m if the point is a chamber, and and arc of length π if the point is on an edge but
not a chamber. If mrs = ∞, then M has no 2-cells, and, as a complex, coincides with the
chamber system, which is an infinite tree of valency 2.

(ii). For arbitrary n, with mrs = ∞ whenever r, s are distinct, the complex M is the infinite
tree of valency n.

(iii). Let n = 3, say R = {i, j, k}. The sum of the lengths of the spherical arcs in the link of
1 in the three polygons on the chamber 1 ∈ W amounts to

π

(
3 −

(
1

mij
+

1
mjk

+
1

mik

))
.
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Now, as stated in §1.7, W is finite iff

1
mij

+
1

mjk
+

1
mik

> 1.

Thus, if the sum of the arc lengths is less than 2π, the three angles border a 2-cell. This is
at the heart of the argument that M satisfies the link condition. For example, for M the
Moussong complex of the Coxeter group of type

M = ◦
1

◦
2

m ◦
3

,

the link at a chamber is
• a spherical 2-cell if m ≤ 5 (because then M is spherical),
• a concatenation of two arcs, one of length π/2, one of length 2π/3 if m = ∞, and
• a triangle with edges of length π/2, 2π/3 and (m − 1)π/m if 5 < m < ∞.

The latter triangle is a closed path of length ≥ 2π. The case m = 6 shows that equality
may occur.

2.14. Unique geodesics and convex metric

We say that a metric space has unique geodesics if any two of its points are connected by a
unique normalised geodesic. A metric space (U, dU ) is said to have convex metric if, for any
two normalised geodesics α, β,

d(α(t), β(t)) ≤ (1 − t)d(α(0), β(0)) + td(α(1), β(1)) for all t ∈ [0, 1].

A metric space with convex metric in which geodesics exist, is easily seen to have unique
geodesics.

The following result expresses the major step of this section; it is of a “local-to-gobal”
nature.

2.15. Theorem. Suppose N is a simply connected Euclidean complex satisfying the link
condition. Then N has unique geodesics and convex metric.

Proof. (Krammer [1993]) has given a fully elementary proof. More general results, using
heavier machinery, are derived in (Bridson [1991]). ��

One of the consequences of the theorem is that local geodesics are geodesics. Hence,
for each cell X of N , we have d |X×X= dX .

For v, w ∈ W , set NW (v, w) := {g ∈ W | gvg−1 = w}. Clearly, an algorithm to
determine whether or not NW (v, w) is empty solves the conjugacy problem. The result
below shows that an exhaustive search for an element of NW (v, w) among all elements of
length exponentially bounded by max(�(v), �(w)) provides such an algorithm.

2.16. Solution to the conjugacy problem. Let M be a Coxeter matrix and (W, R) a
Coxeter system of type M . Then there are constants K, L ∈ N such that, for all v, w ∈ W
with NW (v, w) �= ∅, there exists g ∈ NW (v, w) with

�(g) ≤ nKmax(�(v),�(w))+L.
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Proof. Without loss of generality, we may take �(w) ≥ �(v). Suppose NW (v, w) �= ∅. Take
g ∈ NW (v, w) of minimal length, denote by γ the normalised geodesic from 1 to g in the
Moussong complex M of (W, R) guaranteed by Theorem 2.15 and choose a presentation
r = [r1, . . . , rq] of g such that the path 1 · r approximates γ in the sense of Proposition
2.10(ii) and such that q is minimal with respect to these requirements. Thus there are
A ∈ N and f : [0, 1] → [0, q] independent of g, v, w such that, for all t ∈ [0, 1],

dM(r(f(t)), γ(t)) ≤ A.

By the convex metric property applied to the geodesics γ from 1 to g and wγ from w to
wg = gv and using the triangle inequality we see that, for any time t ∈ [0, 1],

dM(1 · r(f(t)), w · r(f(t))) ≤ dM(γ(t), wγ(t)) + 2A

≤ (1 − t)dM(1, w) + tdM(g, wg) + 2A

≤ �R(w) + 2A

(1)

The last inequality follows from wg = gv and the fact that g acts from the left as an
isometry, so that dM(g, wg) = dM(1, v) ≤ �R(v). Using Proposition 2.10(i) for times t at
which r(f(t)) represents an element of C, we obtain the existence of constants K, L′ such
that, for all k ∈ {0, 1, . . . , q},

dC(r1 · · · rk, wr1 · · · rk) ≤ KdM(r1 · · · rk, wr1 · · · rk) + L′.

Together with (1), putting L = L′ + 2AK, we find

dC(r1 · · · rk, wr1 · · · rk) ≤ K�R(w) + L.

For each k, let Pk denote the label of a path in C of length at most K�(w) + L connecting
r1 · · · rk and wr1 · · · rk. If q > nK�(w)+L, there are k, k′ such that k < k′ and Pk =
Pk′ . But then g′ = r1 · · · rk−1rk′+1 · · · rq , is an element of W with g′ ∈ N(v, w) and
�(g′) ≤ q − (k′ − k) < q, and so is a shorter expression than r for an element of N(v, w),
a contradiction. Hence �(g) ≤ q ≤ nK�(w)+L, as required. ��

2.17. Remarks

Corollary 4.5 of (Alonso & Bridson [1993]) states that if W acts properly and cocompactly
by isometries on a space of non-positive curvature, then W is “semihyperbolic”. Theorem
5.2 of (Alonso & Bridson [1993]) states that if W is semihyperbolic, then it has a solvable
conjugacy problem. These results can be applied to give a proof that Coxeter groups have
a solvable conjugacy problem. The method presented above follows similar lines (namely,
those set out by Gromov, cf. (Gersten & Short [1990]; Gromov [1987])), but is simpler and
hopefully leads to a more efficient solution.

A first step towards a better algorithm might be found by use of reductions of w of the
form

w �→ sws whenever �(sws) ≤ �(w). (2)

We shall call w conjugacy-reduced if each series of reductions as in (2) starting with w leads
to an element w′ of W with �(w′) = �(w).
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2.18. Conjecture. Let C be a conjugacy class of W and put �C = min{�(w) | w ∈ C}.
Then, for any w ∈ C, we have �(w) = �C if and only if w is conjugacy-reduced.

By (Geck & Pfeiffer [1992]) the conjecture holds for Weyl groups. They use the result
for Hecke algebra representations.

2.19. Conjugacy of parabolic subgroups.

Let (W, R) be a Coxeter system. (Deodhar [1982]) describes how, for two subsets I, J of R,
it can be decided if the corresponding subgroups WI and WJ of W are conjugate. Subgroups
of the form WI are called standard parabolic; their conjugates are called parabolic. Thus,
the algorithm helps to find out how many distinct conjugacy classes of parabolic subgroups
W has.

Let I ⊂ R and s ∈ R \ I. Write K for the connected component of the subgraph of
M induced on I ∪ {s} that contains s. Suppose now that K is spherical. Then the longest
elements wK of WK and wK\{s} of WK\{s} exist (they are involutions). In this situation,
we set

ν(I, s) = wK\{s}wK .

This element of W has the property that, for some s0 ∈ K,

Iν(I,s) = (I ∪ {s}) \ {s0}.

Thus, there is a subset J of R such that conjugation by ν(I, s) not only maps WI to WJ ,
but even gives a bijection from I to J .

Now consider the directed graph K whose vertices are the subsets of R and in which
two vertices I and J are connected by an edge pointing to J labelled s if the connected
component of I ∪ {s} containing s is spherical (so ν(I, s) exists) and Iν(I,s) = J . For each
s ∈ I, denote by es the fundamental root corresponding to s.

2.20. Theorem. Let I and J be subsets of R. If w ∈ W satisfies

{es | s ∈ I} = {wet | t ∈ J}

then there is a directed path I = I0
s0→ I1

s1→ . . .
st−1→ It = J in K such that

w = ν(I0, s0) · ν(I1, s1) · · · ν(It−1, st−1)

and �(w) =
∑t−1

i=0 �(ν(Ii, si)).

Proof. See Proposition 5.5 of (Deodhar [1982]). ��

By arguments similar to those below, this leads to an effective method for deciding if
two subsets of R generate conjugate parabolic subgroups of W . Rather than giving details,
we shall be more elaborate on the determination of the normaliser of a parabolic subgroup.
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2.21. Corollary. Suppose I is a subset of R. Let T be a spanning tree of the connected
component of K containing I. For each vertex J of T , denote by µ(J) the element of W
corresponding to the unique path in T from I to J . Then the normaliser of WI in W is
generated by I and all products of the form

µ(J)ν(J, s)µ(K)−1

for edges J
s→ K of the connected component of K containing I.

Proof. If w ∈ W normalises WI , then, up to left multiplication by elements of WI , it can be
assumed to satisfy �(sw) ≥ �(w) for all s ∈ I. It follows that {w−1es | s ∈ I} is a fundamental
system contained in Φ+ of the group 〈w−1Iw〉 = I, whence coincides with {et | t ∈ I}.
Consequently, w satisfies the conditions of Theorem 2.20 with J = I. By the theorem, w is
a product corresponding to a closed path in K. The result follows as the fundamental group

of K with base point I is generated by the paths I
T→ J

s→ K
T→ I, for all vertices J, K

of T such that J
s→ K is an edge of K but not of T . Here, T→ stands for a path in T . ��

2.22. Implemented algorithms

We note that the description of the finite generating set for the normalizer of WI is effective.
An algorithm to this effect is implemented in a new version of LiE, cf. (Leeuwen, Cohen &
Lisser [1992]).

For Weyl groups, (Carter [1972]) has given very explicit methods to resolve the conju-
gacy problem. Recently, they have been implemented in LiE by (Pasqualucci [1992]). In
the software package GAP, cf. (Geck & Pfeiffer [1992]), algorithms solving the conjugacy
problem for finite Coxeter groups have been implemented by use of the permutation group
algorithms available in the package.

3. The word problem

The word problem for Coxeter groups is the question of finding an algorithm that, upon
input a Coxeter matrix M of rank n and a word w ∈ R∗, decides if ρ(w) = 1 in W (M).
Solutions to the word problem have been discussed in (Cohen [1991]). One of them was used
in §2.12.

Another solution is based on the reflection representation. For, take a = f1 + · · · + fn

with notation as in §1.6. Then, by §1.6, σ∗(w)a = a if and only if w = 1, so we can test
whether ρ(w) = 1 for w = [r1, . . . , rq] ∈ R∗ by computing

σr1(σr2(· · ·σrqa))

and verifying if this vector coincides with a.
This algorithm is implemented for Weyl groups in LiE, cf. (Leeuwen, Cohen & Lisser

[1992]). To implement it on computer with exact arithmetic for arbitrary Coxeter groups,
one would need to handle an extension field of Q containing the algebraic integers 2 cos(π/m)
for each entry m of M , or an equivalent thereof.
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3.1. A combinatorial solution to the word problem

In (du Cloux [1990]), a fast algorithm is presented that, given M , merely uses operations on
words from R∗ to rewrite an input word [r1, . . . , rq] (where ri ∈ R) to the lexicographically
minimal reduced word in ρ−1(r1 · · · rq). Here a total ordering on R is used, e.g., ρ1 < ρ2 <
· · · < ρn.

For r ∈ R, let Xr denote the set of distinguished left coset representatives of the
subgroup 〈s ∈ R | s < r〉 of 〈s ∈ R | s ≤ r〉. Thus, if r = ρj ,

Xr = {w ∈ W{1,...,j} | �(sw) > �(w) for all s ∈ R, s < r}.

Then the multiplication map X1 ×X2 × . . .×Xn → W is a bijection. The lexicographically
minimal reduced word for any element of W respects this decomposition. Du Cloux describes

• how to obtain the lexicographically minimal reduced words for each Xr;
• how multiplication on the right by an element t from R affects an element x ∈ Xr:

either produces the element of Xr again it is of the form sw with s ∈ R, w ∈ Xr, and
�(w) = �(x).

These facts suffice to process any expression for an element of W into the form X1X2 · · ·Xn.

3.2. Regular languages

The set of all lexicographically minimal reduced words turns out be remarkably well behaved,
as the theorem below exhibits. If U and V are subsets of R∗, their product is the subset

UV := {[u, v] | u ∈ U, v ∈ V }

of all products of elements from U with elements from V . The Kleene closure of U is the
subset

U∗ := {[u1, . . . , uq] | q ∈ N, each ui ∈ U}.

(Note that this notation is consistent with the earlier definition of R∗.) A subset of R∗ is
called a regular language if it can be obtained from the subsets {[ ]} and {r} where r ∈ R,
by a finite number of applications of the operations union, product and Kleene closure.

An alternative definition of a regular language uses the notion of a finite state automa-
ton: it is the set of words accepted by such an automaton. For every Coxeter group, Brink
and Howlett provide a finite state automaton and construct additional multiplier automata,
one for each r ∈ R. This proves that Coxeter groups are automatic (cf. (Epstein et al.
[1992])). To be somewhat more precise, we define the notions automatic and bi-automatic.

3.3. Automatic structures

Extend R with a padding symbol $ �∈ R, and set

R$ = ((R ∪ {$})× (R ∪ {$})) \ {($, $)}.

For r = [r1, . . . , rt], q = [q1, . . . , qs] ∈ R∗, put

(r,q) =
{

[(r1, q1), . . . , (rs, qs)] where rj = $ if t < j ≤ s,
[(r1, q1), . . . , (rt, qt)] where qj = $ if s < j ≤ t.
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As the notation suggests, this embeds R∗ × R∗ into R∗
$. The triple (W, R, L) is said to be

an automatic structure if L is a regular language in R∗ with ρ(L) = W such that

{(r,q) ∈ R∗
$ | r,q ∈ L, ρ(r) = ρ(q)}

and, for each s ∈ R,

{(r,q) ∈ R∗
$ | r,q ∈ L, ρ(r) = ρ(qs)}

are regular languages in R∗
$. If, in addition, for each s ∈ R, the language

{(r,q) ∈ R∗
$ | r,q ∈ L, ρ(r) = ρ(sq)}

is regular in R∗
$, then the triple (W, R, L) is called a bi-automatic structure. A group is

called automatic if it has an automatic structure, and similarly for bi-automatic.

3.4. Theorem. (Brink & Howlett [1993]) For each w ∈ W , let σ(w) ∈ R∗ be the lexico-
graphically first reduced expression for w. Then

L = {σ(w) ∈ R∗ | w ∈ W}

is a regular language, and (W, R, L) is an automatic structure.

3.5. Theorem. (Brink & Howlett [1993]) Coxeter groups (with finite diagram) are auto-
matic.

The proof heavily uses the reflection representation and the corresponding root system.
If W is finite, the number of accepting states of the automaton they construct for L is close
to the number of subsets of the set of positive roots. So, for the Coxeter group of type E8

there are more than 1036 states.

If a group is bi-automatic, it has a solvable conjugacy problem. Thus one may ask:

3.6. Question. Are Coxeter groups bi-automatic?

Continuing the work in (Le-Chenadec [1986]) for some finite Coxeter groups, (Hermiller
[1992]) has given finite complete sets of rewrite rules for all Coxeter groups of rank at most
3 and for all Coxeter groups whose types M have the property that all of its subdiagrams
of the form

◦
1

m ◦
2

n ◦
3

satisfy either ∞ ∈ {m, n} or m = n = 2. If such a group has a complete rewrite system, the
set of canonical forms with respect to the rewrite system, is a regular language. Thus, for
the class of Coxeter groups W covered by Hermiller’s work, this result also gives a regular
language L in R∗ together with a computable section σ : W → R∗ such that σ(W ) = L.
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4. Subgroup structure

In order to construct quasi-crystals, (Moody & Patera [1993]) have distinguished certain
subgroups of Coxeter groups, which are Coxeter groups in their own right. Independently,
(Mühlherr [1993]) has indicated similar subgroups in a more general approach, which we
follow here. Both papers are inspired by (Scherbak [1988]). The subgroups found in (Dyer
[1990]) are usually different from those Mühlherr pointed out, for the simple reason that
the former are generated by reflections whereas the latter may not contain reflections at all.
Earlier work in this direction, but from a polytopal point of view, can be found in (Monson
[1987]).

For the remainder of this section, let M be a Coxeter matrix and (W, R) a Coxeter
system of type M . Fix a partition Π of R whose parts are spherical (cf. §2.1), and let RΠ

be the set of all longest elements wJ of WJ for J ∈ Π. Thus, |RΠ| = |Π|.

4.1. Theorem. (Mühlherr [1993]) Suppose Π is a partition of R whose parts are spherical
with the property that, for all w ∈ 〈RΠ〉 and J ∈ Π, either �(wr) = �(w) − 1 for each r ∈ J
or �(wr) = �(w) + 1 for each r ∈ J . Then (〈RΠ〉, RΠ) is a Coxeter system.

A further result in (Mühlherr [1993]) states that it suffices to verify the length condition
for Coxeter subsystems based on the union of two parts from Π. More specifically, the
length condition is equivalent to the requirement that, for each pair J, K ∈ Π× Π and each
w ∈ 〈wJ , wK〉 either �(wr) = �(w) − 1 for each r ∈ J or �(wr) = �(w) + 1 for each r ∈ J .

4.2. Applications

If α is an automorphism of W which leaves R invariant, then the orbits of α on R provide
examples of partitions satisfying the hypotheses. With this method, for instance, the Coxeter
group of classical type Bn can be seen to embed in the symmetric group W (A2n−1). More
generally, any Coxeter group can be shown to occur as a subgroup in the guise of the theorem
of a Coxeter group whose type has labels ≤ 3 only. Other applications lead to a new proof
of the classification of spherical Coxeter matrices.

4.3. Example

Consider the diagram

E8 = ◦
1

◦
3

2
◦

◦
4

◦
5

◦
6

◦
7

◦
8

.

The partition {{1, 8}, {2, 5}, {3, 7}, {4, 6}} satisfies the hypotheses of the theorem, so there
exists a subgroup of W (E8) isomorphic to W (H4) as follows:

◦
25

5 ◦
46

◦
37

◦
18

.

Here the nodes are labeled by the longest elements of the group WJ for J running over the
parts of Π and the entry (J, K) of the corresponding Coxeter matrix equals the order of the
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element wJwK . For instance, for J = {2, 5} and K = {4, 6}, the element wJwK = 2546 is a
Coxeter element in the Coxeter group 〈J ∪ K〉 of type A4, whence of order 5.

This example occurs in both (Mühlherr [1993]) and (Moody & Patera [1993]). The
latter paper exhibits beautiful configurations arising from projections of lattice points using
the ring of “icosians”.

4.4. Maximal finite subgroups

Using the Tits cone of the Coxeter system (W, R), it is easy to prove that every finite
subgroup of W is contained in a spherical parabolic subgroup. Thus the conjugacy classes
of maximal finite subgroups of Coxeter groups coincide with the conjugacy classes of maximal
spherical subsets of R, a problem that can be algorithmically solved, cf. §2.19.

For example, from §1.3(iv) it is immediate that PGL(2,Z) has precisely two conjugacy
classes of finite maximal subgroups, one isomorphism type being the Klein fours group
(corresponding to the spherical subset {1, 3} of R) and the other isomorphism type being
the dihedral group of order 6 (corresponding to the spherical subset {1, 2} of R).

Conversely, the determination of conjugacy classes of finite maximal subgroups of
PGL(4,Z) can be employed to establish that the latter group is not a Coxeter group.
For, the quotient of W (F4) by its center is a maximal finite subgroup of PGL(4,Z) which
is not a Coxeter group (this can be verified by a check of finite Coxeter groups). Since, by
the above, maximal finite subgroups of Coxeter groups are Coxeter groups, it follows that
PGL(4,Z) is not a Coxeter group.
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R. Pasqualucci [1992], The conjugacy classes in the Weyl groups, Math. Degree Thesis, La
Sapienza University, Roma.

R. Scharlau [1993], “Buildings,” preprint 93-016, to appear in Handbook of incidence geom-
etry, ed. F. Buekenhout, Bielefeld.

O.P. Scherbak [1988], “Wavefronts and reflection groups,” Russ. Math. Surveys 43, 149–194.

J. Tits [1981], “A local approach to buildings,” in The Geometric Vein (the Coxeter Festschrift),
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