A theory of generalized functions based on one parameter groups of unbounded self-adjoint operators

Citation for published version (APA):

Eijndhoven, van, S. J. L. (1981). A theory of generalized functions based on one parameter groups of unbounded self-adjoint operators. (EUT report. WSK, Dept. of Mathematics and Computing Science; Vol. 81-WSK-03). Technische Hogeschool Eindhoven.

Document status and date:

Published: 01/01/1981

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

NEDERLAND

ONDERAFDELING DER WISKUNDE

THE NETHERLANDS

DEPARTMENT OF MATHEMATICS

A theory of generalized functions based on one parameter groups of unbounded self-adjoint operators
by
S.J.L. van Eijndhoven
T.H. - Report 81-WSK-03

June 1981

A THEORY OF GENERALIZED FUNCTIONS BASED ON ONE PARAMETER GROUPS OF UNBOUNDED SELF-ADJOINT OPERATORS
by
S.J.L. van Eijndhoven

This research was made possible by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.0.).
Contents Page
Abstract 1
Introduction 3
The space $\tau(X, A)$ 12
The space $\sigma(X, A)$ 22
The pairing of $r(X, A)$ and $\sigma(X, A)$ 38
Characterization of continuous linear mappings between the spaces $\tau(X, A), \tau(Y, B), \sigma(X, A)$ and $\sigma(Y, B)$ 47
Topological tensor products of the spaces $\tau(X, A)$ and $\sigma(X, A)$ 59
Kernel theorems 72
Two illustrations 79
Acknowledgement 90
References 9]

Abstract

Let $A \geq 0$ be a self-adjoint unbounded operator in a Hilbert-space X. Then the operators $e^{-t A}$ are well-defined for all $t \in \mathbb{C}$. For each $t>0$ we introduce the sesquilinear form $s t$ by

$$
s_{t}(x, y)=:\left(e^{-t A} x, e^{-t A} y\right) \quad, \quad x, y \in X
$$

The completion of X with respect to the norm $\|=\|_{t}$,

$$
\|x\|_{t}=:\left\|e^{-t A} x\right\|_{X} \quad, \quad x \in X
$$

is denoted by X_{t}. The space $\sigma(X, A)$ of generalized functions is taken to be

$$
\sigma(X, A)=:{\underset{t>0}{u} X_{t} ~ . ~}_{t}
$$

The test function space, corresponding to $\sigma(X, A)$, is denoted by $\tau(X, A)$. The vector space $\tau(X, A)$ consists of trajectories, i.e. mappings $\mathbb{C} \rightarrow X$ which satisfy

$$
\frac{\mathrm{du}}{\mathrm{dt}}=A u
$$

Such a trajectory is completely characterized by its "initial condition" $u(0) \in D\left(\left(e^{A}\right)^{\infty}\right)$. Note that

$$
\tau(X, A)=\bigcap_{t>0} D\left(e^{t A}\right)=D\left(\left(e^{A}\right)^{\infty}\right)
$$

With respect to the space $\tau(X, A)$ and $\sigma(X, A)$, I discuss a pairing, topologies, morphisms, tensorproducts and Kernel theorems. Finally I mention some applications, a.o. to generalized functions in infinitely many dimensions.

Introduction

Schwartz' space of tempered distributions $S^{\prime}(\mathbb{R})$ may be regarded as the dual of the space $D\left(H^{\infty}\right) \subset L_{2}(\mathbb{R})$, with

$$
H=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}+1\right)
$$

(for a proof see [Z1] or [K]). Note that $D\left(H^{\infty}\right)$ is the C^{∞}-domain of H, i.e. $\mathbf{f} \in D\left(H_{i}^{\infty}\right)$ iff $H^{k} \mathbf{f} \in D(H)$ for $k=0,1,2, \ldots$.

The space $D\left(H^{\infty}\right)$ can be considered as a "trajectory space" in the following sense:

Let $\mathbf{u}(0) \in \mathrm{D}\left(H^{\infty}\right)$. Define the mapping $\mathbf{u}: \mathbb{C} \rightarrow L_{2}(\mathbb{R})$ by

$$
u(t)=: H^{t} u(0)=e^{t \log H} u(0), \log H \geq 0, t \in \mathbb{C}
$$

Then u is a so-called trajectory, i.e. u has the property $u(t+\tau)=H^{\tau} u(t)$ for all $t, \tau \in \mathbb{C}$. In this way each $u(0) \in D\left(H^{\infty}\right)$ is in one-to-one correspondence to a trajectory $u: t \rightarrow H^{t} u(0)$.

This observation led me to develop a theory of generalized functions which is a kind of reverse of a theory as developed by De Graaf in [G]. In [G] the generalized function space is a space of trajectories and the test function space is an inductive limit of Hilbert spaces. In the present paper the space of generalized functions is an inductive limit of Hilbert spaces and the test function space a trajectory space. It can be looked upon as very general theory on distributions of the tempered kind.

The results of this paper are inspired by and can be compared with the results in [G]. As in [G] generalized functions can be introduced on arbitrary measure spaces. I study the topologies of the spaces, their morphisms, necessary and sufficient conditions suoh that Kernel theorems hold. The notions "trajectory space" and "inductive limit space" are used in this paper as well as in [G]. However, we are forced to prove some important theorems with different techniques.

In this introduction I will illustrate the general theory by some examples I want to show that the theories of Judge, Zemanian and Korevaar (see [J], [Z2] and [K]) are special cases of ours.

Example 1

Let $A=-\frac{d^{2}}{d x^{2}} \quad, \quad X=L_{2}(\mathbb{R})$.
Consider the anti-diffusion equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial^{2}}{\partial x^{2}} u \tag{1}
\end{equation*}
$$

A solution with the property that

$$
\forall_{t \in \mathbb{C}}: u(\cdot, t) \in L_{2}(\mathbb{R})
$$

will be called a trajectory. The set of trajectories is in one-to-one correspondence to the set of permitted initial conditions. This set of initial
conditions consists precisely of all entire analytic functions u_{0}, satisfying

$$
\forall_{\varepsilon>0}: \int_{-\infty}^{\infty}\left|u_{0}(x+i y)\right|^{2} d x=0\left(e^{\varepsilon y^{2}}\right)
$$

The corresponding trajectory $u(z, t), z \in \mathbb{R}, t \in \mathbb{C}$, is given by

$$
\begin{equation*}
u(z, t)=\frac{1}{2 \sqrt{-\pi t}} \int_{K} \exp \left(\frac{(z-w)^{2}}{4 t}\right) u_{0}(w) d w \tag{2}
\end{equation*}
$$

with contour $K: \xi e^{i \theta}, \xi \in \mathbb{R}, \theta=\arg \sqrt{-\pi t}$.
Note, that (2) defines an entire analytic function of two variables (cf. [BJS],[W]).

The complex vector space $\tau(X, A)$ consists of all trajectories generated by equation (1). For the dual space $\sigma(X, A)$ of $\tau(X, A)$ we take $\sigma(X, A)=\underset{t>0}{u} X_{t}$. Here X_{t} denotes the completion of $L_{2}(\mathbb{R})$ with respect to the sesquilinear form $(u, v)_{t}=\left(e^{-t A} u, e^{-t A} v\right)_{L_{2}(\mathbb{R})}$. It is clear that $X_{t} \subset X_{T}$ if $t \leq \tau . \sigma(X, A)$ is called the space of generalized functions. Note that $F \in \sigma(X, A)$ iff there exists $t>0$ such that $e^{-t A} F \in L_{2}(\mathbb{R})$.

The pairing between $\sigma(X, A)$ and $\tau(X, A)$ is defined by

$$
\begin{equation*}
\langle u, F\rangle=:\left(u(\cdot, t), e^{-t A} F\right) L_{2}(\mathbb{R}) \tag{3}
\end{equation*}
$$

$u \in \tau(X, A), F \in \sigma(X, A)$. This definition makes sense if $t>0$ is taken sufficiently large. The definition does not depend on the choice of t, since $e^{-(t+\tau) A}=e^{-t A} e^{-\tau A}$, and $e^{-t A}$ is a symmetric operator for all $t \in \mathbb{R}$.

Suppose P is a densely defined linear operator in L_{2} (IR) with a densely defined adjoint P^{*} which leaves $\tau(X, A)$ invariant, so $P^{*}(\tau(X, A)) \subset \tau(X, A)$. Then \bar{P} defined by

$$
\langle u, \vec{P} \mathrm{~F}\rangle=\left\langle\mathrm{P}^{\star} \mathrm{u}, \mathrm{~F}\right\rangle
$$

maps $\sigma(X, A)$ continuously into itself. \bar{P} extends P to a continuous mapping in $\sigma(X, A)$. Examples of such operators P are $e^{z A}, T_{b}, R_{a}, Z_{\lambda}, D$ and M_{F}, and compositions of these. Here $\left(T_{b} f\right)(x)=f(x+b),\left(R_{a} f\right)(x)=e^{i a x} f(x)$. $\left(Z_{\lambda} f\right)(x)=f(\lambda x),(D f)(\xi)=\frac{d f}{d x}(\xi),\left(M_{F} f\right)(x)=F(x) f(x)$ with $z \in \mathbb{C}$, $a, b \in \mathbb{R}, \lambda \in \mathbb{R} \backslash\{0\}$, and F an entirely analytic function satisfying

$$
|F(x+i y)| \leq c e^{\varepsilon y^{2}}, \quad x, y \in \mathbb{R}
$$

for $c>0$ and all $\varepsilon>0$.

Some strongly divergent Fourier integrals can be interpreted as elements of $\sigma(X, A)$. Let h be a measurable function in $\mathbb{I R}$ such that for some $t>0$ the function $x \rightarrow h(x) e^{-t x^{2}}$ is in $L_{2}(\mathbb{R})$. The possibly divergent integral

$$
(\mathbb{F} h)(x)=\int_{\mathbb{R}} h(y) e^{i y x} d y
$$

can be considered as an element of $\sigma(X, A)$, because for t sufficiently large the function

$$
e^{-t A}(F h)=\int_{\mathbb{R}} h(y) e^{-t y^{2}} e^{i y x} d y
$$

is in $L_{2}(\mathbb{R})$.

Since there is no $t>0$ such that $e^{-t A}$ is a Hilbert-Schmidt operator on X, there is no Kernel theorem in this case. This means that there exist continuous linear mappings from $\tau(X, A)$ into $\sigma(X, A)$ which do not arise from a generalized function of two variables in the space $\sigma\left(L_{2}\left(\mathbb{R}^{2}\right), A \mathbb{A}\right)$ with A 田 $A=-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$. For instance, the natural injection $\tau(X, A) C$ $\sigma(X, A)$ is an operator of this type.

Example 2
Let $X=L_{2}([0,2 \pi]), A_{\alpha}=\left(-\frac{\partial^{2}}{\partial x^{2}}\right), \alpha>0$
$D\left(-\frac{\partial^{2}}{\partial x^{2}}\right)=\left\{u \mid u \in H^{2}([0,2 \pi]), u(0)=u(2 \pi) \quad, u^{\prime}(0)=u^{\prime}(2 \pi)\right\}$.

The functions $y \rightarrow e^{i n y}, n \in \mathbb{Z}$, are eigenfunctions of the operator A_{α} with eigenvalues $n^{2 \alpha}$, and they establish an orthonormal basis for $L_{2}([0,2 \pi])$. Solutions of the equation

$$
\frac{\partial u}{\partial t}=\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha} u
$$

have the form

$$
u(y, t)=\sum_{n \in \mathbb{Z}} e^{n^{2 \alpha} t} c_{n} e^{i n y}, y \in \mathbb{R}, t \in \mathbb{C}
$$

So we have

$$
u \in \tau\left(X, A_{\alpha}\right) \text { iff } u(y, t)=\sum_{n \in \mathbb{Z}} e^{n^{2 \alpha} t} c_{n} e^{i n y}
$$

in which the sequence ($e^{n^{2 \alpha} t} c_{n}$) converges in ℓ_{2}-sense for all $t \in \mathbb{C}$. It is easily seen that every trajectory $u \in \tau(X, A)$ can be uniquely identified with a function on S^{1}, whose Fourier series has coefficients c_{n} satisfying

$$
\sum_{n \in \mathbb{Z}} e^{n^{2 \alpha} t}\left|c_{n}\right|^{2}<\infty,
$$

for all $t \in \mathbb{C}$.

In the same way we can prove that the generalized function space $\sigma\left(X, A_{\alpha}\right)$ consists of possibly divergent Fourier series $\sum_{n \in \mathbb{Z}} g_{n} e^{i n y}$ with coefficients g_{n},

$$
\sum_{n \in \mathbb{Z}} e^{-n^{2 \alpha} t}\left|g_{n}\right|^{2}<\infty
$$

for some $\mathrm{t}>0$.

Since for some $t>0$, even for all $t>0$, the operator $e^{-t A}$ is HilbertSchmidt, the Kemel theorems hold in this case. So all continuous linear mappings from $T(X, A)$ into $\sigma(X, A)$ arise from a generalized function of two variables on the torus $S^{1} \times S^{1}$ in $\sigma\left(L_{2}\left([0,2 \pi]^{2}\right), A_{\alpha} \not ⿴ A_{\alpha}\right)$ with

$$
A_{\alpha} \boxplus A_{\alpha}=\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha}+\left(-\frac{\partial^{2}}{\partial y^{2}}\right)^{\alpha} \text {. }
$$

Example 3

The operators of example 2 are of a special kind. Let A be a positive self-adjoint differential operator in $L_{2}(I)$ with $I=(a, b),-\infty \leq a<b \leq \infty$. Suppose, that A has an orthonormal basis of eigenvectors ψ_{n} in $L_{2}(I)$ such that $A \psi_{n}=\lambda_{n} \psi_{n}$ with $1 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots$. Then we have

$$
u \in \tau\left(L_{2}(I), A\right) \text { iff } u(t)=\sum_{n=1}^{\infty} e^{t \lambda_{n}} c_{n} \psi_{n}, \quad t \in \mathbb{C}
$$

and the sequence converges in ℓ_{2}-sense for all $t \in \mathbb{C}$. We can identify u with a Fourier series $\sum_{n=1}^{\infty} c_{n} \psi_{n}$ in which the c_{n} satisfy

$$
\sum_{n=1}^{\infty}\left|e^{t \lambda} n\right|\left|c_{n}\right|^{2}<\infty
$$

for all $t \in \mathbb{C}$.

The generalized function space $\sigma\left(L_{2}(I), A\right)$ consists of possibly divergent Fourier series $\sum_{n=1}^{\infty} g_{n} \psi_{n}$ with coefficients g_{n}, satisfying

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} t}\left|g_{n}\right|^{2}<\infty
$$

for some $t>0$.

Kernel theorems hold iff for some $t>0$

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} t}<\infty
$$

Examples of such operators A are

$$
\begin{equation*}
A_{1}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}+1\right) \text { defined in } L_{2}(\mathbb{R}) \tag{1}
\end{equation*}
$$

The eigenfunctions of A_{1} are the Hermite functions ψ_{n} with eigenvalues $\lambda_{\mathrm{n}}=\mathbf{n}+1, \mathbf{n}=0,1,2, \ldots \quad \sigma\left(L_{2}(\mathbb{R}), A_{1}\right)$ is the class of generalized functions which was first introduced by Korevaar in [K]. In the last chapter of this paper this space is more extensively discussed.

$$
\begin{equation*}
A_{2}=-x \frac{d^{2}}{d x^{2}}-\frac{d}{d x}+\frac{x}{4}+\frac{1}{2} \text { defined in } L_{2}((0, \infty)) \tag{2}
\end{equation*}
$$

The eigenfunctions of A_{2} are the Laguerre functions L_{n} with eigenvalues $\lambda_{\mathrm{n}}=\mathbf{n}+1 \quad, \quad \mathbf{n}=0,1,2, \ldots$.

$$
\begin{equation*}
A_{3}=-\frac{d}{d x}\left(1-x^{2}\right) \frac{d}{d x}+1 \text { defined in } L_{2}((-1,1)) \tag{3}
\end{equation*}
$$

The eigenfunctions of A_{3}, which form an orthonormal basis are the functions $\psi_{\mathrm{n}}=\sqrt{\mathrm{n}+\frac{1}{2}} \mathrm{P}_{\mathrm{n}}$ where the P_{n} are the Legendre polynomials. The eigenvalues λ_{n} are

$$
\lambda_{\mathrm{n}}=\mathrm{n}^{2}+\mathrm{n}+1 \quad \mathrm{n}=0,1,2, \ldots
$$

Zemanian, in chapter 9 of [Z2], describes orthonormal series expansions for generalized functions. His test and generalized function spaces are precisely the spaces $\tau\left(L_{2}(I), \log A\right)$ and $\sigma\left(L_{2}(I), \log (A)\right)$. Here A is a positive self-adjoint differential operator in $L_{2}(I)$, which has a com-
plete system of eigenfunctions. We also refer to Judge ([J]) who generalizes Zemanian's theory to a class of diffential operators in $L_{2}(I)$. For an application of our theory to distributions in infinitely many dimensions see chapter 7 of this paper.

Chapter 1

The space $\tau(X, A)$

Throughout this paper X denotes a Hilbert space with inner product (${ }^{\prime},{ }^{*} X^{*}$ If no confusion is likely to arise this inner product will also be denoted by (•, •). Further A denotes an unbounded positive self-adjoint operator and we suppose that $\left(E_{\lambda}\right)_{\lambda \geq 0}$ is the spectral resolution of the identity belonging to A. Let ψ be a complex valued and everywhere finite Borel function on \mathbb{R}. We define formally

$$
\psi(A)=\int_{-\infty}^{\infty} \psi(\lambda) d E_{\lambda}
$$

on the domain $\underset{\infty}{D(\psi(A))}=\left\{x \in X\left|\int_{-\infty}^{\infty} \psi(\lambda)\right|^{2} d\left(E_{\lambda} x, x\right)<\infty\right\}$.
Thus $(\psi(A) x, y)=\int_{-\infty}^{\infty} \phi(\lambda) d\left(E_{\lambda} x, y\right)$ for all $x \in D(\psi(A))$ and all $y \in X$, where $\left(E_{\lambda} x, y\right)$ is a finite Borel measure on \mathbb{R}. If ψ is real valued then $\psi(A)$ is self-adjoint. We have $(\psi \cdot \chi)(A)=\psi(A) \chi(A)$.

The notation

$$
\int_{a}^{b} \psi(\lambda) d E_{\lambda} \quad, \quad 0<a<b \leq \infty
$$

is often employed in this paper. By this we mean

$$
\int_{-\infty}^{\infty} X_{(a, b]}(\lambda) \psi(\lambda) d E_{\lambda}
$$

where $\chi_{(a, b]}$ is the characteristic function of the interval ($\left.a, b\right]$. And by

$$
\int_{0}^{b} \psi(\lambda) \mathrm{d} E_{\lambda} \quad, \quad 0<b<\infty
$$

we mean

$$
\int_{-\infty}^{\infty} x_{(-1, b]}(\lambda) \psi(\lambda) d E_{\lambda},
$$

For a detailed discussion of the operator calculus of a self-adjoint operator see [Y], ch. XI. For all $t \in \mathbb{C}$ the operator $e^{t A}$ is well-defined and $D\left(e^{t A}\right)$ consists of all $6 \in X$ with $\int^{\infty}\left|e^{2 \lambda t}\right| \mathrm{d}\left(E_{\lambda} \quad 6, \hbar\right)<\infty$.

We introduce the space of trajectories $\tau(X, A)$.

Definition 1.1

$\tau(X, A)$ denotes the complex vector space of all mappings $u: \mathbb{C} \rightarrow X$ with the property that
i) u is holomorphic
ii) $u(t) \in D\left(e^{\tau A}\right)$ and $e^{\tau A} u(t)=u(t+\tau)$ for all $t, \tau \in \mathbb{C}$.

The mappings u of Definition 1.1 will be called trajectories. A trajectory u is uniquely determined by $u(0)$, because $u_{1}(0)=u_{2}(0)$ implies

$$
u_{1}(t)=e^{t A} u_{1}(0)=e^{t A} u_{2}(0)=u_{2}(t)
$$

for all $t \in \mathbb{C}$. It is obvious that for all $\left.u \in \tau(X, A), u(0) \in D\left(e^{A}\right)^{\infty}\right)$ and $u(t)=e^{t A} u(0), t \in \mathbb{C}$.

Definition 1.2

In $\tau(X, A)$ we introduce the seminorms $p_{n},(n \in \mathbb{N})$, by

$$
p_{n}(u)=:\|u(n)\|_{X},
$$

and the strong topology in $\tau(X, A)$ will be the corresponding locally convex topology.

Theorem 1.3

Endowed with the strong topology $\tau(X, A)$ is a Frêchet space. Proof:

In $\tau(X, A)$ we define the metric d by

$$
d(u)=: \sum_{k=1}^{\infty} 2^{-k} p_{k}(u)\left(1+p_{k}(u)\right)^{-1} \quad, u \in \tau(X, A)
$$

For any $u \in \tau(X, A)$ we have $d(u) \geq 0$ and finite. By standard arguments we can prove that d is a metric in $\tau(X, A)$, which generates exactly the same topology as the seminorms $p_{n}, n \in \mathbb{N}$

We now prove the completeness of $\tau(X, A)$.
Suppose $\left(u_{k}\right)_{k \in \mathbb{N}}$ is a fundamental sequence in $\tau(X, A)$. Thus for any $n \in \mathbb{N}$ the sequence $\left(u_{k}(n){ }_{k \in \mathbb{N}}\right.$ is fundamental in X. Using the trajectory property 1.1.ii) we find that for any $t>0$, the sequence $\left(u_{k}(t){ }_{k \in \mathbb{N}}\right.$ is fundamental in X. Let $u_{t} \in X$ be the limit of the sequence $\left(u_{k}{ }^{(t)}{ }_{k \in \mathbb{N}}\right.$. Then for each $\tau>0$ and $h \in D\left(e^{\tau A}\right)$

$$
\left(u(t), e^{\tau A} h\right)=\lim _{k \rightarrow \infty}\left(u_{k}(t), e^{\tau A_{h}}\right)=(u(t+\tau), h)
$$

So $u(t) \in D\left(e^{\tau A}\right)$ and $e^{\tau A} u(t)=u(t+\tau)$. It is clear that by $u: t \rightarrow u(t)$, $t>0$, we define an element of $\tau(X, A)$, and that u is the limit of the fundamental sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$.

For $\tau>0$ we define the map $e^{\tau A}: \tau(X, A) \rightarrow \tau(X, A)$ by

$$
e^{T A} f: t \rightarrow f(t+\tau) \quad, f \in T(X, A) .
$$

Lemma 1.4

For each $\tau>0$ the map $e^{\tau A}$ is continuous from $\tau(X, A)$ into itself.
Proof:
Let $\tau>0$. Then there is $n \in \mathbb{N}$ such that $n>\tau$.
The conclusion follows from the fact that $e^{(\tau-n) A}$ is a bounded operator on X and the fact that p_{k+n} is a continuous seminorm in $\tau(X, A)$ for all $k \in \mathbb{N}$.

Definition 1.5

We define the function-algebra $F a(\mathbb{R}) \cdot F a(\mathbb{R})$ consists of all everywhere finite, locally integrable functions ψ on \mathbb{R} satisfying

$$
\sup _{x>0}\left|\psi(x) e^{t x}\right|<\infty \quad \text { for all } t>0
$$

$F \mathrm{a}^{+}(\mathbb{R})$ is the subalgebra of $F \mathrm{a}(\mathbb{R})$ consisting of all, positive functions in $F(\mathbb{R})$.

Lemma 1.6

If $u \in \tau(X, A)$, then there exists $\psi \in F \mathbf{a}^{+}(\mathbb{R})$ and $w \in X$ such that $u: t \rightarrow e^{t A} \psi(A) w, t \in \mathbb{C}$. In other words $u(0)=\psi(A) w$.

Proof:
Since $u \in \tau(X, A)$, we can take $N(0)=0, N(n)>N(n-1)$, such that for all $n \in \mathbb{N}$

$$
\int_{N(n)}^{\infty} d\left(E_{\lambda} u(n), u(n)\right)<\frac{1}{n^{2}}
$$

Now define $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$ by

$$
\psi(\lambda)=e^{-n \lambda} \text { if } \lambda \epsilon(N(n), N(n+1)]
$$

Then $\int_{0}^{\infty}\left(\psi^{-1}(\lambda)\right)^{2} d\left(E_{\lambda} u(0), u(0)\right)=$

Hence $u(0) \in D\left(\psi^{-1}(A)\right)$ and $u(t)=e^{t A} \psi(A) \psi(A)^{-1} u(0)=e^{t A} \psi(A) w$; with $w=\psi^{-1}(A) u(0)$ the proof is complete.

Lemma 1.7

i) Suppose $\psi(A)$ is compact as an operator on X for all $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Then for all $t>0$ the operator $e^{-t A}$ is compact on X.
ii) Suppose $\phi(A)$ is Hilbert-Schmidt as an operator on X for all $\psi \in E \mathbf{a}^{+}(\mathbb{R})$. Then there exists $t>0$ such that the operator $e^{-t A}$ is Hilbert-Schmidt on X.

Proof:
i) By assumption $e^{-A^{2}}$ is compact as an operator on X, because $\left(x \rightarrow e^{-x^{2}}\right)$ e $\in \mathrm{Fa}^{+}(\mathbb{R})$. Let $\left(\mu_{i}\right)$ be the eigenvalues of $\mathrm{e}^{-\mathrm{A}^{2}}$. Then $\mu_{1} \geq \mu_{2} \geq \ldots$ and $\mu_{i} \rightarrow 0$. So for all i, $\left(-\log \mu_{i}\right)^{\frac{1}{2}}$ is well defined and $\left(-\log \mu_{i}\right)^{\frac{1}{2}} \rightarrow \infty$. The numbers $\left(-\log \mu_{i}\right)^{\frac{1}{2}}$ are j ust the eigenvalues of A. Especially for $t>0$, we have

$$
\exp \left(-t\left(-\log \mu_{i}\right)^{\frac{1}{2}}\right) \rightarrow 0
$$

ii) We shall prove that there is $k \in \mathbb{N}$ so that $e^{-k A}$ is HS on X. Suppose this were not true. Then there is a sequence $\left(N_{n}\right)$ with $N_{n+1}>N_{n}, N_{0}=1$ and $N_{n} \rightarrow \infty$ such that $\sum_{j=N_{n-1}}^{N_{n}} e^{-2 \lambda_{j} n}>1$. Here the λ_{j} 's are the eigenvalues of A.

If for some $k \in \mathbb{N}$ there does not exist $N_{k} \in \mathbb{N}$ such that

be Hilbert-Schmidt.
Now define $\varphi \in F^{+}(\mathbb{R})$ by

$$
\varphi(\lambda)=e^{-\mathrm{n} \lambda}, \lambda \in\left(\lambda_{\mathrm{N}_{\mathrm{n}-1}}, \lambda_{\mathrm{N}_{\mathrm{n}}}\right]
$$

Then $\varphi(A)$ should be Hilbert-Schmidt by assumption. But

$$
\sum_{j=1}^{N_{n}}\left|\varphi\left(\lambda_{j}\right)\right|^{2}=\sum_{k=1}^{n} \sum_{j=N_{k-1}}^{N_{k}} e^{-2 \lambda j k}>n ;
$$

$\sum_{j=1}^{\infty}\left|\varphi\left(\lambda_{j}\right)\right|^{2}$ is divergent, which is a contradiction.

Theorem 1.8

A set $B \subset \tau(X, A)$ is bounded iff for every $t \in \mathbb{C}$ the set $\{u(t) \mid u \in B\}$ is bounded in X.

Proof:
\Rightarrow) Each continuous seminorm p_{n} has to be bounded on B. Therefore, for all $\mathrm{n} \in \mathbb{I N}$ the set

$$
\{u(n) \mid u \in B\}
$$

is bounded in X. Because of the boundedness of $e^{-\tau A}$ for each τ with Re $\tau \geqslant 0$, it folinows that $\{u(t) \mid u \in B\}$ is a bounded set in X for each fixed $t \in \mathbb{C}$.
$\Leftarrow) B$ is bounded in $\tau(X, A)$ iff every seminorm is bounded.

Theorem 1.9

A set $K \subset \tau(X, A)$ is compact iff for each $t \in \mathbb{C}$ the set $\{u(t) \mid u \in K\}$ is compact.

Proof:
\Rightarrow) Each sequence $\left(u_{n}\right) \subset K$ has a convergent subsequence. This means that in the set $K_{t}:=\{u(t) \mid u \in K\}, t \in \mathbb{C}$ fixed, each sequence has a convergent subsequence. So K_{t} is compact in X.
\Leftrightarrow) Let (u_{k}) be a sequence in K. We shall prove the existence of a converging subsequence by a diagonal procedure. Consider the sequence $\left\{u_{k}(1)\right\} \subset K_{1} \subset X . K_{1}$ is compact therefore a convergent subsequence in K_{1} exists. We denote it by $\left(u_{k}^{1}\right.$ (1)). The sequence u_{k}^{l} (2) has a convergent
subsequence in K_{2}. We denote it by $\left(u_{k}^{2}(2)\right)$. Proceeding in this way we get sequences $\left(u_{k}^{m}\right) \subset K$ such that $\left(u_{k}^{m}\right) \subset\left(u_{k}^{\ell}\right)$ for $m<\ell$ and $\left(u_{k}^{m}(m)\right)$ converges in K_{m}. For the diagonal sequence (u_{k}^{k}) the sequence $\left(u_{k}^{k}(t)\right.$) converges to $u(t) \in K_{t}$. So we conclude that $u_{k} \rightarrow u$ in the strong topology.

Without proof, but for the sake of completeness we mention the following 1 emma.

Lemma 1.10

If p is a continuous seminorm on $\tau(X, A)$, then there exists $k \in \mathbb{N}$ and $c>0$, such that for all $u \in \tau(X, A)$

$$
p(u) \leq c\|u(k)\|
$$

Theorem 1.11

I. $\tau(X, A)$ is bornological, i.e. every circled convex subset in $\tau(X, A)$, that absorbs every bounded subset in $\tau(X, A)$ contains an open neighbourhood of 0 .

1I. $\tau(X, A)$ is barreled, i.e. every barrel contains an open neighbourhood of the origin. A barrel is a subset which is radial, convex, circled and closed.
III. $t(X, A)$ is Montel, iff there exists $t>0$ such that $e^{-t A}$ is compact as a bounded operator on X.
IV. $T(X, A)$ is nuclear, iff there exists $t>0$ such that the operator $e^{-t A}$ is Hilbert-Schmidt on X.

Proof:

I,II $\tau(X, A)$ is bornological and barreled, because it is metrizable. For a simple proof see [SCH],II. 8.

III \Rightarrow)
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in X, and let $\varphi \in F a^{+}(\mathbb{R})$. Then $\left(\varphi(A) x_{n}\right)$ is a bounded sequence in $\tau(X, A)$. Since $\tau(X, A)$ is Montel there exists a converging subsequence of $\left(\varphi(A) \chi_{n}\right)$. So we observe that $\varphi(A)$ is compact as an operator on X. Since $\varphi \in F^{+}(\mathbb{R})$ was taken arbitrarily, this holds true for all $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$. Following Lemma 1.7 the operator $\mathrm{e}^{-\mathrm{tA}}$ is compact for each $t>0$.
$\Leftrightarrow)$
Let $e^{-t A}$ be compact. We use diagonal procedure. Let (u_{n}) be a bounded sequence in $\tau(X, A)$. For each $\tau>0$ the sequence $u_{n}(\tau)$ is bounded in X. The sequence $\left(e^{-t A} u_{n}(t+1)\right)$ has a converging subsequence, $\left(u_{n}^{1}(1)\right)$, say. Analogously, the sequence $\left(u_{n}^{1}\right.$ (2)) has a converging subsequence (u_{n}^{2} (2)) We obtain subsequences $\left(u_{n}^{k}(k)\right)$ that converge in X and have the property that $\left(u_{n}^{k}\right) \subset\left(u_{n}^{\ell}\right), \ell<k$. Now define $\tilde{u}_{n}=: u_{n}^{n}$. Then the sequence $\left(\tilde{u}_{n}\right)$ is a subsequence of $\left(u_{n}\right)$, and ($\left(\tilde{u}_{n}\right)$ converges in $\tau(X, A)$. We conclude that $\tau(X, A)$ is Montel.

IV \Leftrightarrow
Suppose that $e^{-t A}$ is Hilbert-Schmidt for some $t>0 . \tau(X, A)$ is a nuclear space if and only if for each continuous seminorm p on $\tau(X, A)$ there is another seminorm $q \geq p$ such that the canonical injection ${ }^{\hat{\tau}}{ }_{q} \rightarrow{ }^{\hat{\tau}}{ }_{p}$ is a nuclear map. Here the Banach space $\hat{\tau}_{p}$ is defined as the completion of the quotient space $\tau(X, A) /\left\{p^{-1}(0)\right\}$. We have proved in Lemma 1.10 that there
are $c>0$ and $k \in \mathbb{N}$ such that

```
p(u) sc|u| , u f \tau (X,A).
```

Hence $\hat{\tau}_{p_{k}}$ can be mapped into $\hat{\tau}_{p}$ by a bounded operator. Since the composition of a bounded operator and a nuclear operator is also nuclear, we proceed.

Let $\ell \in \mathbb{N}, \ell>2 t \cdot p_{k+\ell} \geq p_{\ell}$. Let d be the canonical injection $\hat{\tau}_{p_{k+\ell}}<\hat{\tau}_{p_{k}}$, and let $\lambda_{j}, 0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ be the eigenvalues of A belonging to the orthonormal system $\left(e_{j}\right)$, with $A e_{j}=\lambda_{j} e_{j},(j \in \mathbb{N})$. Then

$$
J u=\sum_{j=1}^{\infty} e^{-\lambda j^{\ell}}\left(e^{(k+\ell) A} u, e^{(k+\ell) A} 6_{j}\right) g_{j}
$$

with $f_{j}=: e^{-(k+\ell) \lambda} j e_{j} \in \hat{\tau}_{p_{k+\ell}},\left\|f_{j}\right\|_{k+\ell}=1$, and

$$
g_{j}=e^{-k \lambda} j e_{j} \in \hat{\imath}_{p_{k}} \quad, \quad\left\|g_{j}\right\|_{k}=1
$$

Hence J is nuclear.
\Rightarrow)
Suppose $\tau(X, A)$ is nuclear. Take $p(u)=\|u(0)\|, u \in \tau(X, A)$. Then $\hat{\tau}_{p}=X$, since $\tau(X, A)$ is dense in X. Hence for some seminorm q the injection $\hat{\tau}_{q} \leftrightarrows X$ must be nuclear. Thus $e^{-k A}$ is a nuclear map for $k \in \mathbb{N}$ such that $p_{k} \geq q$ (see Lemma 1.10).
$e^{-k A}$ is a Hilbert-Schmidt operator in X.

Chapter 2

The space $\sigma(X, A)$

For each $t>0$ we define the sesquilinear form

$$
(x, y)_{t}:=\left(e^{-t A} x, e^{-t A} y\right)_{X}
$$

and the corresponding norm $\|x\|_{t}=:\left\|e^{-t A} x\right\|_{X}$. Let X_{t} be the completion of X with respect to the norm $\|\cdot\|_{t}$. Then X_{t} is a Hilbert space with inner product $(\cdot, \cdot)_{t^{2}}$ and $F \in X_{t}$ iff $\left\|e^{-t A} F\right\|<\infty$, with $e^{-t A}$ the linear operator on X extended to X_{t}. Since $\|F\|_{t} \geq\|F\|_{\tau}$ if $\tau \geq t$ we have the natural embedding

$$
X_{t} \subset X_{\tau}, \quad \tau \geq t
$$

We remark that $e^{t A}: X \rightarrow X_{t}$ establishes a unitary bijection. We now define the space $\sigma(X, A)$. X can be continuously embedded in $\sigma(X, A)$.

Definition 2.1

For the strong topology in $\sigma(X, A)$ we take the inductive limit topology generated by the spaces X_{t}, i.e. the finest locally convex topology on $\sigma(X, A)$ for which the injections $i_{t}: X_{t} \rightarrow \sigma(X, A)$ are all continuous. The inductive limit topology is not strict. We recall that the functionalgebra $F a(\mathbb{R})$ consists of all $\psi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\sup |\psi(x)| e^{t x}<\infty$ $x \geq 0$
for all $t>0$. (see $C h .1)$. For each $\psi \in \mathcal{F}(\mathbb{R})$ and each $F \in \sigma(X, A)$ we may consider $\psi(A) F$ as an element of X as follows

$$
\psi(A) F=\psi(A) e^{t A} e^{-t A} F
$$

with $t>0$ sufficiently large.

We introduce the following seminorms on $\sigma(X, A)$.

$$
p_{\psi}(F)=:\|\psi(A) F\|_{X} \quad, \quad F \in \sigma(X, A)
$$

for each $\psi \in F a(\mathbb{R})$.

Next we define the sets $U_{\psi, \varepsilon}, \psi \in F a(\mathbb{R}), \varepsilon>0$, by

$$
U_{\psi, \varepsilon}=:\left\{F \in \sigma(X, A) \mid p_{\psi}(F)<\varepsilon\right\}
$$

Before we formulate one of the fundamental theorems of this paper, we give some conventions:

Let $F \in \sigma(X, A)$. Then there exists $t>0$ such that $e^{-t A} F \in X$ and the following expression is correct for each $\psi \in F a(\mathbb{R})$
i) $\psi(A) F=\int_{0}^{\infty} \psi(\lambda) e^{\tau \lambda} d E_{\lambda}\left(e^{-\tau A} F\right), \tau \geq t$,
(i) does not depend on the choice of $\tau \geq t$).

Hence
ii)

$$
\|\psi(A) F\|^{2}=\int_{0}^{\infty}|\psi(\lambda)|^{2} e^{2 \tau \lambda} d\left(E_{\lambda}\left(e^{-\tau A} F\right), e^{-\tau A} F\right)
$$

In the sequel we shall denote formally

$$
\psi(A) F=\int_{0}^{\infty} \psi(\lambda) d E_{\lambda} F
$$

and

$$
\|\psi(A) F\|^{2}=\int_{0}^{\infty}|\psi(\lambda)|^{2}\left(E_{\lambda} F, F\right)
$$

The meaning of these expression is given by (i) and (ii).

Theorem 2.2
I. $U_{\psi, \varepsilon},(\psi \in F a(\mathbb{R}), \varepsilon>0)$ is a convex, balanced and absorbing open set in the strong topology of $\sigma(X, A)$.
II. Let a convex set $\Omega \subset \sigma(X, A)$ be such that for each $t>0, \Omega \cap X_{t}$ contains a neighbourhood of 0 in X_{t}. Then Ω contains a set $U_{\psi, \varepsilon}$ with $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$.

So the family $\left\{U_{\psi, \varepsilon} \mid \psi \in F \mathrm{a}^{+}(\mathbb{R}), \varepsilon>0\right\}$ establishes a basis of the neighbourhood system of 0 in $\sigma(X, A)$.
note: A set $\Omega \subset \sigma(X, A)$ is open iff $\Omega \cap X_{t}$ is open in X_{t} for all $t>0$. Proof:
I. By standard arguments it is easily shown, that $U_{\psi, \varepsilon}$ is convex, balanced and absorbing. We shall only prove that $U_{\psi, \varepsilon}$ is open.

Let $t>0$. The seminorm p_{ψ} is continuous on X_{t}, because

$$
\|\psi(A) F\|=\left\|\psi(A) e^{-t A} e^{-t A} F\right\|\left\|\psi(A) e^{-t A_{\|}}\right\| e^{-t A} F \|
$$

II. We proceed in four steps.
a) Let $P_{n}:=\int_{n-1}^{n} d E_{\lambda}, n \in \mathbb{N}$. Then for each $F \in \sigma(X, A)$ we have

$$
P_{\mathrm{n}} \mathrm{~F}=\int_{\mathrm{n}-1}^{\mathrm{n}} \mathrm{~d} E_{\lambda} F \text { is an element of the Hilbert space } X \text {, because }
$$ the characteristic function. $X_{(n-1, n]}$ of the interval $(n-1, n]$ is an element of the algebra $F a^{+}(\mathbb{R})$. Now let $r_{n, k}$ be the radius of the largest open ball within $P_{n}\left(X_{k}\right)$ that fits within $\Omega \cap P_{n}\left(X_{k}\right)$. Thus

$$
\begin{aligned}
\Gamma_{n, k}= & \sup \left\{p>0 \mid\left[F \dot{\epsilon} P_{n}[\sigma(X, A)] \wedge\left\|P_{n} F\right\|_{k}=\int_{n-1}^{n} e^{-2 k \lambda}\left(E_{\lambda} F, F\right)<\rho^{2}\right]\right. \\
& \left.\Rightarrow\left[F \in \Omega \cap P_{n}[\sigma(X, A)] \cap X_{k}\right]\right\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\|P_{n} F\right\|_{k}^{2}=\int_{n-1}^{n} e^{-2 \lambda k} d\left(E_{\lambda} F, F\right) \leq e^{2 n \ell} \int_{n-1}^{n} e^{-2 \lambda(k+\ell)} d\left(E_{\lambda} F, F\right) \\
& \left\|P_{n} F\right\|_{k}^{2} \geq e^{2(n-1) \ell} \int_{n-1}^{n} e^{-2 \lambda(k+\ell)} d\left(E_{\lambda} F, F\right) .
\end{aligned}
$$

So

$$
e^{(n-1) \ell}\left\|_{n} F\right\|_{k+\ell} \leq\left\|P_{n} F\right\|_{k} \leq e^{n \ell}\left\|P_{n} F\right\|_{k+\ell}
$$

Let $\left\|P_{n} F\right\|_{k} \leq e^{(n-1) \ell} \Gamma_{n, k+\ell}$. Then $\left\|P_{n} F\right\|_{k+\ell} \leq \Gamma_{n, k+\ell}$. So $P_{n} F \in \Omega \cap x_{k}$,
 Then $\left\|P_{n} F\right\|_{k} \leq e^{n \ell} e^{-n \ell} \Gamma_{n, k}$; so $\Gamma_{n, k} \leq e^{n \ell} \Gamma_{n, k+\ell}$.

From the above calculation, we derive

$$
e^{(n-1) \ell} \Gamma_{n, k+\ell} \leq r_{n, k} \leq e^{n \ell} \Gamma_{n, k+\ell}
$$

for all $k, \ell \in \mathbb{N} \cup\{0\}$
b) For any fixed $p>0$ and $k \in \mathbb{N} \cup\{0\}$ the series $\sum_{n=1}^{\infty} n^{p}\left(\Gamma_{n, k}\right)^{-1}$ is convergent. Let $p>0$ and $k \in \mathbb{N} \cup\{0\}$. There exists an open ball in $X_{k+\ell}$, $\ell \in \mathbb{N}$, with sufficiently small radius $\varepsilon>0$, centered at 0 which lies entirely within $\Omega \cap X_{k+\ell}$. Then for any $n \in \mathbb{N}$ we have $r_{n, k+\ell} \geq \varepsilon$. With the inequality in a) it follows that

$$
\left(r_{n, k}\right)^{-1} \leq e^{-(n-1) \ell}\left(r_{n, k+\ell}\right)^{-1} \leq \frac{1}{\varepsilon} e^{-(n-1) \ell},
$$

for all $n \in \mathbb{N}$. From this the assertion follows.
c) We define a function v on \mathbb{R} by

$$
\begin{aligned}
& v(x)=2 n^{2}\left(r_{n, 0}\right)^{-1} \text { for } x \in(n-1, n] \\
& v(0)=v(1 / 2), \quad v(x)=0 \text { for } x<0
\end{aligned}
$$

Then $\quad v \in F a^{+}(\mathbb{R})$.

To show this, let $t>0, n \in \mathbb{N}$ and let $x \in(n-1, n]$. Then

$$
v(x) e^{t x} \leq 2 n^{2}\left(\Gamma_{n, 0}\right)^{-1} e^{n t} \leq 2 n^{2} e^{-(n-1)(\ell-t)} e^{t}\left(\Gamma_{n, \ell}\right)^{-1}
$$

Taking $\ell>t$ and invoking the estimate in b) the result follows.
d) We prove

$$
\left(*_{1}\right) \quad\|\nu(A) F\|<1 \Rightarrow F \in \Omega .
$$

Suppose $\quad F \in X_{k}$ for some $k \in \mathbb{N}$. Then

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left\|P_{n} F\right\|_{k}^{2}<\infty, \text { and for } \ell \in \mathbb{N} \\
\left(*_{2}\right) \quad\left\|P_{n} F\right\|_{k+\ell} \leq e^{-(n-1) \ell}\left\|P_{n} F\right\|_{k} \leq e^{-(n-1) \ell}\|F\|_{k} .
\end{gathered}
$$

We have

$$
\left\|P_{\mathrm{n}} F\right\|_{X}^{2}=\int_{\mathrm{n}-1}^{\mathrm{n}} \mathrm{~d}\left(E_{\lambda} F, F\right)=\frac{1}{4 n^{4}} r_{n, 0}^{2} \int_{\mathrm{n}-1}^{\mathrm{n}} \nu^{2}(\lambda) d\left(E_{\lambda} F, F\right) \leq \frac{1}{4 n^{4}} \Gamma_{n, 0}^{2} .
$$

So $2 n^{2} P_{n} F \in(\Omega \cap X) \subset\left(\Omega \cap X_{k+\ell}\right)$ for every $n \in \mathbb{N}, \ell \in \mathbb{N} . \operatorname{In} X_{k+\ell}$ we may represent F by

$$
F=\sum_{n=1}^{N} \frac{1}{2 n^{2}}\left(2 n^{2} P_{n} F\right)+\left(\sum_{n=N+1}^{\infty} \frac{1}{2 n^{2}}\right) F_{N}
$$

with $\quad F_{N}=\left(\sum_{j=N+1}^{\infty} \frac{1}{2 j^{2}}\right)^{-1} \sum_{n=N+1}^{\infty} P_{n} F$.

With $\left(*_{2}\right)$ it follows that

$$
\left\|F_{N}\right\|_{k+\ell} \leq 4 N^{4} \sum_{n=N+1}^{\infty}\left\|P_{n} F\right\|_{k+\ell}^{2} \leq 4 N^{4} e^{-2(N+1) \ell}\|F\|_{k}^{2} .
$$

So $\mathrm{F}_{\mathrm{N}} \rightarrow 0$ in $\mathrm{X}_{\mathrm{k}+\ell}$. Since $\Omega \cap \mathrm{X}_{\mathrm{k}+\ell}$ contains an open neighbourhood of 0 , there is $N_{0} \in \mathbb{N}$ such that $F_{N_{0}} \in \Omega \cap X_{k+\ell}$. Now $F \in \Omega \cap X_{k+\ell}$ because F is a sub-convex combination of elements in $\Omega \cap X_{k+\ell}$.

A posteriori it is clear that $F \in \Omega \cap X_{k}$.

Definition 2.3

A subset $W \subset \sigma(X, A)$ is called bounded if for each neighbourhood U of 0 in $\sigma(X, A)$ there exists a complex number λ such that $W \subset \lambda U$. Cf.[SCH]. In Theorem 2.4 we characterize bounded sets in $\sigma(X, A)$.

Theorem 2.4

A set $W \subset \sigma(X, A)$ is bounded iff

$$
\exists_{t>0} \forall_{M>0} \quad \forall_{F \in W}:\|F\|_{t} \leq M .
$$

Proof:
We remark that W is bounded iff $\forall_{\psi \in F a^{+}(\mathbb{R})} \exists_{M>0} \forall_{F \in W}:\|\psi(A) F\|<M$.
\Rightarrow) If not then we have
(*) $\quad \forall_{k \in \mathbb{N}} \forall_{M>0} \exists_{F \in W}:\left\|e^{-k A} F\right\|>M$.

Since the function $\lambda \rightarrow \mathrm{e}^{-\lambda^{2}}$ belongs to $F \mathrm{a}^{+}(\mathbb{R})$ we have
(**) $\quad \forall_{F \in W} \forall_{M>0} \forall_{k \in \mathbb{N}}: \int_{0}^{M} e^{-k \lambda+2 \lambda^{2}} d\left(E_{\lambda} e^{-A^{2}} F ; e^{-A^{2}} F\right) \leq e^{2 M^{2}} \rho^{2}$ with $\rho>0$ such that

$$
\left\|e^{-A^{2}} F\right\|^{2}<\rho^{2} \text { for all } F \in W \text {. }
$$

If $k=1$, then following ($*$) we can take $M=2, N_{1}>0$ and $F_{1} \in W$ such that

$$
\int_{0}^{\mathrm{N}_{1}} e^{-2 \lambda} d\left(E_{\lambda} F_{1}, F_{1}\right)>1
$$

We define inductively sequences (F_{k}) in $W,\left(\mathrm{~N}_{\mathrm{k}}\right)$ in N . For $k<\ell+1$, we assume that we have found N_{k+1} such that

$$
\int_{N_{k}}^{N_{k+1}} e^{-2 k \lambda} d\left(E_{\lambda} F_{k}, F_{k}\right)>k
$$

Now let $k=\ell+1$, and suppose

$$
\forall_{\mathrm{F} \in W} \forall_{\mathrm{K}>0} \int_{\mathrm{N}_{\ell}}^{\mathrm{N}_{\ell}+\mathrm{K}} \mathrm{e}^{-2(\ell+1) \lambda} d\left(E_{\lambda} \mathrm{F}, \mathrm{~F}\right) \leq \ell+1
$$

is true. Then W is bounded in $X_{\ell+1}$, because with ($* *$) we deduce

$$
\int_{0}^{\infty} e^{-2(\ell+1) \lambda} d\left(E_{\lambda} F, F\right)=\left(\int_{0}^{N_{\ell}}+\int_{N_{\ell}}^{\infty}\right)^{2(\ell+1) N_{\ell}^{2}} \rho^{2}+\ell+1
$$

for all $F \in W$.
If not choose $N_{\ell+1}>N_{\ell}+1$ and $F_{\ell+1} \in W$ such that

$$
\int_{N_{\ell}}^{N_{\ell+1}} e^{-2(\ell+1) \lambda} d\left(E_{\lambda} F_{\ell+1}, F_{\ell+1}\right)>\ell+1
$$

If our sequence terminates for some $k \in \mathbb{N}$ then W is a bounded setin X_{k}. If that is not the case, then define

$$
\psi(\lambda)=e^{-\lambda k}, \lambda \epsilon\left(N_{k-1}, N_{k}\right] \quad, \quad k=1,2, \ldots \quad, \quad \text { with } N_{0}=-\infty
$$

Then $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$, and

$$
\left\|\psi(A) F_{n}\right\|^{2}=\int_{0}^{\infty}|\psi(\lambda)|^{2} d\left(E_{\lambda} F_{n}, F_{n}\right) \geq \int_{N_{n-1}}^{N_{n}} e^{-2 \lambda n} d\left(E_{\lambda} F_{n}, F_{n}\right)>n
$$

Contradiction .
$\Rightarrow)$
Let $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Then for all $\mathrm{F} \in W$

$$
\|\psi(A) F\|=\left\|\psi(A) e^{t A} e^{-t A} F\right\| \leq\left\|\psi(A) e^{t A_{\|}}\right\| F \|_{t}
$$

In the next theorem we characterize sequential convergence in $\sigma(X, A)$.

Theorem 2.5

Let $\left(F_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\sigma(X, A)$. Then we have $F_{n} \rightarrow 0$ in the strong topology iff there exists $t>0$ such that $\left(F_{n}\right) \subset X_{t}$ and $\left\|F_{n}\right\|_{t} \rightarrow 0$.

Proof

$\Leftrightarrow) \quad\left\|\psi(A) F_{n}\right\|=\left\|\psi(A) e^{t A} e^{-t A} F_{n}\right\| \leq\left\|\psi(A) e^{t A}\right\|\left\|_{F_{n}}\right\|_{t} \rightarrow 0$.
\Rightarrow) Suppose $\mathrm{F}_{\mathrm{n}} \rightarrow 0$. Then for any $\psi \in E \mathrm{a}^{+}(\mathbb{R})$

$$
\left\|\psi(\mathrm{A}) \mathrm{F}_{\mathrm{n}}\right\| \rightarrow 0
$$

Hence $\left(F_{n}\right)$ is a bounded sequence in $\sigma(X, A)$. So there exist $M>0$ such that $\left\|F_{n}\right\|_{t}<M,(n \in \mathbb{N})$, for some $t>0$. Let $\tau>t$.

$$
\left\|F_{n}\right\|_{\tau}^{2}=\int_{0}^{L} e^{-2 \tau \lambda} d\left(E_{\lambda} F_{n}, F_{n}\right)+\int_{L}^{\infty} e^{-2 \tau \lambda} d\left(E_{\lambda} F_{n}, F_{n}\right)
$$

First, choose $L>0$ so large that
(*) $\quad \int_{L}^{\infty} e^{-2 \tau \lambda} d\left(E_{\lambda} F_{n}, F_{n}\right) \leq e^{-2(\tau-t) L} \int_{0}^{\infty} e^{-2 t \lambda} d\left(E_{\lambda} F_{n}, F_{n}\right) \leq$

$$
\leq e^{-2(\tau-t) L} M<\varepsilon^{2} / 4
$$

for all $\mathfrak{n} \in \mathbb{N}$, and $\varepsilon>0$ fixed.
Next, observe that the function

$$
\psi(\lambda)= \begin{cases}e^{-\tau \lambda} & \text { if } \lambda \in[0, L] \\ 0 & \text { elsewhere }\end{cases}
$$

is in $\mathrm{Fa}^{+}(\mathbb{R})$. So there exists $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$.
(**) $\quad\left\|\psi(A) F_{n}\right\|<\varepsilon / 2$.

From (*) and (**) the assertion follows.

Theorem 2.6

i) Suppose $\left(F_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\sigma(X, A)$. Then there exists $t>0$ with $\left(F_{n}\right) \subset X_{t}$ and $\left(F_{n}\right)$ a Cauchy sequence in X_{t}.
ii) $\sigma(X, A)$ is sequentially complete.

Proof:
i) An argument similar to the proof of the preceding theorem.
ii) Follows from i) and the completeness of X_{t}.

Theorem 2.7

A subset $K \subset \sigma(X, A)$ is compact iff there exists $t>0$ such that $K \subset X_{t}$ and K is compact in X_{t}.

Proof
$\Leftrightarrow)$ let $\left(\Omega_{\alpha}\right)$ be an open covering of K in $\sigma(X, A)$. Then $\left(\Omega_{\alpha} \cap X_{t}\right)$ is an open covering of K in X_{t}. So there exists a finite subcovering of (Ω_{α}), $\left(\Omega_{\alpha_{i}}\right)_{i=1}^{N}$, say, with

$$
K \subset{\underset{i=1}{\mathrm{U}}\left(\Omega_{\alpha_{i}} \cap X_{t}\right) \subset \bigcup_{i=1}^{\mathrm{U}} \Omega_{\alpha_{i}}}
$$

$\Rightarrow) K$ is compact, hence a bounded set in $\sigma(X, A)$. So there is $t>0$ such that $K \subset X_{t}$ is bounded in X_{t}, with bound M, say. We show that K is compact in $X_{t+\tau}, \tau>0$. Let $\left(F_{n}\right)$ be a sequence in K. Then there exists a converging subsequence $\left(F_{n_{j}}\right) \subset K$ with $F_{n_{j}} \rightarrow F$, convergence in $\sigma(X, A)$. So
$\left(F_{n_{j}}-F\right)$ is a bounded sequence in X_{t} and $\left\|\psi(A)\left(F_{n_{j}}-F\right)\right\| \rightarrow 0$ for all $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$ defined by

$$
\psi(\lambda)= \begin{cases}e^{-(t+)} & \text { if } \lambda \in[0, T] \\ 0 & \text { e1sewhere }\end{cases}
$$

with arbitrary $T>0$ and $\tau>0$, fixed. We conclude (cf. the proof of Theorem 2.5) that

$$
\left\|F_{n_{j}}-F\right\|_{t+\tau} \rightarrow 0
$$

Thus K is compact in $X_{t+\tau}$.

We define the following sesquilinear form in X

$$
(x, y)_{\psi}=(\psi(A) x, \psi(A) y) \quad, \quad x, y \in x
$$

for $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Let X_{ψ} be the completion of X with respect to the norm $\|x\|_{\psi}=:\|\psi(A) x\|_{X}$. Then X_{ψ} is a Hilbert space with the sesquilinear form $(\cdot, \cdot)_{\psi}$ extended to X_{ψ} as an inner product. Note that X_{ψ} is naturally injected in X_{x} if $\psi \geq x$.

Lenma 2.8

Let $H \in \underset{\psi \in F a+(\mathbb{R})}{\cap_{\psi}} X$. Then $H \in \sigma(X, A)$.
Proof
Suppose this were not true. Then for every $k \in \mathbb{N}$

Thus there is a sequence $\left(N_{k}\right), N_{0}=-\infty, N_{k-1}<N_{k},(k \in \mathbb{N})$, and $N_{k} \rightarrow \infty$ such, that for all $k \in \mathbb{N}$

$$
\int_{N_{k-1}}^{N_{k}} e^{-2 k \lambda} d\left(E_{\lambda} H, H\right)>1
$$

Define χ on $(0, \infty)$ by $\chi(\lambda)=e^{-k \lambda}, \lambda \in\left(N_{k-1}, N_{k}\right]$. Then $X \in F a^{+}(\mathbb{R})$ and $\|X(A) H\|=\infty$.

Contradiction:

In the following theorem we use the standard terminology of topological vector spaces (see [SCH]) in order to make a link to the general literature about this subject.

Theorem 2.9

I. $\sigma(X, A)$ is complete.
II. $\sigma(X, A)$ is bornological.
III. $\sigma(X, A)$ is barreled.
IV. $\sigma(X, A)$ is Montel iff there exists $t>0$ such that the operator $e^{-t A}$ is compact on X.
V. $\sigma(X, A)$ is nuclear iff there exists $t>0$ such that the operator $e^{-t A}$ is Hilbert-Schmidt on X.

Proof:

I. Let (F_{i}) be a Cauchy net in $\sigma(X, A)$ with $i \in D, D$ a directed set. Then for each $\varphi \in \mathrm{Fa}^{+}(\mathbb{R}),\left(\varphi(A) \mathrm{F}_{\mathrm{i}}\right)$ is a Cauchy net in X. Since X is complete, there exists $F_{\varphi} \in X$ such that $\varphi(A) F_{i} \rightarrow F_{\varphi}$. Let $\psi, \chi \in F a^{+}(\mathbb{R})$. Then a simple calculation shows $(T): F_{\psi \cdot \chi}=\psi(A) F_{X}=$ $=X(A) F_{\psi}$. Define $F \in X_{\psi}$ by $F=: \psi^{-1}(A) F_{\psi^{*}}$. Let $X \in F^{+}(\mathbb{R})$. Then $X^{-1}(A) F_{X} \in X_{X}$ and with (T)

$$
\chi^{-1}(A) F_{X}=\chi^{-1}(A) \psi^{-1}(A) F_{X \cdot \psi}=\psi^{-1}(A) F_{\psi}=F
$$

So $F \in \prod_{\varphi \in F a}{ }^{+} \mathbb{R}^{\prime} X_{\varphi}$; thus $F \in \sigma(X, A)$. Finally, $\left\|\chi(A)\left(F_{i}-F\right)\right\|=$ $=\left\|X(A) F_{i}-F_{X}\right\| \rightarrow 0$ for all $X \in \operatorname{Fa}^{+}(\mathbb{R})$. Thus $\sigma(X, A)$ is complete.
II. Bornological means that every circled convex subset $\Omega \subset \sigma(X, A)$ that absorbs every bounded subset $B \subset \sigma(X, A)$ contains an open neighbourhood of 0 . Now let $\Omega \subset \sigma(X, A)$ be such a subset. Let U_{t} be the open unit ball in $X_{t}, t>0 . U_{t}$ is bounded in $\sigma(X, A)$, so for some $\varepsilon>0$ one has $\varepsilon U_{t} \subset \Omega \cap X_{t}$. We conclude that $\Omega \cap X_{t}$ contains an open neighbourhood of 0 for every $t>0$. Following Theorem 2.2Ω contains a $\operatorname{set} U_{\psi, \varepsilon}$.
III. A barrel V is a subset which is radial, convex, circled and closed. We have to prove that every barrel contains an open neighbourhood of the origin. Because of the definition of the inductive limit topology $V \cap X_{t}$ has to be a barrel in X_{t} for each $t>0$. Since X_{t} is a Hilbert space, X_{t} is barreled, and there exists an open neighbourhood of the origin, O, say, with $O \subset V \cap X_{t}$. Again the conditions of Theorem 2.2 are satisfied so that V contains a set $U_{\psi, \varepsilon^{*}}$
IV. \Leftarrow Suppose $e^{-t A}$ is compact.
, Let $W \subset \sigma(X, A)$ be closed and bounded. Then $W \subset X_{t_{0}}$ for some $t_{0}>0$ and W is closed and bounded in all $X_{t_{0}+\tau}, \tau>0$. Let C_{p} denote the natural injection of $X_{t_{0}}$ in $X_{t_{0}+t}$, and consider the diagram

Since the vertical arrows are isomorphisms, \leftrightarrows is a compact map and W is compact in $X_{t_{0}+t}$. So W is compact in $\sigma(X, A)$.
\Rightarrow) Suppose $\sigma(X, A)$ is Montel. Let $\left(u_{n}\right)$ be a bounded sequence in X. Then $\left(u_{n}\right)$ is bounded in $\sigma(X, A)$. Consider the closure of the sequence $\left(u_{n}\right)$ in $\sigma(X, A)$. This closure is a closed and bounded set in $\sigma(X, A)$. Thus (u_{n}) contains a $\sigma(X, A)$-converging subsequence, $\left(u_{n_{j}}\right)$, say. So $\left(\psi(A) u_{n_{j}}\right)$ is X convergent for all $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Thus $\psi(A)$ is compact as an operator on X for all $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Then by Lemma 1.7 the operator $e^{-t A}$ is compact for each $t>0$.
V. \Leftarrow) Suppose $e^{-t A}$ is Hilbert-Schmidt. Then there is an orthonormal sequence (e_{n}), which is a complete basis for X and

$$
A e_{n}=\lambda_{n} e_{n}, \text { with } 0<\lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{n} \rightarrow \infty
$$

and $\sum_{n=1}^{\infty} e^{-\lambda_{n} t}<\infty$.
$\sigma(X, A)$ is nuclear iff for every continuous seminorm p on $\sigma(X, A)$ there
is another seminorm $q \geq p$ such that the canonical injection $\hat{\sigma}_{q} \hookrightarrow \hat{\sigma}_{p}$ is a nuclear map. Here $\hat{\sigma}_{p}$ is the completion of $\sigma(X, A) /{ }_{p}{ }^{-1}(\{0\})$. Since the composition of a nuclear operator with a bounded operator is again nuclear, we may restrict ourselves to seminorms $p_{\psi}, \psi \in F a^{+}(\mathbb{R})$. Take $|\psi| \leq 1$. If $\psi \in F^{+}(\mathbb{R})$, then $\mathrm{e}^{t A} \psi(A)$ is a bounded operator on X. So for each $v>0$ the operator $(\psi(A))^{\nu=1}=e^{-t A}\left(e^{\frac{t}{\nu} A} \psi(A)\right)^{\nu}$ is HilbertSchmidt. Now take $\psi \in F a^{+}(\mathbb{R})$ and $X=\psi^{\frac{1}{2}}$. Then the canonical injection $J: \hat{\sigma}_{\chi} \subset \hat{\sigma}_{\psi}$ can be written as

$$
J u=\sum_{n=1}^{\infty} \psi^{\frac{1}{2}}\left(\lambda_{\mathbf{n}}\right)\left(\psi^{\frac{1}{2}}(A) u, \psi^{\frac{1}{2}}(A)\left(\psi^{-\frac{1}{2}}\left(\lambda_{n}\right) e_{n}\right)\right) \psi^{-1}\left(\lambda_{n}\right) e_{n}
$$

Since $\psi^{-\frac{1}{2}}\left(\lambda_{n}\right) e_{n} \in \hat{o}_{X}$ and $\psi^{-1}\left(\lambda_{n}\right) e_{n} \in \hat{o}_{\psi}$, with

$$
\left\|\psi^{-\frac{1}{2}}\left(\lambda_{n}\right) e_{n}\right\|_{X}=1 \text { and }\left\|\psi^{-1}\left(\lambda_{n}\right) e_{n}\right\|=1, n \in \mathbb{N},
$$

and since $\sum_{n=1}^{\infty}\left|\psi\left(\lambda_{n}\right)\right|^{\frac{1}{2}}<\infty, J$ is a nuclear map
\Rightarrow) Suppose $\sigma(X, A)$ is nuclear. The Hilbert space X may be injected in every $\hat{\sigma}_{\psi}$ with $\psi \in F \mathrm{a}^{+}(\mathbb{R})$. Let $\psi \in F \mathrm{a}^{+}(\mathbb{R})$ and $X \in F \mathrm{a}^{+}(\mathbb{R})$ with $\chi \geq \psi$ such that $J_{X, \psi}$ is nuclear. The canonical injection $J_{\psi}: x \subset \hat{\sigma}_{\psi}$ is equal to $J_{x} \cdot J_{x, \psi}$ with $J_{x}: x \hookrightarrow \hat{\sigma}_{x}$. Since J_{X} is bounded, and $J_{X, \psi}$ is nuclear J_{ψ} is a nuclear mapping. So $\psi(A)$ is a Hilbert-Schmidt operator on X. Since this holds true for all $\psi \in F \mathrm{a}^{+}(\mathbb{R})$, by Lemma 1.7 the operator $e^{-t A}$ is Hilbert-Schmidt on X for a well-chosen $t>0$.

Chapter 3

The pairing of $r(X, A)$ and $\sigma(X, A)$
On $t(X, A) \times \sigma(X, A)$ we introduce a sesquilinear form by

$$
\langle u, F\rangle=: \quad\left(u(t), e^{-t A} F\right)_{X}
$$

Note, that this definition makes sense for $t>0$ sufficiently large, and that it does not depend on the choice of $t>0$. We remark that $\langle g, F\rangle=0$ for all $F \in \sigma(X, A)$ implies $g=0$ (use the fact that $X \subset \sigma(X, A)$), and also that $\langle u, G\rangle=0$ for all $u \xi \tau(X, A)$ implies $G=0$. We prove the last assertion. So suppose that $\langle u, G\rangle=0$ for all $u \in T(X, A)$. Then following Lemma 1.6 we have

$$
\langle\varphi(A) \omega, G\rangle=\left(e^{t A} \varphi(A) u, e^{-t A} G\right)_{X}=(\omega, \varphi(A) G)_{X}=0
$$

for any $w \in X$ and $\varphi \in \mathcal{F a}^{+}(\mathbb{R})$. Hence $\varphi(A) G=0$ for all $\varphi \in F \mathrm{a}^{+}(\mathbb{R})$. Thus $G=0$.

Theorem 3.1

i) For each $F \in \sigma(X, A)$ the linear functional $g \rightarrow\langle g, F\rangle$ is continuous in the strong topology of $\tau(X, A)$.
ii) For each strongly continuous linear functional ℓ on $\tau(X, A)$ there exists $G \in \sigma(X, A)$ such that $\ell(u)=\langle u, G\rangle$ for all $u \in \tau(X, A)$.
iii) For each $v \in \tau(X, A)$ the linear functional $G \rightarrow \overline{\langle V, G\rangle}$ is continuous in the strong topology of $\sigma(X, A)$.
iv) For each strongly continuous linear functional m on $\sigma(X, A)$ there exists $W \in \tau(X, A)$ such that $m(G)=\overline{\langle W, G\rangle}$ for all $G \in \sigma(X, A)$.

Proof:

i) Let $g_{n} \rightarrow 0$ in $\tau(X, A)$, and let $F \in \sigma(X, A)$. Then

$$
\left|\left\langle g_{n}, F\right\rangle\right|=\left|\left(g_{n}(t), e^{-t A} F\right)_{X}\right| \leq\left\|g_{n}(t)\right\|\left\|e^{-t A} F\right\| \rightarrow 0
$$

whenever $t>0$ is large enough.
ii) Let ℓ be a continuous linear functional in $\tau(X, A)$, Let $\varphi \in F a^{+}(\mathbb{R})$. Then the linear functional $\ell_{\varphi}(x)=\ell(\varphi(A) x),(x \in X)$, is continuous on X, and so there exists $f_{\varphi} \in X$ such that $\ell_{\varphi}(x)=\left(x, \sigma_{\varphi}\right)$ for all $x \in X$. We have
(*) $\quad \sigma_{\varphi \bullet \psi}=\varphi(A) \sigma_{\psi}=\psi(A) \sigma_{\varphi}, \varphi, \psi \in \mathrm{Fa}^{+}(\mathbb{R})$,
and

$$
\varphi^{-1}(A) \delta_{\varphi} \in X_{\varphi}, \varphi \in F a^{+}(\mathbb{R})
$$

Now let $F^{\varphi}=\varphi^{-1}(A) 6_{\varphi}$ for each $\varphi \in F^{\prime} a^{+}(\mathbb{R})$. Then

$$
F^{\varphi}=\varphi^{-1}(A) \sigma_{\varphi}=\varphi^{-1}(A) \psi^{-1}(A) \psi(A) \sigma_{\varphi}=\psi^{-1}(A) \sigma_{\psi}=F^{\psi}
$$

with the aid of (*). Take $\varphi \in F \mathrm{a}^{+}(\mathbb{R})$ fixed, and let $F=F^{\varphi}$. Then from the above paragraph we have

$$
\underset{\psi \in F a^{+}(\mathbb{R})}{\forall}: F=F^{\psi} \text { and } \phi(A) F=b_{\psi} \in X
$$

So $\mathrm{F} \in \underset{\varphi \in \mathrm{Fa}^{+}(\mathbb{K})}{\mathrm{C}^{+}}{ }^{\mathrm{X}}$
Following Lenma 2.8 we have $F \in \sigma(X, A)$, and there exists $t>0$ such that

$$
\begin{aligned}
\ell(h) & =\ell\left(\varphi(A) \varphi^{-1}(A) h\right)=\left(\varphi^{-1}(A) h, \varphi(A) F\right)_{X}= \\
& =\left(\varphi^{-1}(A) h, \varphi(A) e^{t A} e^{-t(A)} F\right)_{X} \\
& =\left(h(t), e^{-t A} F\right)_{X}=\langle h, F\rangle, h \in \tau(X, A) .
\end{aligned}
$$

iii)Let $v \in \tau(X, A)$, and let $G_{n} \rightarrow 0$ in the strong topology of $\sigma(X, A)$. Then there exists $t>0$ such that $\left\|e^{-t A} G_{n}\right\| \rightarrow 0$. Hence

$$
\left|\left\langle v, G_{n}\right\rangle\right| \leq\|v(t)\|\left\|e^{-t A} G_{n}\right\| \rightarrow 0 .
$$

iv) Let m be a continuous linear funtional in $\sigma(X, A)$. Then for each $t>0$ the linear functional $m \circ e^{\text {tA }}$ is continuous on X. So for all $t>0$ there exists $x(t) \in X$ such that

$$
m \circ e^{t A}(g)=(g, x(t)) \quad, g \in X .
$$

If $g \in D\left(e^{\tau A}\right), \tau>0$, then

$$
m \circ e^{t A}\left(e^{\tau A} g\right)=\left(e^{\tau A} g, x(t)\right)
$$

and also $m \circ e^{t A}\left(e^{\tau A} g\right)=(g, x(t+\tau)$.

Thus $x(t) \in D\left(e^{\tau A}\right)$ for every $\tau>0$, and $x(t+\tau)=e^{\tau A} x(t)$. Define $w \in \tau(X, A)$ by

$$
\begin{gathered}
w: t \rightarrow x(t) \\
\text { Then } m(G)=m \circ e^{t A}\left(e^{-t A} G\right)=\overline{\left(x(t), e^{-t A} G\right)_{X}}=\overline{\langle w, G\rangle} .
\end{gathered}
$$

Definition 3.2

The weak topology in $\tau(x, A)$ is the toplogy generated by the seminorms $|\& u, F\rangle \mid, F \in \sigma(X, A)$. The weak topology in $\sigma(X, A)$ is the topology generated by the seminorms $|<u, F\rangle \mid, u \in \tau(X, A)$.

A standard argument, e.g.[CH] II, 5 22, shows that the weakly continuous functionals on $\tau(X, A)$ are all obtained by pairing witl elements of $\sigma(X, A)$, and vice versa. From this assertion and from Theorem 3.1 it then follows that $\sigma(X, A)$ and $\tau(X, A)$ are reflexive in the strong as well as in the weak topology .

Theorem 3.3

i) Let $Z \subset \sigma(X, A)$ be such that for each $g \in \tau(X, A)$ there exists $M_{g}>0$ such that for every $H \in Z$

$$
|<\mathrm{g}, \mathrm{H}>| \leq \mathrm{M}_{\mathrm{g}} .
$$

Then there exists $t>0$ and $M>0$ such that for every $H \in Z$

$$
\left\|e^{-t A} H\right\|_{X} \leq M .
$$

ii) Let $P \subset \tau(X, A)$ be such that for each $F \in \sigma(X, A)$ there exists $M_{F}>0$
such that for every $g \in P$

$$
|\langle\mathrm{g}, \mathrm{~F}\rangle| \leq \mathrm{M}_{\mathrm{F}} .
$$

Then for every $t>0$, there exists $M_{t}>0$ such that

$$
\|g(t)\|_{X} \leq M_{t}
$$

Proof:

Let $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Then following Lemma 1.6

$$
\forall_{\chi \in X} \exists_{M_{\psi, x}}: \mid<\psi(A) x, G>1 \leq M_{\psi, x}, G \in Z
$$

Hence, from the Banach-Steinhaus theorem in Hilbert spaces, we derive

$$
\exists_{\mathrm{M}_{\psi}>0}\|\psi() \mathrm{G}\| \leq \mathrm{M}_{\psi} \quad, \quad \mathrm{G} \in Z
$$

Since $\psi \in F \mathrm{a}^{+}(\mathbb{R})$ arbitrary, the set $Z \subset \sigma(X, A)$ is bounded. With Theorem 2.4, the result follows.
ii) Let $t>0, x \in X$. Following our assumption, there exists $M_{t, x}>0$ such that

$$
\forall_{g \in P}\left|<g, e^{t A} x>\left|=|(g(t), x)|<M_{t, x}\right.\right.
$$

Hence, there exists $M_{t}>0$ such that

$$
\|g(t)\| \leq M_{t}
$$

for all $\mathrm{g} \in P$.

Theorem 3.4 (weak convergence in $\tau(X, A)$)
$g_{n} \rightarrow 0$ weakly in $\tau(X, A)$ iff

$$
\forall_{t>0} \forall_{x \in X}: \quad\left(g_{n}(t), x\right)_{X} \rightarrow 0 .
$$

Proof:

\Rightarrow) For all $x \in X:\left\langle g_{n}, e^{t A} x\right\rangle=\left(g_{n}(t), x\right) X_{X} \rightarrow 0$.
\Leftrightarrow) For all $G \in \sigma(X, A)$ there is $t>0$, sufficiently large such that $e^{-t A} G \in X$. So

$$
\left\langle g_{n}, G\right\rangle=\left(g_{n}(t), e^{-t A} G\right)_{X} \rightarrow 0
$$

Corollary 3.5

i) Strong convergence in $\tau(X, A)$ implies weak convergence.
ii) Every bounded sequence in $\tau(X, A)$ has a weakly converging subsequence. (with a diagonal argument!)

Theorem 3.6 (weak convergence in $\sigma(X, A)$)
$G_{n} \rightarrow 0$ weakly in $\sigma(X, A)$ iff

$$
\exists_{t>0}:\left(G_{n}\right) \subset X_{t} \text {, and } \forall_{\omega \in X_{t}}:\left(\omega, G_{n}\right)_{t} \rightarrow 0 .
$$

Proof:

$\Leftrightarrow)$ Let $u \in \tau(X, A)$. Since $e^{-t A} G_{n} \rightarrow 0$ weakly in X, and $u(t) \in X$, it follows that $\left\langle\mathrm{g}, \mathrm{G}_{\mathrm{n}}>=\left(\mathrm{g}(\mathrm{t}), \mathrm{e}^{-t \mathrm{~A}} \mathrm{G}_{\mathrm{n}}\right)_{\mathrm{X}} \rightarrow 0\right.$.
$\Rightarrow)$ The set $\left\{G_{n} \mid n \in \mathbb{N}\right\} \subset \sigma(X, A)$ is bounded. So following Theorem 2.4
there exists $t>0$ and $M>0$ such that

$$
\left\|e^{-t A} G_{n}\right\|_{X} \leq M,(n \in \mathbb{N})
$$

Now let $\chi \in X$, and let $\tau>0$. Then
(*) $\left|\int_{L}^{\infty} e^{-\lambda(t+\tau)} d\left(E_{\lambda} G_{n}, y\right)\right| \leq e^{-L \tau} \int_{L}^{\infty} e^{-\lambda t} d\left|\left(E_{\lambda} G_{n}, x\right)\right| \leq M\|x\| e^{-L \tau}$.

Since $\left\langle\psi(A) \chi, G_{n}\right\rangle \rightarrow 0,(n \rightarrow \infty)$, for all $\psi \in F a^{+}(\mathbb{R})$, by assumption, we may take

$$
\psi_{L}(\lambda):= \begin{cases}e^{-\lambda(t+\tau)} & \text { if } \lambda \in(0, L] \\ 0 & \text { elsewhere }\end{cases}
$$

Then $\psi_{L} \in \mathrm{Fa}^{+}(\mathbb{R})$ for every $\mathrm{L}>0$, and
(**) $\quad \int_{0}^{\infty} \psi_{L}(\lambda) d\left(E_{\lambda} G_{n}, x\right) \rightarrow 0$.

From (*) and (**) we obtain

$$
\int_{0}^{\infty} e^{-\lambda(t+\tau)} d\left(E_{\lambda} G_{n}, x\right) \rightarrow 0
$$

So for all $\tau>0$ and all $x \in X$

$$
\left(G_{n}\right) \subset X_{t+\tau} \text { and }\left(x, e^{-(t+\tau) A} G_{n}\right)_{X} \rightarrow 0
$$

Corallary 3.7

i) Strong convergence of a sequence in $\sigma(X, A)$ implies its weak convergence.
ii) Every bounded sequence in $\sigma(X, A)$ has a weakly converging subsequence.

Theorem 3.8

The following three statements are equivalent.
i) There exists $t>0$ such that $e^{-t A}$ is a compact operator in X.
ii) Each weakly convergent sequence in $\tau(X, A)$ converges strong1y in $\tau(X, A)$.
iii) Each weakly convergent sequence in $\sigma(X, A)$ converges strongly in $\sigma(X, A)$,

Proof:

i) \Rightarrow ii) Let $\left(f_{n}\right) \subset \tau(X, A)$, and suppose $f_{n} \rightarrow 0$ weakly. Then $\forall_{x \in X} \forall_{t>0}:\left(f_{n}(\tau), \chi\right)_{X} \rightarrow 0$. So $f_{n}(\tau) \rightarrow 0$ weakly in X for all $\tau>0$. Using the compactness of $e^{-t A}$ we get

$$
\forall_{\tau>t}: e^{-t A} f_{n}(\tau)=f_{n}(\tau-t) \rightarrow 0
$$

strongly in X .
ii) \Rightarrow i) Let $\left(x_{n}\right) \subset X$ with $X_{n} \rightarrow 0$ weakly in X, and let $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$. Then $\varphi(A) x_{n} \rightarrow 0$ weakly in $\tau(X, A)$, and by assumption also strongly. We conclude that $\varphi(A) X_{n} \rightarrow 0$ strongly in X. So $\varphi(A)$ is compact as an operator in X. Following Lemma 1.7 there exists $t>0$ such that $e^{-t A}$ is compact. i) \Rightarrow iii) A weakly convergent sequence in $\sigma(X, A)$ converges weakly in some $X_{\tau}, \tau>0$. The natural injection $X_{\tau} \varsigma X_{t+\tau}$ is compact. But then our sequence converges strongly in $X_{t+\tau}$.
iii) \Rightarrow i) Let $x_{n} \rightarrow 0$ weakly in X. Then $x_{n} \rightarrow 0$ weakly is $\sigma(X, A)$. So for all
$\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$ we have

$$
\varphi(A) x_{n} \rightarrow 0 \text { strongly in } X,
$$

with the aid of iii). This implies that $\varphi(A)$ is compact s an operator in X for all $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$. Hence following Lemma 1.7 there exists $t>0$ such that $e^{-t A}$ is compact.

Chapter 4

Characterization of continuous linear mappings between the spaces
$\tau(X, A), \tau(Y, B), \sigma(X, A)$ and $\sigma(Y, B)$
Let $B \geq 0$ be a self-adjoint operator in a Hilbert space Y. In this chapter we shall derive some necessary and sufficient conditions such that the linear mappings $\tau(X, A) \rightarrow \tau(Y, B), \tau(X, A) \rightarrow \sigma(Y, B), \sigma(X, A) \rightarrow \tau(Y, B)$ and $\sigma(X, A) \rightarrow \sigma(Y, B)$ are continuous. First we prove some auxilliary results.

Theorem 4.1

Let L be a densely defined linear operator from $D(L) \subset X$ into Y, and let $L \psi(A): X \rightarrow Y$ be defined and bounded for all $\psi \in \mathrm{Fa}^{+}(\mathbb{R})$. Then there exists $t>0$ such that the operator $L e^{-t A}$ is bounded.

Proof

Suppose the operator $L e^{-k A}$ is unbounded for all $k \in \mathbb{N}$. Then we have

$$
\begin{equation*}
\forall_{k \in \mathbb{N}} \forall_{a>0}{ }^{\forall}{ }_{c>0}{ }_{b}{ }_{b>a}:\left\|L P_{(a, b]} e^{-k A}\right\|>c \tag{*}
\end{equation*}
$$

Here we use the notation $P_{(a, b]}=\int_{-\infty}^{\infty} X_{(a, b]}(\lambda) d E_{\lambda}$, see Chapter 1 . With the aid of (*) we construct a sequence $\left(N_{k}\right) \subset \mathbb{R}^{+}$with $N_{0}=-\infty$, $0<N_{1}<N_{2}<\ldots$ and $N_{j} \rightarrow \infty$, such that

$$
\left\|L P_{\left(N_{k-1}, N_{k}\right]} e^{-k A}\right\|>k \quad,(k \in \mathbb{N})
$$

For each $k \in \mathbb{N}$ there exists $y_{k} \in Y$ with $\left\|y_{k}\right\|=1$, and

$$
\left\|\left(L P_{\left(N_{k-1}, N_{K}\right]} e^{-k A}\right)^{*} y_{k}\right\|>k .
$$

(We note that $L P_{\left(N_{k-1}, N_{k}\right]}$ is a bounded operator from X into $\left.Y.\right)$ Now let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
\varphi(\lambda)=e^{-\lambda k} \quad \text { if } \quad \lambda \in\left(N_{k-1}, N_{k}\right]
$$

Then $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$, so $L \varphi(A)$ is bounded. But

$$
\begin{aligned}
\|L \varphi(A)\|^{2} & =\left\|\sum_{k=1}^{\infty} L e^{-k A} P_{\left(N_{k-1}, N_{k}\right]}\right\|^{2}= \\
& =\left\|\sum_{k=1}^{\infty} P_{\left(N_{k-1}, N_{k}\right]}\left(L e^{-k A} P_{\left(N_{k-1}, N_{k}\right]}\right)^{*}\right\|^{2} \geq \\
& \geq\left\|\sum_{k=1}^{\infty} P_{\left(N_{k-1}, N_{k}\right]}\left(L e^{-k A} P_{\left(N_{k-1}, N_{k}\right]}\right)^{*} x\right\|^{2}= \\
& =\sum_{k=1}^{\infty}\left\|\left(L e^{-k A} P_{\left(N_{k-1}, N_{k}\right]}\right)^{*} x\right\|^{2}
\end{aligned}
$$

for every $x \in X$ with $\|x\|=1$.
Especially for $x=y_{\ell}$, we get

$$
\|L \varphi(A)\|^{2} \geq \sum_{k=1}^{\infty}\left\|\left(L e^{-k A} P_{\left(N_{k-1}, N_{k}\right]}\right)^{*} y_{\ell}\right\|^{2}>\ell^{2}
$$

Contradiction:

In the same way we can prove:

Corollary 4.2

Let $K: X \rightarrow Y$ be a densely defined linear operator such that $\varphi(B) K$ can be extended to a bounded operator in X for $a l l \varphi \in F a^{+}(\mathbb{R})$. Then there exists $t>0$ such that $e^{-t B} K$ can be extended to a continuous operator from X into Y.

Lemma 4.3

A linear mapping $L: \tau(X, A) \rightarrow Y$ is continuous in the strong topologies of $\tau(X, A)$ and Y iff there exists $t>0$ such that $L e^{-t A}$ is a bounded operator from $\tau(X, A) \subset X$ into Y.

Proof:
\Rightarrow) Let $\varphi \in F \mathrm{a}^{+}(\mathbb{R})$. The mapping $\varphi(A): X \rightarrow \tau(X, A)$ is continuous, because $\varphi(A) e^{t A}$ is bounded for all $t>0$. Now suppose that $L: \tau(X, A) \rightarrow Y$ is continuous. Then the linear operator $L \varphi(A): X \rightarrow Y$ is continuous. Since $\varphi \in F \mathrm{a}^{+}(\mathbb{R})$ is taken arbitrarily, we apply Theorem 4.1 and find that there is $t>0$ such that $L e^{-t A}$ is a bounded operator in X.
\Leftrightarrow) Let $\left(u_{n}\right)$ be a nullsequence in $\tau(X, A)$. Then $L u_{n}$ is a nullsequence in Y, because $L u_{n}=\left(L e^{-t A}\right) u_{n}(t)$ and $L e^{-t A}$ is bounded for $t>0$ sufficiently large.

Lemma 4.4

A linear mapping $K: X \rightarrow \sigma(Y, B)$ is continuous in the strong topology of both X and $\sigma(Y, B)$ iff there exists $t>0$ such that $e^{-t B} K$ is a continuous operator from X into Y.

Proof:


```
\varphi\inF\mp@subsup{a}{}{+}(\mathbb{R}).
#) Follows form Corollary 4.2
&)Trivial, because each \varphi(B) e tB}\mathrm{ is bounded for each }\varphi\inF\mp@subsup{F}{}{+}(\mathbb{R})
```


Lemma 4.5

A linear mapping $P: \sigma(X, A) \rightarrow V$, where V is an arbitrary locally convex topological vector space, is continuous
i) iff for each $t>0$ the mapping $P e^{t A}: X \rightarrow V$ is continuous.
ii) iff for each nullsequence $\left(G_{n}\right)$ in $\sigma(X, A)$ the sequence ($P G_{n}$) is a nullsequence in V.

Proof:

i) $\sigma(X, A)$ has the inductive limit topology therefore P has to be continuous when restricted to X_{t}.
$\Rightarrow) e^{t A}$ is a continuous isomorphism from X onto X_{t}, and X_{t} is continuously injected in $\sigma(X, A)$ if the latter has the inductive limit topology. So $P e^{t A}$ is continuous from X into V.
$\Leftarrow)$ Let P_{t} denote the restriction of P to X_{t}. Since $P e^{t A}$ is continuous on X, P_{t} is continuous on X_{t}. Let Ω be an open-0-neighbourhood in V. Then for each $t>0, P^{-1}(\Omega) \cap X_{t}=P_{t}^{-1}(\Omega)$ is an open-0-neigbourhood in X_{t}. Thus $P^{-1}(\Omega)$ is open in $\sigma(X, A)$.
ii) Trivial, because nullsequences in $\sigma(X, A)$ are nullsequences in some X_{t} and vice versa.

Linear mappings from $\tau(X, A)$ into $\tau(Y, B)$

Theorem 4.6

Let $R: \tau(X, A) \rightarrow \tau(Y, B)$ be a linear mapping. Then the following conditions are equivalent.
I. R is continuous with respect to the strong topologies of $\tau(X, A)$ and $\tau(Y, B)$.
II. For every $t>0$ there is $t>0$ such that the operator $e^{t B} R e^{-\tau A}$ is bounded in X.
III. For every $G \in \sigma(Y, B)$ the linear functional

$$
\mathrm{f} \rightarrow\langle R \mathrm{f}, \mathrm{G}\rangle, \quad(\mathrm{f} \in \tau(\mathrm{X}, \mathrm{~A})),
$$

is continuous.
Proof:
$I \Rightarrow I I$) For every $t>0$, the operator $e^{t B} R$ is continuous from $t(X, A)$ into Y. Following Lemma 4.3, for each fixed $t>0$, there exists $\tau>0$ such that $\mathrm{e}^{\mathrm{tB}} R \mathrm{e}^{-\tau A}$ is bounded.

II $\Rightarrow I)$ Let $u_{n} \rightarrow 0$ in $\tau(X, A)$ and let $t>0$. Then there is $\tau>0$ such that $\mathrm{e}^{\mathrm{tB}} R \mathrm{u}_{\mathrm{n}}=\left(\mathrm{e}^{\mathrm{tB}} R \mathrm{e}^{-\tau A}\right) \mathrm{u}_{\mathrm{n}}(\mathrm{t}) \rightarrow 0$. $I \Rightarrow$ III) trivial.

III $\Rightarrow I I$ Let $t>0$. For each $\varphi \in F^{+}(\mathbb{R})$ and $g \in Y$, we define a linear functional on X by $x \rightarrow\left(e^{t B} R \varphi(A) x, g\right)_{Y}$. This linear functional is continuous. So there exists $g_{\varphi} \in X$ such that
(*)

$$
\left(e^{\mathrm{tB}} R_{\varphi}(A) x, g\right)_{Y}=\left(x, g_{\varphi}\right)_{X} .
$$

Replacing x by $\psi(A) y, \psi \in F a^{+}(\mathbb{R})$, we have

$$
g_{\varphi * \psi}=\varphi(A) g_{\psi}=\psi(A) g_{\varphi}
$$

So $g_{\varphi} \in \tau(X, A)$ following 1.6. From (*) we obtain

$$
g_{\varphi}=\left(\mathrm{e}^{\mathrm{tB}} R \varphi(A)\right)^{*} g, g \in Y
$$

and $\left(e^{t B} R \varphi(A)\right)^{*}$ is defined on the whole of Y. Since $e^{t B} R \varphi(A)$ is defined on the whole of $X,\left(e^{t B} R \varphi(A)\right)^{*}$ is bounded. So $e^{t B} R \varphi(A)$ is bounded. With the aid of Theorem 4.1, we can conclude that there is $\tau>0$ such that $\mathrm{e}^{\mathrm{tB}} R \mathrm{e}^{-\mathrm{T} A}$ is bounded.

Corollary 4.7

Suppose 2 is a densely defined closable operator of X into Y. If $D(Q) \supset$ $\tau(X, A)$ and $Q(\tau(X, A) \subset \tau(Y, B)$, then Q maps $\tau(X, A)$ continuously into $\tau(Y, B)$.

Proof:

Let $t>0$ and let $\varphi \in F a^{+}(\mathbb{R})$. Since $e^{t B} 2 \varphi(A)$ is defined on the whole of X, its adjoint ($\left.e^{t B} Q \varphi(A)\right)^{*}$ is bounded. The adjoint is densely defined, because $e^{-t B} D\left(Q^{*}\right)$ is dense in Y, and on $e^{-t B} D\left(Q^{*}\right)$ one has

$$
\left(e^{t B} Q \varphi(A)\right)^{*}=\varphi(A) 2^{*} e^{t B}
$$

So $\left(e^{t B} \cap \varphi(A)\right)^{*}$ is defined on the whole of Y and bounded. Thus $e^{t B} Q \varphi(A)$ is bounded. Since $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$ is taken arbitrarily, according to Theorem 4.1, there is $\tau>0$ such that $e^{t B} Q . e^{-\tau A}$ is bounded. According to Theorem 4.6 2 is a continuous mapping of $\tau(X, A)$ into $\tau(X, B)$.

Continuous linear mappings $\tau(X, A) \rightarrow \sigma(Y, B)$

Theorem 4.8

Let $W: \tau(X, A) \rightarrow \sigma(Y, B)$ be a linear mapping. W is continuous with respect to the strong topologies of both $\tau(X, A)$ and $\sigma(Y, B)$ iff there exists $t>0$ and $\mathrm{T}>0$ such that the operator $\mathrm{e}^{-t B} W \mathrm{e}^{-\tau A}$ is bounded as an operator from X into Y.

Proof:
First, note that both $\mathcal{W}_{\varphi}(A): X \rightarrow \sigma(Y, B)$ and $\psi(B) W: \tau(X, A) \rightarrow Y$ are continuous mappings for all $\varphi, \psi \in \mathrm{Fa}^{+}(\mathbb{R})$. So for all $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$ there is $t>0$ such that $e^{-t B} \mathscr{W} \varphi(A)$ and $\varphi(B) W e^{-t A}$ are bounded on X. (see Corol1ary 4.3 and 4.4).

Now suppose the assertion is not true. Then we have

$$
\forall_{t>0} \forall_{r>0} \forall_{\mathrm{K}>0} \forall_{\mathrm{N}>0} \exists_{\mathrm{M}>\mathrm{N}} \exists_{x,\|x\|=1}:
$$

(*)

$$
\left\|Q_{(N, M]} e^{-t B} w P_{(N, M]} e^{-\tau A} x\right\|>k
$$

with

$$
\begin{aligned}
& P_{(N, M]}=\int_{-\infty}^{\infty} x_{(N, M]}(\lambda) d E_{\lambda} \text { and } \\
& Q_{(N, M]}=\int_{-\infty}^{\infty} x_{(N, M]}(\lambda) d E_{\lambda}, \text { as usual. }
\end{aligned}
$$

If this were not so, then there is $t>0$ and $\tau>0$, and $K>0$ and $N>0$ such that for all $\mathrm{M}>\mathrm{N}$ and for all $\chi,\|x\|=1$

$$
\left\|Q_{(N, M]} e^{-t B} \omega P_{(N, M]} e^{-\tau A} x\right\|>K
$$

Since φ_{a} defined by

$$
\varphi_{a}(\lambda)=x_{(0, N]}(\lambda) e^{-a \lambda},(\lambda \in \mathbb{R}),
$$

is in $\mathrm{Ea}^{+}(\mathbb{R})$ for each $a .>0$, there are $t_{1}, t_{2}>0$ such that

$$
\left\|e^{-t_{1} B} \omega \varphi_{\tau}(A)\right\|<\infty \quad \text { and }\left\|\varphi_{t}(B) \omega e^{-t_{2} A}\right\|<\infty .
$$

So there exists $C>0$ and $t^{\prime}, t^{*}>0$ such that for all $M>0$

$$
\left\|2_{(0, M]} e^{-t^{\prime} B} w e^{-\tau \cdot A} P_{(0, M]}\right\|<c
$$

This implies the boundedness of $e^{-t^{\prime} B}\left(\hat{0} \mathrm{e}^{-t^{\prime} A}\right.$ and contradicts our assumption.

Following ($*$) there are sequences (t_{k}), (N_{k}) in \mathbb{R}^{+}with $t_{k} \uparrow \infty$ and $N_{k} \uparrow \infty$, $N_{k+1}>N_{k}>0=N_{0}$, and there is a sequence $\left(x_{k}\right)$ in X with $\left\|x_{k}\right\|=1$ and $P_{k} x_{k}=x_{k}$ for all $k \in \mathbb{N}$, such that

$$
\left\|q_{k} e^{-t_{k} B} \omega P_{k} e^{-t_{k} A} x_{k}\right\|>k, k \in \mathbb{N}
$$

Here $R_{k}=Q_{\left(N_{k-1}, N_{k}\right]}$ and $P_{k}=P_{\left(N_{k-1}, N_{k}\right]}$. Now define $\varphi \in F a^{+}(\mathbb{R})$ by

$$
\varphi(\lambda)=e^{-t_{k} \lambda} \text { if } \lambda \in\left(N_{k-1}, N_{k}, k \in \mathbb{N} \text {, else } \varphi(\lambda)=0\right.
$$

and let $x=\sum_{k=1}^{\infty} \frac{1}{k} x_{k}$. Then $P_{k} x=\frac{1}{k} x_{k}$, and

$$
\begin{aligned}
\left\|\varphi(B) W_{\varphi}(A) x\right\|^{2} & =\sum_{k=1}^{\infty}\left\|Q_{k} e^{-t_{k} B} w e^{-t_{k} A} P_{k} x\right\|^{2} \geq \\
& \geq \sum_{k=1}^{N} \frac{1}{k^{2}} k^{2}=N \quad,
\end{aligned}
$$

for all $N \in \mathbb{N}$.

This is a contradiction, because $\varphi(B) W_{\varphi}(A)$ should be bounded.
$\Leftrightarrow)$ Let $u_{n} \rightarrow 0$ in $\tau(X, A)$. Then $\left(e^{-t B} W e^{-\tau A}\right) u_{n}(\tau) \rightarrow 0$. Thus $W_{\mathrm{n}} \rightarrow 0$ in $\sigma(Y, B)$.

Continuous linear mappings $\sigma(X, A) \rightarrow \tau(Y, B)$

Theorem 4.9

Let $\Gamma: \sigma(X, A) \rightarrow \tau(Y, B)$ be a linear mapping.Γ is continuous with respect to the strong topologies of $\sigma(X, A)$ and $\tau(Y, B)$ iff for each $t>0$ and for each $\tau>0$ the operator $e^{t B} \Gamma e^{\tau A}$ is a bounded operator from X into Y.

Proof:

$\Leftrightarrow)$ Let $\left(G_{n}\right)$ be a null sequence in $\sigma(X, A)$. Then there is $\tau>0$ such that $\left(G_{n}\right)$ is a null sequence in X_{τ}. So for all $t>0$

$$
\left(e^{t B} r\right) G_{n}=\left(e^{t B} \Gamma e^{\tau A}\right) e^{-\tau A} G_{n} \rightarrow 0
$$

\Rightarrow) For each $\tau>0$, the operator $\Gamma e^{\tau A}$ is continuous from X into $\tau(Y, B)$. So for each $t>0$ the operator $e^{t B} \Gamma e^{\tau A}$ is a bounded mapping from X into Y.

Continuous linear mappings $\sigma(X, A) \rightarrow \sigma(Y, B)$

Theorem 4. 10

Let $V: \sigma(X, A) \rightarrow \sigma(Y, B)$ be a linear mapping. Then the following conditions are equivalent.
I. V is continuous with respect to the strong topologies of $\sigma(X, A)$ and $\sigma(Y, B)$.
II. For each $t>0$ there exists $\tau>0$ such that $e^{-\tau B} V e^{t A}$ is a bounded operator from X into Y.
III. For every $g \in \tau(Y, B)$ the linear functional

$$
F \rightarrow\langle\overline{g, V F}\rangle
$$

is continuous in $\sigma(X, A)$.

Proof:

$I \Leftarrow I I)$ Let $G_{n} \rightarrow 0$ in $\sigma(X, A)$. Then there is $t>0$ such that $e^{-t A_{n}} \rightarrow 0$ in X. So

$$
e^{-\tau B} \vee G_{n}=\left(e^{-\tau B} V e^{t A}\right)\left(e^{-t A} G_{n}\right) \rightarrow 0 \text { in } X
$$

$I \Rightarrow I I)$ Let $t>0$. Then $V e^{t A}$ maps X continuously into $\sigma(Y, B)$. According to Corollary 4.2 there exists $\tau>0$ such that $e^{-\tau B} V e^{t A}$ is bounded from X into Y.
$I \Rightarrow$ III)Trivial.
$I I I \Rightarrow I I)$ Let $t>0$. For each $\varphi \in \mathrm{Fa}^{+}(\mathbb{R})$ and $g \in Y$ we define a linear functional on X by
(*) $\quad x \rightarrow \overline{\left(g, \varphi(B) \vee e^{t A} x\right)_{Y}}$.

By assumption, this linear functional is continuous. So there exists
$g_{\varphi} \in X$ such that

$$
\overline{\left(g, \varphi(B) \vee e^{t A} x\right)_{Y}}=\left(x, g_{\varphi}\right)_{X}
$$

So $g_{\varphi}=\left(\varphi(B) V e^{t A}\right)^{*} g$, and $\left(\varphi(B) V e^{t A}\right)^{*}$ is defined on the whole of Y. Since $\varphi(B) \sqrt{ } e^{t A}$ can be extended to an everywhere defined operator on X by $(*),\left(\varphi(B) V e^{t A}\right)^{*}$ is bounded. So $\varphi(B) V e^{t A}$ can be extended to a bounded operator on X. With the aid of Corollary 4.2 , we conclude that there is $\tau>0$ such that $e^{-\tau B} \sqrt{ } e^{t A}$ is bounded.

Theorem 4.11

(Extension Theorem)

Let E be a linear mapping $X \supset D(E) \rightarrow Y$ with $\overline{D(E)}=X$. E can be extended to a continuous linear mapping $\bar{E}: \sigma(X, A) \rightarrow \sigma(Y, B)$ iff E has a densely defined adjoint $E^{*}: Y \supset D\left(E^{*}\right) \supset \tau(Y, B) \rightarrow X$ with $E^{*}(\tau(Y, B) \subset \tau(X, A)$.

Proof:
$\Leftarrow) E^{*}$ is densely defined, closable from Y into X, and $T(Y, B) \subset D\left(E^{*}\right)$ with $E^{*}(\tau(Y, B)) \subset \tau(X, A)$. Following Corollary $4.7 E^{*}$ maps $\tau(Y, B)$ continuously into $\tau(X, A)$. So following condition 4.10 III, the dual $\left(E^{*}\right)^{\prime}$ of E^{*} is a continuous linear mapping of $\sigma(X, A)$ into $\sigma(Y, B)$ and for $x \in D(E)$ we have $\left(E^{*}\right)^{\prime} x=E x$ because

$$
\forall_{y \in \tau(Y, B)}:\left\langle E^{*} y, x\right\rangle=\left\langle y,\left(E^{*}\right)^{\prime} x\right\rangle
$$

and

$$
:\left\langle E^{*} y, x\right\rangle=\left(E^{*} y, x\right)_{X}=(y, E x)_{Y}
$$

With $\bar{E}=:\left(E^{*}\right)$ ' the proof is complete.
\Rightarrow) Let $\bar{E}: \sigma(X, A) \rightarrow \sigma(Y, B)$ exist and be continuous. For each $X \in D(E)$ and $g \in \tau(Y, B)$ one has

$$
(\mathrm{g}, E \mathrm{Ex})_{\mathrm{Y}}=\left\langle\mathrm{g}, \bar{E}_{x}\right\rangle=\left\langle E^{\prime} \mathrm{g}, \mathrm{x}\right\rangle=\left(\bar{E}^{\prime} \mathrm{g}, \mathrm{x}\right)_{\mathrm{X}} .
$$

It follows that $E^{*} \supset \bar{E}^{\prime}$ and $E^{*}(\tau(Y, B)) \subset \tau(X, A)$.

Corollary 4.9
A continuous linear mapping $T: \tau(X, A) \rightarrow \tau(Y, B)$ can be extended to a continuous linear mapping $\bar{T}: \sigma(X, A) \rightarrow \sigma(Y, B)$ iff T has an adjoint T^{*} with $D\left(T^{*}\right) \supset \tau(Y, B)$ and $T^{*}(\tau(Y, B) \subset \tau(X, A)$.

Chapter 5

Topological tensor products of the spaces $\tau(X, A)$ and $\sigma(X, A)$

Let X and Y be two Hilbert spaces. $B y{ }_{\mathrm{O}}^{\mathrm{a}} \mathrm{Y}$ we denote the algebraic tensor product of X and Y, i.e. all finite linear combinations $\sum_{j=1}^{N} \xi_{j} \otimes \eta_{j}$ with $\xi_{j} \in X$ and $\eta_{j} \in Y$ and usual identifications. In $X \otimes_{a} Y$ we define the following sesquilinear form:

$$
(Z, K)_{X \otimes Y}=: \sum_{i=1}^{\infty}\left(Z e_{\mathbf{i}}, k e_{\mathbf{i}}\right)_{Y} \quad, \quad Z, K \in X \otimes_{\mathbf{a}} \mathrm{Y}
$$

in which (e_{i}) is an orthonormal basis for X. The sesquilinear form does not depend on the choice of the orthonormal basis (e_{i}) in X. Along with this sesquilinear form we define a norm in $X \otimes_{a} Y$ by

$$
\|Z\|_{X \otimes Y}^{2}=\sum_{i=1}^{\infty}\left\|Z e_{i}\right\|_{Y}^{2} \quad, \quad Z \in X \otimes_{a}^{Y}
$$

Let $X \otimes Y$ be the completion of $X{ }_{a} Y$ with respect to this norm. If we take $(\cdot, \cdot)_{X Q Y}$ as an inner product then $X \otimes Y$ becomes a Hilbert space. Note that the space $X \otimes Y$ consists of all Hilbert-Schmidt operators Z from X into Y. $X \otimes Y$ is sometimes called the topological tensor product of X and Y. Without proof we mention the following properties (see [RS], ch VIII).

Properties 5.1
a) $\forall_{x, \xi \in \mathrm{X}} \forall_{y, \eta \in \mathrm{Y}}:(\xi \otimes \eta, x \otimes y)_{X \otimes Y}=(x, \xi)_{X}(\eta, y)_{Y}$.
b) $\forall_{\lambda \in \mathbb{C}} \forall_{\xi \in X} \forall_{\eta \in Y}: \lambda(\xi \otimes \eta)=(\bar{\lambda} \xi) \otimes \eta=\xi \otimes \lambda \eta$.
c) $\forall_{Z \in X \otimes Y} \forall_{X \in X} \forall_{y \in Y}:(z, x \otimes y)_{X \otimes Y}=(z x, y)_{Y}$.

Let \mathcal{C}, \mathcal{D} denote bounded 1 inear operators from X, resp. Y into themselves. Then $\mathcal{C} \otimes D$ is the linear operator of $X \otimes Y$ into itself defined by $C \otimes D(x \otimes y)=C x \otimes D y$, and linear extension followed by continuous extension. We have
d) $\|C \otimes D\|=\|C\|\|D\|$
e) $\forall_{Z \in X \otimes Y}:(C \otimes D) Z=D Z C^{*}$
f) \mathcal{C}, \mathcal{D} injective $\Rightarrow \mathcal{C} \otimes D$ injective.

Let A with domain $D(A)$, and B with domain $D(B)$ be positive self-adjoint operators in X resp. Y. In the sequel we denote the spectral resolutions of A and B by $\left(E_{\lambda}\right)_{\lambda \geq 0}$ resp. $\left(F_{\lambda}\right)_{\lambda \geq 0^{*}}$ on $D(A) \otimes_{a} D(B)$ we introduce the operator $A \otimes_{a} I+I \otimes_{a} B, b y$

$$
\left(A \otimes_{a} I+I \otimes_{a} B\right)(x \otimes y)=A x \otimes y+x \otimes B y,
$$

and linear extension. We have

Theorem 5.2

i) $A \otimes_{a} I+I \otimes a$ is essentially self-adjoint in $X \otimes Y$. We denote the unique self-adjoint extension by A \# B.
ii) A $B \geq 0$.
iii) On $X \otimes Y$ we have for $t \geq 0$

$$
e^{-t(A \oplus B)}=e^{-t A} \otimes e^{-t B}
$$

Proof：

See［W］，ch．8．5，or［G］ch．V．
Since A 田 B is self－adjoint and positive，we may apply the theory of the preceeding chapters and introduce the spaces

$$
T(X \otimes Y, A \text { 田 } B), \sigma(X \otimes Y, A \notin B), \tau(X \otimes Y, A \otimes I) \text {, etc. }
$$

Definition 5.3

The canonical sesquilinear mapping $\otimes \tau(X, A) \times \tau(Y, B) \rightarrow \tau(X \otimes Y, A \notin B)$ is defined by

$$
(u, v) \rightarrow u \otimes v: t \rightarrow u(t) \otimes v(t)
$$

This definition is consistent，because for $u \in \tau(X, A)$ and $v \in \tau(Y, B)$ ，and $t, \tau>0$ we have

$$
\begin{gathered}
u(t) \otimes v(t)=\left(e^{-\tau A} \otimes e^{-\tau B}\right) u(t+\tau) \otimes v(t+\tau) \\
\text { So } u(t+\tau) \otimes v(t+\tau)=e^{\tau(A(A B)}(u(t) \otimes v(t)) \text { by Theorem } 5.2 \text { iii). }
\end{gathered}
$$

Theorem 5.4
$\tau(X \otimes Y, A$ B B is a complete topological tensor product of $\tau(X, A)$ and $r(Y, B)$ ，by this we mean
i）$\tau(X \otimes Y, A ⿴ B)$ is complete．
ii）The mapping $\otimes \tau(X, A) \times \tau(Y, B) \rightarrow \tau(X \otimes Y, A$ 团B） is continuous． iii）$\tau(X, A) \otimes_{a} \tau(Y, B)$ is dense in $\tau(X \otimes Y, A \notin B)$ ．

Proof:

i) The completeness follows from Theorem 1.3.
ii) Since \otimes is sesquilinearit is enough to check the continuity at $[0,0]$. Let $t>0$. Then

$$
\|u(t) \otimes v(t)\|=\|u(t)\|\|v(t)\| .
$$

From this the continuity at $[0,0]$ follows.
iii) Let $P_{N}=: P_{(-1, N]}=\int_{-\infty}^{\infty} X_{(-1, N]}$ ($\left.\lambda\right) d E_{\lambda}$ and $2_{N}=: 2_{(-1, N]}=$
$=\int_{-\infty}^{\infty} X_{(-1, N]}(\lambda) d F_{\lambda}$ for all $N \in \mathbb{N}$.
The $\operatorname{set}\left\{P_{N} x \mid x \in X, N \in \mathbb{N}\right\}$ is dense in $T(X, A)$
To show this let $u \in \tau(X, A)$. Then there is $\varphi \in F^{+}(\mathbb{R}), w \in X$ such that $u(t)=e^{t A} \varphi(A) \omega$. We have for all $t>0$

$$
\left\|\mathrm{e}^{t \mathrm{~A}} \varphi(\mathrm{~A})\left(\omega-P_{\mathrm{N}} w\right)\right\| \rightarrow 0 \quad, \quad \mathrm{~N} \rightarrow \infty
$$

The assertion is proved, because $\varphi(A) \omega \in X$.
Similarly we have that
$\left\{2_{\mathrm{N}} y \mid y \in \mathrm{Y}, \mathrm{N} \in \mathbb{N}\right\}$ is dense in $\mathrm{T}(\mathrm{Y}, B)$
and
$\left\{\left(P_{N} \otimes Q_{N}\right) W \mid W \in X \otimes Y, N \in \mathbb{N}\right\}$ is dense in $\tau(X \otimes Y, A B B)$.
Since $\left\{\left(P_{N} x\right) \otimes\left(Q_{N} y\right) \mid x \in X, y: Y, N \in \mathbb{N}\right\} \in \tau(X, A) \otimes_{a} \tau(Y, B)$, and
since $\left(P_{N} \otimes Q_{N}\right)(X \otimes a)$ is dense in $\left(P_{N} \otimes \eta_{N}\right)(X \otimes Y)$, we have proved that $\tau(X, A) \otimes{ }_{a} \tau(Y, B)$ is dense in $\tau(X \otimes Y, A \notin B)$.

Definition 5.5

The canonical sesquilinear manoing $\otimes: \sigma(X, A): \times \sigma(Y, B) \rightarrow \sigma(X \otimes Y, A$ 回 $)$ is defined by

$$
[G, H] \rightarrow G \otimes H=e^{t(A 円 B)}\left(e^{-t A} G \otimes e^{-t B} H\right),
$$

if $t>0$ sufficiently large．This definition is consistent，since $e^{-t A} G \otimes e^{-t B} H \in X \otimes Y$ if $t>0$ is chosen sufficiently large，and does not depend on the specific choice of $t>0$ ．

Theorem 5.6

$\sigma(X \otimes Y, A ⿴ B)$ is a complete topological tensor product：
i）$\sigma(X \otimes Y, A$ B B is complete．
ii）The sesquilinear mapping \otimes of Definition 5.5 is continuous．
iii）$\sigma(X, A) \otimes_{a} \sigma(Y, B)$ is dense in $\sigma(X \otimes Y, A$ 田 $B)$ ．
Proof：
i）The completeness follows from Theorem 2．10．
ii）We check the continuity of at $[0,0]$ Let W be a convex open neigh－ bourhood of 0 in $\sigma(X \otimes Y, A$ 円 $B)$ ．Then for each $t>0$ ，the set $W \cap(X \otimes Y)_{t}$ is an open neighbourhood of 0 in $(X \otimes Y)_{t}$ ；thus it con－ tains an open ball，centered at 0 ，with radius $\Gamma_{t}, 0<\Gamma_{t}<1$ ，say． In X_{t} and Y_{t} we introduce open balls A_{t} resp．B_{t} ，centered at 0 and both with radius Γ_{t} ．
Let $A=: \underset{t>0}{u} A_{t}$ and $B=: \underset{t>0}{u} B_{t}$ ．Then $A \times B$ contains an open neigh－ bourhood in $\sigma(X, A) \times \sigma(Y, B)$ ，and

$$
\|x \otimes y\|_{\max (t, \tau)} \leq\|x\|_{t}\|y\|_{\tau} \leq \Gamma_{\max (t, \tau)}
$$

whenever $x \in A_{\mathbf{t}}$ and $y \in B_{\tau}$. So \otimes maps $A \times B$ in W. Let \hat{A} and \hat{B} denote the convex hulls of A resp. B. Then \otimes maps $\hat{A} \times \hat{B}$ into W. From Theorem 2.2 we conclude that \hat{A} contains an open set $U_{\psi, \varepsilon}$, and similarly \hat{B} an open set $V_{X, \delta}$. So $\otimes \operatorname{maps} U_{\psi, \varepsilon} \times V_{X, \delta}$ into W.
iii) For each $t>0$ the tensor product $X_{t}{ }_{a}{ }_{a} Y_{t}$ is dense in $(X \otimes Y)$, from which the assertion follows.

Definition 5.7.a

We introduce the following space of trajectories: $\tau(\sigma(X \otimes Y, I \otimes B), A \otimes I)$; for shortness we denote the space by τ_{B}^{A} in the sequel. τ_{B}^{A} is the complex vector space of trajectories Φ

$$
\Phi: \mathbb{R}^{+} \rightarrow \sigma(X \otimes \mathrm{Y}, I \otimes B)
$$

satisfying $\Phi(t)=\left(e^{-\tau A} \otimes I\right) \Phi(t+\tau)$ for all $t, \tau \geq 0$.
The map $e^{-\tau A} \otimes I$ is well-defined in $\sigma(X \otimes Y, I \otimes B)$, because for each $F \in \sigma(X \otimes Y, I \otimes B)$ there is $t>0$ such that $\left(I \otimes e^{-t B}\right) F$ in $X \otimes Y$, and

$$
\left(e^{-\tau A} \otimes I\right) F=\left(I \otimes e^{t B}\right)\left[\left(e^{-\tau A} \otimes I\right)\left(I \otimes e^{-t B}\right)\right] F
$$

is in $\sigma(X \otimes Y, I \otimes B)$.

Definition 5.7.b
On τ_{B}^{A} we introduce the seminorms

$$
\rho_{t, \psi}(\Phi)=:\|(I \otimes \psi(B)) \Phi(t)\|_{X \otimes Y}, t>0, \psi \in P a^{+}(\mathbb{R})
$$

and the strong topology in τ_{B}^{A} is the locally convex topology generated by the seminorms $\rho_{t, \psi}$

Definition 5.8

The sesquilinear mapping $\otimes: \tau(X, A) \times \sigma(Y, B) \rightarrow \tau_{B}^{A}$ is defined by

$$
\otimes:(f, G) \rightarrow f \otimes G: t \rightarrow f(t) \otimes G
$$

The span of the image of \otimes is denoted by $\tau(X, A) \otimes_{a} \sigma(Y, B)$. This definition is consistent because for all $\tau, t>0$ we have

$$
(f(t) \otimes G) \in \sigma(X \otimes Y, I \otimes B),
$$

and

$$
f(t+\tau) \otimes G=\left(e^{\tau A} f(t)\right) \otimes G=\left(e^{\tau A} \otimes I\right)(f(t) \otimes G)
$$

Theorem 5.9
${ }^{\tau}{ }_{B}^{A}$ is a complete topological tensor product of $\tau(X, A)$ and $\sigma(Y, B)$. By this we mean
i) $\tau_{\mathcal{B}}^{A}$ is complete.
ii) The sesquilinear mapoing \otimes of Definition 5.8 is continuous.
iii) $\tau(X, A) \otimes a(Y, B)$ is dense τ_{B}^{A}.

Proof:
i) Let (Φ_{i}) be a Cauchy net in τ_{B}^{A}. Then for each $t>0$ the net $\left(\Phi_{i}(t)\right)$ is Cauchy in $\sigma(X \otimes Y, I \otimes B)$. So there exists $\Phi(t) \in \sigma(X \otimes Y, I \otimes B)$ with $\Phi_{i}(t) \rightarrow \Phi(t)$, following Theorem 2.10. Now $\Phi_{i}(t)=\left(e^{-\tau A} \otimes I\right) \Phi_{i}(t+\tau) \rightarrow\left(e^{-\tau A} \otimes I\right) \Phi(t+\tau)$.

Take $\Phi: \mathrm{t} \rightarrow \Phi(\mathrm{t})$. Then $\Phi \in \mathrm{T}_{B}^{A}$ and $\Phi_{i} \rightarrow \Phi$.
ii) We check the continuity at $[0,0]$. Let $W_{t, \varphi, \varepsilon}$ be the set of elements Φ in τ_{B}^{A} for which the seminorm $\rho_{t, \varphi}(\Phi)<\varepsilon$, with $\varepsilon>0$. Then $W_{t, \varphi, \varepsilon}$ is an open neighbourhood of 0 in τ_{B}^{A}. Let V be the set in $\sigma(Y, B)$ the elements of which satisfy

$$
\|\varphi(B) G\|_{Y}<\sqrt{\varepsilon}, \quad G \in V,
$$

and let W be the set in $\tau(X, A)$ the elements of which satisfy

$$
\|f(t)\|_{X}<\sqrt{\varepsilon}, \quad f \in W .
$$

V and W are open neighbourhoods of 0 in $\sigma(Y, B)$ and $\tau(X, A)$. We have

$$
\rho_{t, \varphi}(f \otimes G)=\|f(t) \otimes(\varphi(B) G)\|_{X \otimes Y}=\|f(t)\|_{X}\|\varphi(B) G\|_{Y}<\varepsilon,
$$

from which continuity at $[0,0]$ follows.
iii) First we shall prove that $\left\{\left(P_{N} \otimes Q_{N}\right) E \mid E \in \tau_{B}^{A}, N \in \mathbb{N}\right\}$ is dense in ${ }^{\tau} A_{B}^{A}$, where $P_{N}=P_{(-1, N]}$ and $\left.\mathcal{Z}_{N}={ }_{2}^{2}-1, N\right]$. Therefore, let $巴 \in{ }^{\top}{ }^{\top} B$ Then $E(t) \epsilon \sigma(X \otimes Y, I \otimes B)$, for all $t \in \mathbb{R}^{+}$, and

$$
\rho_{t, \varphi}\left(\Xi-\left(p_{N} \otimes 2_{N}\right) \Xi\right)=\left\|\left(I \otimes I-P_{N} \otimes Z_{N}\right)(I \otimes \varphi(B)) \Xi(t)\right\| \rightarrow 0
$$

because $(I \otimes \varphi(B)) E(t) \in X \otimes Y$.

Next observe that $\left\{\left(P_{N} \otimes q_{N}\right) \Xi \mid \Xi \in \tau_{B}^{A}, N \in \mathbb{N}\right\}$ can be embedded in $T(X \otimes Y, A$ 田 B. This is a consequence of the following estimate

$$
\begin{aligned}
\left\|\left(e^{t A} \otimes e^{t B}\right)\left(P_{N} \otimes 2_{N}\right) \equiv\right\|_{X \otimes Y} & \leq \|\left(e^{t A_{N}} P_{N} \otimes e^{(t+\tau) B_{2}} 2_{N}\left(I \otimes e^{-\tau B}\right) E(0) \|_{X \otimes Y}\right. \\
& \leq\left\|\left(e^{t A_{N}}\right) \otimes\left(e^{(t+\tau) B_{N}} Q_{N}\right)\right\|\left\|I \otimes e^{-\tau B} E(0)\right\|_{X \otimes Y}
\end{aligned}
$$

$<\infty$
if $\tau>0$ is taken large enough. Thus $\tau(X, A) \otimes_{a} \tau(Y, B)$ is dense in τ_{B}^{A}. A posteriori it is clear that $\tau(X, A) \otimes_{a} \sigma(Y, B)$ is dense in τ_{B}^{A}.

Definition 5.10.a

We introduce the following space of trajectories:

$$
\tau(\sigma(X \otimes Y, A \otimes I), I \otimes B)
$$

In the sequel we shall denote this space by τ_{4}^{B}. τ_{A}^{B} is the complex vector space of linear mappings

$$
\omega: \mathbb{R}^{+} \rightarrow \sigma(X \otimes Y, A \otimes I)
$$

which satisfy $\omega(t)=I \otimes e^{-t B} \omega(t+\tau)$ for all $t, \tau \geq 0$.
On ${ }^{\tau_{A}}$ Be introduce the seminorms

$$
V_{k, \psi}(\omega)=:\|(\psi(A) \otimes I) \omega(t)\|_{X \otimes Y},
$$

and the corresponding locally convex topology.

Definition 5.10.b

The canonical mapping $\otimes: \sigma(X, A) \times \tau(Y, B) \rightarrow \tau_{A}^{B}$ is defined by

$$
\otimes:(H, g) \rightarrow H \otimes g: t \rightarrow H \otimes g(t)
$$

The span of the image of is denoted by $\sigma(X, A) \otimes_{a} \tau(Y, B)$.

Theorem 5.11
${ }^{T} A_{A}^{B}$ is a complete topological tensor product of $\sigma(X, A)$ and $\tau(Y, B)$.
Proof:
As for Theorem 5.8.

Since $\tau(X \otimes Y, I \otimes B) \subset X \otimes Y$, the linear subspace
$\left(e^{t A} \otimes I\right) \tau(X \otimes Y, I \otimes B)$ of $\left(e^{t A} \otimes I\right)(X \otimes Y)$ is well-defined. In $\left(e^{t A} \otimes I\right) \tau(X \otimes Y, I \otimes B)$ we introduce the metric d_{t} by

$$
d_{t}(\theta)=d_{B}\left(\left(e^{-t \AA} \otimes I\right) \theta\right)
$$

with d_{B} the metric in $\sigma(X \otimes Y, I \otimes B)$.

Definition 5.12

We introduce the locally convex topological vector space

$$
\sigma(\tau(X \otimes Y, I \otimes B), A \otimes I)=\underset{t>0}{u}\left(e^{t A} \otimes I\right) r(X \otimes Y, I \otimes B)
$$

with the inductive limit topology. In the sequel we shall denote this
space by σ_{B}^{A}. Note that for all $t \geqslant 0$ we have

$$
\left(e^{t A} \otimes I\right) \tau(X \otimes Y, I \otimes B) c\left(e^{t A} \otimes I\right)(X \otimes Y) \subset \sigma(X \otimes Y, A \otimes I)
$$

So $\quad \sigma_{B}^{A}=\underset{t>0}{u}\left(e^{t A} \otimes I\right) t(X \otimes Y, I \otimes B) c \sigma(X \otimes Y, A \otimes I)$.
On $\tau_{B}^{A} \times \sigma_{B}^{A}$ we introduce the sesquilinear form

$$
\langle V, \theta\rangle \frac{A}{B}=\left\langle V(t),\left(e^{-t A} \otimes I\right) \theta\right\rangle_{T}(X \otimes Y, I \otimes B),
$$

for $t>0$ sufficiently large.

Theorem 5.13
i) $\sigma(X, A) \otimes_{a} \tau(Y, B)$ is dense in σ_{B}^{A}.
ii) σ_{B}^{A} is continuously embedded in τ_{A}^{B} by the mapping

$$
e m b: \theta \rightarrow \operatorname{emb}(\theta): t \rightarrow\left(I \otimes e^{t B}\right)(\theta)
$$

iii) For each fixed $V \in{\underset{B}{T}}_{A}^{A}$ the linear functional

$$
\sigma_{B}^{A} \rightarrow \mathbb{C} \text { defined by } \theta \rightarrow \overline{\langle V, \theta\rangle_{B}^{A}}
$$

is continuous on σ_{B}^{A}.
Proof:
i) Following Theorem 5.4 we have $X \otimes_{a} \tau(Y, B)$ is dense in $\tau(X \otimes Y, I \otimes B)$. Therefore for all $t>0$ the set $X_{t} \otimes_{a} \tau(Y, B)$ is dense in
$\left(e^{t A} \otimes I\right) \tau(X \otimes Y, I \otimes B)$. We conclude that

$$
\bigcup_{t>0} X_{t} \otimes_{a} \tau(Y, B)=\sigma(X, A) \otimes_{a} \tau(Y, B)
$$

is dense in σ_{B}^{A}.
ii) Let $\theta \in \sigma_{B}^{A}$.

Then $t \rightarrow\left(I \otimes e^{t B}\right) \otimes \in \tau_{A}^{B}$, because for some $\tau>0$ and all $t>0$

$$
\left(\mathrm{e}^{-\tau \mathrm{A}} \otimes I\right)\left(I \otimes \mathrm{e}^{\mathrm{tB}}\right) \theta \in X \otimes Y .
$$

iii) We have $\left|\langle V, \theta\rangle{ }_{B}^{A}\right| \leq c_{t} d_{B}\left(\left(e^{-t A} \otimes I\right) \theta\right)=c_{t} d_{t}(\theta)$, for all $\otimes \in\left(e^{t A} \otimes I\right) \tau(X \otimes Y, I \otimes B)$.

Definition 5.14
Similarly to Definition 5.12 we introduce the locally convex topological vector space

$$
\sigma(\tau(X \otimes Y, A \otimes I), I \otimes B)=\underset{t>0}{u}\left(I \otimes e^{t B}\right) \tau(X \otimes Y, A \otimes I)
$$

We shall denote this space by σ_{A}^{B}. We remark that $\sigma_{A}^{B} \subset \sigma(X \otimes Y, I \otimes B)$. $\operatorname{In} \sigma_{A}^{B}$ we introduce the metric Δ_{t} by

$$
\Delta_{t}(2)=d_{A}\left(\left(T \otimes e^{-t B}\right) Q\right), 2 \in \sigma_{A}^{B},
$$

with d_{A} the metric of $\tau(X \otimes Y, A \otimes I)$.
For the strong topology in σ_{A}^{B} we take the inductive limit topology. On ${ }^{\tau}{ }_{A}^{B} \times \sigma_{A}^{B}$ we introduce the sesquilinear form

$$
\left.\langle L, Q\rangle_{A}^{B}=:<L(t),\left(I \otimes e^{-t B}\right) Q\right\rangle \tau(X \otimes Y, A \otimes I)
$$

for $t>0$ sufficiently large.

Theorem 5.15

i) $\tau(X, A) \otimes_{a} \sigma(Y, B)$ is dense in σ_{A}^{B}.
ii) σ_{A}^{B} is continuously embedded in τ_{B}^{A} by the mapping

$$
\mathrm{emb}: Q \rightarrow \mathrm{emb}(2): \mathrm{t} \rightarrow\left(\mathrm{e}^{\mathrm{tA}} \otimes 1\right) Q
$$

iii) For each fixed $L \in \tau_{A}^{B}$ the linear functional $\sigma_{A}^{B} \rightarrow \mathbb{C}$ defined by $2 \rightarrow \overline{\langle L, Q\rangle_{A}^{B}}$ is continuous on σ_{A}^{B}.

Proof:
Similar to Theorem 5.13.

Chapter 6

Kernel theorems

In chapter 4 we discussed four types of linear mappings. In this chapter we show that elements of the topological tensor products which are introduced in chapter 5 , can be interpreted as continuous linear mappings of one of the types in chapter 4. Necessary and sufficient conditions are given which ensure that the topological tensor products comprise all continuous linear mappings under consideration, i.e. the Kernel theorem holds We want to remind that every element of the topological tensor product $X \otimes Y$ represents a bounded linear mapping $X \rightarrow Y$.

Case (a). Continuous linear mappings $\sigma(X, A) \rightarrow \tau(Y, B)$. We consider an element $\theta \in T(X \otimes Y, A \cap B)$ as a linear mapping $\sigma(X, A) \rightarrow \tau(X, B)$ in the following way. Let $G \in \sigma(X, A)$
(a) $\quad \theta G: t \rightarrow e^{(t-\tau) B} \theta(\tau) e^{-\tau A} G$, $\tau>0$ sufficiently large. Definition (a) does not depend on the choice of $\tau^{\prime}>0$. This definition is correct, because $\theta(\tau) \in X \otimes Y$ for all $\tau>0$, and for each $t>0$,

$$
\left\|e^{(t-\tau) B} \theta(\tau) e^{-\tau A} G\right\|_{Y} \leq\left\|e^{(t-\tau) B} \theta(\tau)\right\|\left\|e^{-\tau A} G\right\|_{X}<\infty,
$$

if $\tau>0$ is taken sufficiently large.

I．For each $\theta \in \tau(X \otimes Y, A 母 B)$ the linear mapping $\sigma(X, A) \rightarrow \tau(Y, B)$ as de－ fined in（a）is continuous．

II．For each $\theta \in \tau(X \otimes Y, A$ 团 $B), F \in \sigma(X, A)$ and $G \in \sigma(Y, B)$

$$
\langle\theta F, G\rangle_{Y}=\langle\theta, F \otimes G\rangle_{X \otimes Y} .
$$

III．If $e^{-t A}$ or $e^{-t B}$ is HS for some $t>0$ ，then $T(X \otimes Y, A$ 团 $B)$ comprises all continuous linear mappings $\sigma(X, A) \rightarrow \tau(Y, B)$ ．

IV．$\tau(X \otimes Y, A \notin B)$ comprises all continuous linear mappings $\sigma(X, A) \rightarrow \tau(X, A)$ iff $e^{-t A}$ is $H S$ for some $t>0$ ．

Proof：

I．Let $\theta \in \tau(X \otimes Y, A$ B $)$ ．Then for all $t, \tau>0$

$$
e^{t B} \theta e^{\tau A}=e^{-\left(t^{\prime}-t\right) B} \theta\left(t^{\prime}\right) e^{-\left(t^{\prime}-\tau\right) A}
$$

So $e^{t B} \theta e^{\tau A}$ is bounded as an operator $X \rightarrow Y$ when $t^{\prime}>0$ sufficiently large．Following Theorem 4.119 maps $\sigma(X, A)$ continuously into $\tau(Y, B)$ ，

II．$\langle\theta \mathrm{F}, G\rangle_{Y}=\left(e^{(t-\tau) B} \theta(\tau) e^{-\tau A} F, e^{-t B} G\right)_{Y}=$

$$
=\left(\theta(\tau), e^{-\tau A} F \otimes e^{-\tau B} G\right) X \otimes Y
$$

$$
=\langle\theta, F \otimes G\rangle_{X \otimes Y} .
$$

III．Let $\Gamma: \sigma(X, A) \rightarrow \tau(Y, B)$ be continuous．Then for all $t>0$ the mapping
$e^{t B} r e^{t A}$ is bounded from X into Y. Since $e^{-\tau A}$ or $e^{-\tau B}$ is HS for some $\tau>0, e^{t B} \Gamma e^{t A}=e^{-\tau B}\left(e^{(t+\tau) B} \Gamma e^{(t+\tau) A}\right) e^{-\tau A}$ is HS. So $r: t \rightarrow e^{t B} \Gamma e^{t A}$ is in $\tau(X \otimes Y, A \notin B)$.
IV. The if-part is a special case of III. Let $\varphi \in F a^{+}(\mathbb{R})$. Then $\varphi(A)$ maps $\sigma(X, A)$ continuously in $\tau(X, A)$. So $\varphi(A)$ is HS for all $\varphi \in F a^{+}(\mathbb{R})$. Following Lemma 1.7 there is $t>0$ such that $e^{-t A}$ is HS.

Case (b). Continuous 1 inear mappings $\tau(X, A) \rightarrow \sigma(Y, B)$.
Let $K \in \sigma(X \otimes Y, A \notin B)$. For $h \in \tau(X, A)$ we define $K h \in \sigma(Y, B)$ by
(b)

$$
K h=e^{t B}\left(e^{-t B} K e^{-t A}\right) h(t)
$$

This definition makes sense for $t>0$ sufficiently large and does not depend on the specific choice of t.

Theorem 6.2

I. For each $K \in \sigma(X \otimes Y, A$ 团 $B)$ the linear mapping $K: \tau(X, A) \rightarrow \sigma(Y, B)$ as defined in (b) is continuous.
II. For each $K \in \sigma(X \otimes Y, A 母 B), f \in \tau(X, A)$ and $g \in \tau(Y, B)$

$$
\langle\mathrm{g}, \mathrm{Kf}\rangle_{\mathrm{Y}}=\langle\mathrm{f} \otimes \mathrm{~g}, K\rangle_{X \otimes Y}
$$

III. If for some $t>0$ the operator $e^{-t A}$ or $e^{-t B}$ is $H S$, then $\sigma(X \otimes Y, A \in B)$ comprises all continuous linear mappings from $\tau(X, A)$ into $\sigma(Y, B)$.
IV. $\sigma(X \otimes X, A$ A) comprises all continuous linear mappings from $\tau(X, A)$ into $\sigma(X, A)$ iff $e^{-t A}$ is $H S$ for some $t>0$.

Proof:

I. Let $K \in \sigma(X \otimes Y, A \notin B)$. Then $e^{-t B} K e^{-t A}$ is a bounded operator from X into Y for sufficiently large $t>0$. Following Theorem 4.10
is a continuous mapping from $\tau(X, A)$ into $\sigma(Y, B)$.
II. $\left\langle g, K_{f}\right\rangle_{Y}=\left(g(t), e^{-t B} K e^{-t A_{f}}(t)\right)_{Y}$
$=\left(f(t) \otimes g(t), e^{-t B} K e^{-t A}\right) X_{X \otimes Y}$
$=\langle f \otimes g, K\rangle_{X \otimes Y}$
III. Let $L: \tau(X, A) \rightarrow \sigma(Y, B)$ be continuous. Then there are $t, \tau>0$ such that $e^{-\tau B} L e^{-t A}$ is bounded. Now suppose $e^{-t_{0} A}$ or $e^{-t_{0} B}$ is HS, then

$$
L=e^{\left(t_{0}+\tau\right) B}\left(e^{-\left(t_{0}+\tau\right) B} L e^{-\left(\tau+t_{0}\right) A}\right) e^{\left(\tau+t_{0}\right) A}
$$

So $L \in \sigma(X \otimes Y, A$ 田 $B)$, because $e^{-\left(\tau+t_{0}\right) B} L e^{-\left(\tau+t_{0}\right) A}$ is HS and $L=$ $e^{\left(\tau+t_{0}\right)(A \sqcap B)}\left(e^{\left.-t_{0}+\tau\right) B} L_{1} e^{-\left(t_{0}+\tau\right) A}\right)$.
IV. The if-part is a special case of III.

Let $J: \tau(X, A) \hookrightarrow \sigma(X, A)$. J is continuous and can be considered as an element of $\sigma\left(X \otimes X, A\right.$ 田 A if $e^{-t A} J e^{-t A}=e^{-2 t A}$ is HS for some $t>0$.

Case (c). Continuous linear mappings $\tau(X, A) \rightarrow \tau(Y, B)$.
Let $P,{ }^{\tau}{ }^{B}$. For $f \in \tau(X, A)$ we define $P f \in \tau(Y, B)$ by
(c)

$$
P f: t \rightarrow P(t) e^{-\varepsilon(t) A} f(\varepsilon(t)),
$$

Here we take $\varepsilon(t)>0$ such that $P(t) e^{-\varepsilon(t) A}$ is a HS operator on X.

Theorem 6.3

I. For each $P \in \tau_{A}^{B}$, the linear operator $P: \tau(X, A) \rightarrow \tau(Y, B)$ as defined in (c) is continuous.
II. For each $P \in \tau_{A}^{B}, f \in \tau(X, A)$ and $G \in \sigma(Y, B)$

$$
\langle P \mathrm{f}, \mathrm{G}\rangle_{\mathrm{Y}}=\langle P, \mathrm{f} \otimes \mathrm{G}\rangle_{\mathrm{A}}^{B} .
$$

III. If for some $t>0$ the operator $e^{-t A}$ or $e^{-t B}$ is HS then τ_{A}^{B} comprises all continuous linear mappings from $\tau(X, A)$ into $\tau(Y, B)$.
IV. τ_{A}^{B} comprises all continuous linear mappings from $\tau(X, A)$ into $\tau(X, A)$ iff $e^{-t A}$ is $H S$ for some $t>0$.

Proof:

I. Let $P \in{ }^{T}{ }_{A}^{B}$. Then for each $t>0$, the operator $\left(I \otimes e^{t B}\right) P=P(t)$ $\epsilon \sigma(X \otimes Y, A \otimes I)$. So there exists $\tau>0$ such that $P(t) e^{-\tau A}$ is a bounded 1 inear operator in X. Following Theorem 4.4. P is a contimuous mapping form $\tau(X, A)$ into $\tau(Y, B)$.

$$
=\left(P(\mathrm{t}) \mathrm{e}^{-\tau A}, \mathrm{f}(\tau) \otimes \mathrm{e}^{-\mathrm{tB}} \mathrm{G}\right)_{\mathrm{X} \otimes \mathrm{Y}}
$$

$$
=\langle P, f \otimes G\rangle_{A}^{B} .
$$

III. Let $T: \tau(X, A) \rightarrow \tau(Y, B)$ be continuous.

Then $T(\mathrm{t})=:\left(\mathrm{e}^{\mathrm{tB}} T \mathrm{e}^{-\varepsilon(\mathrm{t}) A}\right) \mathrm{e}^{\varepsilon(\mathrm{t}) \mathrm{A}}, \quad \mathrm{t}>0$.
Suppose $e^{-t} 0^{A}$ or $e^{-t_{0} B}$ is a Hilbert-Schmidt operator. Then
$T(t)=e^{-t_{0} B}\left(e^{\left(t+t_{0}\right) B} T e^{-\varepsilon\left(t+t_{0}\right) A} e^{-t_{0} A}\right) e^{\left(\varepsilon\left(t+t_{0}\right)+t_{0}\right) A}$.
So for all $t>0$ we have $T(t) \epsilon \sigma(X \otimes Y, A \otimes I)$, and the mapping T is represented by the element

$$
t \rightarrow T(t)
$$

in τ_{A}^{B}.
IV. The if-part is a special case of III.

The identity $I: \tau(X, A) \rightarrow \tau(X, A)$ is continuous.
Let $t>0$. Then for some $\tau>0$ we have

$$
e^{t A} I e^{-t A} \in X \otimes X
$$

Thus $e^{(t-\tau) A}$ is Hilbert-Schmidt.

Case (d). Continuous linear mappings $\sigma(X, A) \rightarrow \sigma(Y, B)$.
Let $\Phi \in \tau_{B}^{A}$. For $F \in \sigma(X, A)$ we define ΦF by

$$
\begin{equation*}
\Phi F=e^{\varepsilon(t) B}\left(e^{-\varepsilon(t) B} \Phi(t)\right) e^{-t A} F \tag{d}
\end{equation*}
$$

$t>0$ sufficiently large. The definition does not depend on the choice of $t>0$. The mapping Φ is well-defined, because $e^{-\varepsilon(t) B} \Phi(t)$ is HS for some $\varepsilon(t)>0$, and $e^{-t A} F \in X$ for $t>0$ sufficiently large.

Theorem 6.4

I. For each $\Phi \in{\underset{B}{A}}_{A}^{A}$ the linear operator $\Phi: \sigma(X, A) \rightarrow \sigma(Y, B)$ as defined in (d) is continuous.
II. For each $\Phi \in \underset{\tau_{B}}{A}, F \in \sigma(X, A)$ and $g \in \tau(Y, B)$

$$
\langle\mathrm{g}, \Phi \mathrm{~F}\rangle_{\mathrm{Y}}=\langle\Phi, \mathrm{F} \otimes \mathrm{~g}\rangle_{\mathrm{B}}^{\mathrm{A}}
$$

III. If for some $t>0$ the operator $e^{-t A}$ or $e^{-t B}$ is $H S$, then τ_{B}^{A} comprises all continuous linear operators from $\sigma(X, A)$ in $\sigma(Y, B)$.
IV. τ_{B}^{A} comprises all continuous linear operators from $\sigma(X, A)$ into itself iff for some $t>0$ the operator $e^{-t A}$ is HS.

Proof:

I. Let $\Phi \in \tau_{B}^{A}$. Then for all $t>0$, there is $\tau>0$, such that $e^{-\tau B} \Phi(t)$ is HS and therefore bounded. Following Theorem 4.12Φ is a continuous mapping from $\sigma(X, A)$ into $\sigma(Y, B)$.
II. $\langle g, \Phi F\rangle_{Y}=\left(g(\tau), e^{-\tau B} \Phi(t) e^{-t A} F\right)_{Y}$
$=\left(e^{-t A} F \otimes g(\tau), e^{-\tau B} \Phi(t)\right)_{X \otimes Y}$
$=\overline{\langle\Phi, F \otimes G\rangle_{B}^{A}}$
III. Let $B: \sigma(X, A) \rightarrow \sigma(Y, B)$ be a continuous linear mapping. Then $\beta(t)=$: $e^{\varepsilon(t) B}\left(e^{-\varepsilon(t) B} B e^{t A}\right)$. Suppose that $e^{-t_{0} A}$ or $e^{-t_{0} B}$ is a HilbertSchmidt operator. Then $\beta(t)=$
$e^{\varepsilon\left(t+t_{0}\right) B+t_{0} B}\left(e^{-t_{0} B} e^{-\varepsilon\left(t+t_{0}\right) B} \beta e^{\left.t+t_{0}\right) A}\right) e^{-t_{0} A}$.
So $B(t) \epsilon \sigma(X \otimes Y, I \otimes B)$, and the mapping β is represented by the element

$$
t \rightarrow B(t)
$$

in τ_{B}^{A}.
IV. The if-part is a special case of III.

The identity $I: \sigma(X, A) \rightarrow \sigma(X, A)$ is continuous. Let $t>0$. Then for some $\tau>0$ we have $e^{-\tau A} I e^{t A} \in X \otimes X$. Thus $e^{(t-\tau) A} \in X \otimes X$.

Chapter 7

Two illustrations

This chapter contains two illustrations. In Illustration 1 an important example of the general theory is investigated, and in Illustration II we construct a space of generalizedfunctions in infinitely many dimensions. We prove that this space is nuclear.

Illustration I

We investigate the space $\tau\left(L_{2}(\mathbb{R}), H\right)$, in which

$$
H=\frac{1}{2}\left(-\frac{\mathrm{d}^{2}}{\mathrm{dx}}+\mathrm{x}^{2}+1\right),
$$

the Hamiltonian operator of the harmonic oscillator, and $L_{2}(\mathbb{R})$ is the Lebesque space of square integrable functions. The eigenfunctions of H are the Hermite functions,

$$
\psi_{n}(x)=e^{-\frac{1}{2} x^{2}} H_{n}(x) \quad\left(\pi^{n / 2} 2^{n} n!\right)^{\frac{1}{2}}, \quad n=0,1,2, \ldots,
$$

where H_{n} is the n-th Hermite polynomial, and we have

$$
H \psi_{k}=(k+1) \psi_{k}, \quad k=0,1,2, \ldots .
$$

The $\psi_{k}{ }^{\prime}$ s establish an orthonormal basis in $L_{2}(\mathbb{R})$.

In the Introduction we gave the following equivalences

$$
\begin{equation*}
\mathbf{f} \in \tau\left(L_{2}(\mathbb{R}), H\right) \Leftrightarrow f=\sum_{k=1}^{\infty} a_{k} \psi_{k}, \tag{7.1.a}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where the } a_{k}^{\prime} \text { s satisfy } \\
& a_{k}=O\left(e^{-t k}\right)
\end{aligned}
$$

```
for all t > 0.
```

b) $G \in \sigma\left(L_{2}(\mathbb{R}) H\right) \Leftrightarrow G=\sum_{k=1}^{\infty} b_{k} \psi_{k}$,
where the b_{k} 's satisfy

$$
\begin{array}{r}
b_{k}=O\left(e^{k \tau}\right) \\
\text { for a fixed } \tau>0
\end{array}
$$

In his remarkable paper [B], see $p .260$, De Bruijn allreadymentions the space that we denote by $\sigma\left(L_{2}(\mathbb{R}), H\right)$. He notes that it would not be hard to extend S^{*} to the space of Hermite pansions, introduced by Korevaar in [K]. The space he aims at is our space $\sigma\left(L_{2}(\mathbb{R}), H\right)$. There is a small notational difference. Instead of the $\psi_{k}{ }^{\prime} s$, he takes the functions φ_{k}, defined as

$$
\begin{aligned}
\varphi_{k}(x) & =: e^{-\pi x^{2}} H_{k}(x \sqrt{2 \pi}) /\left(2^{n-\frac{1}{2}} n!\right)^{\frac{1}{2}}= \\
& =\pi^{n / 4} 2^{-\frac{1}{4}} \psi_{k}(x \sqrt{2 \pi}) \quad, \quad k=0,1,2, \ldots
\end{aligned}
$$

In De Graaf's terminology (see [G]), the generalized function space S^{*}, introduced by De Bruijn ([B]), is the space $S^{\prime} L_{2}(\mathbb{R}), H^{\prime}$ In general we have the inclusion

$$
S_{X, A}^{\prime} \subset \quad \sigma(X, A)
$$

De Bruijn's test function space is characterized by
$f \in S \Leftrightarrow: f$ is entirely analytic, and there are $A, B, C>0:$

$$
|f(x+i y)| \leq C \exp \left(-A x^{2}+B y^{2}\right)
$$

Here we shall derive a similar characterization for elements in $\tau\left(L_{2}(\mathbb{R}), H\right)$. Let $f \in \tau\left(L_{2}(\mathbb{R}), H\right)$. Then for each $\alpha>0$ there exists $g_{\alpha} \in L_{2}(\mathbb{R})$ such that $\mathrm{f}=\mathrm{N}_{\alpha} \mathrm{g}_{\alpha}$, where $\left(N_{\alpha}\right)_{\alpha>0}$ is the semigroup generated by H. Taking into account the modification that we mentioned before, it follows from Theorem 6.3 in [B]

$$
|f(x+i y)| \leq c_{\alpha} \exp \left(y^{2} \frac{\operatorname{coth} \alpha}{2}-x^{2} \frac{\tanh \alpha}{2}\right)
$$

for $C_{\alpha}>0$, only depending g_{α}.
Since $\alpha>0$ can be taken arbitrarily

$$
\mathfrak{f} \in \tau\left(L_{2}(\mathbb{R}), H\right) \Rightarrow f \text { is entirely analytic }
$$

and for all $a, 0<a<1$, there is $C_{a}>0$ such that

$$
|f(x+i y)| \leq c_{a} \exp \left(\frac{a^{-1}}{2} y^{2}-\frac{a}{2} x^{2}\right)
$$

Suppose f is entirely analytic and f satisfies the inequalities given above. Then for each $\alpha>0$ there is $b, 0<b<1$ with coth $\alpha>b^{-1}$. From Theorem 10.1 in [B] it follows that there exists $g_{\alpha} \in L_{2}(\mathbb{R})$ with $f=N_{\alpha} g_{\alpha}, \alpha>0$. So $f \in \tau\left(L_{2}(\mathbb{R}), H\right)$, and we have proved

Meorem 7.2
$f \in \tau\left(L_{2}(\mathbb{R}), H\right) \Leftrightarrow f$ is entirely analytic, and

$$
\forall_{a, 0<a<1} \exists_{c}:|f(x+i y)| \leq c_{a} \exp \left(\frac{a^{-1}}{2} y^{2}-\frac{a}{2} x^{2}\right)
$$

Let F_{1} denote the Hilbert space of entirely analytic functions as introduced by Bargmann in [Ba 1 1]. The inner product in F_{1} is given by

$$
(f, g)=\int_{\mathbb{C}} f(z) \overline{g(z)} d \mu_{\mu_{1}}(z)
$$

with $z=x+i y, d \mu_{1}(z)=\frac{1}{\pi} \exp \left(-|z|^{2}\right) d x d y$, so that f belongs to F_{1} if and only if $(f, f)<\infty$.

An orthonormal basis of F_{1} is given by

$$
u_{m}(z)=\frac{z^{m}}{\sqrt{m!}}, \quad \mathrm{m} \in \mathbb{N} \cup\{0\}
$$

Thus every $\mathrm{f} \in F_{1}$ can be written as

$$
f(z)=\sum_{m=0}^{\infty} a_{m} u_{m}(z)
$$

and we have $|\underline{f}(z)| \leq\|\underline{f}\| e^{\frac{1}{2}|z|^{2}}$. The unitary operator $\hat{A}: L_{2}(\mathbb{R}) \rightarrow F_{1}$ is given by

$$
(\hat{A} g)(z)=\int^{\infty} A(z, x) g(x) d x
$$

with

$$
\left.A(z, x)=\pi^{-\frac{1}{4}} \exp -\frac{1}{2}\left(z^{2}+x^{2}\right)+\sqrt{2} \quad z x\right)
$$

The operator $\hat{\AA}$ has the following properties

$$
\hat{A} \psi_{m}=u_{m} \text { and }\left(\hat{A} H \psi_{m}\right)(\zeta)=u_{m}(\zeta)+\zeta \frac{d u_{m}}{d z}(\zeta)
$$

The positive self adjoint operator $1+z \frac{d}{d z}$, defined in F_{1}, generates a semigroup $\left(M_{t}\right)_{t>0}$, whose action is simply given by

$$
\left(M_{t} f\right)(z)=e^{-t} f\left(e^{-t} z\right), \quad t>0 .
$$

In the following theorems we characterize the elements in $\tau\left(F_{1}, 1+\mathrm{z} \frac{\mathrm{d}}{\mathrm{dz}}\right)$ and $\sigma\left(F_{1},\left(1+z \frac{d}{d z}\right)\right.$.

Theorem 7.3

$$
\mathrm{f} \in \mathrm{~T}\left(F_{1}, 1+\mathrm{z} \frac{d}{d z}\right) \Leftrightarrow \forall_{\mathrm{c}>0} \exists_{\mathrm{D}>0}:|f(\mathrm{z})| \leq \mathrm{D} \mathrm{e}^{\mathrm{c}|\mathrm{z}|^{2}} .
$$

Proof:

\Rightarrow) Let $c>0$. Take $t>0$ zo large that $\frac{1}{2} e^{-2 t}<c$. Then

$$
|f(z)|=e^{-t}\left|\left(\underline{M}_{t} f\right)\left(e^{-t} z\right)\right| \leq e^{-t}\left\|_{-} t f\right\| \exp \left(\frac{1}{2} e^{-2 t}|z|^{2}\right) .
$$

\leftarrow) Let $t>0$. Take $0<c<\frac{1}{2} e^{-2 t}$. Then

$$
\left|f\left(e^{t} z\right)\right| \leq D \exp \left(c e^{2 t}|z|^{2}\right)
$$

So

$$
\int_{\mathbb{C}}\left|f\left(e^{t} z\right)\right|^{2} d \mu_{1}(z)<\infty .
$$

Theorem 7.4

$\mathrm{F} \in \quad\left(F_{1}, 1+z \frac{\mathrm{~d}}{\mathrm{dz}}\right) \Leftrightarrow \mathrm{F}$ is entirely analytic, and

$$
\exists_{c>0} \exists_{D>0}:|F(z)| \leq D e^{c|z|^{2}} .
$$

Proof:

\Rightarrow) There is $\tau>0$ such that $M_{\tau} F \in F_{1}$. Thus for all $t \geq \tau$, there are $a_{m}(t), m \in \mathbb{N} \cup\{0\}$, such that

$$
\left(M_{t} F\right)(z)=\sum_{m=0}^{\infty} a_{m}(t) u_{m}(z)
$$

Note that $a_{m}(t)$ satisfies $a_{m}\left(t_{1}+t_{2}\right)=e^{-m t_{1}} a_{m}\left(t_{2}\right)$ for all $t_{1}, t_{2}>0$ with $t_{1}+t_{2}>\tau$. It follows that there are a_{m} which satisfy

$$
a_{m}(t)=e^{-m t} a_{m}, m \in \mathbb{N} u\{0\}, t>0
$$

We have

$$
F(z)=e^{t}\left(M_{t} F\right)\left(e^{t} z\right)=\sum_{m=0}^{\infty} a_{m}(t) e^{m t} u_{m}(z)
$$

and the series converge for all $z \in \mathbb{C}$.
Thus F is entirely analytic.
Since $M_{\tau} F \in F_{1}$ we have

$$
|F(z)|=e^{\tau}\left|\left(M_{\tau} F\right)\left(e^{\tau} z\right)\right| \leq e^{\tau}\left\|M_{\tau} F\right\| \exp \left(\frac{1}{2}(z)^{2} e^{2 t}\right)
$$

\Leftrightarrow) Take $\tau>0$ so large that $c e^{-2 \tau}<\frac{1}{2}$. Then

$$
\left|\left(M_{\tau} F\right)(z)\right|=\left|e^{-\tau} F\left(e^{-\tau} z\right)\right| \leq D e^{-\tau} \exp \left(c e^{-2 \tau}|z|^{2}\right)
$$

In the introduction we showed that the space of tempered distributions $S^{\prime}(\mathbb{R})$ is equal to $\sigma\left(L_{2}(\mathbb{R}), \log (H)\right)$. In [Ba 2], Bargmann proves that the mapping \hat{A} can be uniquely etended to $S^{\prime}(\mathbb{R})$. As a simple consequence of the general theory, given in this paper, we easily derive that \hat{A} can be uniquely extended to a unitary mapping from $\sigma\left(L_{2}(\mathbb{R}), H\right.$) onto $\sigma\left(F_{1},\left(1+z \frac{d}{d z}\right)\right.$).
In [Ba 2], Bargmann extensively studies the image of $S^{\prime}(\mathbb{R})$ under the unitary mapping A. Similarly, $\sigma\left(F_{1}, 1+z \frac{d}{d z}\right)$ could be subject for further investigation.

Finally, note that the case of several dimensions

$$
\sigma\left(L_{2}\left(\mathbb{R}^{k}\right), H_{k}\right) \text { and } \sigma\left(F_{k}, k+\sum_{i=1}^{k} z_{i} \frac{d}{d z_{i}}\right)
$$

with

$$
H_{k}=\frac{1}{2}\left(\sum_{i=1}^{k}\left(-\frac{\partial^{2}}{\partial x_{i}^{2}}+x_{i}^{2}\right)+k\right),
$$

can be treated in the same way.

Illustration II

We will construct a nuclear space of generalized functions in infintely many dimensions. This space can be regarded as a direct sum of generalized function spaces. Similar constructions are given in [KMP] and in [BLT]. Our construction suits perfectly well in the frame-work of the general theory as given in this paper.

First we give some general results concerning direct sums. Let $X_{i}, i \in \mathbb{N}$, be Hilbert spaces, and A_{i}, $i \in \mathbb{N}$, be unbounded positive self-adjoint operators in X_{i} with domains $D\left(A_{i}\right)$. By X we denote the countable direct $\operatorname{sum} \underset{i=1}{\infty} X_{i}$, and the elements of X will be denoted by $\left(f_{i}\right)$. Thus $\left(f_{i}\right) \in X$ if and only if $f_{i} \in X_{i}, i \in \mathbb{N}$, and $\sum_{i=1}^{\infty}\left\|f_{i}\right\|^{2}<\infty$. With the inner product $\left(\left(f_{i}\right),\left(g_{i}\right)\right)=\sum_{i=1}^{\infty}\left(f_{i}, g_{i}\right) X_{i}, X$ becomes a Hilbert space.
Let L_{i} bealinear operator in X_{i}, $i \in \mathbb{N}$. Then formally we define the linear operator $\operatorname{diag}\left(L_{i}\right)$ in X by

$$
\operatorname{diag}\left(L_{i}\right)\left(f_{i}\right)=\left(L_{i} f_{i}\right)
$$

According to this definition the operator diag $\left(e^{-t A} i\right), t>0$ is bounded from X into X, and the operators form a holomorphic semigroup in the right half plane $\operatorname{Re} t>0$.

We define

$$
D(A):=\left\{\left(\mathbf{f}_{\mathbf{i}}\right) \in X \mid \mathbf{f}_{\mathbf{i}} \in D\left(\mathrm{~A}_{\mathbf{i}}\right) \text { and }\left(\mathrm{A}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}}\right) \in \mathrm{X}\right\}
$$

Then $A\left(f_{i}\right)=\operatorname{diag}\left(A_{i}\right)\left(f_{i}\right)$ is wel1-defined for $\left(f_{i}\right) \in D(A)$.

Lemma 7.5

A with domain $D(A)$ is self-adjoint.

Proof:

$D(A)$ is dense in X. Let $\left(g_{i}\right) \in X$. Suppose there is $\left(u_{i}\right) \in X$ such that for $\operatorname{all}\left(\mathrm{f}_{\mathbf{i}}\right) \in D(\mathrm{~A})$

$$
\left(A\left(f_{i}\right),\left(g_{i}\right)=\left(\left(f_{i}\right),\left(u_{i}\right)\right)\right.
$$

Let $j \in \mathbb{N}$. For all $\mathbf{f}_{\mathbf{j}} \in D\left(\mathrm{~A}_{\mathbf{j}}\right)$ we have

$$
\left(A_{j} f_{j}, g_{j}\right)=\left(f_{j}, u_{j}\right)
$$

by taking $\left(f_{i}\right)=\left(0,0, \ldots 0, f_{j}, 0, \ldots\right)$. From the self-adjointness of A_{j} it follows that $g_{j} \in D\left(A_{j}\right)$ and $A_{j} g_{j}=u_{j}$. Since $j \in \mathbb{N}$ is arbitrarily chosen $\left(g_{i}\right) \in D(A)$ and $A\left(g_{i}\right)=\left(u_{i}\right)$

Let Y be a Hilbert space. Then we define

$$
X_{k}=: Y^{\otimes k}=\frac{Y \otimes Y \otimes \ldots \otimes Y}{k \text { times }}
$$

We can identify $Y^{\otimes k}$ and $Y^{\otimes k-1} \otimes Y$ following the general theory about tensor products of Hilbert spaces $c f[R S ~ I], ~ p . ~ 49 . ~ N o w ~ l e t ~ T h e ~ a ~ p o s i-~$ tive self-adjoint operator in Y. Then we take $A_{1}=T=T^{\# 1}$ with $D\left(A_{1}\right)=D(T)$ and for $k>1$.

$$
A_{k}=T^{巴 k k}=: T^{[(k-1} 円 T
$$

with its domain the algebraic tensor product.

$$
D\left(A_{\mathbf{k}}\right)=D\left(A_{\mathbf{k}-1}\right) \otimes_{\mathbf{a}} D(T)
$$

Note that $A_{k}=\frac{T \text { 田 } T \underbrace{\boxplus}_{k \text { times }} \ldots T}{}=T \otimes I \otimes \ldots \otimes I+I \otimes T \otimes I \otimes \ldots \otimes I+\ldots$

$$
\ldots+I \otimes \ldots \otimes I \otimes T .
$$

With the aid of Theorem 5.3 it can be proved inductively, that all the $A_{k}{ }^{\prime}$ s are essentially self-adjoint in X_{k}. We denote the unique self-adjoint extension by $\widetilde{A}_{k} ; \widetilde{A}_{k}$ is positive.

The space $X=: \oplus \quad X_{i}$ is a well-defined Hilbert space and $A=$ $\operatorname{diar}\left(\tilde{A}_{1}, \tilde{A}_{2}, \ldots\right)$ is aself-adjoint operator in X.

We are now going to define a space of generalized functions in infinitely many dimensions. For X we take the Lebesgue space $L_{2}(\mathbb{R})$ and

$$
H=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}+1\right)
$$

the Hamiltonian operator of the harmonic oscillator, satisfying $H_{\psi_{k}}=(k+1) \psi_{k}, \quad k=0,1,2, \ldots$ with ψ_{k} the $k-t h$ Hermite function (see Illustration I).
Then $X_{k}=L_{2}\left(\mathbb{R}^{k}\right)$ and H_{k} is the Hamiltonian operator of the harmonic oscillator in k dimensions,

$$
H_{k}=\frac{1}{2} \sum_{i=1}^{k}\left(-\frac{\partial^{2}}{\partial x_{i}^{2}}+x_{i}^{2}+1\right)
$$

We denote $\underset{\substack{\infty \\ \oplus}}{\infty} L_{2}\left(\mathbb{R}^{k}\right)$ by $F(\mathbb{R})$ and the positive self-adjoint operator $\operatorname{diag}\left(H_{i}\right)$ by H_{∞}. The eigenvalues of H_{∞} are the natural numbers $N=1,2, \ldots$.

Using some combinatorics we can easily show that the multiplicity $M^{(N)}$ of the eigenvalue N is just 2^{N-1}. We assert that $e^{-t A}$ is a Hilbert-Schnidt operator if $t>\frac{1}{2} \log 2$. To this end we compute the sum of the squares of the eigenvalues of $e^{-t A}$,

$$
\begin{aligned}
\sum_{N=1}^{\infty} M^{(N)} e^{-2 N t} & =\sum_{N=1}^{\infty} 2^{N-1} e^{-2 N t}= \\
& =\frac{1}{2} \sum_{N=1}^{\infty} e^{-2 N\left(t-\frac{1}{2} \log 2\right)}<\infty
\end{aligned}
$$

From Theorem 1.11 and Theorem 2.9 we conclude that $\tau\left(F(\mathbb{R}), H_{\infty}\right)$ and $\sigma\left(F(\mathbb{R}), H_{\infty}\right)$ are nuclear, and following Chapter VI the Kernel theorems hold true.

Acknowledgement

I wish to thank Prof. J. de Graaf for the stimulating remarks and critical reading of the manuscript during the research and the writing. It is also a pleasure to thank Mrs. E. van Thiel, the typist, for an excellent job.

References

[B] De Bruijn, N.G., A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence; Nieuw Archief voor Wiskunde (3), XXI, 1973, pp. 205-280.
[Ba l] Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform, Commun.Pure and Applied Math., 14, 1961, pp. 187-214.
[Ba 2] Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform II, Commun. Pure and Applied Math., 20, 1967, pp. 1-101.
[BJS] Bers, L., John F., Schechter, M., Partial differential equations, Lectures in applied mathematics, Vol.III, Interscience Publishers, 1964.
[BLT] Bogolubov, N.N., Logunov, A.A., Todorov, I.T., Introduction to axiomatic quantum field theory, The Benjamins/Cummings Publishing Company, Inc., 1975.
[CH] Choquet, G., Lectures on analysis, Vol.II, W.A. Benjamin, Inc., New York, 1969.
[J] Judge, D., On Zemanian's distributional eigenfunction transform, J, of Math. Ana1. and App1., 34, 1971, pp. 187-201.
[G] De Graaf, J., A theory of generalized functions based on holomorphic semi-groups, T.H.-Report 79-WSK-02, Technological University Eindhoven, March 1979.
[K] Korevaar, J., Pansions and the Theory of Fourier transforms, Trans. Amer. Math. Soc., 91, 1959, pp. 53-101.
[KMP] Kristensen, P., Mejlbo, L., Thue Poulsen, E., Tempered distributions in infinitely many dimensions 1 , Commun. Math.Phys., 1, 1965, pp. 175-214.
[RS] Reed, M., Simon, B., Methods of modern mathematical physics, Vol.I, Academic Press, New York, 1972.
[SCH] Schaefer, H.H., Topological vector spaces, G.T.M., vol.3, Springer-Verlag, Berlin, 1971.
[W] Weidmann, J., Linear operators in Hilbert spaces, G.T.M., vol.68, Springer-Verlag, New York, 1980.
[Y] Yosida, K., Functional Analysis, Die Grundlehren der Mathematische Wissenschaften, band 123, Springer-Verlag, 1965.
$\left[\begin{array}{ll}2 & 1\end{array}\right]$ Zemanian, A.H., Orthonormal series expansions of certain distributions and distributional transform calculus, J.Math.Anal. and App1., Vol.14, 1966, pp. 263-275.
[Z 2] Zemanian, A.H., Generalized integral transformations, Pure and Applied Mathematics, Vol.18, Interscience. Publishers, 1968.

