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Abstract 

Let A ~ 0 be a self-adjoint unbounded operator in a Hilbert-space X • Then 

-tA the operators e are well-defined for all t E ¢. For each t > 0 we intro-

duce the sesquilinear form St by 

-tA -tA 
=: (e X,e tj) X,1j EX. 

The completion of X with respect to the norm II 0 lit' 

-tA 
=: II e xII X X E X 

1S denoted by Xt ' The space o(X,A) of generalized functions is taken to be 

o(x,A) =: U Xt 
t>O 

The test function space, corresponding to o(x,A), is denoted by T(x,A). 

~he vector space T(X,A) consists of trajectories, i.e. mappings ¢ ~ X 

which satisfy 

du 
dt == Au. 

Such a trajectory is completely characterized by its "initial condition" 

A co 
nCO) E D«e ) ). Note that 

T(X,A)::: n D(etA) = D«eA)co) • 
t>O 
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With respect to the space T(x,A) and o(x,A), I discuss a pairing, topo

logies, morphisms, tensorproducts and Kernel theorems. Finally I mentiort 

some applications, a.o. to generalized functions in infinitely many di

mensions. 

AMS Classifications 46F05 46P]O 
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Introduction 

Schwartiz'space of tempered distributions S'(lR) may be regarded as the 

ro 
dual of the space D(H ) c L2 (lR) , with 

H = 

(for a proof see [ZIJ or [K]). Note that D(H
oo

) is the Coo-domain of H, 1.e. 

co. k 
f E D(fl.) 1ff H f E D(H) for k == 0.1,2 ••••. 

co 
The space D(H ) can be considered as a "trajectory space" in the follow-

ing sense: 

Let u(O) E D(H
oo
). Define the mapping u 

u(t) =: Ht u(O) = et log Hu(O), log H ~ 0, t E t 

Then u is a so-called trajectory, i.e. u 
T has the property u(t + .) = H u(t) 

for all t,T E t. In this way each u(O) E D(H
oo

) is in one-to-one corre

spondence to a trajectory u : t ~ Ht u(O). 

This observation led me to develop a theory of generalized functions which 

is a kind of reverse of a theory as developed by De Graaf in CGJ. In [GJ 

the generalized function space is a space of trajectories and the test 

function space is an inductive limit of Hilbert spaces. In the present paper 

the space of generalized functions is an inductive limit of Hilbert spaces 

and the test function space a trajectory space. It c,an be looked upon 

as very general theory on distributions of the tempered kind. 
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The results of this paper are inspired by and can be compared with the 

results in [G]. As in [G] generalized functions can be introduced on ar-

bitrary measure spaces. I study the topologies of the spaces, their mor-

phisms, necessary and sufficient conditions suoh that Kernel theorems hold. 

The notions "trajectory space" and "inductive limit space" are used in 

this paper as well as in [G]. However, we are forced to prove some im-

portant theorems with different techniques. 

In this introduction I will illustrate the general theory by some examples 

I want to show that the theories of Judge, Zemanian and Korevaar (see [JJ, 

[Z2] and [K]) are special cases of ours. 

Example 

. d2 
Let A =--

dx 2 

Consider the anti-diffusion equation 

(1) = 

A solution with the property that 

will be called a trajectory. The set of trajectories is in one-to-one cor-

respondence to the set of permitted initial conditions.This set of initial 
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conditions consists precisely of all entire analytic functions uo,satis

fying 

J 
2 

luo(x + iy) 12 dx = O(e€y ) , 

The corresponding trajectory u(z,t) , z € IR, t € (, is given by 

(2) I 
2 

1 (z -w) 
u(z, t) = -- exp( 4t ) Uo (w) dw 

2/-'/1't K 

with contour K : ~ eia , l; € IR t e = ~rg/-'/1't • 

Note, that (2) defines an entire analytic function of two variables (cf. 

[BJS] , [WJ) • 

The complex vector space .(X,A) consists of all trajectories generated 

by equation (1). For the dual space cr(X,A) of T(X,A) we take 

cr(x,A). U Xt ' Here Xt denotes the completion of L2 (IR) with respect to the 
• t>O -tA -tA 

sesqu1linear f(trm (6I.,v)t""'(e u,e V)L2(:mr1t is dear that Xt c: X
T 

if 

t ~ T. o(x,A) is called the space of generalized functions. Note that 

-tA F € cr(X,A) iff there exists t > 0 such that e F € L2 (IR) • 

The pairing D~twell!n o(X,A) and T(x,A) is defined by 

(3) -tA 
<u,F> -: (u(·,t) ,e F)L2(IR), 

U € .(x,A) , F € cr(X,A). This definition makes sense if t > 0 is taken 

sufficiently large. The definition does not depend on the choice of t, 

since e-(t+.)A = e-tA e-TA, and e-tA is a symmetric operator for all t € IR. 
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Suppose P is a densely defined linear operator in L
2

(lR) with a densely 

* defined adjoint P which leaves T(x,A) invariant, so P*(T(x,A» c T(X,4). 

Then P defined by 

< u,PF> == < P*u,F > 

maps a(X,A) continuously into itself. P extends P to a continuous mapping 

zA 
in a(X,A). Examples of such operators Pare e ,Tb,Ra,ZA'V and MF, and 

iax compositions of these. Here (Tbf)(x) = f(x+b), (Ra f) (x) = e f(x). 

(Z). f) (x) = f(b), (V f) (~) '" !! U;) , (~f) (x) '"' F(x) f (x) with z E 11:, 

a,b e lR, ). € lR \{O} , and F an entirely analytic function satisfying 

2 
'F(X + iy) I :s c e€y 

for c > 0 and all € > 0 • 

x,y € lR , 

Some strongly divergent Fourier integral's can be interpreted as elements 

of a(X,A). Let h be a measurable function in 1R such that for some t > 0 
2 -tx the function x -+ hex) e is in L2 (lR) • The possibly divergent integral 

(lFh)(x) = f h(y)e
iyx 

dy 

lR 

can be considered as an element of o(x,A), because for t sufficiently 

large the function 

e -tA (IF h) == f 
1R 
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Since there is no t > ° such that e-tA is a Hilbert-Schmidt operator on 

X, there is no Kernel theorem in this case. This means that there exist 

continuous linear mappings from .(X,A) into o(X,A) which do not arise 

from a generalized function of two variables in the space o( L2 Cm.2) ,A IiJ A) 

a2 a2 
with A IiJ A = -(---2 + ---2)' For instance, the natural injection T(X,A) ~ 

ax dy· 
cr(x,A) is an operator of this type. 

Example 2 

Let X = L2([O,2n]) A a. 

D ( - ::2 ) = {u lu E H
2

([O,2rr]) , u(O) = u(2rr) , u'(O) • U'(2'}} • 

iny The functions y ~ e ,n € ~ , are eigenfunctions of the operator A a. 

with eigenvalues n2a., and they establish an orthonormal basis for L2 ([O,2n]). 

Solutions of the equation 

au 
at = 

have the form 

So we have 

U € T(X,A ) a. 

2a. 
n t 

e 
iny c e ,y€lR,t€(C 

n 

iff u(y,t) = I 
nQl 

2a. 
n tiny e c e 

n 
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2a 
. h' h h (en t ) . D f 11 1n w 1C t e sequence c converges 1n ~2-sense or atE t. It 

n 

is easily seen that every trajectory u E T(X,A) can be uniquely idettti-

fied with a function on SI, whose Fourier series has coefficients c 

satisfying 

for all t Ii: II: • 

2a n t e 2 Ic I < 00 , 
n 

n 

In the same way we can prove that the generalized function space o(x,A ) 
a 

consists of possibly divergent Fourier series I 
nUl 

cients g , 
n 

for some t > O. 

2a 
-n t e 2 Ig I < 00 n 

g e iny with coeffi
n 

S• f 0 f 11 0 h e-tA ~s H1'lbert-1nce or some t > , even or at> , t e operator ~ 

Schmidt, the Kernel theorems hold in this case. So all continuous linear 

mappings fromT(X,A) into o(x,A) arise from a generalized function of two vari-
_. I I 2 

abIes on the torus S 'x S in o(L2 ([O.27f] ), Aa !tI AJwith 
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Example 3 

The operators of example 2 are of a special kind. Let A he a positive 

self-adjoint differential operator in L
2
(I) with I = (a,b), -0<) S a <h S"". 

Suppose, that A has an orthonormal basis of eigenvectors ~n in L2(I) 

such that A~ ." A ~ with] S Al S A2 s .... Then we have n n n 

iff u(t) = I t E t , 
n=l 

and the sequence converges in tz-sense for all t E t. We can identify 
00 

u with a Fourier series I 
n=l 

00 

I 
n=l 

for all t €. t • 

c ~ in which the c satisfy 
n n n 

The generalized function space cr(L
2

(I) ,A) consists of possibly divergent 
0<) 

Fourier series 2 
n=l 

for some t > O. 

g ~ with coefficients g , satisfying nn n 

Kernel theorems hold iff for some t > 0 

I 
n=J 

-A t 
n e < ro. 
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Examples of such operators A are 

(1) 
d

2 
2 H- -2 + x + J) defined in L2 (lR) • 

dx 

The eigenfunctions of Al are the Hermite functions ~n with eigenvalues 

An = n + J , n = 0, ] ,2,... • cr(L
2

(lR) ,AI) is the class of generalized 

functions which was first introduced by Korevaar in [KJ. In the last 

chapter of this paper this space is more extensively discussed. 

(2) d x 
dx + 4" 

] 
+ 2 defined in L2«0,~» • 

The eigenfunctions of A2 are the Laguerre functions Ln with eigenvalues 

A .. n + I 
n n=0,J,2, •••• 

d 2 d 
.. - dx (l -x ) dx + I defined in L2«-I,1». 

The eigenfunctions of A3, which form an orthonormal basis are the functions 

cp .. In+! P where the P are the Legendre polynomials. The eigenvalues 
n n n 

A are 
n 

A 
n 

n=O,I,2, ••• 

Zemanian, in chapter 9 of [Z2], describes orthonormal series expansions 

for generalized functions. His test and generalized function spaces are 

precisely the spaces T(L2(I), log A) and u(L2(I), log (A». Here A is a 

positive self-adjoint differential operator in L2(I), which has a com-
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plete system of eigenfunctions. We also refer to Judge ([JJ) who genera

lizes Zemanian's theory to a class of diffential operators in L2(I) • 

For an application of our theory to distributions in infinitely many di

mensions see chapter 7 of this paper. 
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Chapter) 

The space .(X,A) 

Throughout this paper X denotes a Hilbert space with inner product (·,·)x. 

If no confusion is likely to arise this inner product will also be denoted 

by (.,.). Further A denotes an unbounded positive self-adjoint operator 

and we suppose that (EA)A~O is the spectral resolution of the identity 

belonging to A. Let ~ be a complex valued and everywhere finite Borel 

function on lR. We define formally 

-00 

00 

on the domain D(!jJ(A» = {x € X I rr~(A)12 d(EA X,X) < OO}. 
00 -00 

Thus (~(A)x,lj) = J ~(A) d(EA x,y) for all X € D(~(A» and all y € X, where 
-(X) 

(E
A 

x,y) is a finite Borel measure on lR. If ~ is real valued then ~(A) is 

self-adjoint. We have (~ • X)(A) = ~(A) X(A). 

The notation 

O<a<bSoo 

is often employed in this paper. By this we mean 

- 00 

where X(a,b] is the characteristic function of the interval (a,b]. And by 
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we mean 

-00 

For a detailed discussion of the operator calculus of a self-adjoint ope

tA 
rator see [YJ, ch. XI. For all t E ~ the operator e is well-defined 

00 

and D(e tA) consists of all 6 t X with f "le2lt l d(E
1 

6,6) < 00. 

n> 

We introduce the space of trajectories T(X,A). 

Def ini tion 1. 1 

T(X,A) denotes the complex vector space of all mappings u a; -+ X with 

the property that 

i) u is holomorphic 

ii) u(t) E D(eTA) and e1'A u(t) = u(t +1') for all t,1' E t . 

The mappings u of Definition 1.1 will be called trajectories. A trajectory 

u is uniquely determined by u(O), because qfO) = u2(O) implies 

tA = e u
1

(O) 

A 00 
for all t E t. It is obvious that for all u E T(X,A),u(O) E D(e ) ) and 

tA u(t) = e u(O) , t E t . 

Definition 1.2 

In T(x,A) we introduce the seminorms p ,en E IN) , by 
n 
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and the strong topology in -r(X,A) will be the:corresponding lOcally 

convex topology. 

Theorem 1.3 

Endowed with the strong topology -r(X,A) is a Frechet space. 

Proof: 

In T(X,A) we define the metric d by 

, U € T(X,A). 

For any u € -r(X,A) we have d(u) ~ 0 and finite. By standard arguments we 

can prove that d is a metric in T(X,A), which generates exactly the same 

topology as the seminorms p , n E ~ 
n 

We now prove the completeness of T(X,A). 

Suppose (uk)k€~ is a fundamental sequence in -r(x,A). Thus for any n E IN 

the sequence (uk(n)kelN is fundamental in X. Using the trajectory proper

ty ],].ii) we find that for any t > 0, the sequence (~(t)kElN is fun

damental in X. Let ut E X be the limit of the sequence (uk(t)kElN' Then 

for each T > 0 and h E D(e
TA

) 

TAh (u(t), e ) lim (uk(t) , eTAh) = (u(t +T),h) • 
k--' 

So u(t) E D(eTA) and eTAu(t) = u(t +'r). It is clear that by u : t -.- u(t), 

t > 0 , we define an element of T(x,A), and that u is the limit of the 

fundamental sequence (uk)kElN' 

o 
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TA For T > 0 we define the map e 

Lennna 1 .4 

't'A e f f E r<x,A) • 

For each T > 0 the map eTA is continuous from T(x,A) into itself. 

Proof: 

Let T > O. Then there is n E IN such that n > T. 

The conclusion follows from the fact that e(T-n)A is a bounded operator 

on X and the fact that Pk+n is a continuous seminorm in T(x,A) for all 

kEJN. 

Definition 1.5 

'-Ie define the function-algebra Fa(:JR) • Fa(:JR) consists of all everywhere 

finite, locally integrable functions ~ on :JR satisfying 

sup I~(x) etxl < 00 for all t > O. 
x>O 

Fa+(:JR) is the subalgebra of Fa(:JR) consisting of all ,positive functions 

in Fa(:JR) • 

Lemma 1.6 

If u E T(x,A), then there exists q; E Fa + (lR) and W E X such that 

tA 
u: t-+e ~(A)(,Q. t E G:. In other words u(O) =q;(A)w. 

fJ 
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Proof: 

Since u € ,(X,A), we can take N(O) = 0, N(n) > N(n-I), such that for all 

n € IN 

00 

f 
N(n) 

I deE). u(n),u(n» < 

+ Now define q, € Fa (1R) by 

q,o.) e-n )" if A € (N(n), N(n+l)J • 

0<> 

Then f (q,-1().»2 deE). u(D) , u(D» 
D 

N(n+l) 
00 

= L 
n=O 

f deE),. u(n), u(n»:::;; L ~ + II u(D)1I 2 • 
n=1 n N(n) 

Hence u(D) € D(4)-1 (A» and u(t) = etAq,(A) q,(A)-l u(D) == etAq,(A) w; with 

w = q,-I(A) u(D) the proof is complete. 

Lemma 1.7 

i) Suppose q,(A) is compact as an operator on X for all q, € Fa+(IR) • Then 

-tA for all t > 0 the operator e is compact on X. 

[J 

ii) Suppose q, (A) is Hilbert-Schmidt as an operator on X for all q, € Fa + elR) • 

Then there exists t > 0 such that the operator e- tA is Hilbert-Schmidt 

on X. 
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Proof: 

_A2 . *k
2 

i) By assumption e 1S compact as an operator on X, because (x ~ e ) ( 

+ _A2 
E Fa (lR) • Let ( l1 i) be the eigenvalues of e • Then 111 ~ 112 2: 

and 

(-log 

of A. 

j.l. -+- O. So for all i, (-log l1i)! 
l. 

11. ) ! -+ 00 The numbers (-log 
l. 

Especially for t > 0, we have 

exp(-t(-log j.l.)~) -+ 0 . 
1. 

is well tlefined and 

JJ.)~ are 
l. 

just the eigenvalues 

ii) We shall prove that there is k E IN so that e -kA is HS on X. Suppose 

this were not true. Then 
Nn 

there is a sequence (Nn) with Nn+l > Nn' NO= I 
-2A.n 

and N -+ 00 such that 
n 

values of A. 

I . N 
J= n-l 

e J > I. Here the A.'s are the eigen
J 

If for some k E IN there does not exist Nk E IN such that 

e 
-2 A.k 

J > I , then V
tElN 

be Hilbert-Schmidt. 

Now define ql E Fa + (lR) by 

~(A) = 
-nA 

e , A E {AN 
n-I 

e 
-2A.k 

J ~ 1 and e-kA would 

Then ~(A) should be Hilbert-Schmidt by assumption. But 

00 

N 
n 

I 
j=l 

2 
1<p(A·)1 

J 

n 
= I 

k=l 
e 
-2A.k 

J > n 

1: 1~(A.)12 is divergent, which is a contradiction. 
J j=1 o 
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Theorem 1.8 

A set B c ,(x,A) is bounded iff for every t € ( the set {u(t) I u € B} is 

bounded in X. 

Proof: 

- ) Each continuous seminorm p has to be bounded on B. Therefore, for all 
n 

n E 1N the set 

{u(n) I u € B } 

-,A is bounded in X. Because of the boundedness of e for each T with 

Re T> O. it foLLows that {u( t) I u € B} is a bounded set in X for each 

fixed t E (. 

~ ) B is bounded 1n T(X,A) iff every seminorm is bounded. 

Theorem 1.9 

A set K c ,(X,A) 1S compact iff for each t € ( the set {u(t) I u € K} is 

compact. 

Proof: 

_ ) Each sequence (u ) c K has aconverBent subsequence. This means that 
n 

in the set Kt := {u(t) U € K}, t € ¢ fixed, each sequence has a conver-

gent subsequence. So K
t 

is compact in X. 

~ ) Let (~) be a sequence in K. We shall prove the existence of a con

verging subsequence by a diagonal procedure. Consider the sequence 

{uk (I)} c KJ c X. KI is compact therefore a convergent subsequence in Kl 

exists. We denote it by (~ (1». The sequence u~ (2) has a convergent 

o 
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Proceeding in this way we 

m 
for m < l and (~(m» con-

subsequence in K
2

, We denote it by (~ (2», 

get sequences (~) c K such that <~) c <~) 
verges in Km' For the diagonal sequence <U:) k the sequence (~( t» converges 

to u(t) E K
t

• So we conclude that ~ -7 U in the strong topology. 

o 

Without proof, but for the sake of completeness we mention the following 

lemma. 

Lemma 1.10 

If P is a continuous seminorm on ,(x,A), then there exists k E m and 

c > 0, such that for all u E ,(x,A) 

p ( u ) sell u (k) II • 

Theorem 1.11 

I. dX,A) is bornological, Le. every circled convex subset in ,(x,A), 

that absorbs every bounded subset in ,(x,A) contains an open neigh-

bourhood of O. 

Ii. ,(x,A) is barreled, i.e. every barrel contains an open neighbourhood 

of the origin. A barrel is a subset which is radial, convex, circled 

and closed. 

III. ,(X,A) is Montel, iff there exists t > a such that e-
tA 

is compact 

as a bounded operator on X. 

IV. "X,A) is nuclear, iff there exists t > a such that the operator 

-tA e is Hilbert-Schmidt on X. 



- 20 -

Proof: 

I,ll T(x,A) is bornological.and barreled, because it is metrizable. For 

a simple proof see [SCH],II.8. 

III,.) 

Let (X) IN be a bounded s:eq.uence in x, and let cP E: Fa + (lR) • Then (cp(A)xn) 
n nE: 

is a bounded sequence in T(x,A). Since T(X,A) is Montel there exists a 

converging subsequence of (cp(A)x ). So we observe that cp(A) is compact 
n 

as an operator on X. Since cP E Fa+(lR) was taken arbitrarily, this holds 

true for all cP E Fa+(lR). Following Lemma 1.7 the operator e- tA is com-

pact for each t > D. 

- ) 

-tA Let e be compact. We use diagonal p~ocedure. Let (u ) be a bounded 
n 

sequence in T(X,A). For each T > 0 the sequence u (T) is bounded in X. 
n 

-tA I The sequence (e u (t+l» has a converging subsequence, (u (I», say. n n 

Analogously, the sequence (u l (2» has a converging subsequence (u2 (2» 
n· n 

We obtain subsequences (uk(k» that converge in X and have the property 
n 

k .t ,..., n IV 

that (u ) c (u ) , t < k. Now define u =: u . Then the sequence (u ) 
n n n n n 

is a subsequence of (u ), and (~ ) converges in T(X,A). We conclude that 
n n 

T,(x,A) is Montel. 

IV -) 

Suppose that e- tA is Hilbert-Schmidt for some t > O. T(x,A) is a nuclear 

space i~ and only if for each continuous seminorm p on T(X,A) there is 

another seminorm q ~ p such that the canonical injection t + ~ is a 
q p 

nuclear map. Here the Banach space T is defined as the completion of the 
p 

-I 
quotient space ·dx,A) I {p (O)}. We have proved in Lemma 1.JO that there 
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are c > 0 and k E 1N such that 

p(u) ~ c II u II U E T(x,A) . 

Hence T can be mapped into T by a bounded operator. Since the composi-
Pk p 

tion of a bounded operator and a nuclear operator is also nuclear, we 

proceed. 

Let I E IN, I > 2t. Pk+l ~ Pi" Let J be the canonical injection 

be the eigenvalues of A be-

longing to the orthonormal system (e.) , with Ae. = L e. , (j E IN) • Then 
J J J J 

with O. =: 
J 

g. = e 
J 

00 

Ju == I 
j=1 

-(k+I)A. 
e J 

-kL 
J e. E 

J 

e. 
J 

A 

'{ 

Pk 

Hence ~ is nuclear. 

.. ) 

.. 
II OJ II k+l == I , and E "[" 

Pk+l 

119j Ilk = I . 

Suppose T(X,A) is nuclear. Take p(u)::= lIu(O) II , u E T(X,A). Then T = X, . P 

since ,(X,A) is dense in X. Hence for some seminorm q the injection 

-kA T 4 X must be nuclear. Thus e is a nuclear map for k E 1N such that 
q 

Pk ~ q (see Lemma 1. 1'0) • 

e -kA is a Hilbert-Schmidt operator in X. 

o 
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Chapter 2 

The space a(X,A) 

For each t > 0 we define the sesquilinear form 

-tA -tA 
:- (e X, e y)X 

-tA and the corresponding norm II X II t =: II e X I~ • Let Xt be the completion 

of X with respect to the norm /I. lit' Then Xt is a Hilbert space with 

inner product (o,o)e and F E X
t 

iff IIe- tA FII < co, with e- tA the linear ope

rator on X extended to Xt • Since "F lit ;::: "F ". if • ;::: t we have the natural 

embedding 

X c X 
t T 

T ;::: t 

We remark that tA e : X + Xt establishes a unitary bijection. We now 

define the space a(X,A). X can be continuously embedded in a(X,A). 

Definition 2.1 

a(X,A) =: u 
n;:::m 

x ,n,m E IN • m fixed. 
n 

For the strong topology in a(X,A) we take the inductive limit topology 

generated by the spaces Xt , Le. the finest locally convex topology on 

a(X,A) for which the injections it : Xt + o(X,A) are all continuous. 

The inductive limit topology is not strict. We recall that the function-

algebra Fa(lR) consists of all <jJ : lR + lR satisfying sup 1<jJ (x) letx 
< 00 

x;::: 0 
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for all t > O. (see Ch. J). For each <I> E PaClR) and each F E a(X,A) we 

may consider <I>(A) F as an element of X as follows 

with t > 0 sufficiently large. 

We introduce the following seminorms on a(X,A). 

F E a(X,A) , 

for each <I> E Fa(lR) • 

Next we define the sets UtI. ,(jJ E Fa( R) , £ > 0, by 
'Y,e: 

u 
<I>,e: =: { F E a(X,A) I P<l> (F) < d. 

Before we formulate one of the fundamental theorems of this paper, we 

give some. conventions: 

Let F E o(X,A). Then there exists t > 0 such that e-t~ E X and the f01-

lowing expression is correct for each <I> E Fa( R) 

i) 

<lO 

<I> (A) F = I <1>(11.) eTA dEli. (e-TAF) 

o 
T ;::: t , 

( i) does not depend on the choice of T ;::: t). 

Hence 

ii) 1I<1>(A)FU
2 

= ]""1 <I> (A) 12 e 2TA d(fA(e-TAF) , e-TA F) , 

o 
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In the sequel we shall denote formally 

and 

(jJ(A) F == fa I\I(A) d fA F 

o 

III\I(A)FU
2 

= jiHA)1 2 
(EAF,F) 

o 

The meaning of these expression is given by (i) and (ii). 

Theorem 2.2 

1. V,I, ,( ljI EO Fa( JR), e:: > 0) is a convex, balanced and absorbing open 
'I',€: 

set in the strong topology 6f cr(X,A). 

II. Let a convex set Q c a(X,A) be such that for each t> 0 , Q n Xt 

contains a neighbourhood of 0 in Xt ' Then Q contains a set V with 
I\I,€: 

. + 
1\1 E i Fa (JR). 

So the family {~I, IljI EO Fa+(JR),€: > O} establishes a basis of the 
'1',£ 

neighbourhood system of 0 in cr(X,A). 

note: A set Q c cr(X,A) is open iff Q n Xt is open inXt for all t > O. 

Proof: 

I. By standard arguments it is easily shown, that ~I, is convex, balanced 
'I',€: 

and absorbing. We shall only prove that V,I, is open. 
'I',€: 

Let t > O. The seminorm Pljl is continuous on Xt ' because 
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for all F EX. Hence the set U,I. n X
t 

is open in X
t

' 
t . ~.E 

II.We proceed in four steps. 

a) Let Pn := fn d EX ' n Em. Then for each F € o(X,A) we have 

n-I 
n 

P n F = f d Ex F is an element of the Hilbert space X. because 

n-I 

the characteristic function X(n-J .nJ of the interv-al (n,..- J ,nJ is 

+ an element of the algebra Fa (]1). Now let r k be the radius of 
n. 

the largest open ball within Pn(X
k

) that fits within n n Pn(~)' 

Thus 

n 

rn,k = sup{p > 01 [F € Pn[o(x,A)] A IIP
n 

FI~ = J e-2kX 

n-I 

We have 

n 

J e-
2Xk 

d(EXF,F) 

n-) 

n 

n 
~ e 2nl f e-2X (k+l) d(EXF,F) 

n-} 

IIPnFI~.~ e 2 (n-l)l f e-2X (k+l) d(EXF.F). 

n-I 

So 
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Let liP FI! s e(n-J)l r k 0 • Then liP F\I b ~ r k h' So P FEn () Xk , n K n, +~ n K+~ n, +~ n 

(n··I)l .. nt 
and fn,k :c: e rn,k+l • Analogously let Pn F E Xk and IIPn FI'tt+l ~ e fn,k' 

nl -nl nl 
Then UPn FI~ ~ e e rn~k; so fn,k s e rn,k+l' 

From the above calculation, we derive 

e(n-l)l r s r s enlr 
n,k+l n,k n,k+l 

for all k,l E 1N u {OJ • 

b) For any fixed p > 0 and k E1N u {OJ the series L nP(f. k)-I is con-
n=1 n, 

vergent. Let P > 0 and k E1N u {OJ. There exists an open ball in ~+l' 

l E1N, with sufficiently small radius e: > 0, centered at 0 which lies 

entirely within n () Xk+l • Then for any n E1N we have rn,k+l:C: e:. With 

the inequality in a) it follows that 

(r )-1 
n,k 

I 
<- e: 

-(n-l )l 
e 

for all n E1N. From this the assertion follows. 

c) We define a func don v on lR by 

vex) for x E (n-1,n] 

v(O) = v(I/2) vex) o for x < 0 

Then + 
V E Fa (lR) • 



- 27 -

To show this, let t > 0, n €lN and let x € (n-I,nJ. Then 

V(x) 
tx e :s; nt e ~ 

Taking! > t and invoking the estimate in b) the result follows, 

d) We prove 

Suppose F E X
k 

for some k E IN. Then 

"" I II P n F II~ < 00 , and for! € IN 
n=l 

( ) liP FII ~ e-(n-l)! liP FII :s; e-(n-I)! IIFll
k

, 
*2 n K+l n k 

We have 

n n 

J 
n-I 

d(E, F,F) == ~4 r2 0 
1\ 4n n., f 

n-J 

2 I 2 
v (A) d(E,F,F) ~ ---4 r O. 

A 4n n. 

2 
So 2n Pn F E (Q n X) c: (9 n Xk+!) for every n € IN, ! E IN. In Xk+! we may 

represent F by 

F 
N 
1: (2n

2 P F) 
n=1 2n2 n 

+ . ( I ~) FN 
n=N+1 2n 
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with ( 
00 1 \-J 

F = I \ 
N \j=N+l 2j2 ) 

With (*2) it follows that 

00 

I 
n=N+I 

P F. 
n 

So FN -+ 0 in Xk+..t: Since n n ~+l contains an open neighbourhood of 0, 

there is NO E m such that FN € n n ~+l' Now FEn n ~+l because F is 
o 

a sub-convex combination of elements in n n ~+l' 

A posteriori it is clear that FEn n ~. 

Definition 2.3 

A subset W c a(X,A) is called bounded if for each neighbourhood U of 

o in a(X,A) there exists a complex number A such that W C AU • Cf.[SCH] • 

In Theorem 2.4 we characterize bounded sets in a(X,A) • 

Theorem 2.4 

A set W c a(x,A) is bounded iff 

Proof: 

We remark that W is bounded iff "'ljJEPatm.) 3M;>0 "'FEW 1Iq..(A) FI! < M • 
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- ) If not then we have 

II e-kA FII > M • 

_A 2 + 
Since the function :>.. + e belongs to Fa OR) we have 

M 2 f e -kH2:>.. 

o 

with p> 0 such that 

2 2 
II e -A F 112 < p for all F E: W • 

If k = 1, then following (*) we can take M = 2, N} > 0 and F
J 

E W such 

that 

We define inductively sequences (F
k

) in W, (N
k

) inE. For k < l + 1, we 

assume that we have found N
k

+
1 

such that 

Now let k = l + I, and suppose 

is true. Then W is bounded in Xl +1, because with (**) we deduce 
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J e-2(1+I)A d(E
A 

F,F) 

o 

for all F E: W. 

2 
2(l+1)N1 2 

~ e p + I + 1 

If not choose NI+l > N.e+ I and FI+l E W such that 

If our sequence terminates for some k E :IN then W is a bounded set in Xk • If 

that is not the case, then define 

<jJ(A) -Ak = e k = 1.2, .•. - co 

+ Then <jJ E Fa OR) , and 

J 

N 

F ,F ):?: f n 
n n 

e -2An d(E, F ,F ) > n. 
1\ n n 

o 

Contradiction • 

.. ) 
+ Let <jJ E Fa OR). Then for all FEW 

N 
n-l 

In the next theorem we characterize sequential convergence in cr(x,A). 

o 
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Theorem 2.5 

Let (F ) AM be a sequence in o(X,A). Then we have F -+ 0 in the strong n n<:.ll.'t n 

topology iff there exists t > 0 such that (Fn) C X
t 

and II Fn lit -+ O. 

Proof 

.. ) 1Iq,(A) Fnll = ilq,(A) etA e- tA Fn ll ~ 1Iq,(A) etAuUFnllt -+ 0 

+ ~ ) Suppose F -+ O. Then for any ~ € Fa OR) n 

II HA) F II -+ 0 • 
n 

Hence (Fn) is a bounded sequence in o(X,A). So there exist M > 0 such that 

UFnilt < M • (n € IN), for some t > O. Let • > t. 

L 00 

IIF 112 J -2TA 

f -2.A 
d(E

A 
F ,F ) • = e d(E" F ,F ) + e n • n n n n 

0 L 

First, choose L > 0 so large that 

00 
00 

(*) J 
-2.A 

d(E" F ,F ) ~ -2(.-t)L 
f e-

2t
" deE F F) s e e n n " n' n L 0 

~ 
-2(.-t)L e M < £2/4 

for all n €lN, and € > 0 fixed. 

Next, observe that the function 

if A € [O,L] 

elsewhere 

is in Fa+QR). So there exists nO € IN such that for all n > nO' 
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From (*) and (**) the assertion follows. 

Theorem 2.6 

i) Suppose (F ) ~T is a Cauchy sequence in o(X,A). Then there exists 
n nt".lL' 

t > 0 wi th (F ) c X and (F ) a Cauchy sequE!nce in Xt • . n t n 

ii) o(X,A) is sequentially complete. 

Proof: 

i) An argument similar to the proof of the preceding theorem. 

ii) Follows from i) and the completeness of X
t

• 

Theorem 2.7 

A subset K c o(X,A) is compact iff there exists t > 0 such that K c X 
t 

and K 1.S compact in Xt • 

Proof 

4= ) let (~111) be an open covering of K in o(X,A). Then ([lex n Xt ) is an 

open covering of K in Xt • So there exists a finite subcovering of ([la)' 

N 
(Qa.)i=l ' say, with 

1. 

N 
K c U ([la. n X

t
) 

i=l 1. 

N 
C U [la. • 

i=l 1. 

~ ) K is compact, hence a bounded set in o(X,A). So there is t > 0 such 

that K C X
t 

is bounded in X
t

, with bound M, say. We show that K is 

compact in Xt +
T

, T > O. Let (Fn) be a sequence inK. Then there exists a 

converging subsequence (F ) C K with F ~ F, convergence in o(X,A). So 
nj nj 

o 

[J 
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(F
n

. - F) is a bounded sequence in Xt and 1Iq,(A)(Fn• - F) II -+ 0 for all 
J + J 

q, E Fa OR) defined by 

- (t+ ) 

q,(A) = {e 
o 

if A E [O,TJ 

elsewhere 

with arbitrary T > 0 and. > 0, fixed. We conclude (cf. the proof of Theo-

rem 2.5) that 

Thus K is compac t in X t+. 

We define the following sesquilinear form in X 

x,y E X, 

for q, € Fa+OR). Let Xq, be the completion of X with respect to the norm 

II X ff q, =: II q,(A)x II X. Then Xq, is a Hilbert space with the sesquilinear 

form ("'}q, extended to Xq, as an inner product. Note that Xq, is naturally 

injected in X if q, ~ X. 
X 

Lemma 2.8 

Let H E Then H E o(X,A) • 

Proof 

Suppose this were not true. Then for every k Em 

o 
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L 

J e-
2kA 

d(E" H,H) == ~ 
o 

Thus there is a sequence (N
k
), NO == - "", ~-l < Nk , (k t IN), and Nk + "" 

such. that for all k ElN 

-2k)' 
e d(E" H,H) > I • 

Define X on (O,~) by X().) 

IlX(A)HII == 00. 

Contradiction! 

In the following theorem we use the standard terminology of topological 

vector spaces (see [SCH]) in order to make a link to the general litera-

ture about this subject. 

Theorem 2.9 

.I. o(X,A) is complete. 

II. o(X,A) is bornological. 

III. o(X,A) is barreled. 

IV. o(X,A) Montel iff there exists t > 0 such that the operator 
-tA 

1S e 

is compact on X. 

V. o(X,A) is nuclear iff there exists t > 0 such that the operator 
-tA e 

is Hilbert-Schmidt on X. 

o 
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Proof: 

I. Let (F.) be a Cauchy net in crex,A) with i E D, D a directed set. then 
L 

for each ~ E Fa+OR) , (~(A)F.) is a Cauchy net in X. Since X is com
L 

plete, there exists F € X such that ~(A)F. ~ F • 
~ L ~ 

+ Let q"X E Fa OR). Then a simple calculation shows (T):F
tl

• 
",·X 

== q,(A) F 
X 

-1 = x(A) F4' Define F E Xq, by F =: q, (A) 
+ 

Fq,' Let X E Fa OR) • Then 

X-I (A) F E X and with (T) 
X X 

So FEn + X ; thus F E cr(X,A). Finally, II X(A)(F. - F) II == 
. CjlEFa OR) Cjl 1 

::: IIx(A)F. - F II -+- 0 for all X E Fa+OR). Thus o(X,A) is complete. 
L X 

II. Bornological means that every circled convex subset n c o(x,A) that 

= 

absorbs every bounded subset B c cr(X,A) contains an open neighbourhood 

of O. Now let n c cr(X,A) be such a subset. Let U
t 

be the open unit 

ball in Xt ' t > O. Ut is bounded in cr(X,A) , so for some £ > 0 one 

has £ Ut c n n Xt ' We conclude that n n Xt contains an open neigh

bourhood of 0 for every t > O. Following Theorem 2.2 n contains a 

set U,I. • 
",,£ 

III.A barrel V is a subset which is radial, convex, circled and closed. 

We have to prove that every barrel contains an open neighbourhood of 

the origin. Because of the defini don of the indued ve limi t topology 

V n Xt has to be a barrel in Xt for each t > O. Since Xt is a Hilbert 

space, Xt is barreled, and there exists an open neighbourhood of the 

origin, 0, say. wi th 0 c V n Xt • Again <the condi dons of Theorem 2.2 are 

satisfied so that V contains a set ~1. • 
""I': 
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-tA . IV. ~ Suppose e ~s compact. 

Let W c O'(X,A) be closed and bounded. Then W c Xt for some to> 0 and 
o 

vi is closed and bounded in all Xt + ' T > 0 • Let <:::;. denote the natural 
o T 

injection of Xt in Xt +t' and consider the diagram 
o 0 

x 
-tA 

e 

x 

Since the vertical arrows are isomorphisms, <;. is a compact map and W is 

compact in Xt +t' So W is compact in 0' (X,A) • 
o 

- ) Suppose O'(x,A) is Montel. Let (u ) be a bounded sequence in X. Then 
n 

(Un) is bounded in O'(x,A). Consider the closure of the sequence (Un) in 

O'(x,A). This closure is a closed and bounded set in o(X,A). Thus (U ) 
n 

contains a O'(X,A)-converging subsequence, (u ), 
n. say. So(c),(~)u ) is X n. 

J J + convergent for all ~ € Fa (lR). Thus ~(A) is compact as an operator on 

+ -~ X for all ~ € Fa (lR) • Then by Lemma ].7 the operator e is compact 

for each t > O. 

V. ~ ) Suppose e- tA is Hilbert-Schmidt. Then there is an orthonormal 

sequence (e ), which is a complete basis for X and 
n 

and 

Ae =A e. 

co 

I 
n-l 

n n n 

-A t 
n e < <lO • 

A + <lO, 
n 

O'(x,A) is nuclear iff for every continuous seminorm p on O'(X,A) there 
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is another seminorm q ~ p such that the canonical injection o C,o 
q p 

is a nuclear map. Here 0 is the completion of a(X,A)j -1 • Since 
p p ({O}) 

the composition of a nuclear operator with a bounded operator is again 

nuclear, we may restrict ourselves to seminorms P<\l ,<\I E Fa+(JR) . 

Take 1<\11 ~ 1. If <\I E Fa+(JR) , then etA <\I(A) is a bounded operator on X. 
t . ..A -A 

SO for each v > 0 the 6perator ($(A»'V""'= e- t (ev <\I(A»v is Hilbert-

+ 1 
Schmidt. Now take ~ E Fa (JR) and X :: <\1 2

• Then the canonical injection 

00 

<\I~ 0. )(~!(A) q;! (A)(<\I-! p, ) J (1, = z: u • e »<\I-l(A ) e 
n=1 n n n n n 

_1 
<\1-1 (A ) Since q; 2(}" ) e E 0 and e € 0<\1' with n n X n n 

II <\I-!P. ) e II = and ,,~-1 (}" ) e. II = , n E 1N • n n X n n 

00 

I <\I (A )li and since I < co J is a nuclear map , 
n=1 n 

- ) Suppose a(X,A) is nuclear. The Hilbert space X may be injected in 

every <1<\1 with ~ E Fa+(lR) • Let <\I E Fa+(lR) and X E Fa+(JR) with X ~ q, 

such that Jx.~ is nuclear. The canonical injection J~ : Xc;. Oq; is equal 

to J . J ,I. with J : X <;. a . Since J is bounded, and J ,I. is nuclear 
X X,~ X X X x,~ 

Jq, is a nuclear mapping. SO q,(A) is a Hilbert-Schmidt operator on X. 

Since this holds true for all q, E Fa + (JR) , by Lemma 1.7 the operator e -tA 

is Hilbert-Schmidt on X for a well-chosen t > O. 

o 
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Chapter 3 

The pairing of T(X,A) and o(X,A) 

On T(X,A) x o(X,A) we introduce a sesquilinear form by 

< u , F > =: (u(t) , e -tA F)X 

Note, that this definition makes sense for t > 0 sufficiently large, 

and that it does not depend on the choice of t > O. We remark that <g,F> = 0 

for all F € cr(X,A) implies g ... 0 ( use the fact that X c a(X,A», and also 

that <u,G> = 0 for all u ~ T(X,A) implies G = O. We prove the last asser-

tion. So suppose that <u,G>'" 0 for all u € T(X,A). Then following Lemma 

1.6 we have 

< <peA) w, G > ... (w, <peA) G)x ... 0 , 

+ + for any IV E X and <p E Fa (lR) • Hence <p (A) G = 0 for all q> E Fa (lR) • Thus 

G = O. 

Theorem 3.1 

i) For each F E cr(x,A) the linear functional g ~ <g,F> is continuous 

in the strong topology of T(x,A). 

ii) For each strongly continuous linear functional l on T(x,A) there 

exists G E a(X,A) such that leu) ... <u,G> for all u E T(x,A). 

iii) For each v E ,(x,A) the linear functional G ~ <v,G> is continuous 

in the strong topology of cr{X,A). 



- 39 -

iv) For each strongly continuous linear functional m on cr(X,A) there exists 

W € r(X,A) such that meG) = <w,G> for all G € cr(X,A). 

Proof: 

i) Let g + 0 in .(X,A), and let F E cr(X,A) • Then 
n 

tA -tA I<g ,F>I = I(g (t), e- F)x l sllg (t)lIl1e FII+O, 
n n n 

whenever t > 0 is large enough. 

+ 
ii) Let .t be a continuous linear functional in .(X,A). Let q> E Fa (lR) • 

Then the linear functional .t (x) = .t(q>(A)x) , (x € X) , is continuous q> 

on X, and so there exists n € X such that .t (x) = (x,O ) for all q> q> q> 

X € X. We have 

+ cp(A) nq, == q,(A) ncp , q>,q, € Fa (lR) , 

and 

+ 
q> E Fa (lR) • 

cp -1 + Now Ie t F = qJ (A) 6 for each cP E Fa (lR) • Then 
q> 

with the aid of (*). Take q> E Fa+(lR) fixed, and let F = Fq> • Then 

from the above paragraph we have 

v + 
q,€Fa (lR) 

F = Fq, and q,(A) F = Oq, E X 
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q>EFa (1R) 
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Following Lemma 2.8 we have F E a(X,A), and there exists t > 0 such 

that 

f(h) -I 
(q> (A)h, cp(A)F)x = 

h E T(X,A) • 

iii)Let v E T(X,A) , and let G ~ 0 in the strong topology of a(X,A). Then 
n 

there exis ts t > a such that lie -tA G II ~ 0 • Hence 
n 

I <v, G > I ~ II v( t) 1111 e -tA G II ~ 0 • 
n n 

iv) Let m be a continuous linear funtional in a(X,A). Then for each t > 0 

h I , f "1 tA , , t e 1ne'ar unct10na m ~ e 1S continuous on X. 

So for all t > 0 there exists x(t) E X such that 

m 0 etA (g) - (9, x(t» 9 EX. 

TA If 9 E D(e ), T > 0, then 

and also 

tA moe 

m 0 

(eTA g) TA 
(e g, x(t» 

(g, x( t + T) • 
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,A TA 
Thus x(t) E D(e ) for every T > 0, and x(t + T) = e x(t). Define 

w E T(X,A) by 

w : t + x( t) • 

Then meG) = m 0 etA (e- tA G) 

Definition 3.2 

The weak topology in T(X,A) is the toplogy generated by the seminorms 

o 

l<u,F>I, F € a(X,A) • The weak topology in a(X,A) is the topology generated 

by the seminorms l<u,F>I, u E ,(x,A). 

A standard argument, e.g.[Ca] II, § 22, shows that the weakly continuous 

functionals on T(X,A) are all obtained by pairing wiel elements of a(X,A), 

and vice versa. From this assertion and from Theorem 3.1 it then follows 

that o(X,A) and ,(X,A) are reflexive in the strong as well as in the weak 

topology. 

Theorem 3.3 

i) Let Z c o(X,A) be such that for each g € ,(X,A) there exists M > 0 
g 

such that for every H E Z 

l<g,H>1 S; M 
g 

Then there exists t > 0 and M > 0 such that for every H E Z 

ii) Let P c ,(X,A) be such that for each F € o(x,A) there exists MF > 0 
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such that for every g E P 

l<g,F>1 :5 ~ 

Then for every t > 0, there exists Mt > 0 such that 

Proof: 

Let 4 E Fa+(lR). Then following Lemma 1.6 

\/XEX ~/I. I < 4 (A) x, G > I :::; M,l. ,G E Z • 
'!',x 

,!"X 

Hence, from the Banach-Steinhaus theorem in Hilbert spaces, we derive 

G E Z • 

Since 4 € Fa+(lR} arbitrary, the set Z c cr(x,A) is bounded. With Theorem 

2.4, the result follows. 

ii) Let t > 0, X E X. Following our assumption, there exists Mt,x> a such 

that 

\/ I < g , etA x> I 
g€p == I(g(t), x)1 < 

Hence, there exists Mt > 0 such that 

for all g E P. 

M t,x 

o 
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Theorem 3.4 (weak convergence in T(X,A» 

g ~ 0 weakly in T(X,A) iff n 

Proof: 

v V 
t>O x€X 

tA 
For all x EX: <gn' e x> = (gn(t), x)X ~ 0 . 

-) For all G E a(X,A) there is t > 0, sufficiently large such that 

-tA 
e G E X. So 

Corollary 3.5 

i) Strong convergence in T(X,A) implies weak convergence. 

ii) Every bounded sequence in T(X,A) has a weakly converging subsequence. 

(with a diagonal argument~) 

Theorem 3.6 (weak convergence in a(X,A» 

G ~ 0 weakly in a(X,A) iff n 

Proof: 

(W,G) ~ 0 • 
n t 

-~ - ) Let u E T(X,A). Since e G ~ 0 weakly in X, and u(t) E X, it fol-
n 

-~ lows that <g,Gn> = (g(t), e Gn)x ~ o. 

~ ) The set {G In E IN} c a(X,A) is bounded. So following Theorem 2.4 n 

o 
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there exists t > 0 and M > 0 such that 

-tA II e G
n 

I~ :s; M , (n € IN) • 

Now let X € X, and let T > O. Then 

00 00 

L L 

Since <~{A)x t G > -+ 0, (n -+ 00), for all ~ € Fa+(IR) , by assumption, we 
n 

may take 

if A € (O,LJ 

elsewhere 

+ Then ~L € Fa (IR) for every L > 0, and 

(**) I ~L (A) d(EA Gn,x) -+ 0 • 

o 

From (*) and (**) we obtain 

o 

So for all T > 0 and all x € X 

o 
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Corallary 3.7 

i) Strong convergence of a sequence in cr(X,A) implies its weak convergence. 

ii) Every bounded sequence in cr(X,A) has a weakly converging subsequence. 

Theorem 3.8 

The following three statements are equivalent. 

1") " 0 -tA " " X There eX1sts t > such that e 1S a compact operator 1n • 

ii) Each weakly convergent sequence in T(X,A) converges strongly in T(X,A). 

iii) Each weakly convergent sequence in cr(X,A) converges strongly in cr(X,A). 

Proof: 

i} .. ii) Let (f ) C T(X,A), and suppose f -+ 0 weakly. Then 
n n 

VX€X Vt>O : (fn(T),X)x -+ O. So fn(T) -+ 0 weakly in X for all T > O. Using 

-tA the compactness of e we get 

strongly in X. 

+ ii) .. i) Let (x ) c X with X -+ 0 weakly in X, and let <p € Fa em.) • Then n n 

<peA) X -+ 0 weakly inT(X,A), and by assumption also strongly. We conclude 
n 

that <peA) X -+ 0 strongly in X. So <peA) is compact as an operator in X. 
n 

-tA Following Lemma 1.7 there exists t > 0 such that e is compact. 

i) .. iii) A weakly convergent sequence in cr(x,A) converges weakly in some 

XT ' T > O. The natural injection XT c;Xt +T is compact, But then our 

sequence converges strongly in Xt +
T

' 

iii) .. i) Let X -+ 0 weakly in X. Then X -+ 0 weakly is cr(X,A). So for all 
n n 
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+ 
<p € Fa OR.) we have 

<p(A) x. + 0 strongly in X , 
n 

with the aid of iii). This implies that <p(A) is compact s an operator 

+ 
in X for all <p € Fa OR). Hence following Lermna 1.7 there exists t > 0 

-tA such that e is compact. 

o 
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Chapter 4 

Characterization of continuous linear mappings between the spaces 

.(XeA), .(Y,B), o(X,A) and o(Y,B) 

Let B 2'.. 0 be a self-adjoint operator in a Hilbert space Y. In this chapter 

we shall derive some necessary and sufficient conditions such that the 

linear mappings T(X,A) ~ T{Y,B), .(X,A) ~ o(Y,B), o(X,A) ~ T(Y,B) and 

o(X,A) ~ o(Y,B) are continuous. First we prove some auxil1iary results. 

Theorem 4.1 

Let L be a densely defined linear operator from D(L) c X into Y, and let 

L~(A) : X ~ Y be defined and bounded for all ~ E Pa+(lR) • Then there exists 

-tA t > 0 such that the operator Leis bounded. 

Proof 

Suppose the operator L e-kA is unbounded for all k E IN. Then we have 

v. V V· 3. 
kElN a>O C>O o>a II L P e-kA II > C 

(a,b] 

<lO 
Here we use the notation P(a,b] = [<lOX(a,b](A) d EA, see Chapter I. 

With the aid of (*) we construct a sequence (Nk) c lR+ with NO = -co, 

and N. ~ <lO, such that 
J 

-kA 
II L P (N

k
_ I ,~J ell> k , (k E IN) • 

For each k E IN there exists Yk E Y with II Yk " = I, and 
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-kA * II (L P (N N ] e ) iJk II > k • 
k-l' K 

(We note that L P(Nk_1'NkJ is a bounded operator from X into Y.) 

Now let q> lR -+ lR be given by 

Then <p E Fa+(lR) , so Lcp(A) is bounded. But 

co 
~ -kA 2 = 

II L L e P (N N ] II 
k=J k- I' k 

00 

\ -kA * 2 
::: II L P (N N ] (L e P (N , N J) II ~ 

k= I k- I' k k-I k 

00 

~ II 1: 
k==l 

00 

= -kA * 2 L II (L e PeN N J) X II 
k=l k-l' k 

for every X E X wi th II X II = I. 

Especially for X == iJl' we get 

00 

II L cp(A) 112 ~ L II (L e-kA p( J)* iJfI 112 > [2 • 
.. k= I Nk- l ,Nk .{.,. 

Contradiction: 

[] 
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In the same way we can prove: 

Corollary 4.2 

Let K : X + Y be a densely defined linear operator such that ~(B) K can be 

+ extended to a bounded operator in X for all ~ E Fa (m) . Then there exists 

-tB t > 0 such that e K can be extended to a continuous operator from X 

into Y. 

Lemma 4.3 

A linear mapping L : L(X,A) + Y is continuous in the strong topologies 

-tA of L(X,A) and Y iff there exists t > 0 such that Leis a bounded ope-

rator from L(X,A) c X into Y. 

Proof: 

+ .. ) Let ~ E Fa OR) • The mapping ~ (A) : X + L(X,A) is continuous, because 

tA 
e is bounded for all t > O. Now suppose that L : L(X,A) + Y is 

continuous. Then the linear operator L ~(A) : X + Y is continuous. Since 

+ 
~ E Fa (m) is taken arbitrarily, we apply Theorem 4.1 and find that there 

-tA is t > 0 such that Leis a bounded operator in X. 

~) Let (u ) be a nullsequence in L(x,A). Then Luis a nullsequence in 
n n 

Y, because L u = (L e- tA) u (t) and L e- tA is bounded for t > 0 suffi-
n n 

dently large. 

Lemma 4.4 

A linear mapping K : X + o(Y,B) is continuous in the strong topology of 

-tB both X and o(Y,B) iff there exists t > 0 such that e Kis a continuous 

operator from X into Y. 
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Proof: 

K X ~ a(Y,B) is continuous iff ~(B) K: X + Y is continuous for all 

+ 
<p E Fa (lR) " 

~ ) Follows form Corollary 4.2 

~ + ., ) Trivial, because each qJ(B) e is bounded for each q> E Fa (lR) • 

Lemma 4.5 

A linear mapping P : o(X,A) + V, where V is an arbitrary locally convex 

topological vector space, is continuous 

i) iff for each t > 0 the mapping P etA: X + V is continuous. 

ii) iff for each nullsequence (G ) in a(X,A) the sequence (P G ) is a null-
n n 

sequence in V. 

Proof: 

i) a(x,A) has the inductive limit topology therefore P has to be continuous 

when restricted to Xt • 

tA 
~ ) e is a continuous isomorphism from X onto Xt , and Xt is continuously 

injected in a{X,A) if the latter has the inductive limit topology. So 

P etA is continuous from X into V • 

., ) Let Pt denote the restriction of P to Xt • Since P etA is continuous 

on X, Pt is continuous on Xt " Let n be an open-O-neighbourhood in V. 

-1 Then for each t > 0, P (n) n X
t 

= p~l(n) is an open-O-neigbourhood 

o(X,A). 

ii) Trivial, because nullsequences in o(x,A) are nUllsequences in some X
t 

Hnd vice versa. 

o 

o 
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Linear mappings from T(X,A) into T(Y,8) 

Theorem 4.6 

Let R : .(X,A) + T(Y,8) be a linear mapping. Then the following conditions 

are equivalent. 

I. R is continuous with respect to the strong topologies of .(x,A) and 

.(Y,8). 

tB --rA II. For every t > 0 there is T > 0 such that the operator eRe is 

bounded in X. 

III. For every G E 0(Y,8) the linear functional 

f + <Rf,G>, (f E .(X,A» , 

is continuous. 

Proof: 

I ~ II) For every t > 0, the operator e
t8 

R is continuous from -r(X,A) into Y. 

Following Lemma 4.3, for each fixed t > 0, there exists T > 0 such that 

e t8 
R e-TA is bounded. 

II ~ I) Let u + 0 in .(x,A) and let t > O. Then there is T > 0 such that 
n 

e t8 R u = (e t8 R e-TA)u (-r) + O. 
n n 

I ~ III) trivial. 

+ III ~ II) Let t > O. For each fj) EO Fa (m.) and 9 E Y, we define a linear 

t8 functional on X by X + (e R <peA) x,g)y • This linear functional is con-

tinuous. So there exists 9 E X such that 
<p 

t8 
(e R ~(A) x,g)y 
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+ Replacing X by q,(A) y, q, E Fa (m.) , we have 

9 = m(A)g,1. tpoq, 'I' 't' 

So 9 € r(x,A) following 1.6. From (*) we obtain rp 

9 E Y 

and (e tB R <p(A»* is defined on the whole of Y. Since etB R <peA) is defined 

on the whole of X, (e
tB R ~(A))* is bounded. So etB R rp(A) is bounded. With 

the aid of Theorem 4.1, we can conclude that there is T > 0 such that 

tB R -TA e e is bounded. 

Corollary 4.7 

Suppose Q is a densely defined closable operator of X into Y. If D(Q) ~ 

,(x,A) and Q(T(X,A) C T(Y,B), then Q maps ,(x,A) continuously into .(Y,B). 

Proof: 

Let t > 0 and let tp E Fa+(m.) • Since etB Q<p(A) is defined on the whole of 

X, its adjoint (e
tB Q tp(A»* is bounded. The adjoint is densely defined, 

-tB * -tB * because e D(Q) is dense in Y. and on e D(Q ) one has 

<p (A) Q* tB 
e 

So (e tB Q rp(A»* is defined on the whole of Y and bounded. Thus etB Qrp(A) 

[J 

is bounded. Since rp E Fa+(m.) is taken arbitrarily, according to Theorem 4.1, 

there is • > 0 such that etB Q e-TA is bounded. According to Theorem 4.6 

Q is a continuous mapping of ,(X,A) into ,(Y,B) • 
o 
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Continuous linear mappings T(X,A) + cr(Y,B) 

Theorem 4.8 

Let W : T(X,A) + cr(Y,B) be a linear mapping. W is continuous with respect 

to the strong topologies of both T(X,A) and cr(Y,B) iff there exists t > 0 

-tB -TA and T > 0 such that the operator eWe is bounded as an operator 

from X into Y. 

Proof: 

First, note that both W rp(A) : X + cr(Y,8) and HB)W : ·r(x,A) + Yare con

tinuous mappings for all rp , <jJ E Fa + (IR) • So for all cP E Fa + (IR) there is 

-tB -tA t > 0 such that e W rp(A) and cp(B) Weare bounded on X. (see Corol-

lary 4.3 and 4.4). 

Now suppose the assertion is not true. Then we have 

v V V V 3 3 t>O pO K>O N>O M>N x,1I X IF1 

(*) -tB -TA 
II Q(N ,MJ e W P (N ,MJ e X II > K 

with 

00 

P(N,MJ 
-co 

00 

Q(N,MJ = J X(N,M] (>.) d fA ' as usual. 

If this were not so, then there is t > ° and T > 0, and K > 0 and N > 0 

such that for all M > N and for all x,1I X II = 1 

-tB -TA 
II Q(N ,MJ e W P (N ,M] e X II > K 
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-aA 
e (A £ lR) 

is .1n 
+ Fa (lR) for eaeh a > 0 , there are t), t2 > 0 such that 

-t B 
II e 1 W ~ (A) I! 

T 
< 00 

-t A 
and II ql t (B) W e 2 II < (X) 

So there exists C > 0 and tl,T' > 0 such that for all M > 0 

-t'B -TIA 
IIQ(O,M] eWe P(O,M]II < C. 

-t'B -T'A 
This implies the boundedness of e (J e and contradicts our assump-

tiona 

Following (*) there are sequences (~), (N
k

) in IR+ with tk t 00 and Nk t co, 

Nk+1 > ~ > 0 '" NO' and there is a sequence ("k) in X with II "k ,,= 1 and 

Pk"k "k for all k E :IN, such that 

-t B -~A 
II ~ e k W P

k 
e "k II > k • k E :IN. 

Here ~ Q(N N ] and Pk k-l '-K 

~(A) , k E :IN, else cp(A) 

00 

and let X = I ~ "k' Then Pk X = ~~, and 
k=1 

0, 
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00 -t B -tkA 2 2 
2: 11<\ e k W II cp(B) W q>(A)x II = e Pk X II ~ 

k=l 

N 
1 k

2 
:<: 2: 

k 2 = N 
k=l 

for all N E IN. 

This is a contradiction, because cp(B) W<p(A) should be bounded. 

-tB -TA -) Let u + 0 in T(x,A). Then (e We) u (T) + 0 . Thus 
n n 

(V u -)- 0 ~n o(Y ,B). 
n 

o 
Continuous linear mappings a(X,A) + T(Y,B) 

Theorem 4.9 

Let r : a(X,A) + T(Y,B) be a linear mapping. r is continuous with respect 

to the strong topologies of o(X,A) and T(Y,B) iff for each t > 0 and for 

tB TA. each T > 0 the operator ere ~s a bounded operator from X into Y. 

Proof: 

- ) Let (G ) be a null sequence in a(X,A). Then there is T > 0 such that 
n 

(G ) is a null sequence in X • So for all t > 0 
n T 

TA 
~) For each T > 0, the operator r e is continuous from X into T(Y,B). 

SO for each t > 0 the operator e tB r eTA is a bounded mapping from X 

into Y. 

o 
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Continuous linear mappings O'(x,A) + O'(Y,B) 

Theorem 4. 10 

Let V : a(X,A) + o(Y,B) be a linear mapping. Then the following condi dons 

are equivalent. 

I. V is continuous with respect to the strong topologies of O'(x,A) and 

o(Y,B). 

II F h 0 h . 0 h h e-TB ,/ etA 1"8 b d d • or eac t > t ere eX1sts T > suc t at v a oun e 

operator from X into Y. 

III. For every g E T(Y,B) the linear functional 

F + < g, \IF > 

is continuous in o(X,A). 

Proof: 

-tA I. II) Let G + 0 in o(X,A). Then there is t > 0 such that e G + 0 in 
n n 

( -TB ,/ tA){ -tA G) O· X = eve e + 1n • 
n 

I ~ II) Let t > O. Then VetA maps X continuously into o(Y,B). According 

-TB tA 
to Corollary 4.2 there exists T > 0 such that eVe is bounded 

from X into Y. 

I ~ III) Trivial. 

III ~ II)Let t > O. For each qJ E Fa + (lR) and 9 E Y we define a linear func-

tional on X by 

By assumption, this linear functional is continuous. So there exists 
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tA 
(g, ~(B) V e X)y = (x,g~)x. 

So g 
~ 

(~(B) V e tA
)* 9 , and (~(B) V e tA)* is defined on the whole of Y. 

Since ~(B) vetA can be extended to an everywhere defined operator on X by 

(*), (~(B) V e tA
)* is bounded. SO ~(B) vetA can be extended to a bounded 

operator on X. With the aid of Corollary 4.2, we conclude that there is 

-.B tA. 
1 > 0 such that eVe 1S bounded. 

Theorem 4.11 

(Extension Theorem) 

Let E be a linear mapping X ~ DCE) ~ Y with D(tf = X. E can be extended 

to a continuous linear mapping t : ~(X,A) ~ ~(Y,B) iff E has a densely 

defined adjoint E*: Y ~ D(E*) ~ .(Y,B) ~ X with E*(,(Y,B) c .(X,A) • 

Proof: 

~ )E* is densely defined,closable from Y into X, and ,(Y,B) c D(E*) with 

E*(,(Y,B»c .(X,A). Following Corollary 4.7 E* maps .(Y,B) continuously 

into ,(X,A). SO following condition 4.10 III, the dual (E*)' of E* is a 

continuous linear mapping of a(X,A) into a(Y,B) and for X E D(E) we have 

* (E )'x = Ex because 

* * VyE.(Y,B) :<E y,x> = <y,(E )'X> 

and * * <E y,X> = (E y,x)X = (y,Ex)y • 

With t * =: (E )' the proof is complete. 

o 
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• ) Let E : a(X,A) ~ a(Y,B) exist and be continuous. For each x E D(E) 

and g E .(Y,B) one has 

(g,Ex)y = <g,Ex> = <E'g,x> 

* - * A It follows that E ~ E' and E (T(Y,B» C T(X, ) . 

Corollary 4.9 

A continuous linear mapping T: .(X,A) ~ T(Y,B) can be extended to a con

tinuous linear mapping T : a(X,A) ~ a(Y,B) iff T has an adjoint T* with 

* * D(T ) ~ T(Y,B) and T (T(Y,B) C T(X,A) • 

o 
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Chapter 5 

Topological tensor products of the spaces .(X,A) and a(X,A) 

Let X and Y be two Hilbert spaces. By X~ Y we denote the algebraic tensor 
a N 

product of X and Y, Le. all finite linear combinations L E;.. @ 11· 
j=l J J 

with f;.. E X and n. E Y and usual identifications. In X® Y we define the 
J J a 

following sesquilinear form: 

00 

=: 1: 
i-I 

(Ze. ,Ke.)y 
1. 1. 

Z,K E X® Y 
a 

in which (e.) is an orthonormal basis for X. The seSquilinear form does 
1. 

not depend on the choice of the orthonormal basis(ei ) in X. Along with 

this sesquilinear form we define a norm in X® Y by 
a 

= 
00 

I II zei I~ 
i=1 

Z E X@ Y 
a 

Let X ® Y be the completion of X® Y with respect to this norm. If we take 
a 

(o,o)x®yas an inner product then X~Y becomes a Hilbert space. Note that 

the space X ® Y consists of all Hilbert-Schmidt operators Z from X into Y. 

X ® Y is sometimes called the topological tensor product of X and Y. 

Without ~roof we mention the following properties (see [RS], ch VIII). 

Properties 5.1 

b) V V V 
Ad!: t;EX nEY A(E;. ® n) = (r~) ® n = t; ® An • 

c) V V V 
ZEX®Y xcx lj~Y 
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Let C,V denote bounded linear operators from X. resp. Y into themselves. 

TIlen C ® V 1S the linear operator of X ® Y into itself defined by 

C ® V (X ® y) = Cx ® Vy, and linear extension followed by continuous 

extension. We have 

d) II C ® V II IIC IIIIV II 

e) VZEX®Y : (C ® V)Z = VZC* 

f) C,V injective .. C ® V injective. 

Let A with domain D(A), and B with domain D(B) be positive self-adjoint 

operators in X resp. Y. In the sequel we denote the spectral resolutions 

of A and B by (EA)A~O resp. (FA)A~O' 

operator A ® 1 + 1 ® B,by 
a a 

On D(A) ® D(B) we introduce the 
a 

(A ® 1 + 1 ® B) (x ® y) = A X ® Y + X ® By , a a 

and linear extension. We have 

Theorem 5.2 

i) A ® 1 + 1 ® B is essentially self-adjoint in X ® Y. We denote the a a 

unique self-adjoint extension by A ffl B. 

ii) A ffl B ~ O. 

iii) On X ®Y we have for t ~ 0 

e 
-t(AIBB) 

= 



- 61 -

Proof: 

See [wJ, ch. 8.5, or [G] ch.V. 

Since A ffi B is self-adjoint and positive, we may apply the theory of 

the preceeding chapters and introduce the spaces 

TeX ® Y, A ffi B), o(X ® Y, A ffi B), ,(X ® Y, A ® 1), etc. 

Definition 5.3 

The canonical s:esquiHnearmapping ® T(X,A) x T(Y,B) -+ T(X®Y,A ffi B) is 

defined by 

eu,v) -+ u ® v t -+ u(t) ® vet) 

This definition is consistent, because for u € T(X,A) and v € ,(Y,B), and 

t, T > 0 we have 

So u(t+,) ® V(t+T) = eT(AffiB) (u(t) ® vet»~ by Theorem 5.2 iii). 

Theorem 5.4 

TeX ® Y, A ffi B) 18 a complete topological tensor product of ,(X,A) and 

feY,B), by this we mean 

i) TeX ® Y, A ffi B) is complete. 

ii) The mapping ® : T(X,A) x T(Y,B) -+ T(X ® Y,A ffi B) is continuous. 

iii) T(X,A) ® T(Y,B) is dense in ,ex ® Y,A ffi B). 
a 

o 
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Proof: 

i) The completeness follows from Theorem ].3. 

Ii) Since ® is sesquilinearit is enough to check the continuity at [O,OJ. 

Let t > O. Then 

IIu(t) ® v(t) II = lIu(t) II IIv(t) II • 

From this the continui ty at [O,OJ follows. 

iii) Let PN =: P(-I,N] = J X(-J,NJ (A) dE,A. and ~ =: Q(-I,N] 
00 

= J X(-t,N] (,A.) dF,A. for all N E IN. 

The""set {PN X I X E X, N E IN} is dense in t(x,A) 

To show this let u E dX,A). Then there is <p E Fa+(JR), WE X such 

that u(t) = etA <p(A)w. We have for all t > 0 

tA 
II e Ijl (A) (w - P N w)" -+ 0 N-+oo. 

The assertion is proved, because <p(A)w E x. 

Similarly we have that 

{QN IJ IIJ E Y, N E IN} is dense in ,(Y ,8) 

and 

{(PN ® QN) wlw E X ® Y, N E IN} 1S dense 1n ,(X®Y, A ill B) • 

Since {(P N x) ® (QN If) I X X,lj' Y, N E IN} c ,(X,A) 181. T(Y,B), and· a 

since (rN 181 QN)(X ®a Y) is dense in (PN 181 QN)(X ® Y), we have proved 

that ,(x,A) ® ,(Y,8) is dense in ,(X ® Y,A ffi B). 
a 

o 
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Definition 5.5 

The canonical sesquilinear manning ® o(x,A) x o(Y,B) + o(X ® Y,A mB) 

is defined by 

if t > 0 sufficiently large. This definition is consistent, since 

e-
tA 

G ® e-
tB 

HEX ® Y if t > 0 is chosen sufficiently large, and does 

not depend on the specific choice of t > O. 

Theorem 5.6 

o(X ® Y. A ffi B) is a complete topological tensor product: 

i) o(X ® Y, A ffi B) is complete. 

ii) The sesquilinear mapping ® of Defini tion 5.5 is continuous. 

iii) o(X,A) ® o(Y,B) is dense in o(X ® Y, A ffi B). a 

Proof: 

i) The completeness follows from Theorem 2.10. 

ii) We check the continuity of ® at [0,0] Let W be a convex open neigh-

bourhood of 0 in o(X ® Y,A ~ B). Then for each t > 0, the set 

W n (X ® Y)t is an open neighbourhood of 0 in (X ® Y)t; thus it con

tains an open ball, centered at 0, with radius r
t

, 0 < r
t 

< I, say. 

In Xt and Yt we introduce open balls At resp. Bt' centered at 0 and 

both with radius r
t

, 

Let A =: u At and B =: U Bt • Then A x B contains an open neigh-
t>O t>O 

bourhood in o(X,A) x o(Y,B), and 

IIx®yll (t )sllxlltllyll sr (t) max ,T T max ,T 
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~ ~ 

whenever X E At and y E B
T

, So ® maps A x B in W. Let A and B denote 

the convex hulls of A resp. B, Then ® maps A x B into W. From Theorem 
A A 

2.2 we conclude that A contains an open set ~I. ,and similarly B 
'I',E: 

an open set V 0' So ® maps U,I. x V 0 into W. X, 'I',E: X, 
iii) For each t > 0 the tensor product Xt ®a Yt is dense in (X ® Y)t' from 

which the assertion follows. 

IJ 

Definition 5.7,a 

We introduce the following space of trajectories: T(a(X ®Y,1 ®B),A I1d); for 

shortness we denote the space by T~ in the sequel. T~ is the complex vec

tor space of trajectories ~ 

~ lR + -+ a (X ® Y, 1 ® B) 

-TA satisfying ~(t) = (e ® 1) ~(t +T) for all t, T ~ O. 

The map e- TA ® 1 is well-defined in a(X ® Y,1 ® B), because for each 

F € a(X ® Y,1 ® B) there is t > 0 such that (1 ® e-tB)F in X ® Y, and 

IS in a(X ® Y,1 ® B). 

Definition 5.7.b 

A 
On TB we introduce the seminorms 

+ 
110 ® <I>(B» \t'(t)I~®y' t> 0,<» E Fa (lR), 
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and the strong topology in T~ is the locally convex topology generated 

by the seminorms P ,I. 
t,,+, 

Oefinition 5.8 

The sesquilinear mapplng ®. 
A 

T(~,A) x 0(Y,5) + TB is defined by 

(f,G) + f @ G t + f(t) @ G. 

TIle span of the image of @ is denoted by T(X,A) @ o(Y,B). This definition a 

is consistent because for all T,t > 0 we have 

(f(t) @ G) E o(X @ Y,1 ® B), 

and 

Theorem 5.9 

T~ is a complete topological tensor product of T(X,A) and o(Y,B). By this 

we mean 

1') .,.AB l'S • complete. 

ii) The sesquilinear mapoing ® of Defini don 5.8 is continuous. 

l' l' I' ) (A) (B) A T X, @a 0 Y, IS dense TB. 

Proof: 

i) Let (~i) be a Cauchy net in T~. Then for each t > 0 the net (~i(t» 

is Cauchy in o(x@Y,1 <ill B). SO there exists ~(t) EO o(X <ill Y,I <ill B) 

with ~.(t) + ~(t), following Theorem 2.]0. 
1 

-TA -TA 
Now~.(t)=(e (1)~.(t+T)+(e @I)~(t+T). 

1 1 
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A 
Take ~ : t ~ ~(t). Then ~ E TB and ~i ~~. 

ii) We check the continuity at [O,OJ. Let W be the set of elements 
t,rp,£. 

o in TAS for which the seminorm p (~) < e, with 
t,lJl 

is an open neighbourhood of 0 in T~. Let V be the 

elements of which satisfy 

G E V, 

£. > a . Then W 
t,<p,£. 

set in a(Y,S) the 

and let W be the set in T(X,A) the elements of which satisfy 

II f (t) II X < Ii, f E ri . 

Vand Ware open neighbourhoods of a in a(Y, B) and T(X,A). 

We have 

from which continuity at [0,0] follows. 

iii) First we shall prove that {(PN ®QN) ::!I::! E T~ , N E IN } is dense 

A _ 
in TS' where PN -

A 
p(-J ,N] and ~ = ';-l,Nr Therefore, let ~ E TB 

Then ~(t) E 0'( X ® Y, 1 ® ro, + 
for all t E lR , and 

) = II( 1 ® 1- P
N 

® ~)(1 ® <pCB» Ht)ll+ 0 

because (1 ® q> (S» E (t) E X ® Y. 



- 67 -

A 
Next observe that {(P

N 
@ ~) :3 I :3 t 'B' N E 1N} can be embedded in 

'l(X @ Y,A Hl B). This is a consequence of the following estimate 

< co 

if T > a is taken large enough. Thus T(X,A) @ ,(Y,B) a 

posteriori it is clear that ,(X,A) @ o(Y,B) is dense 
a 

Definition 5.IO.a 

We introduce the following space of trajectories: 

T(O(X @ y.A @ 1) • 1 @ B). 

B 
In the sequel we shall denote this space by T~. 

,B is the complex vector space of linear mappings 
A 

+ w : lR -+ 0 (X @ Y,A @ I) 

is 

in 

-tB which satisfy wet) = 1 @ e wet + T) for all t,T ~ O. 

B • 
On TA we 1ntroduce the semi norms 

and the corresponding locally convex topology. 

dense 

A 
"[B' 

in A 
'B . A 

0 
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The canonical mapping ® 
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a(X,A) x T(Y,B) ~ TB is defined by 
A 

(H,g) ~ H ® g t -r H @ get) 

The span of the image of ® 15 denoted by 

Theorem 5. 11 

a(X,A) ® T(Y,B). 
a 

1~ is a complete topological tensor product of cr(X,A) and T(Y,B). 

Proof: 

As for Theorem 5.8, 

Since T(X ® y,I ® B) c X ® Y, the linear subspace 

(etA ® I) ,(X ® Y,I ® B) of (etA ® I)(x ® Y) is well~defined. In 
tA . . 

(e ® 1) T (X ® Y, I ® B) we introduc.e the metric dt by 

with rls the metric in cr(X @ y,I ® B). 

Defini tion 5,] 2 

We introduce the locally convex topological vector space 

a(T(X ® Y,I ® B). A ® 1) = u (eb~ ® I) ,(X @ Y,I ® B). 
t>O 

with the inductive limit topology. In the sequel we shall denote this-

o 
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A 
wpace by aB • Note that for ~111 t >, 0 we have 

(etA 0 1) ,(X 0 Y, 1 @ S) c (etA @ 1)(X @ Y) c a(X 0 Y,A 0 1). 

A 
So a8 == u (etA @ 1) T(X 0 Y,1 0 B) c a(X 0 Y, A 0 I) • 

t>O 
A A 

On T8 x as we introduce the sesquilinear form 

for t > 0 sufficiently large. 

Theorem 5. 1 3 

i) cr(X,A) 0 a T(Y,8) is dense in a~. 

ii) A • • 1 mb dd d' 8 b Os 1S contl.nuous y e e e l.n T A y the mapping 

emb 9 -+ emb (9) tS 
t -+ (1 0 e )(9) • 

A 
iii) For each fixed V E 's the linear functional 

A A 
a8 -+ G: defined by 9 -+ <oJ,9>S 

is continuous on O~. 

Proof: 

i) Following Theorem 5.4 we have X 0 T(Y,8) is dense in T(X ® Y,1 0 8). 
a 

Therefore for all t > 0 the se t X
t 

0 a T (Y. B) is dense in 
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(etA ® I) .(x ® Y,1 @ B). We conclude that 

is dense in 

A 
Let e E (jB • 

Then t ~ (1 ® e tB)8 

= o(X,A) @ T(Y,B) 
a 

B 
E TA ' because for some T > 0 and all t > 0 

(e-TA 
@ 1)(1 ® e tB)9 E X ® Y • 

I AI -tA iii) We have < '1,9 >B ~ c t dB «e @ 1)8) 

f 11 a E (etA~ 1) ( Y 1 B) or a 0 ~ T X @ ,@ • 

Defini tion 5.14 

Simiiarly to Definition 5.12 we introduce the locally convex topological 

'\tector space 

O(T(X ® Y,A @ 1), I @ B) u (1 ® e
tB) T(X @ Y,A @ 1). 

t>O 

We shall denote this space by o~. We remark that (j~ c o(X @ Y, I ® B). 

B 
In (jA we introduce the metric 8 t by 

with dA the metric of T(X @ Y,A ® 1). 

For the strong topology in (j~ we take the inductive limit topology. On 

B B . d h 'I' TA x (jA we ~ntro uce t e sesqu~ ~near form 

o 
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B -tB 
<L,Q>A =:<L(t) ,(1 @ e )Q> T(x@Y,A@I) 

for t > 0 sufficiently large. 

Theorem 5. 15 

i) T (x,A) 

].'].') B. a A 1.S 

@a o(Y,B) is dense in a~. 

continuously embedded in T~ 

emb Q -+ emb (Q) 

by the mapping 

iii) For each fixed L E T~ B the linear functional (1A -+ ¢ defined by 

Proof: 

B is continuous on (1 A • 

Similar to Theorem 5.13. 

o 
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Chapter 6 

Kernel theorems 

In chapter 4 we discussed four types of linear mappings. In this chapter 

we show that elements of the topological tensor products which are intro

duced in chapter 5, can be interpre ted as continuous linear mappings of 

one of the types in chapter 4. Necessary and sufficient conditions are 

given which ensure that the topological tensor products comprise all con

tinuous linear mappings under consideration, i.e. the Kernel theorem holds 

We want to remind that every element of the topological tensor product 

X ® Y represents a bounded linear mapping X ~ Y. 

Case (a). Continuous linear mappings a(X,A) ~ T(Y,B). 

We consider an element 8 € T(X ® Y,A rn B) as a linear mapping 

cr(X,A) ~ T(X,B) in the following way. Let G € a(X,A) 

(a) 8G 

T > 0 sufficiently large. Definition (a) does not depend on the choice of 

T'> O. This definition is correct, because 8(T) €X ® Y for all T > 0, and 

for each t > 0, 

if T > 0 is taken sufficiently large. 



- 73 -

Theorem 6.1 

1. For each a € T(X ® Y,A Hl B) the linear mapping o(x,A) ~ 'f(y,B) as de-

fined in (a) is continuous. 

II. For each a € T(X ® Y,A ffi B), F E o(X,A) and G E o(Y,B) 

<a F ,G > Y = <9, F ® G> • 
X®Y 

III. If -tA -tB 
e or e is· HS for some t > 0, then T(X ® Y,A ffi B) comprises 

all continuous linear mappings o(x,A) ~ T(Y,S). 

IV. T(X ® Y,A Hl B) comprises all continuous linear mappings o(X,A) ~ T(X,A) 

iff e- tA is HS for some t > O. 

Proof: 

I. Let a E T(X ® Y,A ffi B). Then for all t,T > 0 

tB TA -(t'-t)B -(t'-T)A e 9 e = e a(t') e • 

So etB e eTA is bounded as an operator X ~ Y when t' > a sufficiently 

large. Following Theorem 4.11 0 maps o(X,A) continuously into 'f(Y,B). 

< a, F ® G > X®Y • 

III. Let r o(X,A) ~ T(Y,B) be continuous. Then for all t > a the mapping 
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tB tA -TA -TB . 
ere is bounded from X into Y. Since e or e 1S HS for 

some T > O~ etB r etA = e-TB(e(t+T)B r e(t+T)A) e-TA is HS. So 

tB tA r : t ~ ere is in T(X ~ Y,A ffi B). 
+ 

tV. The if-part is a special case of III. Le t !p E Pa OR) • Then !p (A) maps 

+ 
O'(X,A) continuously in T(X,A). So <p(A) is HS for all <p E Pa (JR.) • 

-tA 
Following Lemma ].7 there is t > 0 such that e is HS. 

Case(b). Continuous linear mappings T(X,A) ~ O'(Y,B) • 

Let K E O'(X €I Y,A 81 B). For h E T(x,A) we define Kh E O'(Y,B) by 

This definition makes sense for t > 0 sufficiently large and does not de-

pend on the specific choice of t. 

Theorem 6.2 

1. For each K EO' (X €I Y,A t!l B) the linear mapping K T(X,A) ~ O'(Y,B) as 

defined in (b) is continuous. 

II. For each K E O'(X €I Y,A 81 B), f E T(X,A) and g E T{Y,B) 

o 

-tA -tB . III. If for some t > 0 the operator e or e 18 HS, then cr(X €I Y,A ffi B) 

comprises all continuous linear mappings from T(x,A) into o{Y,B). 

IV. a(X €I x,A ffi A) comprises all continuous linear mappings from T(X,A) 

into cr(x,A) iff e- tA is HS for some t > O. 
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Proof: 

-tB -tA I. Let K E o(X ® y, A ~ B). Then eKe is a bounded operator from 

x into y for sufficiently large t > O. Following Theorem 4.10 

is a continuous mapping from T(X,A) into o(Y,B). 

-tB -tA n.<g,Kf>y=(g(t),e Ke f(t»y 

-tB -tA = (f(t) ® get), eKe )X&y 

= <f & g, K>X®Y 

III. Let L : T':X,A) -+ o(Y,B) be continuous. Then there are t,T > 0 such 
-TB -tA -toA -toB 

that e Leis bounded. Now suppose e or e is HS, then 

(to+T)B -(to+T)B -(T+tO)A (T+tO)A 
L = e (e L e ) e 

-(T+tO)B -(T+tO)A 
So L € o(X ® y,A m B), because e Le is HS and L = 
(T+tO)(A~) -to+T)B -(to+T)A 

e (e L e ) • 

IV. The if-part is a special case of III. 

Let J: T(X,A) ~o(x,A). J is continuous and can be considered as 

-tA -tA -2tA an element of o(X ® x,A fiI A) if e J e = e is HS for some 

t > O. 

Case (c). Continuous linear mappings T(x,A) -+ 'r(Y,B). 

Let P (- B 
TAo Por f ~ T(X,A) we define Pf < T(Y,B) by 

(c) P f 

( ) 1 1 I ( ) e-d t)A ~s HS t n X Here we take t: t > 0 suel tlat ) t ... a • opera.or 0 .. 
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Theorem 6.3 

B I. For each P € TA~ the linear operator P T(X,A) + L(Y,B) as defined 

in (c) is continuous. 

B It. For each P € LA' f € T(X,A) and G € cr(Y,B) 

< P f, G> Y = <P, f ® G > ~ .. 

-tA -tB . B III. If for some t > 0 the operator e or e 1S HS then LA comprises 

all continuous linear mappings from T(X,A) into L(Y,B). 

IV. T~ comprises all continuous linear mappings from T(X,A) into T(X,A) 

iff e- tA is HS for some t > 0, 

Proof: 

B ~ I. Let P € TA' Then for each t > 0, the operator (1 ® e )P = pet) 

II. 

-LA 
€ cr(X @ Y,A @ 1). So there exists L > 0 such that pet) e is a 

bounded linear operator in X. Following Theorem 4.4. P is a continuous 

mapping form T(X,A) into T(Y,B). 

<Pf,G> y 

III, Let T : T(x,A) + T(Y,B) be continuous. 

Then T(t) =: (e tB T e-e(t)A) eE(t)A, t > 0 . 

-toA -toB 
Suppose e or e is a Hilbert-Schmidt operator, Then 

-toB (t+tO)B-e(t+tO)A -toA (e(t+tO)+tO)A 
T(t) = e (e Tee) e 

So for all t > 0 we have T(t) € cr(X ® Y,A ® T), and the mapping T is 

represented by the element 

t + T( t) 
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in 
B 

TA' 

IV. The if-part is a special case of III. 

The identity I ,(X,A) -+ T(X,A} is continuous. 

Let t > O. Then for some , > 0 we have 

tA I -TA e e E X ® X • 

Thus e(t-T)A is Hilbert-Schmidt. 

Case (d). Continuous linear mappings cr(x,A) -+ o(Y,B). 
A 

Let 0 E 'B • For F E a(X,A) we define CJ>F by 

Cd) CJ>F 

t > 0 sufficiently large. The definition does not depend on the choice of 

t > O. The mapping ~ is well-defined, because e-c(t)B CJ>(t) is HS for some 

ret) > 0, and e- tA F E X for t > 0 sufficiently large. 

Theorem 6.4 

I. For each CJ> E T~ the linear operator CJ> o(x,A) -+ a(Y.B) as defined 

in (d) is continuous. 

A 
II. For each CJ> E TB' F E 0' (x.A) and g f: T (y ,B) 

< g, <,til" 
A 

> Y = < <,tI, F ® g > B 

-tA -tB A 
III. If for some t > 0 the operator e or e is HS, then TB comprises 

all continuous linear operators from a(X.A) in cr (y ,B) • 

o 
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IV. A 
'B comprises all continuous linear operators from a(X,A) into itself 

-tA iff for some t > 0 the operator e is HS. 

Proof: 

I. Let .1%1 € ,~. Then for all t > 0, there is , > 0, such that e-TB cI>(t) 

is HS and therefore bounded. Following Theorem 4.12 ~ is a con-

tinuous mapping from a(X,A) into a(Y,B). 

-TB -tA 
II, <8, (l)F >y = (g(T) ,e (I)(t) e F)y 

-tA -TB = (e F @ geT), e ~(t»x®y 

-- ~ 
= <~, F Ill' g>S 

III. Let (3 : a(X,A) ~ a(Y,B) be a continuous linear mapping. Then aCt) =: 

e(t)B ( -e(t)B Q tA) -taA -taB 
e e ~ e • Suppose that e or e is a Hilbert-

Schmidt operator. Then B(t) = 
€(t+tO)B+toB -toB -£(t+ta)B 

e (e e 

So /3(t) E a(X @ Y,1 Ill' B) , and the mapping B is represented by the 

element 

t ~ I)(t) 

A 
in 'B' 

IV. The if-part is a special case of III. 

The identity I:a(X,A) ~ a<x,A) is continuous. Let t > O. Then for 

-,A tA (t-T)A some , > 0 we have e leE. X Ill' X. Thus e E X Ill' X • 

o 
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Chapter 7 

TWo illustrations 

This chapter contains two illustrations. In Illustration I an important 

example of the general theory is investigated, and in Illustration II we 

construct a space of generalized functions in infinitely many dimensions. 

We prove that this space is nuclear. 

IUus tration I 

We inves tiga te the space T (L 2 (JR) , H), in which 

2 
x 

the Hamiltonian operator of the harmonic oscillator, and L
2

(JR) is the 

Lebesque space of square integrable functions. The eigenfunctions of Hare 

the Hermite functions, 

<jJ (x) 
n 

n=0,1,2, ••• , 

where Hn is the n-th Hermite polynomial, and we have 

k 0,1,2 ••.. 

The q,k's establish an orthonormal basis in L
2

(JR) • 

In the Introduction we gave the following equivalences 

00 

(7.1.a) 



b) 

where the ~'s satisfy 

-tk 
~ .. O(e ) 

fo't all t > O. 

where the b 's satisfy 
k 

for a fixed T > ° 
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00 

In his remarkable paper [BJ, see p.260, De Bruijn cil1readymentions the 

space that we denote by cr(L
2

(JR) ,H). He notes that it would not be hard 

* to extend S to the space of Hermite pansions, introduced by Korevaar in 

[K]. The space he aims at is our space cr(L/JR),H). There is a small nota

tional difference. Instead of the ~k'S , he takes the functions ~k' de

fined as 

k 0,1,2, •.• 

lnDe Graaf's terminology (see [G]), the generalized function space S*, 

introduced by De Bruijn ([B]), is the space S'L
2

(JR),H' In general we 

have the inclusion 

S' c cr(x,A) • X,A 
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De Bruijn's test function space is characterized by 

f E S ~ : f is entirely analytic, and there are A,B,C > 0: 

Here we shall derive a similar eharacterization for elements in T(L
2
(m),fi) • 

Let f E 1'(L
2

(:m.),fi). Then for each a > 0 there exists ga E L2 (m) such 

that f = N g, where (N) 0 is the semigroup generated by ff. Taking into 
a a a a> 

account the modification that we mentioned before. it follows from Theorem 

6.3 in [B] 

for C > 0, only depending g • 
a a 

Since a > 0 can be taken arbitrarily 

f E T(L2 (:m.) ,N) .. f is entirely analytic, 

and for all a, 0 < a < 1, there is C > 0 such that 
a 

I f(x + iy) I ::; c a 
(-] 2 a 2 \ 

exp \ a y - 2" x ). 

Suppose f is entirely analytic. and f satisfies the inequalities given 

ab~ve. Then for each a > 0 there isb, 0 < b < ] with coth a > b- l
. From Theo-

rem 10.1 in [B] it follows that there exists g € L2(:m.) with f = N g .a > O. 
a a a 

So f E T(L2(m) ,ff), and we have proved 
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Th,~orem 7,:? 

f € T(Z;2(lR) ,H) .. f is entirely analytic, and 

V 3 -If( +i)I~Caexp(a-21y2_!!2x2) a,O<a<] C - x y 
a 

Let FI denote the Hilbert space of entirely analytic functions as intro

duced by Bargmann in [Ba 1]. The inner product in F J is given by 

(£,g) = I 
0: 

£(z) g(z) dp (z) 
PI 

with z = x + iy , dUI(z) 
2 

exp(-Izi ) dx dy, so that f belongs to FI == -
'IT 

if and only if (f,f) < 00, 

An orthonormal basis of FI is given by 

m z =-- m E 'ill' u {O} • 

Thus every f E FI can be written as 

fez) = I 
m=0 

a u (z) , 
m m 

and we have I f(z) I 5 II file ~ I z 12 _ The unitary operator A L2 (:IR) -+ F I is 

given by 
00 

(A g) (z) = I A(z,x) g(x) dx , 

with 

A(z,x) -! 2 2 r;;:-
'IT exp -A(z + x ) + y2 zx). 
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The operator A has the following properties 

The positive self adjoint operator] + z d~ • defined in F I , generates a 

semigroup (Mt)t>O' whose action is simply given by 

-t -t (M
t 

f)(z) = e f(e z) t > O. 

In the following theorems we characterize the elements in T(Fl,l+zd~) 
d 

and a(Fl' (I + z dz»' 

Theorem 7.3 

Proof: 

... ) Let c > O. Take t > 0 zo large that !e -2t < c. Then 

So 

-2t ) Let t>O. Take 0 < c < ~e • Then 

f If(e
t 

z)1
2 d~l(z) < 00 

(E 

Theorem 7.4 

F E 
d 

(F], I + z dz) .. F is entirely analytic, and 
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Proof: 

- ) There is L > 0 such that MT F E FJo Thus for all t ~ T, there are 

a (t), m E IN u {OJ, such that 
m 

co 

a (t) u (z) • 
m m 

-mt) 
Note that am(t) satisfies am(t

1 
+ t

2
) = e am(t2 ) for all t l ,t2 > 0 

We have 

a (t) 
m 

It follows that there are a which satisfy m 

-mt 
=e a ,mElNU{O},t>O. 

m 

"" 
F(z) = et(MtF)(e t 

z) = L am(t) e
mt 

um(z) 
m=O 

and the series converge for all Z Ea. 

Thus F is entirely analytic. 

Since MT F E F) we have 

~ ) Take T > 0 so large that c e-2T < ~. Then 

I (M F)(z) I 
T 

o 
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In the introduction we showed that the space of tempered distributions 

S'(lR) is equal to a(L2(lR), log(H». In [Sa 2J, Bargmann proves that the 

mappins A can be uniquely etended to $' \lR) • As a simple consequence of 

the general theory, given in this paper, we easily derive that A can be 

d uniquely extended to a unitary mapping from a(L
2

(lR) ,H) onto O(Fp(l + z dz»' 

In [Ba 2], Bargmann extensively studies the image of S'(lR) under the 

d unitary mapping A. Similarly, o(F1,J + zdz) could be subject for further 

investigation. 

Finally, note that the case of several dimensions 

and 

with 

2)· '\ + xi + k} , 

can be treated in the same way. 

k d '\ I z. -} 
1 1. dz. 

1.... 1. 
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Illustration II 

We will construct a nuclear space of generalized functions in infinitely 

many dimensions. This space can be regarded as a direct sum of generalized 

function spaces. Similar constructions are given in [KMPJ and in [BLTJ. 

Our construction suits perfectly well in the frame-work of the general 

theory as given in this paper. 

First we give some general results concerning direct sums. Let X., i E IN, 
1. 

be Hilbert spaces, and A., i E lN, be unbounded positive self-adjoint 
1. 

operators in X. with domains D(A.). By X we denote the countable direct 
1. 1. 

sum X. , and the elements of X will be denoted by (f.). Thus (f.) E X 
1. 1. 1. i==] 

if and only if f. € X., i € IN, and 
1. 1. co 

00 

I 
i=l 

1If.1I2 < 00. With the inner product 
1. 

«f.),(g.»= 2: (f.,g.)X ,X becomes a Hilbert space. 
1 1. i= I 1. 1. i 

Let L. be a linear operator in X., i E IN. Then formally we define the linear 
1. 1. 

operator diag(L.) in X by 
1. 

diag(L.)(f.) = (L. f.) • 
1. 1. 1. 1. 

-tAo 
According to this definition the operator diag(e 1), t > 0 is bounded 

from X into X, and the operators form a holomorphic semi group in the 

right half plane Re t > O. 

We define 

D(A) := ((f.) € xl f. E: D(A.) and (A.f.) E xl. 
1. 1. 1. 1. 1. 

TIlen A(f.) = diag(A.)(f.) is well-defined for (f.) E D(A). 
1. 1. 1. 1. 
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Lenuna 7.5 

A with domain D(A) is self--adjoint. 

Proof: 

D(A) is dense in X. Let (g.) E X. Suppose there is (u.) E X such that for 
1 1 

all (f.) E D(A) 
1 

(A(f.),(g.) = «f.),(u.». 
1 1 1 1 

Let j E 1N. For all f. E D(A.) we have 
J J 

(A. f. ,g.) 
J J J 

(f.,u.) , 
J J 

by taking (f.) = (O,O, ••• O,f.,O, ..• ). From the self-adjointness of A. it 
1 J J 

follows that g. E DCA.) and A. g. = u .• Since j E 1N is arbitrarily 
J J J J J 

chosen (g.) E D(A) and A(g.) = (u.) 
111 

Let Y be a Hilbert space. Then we define 

~ =: Y@k "" Y Y Y ® ® ••• ® 
-v-

k times 

We can identify y@k and y®k-l ® Y following the general theory about 

o 

tensor products of Hilbert spaces cf[RS IJ , p. 49. Now let T be a posi

tive self-adjoint operator in y. Then we take At "" T = rffil with D(A
I
) =D(T) 

and for k > 1. 

with its domain the algebraic tensor product. 
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Note that Ak TEHTffi ••• ffiT T @ 1 @ ••• @ I + 1 ® T @ I ® ••• ® 1 + ••• 'V' = 
k times 

••• +1® ••• ®1®T. 

With the aid of Theorem 5.3 it can be proved inductively, that all the ~ts 

are essentially self-adjoint in ~. We denote the unique self-adjoint ex

tension by ~ ; ~ is positive. 

The space X =: 
'" '" i€ 1N 

X. is a well-defined Hilbert space and A = 
~ 

dia~(A I ,A2 , ••• ) is a self-adjoint operator in X. 

We are now going to define a space of generalized functions in infinitely 

many dimensions. For X we take the Lebesgue space £2 (:JR) and 

H 
d2 2 H- - + x + 1) , 

dx
2 

the Hamiltonian operator of the harmonic oscillator, satisfying 

k = 0,1,2, ••• with 4k the k-th Hermite function (see 

Illustration I). 

k Then X
k 

= L2(:JR) and Hk is the Hamiltonian operator of the harmonic oscil-

lator in k dimensions, 

k 

L 
i=1 

2 + X. 
1 

We denote ; L
2

(lRk ) by F(:JR) and the positive self-adjoint operator 
k=l 

diag(H.) by H • The eigenvalues ofH are the natural numbers N = 1,2, •••. 
~ <X> "" 
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Using some combinatorics we can easily show that the multiplicity M(N) 

N-l -tA 
of the eigenvalue N is just 2 . We assert that e is a Hilbert-Schmidt 

operator if t > ! log 2. To this end we compute the sum of the squares 

-tA of the eigenvalues of e , 

-2Nt 
e 

00 

= L 
N=J 

00 

N-] 
2 -2Nt 

e = 

-2N(t-l!og 2) = -..!. L 
2 N=l 

e < 

From Theorem 1.11 and Theorem 2.9 we conclude that T(F(lR) ,H ) and 
ro 

cr (P(lR) ,H ) are nuclear. and following Chap ter VI the Kernel theorems 
"" 

hold true. 
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