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process

I.E.M. Severens1, R.M.M. Mattheij2, A.A.F. van de Ven2, D.E. Wolf3
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Abstract This paper describes the modeling of the toner behavior in the development nip of the
Océ Direct Imaging print process. The dynamic motion of and mechanical interactions between toner
particles are explicitly modelled. The mechanical interactions are due to collisions, friction, adhesion,
and electromagnetic forces. The discrete element method (DEM) is used as the simulation tool for a
quantitative description of the system. The interaction rules are determined for the toner particles and
the surfaces of the development rollers. The model is validated with print quality results. It is shown
that it is possible to achieve quantitative agreement between DEM simulations and experimental print
quality results.

1 Introduction

The heart of the Océ Direct Imaging (DI) print process is formed by the Direct Imaging unit,
which is schematically shown in Figure 1. For a more detailed description of the DI print
process, we refer to [1].
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Figure1. Schematic drawing of the Direct Imaging process.

The toner that is used in this development process is mono-component, magnetizable, and
electrically conductive. Toner is magnetically drawn towards a supply roller, which conveys
the toner particles through friction. As a result of a bias voltage between the supply roller and
the DI-drum, attraction of toner towards the DI-drum is achieved by induced electrostatic
forces. The toner layers that are attracted onto the DI-drum move along with the DI-drum
until they reach the fixed magnet that is placed underneath the imaging roller. The fixed
magnet within the imaging roller causes a strong magnetic field gradient, attracting the



magnetic toner particles towards the imaging roller. By choosing the geometry of the magnet
properly, a sharp cut-off of the field gradient can be achieved, providing a precise control over
the position of the toner between the DI-drum and the imaging roller. If an image is to be
developed, a voltage is applied to the DI-drum and the toner is drawn to the DI-drum.

The print quality of the Direct Imaging technology is primarily determined by the toner
flow in the region between the DI-drum and the imaging roller; see Figure 2. The collection

Figure2. The collection of toner between the DI-drum and the imaging roller.

of toner between the DI-drum and the imaging roller is called the DI toner assembly. The
behavior of the DI toner assembly is determined by magnetic, electric, and mechanical forces.
The sum of these forces results in a complex system behavior; see [2]. Insight in the under-
lying physical processes of Direct Imaging can be obtained by experimental research. The
possibilities of experimental characterization of the DI toner assembly are, however, limited.
This is essentially caused by the small dimensions of the system.

Another approach to get insight in the toner flow in the DI-unit is theoretical modeling
and numerical simulation. The simulation of toner deposition, conducted here, consists of a
many-body system, where the motion of each particle is calculated knowing the forces acting
on it. This method employs the discrete element method, first proposed by Cundall [3] in 1971.
In the discrete element method (DEM), all toner particles are considered discrete elements.
Each element interacts with its neighboring elements and its surroundings. Every time step,
the forces that act on a particle are summed and, from this, the speed and the displacement
of the particle is calculated by integration of Newton’s second law of motion. The macroscopic
behavior of the toner flow and print output can thus be simulated using DEM.

The modeling of the geometry of the toner particles is described in Section 2. A two-
dimensional model is developed. However, the models for the forces that act on the toner
particles in the DI assembly are three-dimensional. The dominant forces in the DI toner as-
sembly are normal and tangential collision forces between particles themselves and between
particles and developing rollers, adhesive and cohesive forces, magnetic forces on toner par-
ticles due to the magnet within the imaging roller and due to the presence of magnetized
particles, and electric forces between particles and the DI-drum. Models for these forces are
derived and discussed in Sections 3 to 6. In Section 7, we analyze to what extent we have
succeeded in describing the DI print process.



Figure3. SEM recording of black toner particles.

2 Geometry of the DI toner assembly

In Figure 3, a scanning-electron-microscopy (SEM) recording of a collection of black toner
particles is depicted. Since modeling of complex geometries, as shown in Figure 3, results in
time-consuming algorithms, one often confines oneself to simple geometrical shapes, such as
spheres. Spherical particles can, however, role frictionless over a surface or over each other.
Real toner particles cannot show this rolling behavior due to their geometry. To resolve
this limitation of the single-sphere model, a model is used in which n spherical particles
(n = 1, 2, ...) are kinematically clustered, according to a predefined distance between the
centers of the spheres. For n = 2, a holonomic constraint is defined between sphere i and
sphere j at respective positions xi, xj , namely

|xi − xj | = l, (2.1)

with l a predefined distance. One toner particle is thus described by n clustered spheres, as
can be seen in Figure 4. More realistic toner geometries can thus be achieved by increasing

Figure4. Kinematically clustered spheres form one toner particle.

the number of clustered spheres that form one toner particle; this, however, has its impact
on computational speed.



3 Force model for collisions
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Figure5. Collision between two particles i and j.

In this section, the forces due to collisions between two particles or a particle and a boundary
object are modeled. The DEM variant used here is, sometimes, referred to as the soft-particle
method [4,5]. This means that the collision is modeled by penetration of the objects during
collision. We here consider only collisions that take place in one plane (2-D collisions). The
toner particles are modeled as spheres (or circular discs in the 2-D plane); the i-th particle
having mass mi and radius Ri. The particles are only locally modeled as discs; globally, they
consist of more clustered discs, but this is for the moment not relevant here. A solid boundary
is modeled as a particle by letting mi and Ri go to infinity. The position of the center of mass
of the i-th particle in the plane is xi = xi(t) (xi ∈ R2), and its velocity is vi = ẋi(t). The
particles (discs) also have angular velocity, directed normal to the plane and of magnitude
ωi for the i-th particle. For the nomenclature as used in the rest of this section, consider the
collision between two particles i and j, as depicted in Figure 5.

We split the velocity vi in its normal and tangential component according to (n and s as
in Figure 5)

vi = vi,nn + vi,ss, (3.1)

and we introduce the relative normal and tangential velocity vn and vs, respectively, of the
contact points for a collision between two particles i and j, by

vn = vj,n − vi,n, (3.2)

and

vs = vj,s − vi,s + ωiRi + ωjRj . (3.3)

3.1 Normal collision

For a pure normal collision, the velocities of the two colliding particles are directed along the
normal n on the contact surface at collision. According to the soft-particle model, the (elastic)
particles deform during the collision, modeled as a penetration of the objects into each other.
The overlap ξ during this penetration is equal to

ξ = Ri + Rj − |xi − xj |. (3.4)



A range of possible contact force models are available, each approximating the collision dy-
namics to some extent; see [1] or [2]. Here, we restrict ourselves to the linear model

Fn = −kξ − γ
dξ

dt
, (3.5)

where Fn is the normal force between the colliding particles during the collision. The first term
on the right-hand side is the elastic restoring force and the second term describes viscoelastic
dissipation [6]. The material constants k and γ are the elastic spring constant and the viscous
damping coefficient, respectively.

The integration scheme that is used to solve the collisions is Newmark’s purely explicit
method

xn+1 = xn + ∆tvn +
1
2
∆t2Fn,

vn+1 = vn + ∆tFn.
(3.6)

Newmark purely explicit is a first-order method. Substitution of F = (−kx− γẋ)/m in (3.6)
gives

xn+1 = (1− k
2m∆t2)xn + ∆t(1− γ

2m∆t)vn,

vn+1 = − k
m∆txn + (1− γ

m∆t)vn.
(3.7)

Substitution of (3.7)2 in (3.7)1 with index n replaced by n + 1, and substitution of

∆t(1− γ

2m
∆t)vn = xn+1 − (1− k

2m
∆t2)xn (3.8)

gives

xn+2 = (2− k

2m
∆t2 − γ

m
∆t)xn+1 − (1 +

k

2m
∆t2 − γ

m
∆t)xn. (3.9)

After defining k∗ and γ∗ as

k∗ :=
k

2m
∆t2, γ∗ :=

γ

m
∆t, (3.10)

(3.9) can be written as

xn+1 + (−2 + k∗ + γ∗)xn + (1 + k∗ − γ∗)xn−1 = 0. (3.11)

In order to analyze the stability of this scheme, the discrete Fourier mode

xn = λn, (3.12)

is substituted in (3.11). This way, we obtain for the amplification factor λ:

λ1,2 =
2− k∗ − γ∗ ±

√
(k∗ + γ∗)2 − 8k∗

2
. (3.13)

Extensive analysis of the properties of the amplification factors λ1,2 shows that Newmark
purely explicit is stable if

γ∗ ≥ k∗, and γ∗ ≤ 2. (3.14)



Substitution of (3.10) in (3.14) shows that for ∆t ≤ min{2m/γ, 2γ/k} Newmark purely ex-
plicit is (conditionally) stable.

The normal dissipation in a collision is characterized by the coefficient of normal resti-
tution, which is defined as the ratio between the normal component of the relative velocity
before v

(i)
n and after v

(f)
n the collision,

en = |v(f)
n /v(i)

n |. (3.15)

This coefficient varies between 0 for completely inelastic and 1 for perfectly elastic collisions
(no normal dissipation). The effective normal coefficient of restitution and the collision du-
ration time tn can be expressed in terms of the collision parameters k and γ, namely (see
[2])

en = exp
(
−π

ω

)
, tn =

mπ

γω
, (3.16)

with ω and m given by

ω =
1
2

√
4mk

γ2
− 1, m =

m1m2

m1 + m2
. (3.17)

For our applications, we determine en and tn experimentally (see [1] or [7]) and from the
results, we can then calculate k and γ. The thus obtained values will be used in our DEM
simulations.

3.2 Tangential collision

Collisions amongst particles or between particles and objects are, in general, not head-on, and
thus, shear also has to be taken into account. The shear contact force component Fs, being
the component in s-direction of the contact force on particle i, is generally modeled with a
Coulomb friction model:

Fs = −µdFnsign(vs), vs 6= 0,

|Fs| < µsFn, vs = 0,
(3.18)

where µs is the coefficient of static friction, Fn the normal force at the contact (Fn > 0
always), vs the relative tangential velocity of the two particles as defined in (3.3), and µd the
coefficient of dynamic friction (µd < µs). The Coulomb law is discontinuous at zero velocity.
Since Coulomb friction is a discontinuous force model, adjustments have to be made to the
model to avoid numerical instability of the force law in a simulation.

A simple implementation of the shear contact force is found in [4]. In this paper, Cundall
and Strack modeled the shear contact force by an incrementing spring, which accounts for
tangential elastic deformation of the contacting surfaces, according to

Fs = −ksη, (3.19)

where ks is the spring constant of the spring, which from time t0 on, at which the contact
was first established, has been stretched over a distance η given by

η =
∫ t

t0

vs(τ)dτ. (3.20)



The tangential spring causes an oscillatory motion around the point η = 0. The tangential
spring force is limited by the maximal static Coulomb friction µsFn; this is the limiting friction
that can be withstood by the contact before sliding of one particle over the other commences.
In case of sliding, the shear contact force is given by kinetic Coulomb friction µdFn. From
that point on, the spring is not stretched further. Since the friction force acts on the surface
of the particle, also a moment M is exerted on the particle according to

M = RFs, (3.21)

with R the distance from the center of mass of the particle i to the contact point.

4 Adhesion force

When two materials are brought into each others vicinity, they exert an attracting force onto
each other, the adhesion force. Hamaker [8] derived the following expression for the attractive
force between two spherical bodies with radii R1 and R2 as a function of the distance d:

Fadh =
AR1R2

12(R1 + R2)d2
, (4.1)

where A is known as the Hamaker coefficient. The Hamaker coefficient is a material property.
The expression (4.1) is employed in this paper for the calculation of adhesive forces; for d
we take the distance between the centers of the spherical particles. Accordingly, the adhesion
force in the model increases linearly with the particle size R and is inversely proportional to
d2.

5 Magnetic force

Toner particles contain magnetic pigment particles, which are magnetizable in an external
magnetic field. A magnetic particle in a non-uniform magnetic field, just as a magnetic particle
in the neighborhood of another magnetic particle, experiences a magnetic force. In this section,
we present force models for the magnetic forces that act on and between toner particles in
the DI toner assembly.

In a magnetostatic problem, the field vectors in x ∈ R3 satisfy the system

∇×H = J, ∇ ·B = 0, (5.1)

with H the magnetic field, J the current density and B the magnetic flux. In fact, this also
holds for a dynamic situation if the electric quasi-static approximation may be applied. This
approximation holds for relatively slow process, i.e. slow with respect to the speed of light,
and it amounts to the neglect of the displacement current ∂D/∂t with respect to J, or ∇×H.
According to (5.1)2, the field of the vector B is always solenoidal. Consequently, B can be
represented as the curl of another vector A(x), the magnetic vector potential,

B(x) = ∇×A(x). (5.2)

The magnetic vector potential A(x) in a point x external to a conducting body B, of config-
uration G ∈ R3, is then given by the well-known formula (see [9, p.235])

A(x) =
µ

4π

∫

G

J(x′)
|x− x′|dτx′ . (5.3)



A general current distribution localized in a small region of space is now considered;
”small” being relative to the scale of length of interest to the observer. It will be assumed
that the entire distribution can be circumscribed by a sphere B of finite radius R drawn
from the origin; only points of observation x exterior to this sphere will be considered. Vector
calculations show that

1
|x− x′| =

1√
|x|2 − 2|x||x′| cos θ + |x′|2 , (5.4)

with θ the angle between the vectors x and x′. Assuming |x| > |x′|, the denominator on the
right-hand side of (5.4) can be expanded in powers of |x′|/|x|, measured relative to the origin,
thus giving

1
|x− x′| =

1
|x|

∞∑

n=0

Pn(cos θ)
( |x′|
|x|

)n

, (5.5)

with Pn a Legendre polynomial of order n, [10]. Substitution of (5.5) into (5.3), making use
of (the first condition is necessary to exclude magnetic monopoles; see [11])

∫

B
J(x′)τx′ = 0, ∇ · J = 0, (5.6)

and leaving out all second-order terms, gives

A(x) = − µ

8π|x|3
[
x×

∫

B
x′ × J(x′)dτx′

]
. (5.7)

It is customary to define the magnetic moment density or magnetization M as

M(x) =
1
2

x× J(x), (5.8)

and its integral over G as the magnetic moment m as

m =
1
2

∫

G
x′ × J(x′)dτx′ . (5.9)

Then, the first-order term of the vector potential is the magnetic dipole vector potential,

A(x) =
µ

4π

m× x
|x|3 . (5.10)

The magnetic flux B outside the localized source can be calculated directly by evaluating the
curl of (5.10), leading to

B(x) =
µ

4π

[
3(er ·m)er −m

|x|3
]

. (5.11)

Here, er is a unit vector in the direction of x.
If a localized distribution of current is placed in an external magnetic flux field B(x), it

experiences a Lorentz force. The general expression for the total force F is

F =
∫

G
J(x′)×B(x′)dτx′ . (5.12)



If the external magnetic flux varies slowly over the region of current, a Taylor series expansion
can be utilized to find the dominant terms in the force. A component k of B can be expanded
around a suitable fixed point x,

Bk(x′) = Bk(x) + (x′ − x) · ∇Bk(x) + ..., x,x′ ∈ G. (5.13)

With this, the force (5.12) can be expressed in terms of m and B, yielding

F = (m×∇)×B = ∇(m ·B)−m(∇ ·B). (5.14)

Since ∇ · B = 0, the lowest order force on a localized current distribution in an external
magnetic field B is

F = ∇(m ·B). (5.15)

In the quasi-static approximation, ∇×B = 0 holds outside the source of the magnetic flux.
Then, the force (5.15) can be expressed alternatively as

Fmag ≡ F = (m · ∇)B. (5.16)

It is this formula that is used in the rest of this paper and in the numerical simulations for
the magnetic (Lorentz) force.

Toner particles get their magnetic properties from the magnetic pigment particles, which
are mixed with the resin of the toner. The magnetic pigment particles in the toner are not
permanent magnetic particles, but they are magnetizable in an external magnetic field, ac-
cording to a hysteresis curve. The magnetization m of a pigment particle thus depends on the
external magnetic field. The magnetic field in a toner particle in the DI toner assembly orig-
inates from two sources: the fixed magnet within the imaging roller, causing a field Bm, and
the magnetized surrounding particles, resulting in a field Ba. So, using the general formula
Fmag = (m · ∇)B, we can write here for the total magnetic force on a toner particle

Fmag = (m · ∇)(Bm + Ba), (5.17)

where m is the total magnetic moment in the toner particle due to Bm + Ba (so, m =
m(Bm + Ba)). Accordingly, the force (5.17) can be split into two terms

Fmag = Fm + Fa, (5.18)

where

Fm = (m · ∇)Bm, (5.19)

represents the magnetic force exerted by the magnet within the imaging roller on the toner
particle, while

Fa = (m · ∇)Ba =
∑

j 6=i

(m · ∇)Bj , (5.20)

represents the magnetic force exerted by the DI toner assembly on the toner particle i. Here,
Bj is the magnetic field due to another toner particle j, j 6= i, and the gradient ∇Bj should
be evaluated in the point x of particle i. Both forces are analyzed further in this section.



One black toner particle contains about 20,000 magnetic pigment particles, and one color
toner particle contains on average 13 pigment particles. It will be clear that calculating the
magnetic force on all magnetic pigment particles in one toner particle by evaluation of (5.19)
is computationally not achievable. If we assume that the magnetic field gradient ∇Bm does
not vary over a toner particle, then the force (5.19) on one toner particle can be written as

Fm = (
K∑

k=0

mk · ∇)Bm = (m · ∇)Bm, (5.21)

with

m =
K∑

k=0

mk, (5.22)

the total magnetic moment of the toner particle and K the number of pigment particles in
that toner particle.

The magnetic field Bm of the magnet within the imaging roller is calculated with Flux2D
[12]. Flux2D is a software package, based on the finite element method (FEM), for the analysis
and design of electromagnetic and electromechanical devices and processes. By defining the
geometry, the magnetic properties, e.g. the magnetization curves of the different materials
used in the construction of the magnet, and the properties of the FEM mesh, the magnetic
field is calculated in a predefined area of interest. The result, see Figure 6, is used as input
for our magnetic force calculations.

Figure6. Magnetic field calculations with Flux2D. The magnetic field lines for the magnetic knife are
visualized.

To evaluate (5.20), we note that the magnetic field at position x caused by a magnetic
dipole mj at position xj is given by

Bj(x) =
µ0

4π

(
3(x− xj)mj · (x− xj)

|x− xj |5 − mj

|x− xj |3
)

. (5.23)



The force exerted on a magnetic dipole mi in x = xi by the external magnetic field Ba is
then, according to (5.20), given by

Fa(xi) =
∑

j 6=i

(mi · ∇)Bj(xi). (5.24)

6 Electric force

In this section, we derive a model for the electric force acting on particles in the DI toner
assembly, and a model that quantifies the dynamic charging and decharging of the DI toner
assembly. For this, we consider the configuration for the front region of the DI toner assembly
depicted in Figure 7; see also this figure for the meaning of Gi and Ci. The region in front of
the toner assembly (air or vacuum) is denoted by G1. The imaging roller, Cd, is grounded,
so at the surface of the imaging roller the electric potential is zero. The toner particles,
G3, G4, ..., Gn, are connected via a conducting path with the imaging roller, and thus also
have zero potential. The drum, Cu, is put on a voltage V , which is alternatively 0 or 40
Volt. The drum is coated with a dielectric layer, G2 made of SiOx, with a relative dielectric
permeability ε2 of 5, and a thickness dl of 600nm. Finally, far away from the front, Cl(left)
or Cr(right), it is assumed that the electric field is perpendicular to the DI-drum and to the
imaging roller.

To enable electric field transfer, the electric force exerted by the externally applied electric
field on the toner particle must be stronger than the magnetic force. The electrostatic force
F, the Coulomb force, on a charged body of configuration G (G ⊂ R3) is equal to

F =
∫

G
σ(x)E(x)dτ, (6.1)

where E is the electric field strength and σ the volume charge density in the body.
In the non-conducting space G1 ∪G2 outside the spheres, where there is no free charge, the
electric field strength satisfies

∇ ·D = ε∇ ·E = 0, (6.2)

where ε is ε0 in G1, and ε0ε2 in G2.
If an electric potential u is introduced by E = −∇u, then, according to (6.2), u is a solution
of the Laplace equation. Moreover, u = 0 in G3 ∪ G4 ∪ .... ∪ Gn. In summary, the following
problem can be formulated:
find u1, u2, u3, ..., un, such that the following conditions are fulfilled:

• in the vacuum space in front of the DI toner assembly (∂Gi denotes the boundary of Gi)

∆u1 = 0, x ∈ G1,
u1 = 0, x ∈ Cd,
u1 = 0, x ∈ ∂G1 ∩ (∂G3 ∪ ... ∪ ∂Gn),
∂u1

∂n
= ε2

∂u2

∂n
, x ∈ ∂G1 ∩ ∂G2,

∂u1

∂n
= 0, x ∈ Cl ∩ ∂G1;

(6.3)



• in the dielectric layer on the DI-drum

∆u2 = 0, x ∈ G2,
u2 = V, x ∈ Cu,

ε2
∂u2

∂n
=

∂u1

∂n
, x ∈ ∂G2 ∩ ∂G1,

∂u2

∂n
= 0, x ∈ Cr ∩ ∂G2,

∂u2

∂n
= 0, x ∈ Cl ∩ ∂G2;

(6.4)

• in the DI toner assembly

ui = 0, x ∈ Gi, i = 3, . . . , n. (6.5)

C d

C l
G 1

G 3 G 4
G 5

G n

G 2
C u

i m a g i n g  r o l l e r

D I - d r u m
V

+  +  +  +  +  +  +  +  +  

C r

Figure7. The electrostatic problems (6.3)-(6.5) are defined in the depicted front region of the DI toner
assembly. The materials depicted in grey are conducting.

Due to the high density of the toner particles in the DI toner assembly, electric screening
takes place [13]. A toner particle that is completely surrounded by other toner particles, is
screened from the electric field of the DI-drum. This is the reason why charge will only gather
at the outer particles of the DI toner assembly that are most near the DI drum. Only these
particles will experience an electric force to the DI-drum, and can be printed; see Figure 7.

If the bulk of the DI toner assembly behind the front region is considered as a continuous
medium, see Figure 8, the electrostatic problem in the bulk of the DI toner assembly reduces
to a Laplace problem for the electric potential u2 in the dielectric layer, G2, on the DI drum,
of thickness dl and relative dielectric constant ε2; that is (x, y as in Figure 8)

∆u2(x, y) = 0, (x, y) ∈ G2,
u2(x, 0) = 0,
u2(x, dl) = V,
∂u2

∂x
(x, y) = 0, x → ±∞,

(6.6)



i m a g i n g  r o l l e r
D I  t o n e r  a s s e m b l y

S i O x  l a y e r
D I - d r u m

y V

Figure8. The bulk of the DI toner assembly considered as a continuous conducting medium.

with V the prescribed potential of the conducting track of the DI-drum. The solution of (6.6)
is

u2(x, y) = V
y

dl
. (6.7)

From (6.7), the electric surface (line) charge density σ (in C/m) at the boundary y = 0, and
the electric field strength E2 in the layer, G2, can be calculated as

σ = −ε2ε0
∂u2

∂n
= −ε2ε0

V

dl
, E2 = −∇u2 = −V

dl
ey. (6.8)

The electrostatic force F acting on a toner particle near the DI drum, in the bulk behind the
front region, is (Sp is the average area of that particle in the x, y-plane)

F =
∫

Sp

σ(x)E2(x)dS. (6.9)

The average area occupied by one toner particle is denoted by αR2. In the case of a dense
sphere packing, α = 2

√
3.

Thus, the electrostatic force on one toner particle is given by

F =
ε2ε0αR2V 2

d2
l

ey. (6.10)

This formula for F is specifically valid for a toner particle in the bulk of the DI toner assembly
behind the front region that is in contact with the DI drum. This formula will be used for
our DEM simulation for the motion of the bulk particles.

For the calculation of the electrostatic force in the front region of the DI toner assembly,
we need the electric field strength due a conducting particle in the neighborhood of another
conducting particle or a dielectric half-space. In literature, a number of models are described
that predict the electric field strength due to a conducting particle in such a situation. Here,
the approach of [14,15,16] is adopted, in which bispherical coordinates are used to solve the
electrostatic problem for a conducting toner particle in the field of an electrode.
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Figure9. A grounded sphere at a distance d from a plate on voltage V .

A grounded sphere of radius R at a distance d from a plate on a voltage V is considered; see
Figure 9. The bispherical coordinates ξ, η, φ are defined by

x =
a sinh η

cosh η − cos ξ
,

y =
a sin ξ cosφ

cosh η − cos ξ
,

z =
a sin ξ sinφ

cosh η − cos ξ
.

(6.11)

In terms of these coordinates, the plane x = 0, the surface of the plate, is described by
η = 0, and the surface of the sphere by η = η0, with sinh η0 = a/R, and a =

√
(d + 2R)d. In

bispherical coordinates, the Laplace operator applied to the potential u reads

∇2u =
(cosh η − cos ξ)2

a2 sin ξ

{
∂

∂η

(
sin ξ

cosh η − cos ξ

∂u

∂η

)
+

∂

∂ξ

(
sin ξ

cosh η − cos ξ

∂u

∂ξ

)
+

+
∂

∂φ

(
1

cosh η − cos ξ

∂u

∂φ

)}
.

(6.12)

The problem, associated to Figure 9, is rotationally symmetric, hence, independent of φ. This
means that the potential u = u(ξ, η), while the problem region is the 2-D region G, with

G = {(ξ, η)|0 < ξ < π, 0 < η < η0} . (6.13)

The boundary of G is given by {ξ = π, 0 < η < η0}, {0 < ξ < π, η = η0}, {ξ = 0, 0 < η < η0},
{0 < ξ < π, η = 0}, and {ξ = 0, η = 0} (the latter corresponding with

√
x2 + y2 →∞). The

problem for the potential u∗(ξ, η) = u(ξ, η)− V is then given by

∇2u∗ = 0, (ξ, η) ∈ G,
u∗ = 0, 0 < ξ < π, η = 0,
u∗ = −V, 0 < ξ < π, η = η0,
∂u∗

∂ξ
= 0, {ξ = 0 ∨ ξ = π} , 0 < η < η0,

u∗ → 0, ξ = 0, η = 0 .

(6.14)



From now on, the superscript in u∗ will be omitted. If the Ansatz:
u(ξ, η) = (cosh η − cos ξ)

1
2 V1(ξ)V2(η), is used, (6.12) can, after some calculations, be written

as

∇2u =
sin ξ

(cosh η − cos ξ)
1
2

[
V1V

′′
2 + V ′′

1 V2 +
cos ξ

sin ξ
V ′

1V2 − 1
4
V1V2

]
. (6.15)

Introduction of the separation constant p leads to

V ′′
1 (ξ) +

cos ξ

sin ξ
V ′

1(ξ) + pV1(ξ) = 0,

V ′′
2 (η)− (

1
4

+ p)V2(η) = 0.
(6.16)

First, (6.16)1 will be analyzed. Substitution of z = cos ξ gives

(1− z2)
d2V1

dz2
− 2z

dV1

dz
+ pV1 = 0. (6.17)

This is the differential equation of Legendre [10]. The only solutions of (6.16) that are finite in
the domain −1 ≤ z ≤ 1 are the Legendre Polynomials Pn(z) for p = n(n + 1), n = 0, 1, 2, . . ..
The fundamental solutions of (6.16)2 are cosh(n+ 1

2)η and sinh(n+ 1
2)η. Therefore, a solution

of (6.14) in the form

u(ξ, η) = (cosh η − cos ξ)
1
2

∞∑

n=0

[
an cosh(n +

1
2
)η + bn sinh(n +

1
2
)η

]
Pn(cos ξ), (6.18)

is proposed. From (6.14)2 it follows that an = 0 for all n. Moreover, since this representation
is even, both around ξ = 0 and ξ = π, the condition (6.14)4 is trivially satisfied and, further,
this solution also satisfies the condition at infinity (6.14)5. Finally, boundary condition (6.14)3
gives

(cosh η0 − cos ξ)
1
2

∞∑

n=0

bn sinh
(

(n +
1
2
)η0

)
Pn(cos ξ) = −V , (6.19)

a relationship for the still unknown coefficients bn. This relation renders (for −1 < z = cos ξ <
1)

∞∑

n=0

bn sinh
(

(n +
1
2
)η0

)
Pn(z) = − V

(cosh η0 − z)
1
2

= − V
√

2

e
η0
2

√
1 + e−2η0 − 2zeη0

= −V
√

2
∞∑

n=0

e−(n+ 1
2
)η0Pn(z),

(6.20)

and then the orthogonality of the Legendre polynomials yields

bn = −V
√

2e−(n+ 1
2
)η0

sinh(n + 1
2)η0

. (6.21)

Hence, the solution of (6.14) is given by

u = −V
√

2(cosh η − cos ξ)
1
2

∞∑

n=0

e−(n+ 1
2
)η0

sinh(n + 1
2)η

sinh(n + 1
2)η0

Pn(cos ξ). (6.22)



Note that the series in this solution converge for d > 0 (or η0 > 0) for all (ξ, η) ∈ G.
The electrostatic force F on the sphere is directed towards the plane x = 0, and, according

to (6.1), this force is given by (with G ∈ R3 replaced by S ∈ R2, the surface η = η0 of the
sphere)

F = −
∫

S
σExdS, (6.23)

with

σ = ε0
∂u

∂n

∣∣∣∣
S

= ε0
cosh η0 − cos ξ

a

∂u

∂η

∣∣∣∣
η=η0

, (6.24)

and

Ex = −∂u

∂x
= −cosh η0 cos ξ − 1

a

∂u

∂η

∣∣∣∣
η=η0

. (6.25)

Here it has been used that the tangential derivative ∂u/∂ξ = 0 at η = η0. Finally, for the
surface element

dS =
a2 sin ξ

(cosh η0 − cos ξ)2
dξdφ, (6.26)

holds. All this leads to

F = 2πε0

∫ π

0

(cosh η0 cos ξ − 1) sin ξ

cosh η0 − cos ξ

(
∂u

∂η

∣∣∣∣
η=η0

)2

dξ. (6.27)

From (6.22), with use of (6.20), we obtain

∂u

∂η

∣∣∣∣
η=η0

= − V
√

2
cosh η0 − cos ξ

(V1 + V2) , (6.28)

with (z = cos ξ)

V1 =
sinh η0

2
√

2
,

V2(z) = (cosh η0 − z)3/2
∞∑

n=0

(
n +

1
2

)
cosh(n + 1

2)η0

sinh(n + 1
2)η0

e−(n+ 1
2
)η0Pn(z).

(6.29)

With (6.28), the expression on the right-hand side of (6.27) can be split up in three separate
integrals

F = 4πε0V
2(F1 + F2 + F3), (6.30)

with

F1 = V 2
1

∫ 1

−1

x cosh η0 − 1
(cosh η0 − x)3

dx, [0.3cm]

F2 = 2V1

∫ 1

−1
V2

x cosh η0 − 1
(cosh η0 − x)3

dx, [0.3cm]

F3 =
∫ 1

−1
V 2

2

x cosh η0 − 1
(cosh η0 − x)3

dx.

(6.31)



Evaluation of the integral F1 results in

F1 = 0. (6.32)

The integral F2 can be rewritten as

F2 = 2V1

∞∑

n=0

vn

∫ 1

−1

z cosh η0 − 1
(cosh η0 − z)3/2

Pn(z)dz, (6.33)

with

vn =
(

n +
1
2

)
cosh(n + 1

2)η0

sinh(n + 1
2)η0

e−(n+ 1
2
)η0 . (6.34)

With the introduction of the auxiliary function Jn as

Jn(cosh η0) =
∫ 1

−1

Pn(z)√
cosh η0 − z

dz =
2
√

2
2n + 1

e−(n+ 1
2
)η0 , (6.35)

which is such that (ζ = cosh η0)
∫ 1

−1

zζ − 1
(ζ − z)3/2

Pn(z)dz = −ζJn(ζ)− 2(ζ2 − 1)J ′n(ζ) , (6.36)

the right-hand side of (6.33) can be evaluated to

F2 =
∞∑

n=0

cosh(n + 1
2)η0

sinh(n + 1
2)η0

e−(2n+1)η0 sinh η0

(
neη0 − (n + 1)e−η0

)
. (6.37)

The integral F3 can be calculated straightforwardly, giving

F3 =
∞∑

n=0

cosh(n + 1
2)η0

sinh(n + 1
2)η0

e−(n+ 1
2
)η0 ·

·
[
−(n +

1
2
)
cosh(n + 1

2)η0

sinh(n + 1
2)η0

e−(n+ 1
2
)η0 + (n + 1) cosh η0

cosh(n + 3/2)η0

sinh(n + 3/2)η0
e−(n+3/2)η0

]
.

(6.38)

With this result, an explicit expression for the Coulomb force on one earthed spherical particle
at a distance d (related to η0) from a plate on voltage V has been obtained. This formula will
be used in our DEM simulations for front-region particles.

The DI-drum consists of a number of conducting tracks, which separately can be put on a
voltage. When a pixel has to be printed, a voltage difference is applied between the imaging
roller and a track in the DI-drum. This voltage difference causes toner particles in the DI
toner assembly to get charged and to experience an electric force towards the DI-drum that
is stronger than the magnetic force towards the imaging roller. An SiOx layer, the dielectric
layer above the conducting tracks, ensures that the electric charge on the toner does not leak
to the conducting tracks. This way, toner particles stay on the DI-drum. In the clean situation,
when nothing has to be printed, the voltage difference between the imaging roller and the
track of the DI-drum is put off. In this stage, the charge of the toner in the DI toner assembly
leaks to the imaging roller, the toner does not experience an electric force any more and is



pulled from the DI-drum by the magnetic force of the magnet within the imaging roller. Due
to the charging and decharging of the DI toner assembly, the voltage difference between toner
particles and the DI-drum changes in time, and, according to (6.30), the electric force does.

Due to the dynamics of the DI toner assembly, conducting paths are formed and broken.
The conducting paths consist of toner-toner contacts and toner-imaging roller contacts. We
treat the contact between a toner particle and another toner particle as an ideal electric
resistance. Similarly, the contact between a toner particle and the imaging roller is treated as
an ideal electric resistance. A toner particle that approaches the DI-drum builds up charge
and an electric force towards the DI-drum. Toner particles within a small range of the DI-
drum are treated as a capacitor with respect to the DI-drum. Particles in contact with the
DI-drum build up charge, and have some charge leakage into the DI-drum. The contact of a
toner particle with the DI-drum is treated as a capacitor in parallel with an ideal resistance.
By this routine, a simulation geometry can be transferred into an electric circuit. Several
methods [17] are available to analyze a resistive network. Our approach consists of a 1-
dimensional analysis of the electric circuit. We assume that the charging of toner particles is
mainly due to a flow of charge through the shortest conductive path formed to the imaging
roller. This shortest path is calculated for every particle and is translated to a 1-dimensional
electric circuit. The computational costs of this approach are limited, so that the method can
be applied in a discrete element method simulation. Furthermore, the relevant physics that
play a role in the charging process is captured in this method: charging of a particle in contact
with a charged object takes place according to an RC-time, and particles cannot be charged
or decharged if they are not in conducting contact with the imaging roller. This means that
charge can only be distributed during collisions of particles that form conducting chains to
the imaging roller.

7 Validation and results

Print quality is a global concept, covering a lot of areas such as detail reproduction, graininess,
and color gamut. Two main determinants of color print quality are resolution, measured in
dots per inch (dpi), and the number of levels or graduations that can be printed per dot.
Generally speaking, the higher the resolution and the more levels per dot, the better the
overall print quality. In practice, most printers make a trade-off, some opting for higher
resolution and others settling for more levels per dot, the best solution depending on the
printer’s intended use.

The edges of printed dots are in general not perfectly sharp. The front edge, the begin-
ning of a pixel, and the back edge, the end of a pixel, are not perfect, but have a certain edge
sharpness. Unsharp edges in the direction of a ring electrode of the DI-drum occur because
switching the print voltage on and off does not immediately imply a transition of toner cover-
age from 0% to 100% or vice versa. Edge sharpness is defined as the distance in micrometers
over which the coverage in an edge changes from 10% to 90%, where the maximum coverage
in a pixel is scaled to 100%. Big dots consist of a front edge, a middle part where the toner
coverage is maximal and stable, and a back edge. Small dots only consist of a front edge
and a back edge, without a middle part. Edge sharpness thus contains information of the
stability and quality with which pixels or dots can be printed by a development unit, and
is thus an important print quality measure for a development unit. Consequently, if we are
able to predict edge sharpness with our DEM simulation tool, we can predict aspects of print



quality of a full color engine. Here, we investigate to what extent we are able to predict edge
sharpness of printed dots for a black DI-unit of the Océ CPS700.

In order to determine edge sharpness from DEM simulations, we run a total number of
fifty simulations, where in each simulation a line is printed. In Figure 10, the result of one
of these fifty simulations is displayed. Each single printed line contains an edge sharpness.

i m a g i n g  r o l l e r

D I - d r u m

t o n e r  r e m o v a l

t o n e r  s u p p l yp r i n t e d  l i n e

m a g n e t i c  k n i f e

Figure10. Snapshot of a DEM simulation movie of the black unit of the Océ CPS700. A line has been
printed on the upper drum, the DI-drum. The lower drum is the imaging roller. The imaging roller
has a mechanical roughness (dredger profile) and a magnetic knife placed underneath.

Different printed lines put next to each other show a non-perfect edge sharpness due to a shift
in the area of full coverage. Both effects are accounted for by determining an average coverage
curve from the fifty printed lines. The average coverage curve is determined by averaging the
individual coverage curves from the fifty simulations. The individual coverage curves simply
depict the presence (defined as 100% coverage) or absence (defined as 0% coverage) of toner on
the DI-drum as a function of the position on the DI-drum. From the average coverage curve,
a sigmoid fit is calculated; sigmoid fits are predefined functions, which are part of a standard
measurement protocol to determine edge sharpness of printed dots. From the sigmoid fit, the
normal front and back edge sharpness can be determined. The coverage profiles, determined by
experiments or by simulations, for a black unit of the Océ CPS700 are displayed in Figure 11.
Good quantitative agreement is observed between the simulation and the experimental results.
Both simulation and experimental results show an a-symmetry: the back edge sharpness is
better than the front edge sharpness.

This not only confirms us in the quality of the model, but also opens opportunities for
many applications of the model. The model can, for instance, be used to predict aspects of
print quality for deviating settings of the DI-unit. Since it is relatively easy to do predictions
with the DEM model for exotic settings of the DI-unit, new ideas can be tested fast and good
ideas discovered more easily. The model can also be used as a design tool for fundamentally
new ideas, which are difficult to test experimentally. Furthermore, the DEM model provides
a lot of insight in the relevant processes that take place in the DI toner assembly, and allows
people to improve the system on basis of a fundamental insight in the physics playing a role
in the development process.



Figure11. The coverage profiles determined by experiments or by simulations for a black unit of the
Océ CPS700.

References

1. Severens, I.E.M., DEM simulations of toner behavior in the development nip of the Océ Direct
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