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Statecharting Petri Nets

Rik Eshuis∗

Abstract

A polynomial algorithm that translates a Petri net into an equivalent
(bisimilar) statechart is presented. The translation preserves the structure
of the Petri net. Key property of the algorithm is that it is structural
and does not use any Petri net analysis technique. The algorithm is
formally proven correct. Though not every statechart equivalent to a net
is constructible by the algorithm, the set of constructible statecharts is
fairly large.

1 Introduction

Petri nets and statecharts are two popular visual formalisms for modelling sys-
tems that exhibit concurrency. Petri nets were introduced in 1962 by C.A.
Petri [24]. Since the 1980’s Petri nets found their way in practical applications
like manufacturing, workflow modelling and performance analysis [28]. State-
charts were introduced in 1987 by D. Harel [9], for use in the structured analysis
method Statemate [15]. Soon after their appearance, statecharts were adopted
in several object-oriented methods, including OMT [29], ROOM [32], and their
successor Unified Modeling Language [34, 35]. Thus, both Petri nets and stat-
echarts have found widespread use in both academia and industry.

Both formalisms are supported by various tools, like CPN tools [26] and
GreatSPN [2] for Petri nets, and Statemate [12, 15] and Stateflow [20] for stat-
echarts. UML [35] tools are a special case, since they support not only state-
charts but also activity diagrams, a Petri-net like notation. Tools supporting
Petri nets are strongly focused on analysis of both functional and stochastic
properties, while tools supporting statecharts are usually more focused on the
software design process, for example offering the facility to generate code from
a statechart.

Given this wide tool support, it is interesting to have well-defined transla-
tions between Petri nets and statecharts. Such translations could facilitate the
exchange of models in different notations between tools, thus allowing designers
to use the best of both worlds. Ideally, such translations are correct and struc-
ture preserving. A translation is correct if the original and translated model are
equivalent. Correctness guarantees that operations done with a tool on a partic-
ular model are meaningful, even if the original model was expressed in another
formalism. Preservation of structure ensures that the syntax of the original
and translated model are alike, making it easier for designers to understand the
translated model.

∗Address: Eindhoven University of Technology, Department of Technology Management,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands, h.eshuis@tm.tue.nl.
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concept Petri net Statechart
state place node (state)
transition transition hyperedge (full compound transition)
active state place containing a token active node (active state)
global state marking configuration

Table 1: Relating Petri net and statechart terminology

The goal of this paper is to define a translation from Petri nets to state-
charts, and vice versa, that is both correct and structure preserving. Before
giving any details on these two translations, it is useful to discuss the similar-
ities and differences between statecharts and Petri nets. Both formalisms are
generalisations of finite state machines. Finite state machines model sequen-
tial processes as states connected by transitions. Mathematically, finite state
machines are represented as directed graphs, consisting of nodes (representing
states) and directed edges (representing transitions). The global state of such a
machine at a certain point in time is always one single state, i.e., only one node
of the graph is active at a time.

Both Petri nets and statecharts generalise finite state machines by using
transitions that can enter and leave multiple states. Sources and targets of such
transitions are concurrent: a transition can only be taken if all its sources are
active in parallel, and if a transition is taken, all its targets become active in par-
allel. Mathematically, a transition is represented as a hyperedge. Consequently,
the underlying mathematical model is a hypergraph rather than a graph1. The
global state of a Petri net or statechart is distributed and typically consists
of multiple states, i.e. multiple nodes of the hypergraph can be simultaneously
active. Even though Petri nets and statecharts share these concepts, the ter-
minology is somewhat different (see Table 1; for definitions see Section 3). To
clearly distinguish between the two formalisms, for statecharts we use the terms
‘node’ and ‘hyperedge’ rather than the more common ‘state’ and ‘transition’.

Though both Petri nets and statecharts are based on hypergraphs, state-
charts have as additional feature an AND/OR hierarchy on nodes to explicitly
model concurrency 2. This hierarchy is visualised by node containment, where
nodes that contain other nodes are called composite. There are two kinds of
composite nodes: AND and OR, each imposing its own constraint on the global
state of the statechart. An AND node denotes concurrency: If an AND node is
active, all its immediate subnodes must be active as well. An OR node denotes
exclusiveness: If an OR node is active, one of its immediate subnodes must be
active as well. (So OR is actually XOR.)

The constraints imposed by the statechart hierarchy imply that leaf nodes
of the hierarchy, BASIC nodes, are not active more than once in the same
global state. This seems to suggest that statecharts correspond to safe Petri

1Usually Petri nets are represented as bipartite graphs. However, equivalently they can be
represented as hypergraphs [23].

2Even though there do exist extensions of Petri nets with hierarchy, the execution semantics
of such hierarchical Petri nets does not depend on the hierarchy. That is, a hierarchical Petri
net can always be transformed into an equivalent non-hierarchical Petri net by substituting
for each parent node its decomposition. Such a syntactic elimination of hierarchy is not
possible in statecharts, essentially because in statecharts concurrency can only be expressed
in a hierarchical way using AND nodes.
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nets (nets in which in each marking every place has at most one token; see
Section 3). However, there is no known structure-preserving translation from
safe Petri nets to statecharts. The difficulty in defining such a translation lies
in constructing an appropriate AND/OR hierarchy. On the other hand, to
translate a statechart into a Petri net, simply dropping composite nodes from
the statechart seems to suffice.

In this paper, we present a structure-preserving algorithm that translates a
Petri net into an equivalent (bisimilar) statechart. The algorithm is structure-
preserving in the sense that it maps each place to a BASIC node and each
transition to a hyperedge. Thus, loosely speaking, the algorithm imposes an
AND/OR hierarchy of nodes on the Petri net structure. If the algorithm cannot
find an equivalent statechart, it fails. The algorithm has been implemented in
a software tool, which is available for public download at
http://is.tm.tue.nl/staff/heshuis/pn2sc.

Key property of the algorithm is that it is structural and does not use any
Petri net analysis techniques, like place invariants or reachability graphs. This
leads to the surprising result that the algorithm is polynomial in the size of
the net, even though the algorithm involves the construction of an additional
structure on top of a Petri net.

The correctness of the algorithm is formally proven. However, it is not
complete: it fails for some nets that do have a statechart equivalent. But
statecharts which it fails to construct are not likely to be drawn by statechart
designers, as we argue in Section 4.2 (p. 31), so this non-completeness does not
appear to be a severe limitation in practice.

For the reverse direction, we give a characterisation of the statecharts that
can be mapped by a structure-preserving translation into an equivalent Petri
net. This shows that not every statechart can be translated into an equivalent
Petri net, so omitting composite nodes from a statechart does not always yield
an equivalent net.

We focus on unweighted, low level Petri nets and statecharts without any
transition labels. For statecharts, weighted transitions are not very useful, as
each node is active at most once. Defining translations that take into account
data, by considering for example coloured Petri nets [17] and statecharts with
local variables and guard and action labels, we defer to future work. Moreover,
we do not consider statecharts with event labels. In previous work, we already
studied to what respect event triggering can be supported in Petri nets [7, 6, 4].

Since we consider structure-preserving translations, we do not use the state-
chart in-predicate as guard condition on hyperedges. Given a node x , predicate
in(x ) is true if and only if the system is currently in x . With the in-predicate as
guard condition, a hyperedge can test a node for (in)activeness without leaving
it. In Petri nets, this can be modelled using read and inhibitor arcs.

Related work. There is but little work on the topic of translating Petri nets
to statecharts. In fact, the only published work with considerable amount of
details appears to be Schnabel et al. [31] (in German). They outline an inter-
active method to translate a safe Petri net into a statechart. The method uses
place invariants. Roughly speaking, each invariant maps to a parallel node of a
statechart. Like this work, their aim is to translate every place into one BASIC
node. However, since a place can occur in several place invariants, in most cases
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a place translates into several BASIC nodes. Schnabel et al. outline some ways
to prevent such duplications, but sometimes duplications cannot be avoided. In
contrast, our algorithm is not interactive and always translates a place into a
single BASIC node.

However, since the translation of Schabel et al. is not structure preserv-
ing, it sometimes succeeds where our translation fails. Their translation uses
guard conditions, in particular the in-predicate, and local variables in com-
bination with action expressions, to simulate cross-synchronisations between
parallel statechart nodes. For example, their method could translate the net
in Figure 6, for which no structure-preserving equivalent statechart exists, into
the statechart shown in Figure 8 (Section 2 explains these examples in detail).
As stated above, in this paper we are interested in structure-preserving trans-
lations only, hence we do not consider guard conditions and action expression
on statechart hyperedges.

Considering the reverse direction, translations from statecharts to Petri nets
appear quite frequently in the literature (e.g. [16, 21, 31, 30, 33]). In these
approaches, statecharts are considered as having an informal semantics that is
formalised by the mapping to Petri nets. However, this ignores that statecharts
have their own semantics. Thus, in these approaches no formal proof is given
that the translation is actually correct. In Section 3 we define a translation that
is proven correct if the statechart satisfies certain conditions. Thus, not every
statechart can be mapped in to an equivalent Petri net.

Kishinevsky et al. [19] define a Petri net variant that incorporates some
statechart features. The variant, called place chart net, uses hierarchy on places
and preemptive transitions: a transition does not only empty its input places
put also all descendant places of the input places. However, the authors do not
relate place chart nets to standard Petri nets.

Finally, Drusinsky and Harel [3] show that a class of concurrency models that
includes both statecharts and Petri nets is more succinct than finite state ma-
chines. However, they do not explicitly make a distinction between statecharts
and Petri nets, i.e., they fall in the same class.

Structure of this paper. Section 2 introduces some motivating examples of
Petri nets and statecharts that do or do not have equivalent behaviour. This sets
the stage for the translation in Section 4. Section 3 recalls definitions of Petri
nets and statecharts. We formally prove when a statechart has an equivalent
Petri net. The definition of statecharts is nonstandard, since we do not consider
default nodes. Section 4 presents the transformation algorithm from Petri nets
into statecharts. Section 5 winds up with conclusions and further work.

2 Motivating the translation

Some motivating examples of Petri nets that can or cannot be translated into
equivalent (bisimilar) statecharts are presented. The translations impose AND/
OR hierarchies on the net structures. (Formal definitions can be found in the
next section.) In Section 4 these examples are used to motivate the algorithm.
The equivalent statecharts shown here are also returned by the algorithm in
Section 4, but the inequivalent ones are not, since the algorithm fails if it cannot
find a structure-preserving, equivalent statechart for the input Petri net. In
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t1 t2 t3 t4

A

t1 t2 t3 t4

Figure 1: Petri net with balanced forks and joins and equivalent statechart

the examples, statechart nodes and edges are labelled with the names of the
corresponding Petri net constructs.

The intuitive relation between a Petri net and a statechart is that every
Petri net with balanced forks and joins corresponds to a statechart. A fork is
a transition with more than one output place and a join is a transition with
more than one input place. A net has balanced forks and joins if and only if the
paths leaving a fork are eventually merged by entering a subsequent join. Every
fork-join pair directly corresponds to an AND node. For example, the balanced
net in Figure 1 has two fork-join pairs: {t1, t4} and {t2,t3}. Consequently, the
equivalent statechart in Figure 1 has two AND nodes. This balancing constraint
has been adopted in UML 1.x activity diagrams [34] (a notation with a Petri
net-like syntax whose semantics is defined in terms of UML statecharts) in order
to ensure that each activity diagram can mapped into a statechart.

However, even Petri nets with unbalanced forks and joins may have structure-
preserving, equivalent statecharts. For example, the join in the Petri net in
Figure 2 corresponds to two forks, rather than one. Thus, the net is not bal-
anced. Still, an equivalent statechart exists, also shown in Figure 2. As another
example, in the net in Figure 3 the join t2 only partially matches the fork t1.
But also for this net, an equivalent statechart exists, as shown in Figure 3.

Nevertheless, there are also unbalanced Petri nets that have no structure-
preserving equivalent statechart. For example, the net shown in Figure 4 is
unbounded; places p2 and p4 can contain an unbounded number of tokens.
An equivalent statechart does not exist, because of transition t2. A somewhat
similar statechart is shown in the same figure. However, in the statechart, if
t2 is taken, node A and all its descendants are left, including nodes p2 and p4.
Thus, the statechart is not unbounded.

Unsafe nets also have no structure-preserving statechart equivalent. For
example, the net in Figure 5 is unsafe. Place p10 is unsafe, because t3 and t4
can both be taken. Although the statechart in Figure 5 appears to be equivalent,
it does not have the same behaviour as the net. In the statechart, if t3 fires,
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t1 t2
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p5
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p8
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p4

p3

p2

p1 p6

p7

p5

p8

p9
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t1 t2 t3

Figure 2: Petri net with unbalanced forks and joins and equivalent statechart
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p7

p8

p9

p4

p3

p2

p1 p6

p7

p5

p8

p9

t1 t2

Figure 3: Another Petri net with unbalanced forks and joins and equivalent
statechart
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t3

p4
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p2

p1

t1 A

t2

Figure 4: Unbounded Petri net and non-equivalent statechart
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p1 p6
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Figure 5: Unsafe Petri net and inequivalent statechart
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t3

t1

p5

p1

p2

p3

p4

p6

p7

p8

p9

t2 t4

t5

t6

Figure 6: Safe Petri net with cross-synchronisation for which no structure-
preserving equivalent statechart exists

h1

A

n1 n2 n3

h2

O1

O2

Figure 7: Statechart with a hyperedge connecting parallel nodes

the source of t3, node p8, as well as AND node A is left. According to the
statechart semantics, therefore all descendants of A are left as well, including
the source of t4, node p9. So in the statechart, taking t3 disables t4, and vice
versa. Therefore, the statechart cannot be unsafe.

As we pointed out in the introduction, a Petri net has to be safe to be
translatable into a structure-preserving, equivalent statechart, since according
the statechart semantics nodes cannot be active more than once at the same
time. However, not every safe Petri net can be translated into a statechart.
For instance, Figure 6 shows a Petri net in which two parallel branches have
a cross-synchronisation between them. The cross-synchronisation prevents that
an equivalent statechart exists.

The behaviour of a seemingly similar statechart, shown in Figure 7, is quite
complex. Hyperedge h1 connects parallel nodes. If h1 is taken, state A and all its
descendants are left, including nodes O1, n1, n2 and n3. (In fact, the statechart
is not valid, since it is not specified which node of O2 has to be entered.) Clearly,
a statechart with a hyperedge connecting parallel nodes cannot have a Petri net
equivalent.

The Petri net in Figure 6 also illustrates the implications of only consider-
ing structure-preserving translations. If we allowed a non-structure-preserving
translation, there would exist a statechart equivalent, for example the one listed
in Figure 8. However, in that statechart hyperedge t4 does not have node p5 as
source, but tests whether p5 is active using the in-predicate.

Another example to illustrate these implications is shown in Figure 9. The
net on the left does not have a direct statechart equivalent, due to the cross-
synchronisation between the two parallel branches. The net on the right does
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A

p2

p1

p3

p7

p8

O1.1

p9

O1.2

t1

t3

t6

p4

p6

t4

t5

p5

[in(p5)]

t2

Figure 8: Statechart with in-predicate corresponding to the net in Figure 6

t2t1

t3

t4 t2t1

t3

t4

Figure 9: Two equivalent Petri nets. The one on the right has a structure-
preserving, equivalent statechart, but the one on the left has not

have a statechart equivalent, namely a simple sequential statechart. However,
the net on the left is equivalent to the net on the right (i.e. their transition
systems are bisimilar).

3 Preliminaries

We recall some definitions of transition systems, Petri nets and statecharts.
Readers familiar with Petri nets and statecharts can skip this section. How-
ever, note that the statechart definition differs slightly from the traditional one;
details can be found below. Formal definitions of Petri nets can be found in
standard text books like Reisig [27] or overview papers like Murata [22]. For
statecharts, formal definitions can be found, among others, in papers by Harel
et al. [14] and Pnueli and Shalev [25].

3.1 Transition systems

The execution semantics of both Petri nets and statecharts map into transition
systems. A transition system is a pair (S ,�, si) where

• S is a set of states,

• �⊆ S × S the transition relation, and

• si ∈ S is the initial state.
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We write x � y whenever (x , y) ∈�.
To compare different transitions systems, we use the notion of a bisimu-

lation [8]. Let (S1,�1, si1) and (S2,�2, si2) be two transition systems. A
bisimulation is a relation R ⊆ S1 × S2 such that

(i) if s1 R s2 and s1 �1 s ′1 then ∃ s ′2 ∈ S2 such that s2 �2 s ′2 and s ′1 R s ′2,

(ii) if s1 R s2 and s2 �2 s ′2 then ∃ s ′1 ∈ S1 such that s1 �1 s ′1 and s ′1 R s ′2.

Two transition systems (S1,�1, si1) and (S2,�2, si2) are bisimilar if and only
if their initial states si1 and si2 are related by a bisimulation relation.

3.2 Petri nets

Syntax. A Petri net (place/transition net) is a tuple (P ,T ,F , pi) where

• P is a set of places,

• T is a set of transitions, P ∩ T �= �,

• F ⊆ (P × T ) ∪ (T × P) is a finite set of arcs, the flow relation,

• pi ∈ P is the initial place.

We do not consider weights on the arcs, since statecharts do not have such a
feature. Normally, Petri nets do not have one specific initial place. However,
our definition is not very restrictive: for each Petri net having a set S of initial
places, an artificial initial place pi can be created with an additional transition
leaving pi and filling the original initial places in S .

Given a transition t , •t = { p ∈ P | (p, t) ∈ F } is the set of input places
of t , whereas t• = { p ∈ P | (t , p) ∈ F } is the set of output places of t . We
require that both •t and t• be nonempty. Furthermore, we require the net be
connected : for any two nodes n,n ′ ∈ P∪T , there should be a path n0,n1, . .,nm ,
where n0 = n and nm = n ′ such that for every 0 ≤ i < m, either (ni ,ni+1) ∈ F
or (ni+1,ni) ∈ F .

Petri net are visualised as bipartite graphs, in which circles represent places,
bars represent transitions, and arrows represent the flow relation.

Semantics. The global state of a Petri net, called the marking , is a function
M : P �� that assigns to each place the number of times it is active. Each
single activation of a place is visualised by a black dot in the place, called a token
in Petri net terminology. In each net shown in this paper, the initial marking
[pi ] is depicted, in which initial place pi contains a single token and every other
place has no token.

From a marking M another marking M ′ can be reached by firing transitions.
A transition t can fire in a marking M if and only if M enables t . Marking M
enables transition t if and only if all of t ’s input places are active: for all
p ∈ •t : M (p) ≥ 1. If t fires in M , marking M ′ is reached, written M t

� M ′,
where for every p ∈ P :

M ′(p) =

⎧⎨
⎩

M (p) − 1 , if p ∈ •t \ t•
M (p) + 1 , if p ∈ t• \ •t
M (p) , otherwise.
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A marking M ′ is reachable from M if and only if there is a sequence of transitions
t1, t2, . ., tn such that M1

t1
� M2

t2
� M3 . . Mn

tn
� Mn+1 where M1 = M and

Mn+1 = M ′. A marking M is reachable if and only if it is reachable from [pi ].
This execution semantics maps a Petri net (P ,T ,F ) into a transition system

(S ,�, si) in which the states are markings, the transitions represent firing of
some Petri net transitions, and the initial state is the initial marking:

S df= {M : P ��}
�

df=
⋃
t∈T

t
�

si
df= [pi ].

This transition system is usually called reachability graph in Petri net termi-
nology.

The bound of a place p is the maximum number of tokens assigned to p by
a reachable marking. A Petri net is safe if and only if every place has bound
of 1, i.e., no reachable marking M puts more than one token in some place. A
Petri net is unbounded if and only if there is a place p that has no bound, i.e.,
for every bound k > 0, there is reachable marking M such that M (p) > k .

3.3 Statecharts

The formal definition of the statechart syntax and semantics, presented below,
differs slightly from the original definition [14, 25]. In particular, we do not
consider default nodes. For each OR node o, the default of o is a child node
that is entered if some hyperedge enters o but none of its descendants. Default
nodes ensure that taking a hyperedge always results in a valid global next state.
We omit them since they do not have any counterpart in Petri nets. Moreover,
default nodes can always be eliminated from a statechart by applying some
simple preprocessing, as Harel and Naamad indicate [13]. This elimination
results in a statechart consisting of hyperedges, called full compound transitions
in [13], whose targets are BASIC nodes. Since we omit default nodes, we have
to put extra constraints on hyperedges to ensure that when they are taken, a
valid global state is reached. These constraints are informally also described
in [13].

Syntax. A statechart is a tuple (N ,H , source, target , children, type,ni ) where

• N is a set of nodes,

• H is a set of hyperedges, N ∩ H �= �,

• source : H � N is a function defining the set of input nodes for each
hyperedge,

• target : H � N is a function defining the set of output nodes for each
hyperedge,

• children : N ��N is a function that defines for each node its immediate
subnodes. If a node has children, we call it composite.
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• type : N � {BASIC,AND,OR} is the function defining the type for each
node. Each noncomposite node is BASIC. Each composite node is either
AND or OR. If an AND node is active, all its children are active as well.
If an OR node is active, one of its children is active. (So OR is actually a
XOR.)

• ni ∈ N is the initial node.

Note the similarity with the definition of Petri nets. Nodes resembles places,
hyperedges resemble transitions, and functions source and target resemble the
flow relation.

The children relation must induce a hierarchy on nodes. To define this
formally, we need some auxiliary definitions. Denote by children∗ the reflexive-
transitive closure of children:

children∗(n) =
⋃

i≥0 childreni(n)

where

children0(n) = {n}
childreni+1(n) =

⋃
n′∈children(n)

childreni(n)

If n ′ ∈ children∗(n), we say that n is ancestor of n ′ and n ′ is descendant of
n. Two nodes n,n ′ are ancestrally related if either n is an ancestor of n ′ or n ′

an ancestor of n.
The next three constraints ensure that the children relation arranges nodes

in a hierarchy [36]:

• There is one single node root ∈ N that does not have any parents:

∃1 n ∈ N : n = root and for all n ′ ∈ N : n �∈ children(n ′).

• Node root is ancestor of every node in the statechart, including itself:

N = children∗(root).

• Every node, except root , has one parent:

for all n ∈ N ,n �= root implies ∃1 n ′ ∈ N : n ∈ children(n ′).

We write parent(n) to denote the node n ′ that has n as child. So n ′ =
parent(n) iff n ∈ children(n ′).

For technical reasons, we require that node root has type OR.
Finally, the initial node ni must be a child of root .

Statecharts are visually represented as hierarchical hypergraphs [10]. Fig-
ure 10 shows an example statechart, as well as the node hierarchy depicted by
the statechart. Rounded rectangles represent nodes. Children of a node are
contained in it. The children of an AND node are separated by a dotted line. In
the example, AND node n9 has two OR children: n7 and n8. And OR node n7
has children n2 and n3. Bars represent hyperedges with multiple sources and/or
targets (using a UML-like notation). Sources and targets of such hyperedges are
represented by their incoming and outgoing arrows. In the example, the source
of h1 is n1 and its targets are n2 and n4. The arrow leaving the black dot points
at the initial node. The root node is never shown in a statechart diagram.
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Figure 10: Example statechart and its node hierarchy

Semantics. Not every set of nodes is a valid state of a statechart. Every valid
state, called a configuration, must satisfy several constraints, defined below.

First, we introduce some auxiliary definitions. The lowest common ancestor
of a set X ⊆ N of nodes, written lca(X ), is the most nested node n ∈ N that
is an ancestor of every node in X :

X ⊆ children∗(n)
for all n ′ ∈ N : X ⊆ children∗(n ′) ⇒ n ∈ children∗(n ′)

For example, in Figure 10, lca({n2, n3}) is OR node n7, whereas the lca({n4, n3})
is AND node n9.

Given a set X of nodes, lca+(X ) is the most nested OR node that is ancestor
of every node in X . So only if type(lca(X )) �= AND , then lca+(X ) = lca(X ).
For example, lca+({n4, n3}) = root , since root is the OR parent of AND node
n9.

Two nodes n,n ′ ∈ N are orthogonal if and only if they are not ancestrally
related and their lca is an AND node. In the example, nodes n2 and n4 are
orthogonal, but nodes n2 and n7 are not (since n2 is child of n7) and neither
are n2 and n3 (since their lowest common ancestor is an OR node).

A set X of nodes is consistent if and only if for every pair x , y ∈ X , either
x and y are ancestrally related or x and y are orthogonal. Thus, set {n2,n7} is
consistent.

A configuration is a maximal, consistent set of nodes. That is, adding a node
to a configuration would make it inconsistent. In the example, set {n1,root} is
a configuration, as is {n2,n4,n7,n8,n9,root}. Configurations are the valid global
states of the statechart.

A configuration C satisfies the following properties, for every x ∈ C :

• type(x ) = OR ⇒ |children(x ) ∩ C | = 1

• type(x ) = AND ⇒ children(x ) ⊂ C

• x �= root ⇒ parent(x ) ∈ C .

A hyperedge h is enabled in configuration C if all its sources are active:
source(h) ⊆ C . When a hyperedge is enabled, it can be taken.

To define the effects of taking a hyperedge, we need some additional defini-
tions. The scope of a hyperedge h is the most nested OR node containing the
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sources and targets of h:

scope(h) df= lca+(source(h) ∪ target(h)).

Upon taking h, all descendants of scope(h) will be left. The new configuration
entered by taking h consists of target(h), their ancestors, and nodes in the
current configuration C that are ancestors of scope(h). More precisely, upon
taking h, the configuration C changes into C ′, written C h

� C ′, where

C ′ = dcomp((C \ children∗(scope(h))) ∪ target(h))

where given a set S , the default completion dcomp(S ) is the smallest set D such
that

• S ⊆ D

• if s ∈ D and s �= root then parent(s) ∈ D .

However, because we do not consider default nodes, a complication that
arises is that the new configuration may be incompletely specified. For example,
if in Figure 10 the configuration is {root , n1} and h5 is taken, then node n1 is
left and node n5 and all its ancestors are entered, so the next configuration
would be {root , n5, n8, n9}. However, that configuration is invalid, since n9 is
in the new configuration, but its child n7 is not. As another example, if in the
statechart in Figure 7 hyperedge t1 is taken, then O2 is left but not entered, so
here also an incomplete configuration results.

To avoid such incomplete configurations, we put two additional constraints
on statecharts, not present in the original definition. If statecharts satisfy these
two constraints, then after taking an enabled hyperedge with a consistent set of
target nodes, a valid next configuration is reached. First, we require that each
hyperedge h is basic, i.e. its sources and targets are basic nodes:

basic(h) df⇔ (source(h) ∪ target(h)) ⊆ BASIC

where

BASIC df= {n ∈ N | type(n) = BASIC }.
Otherwise, if a hyperedge would enter an OR node but none of its children, an
incomplete configuration would result.

Second, we require that hyperedges are target complete, i.e. they should
not enter some AND node only partially. For example, in the statechart in
Figure 10, hyperedge h5 only partially enters AND node n9: no descendant of
n7 is entered. A hyperedge h is target complete if and only if for each AND
node a that it enters, i.e. target(h)∩ children∗(a) �= �, it also enters every child
of a:

target complete(h) df⇔ ∀n ∈ children∗(scope(h)) :
type(n) = AND ∧ children∗(n) ∩ target(h) �= �⇒
∀n ′ ∈ children(n) : children∗(n ′) ∩ target(h) �= �.

Note that if we had used default nodes, these two constraints would not
have been needed. Then for every hyperedge h that enters an OR node o but
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none of its children, in the default completion the default node of o would be
included. And for every hyperedge h that partially enters some AND node a,
the default nodes of the OR children not entered by h would be added to the
partial configuration (cf. [14, 25]).

In addition, we formulate a constraint specifying that a hyperedge h should
leave an AND node either completely or not at all. Though the execution
semantics of statecharts enforces AND nodes not be left completely (since all
nodes below scope(h) are left), we show in the sequel that statecharts satisfying
this constraint are bisimilar to Petri nets. A hyperedge h ∈ H is source complete
if and only if for each AND node a that it leaves, it leaves each of a’s children
as well.

source complete(h) df⇔ ∀n ∈ children∗(scope(h)) :
type(n) = AND ∧ children∗(n) ∩ source(h) �= �⇒
∀n ′ ∈ children(n) : children∗(n ′) ∩ source(h) �= �.

In the statechart of Figure 10, hyperedge h6 is not source complete.
If a hyperedge is both source and target complete, we call it complete. If a

complete hyperedge is taken in configuration C , the BASIC nodes left in C are
the sources of h, and the BASIC nodes entered are the targets of h. Below, we
prove this formally (Lemma 3.1 and 3.2). In Figure 10, hyperedges h1, h2, and
h4 are complete. Note that h3 is neither source complete nor target complete.

In addition, each hyperedge h ∈ H should be consistent , i.e., it should enter
and leave a consistent set of nodes. A hyperedge with an inconsistent source
can never become enabled. And taking a hyperedge with an inconsistent target
would result in an invalid configuration. All hyperedges of the statechart in
Figure 10 are consistent.

consistent(h) df⇔ consistent(source(h)) ∧ consistent(target(h)).

A statechart SC is wellformed iff every hyperedge h ∈ H (SC ) is basic,
consistent, and complete. The example statechart in Figure 10 is not wellformed.

wellformed(SC ) df⇔ ∀ h ∈ H : basic(h) ∧ consistent(h) ∧ complete(h).

In Section 3.4, we show that wellformed statecharts are equivalent to Petri nets.
The execution semantics maps a statechart into a transition system (S ,�

, si) where

S df= {C ⊆ N | C is a valid configuration}
�

df=
⋃

h∈H

h
�

si
df= {ni , root}.

For wellformed statecharts, the following lemmas can be easily proven.

Lemma 3.1 Given a basic hyperedge h that is source complete and consistent.
If C h

� C ′, then (C ∩ children∗(scope(h))) ∩ BASIC = source(h).
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Proof. ⊆ direction: Take a node n ∈ (C ∩ children∗(scope(h))) ∩ BASIC . By
definition of C , n is orthogonal to all other BASIC nodes in C . Moreover, n
is a descendant of scope(h). By definition of source completeness, then n ∈
source(h).

⊇ direction: By definition of scope(h), x ∈ source(h) implies
x ∈ children∗(scope(h)). �

Lemma 3.2 Given a basic hyperedge h that is target complete and consistent.
If C h

� C ′, then dcomp((C \ children∗(scope(h))) ∪ target(h)) ∩ BASIC =
target(h) ∪ ((C \ children∗(scope(h))) ∩ BASIC ).

Proof. By similar reasoning as in the proof of Lemma 3.1. �
Wellformed statecharts have the property that sources and targets of hyper-

edges specify the next configuration completely: no additional nodes need to be
added or removed. This property is default in Petri nets: a change in marking
only depends on the transition taken. Thus, wellformed statecharts and Petri
net correspond closely to each other. Each wellformed statechart can be trans-
lated into an equivalent Petri net by simply removing all composite nodes from
it; we prove this in the next subsection. In the next section, we show how some
Petri nets can be translated into an equivalent, structure-preserving, wellformed
statechart.

3.4 From statecharts to Petri nets

Deriving a Petri net from a statechart structure as specified in the previous para-
graph is straightforward: simply drop the composite nodes from the statechart.
The function SCtoPN defines this formally:

SCtoPN ((N ,H , source, target , children, type,ni )) = (P ,T ,F , pi)

where

P df= { pn | n ∈ N ∧ type(n) = BASIC }
T df= { th | h ∈ H }
F df= { (xn , yh) ∈ P × T | n ∈ source(h) }

∪ { (yh , xn) ∈ T × P | n ∈ target(h) }
pi

df= pni
.

The correctness of this function is shown by defining a bisimulation on the
transition systems induced by the statechart and Petri net. However, the bisimu-
lation only exists if the statechart is wellformed. In general, illformed statecharts
like the one in Figure 10 do not have a bisimilar statechart. In exceptional cases,
illformed statecharts can also have a bisimilar Petri net (if every hyperedge that
is not source or target complete never can become enabled).

Theorem 3.1 (correctness) Given a wellformed statechart SC = (N ,H ,
source, target , children, type,ni ). The Petri net SCtoPN (SC ) bisimulates the
original statechart.
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Proof. We define a relation R that relates markings and configurations. Next,
we show that R is a bisimulation.

Given a configuration C and a marking M , define R by

C R M df⇔ ∀n ∈ Nodes : type(n) = BASIC ∧ n ∈ C ⇔ M (pn) = 1

Given an enabled hyperedge h in C . Denote by C ′ the configuration reached
by taking h. Denote by M ′ the marking reached by taking th . Then

n ∈ C ′ ∧ type(n) = BASIC
⇔ [lemma 3.2]
n ∈ target(h) ∨ ((n ∈ C ∧ n �∈ children∗(scope(h))) ∧ type(n) = BASIC)
⇔ [lemma 3.1, lemma 3.2, def. scope]
n ∈ target(h) ∨ ((n ∈ C ∧ n �∈ source(h) ∪ target(h)) ∧ type(n) = BASIC)
⇔ [logic]
(n ∈ target(h) ∧ (n ∈ C ∨ n �∈ C ))
∨
((n ∈ C ∧ n �∈ source(h) ∪ target(h)) ∧ type(n) = BASIC)

⇔ [lemma 3.1, def. h
�]

(n ∈ target(h) ∧ ((n ∈ C ∧ n ∈ source(h)) ∨ (n �∈ C ∧ n �∈ source(h))))
∨
((n ∈ C ∧ n �∈ source(h) ∪ target(h)) ∧ type(n) = BASIC)
⇔ [logic]
(n ∈ source(h) ∩ target(h) ∧ n ∈ C )
∨
(n ∈ target(h) \ source(h) ∧ n �∈ C )
∨
((n ∈ C ∧ n �∈ source(h) ∪ target(h)) ∧ type(n) = BASIC)
⇔ [definition th , R]
(pn ∈ •th ∩ th• ∧ M (pn) = 1)
∨
(pn ∈ th• \ •th ∧ M (pn) = 0)
∨
(M (pn) = 1 ∧ pn �∈ •th ∪ th•)
⇔ [def. th

�, M is safe]
M ′(pn) = 1.

�
In the next section, we focus on the reverse direction.
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4 Translating Petri nets to statecharts

Motivated by the example translations in Section 2, we present a structural
algorithm that translates a Petri net into an equivalent, structure-preserving
statechart, by mapping each place to a BASIC node, each transition to a hyper-
edge and imposing an AND/OR hierarchy of nodes on the BASIC nodes. If the
algorithm does not find an equivalent statechart, it fails. The algorithm is for-
mally proven correct, but we show it is not complete. That is, every statechart
constructed by the algorithm is a valid statechart whose behaviour is equivalent
to the original Petri net, but the algorithm fails on some Petri nets that do have
a statechart equivalent. However, as we argue, statecharts not constructible by
the algorithm are not likely to be drawn in practice.

4.1 Algorithm

Before the algorithm is presented, some of its features are listed, motivated by
the example translations provided in Section 2. Key feature of the algorithm is
that composite nodes are modelled as well-founded sets, whose elements are the
children of the composite nodes. Atoms of the compound sets are the BASIC
nodes, which correspond to Petri net places.

Second, since the algorithm is structure preserving, places map to BASIC
nodes and transitions to hyperedges. Sources of a hyperedge h corresponding
to transition t are the BASIC nodes corresponding to the places in the preset
of t . Similarly, targets from ht are the BASIC nodes corresponding to places in
the postset of t .

√
The algorithm initially creates a BASIC node for each place and a hyper-
edge for each transition.

Third, each AND node in the statechart corresponds to a non-singleton
preset or postset of some transition in the Petri net. For example, in Figure 3,
AND nodes correspond to sets {p2, p3, p4} and {p5, p6}. For ease of reference,
in all nets shown in this paper, each transition has either a singleton preset or
singleton postset or both (but this is not a restriction the algorithm imposes).
For such nets, instead of referring to preset and postsets, we can refer to the
corresponding (fork and join) transitions. Thus, for the example net in Figure 3,
we can also say that AND nodes correspond to transitions t1 and t2. OR nodes
are created for each place and each AND node.

√
The algorithm initially creates AND nodes for each non-singleton preset
and non-singleton postset of the net. Next, it creates an OR node for each
BASIC node and each AND node.

Fourth, we need only consider statecharts in which for each hyperedge h,
the least common OR ancestor ls of its sources equals the least common OR
ancestor lt of its targets. From the definition of scope, it follows that then
this node ls (lt) equals the scope of h. If a statechart does not satisfy this
property, either (i) the ls is an ancestor of lt or vice vera, or (ii) both ls and lt
are descendants of scope(h). Case (i) occurs when OR nodes are nested in each
other, which is not needed for our purposes. Case (ii) occurs if the statechart
is not wellformed; see for example Figure 6. However, we are only interested in
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wellformed statecharts, since such statecharts are bisimilar to Petri nets having
an isomorphic structure, according to Theorem 3.1.

√
The algorithm ensures that the set of sources and set of targets of each
hyperedge share the same least common OR ancestor.

Fifth, the correspondence between non-singleton sets and AND nodes is not
one to one. Sometimes an AND state corresponds to multiple of such presets or
postsets. For example, in Figure 1 transitions t1 and t4 share the same AND
node, as well as t2 and t3. Thus, some of the initially created AND nodes are
superfluous.

Moreover, from the previous item it follows that some of the initially created
OR nodes are superfluous too. For example, in the statechart in Figure 2, nodes
p2 and p3 share the same OR parent, because of the simple edge connecting
them. But initially, two OR nodes are created for these two nodes. Thus one of
these OR nodes is superfluous.

√
The algorithm ensures that initially created composite nodes that turn
out to be superfluous are removed.

Sixth, some of the AND nodes initially created by the algorithm need to be
nested inside each other. For example, in both Figure 1 and Figure 3, the AND
node created for t1 contains the AND node created for t2.

√
The algorithm nests AND nodes inside each other.

Nesting an AND node inside another AND node can make another AND node
superfluous. For example, in Figure 2, the AND node a initially created for t1
has three OR children. But the algorithm also creates AND nodes for t2 and
t3, and nesting these makes a superfluous.

Seventh, not every Petri net has a structure-preserving statechart equiva-
lent (for example the nets in Figures 5 and 4). So sometimes the translation
algorithm cannot give a result.

√
The algorithm fails if it cannot find an equivalent, structure-preserving
statechart.

Eighth, Theorem 3.1 suggests that a statechart needs to be wellformed in
order to be bisimilar to the original Petri net. To see this, suppose the algo-
rithm returns a statechart SC (PN ) for a given net PN . Then by removing the
statechart hierarchy, a Petri net PN ′ isomorphic to PN can be obtained. Theo-
rem 3.1 shows that if SC (PN ) is wellformed, it is bisimilar to PN ′. Otherwise,
for some hyperedge h taken in some configuration C , BASIC nodes in C are
left that are not sources of h.

√
The algorithm returns a wellformed statechart.

The algorithm is defined in Figure 11. It has all these eight features: if it
does not fail, it translates a Petri net into a wellformed statechart, with nested
AND nodes, that is bisimilar to the original Petri net. The algorithm consists
of five phases, listed in Table 2.

We now discuss these phases in more detail, also defining and motivating
some auxiliary operations used in the algorithm.
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1: procedure PetriNetToStatechart((P ,T ,F , pi))
2: BASICNodes := {np | p ∈ P}
3: H := { ht | t ∈ T}
4: for ht ∈ H do
5: source(ht) := {np | p ∈ •t }
6: target(ht) := {np | p ∈ t• }
7: end for
8: ANDNodes := {set(X ) | |X | > 1 ∧ ∃ h ∈ H : source(h) = X ∨ target(h) = X }
9: ORNodes := { {x} | x ∈ BASICNodes ∪ ANDNodes }

10: Nodes := BASICNodes ∪ ANDNodes ∪ ORNodes
11: for h ∈ H do
12: s lca+ := pick(find lca+(source(h)))
13: t lca+ := pick(find lca+(target(h)))
14: if (contains(s lca+, t lca+) ∨ contains(t lca+, s lca+)) then
15: cycle in children relation, so fail
16: else
17: replace(Nodes, s lca+, s lca+ ∪ t lca+)
18: replace(Nodes, t lca+, s lca+ ∪ t lca+)
19: end if
20: end for
21: tovisit := {n ∈ Nodes | isAND(n)}
22: while tovisit �= � do
23: X := a lower bound of tovisit
24: AND := AND cover(X , tovisit)
25: uncovered := {x ∈ X | ¬ contains(x ,AND)}
26: if (uncovered �= � ∨ |AND | > 1) then
27: OR := {Y ∈ Nodes | ∃A ∈ AND : A ∈ Y }
28: if contains(X ,OR) then
29: cycle in children relation, so fail
30: end if
31: X ′ := OR ∪ uncovered
32: else
33: X ′ := pick(AND)
34: end if
35: if X ′ ∈ Nodes then
36: replace(Nodes, parent(X ), parent(X ) ∪ parent(X ′))
37: replace(Nodes, parent(X ′), parent(X ) ∪ parent(X ′))
38: end if
39: replace(Nodes,X ,X ′)
40: tovisit := tovisit \ {X }
41: end while
42: if some OR node has two parents, fail
43: if some hyperedge has inconsistent sources or targets, fail
44: create children and type relation
45: return (Nodes,H , source, target , children, type,npi )
46: end procedure

Figure 11: Algorithm that translates a Petri net into a statechart
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Phase Lines
initialisation of nodes and hyperedges 2-10
merging of OR nodes 11-20
nesting AND nodes 21-41
checking the statechart 42-43
creating the children and type relations 44

Table 2: High-level structure of the algorithm in Figure 11

Initialisation. The BASIC nodes and hyperedges of the statechart are ini-
tialised by mapping each place into a BASIC node and each transition into a
hyperedge (lines 2 and 3). The sources (targets) of each hyperedge are the basic
nodes corresponding to the places in the preset (postset) of the corresponding
transitions (for loop starting at line 4).

Composite nodes are modelled as compound sets. A compound set is a set of
which the elements are either other sets, i.e., other composite nodes, or atoms,
i.e., basic nodes. The membership relation models the children relation, that
is, if x ∈ y then node x is a child of node y . We require that all sets are
well-founded, i.e., we do not allow a hyperset [1] which contains itself.

Next, the composite nodes are initialised. For each non-singleton set X that
is the source or target set of some hyperedge h, an AND node a is created,
whose children are the OR parents of the BASIC nodes in X , that is, if x ∈ X ,
then {x} is child of A. (l. 8). To define a, we use auxiliary function set , which
maps a set X into a set of singletons, one for each element x ∈ X :

set(X ) df= { {x} | x ∈ X }.
Finally, for each node n that is BASIC or AND, an OR node {n} is created
(l. 9).

To illustrate these lines, Figure 12 shows the structure of set Nodes for the
example net in Figure 2 after the initalisation phase has finished (immediately
before line 11). The structure is visualised as a graph [1]: nodes represent
compound sets or atoms, and a directed edge from m to n means that n is
member of m.

p1 p2 p3 p4

{p1} {p2} {p3} {p4}

{{p2},{p3},{p4}}

{ {{p2},{p3},{p4}} } 

p5

{p5}

p6

{p6}

p7

{p7}

p8

{p8}

p9

{p9}

p10

{p10}

{{p5},{p6}}

{ {{p5},{p6}} }

{{p8},{p9}}

{ {{p8},{p9}} }

Figure 12: Structure of set Nodes for the net in Figure 2 immediately after the
initialisation phase has finished
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Merging OR nodes. In the previous phase, for each hyperedge h having a
set S of sources and a set T of targets two unique OR nodes xS and xT have
been created (l. 9), whose descendants comprise S and T respectively. In this
phase, these two OR nodes xS and xT are merged, that is, both xS and xT are
replaced by a single OR node xh whose children are the children of both xS and
xT .

We discuss this part line by line. Given a hyperedge h, line 12 retrieves the
unique most nested OR node containing all sources of h, i.e., the least common
OR ancestor of set source(h). Similarly, line 13 retrieves the unique most nested
OR node containing all targets of h, i.e., the lca+ of set target(h).

In these lines, two auxiliary functions are used, pick and find lca+. Function
pick expects a singleton and returns the element contained in the singleton:
pick({x}) df= x . The function is not defined for non-singletons. We will show
below in Lemma 4.2 pick only gets a singleton argument, i.e., that find lca+

returns singletons.
Given a set X of BASIC nodes (source set or target set of some hyperedge),

function find lca+(X ) gives the set of OR parents for those nodes that are the
least common ancestor (lca) of X :

find lca+(X ) df= {n ∈ Nodes | ∃n ′ ∈ Nodes : is lca(n ′,X ) ∧ n ′ ∈ n }.
Before we define is lca(n,X ), observe that initially for X a unique AND or

BASIC node n has been created that is the lca of X . If set X is a singleton,
n is BASIC: n = pick(X ); otherwise, n is AND: n = set(X ). However, the
definition is lca(n,X ) needs to take into account that if n is an AND node,
the OR children of n might have gained additional members. For example, for
the net in Figure 2, the initally created AND node {{p5},{p6}} might have
become {{p5},{p3,p6}}, namely if the transition connecting p3 and p6 has been
processed.

Thus, is lca is formally defined as:

is lca(n,X ) df⇔
{

X ⊆ ⋃
n′∈n n ′ , if |X | > 1

pick(X ) = n , otherwise

After the OR nodes s lca+ and t lca+ have been retrieved, they are merged.
For merging, we make use of the fact that a composite node n is a set, the
elements of which are children of n. So the new OR node can be created by
simply taking the union of s lca+ and t lca+. Next, each occurrence of s lca+

and t lca+ has to be replaced by the new OR node (l. 17-18).
However, merging is not allowed if s lca+ is a descendant of t lca+ or vice

versa (l. 14). Then merging would cause a cycle in the children relation; and
the merged set xh would not be wellfounded. The procedure therefore fails in
that case (l. 15). For example, suppose the algorithm is applied to the net
in Figure 4, processing first t3, then t1, and finally t2. The node structure
immediately before t2 is processed is shown in Figure 13, while the structure
that would result if the s lca+ and t lca+ of t2 would be merged is shown in
Figure 14.

To define the merging procedure, we use two auxiliary operations on well-
founded sets, contains and replace. Given a wellfounded set S , function contains(x ,S )
is true if element x appears in S . If some element s ∈ S is a set, contains is re-
cursively applied to every element in s. For example, contains({1}, {1, {1, 2}})
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p1 p2 p3p4

{p2,p4} {p3}

{{p2,p4},{p3}}

{ {p1} , {{p2,p4},{p3}} } 

Figure 13: Structure of Nodes for the net in Figure 4 after the for loop started
at line 11 has processed t3 and t1, but not yet t2

p1 p2 p3p4

{p2,p4} {p3}

{{p2,p4},{p3}}

{ {p1} , {{p2,p4},{p3}} } 

X

X
X

X

Figure 14: Structure of Nodes for the net in Figure 4 while processing t2 as h
in the for loop started at line 11. Nodes s lca+ and t lca+ and their incoming
arrows are crossed. The black dot denotes the new, merged OR node. Dotted
lines indicate the membership relation if the merged OR node would replace the
two existing s lca+ and t lca+

is false, but contains({1}, {{{1}}}) is true.

contains(x ,�) = false
contains(x , y) = false if y is not a set

contains(x , { y } ∪ S ) =
{

true, if x = y
contains(x , y) ∨ contains(x ,S ), otherwise

Given a wellfounded set S and two elements x and y , function replace(x , y ,S )
replaces each appearance of x in S by y . Function replace is recursive: if an ele-
ment s ∈ S is a set, then replace is also applied to every element of s. For exam-
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p1 p2 p3 p4

{p2,p5} {p3,p6} {p4,p7,p9}

A1={{p2,p5},{p3,p6},{p4,p7,p9}}

{ p1 , {{p2,p5},{p3,p6},{p4,p7,p9}} } 

p5 p6 p7 p8

{ {{p2,p5},{p3,p6}} , p8}

p9 p10

A3={ { {{p2,p5},{p3,p6}} , p8} , {p4,p7,p9} }

{ { { {{p2,p5},{p3,p6}} , p8} , {p4,p7,p9} } , p10 }

A2={{p2,p5},{p3,p6}}

Figure 15: Structure of set Nodes for the net in Figure 2 immediately after OR
nodes have been merged (start of line 21)

ple, replace(1, 2, {{1, 3}, {3}}) gives set {{2, 3}, {3}}. And replace({1},{2},{{1},
{1,3}}) gives set {{2}, {1, 3}}.

replace(x , y ,�) = �

replace(x , y , z ) = z if z is not a set

replace(x , y , {z} ∪ S ) =

⎧⎪⎪⎨
⎪⎪⎩

{ y } ∪ replace(x , y ,S ), if z = x
{ z } ∪ replace(x , y ,S ), if z �= x and z is not a set
{ replace(x , y , z ′) | z ′ ∈ z } ∪ replace(x , y ,S ),

if z �= x and z is a set

Figure 15 shows the structure of set Nodes for the example net in Figure 2
after OR nodes have been merged.

Nesting AND nodes. After the previous phases, some AND node a can be
a subset of another AND node b, i.e., every OR child of a is also an OR child of
b. For example, for the net in Figure 2, after merging OR nodes, the AND node
A2 created for t2 is a subset of the AND node A1 created for t1, since both
share OR nodes {p2,p5} and {p3,p6} (see Figure 15). In that case, the common
OR children of a and b have two AND parents, which violates the statechart
hierarchy constraints.

In this phase, an AND node a which is subset of another AND node b is
nested inside b; this way a statechart hierarchy is obtained. For example, AND
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Figure 16: Petri net for which the AND nodes created for t2 and t3 can be
nested in the AND nodes created for t1 and t4, respectively

node A2 in Figure 15 is nested inside A1. Nesting is done by replacing b by an
AND node b′ that contains the OR parent node of a plus all (OR) children of
b that are not contained in a. The general case is a bit more complex, since
several AND nodes might be nested inside the same AND node. For example,
in Figure 16 both the AND nodes created for t2 and t4 can be nested inside the
AND nodes for t1 and t4. Nesting fails if the new node structure would contain
a cycle. Note that nesting does not guarantee a valid statechart hierarchy; for
example, applying the algorithm to the net in Figure 6, after the nesting phase
OR node {p5} still has two AND parents.

We discuss this part line by line. First, AND nodes are collected in set tovisit
(l. 21). Next, the actual nesting is done by processing AND nodes in tovisit one
by one in the while loop started at l. 22. During processing, each AND node X
is replaced by another AND node X ′. Node X ′ is equivalent to X , i.e., it has the
same BASIC descendants as X , but X ′ is constructed using already processed
AND nodes, which can be nested inside X ′. To ensure a proper nesting, it is
required that lower bound AND nodes are processed before other AND nodes
(l. 23). An AND node a is defined to be a lower bound of tovisit if and only
if there is no unprocessed AND node a ′ which is contained by a and moreover
there is no unprocessed AND node b that is a subset of a:

a is a lower bound of tovisit df⇔
�a ′ ∈ tovisit : contains(a ′, a) ∧ �b ∈ tovisit : b ⊂ a.

The lower bound AND node is put in variable X (l. 23).
For the construction of X ′, already processed AND nodes are used that cover

X , i.e. whose BASIC descendants are also BASIC descendants of X (l. 24).
These nodes are nested inside X ′. Using function AND cover the processed
AND nodes that cover X are collected in set AND . To ensure a proper nesting,
every AND node a must be maximal, i.e., there is no other processed AND node
a ′ ∈ AND such that a ′ contains a or a ⊂ a ′. This leads to the following formal
definitions for function AND cover :

AND cover(X , tovisit) :=
maximal({A ∈ Nodes \ tovisit | isAND cover(A,X )})
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where

isAND cover(A,X ) ⇔ isAND(A) ∧ flatten(A) ⊆ flatten(X )
maximal(S ) := {s ∈ S | �s ′ ∈ S : contains(s, s ′) ∨ s ⊂ s ′}

flatten(�) = �

flatten({ x } ∪ S ) =
{ { x } ∪ flatten(S ), if x is not a set

flatten(x ) ∪ flatten(S ), otherwise

Note that function flatten is applied recursively to all elements of in its argu-
ment. For example, flatten({1, {{2, {3}}}}) gives {1, 2, 3}.

To illustrate AND cover , suppose the nodes in Figure 15 are processed.
Then AND cover(A1, {A1,A3}) = {A2}. However, AND cover(A1, {A1}) =
{A2}. In the latter case, A3 is not an AND cover of A1, since A3 has p8 as
BASIC descendant, which is not a BASIC descendant of A1.

Next (l. 25), set uncovered is computed, which contains the OR children of
X that do not have any ancestors in set AND . These OR children are used in
the construction of X ′, to ensure that X ′ covers X completely, i.e., that X and
X ′ have the same BASIC descendants.

Then (l. 26), if either some nodes in X are not covered (so uncovered �= �)
or more than one AND node covers X (so |AND | > 1), then a new node X ′

is constructed. Otherwise (l. 32), there is only one AND node covering X
completely (if uncovered = �, then |AND | = 1 by definition of uncovered), and
X ′ is simply pick(AND) (l. 33).

If X ′ is to be constructed (l. 27-31) then the following steps have to be taken.
First, the OR parents of the AND nodes in AND are retrieved and put in set OR
(l. 27). Nodes in OR will become OR children of the new node X ′. However,
if a node n ∈ OR already contains X , replacing X by X ′ would cause n to be
both ancestor and descendant of X ′, causing a cycle in the node structure.

To illustrate this, consider the net in Figure 17. Figure 18 shows the struc-
ture of set Nodes immediately after the OR nodes have been merged. There
are two AND nodes, A1={{p2},{p3},{p4}}, and A2={{p2},{p3}}. These two
AND nodes are contained in OR node X1={{p1},A1,A2}. Note that there is
no other OR node containing A1 or A2. Next, the while loop started at line 22
is executed. Suppose node A2 is processed before A1. Processing node A2 does
not change the structure of Figure 18, but the subsequent processing of node
A1 does (see Figure 19). Then immediately after line 24, AND = {A2}. So OR
becomes X1. Then, X ′ ought to become {X1,{p4}} (visualised as the black dot
in Figure 19). However, replacing A1 by X ′ would cause a cycle, as indicated
in Figure 19.

Next (l. 31), AND node X ′ is constructed, the children of which are the OR
nodes in OR together with the OR nodes in uncovered . Note that if uncovered =
X , then X ′ = X .

After line 34, a new node X ′ has been constructed, and X can be replaced
by X ′ (l. 39). The only complication arises if X ′ is an already existing node,
so X ′ ∈ Nodes. Then X ′ has already an OR parent oX ′ . So, replacing X by
X ′ implies that X ′ gets two parents (the parent of X and oX ′). To avoid this,
before replacing X by X ′, the OR parent oX ′ needs to be merged with the OR
parent of X . For example, if AND node A1 in Figure 15 is processed, while
nodes A2 and A3 have already been processed, then X ′ = A3 (even though
A3 �∈ AND , as explained above when defining AND cover). Then, A1 can only
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p1

p2

p3

p4

Figure 17: Petri net for which the procedure fails at line 29

p1 p2 p3 p4

{p1} {p2} {p3} {p4}

A2={{p2},{p3}} A1={{p2},{p3},{p4}}

X1={ {{p2},{p3},{p4}} , {{p2},{p3}} , {p1} } 

Figure 18: Structure of Nodes for the net in Figure 17 immediately before line 21

p1 p2 p3 p4

{p1} {p2} {p3} {p4}

A2={{p2},{p3}} A1={{p2},{p3},{p4}}

X1={ {{p2},{p3},{p4}} , {{p2},{p3}} , {p1} } 

X
X

Figure 19: Structure of Nodes for the net in Figure 17 while processing A2 as
X in the iteration started at line 22. The blackdot denotes X ′. Dotted lines
indicate the membership relation if X ′ would replace A2
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be replaced by A3 if their OR parents have been merged, which ensures that
nodes p1 and p10 share the same OR parent after replacement of A1.

Checking the statechart. Even though the constructed statechart structure
has no cycles in its node hierarchy, still it can be illegal. Therefore, some checks
are done next.

The first check tests for absence of multiple parents for the same node (l. 42).
For some nets, e.g. in Figure 6, after the while loop started at line 22 has ended,
still some AND nodes may share some OR children with other AND nodes. In
that case the algorithm fails at line 42.

It is easy to check that if AND nodes cannot be nested, the subset relation
on AND nodes does not induce a tree, that is, some OR node is child of two
different AND nodes. However, there is a statechart variant that allows such
overlapping nodes [11]. In that statechart variant, for the net in Figure 6 a
bisimilar statechart does exist; see [5].

The second check tests whether hyperedges have consistent sources and tar-
gets (l. 43). For example, for the net of Figure 5 the algorithm will construct a
node structure in which the OR parent of p4 is ancestor of the OR parents of
p2 and p3 because of t3 and t4. Thus, nodes p2, p3, and p4 are inconsistent.
Hence, hyperedge t1 is inconsistent.

Creating the children relation. After the previous phase, if the algorithm
did not fail, a valid statechart structure has been constructed. In the final
phase, the type and children relations have to be derived from the structure of
the nodes. Figure 20 gives the code for deriving the type and children relation.

The children of a node are the elements it has in its set. Thus, x ∈
children(y) if and only if x ∈ y .

For deriving the type relation, observe that BASIC nodes are atoms, whereas
composite nodes are sets. Next, OR nodes only contain AND and BASIC nodes
whereas AND nodes only contain OR nodes. This implies that the nesting depth
of elements in an OR node differs from that in an AND node. More precisely,
it is easy to check (for example using Figure 12) that OR nodes have an uneven
depth whereas AND nodes have an even depth.

for n ∈ Nodes do
if isBASIC (n) then

type(n) := BASIC
children(n) := �

else if isAND(n) then
type(n) := AND
children(n) := { x | x ∈ n }

else if isOR(n) then
type(n) := OR
children(n) := { x | x ∈ n }

end if
end for

Figure 20: Code for deriving the type and children relations
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The predicates used in Figure 20 are defined as follows:

isBASIC (x ) ⇔ x is an atom
isAND(x ) ⇔ x is a set and depth(n) is even

isOR(x ) ⇔ x is a set and depth(n) is uneven.

Function depth returns the maximum depth of a set:

depth(�) = 0
depth({ x } ∪ S ) = max (1, depth(S )), if x is an atom
depth({ x } ∪ S ) = max (1 + depth(x ), depth(S )), if x is a set.

For example, depth({1, {{2, {3}}, 4}} = 4.

4.2 Correctness

Before proving the correctness of the algorithm, we show the correctness of some
of the assumptions made in the algorithm.

Lemma 4.1 Given a non OR node n, so n ∈ BASICNodes ∪ANDNodes. Ini-
tially (l. 9), n has only one parent. At the end of each iteration of the for loop
started at line 11, n still has only one parent.

Proof. By induction on the depth of nodes. The base case follows immediately
from the definition in line 9. For the induction case, say in some iteration of the
for loop started at line 11 two OR nodes x and y are merged. Take an arbitrary
node n that is member of x or y . By the induction hypothesis, n has only one
parent, so if n is in x , it cannot be in y and vice versa. So x and y are disjoint:
x ∩ y �= �. Next, x and y are merged by replacing each occurrence of x or y by
x ∪ y . After merging, n still has only parent, namely x ∪ y . (So n might gain
additional brothers.) �
Lemma 4.2 At lines 12 and 13, function find lca+ yields a singleton.

Proof. We only show the proof for line 12; the proof for line 13 goes by similar
reasoning. Function find lca+ returns all OR nodes that subsume the unique
OR node constructed for source(h) at line 9. By Lemma 4.1, only one such OR
node exists. �

The next lemma motivates why hyperedges in the for loop of line 11 can be
processed in arbitrary order.

Lemma 4.3 Let h1, h2 and h3 be three hyperedges. Then h1, h2 and h3 can be
processed in arbitrary order in the for loop started at line 11: the outcome (a
merged OR node or failure is the same).

Proof. Follows immediately from the associativity of ∪ (lines 12 and 13). �
The following lemma shows that the for loop started at line 11 preserves the

subset relation between AND nodes. This motivates why OR nodes are merged
before AND nodes are nested (so why the while loop started at line 22 follows
the for loop started at line 11 and not the other way around).
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Lemma 4.4 Let a, a ′ be two AND nodes. If a ⊆ a ′ at the beginning of an
iteration of the for loop started at line 11, then after the iteration a ⊆ a ′.

Proof. By construction, a and a ′ only have OR members. If some OR node
x ∈ a is merged with another OR node y , then at lines 17 and 18 a global
replacement of x and y by x ∪ y is done. So after the iteration, x ∪ y ∈ a and
x ∪ y ∈ a ′. �

For the following lemma, we first introduce some terminology. Two hyper-
edges h1 and h2 overlap if the source or target set of one is a subset of the source
or target set of the other:

overlap(h1, h2) ⇔ ∃S1,S2 ⊆ N :
(S1 = source(h1) ∨ S1 = target(h1))

∧ (S2 = source(h2) ∨ S2 = target(h2))
∧ (S1 ⊆ S2 ∨ S2 ⊆ S1)

We now show that if the algorithm terminates successfully by returning a
statechart, that the sources and targets of overlapping hyperedges share the
same single root node.

Lemma 4.5 Given a connected Petri net (P ,T ,F , pi) on which the algorithm
terminates successfully. Let h1 and h2 be two overlapping hyperedges in the
statechart returned at line 45. Let n1 be a node in source(h1) ∪ target(h1) and
n2 a node in source(h2) ∪ target(h2).

Then n1 and n2 share the same root r, i.e., r has no parent and {n,n ′} ⊆
children∗(r).

Proof. For the definition of overlap, we have either (i) S1 ⊆ S2 or (ii) S2 ⊆ S1.
For case (i) we argue as follows (case (ii) is by similar reasoning):

• If S1 = S2 then for both sets the same AND node a is created at line 9.

• If S1 ⊂ S2, then S2 cannot be a singleton, so S2 is covered by some AND
node a.

– If S1 is a singleton {s}, then s has a unique OR parent o (Lemma 4.1).
Node o is a child of a (l. 8).

– If S1 is not a singleton, then S1 is also covered by some AND node
a ′ that is nested in a (in the while loop that begins at line 22).

In both subcases, AND node a has a unique OR parent o (by Lemma 4.1)
whose descendants include n1 and n2. From Lemma 4.1 and the fact that the
algorithm did not fail at line 42, it follows that each descendant of o has one
parent. Thus, the root of o is the unique root of n1 and n2. �

Next, we generalise the previous lemma by showing that in case of successful
termination, any pair of nodes in the returned statechart share the same single
root.

30



Lemma 4.6 Given a connected Petri net (P ,T ,F , pi) on which the algorithm
terminates successfully. Let n,n ′ be two BASIC nodes in the statechart returned
at line 45. Then n and n ′ share the same root r, i.e., r has no parent and
{n,n ′} ⊆ children∗(r).

Proof. First, we observe that each node has only one root (using Lemma 4.1
and line 42). Since the input Petri net (P ,T ,F , pi) is connected, BASIC nodes
n and n ′ are connected by a path h1, h2, . ., hk of hyperedges, where for every
hi , hi+1, 1 ≤ i ≤ k , overlap(hi , hi+1, since otherwise the algorithm would fail at
line 42. Consider an arbitrary pair of hyperedges hi , hi+1 on this path, where
1 ≤ i < k . By Lemma 4.5, any pair of nodes ni ∈ source(hi) ∪ target(hi) and
ni+1 ∈ source(hi+1) ∪ target(hi+1) share the same, single root. The result that
n and n ′ share the same root then follows directly. �

Theorem 4.1 (validity) Given a connected Petri net (P ,T ,F , pi). If the al-
gorithm terminates successfully (so line 45 is reached), a valid statechart is
returned.

Proof. Simple checking of statechart definition. For the children relation, we
have to show that:

1. each node has at most one parent,

2. there is a single root, i.e., there is exactly one node that has no parent,

3. the root node is ancestor of all other nodes.

Point 1 follows from Lemma 4.1 and the fact that algorithm did not fail at
line 42. Points 2 and 3 follow from Lemma 4.6. �

Lemma 4.7 The statechart returned at line 45 is wellformed.

Proof. Simple checking of the definition of wellformedness. Consistency follows
from line 43. Completeness follows from the construction of AND nodes (l. 8)
and the merging of OR nodes. �

Next, we show the correctness of the translation.

Theorem 4.2 (correctness) Given a connected Petri net PN such that the
algorithm returns a statechart SC (PN ). Then SC (PN ) bisimulates PN .

Proof. Observe that by Lemma 4.7 SC (PN ) is wellformed. Next, from lines 2–
7, it follows that PNToSC (SC (PN )) is a Petri net isomorphic to PN . Since
isomorphism implies bisimulation [8], the result then follows immediately from
Theorem 3.1. �

The algorithm is not complete: it can fail even though there does exist a
bisimilar wellformed statechart. For example, the algorithm fails on the net
in Figure 21, because two AND nodes are created with overlapping OR nodes
that cannot be nested according to the algorithm. Of course, an equivalent
statechart can be constructed by simply merging the OR nodes introduced for
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p2

p1

Figure 21: Petri net on which the algorithm fails but which does have an equiv-
alent statechart

p1 and p2. The algorithm can be refined and made complete, by (arbitrary)
merging OR nodes in case of a failure. But the complexity will then be worse
(below we estimate the complexity).

However, the non-completeness of the algorithm does not appear to be a real
limitation in practice. Statecharts which the algorithm fails to construct have
some OR child o with unconnected children, i.e., there is some pair of children
that are connected by an undirected sequence of hyperedges whose scope is o.
For example, the equivalent statechart for the net in Figure 21 has an OR node
o in which children np1 and np2 are not related by any hyperedge whose scope
is o. It is easy to check that the algorithm only returns statecharts in which
every OR node has connected children. (For such statecharts, the algorithm is
complete.)

However, such statecharts are not very obvious to define, though they are
definitely not excluded by the statechart syntax. Children of an OR node that
are unconnected are unrelated. From a modelling point of view, it therefore does
not seem to make sense to group those unrelated children under one OR node,
which would suggest that they are related. Examining example statecharts from
the literature, we indeed did not encounter any statechart in which an OR node
had unconnected children. So the fact that the algorithm is non-complete does
not seem a very severe limitation in practice.

Complexity. The worst-case space complexity of the algorithm is O(|T |). In
the worst case, there are |P | BASIC nodes, at most 2 · |T | AND nodes, and at
most |P |+ 2 · |T | OR nodes. Since we only consider connected Petri nets, there
are no isolated places. Thus, the number of places |P | is bounded by the number
of transitions. Consequently, the number of nodes is linear in the number of
transitions |T |.

The worst-case time complexity of the algorithm in Figure 11 is O(|T |2),
because of the while loop started at line 22 and finding a lower bound AND
node in this loop (l. 23). In the worst case, there are at most 2 · |T | AND nodes.
Thus, the while loop started at line 22 is done at most 2 · |T | times. Next,
finding a lowerbound AND node is polynomial in the number of nodes, which
is bounded by |T |. Thus, the worst-case time complexity of the algorithm is
O(|T |2).
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Figure 22: Safe Petri net for which no structure-preserving equivalent statechart
exists

4.3 Relation with Petri nets

As we pointed out in Section 2, if a Petri net is unsafe or unbounded, there is
no equivalent statechart. We now show how the algorithm fails for such nets.

Lemma 4.8 If the Petri net is unbounded, then there is a potential cycle, i.e,
the algorithm fails at line 15 or 29.

Proof.(Sketch) If the net is unbounded, then there is a reachable marking M
and a sequence of transitions σ = t1, t2, . ., tn such that M t1

� M1
t2
� . .

tn
� M ′,

such that M �= M ′ and for every p ∈ P , M (p) ≤ M ′(p) [18]. Sequence σ is
called a token generator. In M ′ some place p contains more tokens than in M :
M (p) < M ′(p). Some transition t in the sequence must have filled p. Denote by
Po the maximal set of output places of t , Po ⊆ t•, such that for every po ∈ Pp ,
M (po) = M ′(po).

Since σ is cyclic, after processing all hyperedges corresponding to transitions
in σ minus t , the nodes created for the input places of t and the places in Po

all share the same root OR node o (*). Next, processing ht will cause a cycle
in the child relation, since for the output places of t an AND node a has been
created, one child of which will be o (possibly after nesting). But by (*), o is
also the source lca+ of the nodes created for the input place of t . Merging the
target lca+ with the source lca+ will cause o to be parent of a in addition to
child. Hence a cycle in the child relation results. �

The reverse implication does not hold. Figure 22 shows a Petri net that is a
slight variation on the unbounded net of Figure 4. Though the net in Figure 22
is safe, the algorithm will fail because it finds a cycle in the OR nodes. This
example illustrates an important property of the algorithm: presets and postsets
of transitions are treated in exactly the same way. Hence, the algorithm treats
the net in Figure 22 exactly the same as the net in Figure 4, even though
transition t2 has its pre and postset swapped.

If the Petri net is unsafe but bounded, and the algorithm does not fail at
lines 15 and 29, then it fails at lines 42 or 43. For the unsafe net in Figure 23, the
algorithm fails at line 42 because the OR node containing the node created for
p5, has two AND parents. Figure 5 shows an unsafe Petri net for which the al-
gorithm fails at line 43, because the algorithm will create an OR node which has
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Figure 23: Unsafe Petri net on which the algorithm fails at line 42

as children, among others, BASIC node p4 and AND node {{p2,p5},{p3,p6}}.
Clearly, the hyperedge created for t1 then has an inconsistent target, since nei-
ther p2 and p4 nor p3 and p4 are orthogonal.

Elsewhere [5] we have compared the class of nets that can be translated into
a structure-preserving, equivalent statechart with existing classes of nets and
statecharts.

5 Conclusion

An algorithm has been presented that maps a Petri net to a statechart. The
translation is structure preserving: places map to BASIC nodes and transitions
to hyperedges. Loosely speaking, the algorithm tries to impose an AND/OR
hierarchy of nodes on a Petri net structure. The algorithm is polynomial in the
size of the Petri net, and thus also efficient for large Petri nets.

The algorithm has been proven correct. However, it is not complete. But the
algorithm only fails to construct wellformed statecharts in which some children
of some OR node are not connected by any undirected sequence of hyperedges.
We have not found any example of such a statechart in the literature, though the
standard definition definitely does not exclude it. Apparently, such a statechart
is not obvious to draw. So the limitation of non-completeness does not seem
very severe in practice.

There are several directions for further work. First, the algorithm can be
extended to deal with non-structure-preserving translations as well, to allow for
example the translation of the net in Figure 6 into the statechart of Figure 8.
In particular, it is interesting to extend the algorithm with repair actions, that
modify the Petri net in case of a failure. For example, the net in Figure 5
could be modified into an equivalent net on which the algorithm does not fail
by duplicating place p10 and letting t4 (or t3) enter this duplicate place, rather
than p10. Next, data can be considered by looking at coloured Petri nets and
statecharts with local variables and guard and action labels on the hyperedges.

On the more applied side, the algorithm can be used as a foundation for im-
plementing model transformations between Petri net-like models and statechart
models. For example, UML activity diagrams [35] are a visual language whose
syntax resembles Petri net syntax quite closely. The algorithm can be used to
transform a UML activity diagram into a UML statechart.
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