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Abstract 

When modelling and analysing hybrid systems using techniques 
from computing science we may encounter problems with so-called 
Zeno-behaviour. This is the phenomenon that an infinite number 
of events accumulates before a finite time (Zeno-time). When this 
happens the standard techniques from computing science fail to dis
tinguish between events that happen after that sequence of events. 
Many of those techniques have a semantics based on labelled transi
tion systems. 

In this article, we concentrate on those transition systems and try 
to find a solution for the Zeno-problem. We first introduce transi
tions over infinite sequences, since an infinite number of events needs 
to be described. Then we (re-) define a notion of convergence over 
sequences in a metric space. Considering a transition system with a 
metric state space and transitions labelled by sequences we can define 
a notion of prefix- and accumulation-closedness. Finally within prefix
and accumulation-closed transition systems, bisimilarity turns out to 
distinguish between various kinds of transfinite behaviour. The bounc
ing ball, an example from hybrid system theory, is used to illustrate 
the relevance of these new definitions. 
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1 Introduction 

A system containing both discrete and continuous behaviour is called a hybrid 
system. The analysis of such systems relies on techniques from computing 
science as well as from system theory. The combination of those two fields 
leads to new, theoretic and practical, challenges, one of which is called Zeno
behaviour. 

When modelling and analysing hybrid systems using techniques from com
puting science we may encounter the phenomenon that an infinite sequence of 
events happen before a certain time instance [9, 1]. This behaviour is called 
Zeno-behaviour, after the Eleatic philosopher (488 BC) who first described 
such a phenomena in the famous example of a race between Achilles and a 
turtle. The time instance at which the events accumulate is called Zeno
time. In such a case, the standard formalisms used in computing science fail 
to distinguish between events that happen after that interval. Johansson et 
all. [7] performed a regularization of Zeno Hybrid Automata in 1998. Even 
more recently Berard and Picaronny [1] adressed the problem of Zeno-words 
in timed automata using the notion of acceptance of transfinite words that 
was introduced by Biichi [5] in 1973. Using a notion of limit of an infinite 
sequence they were able to solve the problem of Zeno-behaviour concerning 
trace-equivalence of automata. In this paper the context is broadened to 
transition systems, which form the general underlying model for many of the 
formalisms used in computing science (including automata), while we adress 
the problem of Zeno-behaviour regarding the notion of (strong-)bisimilarity, 
which is stronger than trace-equivalence. 

Limits of sequences are strongly related to metric spaces. Combining this 
insight with the transition systems that we are studying, we arrive at a notion 
of transition systems that take a metric space as their state space. Previously, 
metric transition systems were studied by Kent [8] in the construction of a 
closure powerspace, and van Breugel [3] to give semantics to programming 
languages. Here we use them, extended with transitions over transfinite 
sequences to tackle the Zeno-problem. 

We start with an introduction on Zeno-behaviour by studying a typical ex
ample of a dynamical system containing such behaviour: the bouncing ball. 
It is described using an ordinary transition system and we show that bisimi
larity is not capable of distinguishing between differences in behaviour after 
Zeno-time. In the next section, transition systems are discussed in which 
the labels may consist of infinite sequences of labels. We define a notion of 
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prefix-closedness of a transition system and show why this notion is useful. 
In the fourth section we propose metric spaces to be used as the set of states 
of a transition system. This gives us the chance to formalize a notion of 
convergence. Finally we redo our bouncing ball example in the new context 
and show that bisimilarity now does distinguish between different transfinite 
behaviours. 

2 Zeno-behaviour 

Consider a ball that is bouncing on a surface like depicted in figure 1. With 
every bounce it looses a factor e of its energy (E E (0,1». For simplicity we 
assume that we start observing the system at a time to when the ball leaves 
the surface with a velocity Vo. Suppose that after the nth bounce at time tn 
this ball hits the surface with a velocity Vn. 

9 h,v 

Figure 1: Bouncing Ball 

Then it bounces off with a velocity -';vn. Under the pull of a gravitational 
force 9 it touches the surface again after a time interval tn+! - tn = "%vn with 
the same speed as with which it took off (in opposite direction, Vn+! = .;vn ). 

Summarizing we find that the system can be described by: 

Vn+l -

tn+! -

.;Vn, 

2E 
tn + -Vn-

9 

3 

(1) 

(2) 



Using development of series we find: 

This process contains Zeno-behaviour since it takes an infinite sequence of 
events (bounces) to put the ball to rest while all these events occur before a 
certain time (Zeno-time): 

VZeno = lim Vn - 0, 
n-+oo 

t zeno = lim tn _ to + 2vo (-~-) . 
n-+oo 9 1 - ~ 

Before we go on, we need a proper definition of what is known in comput
ing science as a labelled transition system or LTS. Many techniques from 
computing science have a semantics based on some kind of LTS. A common 
definition is given below. 

Definition 2.1 (LTS) A labelled transition system is a tuple (X, E, E, I) 
where X is the set of states, E is some alphabet (set of labels), E ~ X x E x X 
is the set of transitions and I ~ X is the set of initial states. 

When looking at dynamical systems, the states in X define the state of the 
system and the labels in E are interpreted as actions that can be taken. The 
triple (x, a, x') E E then signifies that if the system is in a state x it can get 
into state x' by performing some action a. This is also denoted as x ~ x'. 

Now, let us reconsider the bouncing ball. The state of this system is deter
mined by the space V from which the velocity takes its value and the space 
l' from which time takes its value. We may describe the bouncing ball by an 
LTS BI = (Xl, EI, Eb It) such that: 
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XI Vxl', 

EI { bounce}, 

EI {((VI, tl), bounce, (V2, t2)) I VI -10, V2 = ,;vJ, t2 = tl + 2g';VI}' 

II - {(iv, it)}. 

Here, XI denotes the space spanned by all the velocity-time pairs (v, t). The 
only label bounce E EI of the system denotes a bounce of the ball. The set 
II of initial states contains only the starting point (iv, it). In the definition 
of the transitions EI we recognize the equations (1) and (2) in the beginning 
of this section. The description may be interpreted as: 

"Starting from the state (iv, it) the system can get into a new 
state (';iv, it + ¥iv) by performing a bounce, being in this new 

state a bounce will bring it to the state (';';iv, it + 7('; +';';), etc." 

Figure 2 contains a visualization of this labelled transition system. States are 
indicated by circles, transitions by arrows between circles, and initial states 
by double circles. 

bounce bounce boun~r\ , . ~ [l)----+( 

Figure 2: Labelled Transition System for BI 

Let us also consider a second system B2 = (X2' E2 , E2, h) which is the 

same as the first except for the additional edges (0, t) ~ (Vb, t) for all t: 

X 2 V x 1', 

E2 { bounce, kick}, 

E2 - {((VJ,td,bounce, (V2,t2)) I VI-IO, V2=';VJ, t2=t l + 2;VI} U 

{((VI, tl), kick, (V2, t2)) I VI = 0, V2 = Vb, tl = t2} , 

12 {(iv, it)}. 
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The interpretation of this system might be that after the ball has come to rest, 
it is kicked to a speed Vb and starts bouncing again (see figure 3). It seems 

bounce 
O~--~ 

bounce bounce 

kick 

bounce bounce 

kick 

bounce , _ ... _-->{) 

Figure 3: Labelled Transition System for B2 

clear that there is a difference between these two systems. However, even one 
of the strongest notions of equivalence that is often used in computing science 
(strong-bisimilarity), generally does not make a distinction between BI and 
B2 . (Isomorphism does make the distinction but is considered impractical 
for many purposes.) 

Definition 2.2 (strong-bisimilarity) Two LTSs SI = (XI, ~I' E I, h) and 
82 = (X2, ~2' E2, lz) are considered bisimilar (denoted 81 ti 82) iff there 
exists a relation 'R <;:; XI X X2 such that for all initial states i l E II there 
exists a state i2 E lz that is related (il 'Ri2) and vice versa, and furthermore 
for all XI E X I ,X2 E X 2,u E ~I U~2 

• (X I 'RX2 and Xl 4 xi) implies there exists x~ E X 2 such that (X2 4 x~ 
and x~'Rx~), and 

• (X I 'RX2 and X2 4 x~) implies there exists x~ E XI such that (XI 4 x~ 
and x~'Rx~). 

Intuitively, bisimilarity considers two LTSs equivalent if both have a similar 
branching structure, starting from their initial states. In the case of the 
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bouncing ball there is actually no branching, but the path is infinitely long. 
Suppose that the initial velocity iv # 0, then (in both BI and B2) there is only 
a transition to a new state (v, t) in which still v # o. Always, when starting 
from a non-zero velocity the systems will be in a state with a non-zero velocity 
after any arbitrary number of transitions. Therefore, the systems never end 
up in a state (0, t) for any t. The relation n ~ Xl X X 2 such that (x" X2) E n 
iff Xl = X2 and Xl # (0, t) will fulfill the requirements in the definition of 
bisimilarity. From this we conclude that BI and B2 are bisimilar (if iv # 0). 

As we have seen, two systems that display Zeno-behaviour can be bisimilar 
while intuitively they are considered different. This lack in distinctive power 
is caused by the fact that bisimilarity cannot 'see beyond' the point at which a 
sequence of states accumulates (the Zeno-point). In the next section, we focus 
on how infinite sequences can be considered in general in labelled transition 
systems. After that, we formalize what we mean by accumulation and give 
a definition of the accumulation set of an infinite sequence of states in the 
context of a metric space. Finally, we revisit the bouncing ball example to 
see what has changed. 

3 Sequence-labelled Transition Systems 

In ordinary labelled transition systems there exists a transition X ~ x' iff 
(x, a, x') E E. When thinking about the extension to sequences of labels it 
is quite intuitive to define a kind of transitive closure that says: if there is 
a transition x ~ x' and a transition x' ~ x" then there should also be a 
transition x "~2 x". The first thing that we have to do if we want such a 
transition in the system is to extend the set of labels E with all sequences 
(finite and infinite) of labels. But before we do that we need some preliminary 
notions on ordinal numbers and sequences. 

Like in the paper by Berard and Picaronny [1], we use ordinals mainly to 
number elements of sequences. We would like to recall that the finite ordinals 
are the natural numbers and the first non-finite ordinal is denoted by w. 
(Note that the sum operation on ordinals is not commutative. For example, 
1+w = w while w+1 = successor of w.) In this paper we only consider ordinals 
smaller than WW. They have a polynomial decomposition a = L:~=pwk. nk, 
where p, no, nl .•. are natural numbers. (As expected wO = 1). Furthermore a 
limit ordinal is an ordinal for which no = 0 in the polynomial decomposition. 
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Sequences are constructed through the concatenation of elements in an al
phabet. If we have the set A as an alphabet, then An denotes the set of 
sequences ala2 ... an, of n elements of the set A. For infinite sequences, n is 
an ordinal number. A <n denotes the set of all sequences of length smaller 
than n. 

Definition 3.1 (SLTS) A sequence-labelled transition system is an LTS 
(X, E, E, J) in which E is a set of labels consisting of all sequences over 
an alphabet A, i.e. E = A<w·. 

The purpose of considering sequence-labelled transition systems is to allow 
for the kind of transitive closure mentioned before. However, this definition 
actually gives us the chance to build very awkward transition systems that 
are not transitively closed. See, for example, the one depicted in figure 4. 
To exclude such awkward SLTSs we need to formalize the notion of prefix
closedness. 

abc 

Figure 4: Not Prefix-closed SLTS 

Definition 3.2 (prefix, postfix) Suppose we have a sequence Q. = ala2 ... a n 

then, for i ~ n, ~ denotes the prefix al a2 ... ai and Q.i denotes the postfix 
(TiO"i+l· .. an · 

Definition 3.3 (prefix-closedness) An SLTS S 
be prefix-closed iff for all x, y E X and Q. E E 

with n the length of Q.. 

(X, E, E, J) is said to 

Trivially, an SLTS that only contains transitions with atomic labels (se
quences of length 1) is prefix-closed by definition. 
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By introducing the notion of Prefix-closedness we have excluded labelled 
transition systems as in figure 4. Still, there is another intuition that is not 
satisfied yet. In the case of Zeno-behaviour we recognize that transitions over 
sequences with a limit ordinal length, should end in a certain limit-state, that 
is in some sense related to the transitions over all prefixes of the sequence. 

aaa 

Figure 5: Prefix-closed Infinite SLTS 

The example in figure 5 shows a prefix-dosed SLTS in which the transitions 
aW (!2:w denotes the infinite repetition of the sequence !2:) point to a state 
that is not clearly related to the finite transitions. To solve this problem, we 
introduce a metric as a means to relate states and a notion of convergence to 
a limit-state based on that metric. Systems in which all infinite transitions 
end in their limit-states are said to be limit-closed. 

4 Metric Spaces 

In the introduction we noted that in case of Zeno-behaviour, a sequence of 
states accumulates at a certain accumulation state (or set of states as we will 
see further on). However, to be able to formally define such an accumulation 
we first need to have a notion of distance between states, i.e. they must be in 
a metric space [4]. (Strictly speaking we only need a topology on the states, 
[6, 2], but the state-spaces we are interested in all have a topology defined 
by a metric.) We base the definitions and the results that we give in this 
section on the usual definitions of topology [6, 2]. 

Definition 4.1 (metric space) A metric space (X, I·, ·1) is a set X together 
with a binary distance function (or metric) 1·,·1 : X x X -t ~+ such that for 
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allxx'x"EX , , 
Ix,x'i 
Ix,x'i -
Ix, x"I < 

0, iff x = x', 
Ix', xl, 
Ix, x'i + Ix', x"I· 

In this metric space we define a notion of accumulation. 

Definition 4.2 (accumulation) A sequence;!;. = xIX2 ... Xn over a metric 
space X is said to accumulate (or cluster) at y E X iff either n is not a limit 
ordinal and y = Xn, or \;I,>O\;lk<n::ikS:l<n IXz, yl < Eo 

Note that a sequence may accumulate at multiple points. For example the 
behaviour of a process may be such that a sequence of events accumulates at, 
for example, a circle rather than at a single state. When we study automata 
on infinite words, rather than the more general transition systems, the set of 
accumulation points becomes the set of states that are visited infinitely often. 
This is directly related to the definition of limits by Berard and Picaronny 
[1]. Therefore, we also denote the set of accumulation points using lim. 

Definition 4.3 (accumulation set) The accumulation set of a sequence 
;!;. = XIX2 ... Xn, notation lim;!;., is the set lim;!;. = {y I ;!;. accumulates at y}. 

It should be noted that this accumulation set is sometimes empty. Take for 
example the sequence 1,2,3, ... , of course with distance defined as the absolute 
difference in value. There is no point to which the sequence accumulates 
because none of the points is visited twice (within arbitrary small distance). 
If the sequence lies in a compact metric space, it can be shown that the 
accumulation set contains at least one point [2]. 

Another useful property, which is not hard to prove, is that the accumulation 
set of a sequence is prefix-insensitive, i.e. we can remove the first part of the 
sequence and still obtain the same accumulation set. 

Lemma 4.4 (prefix-insensitivity) For any sequence;!;. of length n, with n 
a limit ordinal, and any 1 ::::: i < n we find lim;!;. = lim;!;.i. 

Proof The proof is almost trivial. The only difficulty might be in rec
ognizing that, in the definition of accumulation, prefixes are not considered. 
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The value of k in the definition of accumulation, may be taken higher than 
the end of the prefix i. So as long as the postfixes are equal, both result in 
the same accumulation set. 181 

5 Sequence-labelled Metric Transition 
Systems 

Now we have defined the notion of metric space and know what convergence 
means in this light, we are ready to use a metric space as the set of states 
in a transition system. Completely analogous to the definitions given before 
we define the following. 

Definition 5.1 (SLMTS) A sequence-labelled metric transition system is 
an SLTS (X,~, E, 1) in which the state space X is a metric space. 

In case of an SLMTS we would not only like it to be prefix-closed but we 
would also like to find that transitions over an infinite sequence end in the 
accumulation set of the corresponding sequence of states. If an SLMTS 
behaves in that way we call it accumulation-closed. 

Definition 5.2 (accumulation-closed) An SLMTS S - (X,~, E, J) zs 
accumulation-closed iff for all x, y E X and Q. E ~: 

with n the length of Q.. 

Often, when we are specifying a system, we only want to specify the transi
tions that contain atomic labels and assume that all possible transitions over 
sequences of labels that do not violate prefix- and accumulation-closedness 
are automatically included also. 

Definition 5.3 (transitive closure) Given an SLMTS M = (X,~, E, J) 
we inductively define the transitive closure of M (denoted MT) as MT = 
(X,~, ET , J) with Er the smallest set such that 
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• E ~ ET , 

• (X,iQ:, X') E ET 1\ (X',Q:i+1,y) E ET implies (x,Q:,Y) E ET, and 

• for all limit ordinals n and sequences ;r of length n for which the ac
cumulation set exists: V'!:Si<n ((Xi, (Ji, Xi+1) E Er 1\ Y E lim;r) implies 
(Xt,Q:, y) E ET · 

By induction on the definition, the proof of MT = MTT is trivial, there
fore this operation can indeed be considered a closure. We would, however, 
also like to see that prefix- and accumulation-closedness are invariant under 
transitive closure. 

Lemma 5.4 (prefix-closedness invariance) Let M be a sequence-labelled 
metric transition system. If M is prefix-closed, then MT is also prefix-closed. 

Proof Using induction over the definition of the closure we only need 
to prove that any transition that is added by the closure operator does not vi
olate the prefix-closedness of the system. We separate three cases, according 
to the three rules of the definition. 

• The trivial case is when a transition that is added to ET is also in E 
(first rule.) 

• If a transition is added according to the second rule we know there is 
a decomposition into a prefix and postfix of the sequence over which 
the transitions are already in ET. Since ET is prefix-closed, all possible 
decompositions of the prefix and postfix are also in ET . Therefore all 
possible decompositions of the new transition are added by the closure 
operator. Thus the new system is still prefix-closed. 

• If a transition is added according to the third rule a similar reasoning 
holds. Since a complete decomposition into transitions over atomic 
sequences, that are all in ET , leads to the new transition, all possible 
decompositions of the new transition are added by the closure operator. 
Therefore the new system is still prefix-closed. 

Thus, in any case, the new transition system is still prefix-closed, which con
cludes the proof. 181 
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Lemma 5.5 (accumulation-closedness invariance) Given a sequence
labelled metric transition system M, if M is accumulation-closed, then MT 
is also accumulation-closed. 

Proof As before we use induction over the definition of closure, sepa-
rating three cases. 

• Adding a transition by the first rule is again the trivial case. 

• Adding a transition according to the second rule, by prefix-insensitivity 
of the accumulation set, comes down to showing that the transition over 
the postfix !Zi is accumulation-closed. Which is true since the postfix 
was already in ET . 

• The prooffor adding a transition according to the third rule is also easy. 
The transition consists of a decomposition in atomic transitions, that 
are in ET and accumulation-closed by definition. Adding a transition 
to the elements of the accumulation set of the sequence of these atomic 
transitions does therefore not change the accumulation-closedness. 

This concludes the proof. 

Suppose that we have SLMTSs which only contain atomic transitions, and 
their transitive closures are bisimilar, then the original SLMTSs are also 
bisimilar. In the next section, where we revisit the bouncing ball, this shows 
not to be true the other way around. Bisimilarity after transitive closure is 
therefore a stronger kind of equivalence. 

Lemma 5.6 (bisimilarity after closure) For any two SLMTSs X and Y 
containing only atomic transitions we find X T 

H yT =} X H y. 

Proof Let n be a bisimulation relation such that X T 
H yT. In par

ticular this relation relates the points that are connected through atomic 
transitions. Since the transitive closure does not add atomic transitions, n 
can also be used to relate X and y. [81 
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6 Concluding Remarks 

Now, let us return to the bouncing ball. We already defined Bl and B2 as two 
different realisations of the bouncing ball in which the state of the system was 
characterized by (v, t) E ll~.2. This happens to be a metric space already, so, 
if we replace the set of labels ~ by all sequences of the event bounce then we 
converted Bl and B2 into sequence-labelled metric transition systems. Now, 
for the transitive closure of these systems (Bf and Bf) it is easy to show that 

[va, 0] bo~w [limn .... oo vn , limn .... oo t n ] because of accumulation-closedness. We 

already showed this to be equal to: [va, 0] bo~w [0, t zeno]. The bisimulation 
relation that we gave does not hold anymore since originally states with 
zero-veloci ty were not related. Actually, there cannot exist a bisimulation 
relation that matches the two bouncing ball specifications because from every 
initial point we are able to get into a point [0, t] using an infinite number of 
bounces. The O-velocity points cannot be related since per definition there 
are no transitions from it in Bf, while there are in Bf. 

As we have seen, using the transitive closure on sequence-labelled metric 
transition systems, the problem of Zeno-behaviour can be overcome. In prac
tice however, it is impossible to calculate the infinite number of transitions 
that have to be added to construct the transitive closure. Our hopes are on 
finding an (algebraic) axiomatization that allow us to do calculations with 
and reason about transitively closed SLMTS without actually constructing 
them. In fact, the sequence-labelled metric transition systems that are de
scribed in this paper, might be useful as general semantics for methods in 
the field of hybrid systems. We suspect that accumulation-closure will proof 
to be a powerfull tool in general, when coping with transfinite behaviour. In 
this perspective it might also provide a link between the computing science 
fields of process algebra and temporal logic, provided that we can find an 
appropriate metric or general topology on processes. 
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