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ABSTRACT 

A well-known problem in pattern recognition is to deteromine the 

shape of a 3-D object from its 2-D image. 

This paper de~cribes a new, general algorithm to reconstruct a 

surface from its normal vectors relative to an arbitrary reference 

point. The depth values of the surface are calculated recursively, 

having smoothed the defect due to path dependency homogeneously. 

The theoretical background is worked out to prove the correctness 

of the program. The time complexity of the algorithm is given. Two 

applications of the general method are discussed with a detailed 

error analysis. The comparison of experimental results of this new 

approach and a previous one is presented. Theoretical analysis and 

experiments show that our method is both powerful and simple to 

implement. 
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1. INTRODUCTION 

1.1 The general shape-from-shading problem 

Monochrome images of surfaces with homogeneous reflecting 

properties commonly exhibit a varying irradiance called shading. 

The shading is dependent on four principle factors the 

illumination, the reflectance characteristics of the material, the 

shape of the surface t and the location of the observer (the 

viewpoint). The shape-from-shading problem is to extract the shape 

information from the irradiance data. 

1.2 The reconstruction of the 3-D shape 

A basic assumption is that the entire surface is visible. The 

problem then is to reconstruct the 3-D shape of the surface from 

its 2-D image. This reconstruction consists of the following 

steps: 

1) separate the image of the surface from the background, 

2) determine the local surface orientation as a normal vector 

field, 

3) segment the image of the surface into regions called figures 

such that the normal vector field is continuous in every 

single region, 

4) from the normal vector field derive the depth relative to some 

reference point on the surface. 

Ad 1) The known technique of thresholding can be used [2J. 

Ad 2) There are additional assumptions : 

i) the surface has homogeneous reflectance characteristics, 

ii) its material is isotropic i. e. reflectance is not 

changed by rotating a surface element about an axis normal to 

the surface, 

iii) the light SOurce and the observer are distant from the 

surface. For computational convenience these distances 

are regarded as infinite. 
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Under these circumstances the radiance emanating from a small 

surface patch does not depend on its position in space. 

Furthermore, the perspective projection may be approximated by an 

orthogonal projection from the viewpoint. 

With these assumptions the relationship between surface 

orientation and shading can be described by the reflectance map 

[1], which specifies the radiance as a function of surface 

orientation for fixed illumination, viewpoint, and reflectance 

characteristic. Since more normal vectors may map to the same 

irradiance value, the inverse mapping is not unique. A strategy to 

overcome this difficulty is discussed in Silver'S work [2]. 

For practical applicability we also assume, that 

iv) the variation in image irradiance is discrete and finite. 

The reflectance map can be determined experimentally using a 

calibration object of known shape, e.g. a sphere of the same 

material and illuminated by the same light Sources as the unknown 

surface. 

Ad 3) Depth discontinuities can be recognized by contour detection 

technique [5], provided that they show themselves by orientation 

discontinuities (or cast shadows). Suggestions to find orientation 

discontinuities are described in section 5. 

Ad 4) Let the surface be described by a function Z(x,y). If this 

surface is once-differentiable, then an unnormalized normal vector 

at the 3-D point (u,v,Z(u,v» can be written as 

(Z (u,v),Z (u,v),-l). Z and Z stand for the first partial 
x y x y 

derivatives of Z with respect to x and y, respectively. 

The Z value over some figure corresponding to a 

once-differentiable surface can be obtained by the integration 

Z(p) - Z(r') + Ie ( Zx dx + Zy dy ) 

along a curve C, from the projection r' of the given 3-D reference 

point to p. 
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There are several factors that may cause computational 

defects 

This integration behaves badly when the normal vector. data is 

noisy. Then the value obtained at some point will depend on the 

integration path from r' to p. 

In order! for the integral to be numerical computable the 

following assumption is necessary 

v) the image is digitized. 

The numerical approximation of the integral from discrete values 

of the integrand also increases the path dependence of the result. 

In order to make the outcome unique it is necessary to smooth 

away defects due to noise and discretisation. 

The problem of this ambiguity of depth values has already been 

studied by Silver [2] and Wu and Li [4]. Their solutions consist 

of computing the Z values along two different paths and averaging. 

In this paper we propose an alternative method, where the error in 

depth estimation are distributed more homogeneously. This method 

turns out to give more stable results in some cases. Our algorithm 

has a guaranteed efficiency performance. 

The purpose of this paper is to derive a general algorithm to 

perform step 4) of the reconstruction, e. i. to calculate a 

surface from its normal vector field. 

In section 2 the theoretical background of this algorithm is 

work out. In section 3 the general algorithm is described with 

two special cases of the integral approximation. In section 4 the 

error analysis and some experimental results are presented 

followed by concluding remarks in section 5. 
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2. FORMULATION OF THE PROBLEM 

2.1 Notational conventions 

Throughout of this paper, elements of Z2 are referred as 

pixels. They are mostly denoted by p,q or r. 

The viewpoint is in the direction of the positive z-axes of a 

cartesian coordinate system. 

function Z over some domain G, 

The surface is described by 
2 

G ~ R, of the image, Z : G ~ R. 

a 

The components of a 3-D point or a function f, f 
3 

Q -+ IR, are 

denoted f .x, f.y and f. z respectively. For a constant c, f iii C 

means that f - c for all elements of its domain O. 

c" denotes the set of n times continuously differentiable 

functions. 

2.2 A first statement of the problem 

Formally the problem can be stated as follows. Given are 

i) the digitized 2-D image of the surface : 

a figure F with F 
2 

~Gf'lZ, 

ii) a normal vector field H, H F 
3 

~R, 

iii) a 3-D reference point r on the surface with (r.x,r.y) e F. 

Assume that the normal vectors are given with N.z = -1. 

The problem may be regarded as that of calculating the values 

of a function Z 

(2.2.1) Z e C
1 

over r, zi such that 
F 

(2.2.2) z I - H.x and Z I ~ H.y 
x F Y F 

(2.2.3) Z(r.x,r.y) ~ r.z 

Notice that we restrict attention in (2.2.1) only to surfaces in 

C
1

. This accords with our intuition on smoothness. 

2.3 Approximation of the Z values 

Obviously any primitive function of a function n (n is a 

continuous extension of N) with 

a) n G ~ R2, 

b) nee, 
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c) the integral of n, computed along a path within G, does not 
. 1 

depend on th~s path , 

d) nl = (H.x,H.y) 
F 

satisfies the requirements (2.2.1) and (2.2.2). When adding an 

appropriate constant to a primitive function, (2.2.3) will hold as 

well. 

If the normal vector field N belongs to a real 3-D C
1 

surface, 

a function n exists satisfying a), b), c) and d), thus also the 

required primitive function exists. 

The integral of the Lagrange interpolating polynomial 1 with 

v p : p e F : I (p) (H.x(p) ,H.y(p)) could satisfy all the 

requirements (2.2.1)-(2.2.3) . Since the computation of this 

polynomial is complicated, it oscillates strongly and the solution 

is numerically not stable
2

, we choose an alternative solution to 

approximate a required primitive function. Our approach will be 

algorithmically efficient and numerically stable. In order to 

describe this approximation some definitions are needed. 

DEFINITION 2.3.1 

Ip.x-q.xl -

+ 
For ~ e Z p and q are ~-neighbours iff 

~ A p.y - q.y V Ip.y-q.yl = ~ A p.x = q.x. 

DEFINITION 2.3.2 For ~-neiqhbour pixels p,q of figure r a weight 

function w.r.t. the normal vector field N is w
N 

: F x F ~ R with 

the property: w (p,q)= - w (q,p). 
N N 

For a given value of Z,(p) we approximate the sequential Z 

value in q by a general integration formula: 

Z (q) - Z (p) + w (p, q) 
N 

1 2 1 
If in (2.2.1) C is required instead of C , 

then c) holds iff n.x ,.. n.y . 
y x 

2 

(2.1) 

For example, continuous functions exist such that the integral of 

of the Lagrange interpolating polynomial of degree n does not tend 

to the original integral, when n approaching to infinity [7]. 
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Note that a choice of the weight function corresponds to a choice 

of a numerical integration fo~ula : 

'EXAMPLE 2.3.1 If we choose the weight function w.r.t. N for ~-

neighbour pixels p,q of r as 

N.x(p) +N.x(q) N.y(p)+N.y(q) 
W

N 
(p,q) :z (p.x-q.x) + (p.y-q.y) 

2 2 
the well known trapezoidal rule is obtained in the approximation 

(2.1) : 

N.x(p) + N.x(q) 

Z(q) _ ZIp) + I _____ 2 ___ _ 1 N.y(p) + N.y(q) 
if p.x=q.x 

2 

EXAMPLE 2.3.2 An other other choice of the weight function 

w.r.t. N in the case of 6 z 2 and p.x ~ q.x A p.y ~ q.y could be: 

N.x(p) + 4·N.x(p.x+1,p.y) + N.x(q) 

-1 
(q.x-p.x) if p.y=q.y 

6 
wN(p,q) 

N.y(p) + 4·N.y(p.x,p.y+1) + N.y(q) 
(q.y-p.y) if p.x=q.x 

6 

The formula (2.1) yields the Simpson's rule in this case 

N.x(p) + 4·N.x(p.x+1,p.y) + N.x(q) 

Z(q) _ ZIp) + I _________ 3 _______ _ 1 N.y(p) + 4·N.y(p.x,p.y+1) + N.y(q) 

if p.y=q.y 

if p.xzq.x 
3 

In these approximations the integrand satisfies a), b) and d). 

Property c) can not be guaranteed generally by special numerical 

integration formulas because of the approximation error [6] and 

eventual noise in the normal vector data. 

2.4 Conservativity 

In order to approximate the Z value from a known value in p 

also for a not 6-neighbour pixel q, the locally used integration 

rule (2.1) can be extended. The full integral is approximated by 
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the sum of the approximations to the sub integrals taken along a 

path from p to q , 

DEFINITION 2.4.1 A path n from p to q ( abbreviated as n(p,q) 

is a sequence of ~-neighbour pixels, r o'·· .,rn : ro= p A rn= q. 

The length of n denoted by Inl is n, begin!n) = p and end(n) = q. 

<n> denotes the set of pixels of this path. 

If IT is a set of path, <IT> = u <n> 
n e IT 

For a set V, V ~ Z2, the following notation is used 

IT = ( n , " is a path " <n> S; V ). v 

DEFINITION 2.4.2 The weight w.r.t. N of a path n entirely within 

Inl 
Ii' is defined by W (n) 

N 
:= L w(r ,r). 

N 1-1 1 
i=l 

with these notations the extended integration rule (2.1) 

Z(q) z Z(p) + W
N

( n(p,q) ) (2.2) 

Unfortunately the numerical integration (2.2) taken along 

different paths between two pixels may not agree on the Z value. 

Formally the idealistic case, when the Z value does not depend on 

the chosen path (thus the Z values can be determined uniquely), 

is : 

DEFINITION 2.4.3 Let IT be a set of paths in Ii', w a weight 
N 

function w. r. t. N. The normal vector field N of figure Ii' is 

conservative w.r.t. wand TI, denoted by cons(N,I';w ,TI), 
N N 

iff for any p,q e.. and any paths 7[1,7[2 E TI with 

begin(n1)-begin(n,)=p and end(n
1
)=end(n

2
)-q: wN(n

1
) = WN(n,) . 
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For the correctness of the general algorithm (in section 3.1) 

we can rather use a local property of N, 

equivalent with conservativity : 

F and which is 

DEFINITION 2.4.4 A path n is closed iff begin(n) ~ end(n). For 

a e Z a closed path is called a-square iff it is composed of four 

different pixels and its length is 4. 

For a set of ~-squares 5 the following notation is used 

s - { s v 

<5> - V <s> 
s e s 

2 
s is ~-square A <s> ~ V }, where v ~ Z . 

DEFINITION 2.4.5 The normal vector field N of figure F is locally 

conservative w.r.t. wand s, s , 5 , iff cons (N,FiW ,s). 
N F N 

LEMMA 2.4.1 For any weight function w.r.t. N, w
N

' and any subset 

s of 5 
F 

cons ( N,l"iw,II ) 
N <8> 

iff cons (N,l"iw,5 ). 
N <s> 

DEFINITION 

R(a,c) = { p 

2.4.6 A rectangle R (a, c) is a subset of J" 

a.x S p.x S C.x A a.y ~ p.y ~ c.y 

A (p.x-a.x) mod ~ = (p.y-a.y) mod ~ - a }, 
where a,c e F and (c.x-a.x) mod a - (c.y-a.y) mod a ~ 0 too. 

Its boundary B (a, c) is the shortest closed path from a that 

contains (c.x,a.y) and c and (a.x,c.y) in this order. 

Formally, the difference in Z value, that is obtained applying 

rule (2.2) along a closed path for algorithmic simplicity along 

a boundary of a rectangle, as we can see in section 3.1), is 

defined on the following way 

DEFINITION 2.4.7 The defect of boundary B (a, c) of a rectangle 

R(a,c) w.r.t. w
N 

is D (a,c) :~ W (B(a,c». 
W N 

N 
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The basic idea of the proof of lemma 2.4.1 is very simple using 

this notion : 

PROPERTY 2.4.1 Let a,c E rand R(a,c) a rectangle. If c' e R(a,c) 

with c'.y - c.y A (c'.x - c.x) mod ~ ~ 0 (as in fig. 2.4.1) then 

D (a,c') + D «c' .x,a.y) ,c) w w 
N N 

C' 

. .' 
FIGURE 2.4.1 

D (a, c) 
w 

N 

C 

Obviously this result is the same if we split the rectangle 

horizontally. 

2.5 Reformulation of the problem 

To deal with the above mentioned inconsistency in the Z values, 

the approach of the problem could be modified. A correction term 

can be added to the weight function to suppress this 

inconsistency. This means that a discrete function is added to a 

function, which satisfies the requirements (2.2.1) and (2.2.2). 

We need an additional definition to describe this method 

formally : 

DEFINITION 2.5.1 A distribution corresponding to the boundary of 

a rectangle R(a,c), denoted by f"c, is an IB(a,c) I-tuple with 

IB(a,c) 1-1 
( \I i: Os i< IB(a,c) I . Os fa,c ) . i A L f"C 

i 
i-O 

1. 

fa,c(r,r ) is abbreviated as fa,c.) 
i 1+1 i 
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PROPERTY 2 .5 .1 Let w be a weight function w.r.t. N, 
N 

R(a,c) a 

1 . h h b d d fa,c be a d'str'but'on. rectang e W1t t e oun ary r , ... ,r an ~ ~ ~ 

Modify w on 8(a,o) as 
N 

o n 

f a. c. ( ) 
i D w a,c for i 1, ... ,n. 

N 

Then the following holds 

n-1 
fa, c 

w (r ,r ) - O. 
N i 1+1 

Note that cons( N, I' 
fa, c 

W ,Il ) 
N <B(a,c» 

holds and the 

following is satisfied : 

PROPERTY 2 • 5 • 2 

fa, c 
W ",wl 

N N <B(a,c» 
iff cons ( N,i"iW , II ) . 

N <B(a,c» 

The reformulated problem now is to calculate 

zi = z I + Z , where 
F c F d 

(2.5.1) Z E C
1 

A r 7 IR 
c 

(2.5.2) Z I - H.x A Z I 
c F c F 

H.y 

(2.5.3) Z(r.x,r.y) = r.z 

Z I such that 
F 

(2.5.4) Z I is uniquely determined independently on the path of 
F 

the reconstruction from r' to any P, pel', w. r. t. a set of 

distributions. 

Ad (2.5.4) Assume that a set of distributions is also given 

corresponding to the figure r '.J ( f
a,c 

: B(a,e) S;; r ) sllch 
F 

that for all ll-neighbours p and q, that belong to the 

boundary of a rectangle within r 
a,c ( * (a,c) : p,q E <B(a,c» A <B(a,c» S;; I' : f (p,q)" 0 ) = 1. 

With this property of '.J the Z values are modified only once in 
F 

the recursive algorithm (see in section 3.1) . 

REMARK 2.5.1 
1 

Note that the C part of function z, Z can be 
c 

obtained by the integration formula (2.2) with the weight function 

W
N

, To compute Z we need to use the modified one, 
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3. RECONSTRUCTION ALGORITHllS 

3.1 The general algorithm 

The Z values are required 

i) over the figure r, 

ii) from the normal vector field N , 

iii) beginning with the reference point r, 

using a weight function w, which is consistent with the required 
N 

type of Z in the numerical integration formula (2.2). A set of 
c 

distribution '§ is also given in order to calculate with a modified 

weight function for every a and c, where <3(a,c» , r (denoted by 
f 

w
N

) • 

For simplicity we shall restrict our consideration 

rectangle as figure r : r - R (A, C) for constants A,e, A,C 

with reference point r.x = A.x and r.y = A.y. 

A recursive algorithm is presented for figure R(A,C) : 

to a 
2 

E I , 

First the defect of the boundary 3 (A, C) is obtained. Then we 

calculate Z from the last known value, at the beginning this is 

r. z, using integration formula (2.2) 
fA,e 

with w 
N 

From property 

(2.5.1) the boundary is conservative w.r.t. After these 

steps we split the rectangle in two parts and continue the above 

described algorithm recursively. This approach is continued until 

reaching the A-squares in the rectangle. 

As follows from lemma 2.4.1, ultimately the Z values correspond 

to N with f cons( N,R(A,C);w ,IT ). 
N R(A,C) 

PROCBDURI Reconstruction 

(N : array (R(A,C)] o~ 2-D vector; 

Z • real,· a • 
st : integer; 

~unctiOD w(p,q : pixel) : real; 

t : •• t o~ ~UDctioD f(a,c : pixel) 

var z : array [R(A,C)] of real); 

13 
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2 
(precondition: A,C E Z A A.x < C.x A A.y < C.y A R(A,C) = F 

A " p : PER (A, C) N(p) = (N.x(p) ,N.y(p» 

A A - (r.x,r.y) A Zo r.z 

A st - t:. 

A w - w for t:. neighbours p and q 
N 

postcondition 

At-!'i 

( " p P E R(A,C) : Z value is uniquely 

determined by (2.2) with wf) 
N 

procedu~ Correction( a,e: pixel: P: path: D: real ): 

(precondition : 

A.x ~ a.x < C.x ~ C.x A A.y ~ a.y < c.y ~ C.y 

A <P> S; <B(a,c» 

A zi is 
< B (a,c»\«P>\begin(P)\end(P»> 

known 

A P'- IT( end(P),begin(P) ) A <P'>V<P> = <B(a,c» 

A fA.o l so 0 
p' 

AD - D(a,c) 

postcondition 

( " p : p E R(a,c) : Z 

by (2.2) with 

var i : integer: 

D
1
,02,d : real; 

a',e' pixel; 

Pl,P2 : path; 

value is 

w
f 

) } 
N 

uniquely determined 

function Dsum( P: path) : real; 

{precondition: <P> ~ <BCa,e» 

postcondition : Dsum = W (P) } 
N 

begin {Correction} 

U 150 I ", 0 -+ 

for i :- 0 to Ipi -+ 

Z(r ) .= Z(r) + w(r ,r ) - D • f(a,c) Ii]; 
1+1 i i 1+1 

fa,c 
num. integration (2.2) with w

N 
(P, q) } 

rof 

fi; 
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end 

beg~n 

{ { \I p P E <Bea,e» Z value is uniquely 

determined by (2.2) with 

~f R(a,b) ¢ ~ square ~ 

~f c.x-a.x > c.y-a.y ~ 

a' := (a + (c.x,a.y» div 2 

c' :E ( (a.x,c.y) + c) div 2 ; 

.{ D(a,c' ) - Z (a') - Z (c' I + Dsum( P(a',c') 

" D(a' ,e) - Z (e') - Z (a') - Dsum( Pta' ,c' I 

D a' :E (a + (a.x,c.y) ) div 2 

c' :"' ( (c.x,a.y) 

D(a,c' ) - Z (e') -

" D (a' ,e) - Z (a') 

f1 ; 

d:- Daum( P(a',e') 

D .- Z (a' ) - Z(c') + 
1 

D .- Z(c') 
2 

- Z(a') -

+ c) div 2 

Z (a') - Dsum( P (a', c' I 

- Z (c') + Dsum( P (a' ,c') 

d; 

d 

p:&P(a',c'): 
1 

PoSP(c',a'); 
2 " 

) ) 

) ) 

) ) 

if c.x-a.x ::s c.y-a.y ~ Swap (D ,D ); Swap (P ,P) f~; 
1 2 1 2 

{ The precondition of Correction holds } 

Correction ( a, c' , P(a',e'), D 
1 

Correction ( a', c, P(c',a'), D ; 
2 

ti: 

{Correction} ; 

{Reconstruction} 

Z (A) .- Zo ; Z(A) .. r.z 

correction ( A, (;, B(A,C), D(A,C) ; 

end {Reconstruction}: 

Readers that are not familiar with the guarded command 

language, are referred to [8]. :E stands for element-wise or 

component-wise assignment. 

Memory requirement of this algorithm looks space-consuming 

because of the general data type of t. But in the implementation 

(see in section 4) we use special distributions that are simpler 

to implement than a function of ?lrrays. These variables require 

much less memory. 
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Since for each 6-neighbour pixels p and q in R(A,C), w(p,q) may 

have to be modified : 

PROPERTY 3.3.1 

The above program has time complexity O(IR(A,C)I). 

16 



3.2. Special cases of the approximation 

In this section our method will be applied to construct some 

special kind of surfaces assuming that 

(3.2.1) Z E C
1 

A Z E P (x,y) for each square with side A, 
c c i, j 

where P (x, y) is the set of polynomials whose degree does not 
i, j 

exceed i in variable x and j in variable y. 

Note that this is a special case of (2.5.1) for Z . 
c 

3.2.1 The quadratic method 

Assume that i j 2 in (3.2.1). 

Z is chosen as a piece-wise biquadratic polynomial in el, 
c 

hence it can be obtained as a primitive function of a piece-wise 

bilinear continuous function. The integral of a linear function is 

exactly computed by the trapezoidal rule. Therefor in the 

approximation (2.1) we apply the weight function as in example 

2.3.1. Since two points deter.mine a linear function and all the 

information about the normal vector field is worth-while to use, 

we define A :- 1. 

The approximation error of this numerical integration is 

proportional to the second derivative of the integrand, thus the 

following holds: 

PROPERTY 3.2.1 If a polynomial p exists, pEP satisfying 
2,2 

pi - K.x A pi = H.y then 
x F y F 

i) cons (N,r;w ,IT) for the above weight function wand any set of 
N N 

paths II in I' 

ii) P is defined by the integration formula 

beginning at Z(r.x,r.y). 

(2.2) with w 
N 

The consequence of i) is Z d • o. ii) means that the 

reconstruction of a biquadratic surface is exact. 

The general algorithm described in section 3.1 can be directly 

applied to obtain a piece-wise biquadratic c
1 

polynomial with 

A - 1 and weight function w as in example 2.3.1 . 
N 

17 



3.2.2 The cubic method 

Assume that i = j = 3 in (3.2.1). 

Z is chosen to construct as a pi.ece-wise bicubic polynomial in 
c 

el, hence it is a primitive function of a piece-wise continuous 

biquadratic function. The integral of a quadratic function is 

exactly calculated by the Simpson's rule. Therefor we apply the 

weight function as in example 2.3.2 in the numerical integration 

(2.1). Since three points deter.mine a parabola, we define d = 2. 

The approximation error is proportional to the 4th 

derivative of the integrand. Rence the following is satisfied! 

PROPERTY 3.2.2 If a polynomial p exists, 

satisfying p. I = N.x A P. I = N.y then: 
x F y F 

p. e P (x,y) 
3.3 

i) c'ons (N,r;w ,IT) for the above mentioned weight function wand 
N N 

any set of paths IT in figure r 

ii) P. is defined by the integration formula (2.2) 

beginning at the value of Z(r.x,r.y). 

with w 
N 

Analogously to the quadratic method a bicubic surface can be 

exactly reconstructed by approximation (2.2) with the above 

mentioned w
N 

and Zd = 0 holds. 

Note that conservativity, however a necessary condition for 

exact integration by approximation (2.2), of course is not 

sufficient: 

PROPOSITION 3.2.1 For a weight function w, corresponding to an 
N 

exact construction of a piece-wise polynomial surface of degree 

(n,m) in (2.2) and for any set of paths IT in r: 

cons (N,l'iw ,II ) 
N 

if a function f exists, f: G ~ R with f = P. + g + h, satisfying 

f I - N.x A f I ~ N.y, 
x F Y F 

where pep (x, y), 9 and h arbitrary 
m.n 

c
1 

functions and g depends solely on variable x, h on variable y. 
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In this case Z is obtained by the approximation (2.2) as a P 
m.n 

surface (this surface is not the above mentioned polynomial P, if 

g¥:O or h ~ 0). If 'g,h it P and one of them is not identically 
m.n 

o then the reconstruction of the surface f is not exact in spite 

of Zd ~ 0 holds. 

Since ~ = 2 , we have to modify the program in section 3.1 to 

get the Z value also of the intermediate pixels belonging to the 

chosen type of the C1 surface. The approximation of the Z values 

of the internal pixels is the value of the cubic polynomial, 

denoted by P3' uniquely determined by the derivative in three 

consecutive points and its value one of the end pixels 

function Intvalue(val,d Id ,d : real;for~l : boolean) real; o 1 2 

{precondition : val = p (u) if forw , or val = p(u+2) else 
3 

postcondition : 

for an u e l 

A do P;(U) A d l - P;(u+1) A d2 
Intvalue = P (u+1) ) 

3 

p' (u+2) 
3 

The internal Z value could be calculated by modified values for 

the derivative, according to the difference between the begin and 

end Z value of the interval. 

With function lnt.value and extra variables m, f I f and f with 
1 2 3 

f + 4·f + f K 1 of type real em is used for the s2ke of brevity), 
1 2 3 

the algorithm Correction can be completed by the following 

statement : 

m :- D • f(a,c) [i] 

if 

fi 

ri·x = ri+1·x ~ 

Z( r
1
·x + l,ri.y :- Intvalue ( Z(r

i
), N.x(r

i
) 

N.x(r
i
·x+1,r

i
· y ) 

N .x(r )-m·f I 
i+1 3 

- m f 
l' 

- m f 2' 

r
i

• x <r 
1+1 

The statement for N.y can be modified in a similar manner. 

We refer this procedure as Correction-Inter. 

.x ) ; 

Denote Rl and R2 those points, where Z is calculated from A and 

A+! respectively having executed Correction-Inter. 1 stands for 

vector (1,1). 

R
1
:- [A.x .. C.x] x [A.y .• C.y] \ [ p 

19 

p.x-A.x mod 2 = 1 

A p.y-A.y mod 2 1 ), 



R :~ (A.X+l .. C.x-l] x (A.y+l .. C.y-l] \ ( p : p.x-A.X mod 2 0 
2 

A p.y-A.y mod 2 0 

Com denotes the points ",ith "doubly" calculated Z value : 

Corn :""' Rl f\ R
2

• 

In the following example Rl and R2 are drawn by aingle and 

double line respectively : 

C (6. 4) g 
A(O.O) 

FIGURE 3.2.1 

For R
2

, the rest of the pixels, Z can be constructed by the 

algorithm Correction-Inter beginning with the reference value O. 

Then the new Z "surface is translated" such that the average of 

the new values of pixels in Com (whose values have already been 

calculated from the reference point r), is equal to the average of 

their first Z values. At points in Com (where also a new value is 

obtained), we can choose this value or the old one or average of 

them as ultimate Z value. 

For the "translation of the surface" the function Average is 

used : 

function Average(z : array(Com] of real) 
z (q) 

(postcondition : Average L 
qECom IComl 

real; 

The modified body of the program to calculate Z over 

[A.x C.x] x (A.y .. C.y] with d piece-wise bicubic C
1 

part, 

with this completed procedure Correction-Inter, array Zl[Com] of 

real and function Average is : 

20 



begin { Reconstruction of a piece-wise bicublc surface ) 

zeAl :- Zo ; 

Correction-Inter( A, C, B(A,C), D(A,C) ); 

(calculation over 

:= Z I ; 
Com 

Zl E the first calculated valne over Com ) 

A+.!.') := 0 

Correction':Inter ( A+.!., C-.!., B ( A+.!., C-l ), D ( A+.!., C+l ») 
{ calculation also over R2 

zi 
R 

2 
: E Z 1 + Average ( Z 11 - ZCom 

R2 

("translation of the surface" above R2 

zi :E(ZI +Z)/2 
Com Com 1 

( average of the doubly calculated values ) 

end. (Reconstruction of a piece-Wise bicubic surface) 
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4. ERROR AN~LYSIS 

1he error in the depth r.econstruction i~ caused by two factors 

in the above mentioned algorithm the error of the digital 

integration and the error of the surface normal estimates. 

To analyze the effect of these errors, a numeric".l simulation 

has been performed. This simulation was band on a perturbation 

of the normal vector field. The error corrupted normal vector 

field is simulated by adding a noise term acco:cding to 

N.x - 't- I + nand N.y - Ii- I + n, where "j- is a known surface, n 
x F Y F 

is a random noise with expected value 0 : EIn] O. The error is 

examined for p e F : 

In order to spread the defect homogeneously, uniform 

distribution is used on path P in procedure Correction (see in 

section 3.1) fa,C
1 

1 
"'TPT p 

In this section some extra notations are used : 

d.,(V1,V2) - max ( Iv
1

·x-v
2
.xl , Iv

1
.y-v

2
.yl 

)I f)l - max ( f (x)) for a function f, f 
G 

x e G 

R - [A.x,~.x] x [A.y,C.y] 

for 

G--+ 

2 e IR , 

and the resolution is M x M. (M = d (A, C) and for simplicity we ., 
usually choose M as 2

n 
for an n E ~.) 

4.1 Error of the digital integration 

If there is no noise, the obtained error in the algorithm is 

due to the numerical integration only : 

4.1.1 LEMMA Suppose that n:E 0, R(a,c) !:; F and belongs to the 

{ 
2i if k is even, 

kth level of the recursion with k then for 
2i+1 if k is odd, 

any p, p E <B(a,c» 

) 

if i 
. c, 

if i .. 0 

o 

• 
where n is the path on the boundary of the recursion rectangles 

in the order of the algorithm 

reference point), and 
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r' is the projection of the 



II Z (3) (p) II 
R applying the quadratic method 

c = { 
12 

II Z (5) (p) II • 4 applying the cubic method . R 

45 

From this lemma we have that for all p e F 
I 

leo(p)I '" M·( 4 + log M )·c 

This lemma is not difficult to prove wit:h the aid of the 

following recursive formulas : 

leo (po) I '" 
• (I" (r' ,po) I + l)·c (L 1) 

leo(p)I '" leo(q) 1.( 1 21) 
21 ( 

21+1 
1 ).c + - + Ie (s) I· - + + (4.2) 

M o M M 

where Po stands for the splitting points of R(A,C) for 

and c (belonging to the kth reconstruction level). p -
21+1 

and s are splitting points of of the rectangle belonging~ to the 

previous recursion level : 

p - a if q ., a and B "" C or 
21+1 21 21 

P - C
21 

if q - .a
21

_
1 

and s ., C
21

_
1 

: 

Co 

C • 2 1 

• - 3 

FIGURE 4.1.1-

It is easy to prove that the error in other sub rectangles does 

not exceed the error examined above. 

The algorithm is numerical stable : 

4.1.2 LEMMA If ( V p : p e F : nIP) '" 8 ), then 

8 
len (p) I '" I eo (p) I· ( 1 + c 

holds for the error en 

23 



The proof of this lemma is similar to the previous one using 

C + 0 instead of c in the formulas (4.1) and (4.2). 

4.2 The effect of random noise 

same pixels mentioned above ), E[Z(p)] '" 'O'(p) 

p e R(A,C) . 

p stands 
o 

+ eo (p) 

for the 

for any 

From (4.1) and (4.2) it follows using the same notation as at 

lemma 4.1.1 that 

LEMMA 4.2.3 

i) ( 
• 1 - 2"+1) 2 

02[Z(PO)]'" In(r',p)+ 'cr, a n+2 

ii) 0
2 

[Z (a )] '" ~2 (In' (r' .a ) I + M'2
i

) 'cr, 2 
21+1 2i+1 

iii) 2 (2i-3 i-4 
O[Z(c)]S 5'2 +4'M(2 +1)+4 

2i 

From this lemma we can conclude that for any p E F the 

magnitude of the error is at most D[Z{p») - O{M) and proportional 

to the standard variance of the noise, u. 

AS we have seen, the error of the digital integration and also 

the error due to the estimation of the nor.mal vector field depend 
• on In (r' ,p) I. This path length can be reduced by setting the 

reference point to the center of the figure F. 

4.3 Some experiments of surface reconstruction 

Experiments were performed using the quadratic and cubic method 

for a number of synthetic surfaces. Random noise was introduced to 

the partial derivatives to simulated uniform and normal 

distributed of the input. The reference point is chosen in the 

center of the figure. Algorithm Reconstruction was executed in the 

following order for the sub rectangles of R(A,C) R(r,C), 

R( (A.x,r.y), (r.x,C.y) ), R(A,r) and R( (r.x,A.y), (C.x,r.y) ). 
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The average absolutf.! error between the real surfaces and its 

reconstruction are shown in table 4.3.1 to compare the results of 

the the method of Wu and Li, quadratic method and the cubic method 

with number 1, 2 and 3 respectively. 

surface: sphere, r"'12.2, over R( (-8,-8), (8,8) )3 , 

0' n is norm. dist., D(n)-", n 1s uniform dlst.in [-V,V] 

1 2 3 1 2 3 

0 3.473e-2 7.212e-3 6.12ge-4 3.473e-2 7.1l2e-3 6.12ge-4 
4 

0.01 3.S95e-2 2.21ge -2 2.361e-2 1. 013e-2 9.968e-3 

0.1 0.160 0.204 0.236 6.810e-2 9.968e-3 

1 1.635 2.047 2.368 O.672e-1 9.990e-2 

2 2 2 
Surface : paraboloid, 'l- - 12.2 -x -y over R( (-16,-16), (16,16) 

0 0 0 0 0 0 0 

0.01 1.64ge-2 2.248e -2 l.S3ge-2 8.984e-3 1.227e-2 

0.1 0.164 0.224 O. 153 8.984e-2 0.122 

1 1.648 2.2·48 1.539 0.898 1.227 

2 2 
Surf a ce saddle, 'l- - x -y over R ( (-16, -16). (16,16) 

0 0 0 0 0 0 0 

0.01 1.067e-2 2.248e -2 1.53ge-2 8.984e-3 1.227e-2 

0.1 o • 160 0.224 0.153 8.984e-2 0.122 

1 1.607 2.248 1. 539 0.898 1.227 

TABLE 4.3.1 

Obviously, the results are in favor of t.he new methods without 

noise or with small noise in the case of the sphere. At the 

paraboloid and the saddle the average acsolute error of the cubic 

method is less than of the method of Wu and Li. 

The result of the cubic method is better then· the quadratic 

method without noise, as it could be expected from the accuracy 

of the trapezoidal and the Simpson's rule. 

3 
The experiments for the 

size 32 X 32 at Wu and Li. 

4 

same sphere were performed with image 

Wu and Li have studied the noise simulation only in the case of 

normal distribution. 
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It can be also seen from the table that the error is 

approximately linear with the standard variance of the noise 

according to the theoretical 6nalysis given in section 4.2. Since 
2 3 

cr 'f D [n) ~ 3" ~ n is uniform distrib~ted in l-u,u], the results are 

better in this case, than in the case of normal distribution with 

variance u
2

• /' 

From table 4.3.2 we can see ~hat the results are quite 

satisfactory also in the case of much higher resolution. ME and 

MRE stand for the average absolute error and maximal relative 

error respectively 

2 
Su rface : "quarter" sphere. r - 190000, over R( {O,O). (300.300) ) 

n is norm. dist.. D[n) .. u n is uniform dist. in [0',0"] 

2 3 2 3 

AAE >mE AAE MRE AAE >mE MRE 

o 1.5~';e-4 S.e-5 3.10ge-S 3.e-1 1.5He-4 S.e-5 3.10!le-8 3.e-5 

1 B.B45 5.36' 1.493 1.B9' 2.96B 3.BB' ·3.634 

TABLE 4.3.2 

The reconstruction of thi-s quarter sphere is illustrated on the 

following photos, as a ··map·· of the surface. The upper squares 

belong to the quadratic method, the lower ones to the cubic 

method. on the left we can see the reconstructed, on the right the 

original surface. The interval between the maximum and the minimum 

of the values of the original and the reconstructed function (with 

the same method and noise) has been split in 7 intervals of equal 

length. Each interval has been assigned a color : white, light· 

blue, rose, dark blue, yello",', green and red respectively (see 

also table 4.3.3) 

Flgure noise maximum rrdnimum of meth. 

2 3 3 

4.3.1 n. - 0 ~35.S 435.B 99.99 99.99 
4.3.2 n 1. norm. di st. Iodth cr - 1 ~52.9 460.1 100.0 ge .17 

4 .3.3 n is uniform dist. in l-cr.crJ ~35.8 o/l45.3 95.15 100.0 

TABLE o!l.3.3 
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FIGURE 4.3.1 

FIGURE 4.3.2 

FIGURE 4.3.3 
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5. CONCLUSION 

In this paper a new, general algorithm and its applications are 

presented to recover depth relati ve to a reference point of a 3-D 

surface, from the surface normals. ThE: Correctness of this 

algorithm can be proved using the propositions given in section 2. 

This method has time complexity O( IF I) prbvided that figure F 

covered by distinct rectangles. With resolution M x M the error of 

the digital integration is O(M'log M). The algorithm is 

numerically stable. By choosing the referenca point properly, we 

can reduce the error effects also in the case of error corrupted 

input. Experiments show that this approach can yield reasonably 

accurate results. 

With respect to step 4) of the reconstruction (see in section 

1.2) two generalizations are topics for fnrther investigation: 

i) a less homogeneous distribution fa,c in the implementation of 

procedure Correcti0n (in section 3.1), 

ii) figures with arbitrary fonm. 

To segment figures belonging to a continuous normal vector 

field (step 3) of the reconstruction) we may use the lack of 

conservativity : large differences in z value at the same point of 

the figure, calculated on different path from the reference point 

may indicate discontinuity in the r.o:rmal vector field. Orientation 

discontinuities also can be discovered using decision theory : the 

change of polynomial grey value distrib1:.tion can be found with 

compatibility test based on statistical criterio.. From the 

relation between the grey-value and th4i:! su~face orientation we may 

conclude, if discontinuities ocCur in the normal vector field. 

28 



REFERENCES 

1. B. K. P. Horn, Understanding image intensities, Artif. Intel. 

8., No.2, 1977, 201-231. 

2. w. M. Silver, Determining Shape and Reflectance Using Multiple 

Images, Master's thesis, MIT, 1980. 

3. B. K. P. Horn and M. J. Brooks, The vat"iational approach to 

shape from shading, Comput. Vision, Graphics and Image Process. 

33, 1985, 173-208. 

4. Z. Wu and L. Li, A Line-Integration Based Method for Depth 

Recovery From surface Normals, Comput. Vision, Graphics and image 

Process. 43, 1988, 53-66. 

5. S. K. Pal and D. K. Dutta, Fuzzy mathematical approach to 

pattern recognition, Wiley Eastern, New Delhi, 1987. 

6. J. Steer and R. Bulirsch, Introduction to numerical Analysis, 

Springer-Verlag, Berlin/New York, 1980. 

7. V. T. 568, Analizis 1/2. Integralszamita8, Tankonyvkiad6, 

Budapest, 1978. 

8. E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 

Englewood-Cliffs, NJ, 1976. 

9. M. v. Lierop, Digitisation Functions in Computer Graphics, 

Ph.D. Thesis, Eindhoven: University of T~chnology, 1987. 

29 



In this series appeared: 

No. Author(s) Title 
85/01 R.H.Mak The formal specification and 

derivation of CMOS-circuits 

85/02 W.M.C.J. van Overveld On arithmetic operations with 
M-out-of-N-codes 

85/03 W.J.M. Lemmens Use of a computer for evaluation 
of flow films 

85/04 T. Verhoeff Delay insensitive directed trace 
H.M.J.L. Schols structures satisfy the foam 

rubber wrapper postulate 

86/01 R. Koymans Specifying message passing and 
real-time systems 

86/02 G.A. Bussing ELISA, A language for formal 
K.M. van Hee specifications of information 
M. Voorhoeve systems 

86/03 Rob Hoogerwoord Some reflections on the implementation 
of trace structures 

86/04 G.J. Houben The partition of an information 
J. Paredaens system in several parallel systems 
K.M. van Hee 

86/05 Jan L.G. Dietz A framework for the conceptual 
Kees M. van Hee modeling of discrete dynamic systems 

86/06 Tom Verhoeff Nondeterminism and divergence 
created by concealment in CSP 

86/07 R. Gerth On proving communication 
L. Shira closedness of distributed layers 

86/08 R. Koymans Compositional semantics for 
R.K. Shyamasundar real-time distributed 
W.P. de Roever computing (Inf.&Control 1987) 
R. Gerth 
S. Arun Kumar 

86/09 C. Huizing Full abstraction of a real-time 
R. Gerth denotational semantics for an 
W.P. de Roever OCCAM-like language 

86{10 J. Hooman A compositional proof theory 
for real-time distributed 
message passing 

86/11 W.P. de Roever Questions to Robin Milner - A 
responder's commentary (IFIP86) 

86/12 A. Boucher A timed failures model for 
R.Gerth extended communicating processes 



86/13 R.Gerth Proving monitors revisited: a 
W.P. de Roever first step towards verifying 

object oriented systems (Fund. 
Informatica IX -4) 

86/14 R. Koymans Specifying passing systems 
requires extending temporal logic 

87/01 R. Gerth On the existence of sound and 
complete axiomatizations of 
the monitor concept 

87/02 Simon J. Klaver Federatieve Databases 
Chris P.M. Verberne 

87/03 G.J. Houben A formal approach to distri-
J.Paredaens buted information systems 

87/04 T.Verhoeff Delay-insensitive codes -
An overview 

87/05 R.Kuiper Enforcing non-determinism via 
linear time temporal logic specification. 

87/06 R.Koymans Temporele logica specificatie van message 
passing en real-time systemen (in Dutch). 

87/07 R.Koymans Specifying message passing and real-time 
systems with real-time temporal logic. 

87/08 H.M.J.L. Schols The maximum number of states after 
projection. 

87/09 J. Kalisvaart Language extensions to study structures 
L.R.A. Kessener for raster graphics. 
W.J.M. Lemmens 
M.L.P. van Lierop 
FJ. Peters 
H.M.M. van de Wetering 

87/10 T.Verhoeff Three families of maximally nondeter-
ministic automata. 

87/ll P.Lemmens Eldorado ins and outs. 
Specifications of a data base management 
toolkit according to the functional model. 

87/12 K.M. van Hee and OR and AI approaches to decision support 
A.Lapinski systems. 

87/13 J.C.S.P. van der Woude Playing with patterns, 
searching for strings. 

87/14 J. Hooman A compositional proof system for an occam-
like real-time language 



87/15 C. Huizing A compositional semantics for statecharts 
R.Gerth 
W.P. de Roever 

87116 H.M.M. ten Eikelder Normal forms for a class of formulas 
J.C.F. Wilmont 

87/17 KM. van Hee Modelling of discrete dynamic systems 
G.-J.Houben framework and examples 
J.L.G. Dietz 

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved 
surfaces 

87119 A.J.Seebregts Optimalisering van me allocatie in 
gedistribueerde database systemen 

87/20 G.J. Houben The R2 -Algebra: An extension of an 
J. Paredaens algebra for nested relations 

87/21 R. Gerth Fully abstract denotational semantics 
M. Codish for concurrent PROLOG 
Y. Lichtenstein 
E. Shapiro 

88/01 T. Verhoeff A Parallel Program That Generates the 
Mobius Sequence 

88/02 K.M. vanHee Executable Specification for Information 
G.J. Houben Systems 
LJ. Somers 
M. Voorhoeve 

88/03 T. Verhoeff Settling a Question about Pythagorean Triples 

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle 
J .Paredaens Structured Information 
D.Tahon 

88/05 KM. van Hee Executable Specifications for Information Systems 
GJ. Houben 
LJ. Somers 
M. Voorhoeve 

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication 

88/07 C. Huizing Modelling Statecharts behaviour in a fully 
R.Gerth abstract way 
W.P. de Roever 

88/08 K.M. van Hee 
GJ. Houben 

A Formal model for System Specification 

L.J. Somers 
M. Voorhoeve 

88/09 A.T.M. Aerts A Tutorial for Data Modelling 
KM. van Hee 



88/10 J.e. Ebergen A Formal Approach to Designing Delay Insensitive 
Circuits 

88/ll GJ. Houben A graphical interface formalism: specifying nested 
J.Paredaens relational databases 

88/12 AE. Eiben Abstract theory of planning 

88/13 A Bijlsma A unified approach to sequences, bags, and trees 

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with 
R.H. Male recursive types 

88/15 R. Bos An introduction to the category theoretic solution 
C.Hemerik: of recursive domain equations 

88/16 e.Hemerik: Bottom-up tree acceptors 
J.P.Katoen 

88/17 K.M. van Hee Executable specifications for discrete event 
GJ. Houben systems 
LJ. Somers 
M. V oorhoeve 

88/18 K.M. van Hee Discrete event systems: concepts and basic 
P.M.P. Rambags results. 

88/19 D.K. Hammer 
K.M. van Hee 

Fasering en docnrnentatie in software engineering. 

88/20 K.M. vanHee 
L. Somers 

EXSPECf, the functional part. 

M.Voorhoeve 

89/1 E.Zs.Lepoeter-Molnar Reconstruction of A 3-D surface from its normal 
vectors. 


	Abstract
	Contents
	1. Introduction
	1.1 The general shape-from-shading problem
	1.2 The reconstruction of the 3-D shape
	2. Formulation of the problem
	2.1 Notational conventions
	2.2 A first statement of the problem
	2.3 Approximation of the Z value
	2.4 Conservativity
	2.5 Reformulation of the problem
	3. Reconstruction algorithms
	3.1 The general algorithm
	3.2 Special cases of the approximation
	3.2.1 The quadratic method
	3.2.2 The cubic method
	4. Error analysis
	4.1 Error of the digital integration
	4.2 The effect of random noise
	4.3 Some experiments of surface reconstruction
	5. Conclusion
	References

