
 

Dataflow analysis for real-time embedded multiprocessor
system design
Citation for published version (APA):
Bekooij, M. J. G., Hoes, R. J. H., Moreira, O., Poplavko, P., Pastrnak, M., Mesman, B., Mol, J. J. D., Stuijk, S.,
Gheorghita, S. V., & Meerbergen, van, J. (2005). Dataflow analysis for real-time embedded multiprocessor
system design. In P. Stok, van der (Ed.), Dynamic and Robust Streaming in and between Connected Consumer-
Electronic Devices (pp. 81-108). (Philips research book series; Vol. 3). Springer. https://doi.org/10.1007/1-4020-
3454-7_4

DOI:
10.1007/1-4020-3454-7_4

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/1-4020-3454-7_4
https://doi.org/10.1007/1-4020-3454-7_4
https://doi.org/10.1007/1-4020-3454-7_4
https://research.tue.nl/en/publications/501218bc-f5e4-4301-b4cd-76b2b0b4aaa4


Chapter 4

DATAFLOW ANALYSIS FOR REAL-TIME
EMBEDDED MULTIPROCESSOR SYSTEM
DESIGN

Marco Bekooij1, Rob Hoes2, Orlando Moreira1, Peter Poplavko2, Milan
Pastrnak2, Bart Mesman1,2, Jan David Mol3, Sander Stuijk2, Valentin
Gheorghita2, and Jef van Meerbergen1,2

1 Philips Research Laboratories, Eindhoven, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 Delft University of Technology, Delft, The Netherlands
Marco.Bekooij@philips.com

Abstract Dataflow analysis techniques are key to reduce the number of design iterations
and shorten the design time of real-time embedded network based multiproces-
sor systems that process data streams. WiWW th these analysis techniques the worst-
case end-to-end temporal behavior of hard real-time applications can be derived
from a dataflow model in which computation, communication and arbitration
is modeled. For soft real-time applications these static dataflow analysis tech-
niques are combined with simulation of the dataflow model to test statistical
assertions about their temporal behavior. The simulation results in combination
with properties of the dataflow model are used to derive the sensitivity of design
parameters and to estimate parameters like the capacity of data buffers.

Keywords: real-time, dataflow analysis, multiprocessor system, predictable design, system-
on-chip

1. INTRODUCTION
Consumers typically have high expectation about the quality delivered by

multimedia devices like DVD-players, audio, and television sets. These de-
vices process data streams and are often built using (weakly) programmable
embedded multiprocessor systems for performance, cost, and power-efficiency
reasons. The design and programming of these real-time multiprocessor sys-
tems should be such that the real-time constraints are met, and the desired

81
P. van der Stok (ed.), 
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 81-108.
© 2005 Springer. Printed in the Netherlands. 



82 Chapter 4

audio and video quality is delivered. These multiprocessor systems should be
suitable for the simultaneous execution of audio and channel decoders as well
as video decoders. The audio and channel decoders have hard real-time con-
straints because a miss of a deadline results in a click in the audio or loss of data
which is unacceptable for the end-user. The video decoders have soft real-time
constraints because if a deadline is missed then the video quality is reduced
which is not appreciated by the end user but is to some extent acceptable.

The current design practice is that timing constraints of hard real-time ap-
plications are guaranteed by making use of analytical techniques while the
(temporal) behavior of soft real-time applications is measured. As will be ex-
plained in the next paragraphs, these measurements do not make all the char-
acteristics of soft real-time applications explicit which are usefuff ll during the
design process. Therefore we are concerned in this chapter with the use of
dataflow models for the validation of the (temporal) behavior of applications
with soft real-time constraints. These dataflow models are also key to derive
a proper dimensioning of the multiprocessors system and to derive a proper
mapping of the application onto the multiprocessors system. We claim that
the use of these dataflow models reduces the number of design iterations and
shortens the design time. Also our network based embedded multiprocessor
system is presented. This system is suitable for the derivation of the temporal
behavior of the application with dataflow models.

The applications executed on our multiprocessor system consist of jobs (see
Figure 4-1). A job is an entity that processes a data stream. It is started and
stopped by the user. The hard real-time jobs are indicated in this figure by dot-
ted circles while the soft real-time jobs are indicated by dashed circles. A job is
described by a dataflow graph. Such a dataflow graph contains actors that rep-
resent software tasks, or computations performed by a hardware component.
Actors are started after sufficient input data and output space is available, such
that they can finish their execution without having to wait for additional input
data or output space. The edges denote communication of data between actors
via First-In-First-Out (FIFO) buffers.

For soft real-time jobs such as video decoders, a tradeoff is typically made
between the amount of resources that are made available and the deadline miss
rate. Less system resources result in less hardware and a reduction of the hard-
ware cost, but also result in a higher deadline miss rate and a reduced quality of
experience for the end user. It is therefore an objb ective of the system designer
to dimension and program the multiprocessor system in such a way that the
quality is minimally compromised for a given resource budget.

The current design practice of systems that execute soft real-time jobs can
be schematically depicted with a Y-chart (Kock, Essink, Smits, Wolf, Brunel,
Kruijtzer, Lieverse and ViVV ssers, 2000), as is shown in Figure 4-2. The dashed
arrows in this figure denote design iterations. During an iteration a multipro-



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 83

MPEG2 video decoder job

MPEG1 video decoder jjobob

actoractor

actor

actor

actor actor

output-stream
to speakers

output-stream
to display

input-
stream1

stream2
input-

application

actor

actor

mixer job

contrast job

audio-decoderder job

Figure 4-1. An application that consists of jobs. Jobs are started and stopped by the user.
Jobs consist of actors that communicate via FIFOs. Hard real-time jobs are indicated by dotted
circles while soft real-time jobs are indicated by dashed circles.

cessor instance is (re-)defined, programmed, and evaluated by means of sim-
ulating the target application in a cycle true simulator. From the simulation
results, the system designer tries to derive clues on how he can improve the
system or its programming such that all design constraints are satisfied, which
is indicated by the light bulbs in the Y-chart figure. The current design practice
is that the design constraints are verified after simulation but to a large extent
ignored during mapping.

fuff nction resources

implementation

application
definition

architecture
modeling

mapping

analysis

Figure 4-2. Y-chart programming paradigm.

Such a simulation based design process is cumbersome for modern appli-
cations and architectures due to the uncertainty in the amount of resources



84 Chapter 4

demanded by the application at run-time and the uncertainty in the amount of
resources supplied by the hardware. The resource demand fluctuates during
execution because the amount of computation and communication performed
by the application often depends on the content of the input stream. For exam-
ple, the execution time of the actors depends usually on the values of the input
data. This can also be the case for the amount of data communicated between
the actors. Also, the amount of resources supplied by the hardware fluctuates
due to arbitration of shared resources in the system. The term arb itration” is
used in this chapter for the local scheduling of actors on processors, as well as
for the policy used to resolve at run-time simultaneous requests for a shared
resource, such as for example a communication bus or a memory port.

Another reason why this simulation based design process has become cum-
bersome is that the complexity of system-on-chip designs has grown much
faster than the increase in speed of the simulators. This has resulted in slow
design iterations in which usually only a small fraction of the system can be
evaluated. It should also be noted that it can be very difficult to find perfor-
mance critical corner cases in the design and generate the proper input stimuli
to observe the system’s behavior for these cases.

Another disadvantage of a simulation based design process is that it can
be difficult to draw conclusions from the simulation results how to adapt the
multiprocessor system’s hardware or its programming. It can be difficult to
draw conclusions because these multiprocessor systems can exhibit a highly
non-linear behavior.

Finally, we would like to mention that it is difficult to reproduce the same
temporal behavior with such a simulation based design process. The reason
is that the initial state of the arbiters (e.g. TiTT me Division Multiple Access
(TDMA) arbiters) in the system is unknown at the moment that the job is
started. Therefore, the order in which access to a shared resource will be
granted by an arbiter is not known at compile time. A different order in which
requests are granted can result in a completely different temporal behavior of a
job in the case that the same job is started at a different point in time. This will
make it for example impossible to reproduce the same temporal behavior with
an (Field Programmable Gate Array (FPGA)) prototype of the system, which
is currently often used to speed up the performance evaluation and debugging
process.

In this chapter, we propose a multiprocessor system in which the uncertainty
in the resource supply is bounded by enforcing resource budgets. A resource
budget is for example a guaranteed amount of time to use a resource such as a
bus or processor during a predefined period. These enforced resource budgets
will make it possible to share resources, such as a port to background memory,
between hard real-time and soft real-time jobs. These budgets also drastically
reduce the effort to verify the temporal behavior of soft real-time jobs. The



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 85

reason is that given enforced resource budgets, the temporal behavior of one
job cannot affect the temporal behavior of another job. This gives a job the
illusion that it executes on its own private hardware, so it can be evaluated in
isolation.

Given that resource budgets are enforced and guaranteed, then dataflow
models and their corresponding analysis techniques can be applied to guar-
antee that hard real-time jobs will meet their deadlines. However these tech-
niques are not directly applicable for soft real-time jobs because they require
that a schedule can be derived offline. Such a schedule cannot be constructed
for soft real-time jobs because the amount of resources that is provided for soft
real-time applications is typically less than the worst-case amount of resources
that are needed to meet all deadlines.

In this chapter we advocate the use of a mix of simulation and model based
analysis techniques for the derivation of the temporal behavior of the soft real-
time jobs. We show that dataflow models can be applied by demonstrating that
if resource budgets are enforced that then the effect on the temporal behavior of
run-time arbitration can be modeled in a dataflow model. These dataflow mod-
els can be used for soft real-time jobs to derive conservarr tive arrival times of
the data in the system by simulation of this dataflow model. During simulation
the response times of the actors are used instead of the worst-case response
times. The response time of an actor depends on the value of the input data
of the actor. The arrival times of the data observed during simulation is con-
servarr tive because data will not arrive earlier in the simulator than in the real
system. There is no need to derive a schedule in advance because the execution
order of actors is determined at run-time by the local schedulers/arbiters. The
same dataflow models can be analyl zed at compile-time to derive estimates of
the effects on the throughput and latency of a job when a resource budget is
adapted by the designer at compile time. An example of a resource budget is
the capacity of a buffer.

2. RELATED WORK
In this work, dataflow models are used to derive the end-to-end temporal

behavior of jobs. The focus is on synchronous dataflow (SDF) models (Lee
and Messerschmitt, 1987), because it is currently the most popular and widely
studied dataflow model for streaming applications with well defined semantics.

A similarity between SDF models and Kahn process networks (Kahn, 1974)
is that they can be used to describe streaming applications. However SDF
models are suitable for static analysis while Kahn process networks are un-
suitable. Kahn process networks are unsuitable for static analysis because a
Kahn process network is TuTT ring complete. Therefore, questions of termination
and bounded buffering are undecidable. That is, no finite time algorithm can



86 Chapter 4

decide these questions for all Kahn process networks. This is illustrated with
the Kahn process network example in Figure 4-3. In this example we assume
that the behavior of process P1 depends on the values of the input data and is
therefore unknown at compile time. We assumed also that the values of the
input data are at run-time such that this process P1 will write one data word
in FIFO1 after it has written 11 data words in FIFO2. We also assume in this
example that process P2 reads first one data word from FIFO1 before it reads
data from FIFO2. Deadlock of this process network occurs because process
P1 cannot finish its writing of data in FIFO2 because the capacity of FIFO2 in
the implementation is only 10 data words. Therefore, processes P1 will never
be able to write data in FIFO1 such that process P2 can first read data farom
FIFO1 and then from FIFO2. It should be noted that FIFOs with a finite ca-
pacity should be represented in a Kahn process network as two FIFOs with an
infinite capacity. The data producing process stores tokens filled with data in
one FIFO while the data consuming process stores tokens which indicate space
in the other FIFO.

FIFO1

capacity 1 word

capacity 10 words
FIFO2

P1 P2

Figure 4-3. Example of Kahn process network which deadlocks due to insufficient FIFO
capacity.

Another reason why Kahn process networks are unsuitable for static analy-
sis is that a Kahn process blocks after it did a read attempt on an empty FIFO.
A Kahn process that blocks must be preempted such that other processes on
the same processor can continue their execution and produce the required in-
put data. The number of times that a process blocks, depends on the run-time
schedule and can strongly fluctuate. Therefore it is usually not possible to de-
rive a tight bound on the preemption overhead at compile time. However a
tight bound on the overhead due to preemption can be derived for SDF actors.
The reason is that an SDF actor does not start its execution before all input
data is present to finish its execution. Therefore SDF actors never block during
their execution.

The SDF graphs are used in this chapter as a short hand notation of event
graphs which are a special case of Petri nets (Petri, 1962). The temporal
behavior of event graphs can be derived with MaxPlus Linear System The-
ory (Bacelli, Cohen, Olsder and Quadrat, 1992). SDF models are in (Sriram
and Bhattacharyya, 2000) applied for hard real-time jobs that do not share re-
sources with other jobs. The execution order of actors on the same processor



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 87

is derived from an offline computed schedule. Similar techniques are applied
in (Poplavko, Basten, Bekooij, Meerbergen and Mesman, 2003) for soft real-
time jobs. Good results could only be obtained by taking measures to limit the
difference between the typical and the worst-case response times of the actors.
The reason for these good results is that if the difference in response time is
small, then the offline computed execution order is close to the optimal execu-
tion order. In this chapter we assume that the processors support preemption
and that the execution order of the actors is determined at run-time. This makes
it possible to cope with large variations in the execution time of the actors, and
will allow sharing of resources by actors of different jobs.

In this chapter we advocate the use of a mix of simulation and model based
analysis techniques for the derivation of the temporal behavior of the soft real-
time jobs. The analysis of the temporal behavior of soft real-time jobs is differ-
ent from the analysis of hard real-time jobs. The objb ective of the analysis for
hard real-time jobs is to derive the worst-case temporal behavior of the system,
while for soft real-time jobs the objb ective of the analysis is to derive the typ-
ical temporal behavior. The typical temporal behavior of jobs depends on the
values of the input data which are unknown at compile time. Therefore, purely
model based analysis techniques for hard real-time jobs, such as the techniques
in (Kopetz, 1997; Pop, Eles and Peng, 2002; Richter, Jersak and Ernst, 2003),
are not directly applicable for the analysis of soft real-time jobs. The reason
is that the actual values of the input data can be ignored during analysis of
hard real-time jobs because the objb ective is to derive the worst-case temporal
behavior for any possible input data stream. For soft real-time jobs the values
of the input data cannot be ignored during analysis because the objb ective is to
derive the typical temporal behavior for a representative input stimuli set. The
use of probabilistic models, such as Markovian and Poisson models, for the
derivation of the typical temporal behavior of soft real-time jobs is either too
simple to characterize the important properties of the source and the system,
or too complex for tractable analysis (Zhang, 1995; Sriram and Bhattacharyya,
2000). Therefore, simulation is used by us to estimate parameters such as the
execution times of the actors and to test statistical assertions about the tempo-
ral behavior of a job that is executed on the system, in a similar way as done
in (Hee, 1994).

The concept of reservation based resource allocation has been introduced
by the real-time community in order to eliminate interference between the
software tasks of soft real-time multimedia jobs that are executed on a single
processor system. The enforcement of resource budgets is a service provided
by the operating system kernel (Raja kumar, Juwa, Moleno and Oikawa, 1998).
The size of the resource budget is determined during a (re)negotiation phase
between the job and the operating system. In this work, we address multipro-
cessor systems in which the resource budgets enforcement is not centralized



88 Chapter 4

but distributed. Resource budgets are reserved to eliminate interference be-
tween jobs such that it is possible to share resources between hard real-time
and soft real-time jobs, as well as to obtain a so-called monotonic system (see
Section 4). An important property of a monotonic system is that an increase of
a resource budget of a job cannot result in a reduction of the throughput of this
job.

3. OUTLINE OF THIS CHAPTER
The organization of this chapter is as follows. The properties of the syn-

chronous dataflow (SDF) model are recapitulated in Section 4. Then in Sec-
tion 5 a multiprocessor architecture is presented that is suitable for the deriva-
tion of the temporal behavior of jobs with an SDF model. It is shown in Sec-
tion 6 that the effects on the temporal behavior of a job, due to TDMA arbi-
tration, can be expressed in the SDF model. By simulating this SDF model,
conservative and accurate arrival times of tokens can be derived. The same
SDF model is analyzed in Section 7 in order to derive at compile time the sen-
sitivity for variations in the execution time of actors on the throughput of the
system. We show that adaptation of the capacities of the FIFO buffers can re-
duce the sensitivity for fluctuations in the execution times of the actors on the
end-to-end temporal behavior of a job. To obtain tight bounds on the arrival
times of data it may be necessary to make the conditional execution of actors
explicit in the dataflow model. Section 8 introduces conditional constructs in
the dataflow model that guarantee mutual exclusive execution of actors. The
dataflow graph that is obtained is an analyzable version of a Boolean Data Flow
(BDF) graph (Buck, 1993). It is shown that these BDF graphs can be analyzed
with the SDF analysis discussed in Section 4. These conditional constructs are
applied in Section 9 to make explicit that different actors are executed during
I-frame and P-frame decoding in an H263 video decoder. Finally, we state the
conclusions in Section 10.

4. DATAFLOW ANALYSIS
In this section we define the SDF model and recapitulate its properties. This

SDF model is used in successive sections for the derivation of the temporal be-
havior of jobs that are executed on multiprocessor systems with similar char-
acteristics as the multiprocessor system that is presented in Section 5.

Before the properties of an SDF model are stated, we first define an SDF
graph as follows:

Definition 1 (Synchronous Data Flow Graph.) ThTT e tupleu
(V,E, d, P, O, I) defines a Synchronous Datatt Flow (SDF) grarr pa h, where



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 89

V is the set of nodes (actors),

E ⊆ V × V is the set of directed edgd es,

d : E → N is a funff ction describing the number of initial tokens on an
edgd e (u, v) ∈ E,

P : V → R
+ is a funff ction describing the worst-case response time of

actor v ∈ V ,

O : E → N is a funff ction describing the number of tokens produced on
edgd e (u, v) ∈ E by actor u for each execution,

I : E → N is a funff ction describing the number of tokens consumed from
edgd e (u, v) ∈ E by actor v for each execution.

An arbitrary SDF graph is depicted in Figure 4-4. The nodes in an SDF
graph are called actors. Actors have a well defined input/output behavior and
a worst-case response time. Actors produce and consume tokens. The edges
represent dependencies. A token is a container in which a fixed amount of
data can be stored and is depicted in Figure 4-4 as a black dot. If more than
one token is (initially) present on an edge then the number of tokens (d) is
specified next to the dot. The tokens are consumed in the same order as they are
produced. However random access of the data inside a token is allowed. Each
actor in Figure 4-4 is annotated with its worst-case response time. An actor is
enabled after a predefined number of tokens is available on every input of the
actor. An actor can fire (starts its execution) after it is enabled. The number
of tokens that must be available is specified next to the head of the data edges.
The specified number of tokens is consumed from the input edges of the actor
before the execution of an actor finishes, that is, within the response time of the
actor. The number at the tail of an edge denotes the number of tokens an actor
produces before the execution of the actor finishes. A self-edge of an actor
is used to model that the previous execution must be finished before the next
execution can start. This self edge is given one initial token such that the next
execution cannot start before the previous execution of the actor is finished.

An SDF graph can be transformed into a Homogeneous Synchronous Data
Flow (HSDF) graph (see Figure 4-5) on which we perform the analysis. An
algorithm that transforms any SDF graph into an HSDF graph is described
in (Sriram and Bhattacharyya, 2000). An HSDF graph is a special case of an
SDF graph, in which the execution of an actor results in the consumption of
one token from every incoming edge of the actor and the production of one
token on every outgoing edge of the actor.



90 Chapter 4

A1

6
A3

1ms

1ms 0.2ms 3ms
2 2 1 1

3

2

3
11

1
1

Figure 4-4. A Synchronous Data Flow (SDF) graph example.

A4’

A4’

1

1
1

A2’A1’

A2’A1’

1

1

11

1

1
1
1

1
1

1

1

1
1

1

1

1

1

1

1

1

1 1

1

1

A3’
1ms

0.2ms1ms

1ms 0.2ms1

1

1

1

3ms

3ms

Figure 4-5. The Homogenous Synchronous Data Flow (HSDF) graph obtained after transfor-
mation of the SDF in Figure 4-4.

An HSDF graph can be executed in a self-timed manner, which is defined
as a sequence of firings of HSDF actors in which the actors start immediately
when there is at least one token on each input of the actor. In the case that the
HSDF graph is a strongly connected graph and a FIFO ordering for the tokens
is maintained between executions of the actors, then the self-timed execution of
the HSDF graph has some important properties. A FIFO ordering is maintained
if the completion events of firings of a specific actor occurs in the same order
as the corresponding start-events. This is the case if an actor has a constant
response time or belongs to a cycle in the HSDF graph with only one token.
In (Bacelli et al., 1992) are the properties of the self-timed execution of such
HSDF graphs derived with MaxPlus algebra.

First of all, the most important property of the self-timed execution of an
HSDF graph is, that it is deadlock-free if there is on every cycle in the HSDF
graph at least one initial token. Secondly, the execution of the HSDF graph
(and also an SDF graph) is monotonic, i.e. decreasing actor response times re-
sult in non-increasing actor start times. The reason is that an earlier arrival time
of a token cannot result in a later start of the actor that consumes this token.



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 91

Third, an HSDF graph will always enter a periodic regime. More precisely, a
K ∈ N, an N ∈ N and a λ ∈ R, such that for all v ∈ V , k > K the start time
s(v, k + N) of actor v in iteration k + N is described by:

s(v, k + N) = s(v, k) + λ · N (4-1)

Equation 4-1 states that the execution enters a periodic regime after K ex-
ecutions of an actor in the HSDF graph. The time one period spans is λ · N .
The number of firings of an actor v in one period is denoted by N . Thus, λ is
equal to the inverse of the average throughput measured over one period.

The Maximum Cycle Mean (MCM) (Sriram and Bhattacharyya, 2000) of
an HSDF, which is equal to λ, is given by (4-2). The MCM of an HSDF graph
is also called in literature the maximal cost to time ratio (Lawler, 1976). The
Cycle Mean (CM) of a simple cycle c in the HSDF graph G is given by (4-3).
In this equation denotes d(c) the number of tokens on the edges in a cycle c.
The Worst Case Response TiTT me (WCRT) of actor v is denoted by WCRT(v).
The MCM of an HSDF graph can be derived with a pseudopolynomial al-
gorithm (Cochet-Terrasson, Cohen, Gaubert, McGettrick and Quadrat, 1998)
with complexity O(m|E|) with m the product of the out-degrees of all nodes.

MCM(G) = max
c∈CG

CM(c) (4-2)

CM(c) =
∑

v on c

WCRT(v)/d(c) (4-3)

The worst-case start-times of the actors during the transition state as well
as the steady state can be observed during self-timed execution of an SDF
graph in a simulator. During this simulation, all actors must have a response
time equal to their worst-case response time. The start-times observed during
this simulation are equal to the worst-case start times of the actors due to the
monotonicity of the SDF graph. From (4-1) it follows that a periodic regime
will be entered and therefore simulation can be stopped after the first period of
the periodic regime. The SDF will enter a periodic regime because the HSDF
graph that is obtained after transformation will enter a periodic regime. The
SDF enters a periodic regime because the i-th start of an actor A1 in the SDF
graph is as soon as all input tokens have arrived for this actor. All input tokens
have arrived as soon as there is one token on each input of an actor A1’ in the
HSDF such that an actor A1’ is started for the i-th time.

Actors in an SDF graph produce their output tokens exactly the WCRT af-
ter the actor is started. The input tokens are consumed and removed from the



92 Chapter 4

input exactly the WCRT after the actor is started. Code segments in the imple-
mentation can be represented by an SDF actor in the model. Code segments
produce the output tokens and consume the input tokens within the WCRT of
the actor. The arrival times of tokens during selftimed execution of the SDF
graph is not earlier then in the implementation due to the monotonic behavior
of a selftimed executed SDF graph. Therefore an upper bound on the arrival
time of tokens is observed during selftimed execution of the SDF graph.

We refer in this chapter to a code segment as an actor in the implementation.
The actors in the implementation have a response time as well as an Execution
TiTT me (ET). The ET of an actor in the implementation is defined as the interval
of time it takes to execute the corresponding code segment on a processor
without that its execution is preempted. The execution time depends often on
the values of the input data. The Worst Case Execution TiTT me (WCET) is an
upper bound on the execution time of an actor in the implementation and is
derived with static program analysis techniques (Li and Malik, 1999).

It should be noted that the token arrival times during selftimed execution
in the SDF simulator remain conservative if the Response TiTT mes (RTs) of the
actors are used instead of the worst-case response times of the actors. The
RT of an actor is an upperbound on the time interval between the point in
time that the actor is enabled and that the point in time that the actor finishes
its execution. The response time of an actor can depend on the values of the
input data that are consumed during that execution. The token arrival times
during selftimed execution in the SDF simulator are conservative because the
selftimed execution of the SDF graph is monotonic. The use of the RTs of
actors allows us to derive an upperbound on the token arrival times for soft
real-time jobs given a specific input stimuli set for that job.

In Section 7 we will use Predicted Response TiTT mes (PRTs) of the actors to
derive at compile time the resource budgets of soft real-time jobs. The PRT
of an actor is the measured average response time of this actor on a processor
given a specific input stimuli set for that actor. Given the PRT of an actor we
will predict the resource budget for a soft real-time job.

5. MULTIPROCESSOR SYSTEM TEMPLATE
This section describes a network based multiprocessor system. This multi-

processor system is defined in such a way that a tight bound on the temporal
behavior of jobs can be derived at compile time with dataflow analysis tech-
niques. These analysis techniques are described in the previous section and are
extended in Section 6.

Figure 4-6 shows the architecture template of this multiprocessor system.
The processors in this template are, together with their local data memory,
connected to the Network Interface (NI) of a packet switched Network on Chip



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 93

(NoC) (Rijpkema, Goossens, Radˇ ulescu, Dielissen, Meerbergen, WiWW elage and
Waterlander, 2003). The transfer of data between a local memory and a net-
work interface is performed by a Communication Assist (CA). A processor
together with its local instruction and data memory, communication assist, and
network interfaces is grouped into a leaf. The leafs are connected to the routers
of our network. Network links connect the routers in the desired network topol-
ogy.

FIFO
fiff lling

FIFO
fiff lling

leaf leaf

IM
E

M

IM
E

M

bu
s

bu
s

RR

stallstall

CA CA

DMEM

NINI

DMEM

network

processorprocessor

M
E

Figure 4-6. Multiprocessor template.

A processor in a leaf has a separate Instruction Memory (I-mem) and Data
Memory (D-mem), such that instruction fetches and data load and store op-
erations do not cause contention on the same memory port. An unbounded
range of memory access time variations due to contention on a memory port
is intolerable, as this would result in an unpredictable execution time of the
instructions of the processor. This is also the reason why we consider in this
paper only the case that the processors access only their local data memory.
Given a 1 cycle access time of a local memory there is no reason to introduce
caches.

Communication between actors on different processors takes place via a
virtual point to point connection of the NoC. The result of the producing actor
is written in a logical FIFO in the local memory of the processor. Such a
logical FIFO can be implemented with the C-HEAP (Gangwal, Nieuwland
and Lippens, 2001) communication protocol, without use of semaphores. The



94 Chapter 4

communication assist polls at regular intervals whether there is data in this
FIFO. As soon as the CA detects that there is data available, it copies the
data into a FIFO of the NI. There is one private FIFO per connection in the NI.
Subsequently the data is transported over the network to the NI of the receiving
processor. As soon as the data arrives in this NI, it is copied by the CA into
a logical FIFO in the memory of the processor that executes the consuming
actor. The data is read from this FIFO after the consuming actor has detected
that there is sufficient data in the FIFO. Flow control between the producing
and consuming actor is achieved by making sure that data is not written into a
FIFO before it is checked that there is space available in this FIFO.

Data is stored in the local memory of the processor before it is transferred
across the network. This is done for a number of reasons. First of all, the
bandwidth of a connection is set by configuring tables in the network for a
longer period of time. The bandwidth reserved for a connection will typically
be less than the peak data rate generated by the producing actor. Therefore a
buffer is needed between the processor and the network to average out the peak
data rate such that the bandwidth provided by the network is well utilized. Also
the memory in the leaf which receives the data can typically not accommodate
the peak bandwidth because another processor can access this memory at the
same time. Another reason is that without such a buffer the execution time
and the response time of the actors is dependent on the allocated bandwidth
in the network. This dependency will complicate the analysis of the temporal
behavior.

The size of the buffer in which data is stored before it is transferred across
the network is significant, given the assumption that the actors produce large
chunks of data at large intervals. On the other hand, the network will transfer
very small chunks of data (3 words of 32 bits) at very small intervals (∼2 ns).
Given that large memories are inherently slow, it is desirable to split the large
logical FIFO between the processor and the network, in a small (∼32 word)
dedicated FIFO per connection in the network interface, and a large logical
FIFO in the local memory of the processor. The task of the CA is to copy the
data between FIFOs in the NI and FIFOs in local memory of the processor.

The CA is also responsible for the arbitration of the data memory bus. The
applied arbitration scheme is such that a low worst-case latency of memory
store and load operations is obtained and that a minimal throughput and max-
imal latency per connection is guaranteed. A more detailed description can be
found in (Bekooij, Moreira, Poplavko, Mesman, Pastrnak and van Meerbergen,
2004).

In the proposed architecture, the communication between actors that run
on different processors has a guaranteed minimal throughput and a maximal
latency. Given these characteristics, the communication can be modeled as if it
takes place through completely independent virtual point-to-point connections.



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 95

These connections can be modeled together with the actors of a job in one SDF
graph (Poplavko et al., 2003). Given this SDF graph, the guaranteed minimal
throughput of a hard real-time job can be determined.

6. RESOURCE ARBITRATION
In this section, we show that the resource conflicts that are resolved at run-

time by TDMA arbiters, can be taken into account in an SDF model. Conser-
vative token arrival times are observed during self-timed execution of this SDF
model in a simulator. The same SDF model is analyzed in Section 7 to obtain
the sensitivity for fluctuations in the response times of actors on the temporal
behavior of a job.

Resource conflicts can occur if multiple actors execute on one processor.
These resource conflicts can be resolved at compile time or at run time. The
resource conflicts can be resolved at compile time by computing offline a valid
schedule for the SDF graph under consideration. In the static order scheduling
approach (Sriram and Bhattacharyya, 2000), the execution order of the actors
in this offline computed schedule is enforced at run time. If the static order
scheduling approach is applied, then a decrease in response time of actors can
only result in an earlier arrival of tokens and an increase in throughput of the
system. The reason is that there is a one to one correspondence between actors
in the system and the actors in the SDF model and that it is known that the
self-timed execution of the SDF model is monotonic (see Section 4).

An important disadvantage of the static order scheduling approach is that
it cannot be applied if the execution of actors is conditional, as is the case
in the H263 video decoder example in Section 9. The execution of actors is
conditional if a value of a token determines whether an actor will be executed
or not. In a static order schedule it can occur that if, for example, actor A is
not executed, then another actor B will wait forever for a token produced by
actor A. Other actors on the same processor as actor B will not be executed as
long as actor B waits for the token because the execution order of actors on the
same processor is predefined and fixed.

Resource conflicts can also be resolved at run time by an arbiter (local
scheduler). In the case that arbitration is performed at run time, the arrival
of tokens determines whether an actor will be executed or not, and what the
execution order of the actors on a processor will be. In the case that, for ex-
ample, TDMA arbitration is applied, then the effects of the TDMA arbitration
on the arrival time of the tokens can be taken into account in the response
times of the actors in the SDF model. A proof that TDMA arbitration can be
modeled implicitly in the response time of an actor is presented in the next
paragraphs. This proof demonstrates with mathematical induction that tokens
will not arrive later in the implementation than during selftimed execution of an



96 Chapter 4

HSDF model. It is sufficient to prove for one actor executed during a TDMA
time slice on a processor that the actor will not produce tokens later in the im-
plementation than in the HSDF model because the selftimed execution of an
HSDF model is monotonic.

In this proof, an abstract representation of a processor is used which exe-
cutes actor A1 during interval T1TT in a period T . This representation is shown
in Figure 4-9. Actor A1 starts its execution during interval T1TT , as soon as the
previous execution of actor A1 has finished and an input token has arrived.
If actor A1 did not finish its execution at the end of the interval T1TT then this
actor will be preempted and it will continue its execution in the next period.
The additional time due to context switches can be included in the (worst-case)
response time of an actor, because the maximum number of context switches
that can happen during the execution of an actor is known at compile time. The
time p(j) denotes the execution time of the j-th execution of actor A1 when it
executes on the processor without being preempted.

Two cases should be distinguished to determine the response time of an
actor. An actor can start at the begin of the interval T1TT or during the interval
T1TT . If the actor starts at the begin of an interval and p(j) = 2.5 T1TT then this
actor will be preempted twice, as is shown in Figure 4-7. Given that the actor
is preempted twice then the actor will finish its execution p(j) + 2(T − T1TT )
after it is started. In other words the Interruption time (I1) of the actor is in this
case according to (4-4).

t(s)T1TT

T

Figure 4-7. Stretch of the response time of an actor due to preemption in the case that the
actor starts at the begin of interval T1TT .

I1(j) = (T − T1TT )(
⌈

p(j)
T1TT

⌉
− 1) (4-4)

On the other hand, if the execution of an actor starts during the time slice
T1TT , as is shown in Figure 4-8 then this actor will be preempted 3 times. Given
that the actor is preempted 3 times, then the actor will finish its execution
p(j) + 3(T − T1TT ) after it is started. In other words, the interruption time (I2)
of the actor is in this case according to (4-5).

I2(j) = (T − T1TT )(
⌈

p(j)
T1TT

⌉
) (4-5)



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 97

t(s)T1TT

T

Figure 4-8. Stretch of the response time of an actor due to preemption in the case that the
actor can start at any point in time during interval T1TT .

FIFO2FIFO1

a(j(( ) b(j(( )

T1TT

T

Figure 4-9. Abstract representation of the time wheel of a TDMA arbiter. The time wheel
rotates every period T . Actor A1 can execute during slot 1 with duriation T1TT .

The arrival time of the j-th token in FIFO1 and FIFO2 is denoted in Fig-
ure 4-9 by a(j) and b(j) respectively. The moment in time that the j-th execu-
tion of actor A1 finishes, is denoted by f(j). During the j-th execution of actor
A1, the j-th token is consumed from FIFO1 and the j-th token is produced in
FIFO2. Therefore is a(j) ≤ f(j) and b(j) ≤ f(j). It will be proven for the
HSDF model in Figure 4-10 that if (4-6) holds that then also (4-7) holds, where
â(j) and b̂(j) denote the arrival time of tokens in the SDF model. The position
of the initial token at time t=0 is as shown in Figure 4-10. However the position
of the time-wheel in the implementation at time t=0 is unknown. Given this, it
will be proven with mathematical induction for j ≥ 0 that if (4-6) holds then
also (4-7) holds.

A1â(j(( ) b̂(j)

p(j) + I2(j)

Figure 4-10. SDF model of an actor executed during a time slice on a processor.

a(j) ≤ â(j) (4-6)

b(j) ≤ b̂(j) (4-7)



98 Chapter 4

Given that the position of the time-wheel of the implementation is unknown
and that initially actor A1 does not execute then f(0) is:

f(0) ≤ a(0) + p(0) + max(I1(0), I2(0)) ≤ a(0) + p(0) + I2(0) (4-8)

For the arrival time of the first output token in the HSDF model it holds that:

b̂(0) = â(0) + p(0) + I2 (4-9)

From (4-6), (4-9) and (4-8) it follows that:

f(0) ≤ b̂(0) (4-10)

Now we want to establish our inductive step by showing how the truth of
our induction hypothesis in (4-11) forces us to accept that f(j +1) ≤ b̂(j +1).

f(j) ≤ b̂(j) (4-11)

For the implementation and j ≥ 0 the following equations hold in which
the intermediate variables tx and ty are defined:

tx = a(j + 1) + p(j + 1) + max(T − T1TT + I1(j + 1), I2(j + 1)) (4-12)

ty = f(j) + p(j + 1) + max(T − T1TT + I1(j + 1), I2(j + 1)) (4-13)

f(j + 1) ≤ max(tx, ty) (4-14)

Equation 4-14 can be rewritten as:

f(j + 1) ≤ max(f(j), a(j + 1)) + p(j + 1) + I2(j + 1) (4-15)

Equation 4-14 holds because: if a(j+1) > f(j) then token j+1 has arrived
after the j-th execution of actor A1 has finished (see Figure 4-11). After arrival



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 99

of token j + 1 it will take maximally p(j + 1) + max(T − T1TT + I1(j +
1), I2(j + 1)) before the (j + 1)-th execution of actor A1 finishes. It takes
p(j +1)+T −T1TT + I1(j +1) before (j +1)-th execution of actor A1 finishes,
if the position of the time wheel is such that token j + 1 arrives during interval
T − T1, otherwise it takes p(j + 1) + I2(j + 1).

If a(j + 1) ≤ f(j) then token j + 1 has arrived in FIFO1 before the j-th
execution of actor A1 has finished (see Figure 4-12). After the j-th execution
of actor A1 has finished it takes maximally p(j + 1) + max(T − T1TT + I1(j +
1), I2(j +1)) before the (j +1)-th execution of actor A1 has finished. It takes
p(j + 1) + T − T1TT + I1(j + 1) before the (j + 1)-th execution of actor A1
finishes, if the position of the time wheel is such that the j-th execution of actor
A1 finishes at the end of interval T1TT otherwise it takes p(j + 1) + I2(j + 1).

f(j(( )

p(j + 1) + I2

f(j(( +1)a(j(( +1)

Figure 4-11. Arrival of token j+1 in FIFO1 after the j-th execution of actor A1 has finished.

a(j(( +1)

p(j + 1) + I2

f(j(( +1)f(j(( )

Figure 4-12. Arrival of token j+1 in FIFO1 before the j-th execution of actor A1 has finished.

For the SDF model and j ≥ 0 the following equations hold in which the
intermediate variables tp and tq are defined

b̂(j + 1) = max(tp, tq) (4-16)

with

tp = â(j + 1) + p(j + 1) + I2(j + 1) (4-17)

tq = b̂(j) + p(j + 1) + I2(j + 1) (4-18)



100 Chapter 4

It follows from (4-12), (4-17) and (4-6) that tx ≤ tp. From (4-13), (4-18),
and our induction hypothesis in (4-11) it follows that ty ≤ tq. This results in
the conclusion that f(j) ≤ b̂(j) for j ≥ 0 because:

tx ≤ tp ∧ ty ≤ tq ⇒ max(tx, ty) ≤ max(tp, tq) (4-19)

Given that b(j) ≤ f(j) we arrive at the conclusion that (4-7) holds for
j ≥ 0. �

In the proof an HSDF actor was considered with only one input and one output
and FIFO buffers with an infinite capacity were assumed. However the proof
also holds for an SDF actor with multiple inputs and outputs and buffers with a
finite capacity. The reason is that the event a(j) which denotes the arrival of a
token in FIFO1 in Figure 4-9 is equivalent to the event which denotes that suf-
ficient tokens are available on each input of an SDF actor. The proof also holds
for SDF actors with multiple outputs because all output tokens are produced
before the SDF actor finishes its execution. The availability of space in a finite
FIFO buffer can be modeled as the presence of a space token on an input of the
SDF actor.

The use of TDMA arbitration can be taken into account in the SDF model
of hard real-time jobs by setting the WCRT of the actor Ax according to (4-
20), in which P denotes the WCET of actor Ax if it would be executed on the
processor without being preempted.

WCRTAx(j) = P + (T − T1TT )
⌈

P

T1TT

⌉
(4-20)

Given these worst-case response times of actors, the worst-case arrival times
of the tokens in the system can be derived from a self-timed execution of the
SDF model. Also the minimal throughput of the system that will obtained
equals 1/MCM of this SDF model. This SDF model can also be used with
response times instead of worst-case response times. An upperbound on the
RT of the j-th execution of actor Ax in the SDF model is equal to:

RTAx(j) = p(j) + (T − T1TT )
⌈

p(j)
T1TT

⌉
(4-21)

Conservative token arrival times are then observed during self-timed execu-
tion of the SDF model due to monotonicity of the system. Conservative token
arrival times are observed because an earlier arrival of a token can only result
in an earlier start of an actor in the SDF model and an earlier production of a
result. Therefore conservative arrival times are observed if the i-th response
time of actor Ax in the SDF model is not shorter then the i-th response time of



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 101

actor Ax in the implementation. This is the case if response times according
to ( 4-21) are used in the SDF model. An important advantage of the use of
an SDF model instead of cycle true simulation model of the system is that the
arrival time of tokens during self-timed execution is conservative while this
is not the case for a cycle true simulation model. The reason is that the initial
position of the time wheels in the system at time t=0 is not known. Another ad-
vantage is that execution of the SDF model will be much faster than simulation
of a cycle true model because an SDF model is a more abstract model.

7. SENSITIVITY ANALYSIS & REDUCTION
This section describes dataflow analysis techniques that are used to deter-

mine the FIFOs of which the capacity should be increased, in order to reduce
the sensitivity of a soft real-time job, for fluctuations in the response times of
the actors. A lower sensitivity of a job will reduce the deadline miss rate which
enhances the quality of experience of the user.

For soft real-time jobs a predicted MCM can be calculated with (4-2) given
the resource budgets of a job and by using the predicted response times of the
actors instead of the WCRT of the actors. Here it is assumed that the PRT of
an actor is equal to the average response time of this actor on a processor with
TDMA arbitration and representative input data.

It is obvious that this predicted MCM is not smaller than the actual MCM
if the response times of the actors is smaller than the PRT of the actors. The
predicted MCM is also not smaller than the actual MCM if the cycle mean of
a cycle in the SDF graph, to which the actors belong that have an RT larger
than their PRT, does not exceed the predicted MCM. The Cycle Mean (CM) is
defined in (4-3). In other words the temporal behavior of a job is more sensitive
for deviations in the response times of actors which belong to cycles of which
the CM is likely to be larger than the predicted MCM. By increasing the FIFOs
capacity, the CM of these cycles can be decreased such that the job becomes
less sensitive.

That the sensitivity of a job can be reduced by increasing the FIFO capacities
can be seen as follows. Assume that the job is described by the SDF graph in
Figure 4-13. The PRT of actor A1 in this job is chosen to be equal to the
average response time measured over 3 successive executions of this actor. If
the desired MCM is 2T then the FIFO capacity should be at least 2 tokens
given the PRT of the actors. However, it is likely that the actual MCM is larger
than the desired MCM because the RT of actor A1 can be larger then its PRT
which results in a CM larger than the predicted MCM.

The actual MCM would not be larger than the desired MCM if a FIFO ca-
pacity of 6 instead of 2 tokens was applied. That this is the case can be in-
tuitively seen as follows. Assume the an actor A1’ in Figure 4-14 requires 3



102 Chapter 4

2

A0 A1
1

11 1

11

1

1
PRT=2T PRT=2T

Figure 4-13. SDF with a predicted MCM of 2T.

tokens instead of 1 token on its input before it fires and that after firing it exe-
cutes internally 3 times the same code segment. Actor A1’ would have in this
case a PRT equal to the maximum response time of 3 successive executions. In
Figure 4-14 we assumed that out of the 3 successive executions of actor A1, 2
executions have a response time smaller than T and one a response time smaller
than 4T. In this case is the PRT of actor A1’ equal to 6T. Given the PRT there is
a FIFO capacity needed of 6 tokens for a desired MCM of 2T. This MCM can
be obtained with (4-2) after the SDF in Figure 4-14 is transformed in an HSDF
with the algorithm described on page 40 in (Sriram and Bhattacharyya, 2000).
The longest path in this HSDF contains 3 times actor A0 and once actor A1’
and is 12 T long. Therefore, there must be 6 tokens on this path for an MCM
of 2T. Given these 6 tokens an MCM of 2T will be obtained if actor A1 in the
implementation fires as soon as there is one input token available. The reason
is that starting of the actor with only 1 instead of 3 tokens can only result in an
earlier production of tokens.

PRT=2T PRT=(T+T+4T)/3=2T

6

A0 A1’
1

11 3

11

1

3

Figure 4-14. SDF with a predicted MCM of 2T.

8. PREDICTABLE DYNAMIC DATA FLOW
In this section a so-called Predictable Dynamic Data-Flow (PDDF) graph is

introduced in which the conditional executions of actors can be expressed as
well as a variable but bounded number of executions of actors can be expressed.
An important property of a PDDF is that it can be analysed with the in Section 4
and Section 7 described analysis techniques.

An H263 video decoder is an example in which it depends on the values of
the input data which actors will be executed and which not. In this decoder
different actors are executed in the case that an I-frame or a P-frame is de-
coded. The conditional execution of actors cannot be made explicit in SDF



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 103

graphs but can be made explicit in Boolean Data-Flow (BDF) graphs (Buck,
1993). However, the use of a BDF graph is undesirable because the detection
of deadlock is undecidable for an arbitrary BDF graph. By restricting, with
construction rules, the type of BDF graphs that can be expressed so-called
well-behaved dataflow graphs (Gao, Govindaraja an and Panangaden, 1992) are
obtained. These well-behaved dataflow graphs are per construction deadlock
free. However, to derive a tight lower bound on the throughput of an applica-
tion with MCM analysis it is also necessary that the actors that are condition-
ally executed do not share resources or are executed mutual exclusive. Mutual
exclusive execution is typically desirable because sharing of resources reduces
the resource requirements. Mutual exclusive execution can be guaranteed by
extending the well-behaved dataflow graph with a so-called mode manager ac-
tor M, as is done in Figure 4-15. This mode manager actor provides N times a
control token with the same boolean value for the switch and select actor and
then waits till the select actor has been executed N times before it produces a
control token with possibly a different boolean value. It is required that the
select actor produces a token at the end of its execution. The construct in Fig-
ure 4-15 guarantees that there is no input token available for actor A0 and A1
at the same time and that therefore the execution of these actors is mutual ex-
clusive. That N times the same control token is produced by actor M is made
explicit in Figure 4-15 with the N[T/F] annotation. The name Predictable Dy-
namic Data-Flow (PDDF) graphs has been given to dataflow graphs in which
the construct in Figure 4-15 is used to express conditional execution of actors.

The minimal throughput of a PDDF graph can be determined by calculating
the MCM of the PDDF graph with (4-2) which is the same equation as is used
for the calculation of the MCM of an SDF graph. The same equation can be
used because the PDDF graph in Figure 4-15 has an equivalent worst-case tem-
poral behavior as the SDF graph in Figure 4-16. This is the case because the
PDDF graph in Figure 4-15 is per construction deadlock free. Also, the execu-
tion of the actors A0 and A1 is by construction mutually exclusive. Therefore,
it can be assumed during MCM analysis that the actors A0 and A1 are both
executed for each input token of the select actor but that each of these actors
is executed on its own private processor. If actors A0 and A1 are executed for
each input token then the switch and select actors should behave like ordinary
actors which consume tokens from all inputs and produce tokens on all their
outputs and have a zero WCRT. The value of the control token provided by the
mode manager actor M to the switch (SW) actor is ignored because the data
token must be duplicated by the switch actor to both outputs. The select (SE)
actor should consume a token produced by actor A0 as well as A1 and copy
one of these tokens to its output. Because the value of the control token is ir-
relevant for the worst-case temporal behavior there is no need to make explicit
that the same control token is sent to the switch as well as the select actor.



104 Chapter 4

N

T

F

T

F

M
1

N[T/F]

1 111

11

1

1 1
A1

1

N

select-actorswitch-actor

A0

1 11 1

Figure 4-15. Predictable Dynamic DataFlow (PDDF) graph with mutual exclusive execution
of actors in the True and False branch.

N

1
SE

1

1
SW

1

1
1

1
A0

A1
1 1

1 1

M

N N
N1

1 1

Figure 4-16. SDF graph with the same worst-case temporal behavior as the PDDF graph in
Figure 4-15.

A PDDF construct in which actor A2 is executed p times is shown in Fig-
ure 4-17. This construct executes in bounded memory because actor A1 in-
forms actor A3 about the number of tokens it must consume. Actor A1 informs
actor A3 by sending one token with value p to A3. This is indicated in Fig-
ure 4-17 with the notation 1[p]. During calculation of the PDDF graph’s MCM
the maximum value of p must be used because a larger value p will result in
more executions of actor A2 and a later start of actor A3.

1 p 1p 1 1 p
A1 A2 A3A2

1[n]1[p]

Figure 4-17. PDDF graph in which actor A2 is executed p times.



DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 105

9. DATAFLOW MODEL OF AN H263 VIDEO
DECODER

A dataflow model of an H263 video decoder is presented in this section
which illustrates the use of the modeling techniques that were introduced in the
previous sections. This H263 video decoder is a soft real-time job of which the
values of the input data determine whether some of the actors will be executed
or not. Also the number of tokens produced and consumed by the actors can be
data dependent. Despite the dynamic behavior of this job, it remains possible
to derive the minimal capacity of the FIFOs as well as conservative arrival
times of tokens with a dataflow model.

11

1

sink

MC
raster/

1

1 1

demux

1

1

1(T/F)

bitstream
encoded

mode

VLD

split split

1 12376

1
1 1

1

123761

IDCT
IQ/ IQ/

IDCT

111

to display

11
1 1

1

1

FT T F

T F

1

p

11

1

1

1 11

1

1

1

1

11

1

1

1

1

1

1

1

1

raster

1[p]

1[p]

1

p

Figure 4-18. Predicatable dynamic dataflow model of an H263 video decoder.

The predictable dynamic dataflow model of an H263 decoder is shown in
Figure 4-18. This decoder receives a bit stream which is split by the demul-
tiplexer (demux) actor in a token for the mode manager (mode) actor and a
token for variable length decoder (VLD) actor. The token for the mode actor



106 Chapter 4

indicates whether the next frame to decode is an Intra (I) or a Predicted (P)
frame. The token for the VLD actor contains one encoded frame.

The token produced by the VLD actor in case of an I-frame in CIF resolution
(352 × 288 pixels) is split in 2376 tokens of which each token contains an
encoded block. These 2376 tokens are processed by the combined Inverse
Quantization (IQ) and Inverse Discrete Cosine Transform (IDCT) actor and a
rasterization (raster) actor. The result of the rasterization actor is one decoded
frame which can be displayed. That a complete frame has been decoded and
that the next frame can be decoded is indicated by sending a token to the mode
manager.

The token produced by the VLD actor in case of a P-frame is split in p
tokens of which each token contains an encoded macro block. The split actor
also notifies the rasterization/Motion Compensation (raster/MC) actor that it
should consume p tokens. The tokens produced by the split actor are processed
by an IQ/IDCT actor and the raster/MC actor. The raster/MC actor receives
also a token which contains the previous frame.

The production of a variable number of tokens by the split actor is allowed
in this dataflow graph because a maximum number of tokens (p(( ≤ 2376) is
known at compile time. Given this maximum number of tokens, the minimum
FIFO capacity between the split actor and the IQ/IDCT actor can be derived,
as well as the minimum FIFO capacity between the IQ/IDCT actor and the
raster/MC actor. Another important property is that conceptually one actor
could be introduced, which is indicated in Figure 4-18 by the dashed box,
in which the production and consumption of a variable number of tokens is
hidden.

Conservative arrival times of tokens can be observed during simulation of
the dataflow model of the H263 decoder, given that the response times of the
actors are according to (4-21).

10. CONCLUSION
Embedded multiprocessor systems in consumer products execute a com-

bination of soft real-time and hard real-time jobs that process data streams.
Dataflow models in which computation, communication and arbitration is mod-
eled can be used to derive the minimal throughput of the hard real-time jobs,
using MCM analysis. For soft real-time jobs, simulation of these dataflow
models are used to test statistical assertions given representative input streams.
The simulation effort is reduced and the confidence of the simulation results is
improved by making only use of predictable arbitration policies (e.g. TDMA)
in the proposed network based multiprocessor system. The simulation effort
is reduced because the use of predictable arbitration policies eliminates the
interference between jobs, and guarantees that conservative arrival times of to-



REFERENCES 107

kens are observed during simulation of the dataflow model of a job. Dataflow
analysis techniques are used to estimate the resource budgets of soft real-time
jobs. WiWW th these analysis techniques the buffers are derived which should be
increased to reduce the sensitivity for fluctuations in the response time of actors
on the temporal behavior of a job. A predictable dynamic dataflow model of
an H263 video decoder job is presented in which conditional construct deter-
mine which actors are executed during the decoding of I-, and P-frames. The
temporal behavior of such a job can be analyzed with the presented analysis
and simulation techniques.

References

Bacelli, F., Cohen, G., Olsder, G. and Quadrat, J.-P., 1992, Synchronization and
Linearitytt , John WiWW ley & Sons, Inc.

Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M. and van
Meerbergen, J., 2004, Predictable embedded multiprocessor system de-
sign, Proc. InII tl Wor kskk hop on Softwatt re and Compm ilers for EmEE bedded Sys-
tems (SCOPESEE ), LNCS 3199, Springer.

Buck, J., 1993, Scheduling dynamidd c dadd tatt floa w grarr pa hs with bounded memoryrr
using the token flow model, PhD thesis, Univ. of California, Berkeley.

Cochet-Terrasson, J., Cohen, G., Gaubert, S., McGettrick, M. and Quadrat,
J.-P., 1998, Numerical computation of spectral elements in max-plus al-
gebra, Proc. IFAC Confnff on Syst. Structure and Control.

Gangwal, O., Nieuwland, A. and Lippens, P., 2001, A scalable and flexible data
synchronization scheme for embedded hw-sw shared-memory systems,
InII t’l Symposm ium on System Synthesis (ISSSII ), ACM, pp. 1–6.

Gao, G., Govindaraja an, R. and Panangaden, P., 1992, Well-behaved dataflow
programs for DSP computation, InII ternarr tional Conferen nce of Acoustics,
SpeecS h and Signal processing.

Hee, K. v., 1994, InII forn marr tion System EnginEE eering, Cambridge University
Press.

Kahn, G., 1974, The semantics of a simple language for parallel programming,
Proceedings IFIPII Congress, pp. 471–475.

Kock, E., Essink, G., Smits, W.WW , Wolf, P. v. d., Brunel, J.-Y.YY, Kruijtzer, W.WW ,
Lieverse, P. and ViVV ssers, K., 2000, Yapi: Application modeling for signal
processing systems., In PII roceedings of 37th Design Automation Confer-n
ence (DAC00)DD , Los Angeles, pp. 402–405.

Kopetz, 1997, Real-TimTT e Systems: Design Principles fori Distributed EmEE bed-
ded Applications, Kluwer.

Lawler, E., 1976, Combinatorial optimization: Netwtt orkrr skk and MaMM troids, Holt,
Reinhart, and WiWW nston, New York, NY, USA.



108 Chapter 4

Lee, E. and Messerschmitt, D., 1987, Synchronous data flow, Proceedings of
the IEEE.

Li, Y.YY-T. S. and Malik, S., 1999, PerforPP manrr ce analyl sis of real-time embedded
softwatt re, ISBN 0-7923-8382-6, Kluwer academic publishers.

Petri, C., 1962, Kommunikation mit Automaten, PhD thesis, Institut füff r Instru-
mentelle Mathematik, Bonn, Germany.

Pop, T., Eles, P. and Peng, Z., 2002, Holistic scheduling of mixed time/event-
triggered distributed embedded systems, Proc. InII t’l Symposm ium on HaHH rd-
ware/S// oftwatt re Codesign (CODESEE ), pp. 187–192.

Poplavko, P., Basten, T., Bekooij, M., Meerbergen, J. v. and Mesman, B., 2003,
Task-level timing models for guaranteed performance in multiprocessor
networks-on-chip, Proc. InII t’l Confnff on Compm ilers, Architectures and Syn-
thesis for EmEE bedded Systems (CASESS SEE ), pp. 63–72.

Raja kumar, R., Juwa, K., Moleno, A. and Oikawa, S., 1998, Resource ker-
nels: A resource-centric approach to real-time and multimedia system,
SPIE/ACM CoPP nferen nce on Multimedia Compm uting and Netwtt orkingrr .

Richter, K., Jersak, M. and Ernst, R., 2003, A formal approach to MpSoC
performance verification, IEEE compm uter 36(4), 60–67.

Rijpkema, E., Goossens, K., Radˇ ulescu, A., Dielissen, J., Meerbergen, J. v.,
WiWW elage, P. and Waterlander, E., 2003, Trade offs in the design of a
router with both guaranteed and best-effort services for networks on chip,
Proc. Design, Automation and Test in Europe Conferen nce and Exhibition
(DATE)DD , pp. 350–355.

Sriram, S. and Bhattacharyya, S., 2000, EmEE bedded Multiprocessorsi : Schedul-
ing and Synchronization, Marcel Dekker, Inc.

Zhang, H., 1995, Service disciplines for guaranteed performance services in
packet-switching networks, Proceedings of the IEEE 83(10), 1374–96.




