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Analytic description of the evolution of an

axisymmetric flame surface

M.L. Bondar1 and J.H.M. ten Thije Boonkkamp

Eindhoven University of Technology, Department of Mathematics and Computer Science, PO Box
513, 5600 MB Eindhoven, The Netherlands

Abstract The dynamics of flame surfaces is of central interest in understanding combustion instabilities. Here, the
G-equation formulation is used to assess the evolution of an axisymmetric flame surface subject to an unperturbed
and to a perturbed gas flow, respectively. The flame is modelled using an extension of the models proposed in
[1, 2]. The nonlinear G-equation for a constant modulus (SL) of the laminar burning velocity is solved analytically
using the method of characteristics. SL is assumed constant only in a part of the domain and a mathematical rule
is derived to stabilize the flame above the burner rim. By employing the solution of the G-equation the transient
positions of a Bunsen flame reaching its stationary position are computed. After the flame stabilises, the flame
response to an acoustic perturbation (the flame transfer function) is investigated.

Keywords Bunsen flame, G-equation, method of characteristics, flame stabilisation, transfer function

1 Introduction

In the past decade, the international requirements for the reduction of pollutant gas emissions,
in particular nitrogen oxyde (NOx), led to the development of combustion devices based on fuel
lean premixed flames. The advantage of using lean premixed flames is that they have a relatively
low temperature, resulting in low NOx emissions. However, a fuel lean flame is prone to (self
excited or externally excited) instabilities, e.g. as caused by the interaction with acoustic waves.
Acoustic resonance in a system can lead to significant levels of noise, which is detrimental for the
performance of the device and can even lead to structural damage [3, 4]. The design of noise-free
combustion equipment is a challenging task whose achievement requires the understanding of the
interaction between sound waves and flames.

One possible source of combustion noise originates in the coupling between perturbations in
the heat release rate with the acoustic wave in the burner [5]. Thus, the acoustic waves perturb
the flame, leading to oscillations in the heat release rate which in turn affect the acoustic waves.
The heat release rate does not react instantaneously to the acoustic wave, but rather with a time
lag. In the particular case where the phase difference between the oscillation in the heat release
rate and the acoustic waves is less than 90 degrees, the acoustic waves gain energy (the so-called
Rayleigh criterion), which can lead to the production of noise; see e.g. [6].

An appropriate model to study combustion instabilities is a Bunsen flame subject to an
acoustic perturbation (acoustic velocity). The prediction of combustion noise requires a transfer
function that correlates the perturbation of the heat release rate with the velocity perturbation.
Due to the complexity of the equations describing a reactive flow, the complete numerical simu-
lation of an oscillating flame is difficult and computationally demanding. Instead, the question
of the transfer function can be addressed by making the following simplifying assumptions. The
flame is considered to be a surface which separates the burnt gas from the unburnt one. In this
paper this separating surface is referred to as the flame front. The flame front moves with the
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laminar burning velocity SL, whose module SL is constant, in the direction normal to its surface
towards the unburnt gas. We further assume that the heat release rate is proportional to the area
of the flame. The velocity field, which is assumed axial is modelled by a Poisseuile profile. In
reality the acoustic velocity is not purely axial as assumed in our model. However the axial com-
ponent of the velocity is dominant except near the base of the flame [7]. The gas flow is assumed
to be unaffected by the flame and the effect of pressure perturbations on flame is neglected.

While the simplified model considered here does not entirely account for the complex be-
haviour of the flame, it allows us to investigate the response of the flame to flow perturbations.
Using this model, the response of the flame to the flow perturbations can be determined by
studying the changes in the area of the flame as function of time. Therefore, determining the
instantaneous flame area and hence the location and shape of the flame front is of crucial im-
portance in deriving the transfer function. The flame front can be mathematically described as
a solution of a kinematic condition, the so-called G-equation. Ideally, in order to describe the
dynamical behaviour of the flame, one needs the analytical solution of the G-equation for the gen-
eral case of an arbitrary flow field. Due to the nonlinearity of the equation, this general solution
cannot be obtained. As a consequence, several models were suggested that solve the G-equation
at various levels of approximation. This includes, e.g., solving a linearized G-equation in the
particular case where the laminar burning velocity has a constant direction that is normal to a
stationary position of the flame [8, 2], or in the case where the flame is nearly parallel to the
gas stream lines [1]. Other models use the method of characteristics to solve the G-equation for
simple gas profiles [9, 10, 11].

In the present paper the transfer function of a flame subject to a perturbed Poisseuile flow is
derived using a combined analytical and numerical approach. First, the stabilisation of a Bunsen
flame above an axisymmetric burner is investigated. A real flame subject to an unperturbed lam-
inar flow stabilises such that there is a balance between the flow velocity and the laminar burning
velocity SL [12]. Away from the burner rim, SL can be approximated with a constant. At the
burner rim the flame looses heat resulting in a reduced SL. Due to the constant SL assumption,
our model cannot account for the region close to the burner rim. Therefore, in order to stabilise
the flame we will consider SL constant only in the region where the gas velocity is larger than or
equal to the laminar burning velocity and we derive a rule to stabilise the flame. The movement
of the flame due to a Poisseuile flow from an initially zero flame front to its stationary position is
determined by solving the G-equation analytically by using the method of characteristics. After
stabilisation of the flame is achieved, the response of the flame to gas velocity perturbations of
small amplitude is investigated. The perturbed flame front is approximated with an asymptotic
expansion around its stationary position. Then, the equation which gives the flame front posi-
tion is reduced to a system of simple advection equations which are solved numerically using the
upwind scheme. Finally the transfer function is derived.

The paper is organized as follows. The derivation of the G-equation is given in Section 2, and
in Section 3 we give a brief overview of the existing analytical solutions of the G-equation. The
Charpit’s equations for the G-equation are derived in Section 4 and they are solved in Section 5
for the particular case of a Poisseuile profile of the gas velocity. The response of the flame to the
velocity perturbation and the derivation of the transfer function are presented in Section 6.

2 Derivation of the G-equation

Let us consider a scalar variable G, e.g. one of the species mass fractions or the temperature of the
mixture. We define the flame front as the set of points x satisfying the relation G(x, t) = G0 for
some relevant G0. The flame front separates the burnt gas (G(x, t) > G0) from the unburnt gas
(G(x, t) < G0). The flame front moves under the action of the flow velocity v and of the laminar
burning velocity, SL, which is normal to the flame surface and directed towards the unburnt gas
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mixture. The velocity of the flame front vf , can be written as

vf = v + SL = v + SLn, n = −∇G/|∇G|, (1)

where n is the unit normal on the flame surface, directed towards the unburnt gas mixture
(Figure 1).

n

v
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Figure 1: Flame front kinematics.

The motion of the flame front is described by the kinematic condition

dG
dt

:=
∂G

∂t
+ (vf · ∇)G = 0, (2)

which means that a point on the flame front remains on the front for all time t. Substituting (1)
in (2), the so-called G-equation is obtained

∂G

∂t
+ v · ∇G = SL|∇G|. (3)

For an axisymmetric burner such as a Bunsen burner the assumption can be made, in the case
of small amplitude perturbations, that the flame and the possible flame wrinkles are axisymmetric.
Then, the surface of the flame can be described by the relation G(r, z, t) = G0 where r and z are
the radial and axial coordinates, respectively. Denoting the radial and the axial components of
the gas velocity by u(r, z, t) and by v(r, z, t), respectively, the G-equation becomes

∂G

∂t
+ u

∂G

∂r
+ v

∂G

∂z
= SL

√(
∂G

∂r

)2

+
(
∂G

∂z

)2

. (4)

Since we are not interested to capture flame wrinkles, we can further assume that the flame
is not locally vertical. This implies that ∂G/∂z > 0 everywhere. Hence we can apply the implicit
function theorem [13] to express z as a function of the other two variables, i.e. z = ζ(r, t). The
partial derivatives of ζ with respect to r and t are then given by the expressions

∂ζ(r, t)
∂r

= −∂G(r, ζ(r, t), t)
∂r

/
∂G(r, ζ(r, t), t)

∂z
, (5a)

∂ζ(r, t)
∂t

= −∂G(r, ζ(r, t), t)
∂t

/
∂G(r, ζ(r, t), t)

∂z
. (5b)

Combining (4) and (5) we obtain the following equation for the location of the flame front ζ(r, t)

∂ζ(r, t)
∂t

+ u
∂ζ(r, t)
∂r

− v + SL

√(
∂ζ(r, t)
∂r

)2

+ 1 = 0. (6)
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Once equation (6) has been solved, the area of the flame A(t) can be computed from the formula

A(t) = 2π
∫ R

0
r

√(
∂ζ

∂r

)2

+ 1dr. (7)

3 Existing analytical models

Since the G-equation was introduced by Markstein in 1964 [14], several analytical and numerical
approaches have been used to find a solution. Due to the nonlinearity of the equation, a general
analytical solution for an arbitrary flow field is impossible to obtain. One possible solution to
this problem is to consider an approximate, linear form of the G-equation that allows for an
analytical solution for given flow fields. For simple gas profiles, e.g., with a quiescent flow or
with a flat profile, another possible method is the method of characteristics. In what follows we
review the solving of G equation by using the liniarization approach and by using the method of
characteristics. The radial and the axial components of the gas velocity are denoted as u, v. The
prime denotes a perturbation of the corresponding variable.

3.1 Solution obtained via linearization

The linearized G-equation may be obtained by assuming a constant laminar burning velocity,
normal to a stationary position of the flame [8]. This assumption was used to study the dynamics
and the shape of anchored V flames subject to a space-time perturbation of a flat profile of the gas
velocity. The perturbation along the flame front was neglected, considering only the perturbation
in the direction normal to the flame front. Working in a rectangular system of coordinates in
which one of the axes is parallel to the steady flame position and using the Laplace transform, a
linear PDE describing the perturbation of the flame front was derived and solved [8].

In the particular case of a Poiseuille flow, a solution of the linearized G-equation describing
the front of a premixed laminar flame in a duct with radius R was obtained for flow perturbations
harmonic in time and either uniform or non-uniform in space in [1]. The Poiseuille flow and its
perturbations have the following expressions

u(r) = 0, v(r) = v0

(
1 −

(
r

R

)2)
, (8)

u′(r, t) = 0, v′(r, t) = ε sinωt, (9a)

or

u′(r, t) = 0, v′(r, t) = v0

(
1 −

(
r

R

)2)
ε sinωt. (9b)

where v0 denotes the maximum velocity of the flow, and ε and ω are the amplitude and respectively
the frequency of the perturbation. The square root term in (6) is approximated by −∂ζ/∂r
assuming that the flame is nearly parallel to the stream lines therefore, |∂ζ/∂r| � 1. The location
of the flame front, ζ(r, t) is the contribution of the steady location of the flame ζ(r) and of
a perturbation ζ ′(r, t). After enforcing flame stabilization at the wall by imposing ζ(R, t) = 0,
the steady location of the flame is obtained through a simple integration. Assuming as initial
condition ζ(r, 0) = ζ(r) the perturbation was obtained solving a linear PDE using the Laplace
transform. As acknowledged in [15], the model has difficulties in describing the movement of the
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flame at the burner rim and at the tip of the flame. Moreover, the model is limited to long flames
with small cone angles and, unlike in experiment, the predicted stationary flame exhibits a tip
that is not rounded.

Applying the same assumptions for the laminar burning velocity as in [8], the model by Fleifil
et al. [1] was extended to flames with arbitrary cone angles [2]. In this case, the flame front
position is given by the equation

∂ζ

∂t
− v + SL sinα0 − SL cosα0

∂ζ

∂r
= 0. (10)

where α0 denotes the half angle of the steady flame cone. The solution for an arbitrary time
dependent flow field perturbation of a mean flat profile of the gas velocity was obtained for the
perturbation ζ ′(r, t) using the Laplace transform.

3.2 Solution obtained via the method of characteristics

The limitations of the linearized G-equation make it difficult to predict the right shape and
movement of the flame front. Solving the nonlinear G-equation by the method of characteristics
allows for the prediction of cusped flame fronts. Thus, the method of characteristics allowed, e.g.,
the investigation of cusped flame fronts subject to a velocity field given by

u(r, z, t) =
r√
2

(
kν(z) cos(ωt− kz) − dν(z)

dz
sin(ωt− kz)

)
, (11a)

v(r, z, t) =
(
1 +

√
2ν(z) sin(ωt− kz)

)
, (11b)

where the dimensionless wave number k is equal to the frequency ω and ν(z) is the axial root-
mean-squared (RMS) velocity [9]. By using the G-equation, the following kinematic equation in
terms of tan(θ), where θ is the angle between the tangent to the front at one of its points and
the Oz axis could be derived

∂

∂t
(tan θ) =

∂

∂z

[
u+ v tan θ − SL(1 + tan θ2)1/2

]
. (12)

The solution of the equation (12) was further employed to assess how the the occurrence of cusps
is affected by the magnitude of the mean flow velocity, by the flame speed, and by the amplitude
of perturbations. In the case of long flames subject to harmonic disturbances of a flat profile
of the gas velocity the solution of the G-equation via the method of characteristics was used to
investigate the occurrence of cusped fronts as function of the length of the flame, perturbation
amplitude, and of the flame Strouhal number [10].

4 Charpit’s equations for the G-equation

Introducing the variables p := ∂ζ/∂r and q := ∂ζ/∂t we obtain the following expression for (6)

F (r, t, ζ, p, q) := q + up− v + SL

√
p2 + 1 = 0. (13)

Equation (13) is a nonlinear, first order PDE that can be solved analytically by using the method
of characteristics [16] for ”simple” expressions for u, v and SL. The solution is obtained by
smoothly joining all the characteristic strips that emerge from the noncharacteristic initial strip
defined by the initial condition ζ(r, 0) = z0(r), p(r, 0) = z′0(r). This reduces (13) to a system of five
ODEs, the so-called Charpit’s equations. Let’s introduce a parameter s along the characteristics
and a parameter σ along the initial curve t = 0. In the following we use the notation a(s;σ) for a

5



generic variable a to indicate that an expression only holds along a characteristic parametrized by
s. The parameter σ denotes that the characteristic passes through the point (0, σ). The notation
a(r, t) is used in the case where an expression holds in the (r, t)− plane. Assuming a constant
module SL, for the laminar burning velocity the Charpit’s equations and the initial conditions
for a general flow field u(r, z, t) and v(r, z, t) become

dr
ds

= u+ SL
p√
p2 + 1

, r(0;σ) = σ, (14a)

dt
ds

= 1, t(0;σ) = 0, (14b)

dζ
ds

= p

(
u+ SL

p√
p2 + 1

)
+ q, ζ(0;σ) = z0(σ), (14c)

dp
ds

= −
[
p
∂u

∂r
− ∂v

∂r
+ p

(
p
∂u

∂z
− ∂v

∂z

)]
, p(0;σ) = z′0(σ), (14d)

dq
ds

= −
[
p
∂u

∂t
− ∂v

∂t
+ q

(
p
∂u

∂z
− ∂v

∂z

)]
, q(0;σ) = q0(σ). (14e)

Note that q(s;σ) can be eliminated from (14c) using (13) and that the initial condition q0(σ)
follows from the other initial conditions. From (14b) we simply obtain t(s;σ) = s, and it remains
for us to solve (14a), (14c) and (14d). Since p = − tan β, where β is the angle between the
horizontal line and the tangent to ζ(r, t), the system reduces to

dr
dt

= u+ SL
p√
p2 + 1

= u− SL sin β, r(0;σ) = σ, (15a)

dζ
dt

= v − SL
1√
p2 + 1

= v − SL cos β, ζ(0;σ) = z0(σ), (15b)

dp
dt

= −p∂u
∂r

+
∂v

∂r
− p

(
p
∂u

∂z
− ∂v

∂z

)
, p(0;σ) = z′0(σ). (15c)

The Charpit’s equations (15) for a Poiseuille flow will be solved in the next section.

5 Solution for a Poiseuille flow

The flow in a cylindrical duct may be approximated with a Poiseuille flow described by (8). Here,
we extend the models proposed in [1, 2] by taking into consideration flames that have arbitrary
cone angles and by using a laminar burning velocity of constant modulus that does not have a
constant direction to a stationary position of the flame front. The variables in (15) are scaled as
follows

r∗ := r/R, t∗ := t/t̃, σ∗ := σ/R, ζ∗ := ζ/R, (16)

where t̃ := R/SL. The dimensionless system (we omitted the ∗) is

dr
dt

=
p√
p2 + 1

, r(0;σ) = σ, (17a)

dζ
dt

= v̂(1 − r2) − 1√
p2 + 1

, ζ(0;σ) = z0(σ), (17b)

dp
dt

= −2v̂r, p(0;σ) = z′0(σ), (17c)
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where v̂ := v0/SL being typically in the interval v̂ ∈ (1, 10]. The formal solution procedure for
the system (17) is as follows. First, we find the expression for p(r;σ). Second, we determine
the location of the characteristics in an implicit form t = t(r;σ), and we find the location of the
flame front ζ(r;σ) along the characteristics. Third, we invert the implicit relation t = t(r;σ), to
find σ = σ(r, t) and replace σ in the expression for ζ(r;σ) to find the position ζ(r, t) of the flame
front.

From (17a) and (17c) the following differential equation is obtained

p√
p2 + 1

dp = −2v̂rdr. (18)

Since p ≤ 0, we obtain by integrating (18)

p(r;σ) = −
√(

c(σ) − v̂r2
)2 − 1, (19)

where c(σ) :=
√

1 + z′0(σ)2+v̂σ2 ≥ 1. Substituting expression (19) for p in (17a) and applying the
corresponding initial condition we obtain the integral form of the location of the characteristics,
i.e.,

t(r;σ) = −
∫ r

σ

c(σ) − v̂x2√(
c(σ) − v̂x2

)2 − 1
dx. (20)

The integral on the right hand side term of (20) cannot be evaluated analytically. However, it is
possible to reformulate (20) in terms of elliptic integrals of first and second kind [17, 18], which
are implemented in most of the existing technical computing software. These are defined by
respectively

F (φ,m) :=
∫ φ

0

dx√
1 −m2 sin2 x

dx, E(φ,m) :=
∫ φ

0

√
1 −m2 sin2 x dx. (21)

where the number m is the modulus and the variable integration limit φ is the argument of the
elliptic integrals. To simplify the expressions for t(r;σ) and ζ(r;σ) that follow, we introduce the
auxiliary variables

k(σ) :=

√
c(σ) − 1
c(σ) + 1

, ψ(r;σ) := arcsin
(
r

√
v̂

c(σ) − 1

)
, τ(σ) := ψ(σ;σ), (22a)

E(ψ, τ, k) := E(ψ, k) − E(τ, k), F(ψ, τ, k) := F (ψ, k) − F (τ, k). (22b)

With these variables the relation (20) becomes

t(r;σ) =
1√

v̂(c(σ) + 1)
F(ψ, τ, k) −

√
c(σ) + 1

v̂
E(ψ, τ, k). (23)

Combining (17a) and (17b) we obtain

dζ
dr

=
v̂(1 − r2)

√
p2 + 1 − 1
p

. (24)

Integrating (24) and using (20) we obtain the following integral expression for the location of the
flame front along the characteristics

ζ(r;σ) = z0(σ) + v̂t(r;σ) +
∫ r

σ

1 + v̂x2(c(σ) − v̂x2)√(
c(σ) − v̂x2

)2 − 1
dx. (25)

7



Expressing the integral in (25) in terms of elliptic integrals and using the notation in (22), we
obtain the following expresion for ζ(r;σ),

ζ(r;σ) = z0(σ) + v̂t(r;σ) +
(
c(σ)

√
c(σ) + 1

3
√
v̂

)
E(ψ, τ, k) +

(
2 − c(σ)

3
√
v̂(c(σ) + 1)

)
F(ψ, τ, k)

− 1
3

(
r
√

(c(σ) − v̂r2)2 − 1 − σ
√

(c(σ) − v̂σ2)2 − 1
)
.

(26)

To find the location of the flame front ζ(r, t), σ as a function of r and t is needed. Therefore
relation (20), or equivalently (23), has to be inverted. This is possible only if

J(r;σ) :=
∂t(r;σ)
∂σ

	= 0. (27)

Because of the complicated formula in (23), it is difficult to investigate the sign of J(r;σ) for a
general initial profile of the flame front. However, we are interested to study the movement of
the flame front for the special case z0(r) = 0. Then the variable k(σ), ψ(r;σ) and τ(σ) reduce to

k(σ) =

√
v̂σ2

v̂σ2 + 2
, ψ(r;σ) = arcsin

(
r

σ

)
, τ(σ) =

π

2
. (28)

In this case (27) becomes

J(r;σ) =
1

σ
√
v̂(v̂σ2 + 2)

(
F(ψ, τ, k) − (v̂σ2 + 1)E(ψ, τ, k) +

rv̂(σ2 − r2)(v̂σ2 + 1) + r(v̂σ2 + 2)√
(σ2 − r2)(v̂σ2 + 2)(v̂(σ2 − r2) + 2)

)
. (29)

For 0 < r < σ we have J(r;σ) > 0, which makes it possible to use the implicit function theorem
and therefore to express σ as a function of r and t. This also proves that no cusps form in the
flame front.

The flame moves under the influence of the Poisseuile flow and of the laminar burning velocity
whose modulus is constant. At the edge of the tube a region exists where the laminar burning
velocity is larger than the gas velocity and the flame is pushed into the tube. This entry of the
flame into the tube does not agree with the known movement of a real flame. To overcome the
unrealistic behaviour of the modelled flame we assume that the SL is constant only in the region
where the gas velocity is larger than the laminar burning velocity, i.e. 0 ≤ r ≤ δ, where δ is such
that v̂(1 − δ2) = 1. This gives

δ =
√

1 − v̂−1. (30)

Because it is not possible to invert (23) analytically we use the following numerical approach.
We introduce a uniform grid for the space and time domains, i.e. rj = jΔr, j = 1, . . . ,M ,
tn = nΔt, n = 0, . . . , N , with the grid size Δr = δ/(M − 1) and time step Δt = 1/N . For
given rj and tn we compute the corresponding σn

j from (20) using the secant method. From the
geometrical viewpoint this means that at a certain moment in time tn we trace back along the
characteristic which passes through rj, and we find the intersection point σn

j of the characteristic
with the initial line t = 0 (Figure 2). The location ζ(rj , tn) is given by ζ(rj, tn) = ζ(rj;σn

j ). For
all n, when σn

j > δ the location of the flame front satisfies ζ(rj, tn) < ζ(rj, tn−1). This observation
together with the initial condition implies that when σn

j > δ the flame is either in the tube or the
flame will enter the tube at a following time level.

To stabilise the flame above the tube we impose the following rule. If for some rk the cor-
responding σn

k > δ we compute the location of the flame front according to ζ(rk, tn) = ζ(rk; δ).
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This rule implies that the flame is fixed above the burner. Indeed, ζ(δ, tn) = ζ(rM ;σn
M ) and

since δ = rM < σn
M , from the previous condition together with the initial condition z0(σ) = 0 we

conclude that ζ(δ, tn) = ζ(δ; δ) = 0 for n = 0, . . . , N . Therefore, the previous rule implies the
boundary condition ζ(δ, t) = 0 for t ≥ 0. From the geometrical viewpoint these rule means to cut
off the characteristics with the straight line passing through the points (δ, 0), (δ, tn), (Figure 2)
and to take into consideration only the characteristics which are inside the domain [0, δ]× [0, tn].

t

tn rj rMrk

σn
j σn

k

σ
δ

Figure 2: The characteristics through (rj , tn) and (rk, tn)

According to the present analytical model the flame reaches a stationary position after starting
from an initial flat profile at the time level tN = 1. The stationary position of the flame is within
discretization error equal to the steady solution of (6) subject to the boundary condition ζ0(δ) = 0,
which has the following expression

ζ0(r) =
∫ δ

r

√
v̂2(1 − x2)2 − 1 dx, (31)

with δ given in (30), or in terms of elliptic integrals

ζ0(r) =
δ

3λ

(
2v̂E(α, β, λ) − 2F(α, β, λ) − (v̂ − 1) sin β cos β

√
1 − λ2 sin2 β

)
. (32)

Here the variables α, β and λ are given by

α =
π

2
, β(r) = arcsin

(
r

δ

)
, λ =

δ√
1 + v̂−1

. (33)

An illustration of a transient flame position given by the system (17) is given in Figure 3.

r

z

−δ δ

Figure 3: Transient Bunsen flame reaching its stationary position. The intermediary positions
depicted here are for values t̃ ∈ {0.0333, 0.1, 0.233, 1} and v̂ = 5.
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6 Perturbed Poiseuille profile

After the flame stabilises above the burner, we apply a perturbation of the gas velocity that is
harmonic in time and and nonuniform in space i.e.,

u′(r, t) = 0, v′(r, t) = v0

(
1 −

(
r

R

)2)
ε sinωt, (34)

where ω is the angular frequency and 0 < ε 
 1. Substituting the perturbed velocity field into
(6) the equation for the location of of the flame front becomes

∂ζ

∂t
− v0

(
1 −

(
r

R

)2)
(1 + ε sinωt) + SL

√(
∂ζ

∂r

)2

+ 1 = 0. (35)

By choosing to work with dimensional variables we can control the length of the interval on which
the flame stabilises such that it corresponds to the radius of a real burner. Equation (35) cannot
be solved analytically for ε 	= 0. Instead, to derive a system of linear advection equations which
can be easily solved numerically, we apply the following asymptotic expansion for ζ,

ζ(r, t) = ζ0(r, t) + εζ1(r, t) + ε2ζ2(r, t) + · · · (36)

Substituting expression (36) into equation (35) and collecting terms of the same order leads
to a system of equations. The small amplitude of the perturbation allows us to take into con-
sideration only the leading, first and second order equations of the system. The leading order
equation of the system in dimensional form is

∂ζ0
∂t

− v0

(
1 −

(
r

R

)2)
+ SL

√(
∂ζ0
∂r

)2

+ 1 = 0. (37)

Due to the assumption that perturbation in the gas velocity is introduced after the stabilisation
of the flame above the burner rim, the leading order term in (36) can be replaced by the steady
solution of (37) satisfying ζ0(Rδ) = 0, given by

ζ0(r) =
∫ Rδ

r

√
v̂2

(
1 −

(
x

R

)2)2

− 1 dx. (38)

The first and the second order equations of the system are

∂ζ1
∂t

− SL

√
v(r)2 − SL

2

v(r)
∂ζ1
∂r

=
v′(r, t)
ε

, (39a)

∂ζ2
∂t

− SL

√
v(r)2 − SL

2

v(r)
∂ζ2
∂r

=
−SL

4
(∂ζ1

∂r

)2

2v(r)3
. (39b)

with v(r) defined in (8) and v′(r, t) defined in (34). Although (39a) and (39b) are linear first order
advection equations, analytic solutions of these two equations are difficult to obtain. Therefore a
numerical solution is derived. After imposing the following initial (IC) and boundary conditions
(BC),

IC ζ1(r, 0) = 0, ζ2(r, 0) = 0, (40a)

BC ζ1(Rδ, t) = 0, ζ2(Rδ, t) = 0, (40b)
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we solve (39a) and (39b) using the upwind scheme and the explicit Euler approach for the source
term. Since it is necessary to compute the variation of the area in time, the time interval needs
to be large enough to capture the oscillatory behaviour of the area perturbation. For a time
interval t = 0 to 8 s, SL = 0.35 ms−1 and a tube radius of 0.01 m we choose Δr = 10−4 and
Δt = (8/3)10−4 to give a CFL number equal to 0.933. By combining the solutions of the leading,
first and second order equation we obtain an analytical-numerical description of the perturbed
flame front. The resulting perturbation of the flame front around the stationary position is
depicted in Figure 4.

z

−Rδ Rδ

r

(a)

z

−Rδ Rδ

r

(b)

z

−Rδ Rδ

r

(c)

Figure 4: Oscillation of the flame front (solid line with bullets) around the stationary position
(solid line). The following parameters were used: v0=3 ms−1, SL = 0.35 ms−1, ω = 50Hz,
ε = 0.05 and δ = 0.01 m (a) t = 0s, (b) t = 0.05s, (c) t = 0.15s.

The area of the perturbed flame can be computed from (7) using the trapezoid rule. An
illustration of the variation of the area in time is presented in Figure 5.

t

1.05

0.95 0.2 0.4 0.6 0.8

1

1

Figure 5: Variation in time of the area of the flame (solid line with bullets) and of the velocity of
the flow in the center of the duct (solid line). The flame area and the velocity were normalized with
the initial values. The following parameters were used: v0=3 ms−1, SL = 0.35 ms−1, ω = 50Hz,
ε = 0.05 and δ = 0.01 m.

Figure 5 indicates that the time variation of the area of the flame can be fitted to a sine function
by the means of the least-squares approximation. The transfer function of the flame H(ω) is
computed over the range of angular frequencies ω = 10Hz to 300Hz. The magnitude of the
transfer function |H(ω)| is given by

|H(ω)| = (Qa/Q0)/(va/v0), (41)

where Qa and va are the amplitude of the heat release rate oscillations and respectively the
velocity fluctuations, having as initial values Q0 and respectively v0. Under the assumption that
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the heat release rate is proportional with the area of the flame, |H(ω)| reduces to

|H(ω)| = (Aa/A0)/(va/v0), (42)

where Aa and A0 are the amplitude and respectively the initial value of the perturbed flame area.
The angle of the transfer function ∠H(ω) is the phase difference between the area perturbation
and the velocity perturbation in the centre of the duct. Because the phase difference becomes
approximately -90 degrees and the magnitude decays to 0 when the frequency increases, it is
natural to compare the flame transfer function with the transfer function of a first-order system
having the form

H̃(iω) =
α

α+ iω
, (43)

where α is a fitting parameter. The best approximation of our data is for α = 90. In the
small frequency range the phase of the flame transfer function closely follows the one of the first
order system, whereas the magnitude is larger. The phase of the flame transfer function tends
to −90 degrees faster than a first order model. The discrepancy between the flame model and
the approximative transfer function can be diminished by considering a higher order system in
equation (43).
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Figure 6: The phase difference and the magnitude of the transfer function. The solid curves were
obtained with the first-order approximation, and the empty circles denote the flame model. The
following parameters were used: v0=3 ms−1, ε=0.05, SL = 0.35 ms−1, δ=0.01 m

The flame transfer function computed here is similar with the ones derived with the analytical
models from [2, 1]. As pointed out in [2] the model correctly predicts the flame behaviour for
small frequencies, but fails for frequencies in the intermediate and high frequency range. The
current model could be improved by considering the dependence of the laminar burning velocity
on the geometry of the flame and/or include the heat exchange with the burner at the foot of the
flame.

7 Conclusions

The kinematic condition describing the motion of a flame front (the G-equation) subject to a
Poisseuile flow was solved analytically by using the method of characteristics. Analytical ex-
pressions in terms of elliptic integrals were given for the location of characteristics and for the
location of the flame front along the characteristics. In order to use a constant SL we restricted
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the flame to the region in which the gas velocity is larger than the laminar burning velocity. To
stabilise the flame a mathematical rule was derived in computing the position of the flame front
along the characteristics. This rule enabled us to compute the transient flame front position of a
Bunsen flame while reaching its stationary position. The results are validated by the fact that the
stationary position is the same as the steady solution of the G-equation. The solution of the equa-
tion giving the flame front position of a perturbed flame was approximated with an asymptotic
expansion from which we retained the leading, the first and the second order terms. The area of
the flame as computed using the trapezoid rule exhibits an oscillatory behaviour that could be
fitted to a sine function using a least-squares approximation. The frequency dependence of the
phase difference and of the magnitude of the transfer function was computed and compared to the
results obtained with the first-order approximation. The flame transfer function computed here
agrees with the transfer functions computed with the analytical models from [2, 1]. Concurrent
with previous observations [2], the flame model described here correctly predicts the behaviour of
the flame for the small frequency range. However, in the high-frequency range the flame model
gives a phase difference of the transfer function that converges to -90 in disagreement with the
experiments. The current model could be improved by considering the dependence of the laminar
burning velocity on the flame curvature and strain and/or include the heat exchange with the
burner at the foot of the flame. To achieve this improvement the numerical integration of the
G-equation is required.
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2002.

[14] G. H. Markstein. Nonsteady flame propagation. Pergamon Press, Oxford, 1964.

[15] C. Dieteren. Response of axisymmetric laminar premixed flames to an acoustic field. Tech-
nische Universiteit Eindhoven, Eindhoven, 1997. Master Thesis.

[16] J. Kevorkian. Partial Differential Equations. Analytical Solution Techniques, chapter 6, pages
322–385. Chapman and Hall, New York-London, 1990.

[17] M. Abramowitz and I.A. Stegun. Handbook of mathematical functions, with formulas, graphs,
and mathematical tables, chapter 17, pages 587–626. Dover Publications, USA, 1974.

[18] P. F. Byrd and M. D. Friedman. Handbook of elliptic integrals for engineers and scientists.
Springer-Verlag, Berlin. Göttingen. Heidelberg, 1971.

14


