

On the delay-sensitivity of gate networks

Citation for published version (APA):
Brzozowski, J. A., & Ebergen, J. C. (1990). On the delay-sensitivity of gate networks. (Computing science notes;
Vol. 9005). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1804716f-789b-45cb-9dfa-9688e976cc25

On the Delay-Sensitivity of Gate Networks

by

J.A. Brzozowski J.E. Ebergen

90/5

July, 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 ME EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

On the Delay-Sensitivity of Gate Networks*

l.A. Brzozowski'
Department of Mathematics and Computing Science

Eindhoven University of Technology
Eindhoven, The Netherlands

l. C. Ebergen
Computer Science Department

University of Waterloo
Waterloo, Ontario, Canada

Abstract

In classical switching theory it is usually assumed that asynchronous sequential circuits
are operated in the fundamental mode. In this mode, a circuit is started in a stable state;
then the inputs are changed to cause a transition to another stable state. The inputs
are not allowed to change again until the entire circuit has stabilized. In contrast to
this, delay-insensitive circuits -the correctness of which is insensitive to delays in their
components and wires- use the input-output mode. Here, it is assumed that inputs may
change again, in response to an output change, even before the entire circuit has stabilized.
In this paper, we show that such commonly used behaviors as those of the set-reset latch
and Muller's C-ELEMENT do not have delay-insensitive realizations, if gates are used as
the basic components. In fact, we prove that no nontrivial sequential behavior with one
binary input possesses a delay-insensitive realization using gates only. Our proof makes
use of the equivalence between ternary simulation and the General Multiple Winner model
of circuit behavior.

1 Introduction

Asynchronous circuits have witnessed a remarkable revival during the past decade. This
revival came about on two fronts. On the one hand, important results were found concerning
the analysis of asynchronous circuits using the 'classical' approach [3,4, 18]. On the other
hand, new formal approaches have been developed and applied in the design of special types of
asynchronous circuits, such as speed-independent circuits [7,16], delay-insensitive circuits [2, 8,
15], quasi delay-insensitive circuits [11], and self-timed systems [6, 19]. Successful applications

·This work was supported by the Dutch organization for scientific research, NWO, and by the Natural
Sciences and Engineering Research Council of Canada under Grants A0871 and OGP0041920.

tOn leave during 1989-1990 from the Computer Science Department, University of Waterloo, Waterloo,
Ontario, Canada.

1

of these new approaches have been demonstrated by A. J. Martin [10], C. van Berkel et al. [21]
and, most recently, by r. E. Sutherland in his Turing Award lecture [20].

There are some important differences between the 'classical' and the 'new' approaches.
One of these differences lies in the 'mode of operation' of a network which prescribes how
the environment should interact with a network in order to obtain the desired input-output
behavior. In the classical approach one applies the so-called fundamental mode operation
[13] iu which the environment changes the inputs and holds them fixed until the network has
stabilized completely. Only after the network has reached a stable state, is the environment
allowed to give the next input change. In the new approaches, one applies the so-called input
output mode of operation [2, 15] in which ·the environment does not have to wait until the
network has stabilized completely to give the next input change: an input change may be made
by the environment as soon as the network has given an appropriate response to a previous
input change.

Another difference between the classical and the new approaches lies in the different basic
formalism. In classical asynchronous circuit design, the basic formalism is Boolean algebra,
where Boolean functions are the essential objects. III the new approaches, one applies an event
based formalism, where sequences of events are the essential objects. Examples of event-based
formalisms are trace theory [7, 8, 17] and Petri nets [6, 14,22]. The use of different formalisms
leads also to the use of different sets of primitive elements. In the classical approach, the
primitive .elements are the logic gates, which correspond to the primitive Boolean functions.
In the new approaches, the primitive elements are such elements as the Muller C-ELEMENT,
TOGGLE, MERGE, and ARBITER, which correspond to basic sequences of events.

The input-output mode of operation and primitive elements, like C-ELEMENTS and TOG
GLEs, are used in delay-insensitive circuits. Informally, a delay-insensitive circuit is one whose
correctness is insensitive to delays in the wires and primitive elements. A fundamental ques
tion is whether a different set of primitive elemellts for the design of these circuits is really
necessary, or can every delay-insensitive circuit be realized by a network using gates only? For
example, does the C-ELEMENT or TOGGLE have a delay-insensitive gate realization? Although
it is generally assumed that such realizations do not exist, no proof of this has been given so
far. \Ve provide such a proof in this paper. In fact, we prove a more general result that no
nontrivial sequential behavior with one binary input has a delay-insensitive gate realization.
In doing so, we explain the differences between the fundamental mode and the input-output
mode using one formal framework that combines the event-based and state-based approach.

2 Specification of Input-Output Behavior

When specifying the behavior of a network to be designed, we need to describe how the pro
posed network is to communicate with its environment through its input and output terminals.
In this paper, we formally specify an input-output behavior by a 5-tuple B = (h, k, S, T, so),
where

• h ~ 0, is the number of input variables,

• k ~ 0, is the number of output variables,

2

• S ~ {O, I}h+k, is the state set,

• T ~ (S x S) - {(s, s) I s E S}, is the transition set, and

• So E S is the initial state.

The vector U = UI, •.. , Uh will be used to represent the input variables, and v = v" ... , Vk

will denote the output variables. The vector UI, ••• , Uh, VI, ... , vk represents the state of B.
A state c E {O,I}h+k is sometimes written c = ab, where a E {O,I}h and b E {O,I}k ; this
permits us to identify the input and output components of c. A transition (ab, a'b') is said to
be an input transition, if only the inputs have changed, i.e., if a oJ a' and b = b'; it is an output
transition, if only the outputs have changed, i.e., if a = a' and b oJ b'. Note that a transition
may be neither an input transition nor an output transition, namely, when a oJ a' and b oJ b'.
A state of the input-output behavior is said to be stable, if it has only input transitions leaving
it or has no transitions at all; otherwise, it is unstable.

To illustrate the definitions given above, we present a number of examples.

Example 1. An input-output behavior of the set-reset latch, under the assumption that the
set and reset inputs are never I at the same time, is given in Figure 1. The latch has binary
inputs UI ('set') and U2 ('reset') and a binary output v. The state set consists of all binary
triples UI U2V, except 110 and lll, and the transitions are shown in Figure 1. For convenience,
we label each transition with the variable that changes during the transition. The initial
state is 000. (For brevity, we often write tuples without commas;' for example, 110 represents
(1,1,0).) 0

Figure 1: Input-output behavior of latch with Ul U2 = 11 disallowed.

Example 2. The graph of Figure 2 shows an input-output behavior of the latch where UI U2 = 11
is permitted, but where UI and U2 never change simultaneously. Notice that Figure I is sym
metrical, but Figure 2 is not. This asymmetry is introduced in the states where UI U2 = 11 by
giving the 'reset' priority over the 'set.' 0

Example 3. In Figure 3 we show an input-output behavior of the C-ELEMENT with inputs Ul

and U2 and output v. 0

3

Figure 2: Behavior oflatch with Ut U2 = 11 allowed.

Example 4. Figure 4 shows an input-output behavior of a TOGGLE with input U and outputs
Vt and V2. If we count the input changes starting from the initial state 000, each odd input
change causes a change in output Vt and each even input change causes a change "in output V2. 0

v

7~\
001

;/ ~ 100 010 011 101

~/- ~/
110 v • 111

Figilre &: Input-olltput behavior of C-ELE1oIENT.

~
u .. 100 VI • 110

v, t !u
001 010

ut ~v,
101 .. 111 .. 011

VI u

Figure 4: Input-output behavior of TOGGLE.

In this paper we study a restricted class of input-output behaviors. We consider only those
input-output behaviors where (a) the initial state is stable; (b) each unstable state has exactly
one outgoing transition, this is an output transition, and the state reached by this transition

4

is stable; (c) exactly one (input) variable changes in every input transition; and (d) exactly
one (output) variable changes in every output transition. We call this class of input-output
behaviors simple deterministic. Note that the behaviors in Figures 1, 2, 3, and 4 are simple
deterministic.

The motivation for the assumptions above is the following. First, it would be unreasonable
to start a network in an unstable state and expect it to operate properly; in fact, most practical
designs provide for special 'reset' inputs to make sure that the network is properly initialized.
Second, we are interested in deterministic behavior in many common circuits, such as counters,
latches or C-ELEMENTS. Thus the final outcome of a transition should be a unique stable state.
More wiII be said about this later, in connection with oscillations. We also point out that
the first two assumptions are very much in line with the classical theory of fundamental-mode
operation. The last two assumptions -that a single signal changes during any transition
are not restrictive, in view of the fact that we are interested in delay-insensitive networks.
For such networks, one necessarily takes into account wire delays. In the presence of wire
delays, it would be difficult to argue strongly in favor of a model where simultaneous changes
playa significant role: a small deviation in a wire delay is sufficient to change a simultaneous
occurrence of two signals into a sequential occurrence. Finally, the assumptions simplify a
number of proofs.

3 The General Multiple Winner Model

In order to address the question whether a gate network realizes a certain input-output be
havior, we first discuss the analysis of gate networks. We view a gate network [3] as a directed
labeled graph N = (n, m, V, E, g), where

• n:;,: 0 is the number of input variables;

• m 2': 0 is the number of gate variables associated with the gates of N;

• V = {I, ... , n + m} is the set of vertices of N corresponding to the n input terminals
and m gates;

• E ~ V x V, is the set of edges of N, corresponding to the wires connecting the inputs
and gates;

• g = g., ... ,gm is the vector of Boolean functions associated wi th the gates of N.

The vertices of N are classified as follows. The first n vertices, numbered 1, ... , n, cor
respond to the input terminals and are all of indegree O. Associate with input vertex i the
variable Xi' The remaining vertices are all of indegree greater than 0; they correspond to the
gates of the network and are numbered n + 1, ... , n + m. Associate with gate vertex n + i the
variable Vi' Let the vectors X = X., ••• , Xn and Y = Yi,' .. , Ym denote the network inputs and
the gate outputs, respectively. The vector xy represents the state of the network.

The function gi is the excitation of gate i, mapping {O,l}d; to {O, I}, where di is the
indegree of vertex i. The variables on which go depends are shown by the edges in E that lead
to vertex n+i. It is often convenient, however, to view go as a function of the entire state, i.e.,

5

to treat it as a mapping gi(XY) from {O, l}n+= to {O, I}. Notice that gates are not confined
to simple AND and OR gates, but may implement any Boolean function.

In any given state ab the output bi of gate i may differ from its excitation gi(ab). Gate i is
then said to be unstable; otherwise it is stable. A state of the network is stable if all the gates
are stable in that state.

To analyze a given network in any state we use the General Multiple Winner (GMW)
model [5]. In this model the relation Ra defines the possible transitions among the network
states on the basis of the unstable gates in each state. The relation Ra is defined for any
(fixed) input vector a E {O, l}n. Let

Da = {ab I bE {O, l}=},

i.e., let Da represent all the total network states that have the input component fixed at x = a.
For any din Da define the set of unstable gate indices to be

U(d) = {i I dn +i of. gild)}.

Next, define Ra as the smallest relation on Da with

d Ra d, if U(d) = 0, i.e., if d is stable,
d Ra dW , if W is a nonempty subset of U(d),

where the notation dW stands for the vector d in which all components with subscripts in Ware
complemented. Thus the relation Ra relates each stable state to itself and each unstable state
to any state obtained by complementing a non-empty subset of the unstable gate variables.
(A state with two or more unstable variables is said to have a race, and the gate variables
with subscripts in Ware the multiple winners of the race. The reader should also note that
two notations are used in connection with relations, namely: aRb and (a, b) E R.)

Example 5. To illustrate the GMW model, consider the network of the NOR latch and the
corresponding graph in Figure 5. We have

v = {1,2,3,4},
E={(1,3),(2,4),(3,4),(4,3)},
x = XtXZ, Y = YtYz,
gt (xy) = (Xt + yz) and g2(XY) = (X2 + Yt)·

The graph of the relation Roo is shown in Figure 6. Note that, after state 0000 is reached, the
network may end up in stable state 0001 or in the stable state 0010 (this represents a critical
race), or it may oscillate between the states 0000 and 0011. We consider such oscillations
unacceptable and indicative of undesirable behaviors in a physical circuit. 0

6

Xz ----....,: Yz
Xz -----.t-....

(a) (b)

Figure 5: NOR latch (a) Gate network and (b) graph.

Figure 6: Relation Roo, partial network behavior of NOR latch started in state 0000.

In the GMW analysis of a network state, a cycle must be reached eventually in the graph
of the relation Ra , since the number of network states is finite. Recall that every stable
network state forms a cycle of length one. The transient states occurring during a transition
from a given state are often of no interest. A cycle is transient if there exists a gate which is
unstable in every state of the cycle and has the same value in all these states; otherwise it is
nontransient. Let

cycl(Ra, d) == {e E Da I dRa 'e and eRa +e}

be the set of all the states reachable from state d that appear in cycles of Ra. Here, Ra + and
R. * denote the transitive and the reflexive-and-transitive closures of R •. Let trans(Ra, el) be
the set of all the states in cycl(R., d) that appear only in transient cycles of the graph of R a ,

and let
out(R., d) == cycl(R., d) - trans(Ra, d).

We interpret out(Ra, d) as the final outcome of the GMW analysis of the network started in
state d, where the inputs are kept fixed at a. The case of most interest is that in which the
outcome consists of a single state. This state is necessarily stable and is reached from d in a
finite time. Consequently, ifthe outcome consists of a single state, the network does not exhibit
nontransient oscillatory behavior. As we stated before, non transient oscillatory behaviors are
indicative of undesirable behaviors in a physical circuit and are therefore unacceptable.

7

From the construction of the relation Ra it follows that an arbitrary finite delay is asso
ciated with each gate, but that wires have no delays. If we wish to represent wire delays, we
do so by treating them as one-input, one-output gates performing the identity function. In
fact, this is exactly what we do in Section 5, when we examine delay-insensitive realizations
of input-output behaviors. There, a wire delay is included for each connection wire in a gate
network.

4 Fundamental Mode Realization

In order to realize a specified input-output behavior, we need not only an appropriate network,
but also a co-operating environment. Roughly speaking, the environment is expected to
produce the 'correct' input changes at the 'correct' times. For example, consider the input
output behavior of the latch of Figure 1, started in state u, U2V = 000. When a 'set' input is
applied to a network that should realize this input-output behavior, we expect the network
to respond by changing output v and moving to a state whose input-output component is
u, U2V = 101. If the 'set' input is then changed again, the network should move to input
output state 001, 'remembering' that a 'set'-pulse had been received. If the 'set' input manges
too soon to 0, however, some networks may fail to 'remember' the 'set' and may change back
to state 000. In the fundamental mode operation, the environment is allowed to change the
'set' input again only when the complete network has stabilized. The reader should note that
the fundamental mode of operation requires that the environment must know somehow when
the network is ready to receive the next input; however, it is irrelevant to the designer of a
fundamental mode circuit how this environment restriction is implemented. In this section we
make the concept of fundamental mode realization [13] precise.

Before giving a formal definition of fundamental mode realization, we need to define the
restriction of a network state to a subset of its state variables. For a given input-output
behavior B and a network N, we want to map each input of B to exactly one input of N
and each output of B to exactly one gate variable of N. One could also view this as a 1- to-l
mapping of a subset of the input variables of N to the input variables of B and of a subset of
the gate variables of N to the output variables of B. In case such a mapping exists, we say
that there is a restriction of N to B. We extend this restriction to a mapping of the states of
N to states of B by simply removing all state variables that are not representatives of state
variables in B. The restriction of network state q to B is denoted by q 1 B. We also generalize
this notion to the restriction of any binary relation RN on the states of N to a binary relation
RN 1 B on the states of B in the obvious way:

s (RN 1 B) Sf iff there exist states q, qf of N such that

q 1 B = S, qf 1 B = Sf, and qRNqf.

Given a restriction of a network N to a behavior B, we will simulate the network behavior
step by step with the environment behavior as given by B, in order to check whether N is
proper fundamental mode realization of B. First, if N is to realize· B, there must exist an
initial stable state qo of N whose restriction is so. Thus we will consider an initialized network
(N, qo) as a possible realization of B. After that, N should imitate B as follows. If, in B,

8

an input change is followed by an output change, then, in N, the corresponding input change
must eventually result in the corresponding output change. Thus phenomena such' as deadlock
and livelock [9] in N are not tolerated. We will take appropriate precautions to make sure
that our definition of realization does not permit such phenomena to occur. Furthermore,
if an output of B is to change once, then the corresponding output of N should not change
more that once; thus dynamic hazards are not acceptable. Similarly, if an output of B is
not supposed to change, than neither is the corresponding output of N; consequently, static
hazards are also excluded. We will show that our definition of realization is correct from this
point of view. All the concepts mentioned above will be made precise in this section.

The details of the simulation are as follows. The set of network states that can be reached
from qo is denoted by QF, and the possible transitions among these states are recorded in
the relation RF . Let B = (h, k, 5, T, so) be a simple deterministic behavior and let N =
(n,m,V,E,g) be a network, and qo an initial state. The set QF C;; {o,l}n+m and binary
relation RF C;; QF X QF are defined inductively as follows:

Induction Step: For each q E QF, where s = q ~ B and a E {o,l}n denotes the input
vector of q, we have the following rules:

• Rule 1:
If q is unstable, then, for each q' such that qRaq',
add q' to QF and (q, q') to R F .

• Rule 2:
If q is stable, then, for each input Ui of B such that sTs{i},

add q{j} to QF and (q, q{j}) to RF,
where Ui = Xj in the restriction of N to B.

(Recall that q{j} denotes state q with gate variable j complemented.) The induction step is
applied until Q F and RF Can no longer be enlarged.

Note that, when B is simple deterministic and s is unstable, s has only one output tran
sition. Consequently, there exists no input Ui of B such that sTs{i}, and any stable state
q E QF with q 1 B = s will not be related to any state by RF.

A tentative definition of '(N, qo) is an F-realization of B' might be that

RF 1 B-1 = T

must hold, where I is the identity relation on 5 and '1' has a higher priority than '-'. (Notice
that self-loops may be created when RF is restricted to B. Since such self-loops are not
allowed in T, we subtract them from the restriction.) This definition is not quite satisfactory,
however, since phenomena similar to deadlock and livelock may occur in the realization. These
phenomena are illustrated in the following examples.

Example 6. Let behavior B, have input u, output v, initial state 00, and 5, and T, are defined
by

B 'U V U v , : 00 --+ 10 ---> 11 ---> 01 ---> 00 ,

9

x--~

Figure 7: Network N 2 •

where the last state is the equal to the initial state. Let network N, have input x and two
gates 91> 92 with outputs Y1> Y2' The functions of the gates are given by

91(XY) = Yl + y£x and 92(XY) = XYI + Y,Y2'

Let the restriction be defined by u = x and v = Y2' Furthermore, let qo = 000; this is a stable
network state. Applying the above construction for QF and RF , we find the following. Since
qo = 000 is stable, Rule 2 can be applied. There is only one input transition (00,10) in B

" which gives rise to (000,100) in RF . State 100 is unstable, and Rule 1 yields (100,101) in RF.
State 101 is again stable, and Rule 2 with input transition (1l,01) from B, gives (101,001) in
RF . In state 001, Yl is unstable, so Rule 1 gives (001,01l) in RF . State 011 is also unstable,
and Rule 1 yields (011,010) in RF. Next, state 010 is stable, and Rule 2 now gives (010,110)
in RF . The last state 110 is also stable, and the simulation ends here. In summary, we have

000 ~ 100 ~ 101 ~ 001 ~ all ~ 010 ~ 110.

Although the condition RF 1 B, - I = T, is satisfied, a phenomenon similar to deadlock
occurs: as soon as state 110 is reached, no new output can ever be produced. 0

The previous example illustrated that, although a network may stabilize, there is no guarantee
that it will produce the required output. The following example illustrates that a network
may even fail to stabilize.

Example 7. Consider the behavior B2' with input u, output v, So = 10, and S2 and T2 given
by

B z : 10 ~ 00 ~ 01.

The network of Figure 7 shows the NOR latch of Figure 5, but now with the inputs tied
together and the outputs of the two NOR gates connected to a XOR gate. The restriction
of this network N2 to B2 is given by u = x and v = Y3' The initial state of N2 is 1000.
We find RF as shown in Figure 8, and RF 1 B2 = {(1O,00), (00,00),(00,01)}. Consequently,
RF 1 B2 - I = T2. We also observe, however, that the network may keep oscillating between
states 0000 and ono and thus never reach state 0011 or 0101. In other words, if the network
fails to stabilize, the required output v = 1 may never be produced. This phenomenon is
similar to livelock. 0

10

.. 0011

Figure 8: Relation RF for N2 •

In order to avoid a realization like that in Example 6, we introduce the notion of F
consistency. We say that (N, qo) with restriction 1 is F-consistent with respect to B iff, for all
q E QF,

q 1 B is unstable =} q is unstable.

The F-consistency condition requires that, as long as an output change is expected with respect
to B, network N will remain unstable. Notice that, in Example 6 above, 100 and 110 both
map onto the unstable state 10; state 100 is unstable, but 110 is not. Consequently, (N j , 000)
is not F-consistent with respect to B1 .

In order to guarantee stabilization, we require the absence of nontransient oscillations. For
this purpose we introduce the notion of F-determinism as follows. We say that (N, qo) with
restriction 1 is F-deterministic with respect to B iff for all q E QF, the result out(Ra , q) of
the GMW analysis consists of only one state, where a denotes the input vector of q. The
F-determinism condition requires that the GMW analysis of any state in QF is guaranteed to
stabilize in exactly one state. Obviously, if there exists a nontransient oscillation in a GMW
analysis of a state q in QF, then out(Ra , q) contains more than one state. Consequently, if
the F -determinism condition is satisfied, then there are no nontransient oscillations. Notice
that, in Example 7 above, out(Ro, 0000) = {DOll, 0101, 0000, 01l0}. Consequently, (N2' 1000)
is not F -deterministic wi th respect to B2 .

It was proved in [3] that, if a delay is included in the circuit model in each connection wire
(i.e., if the gate-and-wire-delay model is used), then there exists a nontransient oscillation iff
out(Ra , q) consists of more than one state. Consequently, for the gate-and-wire delay model,
the absence of nontransient oscillations is equivalent to F-determinism.

The definition of F-realization now reads as follows:

Definition 1 An initialized network (N, qo) with restriction 1 is an F-realization of behavior B
iff (N, qo) is F-consistent and F-deterministic with respect to B, and RF satisfies the condition:

RF 1 B-1 = T,

where 1 is the identity relation on 5. 0

We illustrate this definition by additional examples.

Example 8. Consider the behavior B3 with input u, output v, initial state So = 00, and 53

11

and T3 given in Figure 9. For the network N3 , we consider the NOR latch of Figure 5 again,
now started in state 0010. Let the restriction of N3 to B3 be defiued by u = x, and v = Y2'

B3 : 00 ~ 10 ~ 11 ~ 01

Figure 9: Input-output behavior B3 •

Performing the construction for QF and R F , we obtain

{(0010, 1010),(1010, 1000), (1000,1001), (1001,0001)}

{(00,10), (10,10), (10,11), (11,01)}.

One verifies that every state q E QF, for which q 1 B3 is unstable in B 3, q is also unstable in
N 3. Consequently, (N3'001O) is F-consistent with respect to B 3. Furthermore, (N3,001O) is
F-deterministic with respect to B3, and RF 1 B3 - I = T3, i.e., (N3,001O) is an F-realization
of B3 . 0

Example 9. As a second example, consider behavior B3 with the network N4 of Figure 10. The
network has input x, gate variables y" Y2, Y3, and excitation functions g, = X, g2 = Y3 and
g3 = Yl + Y2' Assuming the network starts in state 0000, and that the restriction is defined
by u = x and v = Y3, we obtain

Y,

Yz ,--.:_-
r-.., Y,

Figure 10: Network N4 •

RF = {(OOOO, 1000), (1000, 1100), (1l00, 1l01), (1l01, llll), (llll, 01ll), (Olll, 001l)}.

Again, one verifies that (N4'0000) is F-consistent and F-deterministic with respect to B 3, and
RF 1 B3 - I = T3, Le., N4 is an F-realization of B 3. 0

For simple deterministic behaviors, F -realization satisfies Property 2 below with respect to
static and dynamic hazards. A static hazard is said to occur on an output of a network
during a sequence of state transitions in the relation Ra, if that output has the same value
in the initial and final states of the sequence, but the complementary value in at least one
intermediate state. Here the output is not supposed to change but does change (at least twice).
A dynamic hazard is defined similarly, except that now the output has different values in the
initial and final states. Here the output is supposed to change once, but changes more than
once. Before formulating the property, we introduce some terminology. A sequence qo, '" qk,

k 2: 0, of network states with input component fixed at a is an Ra-sequence if q; Ra q;+1 for
i = 0, '" k - 1. The restriction of an Ra-sequence to B will be called an (Ra 1 B)-sequence.

12

Property 2 Let network (N, qo) with restriction 1 be an F-realization of simple deterministic
behavior B, and let s be any state of B .

• s is stable iff for all states q E QF, such that q 1 B = s, and for any Ra-sequence from
q to q' E out(Ra, q), there is no change in the corresponding (Ra 1 B)- sequence (i.e.,
there are no static hazards) .

• s is unstable iff for all states q E QF such that q 1 B = s, and for any Ra-sequence from
q to q' E out(Ra, q), there is exactly one change in the corresponding (Ra 1 B)-sequence
(i.e., the sequence has the form 8, ... , S, S', ... , 8', where 8' ::= q' ! B, and there are no
dynamic hazards).

Proof. Let (N, qo) be an F-realization of B and let s be any state of B.
For the first claim, because RF 1 B-1 = T, the condition

for all q E QF, with q 1 B = s, and any Ra-sequence starting in q, the correspond
ing (Ra 1 B)-sequence has no changes

is equivalent to the condition

state s has no ou tpu t transi tions.

By the definition of stability and the fact that B is simple deterministic, this is equivalent to
the condition that s is stable.

For the second claim we observe the following. Assume that for all q E QF, with q 1 B = s,
and any Ra-sequence starting in q, the corresponding (Ra 1 B)-sequence has exactly one
change. Then there is an output transition from s in RF 1 B. Thus, by the definition of
unstable state, s is unstable.

Conversely, assume that s is unstable. Then s has an output transition in T and, since
RF 1 B-1 = T, also in RF 1 B. Let q E QF, with q 1 B = s, and take an arbitrary
Ra-sequence that starts in q and ends in a stable network state. Such a stable network state
exists, since (N, qo) is F-deterministic with respect to B. Since (N, qo) is also F-consistent
with respect to Band s is unstable in B, the flllal stable network state of the Ra-sequence
does not map onto s. Hence the (Ra 1 B)-sequence has at least one change.

Suppose further that the first state different from s in the (Ra 1 B)-sequence is 5'. Since n
is simple deterministic and, therefore, 5' is a stable state, all successors of s' in the (RF 1 B)
sequence are also S'. Consequently, there is exactly one change in any (Ra 1 B)-sequence.
Thus, the second claim also holds. 0

5 Input-Output Mode Realization

For the design of delay-insensitive circuits [15], one also starts with a specification of an
input-output behavior, but now the uetwork is operated in input-output mode. This mode
of operation stipulates that the environment is allowed to change the inputs of the network
before the complete network has stabilized, as long as this is done in accordance with the state
transitions of the input-output behavior; the network must produce the outputs as specified

13

in the input-output behavior. For example, for the input-output behavior of the TOGGLE

of Figure 4, the environment can start by changing the input u. As soon as the network
for the TOGGLE responds with a change in output v" the environment is allowed to change
the input u again, etc. The reader should observe that the input-output mode places less
responsibility on the environment, than does the fundamental mode: the environment can
supply the next input change as soon as the network has produced an output change, and no
additional information is needed.

When a network N is operated in input-output mode with respect to a behavior B, we
construct the set of states QIO and the relation RIO. The construction of these sets is similar
to the construction of Q F and RF when a network N is operated in fundamental mode wi th
respect to a behavior B. Again we assume that there exists a restriction 1 and a stable state
go of N that maps onto the initial state So of B. The set QIO and relation RIO are defined
inductively as follows:

Basis: QIO = {qo}, RIO = 0.

Induction Step: For each q E QIO, where s = q 1 B and a E {O, l}n denotes the input
vector of q, we have the following rules:

• Rule 1':
If q 1 B is unstable, then, for each q' such that qRaq',
add q' to QIO and (q, q') to RIO .

• Rule 2':
If q 1 B is stable, then for each input Ui of B such that sTs{i}

and for each nonempty subset W of (U(q) U {j}),
where Ui = x j in the restriction of N to B,
add gW to QIO and (q, qW) to RIO.

The induction step is applied until Q 10 and RIO can no longer be enlarged.
Notice that, for constructing QIO and RIO, we examine the stability of q 1 B, instead of

g.
The definition of IO-realization now reads as follows:

Definition 3 An initialized network (N, go) with restriction 1 is an IO-realization of behavior
B iff (N, qo) is IO-consistent, IO-deterministic, and RIO satisfies the condition:

RIO 1 B-1 = T,

where I is the identity relation on Sand IO-consistency and IO-determinism are defined like
F-consistency and F-determinism, but now with respect to QIO. 0

The conditions that (N, go) be IO-consistent and lO-deterministic are introduced for the
same reasons as in the case of F-realization.

Example 10. We can apply the definition of lO-realization to the behaviors and networks given
in Examples 6, 7, and 8. The construction of QIO and RIO happens to be exactly the same
as for QF and RF, in these three cases. We obtain the following conclusions:

14

o

• (N"OOO) is not an 10-realization of B" since (N"OOO) is not 10-consistent.

• (N2,1000) is not an IO-realization of B2 , since (N2 , 1000) is not 10-deterministic.

• (Na, 0010) is an IO-realization of Ba, since (Na, 0010) is 10-consistent and IO-deterministic
and RIO ! Ba - I = Ta.

Example 11. The situation is different for B3 and N, from Example 9. Although (N" 0000) is
an F-realization of B 3 , it is not an 10-realization of B 3 • The following sequence of transitions
can occur in RIO:

0000 ~ 1000 ~ noo -"'-+ 1101 ~ 0101 ~ 0001 -"'-+ 0000.

From this sequence it follows that RIO ! B3 - I # Ta, since (01,00) rf. T3. 0

The property with respect to static and dynamic hazards also holds for 10-realizations.

Property 4 Property 2 also holds when (N, qo) with restriction! is an IO-realization of
simple deterministic behavior B.

Proof: The proof of Property 2 still holds if each occurrence of F is replaced by 10. 0

• We prove below that; if a network ,IO-realizes a behavior, then it also F-realizes it. Conse
quently, the fundamental mode of operation can be seen as a special case of the input-output
mode of operation. Thus, if an input-output behavior is not realizable by any network op
erated in fundamental mode, then certainly it is not realizable by any network operated in
input-output mode.

Theorem 5 If (N, qo) with restriction! IO-realizes B, then (N, qo) with the same restriction
also F-realizes B.

Proof: Let (N, qo) be an 10-realization of B. First, we prove that RF <;;; RIO and then that
(RIO! B - I) <;;; (RF ! B - I). From these two properties it follows that (RIO! B - 1) =
(RF ! B-1). Furthermore, if RF <;;; RIO and (N, qo) is 10-consistent and IO-deterministic,
it follows that (N, qo) is F-consistent and F-deterministic as well. Consequently, we conclude
that (N,qo) is also an F-realization of B.

We prove RF <;;; RIO by induction on the construction of RF and RIO'
Basis: {qo} = RF and {qo} = RIO.
Induction Step: RF can be enlarged by applying Rule 1 or 2 to a state q E QF. RIO can be
enlarged by applying Rule I' or 2' to state q. Rule 1 applies when q is unstable. Suppose we
can add (q, q') to RF, because qRoq'. Then we can also add (q,l/) to RIO by using Rule I', if
q 1 B is unstable, or by using Rule 2', if q 1 B is stable. Therefore, if RF can be enlarged by
Rule 1, then RIO can be enlarged similarly.

If Rule 2 is used, then q is stable. Because (N, qo) is 10-consistent, and q is in RIO by the
induction hypothesis, q ! B is also stable. Hence Rule 2' applies, and RIO can be enlarged
like RF by choosing W to be {j}. This completes the proof of the first claim, Le., we have

15

The proof of the second claim, i.e., that RIO 1 B-1 <;; RF 1 B-1, is also done by
induction on the construction of RIO and RF.
Basis: Obviously, the second claim holds for QIO = {qo}, RIO = 0 and QF = {qo}, RF = 0.
Induction Step: We show that, for all sand s',

s E (QF 1 B) " (s,s') E (RIO 1 B - I) ~ (s,s') E (RF 1 B - I).

Let 8 E QF 1 Band (s,s') E RIO 1 B-1. Then there is a q E QF such that q 1 B = s.
Since RF <;; RIO, also q E QIO. Since (N, qo) is IO-deterministic, there is a q' such that
{q'} = out(Ra,q), where a is the input vector of q.

Suppose s is stable. Then all of the Ra-successors of q are in QIO because of Rule 2',
and in RF because of Rule 1. It follows from Property 4 that no changes occur in any
(Ra 1 B)-sequence from q to q'. Consequently, q' 1 B = s. Since s is stable and B is simple
deterministic, (s, s') must be an input transition in which only one input variable changes.
Since c/ is stable, we can apply Rule 2 and add (q', q'{i}) to RF , where i is the index of the
input that changes, i.e., q,{i} 1 B = s'. Consequently, (s, s') E RF 1 B-1.

If 8 is unstable then it follows by Property 4 that, in any (Ra 1 B)-sequence from q to q',
there exist two consecutive states whose restrictions yield the output transition (s, s'). Since
s is unstable and (N, qo) is IO-consistent, q must also be unstable. By Rule 1, all the Ra
successors of q are in QF. From this it follows that (8, s') E RF 1 B-1. This completes the
proof of the second claim. 0

We say that an input-output behavior B has a delay-insensitive IO-realization (N, qo) iff
all wire delays are included as gate components of Nand (N, qo) IO-realizes B. Similarly we
define a delay-insensitive F-realization of B by network (N, qo). For example, in the network
N4 of Figure 10 all wire delays are included as gate components. Consequently, (N4'0000) is
a delay-insensitive F-realization of B3 • For a recent survey on other formalizations of delay
insensitive circuits, we refer the reader to [2].

6 A Behavior not Realizable in the Input-Output Mode

We will show in this section that the behavior B3 of Figure 9 does not have a delay-insensitive
realization operated in the input-output mode, although it has a delay-insensitive realization
operated in the fundamental mode as we have seen in Example 9. We show that, if a delay
insensitive IO-realization (N, qo) of B3 existed, then we could construct a network N' that
would have contradictory properties when operated in fundamental mode. The proof uses
a rather deep result concerning the equivalence of GMW analysis and ternary simulation.
Ternary simulation uses the values 0, 1, and X and a partial order on these values such that
X is greater than either one of the binary values. The concept of least upper bound is defined
with respect to this partial order. Ternary simulation consists of two parts, called Algorithms
A and B, whose results can be characterized as follows [3](also [1] for Algorithm A):

16

Theorem 6 Let N be any network in which all wire delays are taken into account explicitly.
Then the result of Algorithm A of the ternary simulation of a transition of N is equal to the
least upper bound of the set of states that are reachable from the initial state in the G M W
analysis of N. Furthermore, the result of Algorithm B of the ternary simulation is equal to
the least upper bound of the set of states that appear in the outcome of the GMW analysis. 0

For this section we assume that N has one input x that is restricted to u and one gate
variable z that is restricted to v. The remaining input variables of N are assumed to be
constant, and will therefore be ignored. The remaining gate variables of N are represented by
vector y, and we assume that the state of N can be represented by the vector xyz.

Lemma 7 The behavior B3 = (1,1,5, T, 00), where 5 and T are given by

B3 : 00 ~ 10 ~ 11 ~ 01,

does not have a delay-insensitive IO-realization.

Proof: If gate network (N, qo) is a delay-insensitive la-realization of behavior B3 , then it
must have the following properties:

P, There exists an initial stable state qo = ObO for some vector b.

P2 The state IbO is unstable (since (N, qo) is la-consistent arid 10 is unstable in B3).

P3 In every R,-sequence starting with IbO and ending with a state in out(R" IbO), z changes
exactly once (Property 4).

P4 Let leI be any state that can be reached by an R,-sequence from 1bO. If the input x is
changed to 0 again, where some of the variables in y may also change at the same time,
some state Odl is reached. If the GMW analysis is continued from state Odl, the gate
variable z should not change. Note that state leI does not have to be a stable network
state.

Consider the network N' derived from N as shown in Figure 11. Notice that a delay element
is introduced for every connection wire. Since network N also contains a delay element for
each connection wire, Theorem 6 is applicable to network N'.

Figure 11: Network N'.

One verifies that the state twxyz = 11000bO is stable. We will operate N' in fundamental
mode, causing a transition by changing t from 1 to 0 and then letting the network stabilize.
We have the following Ro-sequence for N':

OlOOObO ~ OOOOObO ~ 00010bO --=-. 00011bO.

17

Note that, until the last step above, N has been stable, as guaranteed by P,. In the last step,
N becomes unstable, as required by P2 . By P3 , N eventually reaches a state 1cl, for some
vector e, by a subsequent Ro-sequence for N', i.e.,

OOOllbO --;* 00011e1.

From P4 it now follows that z cannot change any more, even if x becomes 0 again; this has
to hold for all possible values that y may reach. Thus, the y-component of the state of N'
becomes irrelevant, and we replace it by '_' from now on. We have the following extension of
the Ro-sequence for N':

00011e1 ~ 0011L1 ~ 0010L1 ...=.... 00100_1.

In the last state, the variables w, x, and z are stable and will not become unstable again. From
the above, it follows that the outcome of the GMW analysis of N' started in state 00100d1,
where the input is kept at 0, always yields states of the form 00100_1, i.e.,

q E out(Ro, 01000bO) =;. the z component of q is 1.

Consequently, even in the presence of arbitrary gate and wire delays, the final outcome of the
transition yields z = l.

We also observe that, in the above analysis, N' is operated in fundamental mode with
respect to behavior

, t z B : 00 --; 10 --; 11,

but N is operated in input-output mode with respect to behavior B3 •

Next we show that ternary simulation of N' contradicts the conclusion reached above. The
reader unfamiliar with ternary simulation is referred to [3J; here we only give the results of
the simulation.

Algorithm A of the simulation produces the following initial sequence:

XlOOObO --; XXOOObO --; XXOXObO --; XXOXXbO

As we have seen above,

OlOOObO Ro * 01000bO and 01000bO Ro * 00011c1,

i.e., both 01000bO and 00011cl are reachable from 01000bO (in zero or more steps). Conse
quently, the output z can take the values 0 and 1 in the GMW analysis of the network. But
then, by Theorem 6, Algorithm A of the ternary simulation must produce z = X. Su bse
quently, w2 becomes X, and the final result of Algorithm A has the form XXXXXeX for
some vector e of ternary values.

Changing t from X to 0 now and applying Algorithm B to the state OX X X X eX, we find
that the algorithm terminates in the second step with the state OOX X X eX. Consequently,
Algorithm B predicts that z has the value X. But then, by Theorem 6, there exists a state in
the outcome of the GMW analysis where z = O. This contradicts the GMW analysis above.
Therefore, the network N with the postulated properties cannot exist, and we have proved

18

that behavior B3 does not have a delay-insensitive gate realization operated in the input
ou tput mode. 0

With the above lemma it is easy to verify that the input-output behaviors of the set-reset
latch, the C-ELEMENT, and the TOGGLE of Figures 1, 2, 3, and 4 do not have delay-insensitive
realizations operated in input-output mode. Each of these behaviors contains behavior B3 of
Lemma 7. The latch has the following su b-behavior:

000 ~ 100 ~ 101 ~ 001.

Thus, simply by ignoring the input U2, we obtain the behavior B 3 • Similarly, the C-ELEMENT

has the sub-behavior:
100 ~ 110 ~ 111 ~ 101.

If we ignore the input U" we obtain behavior B3 . Finally, the TOGGLE contains the behavior

000 ~ 100 ~ 110 ~ 010 ~ 011

and we obtain B3 by ignoring the second output.

By means of slight modifications in the proof of Lemma 7, we can show that three other
behaviors also lack delay-insensitive IO-realizations.

Lemma 8 Any behavior B = (I, 1, S, T, so), where Sand T are given by

B: ab~iib~iib~ab

with a, b E {O, I}, does not have a delay-insensitive gate realization operated in input-output
mode.

Proof: In case ab = 10, repeat the arguments of Lemma 7, but with network N' modified as
follows. Insert an inverter in series with a delay in the wire leading to the input x of network
N.

In case ab = 01, modify network N' by the addition of an inverter in series with a delay
in the wire leaving output z of network N.

In case ab = 11, modify network N' by the addition of two inverters with delays as indicated
in the two cases above. 0

In the following section we show that a larger class of behaviors does not have delay-insensitive
gate realizations operating in the input-output mode.

7 Nontrivial Sequential Behaviors

An example of a simple deterministic input-output behavior that does have a delay-insensitive
IO-realization is shown in Figure 12. This behavior is realizable by an inverter with input
U and output v. The behavior is rather trivial, however, since every input vector uniquely
determines the state of the network.

19

01 ~ 11 ~ 10 ~ 00 ~ 01

Figure 12: Input-output behavior realized by an inverter.

Another rather trivial input-output behavior that has a delay-insensitive IO-realization is
given in Figure 13, where either 00 or 01 is the initial state. This behavior can be realized by
an output that is connected to a constant input and a 'dangling' external input u. Here there
are two different stable states possible for each input value; however, these two states are not
connected.

00 ~ 10 ~ 00 01 ~11 ~01

Figure 13: Behavior realizable by a wire connected to a constant input.

In order to eliminate such trivial cases, we impose the following condition on nontrivial
simple deterministic behaviors: if a behavior B = (h, k, S, T, so) is nontrivial, then there exists
at least one input vector u = a for which there are at least two stable states ab and ab' where
b oft b' and ab' is reachable from abo Notice that the input-output behaviors of Figure 12 and
13 do not satisfy the above condition.

We have the following result:

Theorem 9 No nontrivial simple deterministic behavior B = (1, k, S, T, so) with a binary
input has a delay-insensitive gate realization operating in input-output mode.

Proof: If B is nontrivial, then there exist stable states ab and ab' such that ab' is reachable
from abo Since b oft b', they must differ in at least one component. Without loss of generality,
assume that they differ in their last component, i.e., that b = cd and b' = c'd, where d E {O, 1}.

In case ad = 00, we can apply the following reasoning. Start in state OcO which is stable.
In order for Odl. to be reachable from OcO, we must change u to 1 and then back to 0 some
finite number of times. At some point in this sequence we must have a state OeO where the
output has not yet changed, but from which we can reach state 0/1 with two input changes.
Thus, we must have the sub-behavior:

OeO ~ leO --; l/g ~ O/g --; Ohl.

We can now consider two subcases.

Case 1: If 9 = 1 then the above sequence projects to the behavior B 3 , if we ignore all but the
first and the last components. By Lemma 7, B cannot be realized.

Case 2: 9 = O. We now have the following projection:

00 ~ 10 ~ 00 --; 01,

20

",'!'.

where the state 10 is stable in the behavior B, because the output is not changing by as
sumption. By Theorem 4.3 of [18], this behavior is not realizable by any network even if it is
operating in fundamental mode. The basic result from [18] states that if an output does not
change during the first input change, then it will not change during any number of subsequent
input changes in any network that operates properly in fundamental mode and is free of static
hazards in the outputs.

The other cases, where ad = 10 or ad = 01 or ad = 11 are all dealt with similarly using
Lemma 8.0

8 Concluding Remarks

We have presented formal characterizations of the two modes of operation of a network of
basic elements: the fundamental mode and the input-output mode. In doing so, we have used
the General Multiple Winner Model for representing the behavior of a network of gates in
connection with an input-output behavior that should be realized by that network.

We have restricted our formal characterizations in several ways. Firstly, we have confined
ourselves to simple deterministic input-output behaviors. Accordingly, only one input or
output may change at a time, and each output transition leads to a stable state.

Secondly, we have confined ourselves to networks of gates. Consequently, basic elements
-like the C-ELEMENT,TOGGLE, and ARBITllR were not allowed. This choice was made, because
we wanted to investigate the basic limitations of gate circuits, in view of the well-established
use of gates as primitive elements for the design of synchronous circuits.

Thirdly, we have defined input-output behaviors using the concept of state and transition,
where a state is uniquely represented by a vector of binary values. The behavior of a gate
network has been defined in similar terms. We have used this framework because the definition
of gates, G MW analysis, ternary simulation, and fundamental mode operation are all based
on the representation of a state as a vector of binary values; we have done this also for reasons
of simplicity. This approach, however, imposes some restrictions on the behaviors that can
be specified. Therefore, it would be more desirable to define behaviors purely in terms of
input and output events, for example, by sets of traces. This appears to be worthy of future
consideration.

Our results are not limited to traditional gate networks, but apply to the more modern
technologies as well. It has been shown in [4] that GMW analysis and ternary simulation are
also applicable to a large class of MOS circuits. Our presentation above was limited to gate
networks only for reasons of convenience.

For some related work, we refer the reader to a recent work concerning other limitations of
delay-insensitive circuits [12]. That work uses a different basic formalism and treats FORKS,

logic gates, and some other single-output components like C-ELEMENTS, as basic elements.

In closing, we may draw the following two conclusions from the present paper. First, if
one wants to realize components like C-ELEMENTS, TOGGLES, or latches by circuits using only
gates, then one has to make some assumptions about the gate and wire delays. Second, it

21

follows that a set of components different from the set oflogic gates is needed for the realization
of a significant class of delay-insensitive behaviors. Such sets of primitive components for
particular classes of delay-insensitive behaviors are suggested in [8, 22], for example.

Acknowledgement

The authors wish to thank Tom Verhoeff and Michael Yoeli for their careful reading of earlier
drafts of this paper and for their many constructive suggestions.

References

[1] R.E. Bryant, Towards a Proof of the Brzozowski- Yoeli Conjecture on Ternary Simulation,
Unpublished Manuscript, December 1983.

[2] J .A. Brzozowski and J .C. Ebergen, Recent Developments in the Design of Asynchronous
Circuits, Proceedings FCT 'Sg, Lecture Notes in Computer Science, Vol. 380, Springer
Verlag, pp. 78-94, August 1989.

[3] J.A. Brzozowski and C-J. Seger, A Characterization of Ternary Simulation of Gate Net
works, IEEE Trans. on Computers, Vol. C-36, No. 11, pp. 1318-1327, November 1987.

[4] J .A. Brzozowski and C-J. Seger, A Unified Framework for Race Analysis of Asynchronous
Networks, J. ACM, Vol. 36, No.1, pp. 20-45, January 1989.

[5] J .A. Brzozowski and M. Yoeli, On a Ternary Model of Gate Networks, IEEE Trans. on
Computers, Vol. C-28, No.3, pp. 178-183, March 1979.

[6] T.A. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications,
PhD Thesis, MIT, 1987.

[7] D.L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits, MIT Press, 1989.

[8] J .C. Ebergen, Translating Programs into Delay-Insensitive Circuits, CWI Tract 56, Cen
tre for Mathematics and Computing Science, Amsterdam, 1989.

[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[10] A.J. Martin et al., The Design of an Asynchronous Microprocessor, in Advanced Research
in VLSI, Proceedings of the Decennial Caltech Conference on VLSI, (C.L. Seitz ed.), 1989.

[11] A.J. Martin, Programming in VLSI: From Communicating Processes to Delay-Insensitive
Circuits, in: UT Year of Programming Institute on Concurrent Programming, (C.A.R.
Hoare ed.), Addison-Wesley 1989.

[12] A.J. Martin, The Limitations to Delay-Insensitivity in Asynchronous Circuits, Proc. 6th
MIT Conference on Advanced Research in VLSI, MIT Press, 1990.

22

,.

[13] E.J. McCluskey, Fundamental Mode and Pulse Mode Sequential Circuits, Proc. IFIP
Congress 62, North-Holland, pp. 725-730, 1963.

[14] T. Meng, R. Brodersen, and D. Messerschmitt, Automatic Synthesis of Asynchronous
Circuits from High-Level Specifications, IEEE Trans. on Computer Aided Design, Vol. 8,
No. 11, pp. 1185-1205, November 1989.

[15] C.E. Molnar, T.P. Fang and F.U. Rosenberger, Synthesis of Delay-Insensitive Modules,
in Proceedings 1985, Chapel Hill Conference on VLSI, (H. Fuchs ed.), Computer Science
Press, pp.67-86, 1985.

[16] D.E. Muller and W.S. Bartky, A Theory of Asynchronous Circuits, Proceedings of an
International Symposium on the Theory of Switching, Vol. 29 of the Annals of the Com
putation Laboratory of Harvard University, Harvard University Press, Cambridge, Mass.,
pp. 204-243, 1959.

[17] M. Rem, Trace Theory and Systolic Computations, in Proceedings PARLE, Parallel Ar
chitectures and Languages Europe, Vol. 1, (J.W. de Bakker, A.J. Nijman and P.C. Tre
leaven eds.), Springer-Verlag, pp. 14-34, 1987.

[18] C-J. Seger, Models and Algorithms for Race Analysis in Asynchronous Circuits, Ph.D.
Thesis, Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, May 1988.

[19] C.L. Seitz, System Timing, in Introduction to VLSI Systems, C. Mead and L. Conway,
Addison-Wesley, pp. 218-262, 1980.

[20] I.E. Sutherland, Micropipelines, Communications of the ACM, 32 (6) (1989) pp. 720-738.

[21] C. van Berkel, C. Niessen, M. Rem, R. Saeijs, VLSI Programming and Silicon Com
pilation: a Novel Approach from Philips Research, Proceedings of IEEE International
Conference on Computer Design 1988, (ICCD '88), 1988.

[22] M. Yoeli, Net Based Synthesis of Delay-Insensitive Circuits, Technical Report No. 609,
Department of Computer Science, Technion- Israel Institute of Technology, Haifa, Israel,
February 1990.

23

In this series appeared :

No. Author(s)
85/01 RH. Mak

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.M.L.J.Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/07 R Gerth
L. Shira

86/08 R Koymans
RK. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R Gerth

86/13 R Gerth
W.P. de Roever

Title
The fonnal speCification and derivation of CMOS
-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow fIlms.

Delay insensitive directed trace structures satisfy
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace
structures.

The partition of an information system in several
systems.

A framework for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFlP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
verifying object oriented systems (Fund. Informatica
IX-4).

86/14 R. Koymans

87/01 R. Gerth

87/m Simon J. Klaver
Chris F.M. Verbeme

87/03 G.I. Houben
J .Paredaens

87/04 T. Verhoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 R.Koymans

87/08 H.M.J.L. Schols

87/(J) J. Kalisvaart
L.R.A. Kessener
W.J.M. Lernrnens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J .C.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal
logic specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base
management toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/19 A.J.Seebregts

87/20 G.J. Houben
J. Paredaens

87/21 R. Gerth
M. Codish
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff

88/02 K.M. van Hee
G.J. Houben
LJ. Somers
M. Voorhoeve

88/03 T. Verhoeff

88/04 G.J. Houben
J .Paredaens
D.Tahon

88/05 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols

88/07 C. Huizing
R. Gerth
W.P. de Roever

88/08 K.M. van Hee
GJ. Houben
LJ. Somers
M. Voorhoeve

88/09 A.T.M. Aerts
K.M. van Hee

88/10 J.e. Ebergen

88/11 G.J. Houben
J .Paredaens

88/12 A.E. Eiben

88/13 A. BijIsma

An integer algorithm for rendering curved
surfaces.

Optimalisering van file allocatie in
gedistribueerde database systemen.

The R' -Algebra: An extension of an algebra
for nested relations.

Fully abstract denotational semantics for concurrent
PROLOG.

A Parallel Program That Generates the Mobius
Sequence.

Executable Specification for Information Systems.

Settling a Question about Pythagorean Triples.

The Nested Relational Algebra: A Tool to Handle
Structured Information.

Executable Specifications for Information Systems.

Notes on Delay-Insensitive Communication.

Modelling Statecharts behaviour in a fully abstract
way.

A Formal model for System Specification.

A Tutorial for Data Modelling.

A Formal Approach to Designing Delay Insensitive
Circuits.

A graphical interface formalism: specifying nested
relational databases.

Abstract theory of planning.

A unified approach to sequences, bags, and trees.

"'.,.'. 88/14-·· H;M.M: ·ten Eikelder
R.H. Mak

88/15 R. Bos
C. Hemerik:

88/16 C.Hemerik:
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik:

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

". Language theory of a lambda-calculus with
recursive types.

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT. the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionaliry and modularity in process
specification and design: A trace-state based
approach.

Networks of Commurticating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

. ', '89/12·' ·'A.T.M.Aerts' "
KM. van Hee

89/13

89/14

89/lS

89/16

89/17

'·90/1

90/2

90/3

90/4

90/5

90/6

90/7

A.T.M.Aerts
KM. van Hee
M.W.H. Hesen

H.C.Haesen

J.S.C.P. van der Woude

A.T.M.Aerts
KM. van Hee

M.J. van Diepen
KM. van Hee

W.P.de Roever-H.Barringer
C.Courcoubetis-D.Gabbay
R.Gertb-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

KM. van Hee
P.M.P. Rambags

R. Gertb

A. Peeters

J.A. Brzowwski
J.C. Ebergen

A.J.J.M. Marcelis

A.J.l.M. Marcelis

A concisefonnal. framework for data modeling .

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A fonnal semantics for Z and the link between
Z and the relational algebra.

Fonnal methods and tools for the development of
distributed and real time systems, pp. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems: a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

	Abstract
	1. Introduction
	2. Specification of Input-Output Behavior
	3. The General Multiple Winner Model
	4. Fundamental Mode Realization
	5. Input-Output Mode Realization
	6. A Behavior not Realizable in the Input-Output Mode
	7. Nontrivial Sequential Behaviors
	8. Concluding Remarks
	References

