

Ideals : an introduction to the project and the book

Citation for published version (APA):
Engelen, van, R., & Voeten, J. P. M. (2007). Ideals : an introduction to the project and the book. In J. Voeten, &
R. Engelen, van (Eds.), Ideals: evolvability of software-intensive high-tech systems (pp. 1-22). Embedded
Systems Institute.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1e453810-2fad-4d2b-81df-6f40432a1903

Chapter 1

Ideals: an introduction to the
project and the book

Authors: Remco van Engelen, Jeroen Voeten

1.1 Introduction

High-tech systems such as wafer scanners, medical MRI1 scanners, electron micro-
scopes, and copiers, are typically not developed from scratch. Instead, new generations
of such machines are based on older versions, where new features and capabilities are
added; high-tech systems evolve over time. This proces of evolution is often driven
by the required changes in the key performance parameters of such systems. As an
example, driven by Moore’s law, the key performance parameters of a wafer scanner
are tightened from one generation to the next. These parameters mainly concern the di-
mensions of patterns of electronic circuits that are mapped onto a wafer and the number
of wafers that are processed per hour. Even a small change in these key performance
parameters can have a huge impact on the design and implementation of the embedded
system that controls the wafer scanner. An important reason is that physical depen-
dencies and effects that could be ignored in the past have to be compensated for in the
next generation. This is done by mirroring them in the embedded system where they
appear as (new) interactions between (new) system components. Another consequence
is that the performance requirements of these components are tightened at the same
time, making even more adaptations necessary. Finally, life-cycle requirements may
result in a major overhaul of the existing components of the embedded system.

Evolvability poses one of the most difficult challenges the high-tech industry is
currently facing. The time and effort required to modify and extend a complex em-

1Magnetic Resonance Imaging.

1

2 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

bedded system is typically huge and unpredictable, thereby severely threatening time-
to-market and time-to-quality constraints. It is therefore more and more important to
make embedded systems better evolvable. This is exactly the goal of the Ideals project:
developing methods, techniques and tools reducing the lead time and effort to maintain
complex embedded systems, where the focus is on embedded software. Ideals is an
applied industrial-academic research project. Coordinated by the Embedded Systems
Institute, ASML together with different research institutes in the Netherlands have col-
laborated on achieving the research goal.

This book gives an overview of the results of the Ideals project. This introduc-
tory chapter introduces the project (Section 1.2), analyzes the problem statement (Sec-
tion 1.3) and introduces the two main research directions in which solutions have been
developed: Aspect-oriented software design (Section 1.4) and Model-driven engineer-
ing (Section 1.5). These sections also introduce the corresponding book chapters in
which detailed project results are described. The concluding chapter of this book
(Chapter 10) describes the industrial impact of the project, the lessons learned, and
draws the final conclusions. This introductory chapter together with the concluding
chapter are self-contained and can be read without having to study the chapters de-
scribing the detailed results.

1.2 The Ideals project

The Ideals Project is an industrial-academic research and development project managed
by the Embedded Systems Institute. The goal of Ideals is to develop methods, tech-
niques and tools to make embedded software better evolvable. In Ideals, researchers
and engineers from ASML have worked closely together with researchers of Delft Uni-
versity of Technology, Eindhoven University of Technology, the University of Twente,
the Center for Mathematics and Computer Science, and the Embedded Systems In-
stitute. The project started in September 2003, lasted until February 2008, and was
financially supported by the Netherlands Ministry of Economic Affairs.

Industry-as-laboratory

The academic-industrial cooperation in Ideals took place in a setting calledindustry-
as-laboratory[85]. This means that the actual industrial setting is used as a laboratory,
akin to a physical or chemical laboratory, where new theories, ideas, and hypotheses,
mostly coming from the academic partners in the project, are tested, evaluated, and
further developed. This setting provides a realistic environment for experimenting with
ideas and theories. Moreover, the industry-as-laboratory setting facilitates the transfer
of knowledge from academia to industry, and it provides direct feedback about the
applicability and usefulness of newly developed academic theories, which may again
lead to new academic research questions. But, of course, in such a setting also care
should be taken that the normal industrial processes are not disrupted.

EVOLVABILITY - PROBLEM ANALYSIS AND SOLUTION DIRECTIONS 3

ASML

For Ideals, the laboratory has been provided by ASML. ASML is the leading global
company for lithography systems for the semiconductor industry. Their wafer scanner
machines, which involve highly complex configurations of embedded systems with
extreme requirements regarding performance and precision, provided a demanding and
stimulating laboratory environment.

An example of the evolvability challenge that ASML faces can be found in one of
the most crucial lithography system components: the projection optics. This complex
system of lenses is used to project the original circuit pattern, with a size of roughly
10 by 10 centimeters and containing lines as small as 180 nanometer (1/300th of the
width of a human hair), onto a silicon wafer (a large disc with a radius of 200 or 300
millimeters), while reducing the image by a factor 4, producing images on the wafer
with line widths down to 45 nanometers. The quality of the projection determines the
performance of the resulting IC, and thereby its value. The projection optics is not
a static system: it contains a number of controls that allow tuning of the projection
result to compensate for e.g. distortion in the original circuit pattern or changes in
temperature or air pressure. The embedded system uses a set of sensors to sample all
factors influencing the lens performance, calculate the optimal settings for the lens and
drive the actuators to control the lens.

Over a period of 5 years, as the minimum exposed line width for leading edge
lithography machines shrunk from 95 to 40 nanometers, the number of controls in the
used projection optics subsystems grew from 5 to 60. This meant that more sensors had
to be introduced and needed to be sampled, more complex models needed to be used
to calculate optimal settings for the lens, and more actuators needed to be controlled.
This was not a single step, but in fact a gradual growth in complexity in 5 or 6 steps
during these 5 years. Every step resulted in a commercial product which targeted an
intermediate line width used by the IC industry to continuously improve chip capacity
and performance. Therefore, each step had to be delivered on time, work reliably and
be cost effective to implement and maintain. How to manage and design such gradual
changes that ultimately transform a subsystem without exploding implementation and
integration costs, is a challenge that ASML faces not only for the projection optics,
but in many more domains. It can be compared to the challenge posed to the Dutch
Rijkswaterstaat organization to perform complete upgrades of complex highway inter-
sections, while keeping them open for daily traffic with minimal disturbance, all at an
acceptable cost.

1.3 Evolvability - problem analysis and solution direc-
tions

The evolvability problem for ASML can be stated as:the effort and lead time to main-
tain and improve the embedded (software) system of a wafer scanner is too large. In the

4 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

Ideals project we identified two major causes for this, both related to the decomposition
of complex embedded (software) systems.

For complex embedded systems, the gap between the system specification (describ-
ing the desired properties in terms of behavior and key performance drivers) and the
implementation (consisting of a huge number of interacting hardware and software
components) is very large. As a result, people are not able to understand or verify how
these interacting components together satisfy the system specification. Also, people
cannot construct an implementation of such a magnitude in a single step. To deal with
this complexity designers create intermediate entities (such as subsystems, modules
and components) and break up the large verification and synthesis step in a sequence
of manageable intermediate steps. We will call these intermediate entities artifacts.
Each artifact is characterized with its own specification and design, and may in itself
be further decomposed into smaller artifacts.

This process of decomposition is typically guided by a number ofconcerns2. Some
concerns are the requirements or use cases of the system: often specific artifacts are
created for each of them to have a clear assignment of responsibilities. Another group
of concerns are the interfaces of the system: often specific artifacts are created as ab-
stractions of external elements (hardware or other software components).

In principle, all these concerns could be treated equal. But when two concerns
are decomposed into independent artifacts, but they have some sort of relation and
hence a need for interaction, a choice must be made where to put the interaction in
the decomposition. As an example, if two requirements refer to each other, and both
are assigned to a separate artifact, who should be responsible for the shared part of the
requirements? Placing the shared part in either artifact leads to a decomposition where
one requirement is completely described in one artifact, but the other is described in two
artifacts. Placing the shared part in a new, separate artifact, leads to a decomposition
where both requirements are described in two artifacts. Usually the relation is put into
one of the two artifacts, and a choice is made for which concern locality is considered
more important. This leads to a phenomenon known asdominant decomposition, where
some concerns have a better locality in the decomposition than others, because they are
deemed more important.

As a consequence, concerns with a lot of relations but that are deemed less impor-
tant end up scattered over the large number of artifacts of more important concerns.
We call these scattered concernscrosscutting concerns, since they intersect the decom-
position of the dominant orcore concernsin a number of places. The first major cause
of the large effort and lead time to maintain the embedded control system of a wafer
scanner is in these crosscutting concerns, and the insufficient means and methods to
efficiently deal with them in the design and implementation phases.

The second major cause of the large effort and lead time to maintain complex em-
bedded systems is a lack of proper abstractions for the artifacts, such that the decom-
position is effective. With effective we mean that one can understand and reason about
each artifact without having to consider its further decomposition into constituents and

2A concern is a general term that refers to any particular piece of interest or focus in a system.

EVOLVABILITY - PROBLEM ANALYSIS AND SOLUTION DIRECTIONS 5

that one is able to reason about the interaction and combined properties of all artifacts.
To be effective, the specifications (abstractions) of artifacts should describe (only) the
properties that are essential to understand the system as a whole, in a compact and
precise manner. Unfortunately, in practice, artifact specifications are typically of a
low abstraction level, inconsistent, ambiguous or imprecise, making it very difficult to
effectively use them as a basis for reasoning about system-level properties.

In Subsections 1.3.1 and 1.3.2 these major causes are explored in more detail. This
exploration is followed in Sections 1.4 and 1.5 by the main solution directions of the
Ideals project, i.e.Aspect-oriented software designandModel-driven engineering.

1.3.1 Crosscutting concerns

Crosscutting concerns (CCC’s), are those concerns (requirements, use cases, inter-
faces) in a system that have no clear locality in the chosen decomposition. These
concerns are not cleanly decomposed from the rest of the system in either the design or
the implementation and therefore recur in several artifacts. Typical examples of CCC’s
come from requirements and use cases related to the testing, integration and (field) sup-
port of systems3. While these concerns are usually not dominant in the decomposition,
they are crucial to the success of a complex system and have many relations to all other
concerns. Some concrete examples are:

• the ability to monitor the activity of a system during operation (tracing);

• correct and consistent handling of errors (exception handling and recovery);

• uniform access control to different capabilities of the system (licensing or user
privileges).

In case a piece of functionality has to be adapted or newly developed, these crosscutting
concerns have to be implemented as well. These additional concerns distract designers
from focusing on their key assignment (the core concerns). A common way to design
and implement a crosscutting concern is usingidioms, where the crosscutting concern
is described as a set of typical patterns to be applied in the design or implementation of
the core artifacts. The intention is that the application of these idioms is both easy to
do and easy to recognize in other artifacts; all instantiations of the idiom are largely the
same and only limited adaptation to the location where it is applied is required. In prac-
tice however, the wide-spread use of these idioms means that the crosscutting concern
is handled in a great many places (thescatteringeffect), while the interleaving of these
idioms with parts dealing with the core concerns means that identifying and working
with the core concern is more difficult (thetangling effect). Both these effects lead
to engineering inefficiencies when adapting both core concerns as well as crosscutting
concerns, see Figure 1.1. The problems are most manifest at the implementation level,
where the idioms are recognizable as code patterns or templates, and often less at the

3In a broader sense: all system life-cycle activities.

6 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

Idiom-based

solution for

CCCs

Replication

effort

Reduced

quality

No parallel

development

Architectural

decay

Engineering

inefficiency

Figure 1.1: Consequences of an idiom-based solution for crosscutting concerns
(CCC’s).

design level. At the design level concern interactions are often left implicit; they are
not described at all or in a very informal way (e.g., ‘the usual tracing must be applied’).
The reasons for engineering inefficiency, as depicted in Figure 1.1, are as follows:

• Replication effort Although the description of an idiom is usually well local-
ized, its instantiations are by nature replicated over many places. Thus, the im-
plementation, adaptation and testing of idiom instances is performed time and
again. This takes a lot of time and effort, sometimes because of the sheer num-
ber of instantiations, sometimes because of the complexity of an instantiation,
and sometimes because of both.

• Reduced qualityIdioms have to be instantiated by hand by a software engineer.
This is an error-prone activity, especially when idiom descriptions are informal
and ambiguous, or when many instantiations with slight variations have to be
made. This results in extra integration effort and duration to detect and cor-
rect these errors. Additionally, since typically examples of crosscutting concerns
come from life-cycle requirements such as product integration and testing re-
quirements, any remaining errors in the idiom instantiations negatively affect the
efficiency of the processes to create and support a product.

• No parallel developmentThe core functionality and the crosscutting concerns
cannot be developed in parallel, since they are integrated into the same artifact.
In addition it is difficult to out-source the development of a piece of functional-
ity or to use commercial off-the-shelf components, since the idioms used for the
crosscutting concerns should also be applied in the outsourced or bought soft-

EVOLVABILITY - PROBLEM ANALYSIS AND SOLUTION DIRECTIONS 7

ware. Hence parallel development is complicated, having a negative impact on
effort and lead time.

• Architectural decay The possibility to modify the design or implementation of
a crosscutting concern itself is hindered by the sheer number of idiom instantia-
tions that already exist in a system. A change in an idiom either implies updating
all instantiations of the old idiom (costing a large amount of effort and time) or
accepting that multiple versions of the idiom exist in the system (hindering the
ease of recognition and consistent use of the crosscutting concern). Not changing
the idiom means that the crosscutting concern cannot be adapted to follow the
evolution in its requirements, leading to suboptimal solutions or workarounds in
the system. Both accepting multiple versions of an idiom or not changing an id-
iom at all leads to architectural decay of the whole system, making maintenance
as a whole gradually more expensive.

In the Ideals project aspect-oriented software design (AOSD) techniques were investi-
gated as a means to deal with these issues. The promise of AOSD is to allow a localized
treatment of crosscutting concerns at both the design and implementation level. The
research field of aspect-oriented software design together with the topics addressed in
the Ideals project are explained in Section 1.4.

1.3.2 Missing effective abstractions

The second major cause we identified for the large effort and lead time to maintain
complex embedded systems is the lack of effective abstractions of the decomposition
artifacts of a system. This means that even if a decomposition achieves a good lo-
cality with respect to all concerns involved, it is still cumbersome to reason about the
properties of an artifact, based on the descriptions of its constituents.

Each decomposition artifact has its own specification and design. The design de-
scribes the way the artifact is built from lower-level interacting artifacts. The specifi-
cation abstracts the essential properties that characterize these lower-level artifacts as a
whole. In this way one can understand and reason about the artifact without having to
consider its constituents and similarly one is able to reason about the interaction with
other artifacts. To be effective, a specification of an artifact should describe the prop-
erties that are essential to understand the system as a whole. For real-time embedded
systems this implies that next to structure one should also focus on behavior, tim-
ing, performance and accuracy properties. Furthermore, the specification of an artifact
should be compact and precise and its design should not be too complex (implying that
it contains a restricted number of artifacts and interactions). Finally, the specification
and design should be consistent in the sense that their relation is clear and precise.

The effective use of abstractions in the design process brings many benefits. Un-
fortunately, these benefits are typically not experienced by industrial practitioners. De-
sign documentation that is supposed to provide insight, is typically of a low abstraction
level, is inconsistent, ambiguous and imprecise. Hence the design documentation does

8 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

Absence

effective

abstractions

Need for reverse

engineering

Loss of

structure

Unpredictable

integration

Suboptimal

design

No design

automation

Engineering

inefficiency

Figure 1.2: Consequences of ineffective abstractions.

not provide the required effective abstractions, leading to engineering inefficiency as
shown in Figure 1.2.

• Need for reverse engineeringIn case a system has to be adapted (functionality
or interactions have to be added or the performance has to be improved) one
has to understand the ‘big picture’ of the design. This in order to determine
how the change should be incorporated in such a way that the system remains
structured and understandable. Typically only a few architects have this ‘big
picture’ in their mind, but it is not explicitly available in the documentation and is
not shared by the majority of designers. As a result designers spend a lot of time
and effort in trying to (re-)construct this ‘big picture’. Shedding light on this ‘big
picture’ is precisely what effective abstractions are meant for. Existence of such
abstractions would make reverse engineering less needed and more effective.

• Loss of structureAn important goal of effective abstractions is to keep a system
understandable by structuring it. Design artifacts are to be designed in such a
way that they have limited interactions with and dependencies on other artifacts.
This allows modifications to be carried out locally, e.g., within one or a few
artifacts. However, if abstractions are not explicitly available or not consistent,
the intended structure is very difficult to retrieve (see also the previous item). As
a result dependencies are introduced that cross the intended artifact boundaries,
a phenomenon sometimes referred to as architectural decay, and changes to one
artifact can cause an unpredictable chain of required changes to other artifacts.

• Unpredictable integration Typically a lot of design documentation is produced,
but this documentation is mainly in the form of text and structure diagrams,

ASPECT-ORIENTED SOFTWARE DESIGN 9

which does not allow system behavior to be verified properly. The reason is that
dynamic, concurrent, or real-time behavior is just too difficult to understand from
textual documents and structure diagrams. In addition undocumented (hidden)
dependencies between system modules may exist. As a result many design errors
only show up during system integration when the system is actually used and
the impact of the hidden dependencies becomes visible. System integration is
typically late because all implementations of all components have to be ready.
Early integration by mixing implementations and executable specifications is not
supported if specifications are informal or ambiguous. Many of these problems
can be avoided if adequate system abstractions are available.

• Suboptimal designDesign solutions typically have a ‘sweet spot’ in which their
performance/resource ratio is optimal. For instance, assigning a piece of func-
tionality to embedded software or digital hardware in a clumsy way, can yield a
complex solution that is expensive to build (both in terms of effort and material
costs). Without proper abstractions and optimization tools the odds are low of
designing a solution in or around this ‘sweet spot’. Once a suboptimal design is
obtained, it is very difficult to get rid of it by making a fundamentally different
design. Organizational conservatism is a very important reason for this, but also
the fact that such a major design step requires one to return to the original specifi-
cations (which are not explicitly present) and explore design alternatives (which
is not supported). As a result, designers (have to) push the design performance
while leaving the design architecture the same, thereby increasing complexity
and drifting even further away from the sweet spot.

• No design automationExplicitly capturing the design intent in the form of pre-
cise abstractions allows the application of automated tools. Tools exist to verify
whether a design behaves correctly, to predict performance and timing prop-
erties, to transform specifications into implementations and to explore design
alternatives. These tools can have a huge impact on design efficiency, simply
because they are fast and can produce reliable results in a reproducible way.
Without them, a lot of manual work has be carried out, which is error-prone and
time-consuming.

The major goal of model-driven engineering is to attack engineering inefficiency by
introducing models as first-class citizens in the design trajectory. These models serve
as explicit abstractions that are intended to complement traditional forms of design
documentation. The research field of model-driven engineering together with the topics
addressed in the Ideals project are explained in Section 1.5.

1.4 Aspect-oriented software design

Before we begin exploring the solution direction researched in the Ideals project, we
can already formulate the first research question in this area:

10 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

Q-1 How relevant and real are the perceived problems with an idiom-based solution
for crosscutting concerns, as depicted in Figure 1.1? How can we identify and
quantify these problems?

A clear understanding of the problems caused by idiom-based solutions help in formu-
lating the requirements and constraints to alternatives. A quantification of the problems
helps to balance the cost of introducing an alternative to the benefits that can be gained.

1.4.1 AOSD in a nutshell

The goal of AOSD is to formally capture the interaction between the core concern
code (called thebase program) and the crosscutting concern code in anaspect: a mod-
ular implementation of the crosscutting concern. This interaction can be characterized
by answering two questions: what should the crosscutting functionality do and when
should it occur in a base program? The two answers form the two parts of an aspect: the
advicecaptures what-should-be-done, thepointcutcaptures when-it-should-be-done.

In order for the advice to be truly independent from the base program, which allows
it to be applied to many different base programs and thus solve the crosscuttingness
need, it needs to have a very clear and limited interface or abstraction of the base
program4. This interface is called thejoinpoint. A joinpoint typically contains some
generic abstractions that are available for every base program, by virtue of its chosen
programming language(s), run-time environment(s) or coding standards. A joinpoint
can also provide additional abstractions depending on the type or contents of the used
pointcut. Figure 1.3 gives an overview of an aspect and how it relates to base programs.
We will talk about the process of ‘applying’ an aspect in more detail in Section 1.4.3.
Given this sketch of what AOSD is, we can formulate the second research question on
this topic:

Q-2 (How) does AOSD contribute to a better handling of crosscutting concerns? How
much does it help and is it practically useful in an industrial context? What are
problems that may be introduced as a result of introducing AOSD?

1.4.2 Variability support in AOSD

An important part of research question Q-2 (Subsection 1.4.1) warrants extra attention:
practical usefulness. In order for AOSD to be a useful paradigm in practice, it must be
able to support a wide variety of crosscutting concerns and support variability within a
single crosscutting concern. In industrial contexts, with large embedded systems, there
will always be a need for slight adaptation of the implementation of a crosscutting
concern for a specific domain, platform, (sub-)application or product life cycle phase.
We will show how pointcuts and advices support this variation.

4If the advice would not need any interface to the base program, it is questionable whether the concern
is truly crosscutting, since there seems to be no relation between the two implementations. In such a case,
modularization can be achieved using more traditional decomposition techniques.

ASPECT-ORIENTED SOFTWARE DESIGN 11

Environment

Base Program

Joinpoint
(= base program interface)

AdvicePointcut

Aspect

Figure 1.3: Parts of an aspect and their relations.

Pointcuts are a formal means to specify when an advice should be applied. A basic
set of primitive properties is provided, together with a Boolean algebra to combine
the primitives into more complex expressions. The wealth of the primitive properties
determines the expressiveness of the pointcut formalism, and the amount of supported
variability in specifying when advices should be applied. Examples of categories of
primitives are:

• Static Also called syntactical or structural properties, this category contains
primitives that relate to the definition of the base program: the entities (func-
tions, variables, classes, et cetera) it consists of. Primitives can be used to select
entities based on e.g., name (exact or matching a regular expression), type, scope,
or any other static property. Primitives can also be used to query properties of
entities (type, existence, size, canonical name, ...) for more complex selection
criteria. In order to be broadly applicable, these primitives are based on the static
program model of the program environment used or coding conventions that ex-
ist (and are expected to be used consistently).

• Run-time Also called semantical or dynamic properties, this category contains
primitives that relate to the execution of the base program. Examples are prim-

12 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

itives to select functions executing within the calling hierarchy of another func-
tion, properties of the process or thread, or current values of variables and argu-
ments. These primitives are usually based on the semantical model of the pro-
gram environment used. These properties require run-time support for evaluating
pointcuts to determine if a pointcut is applicable in the base program instance.

• Meta-data When a required concept has neither a consistent static represen-
tation nor a run-time identification, meta-data like annotations can be used to
identify an entity. An example is when a domain concept like ‘performance-
critical function’ cannot be directly linked to a language construct in the pro-
gram environment or a consistent naming convention, all functions in the do-
main concept could be annotated with a specific annotation that asserts that they
are performance-critical. Using the meta-data, an aspect can either be applied
or rather be refrained from being applied to performance critical functions in a
consistent and modular way.

An Advice expresses what the crosscutting functionality should do, i.e., it is a piece
of code to be executed5 in each joinpoint. An advice can be forced to use the same
program environment as the base program, or, if the AOSD tool set allows this, it
could also use a different program environment that is more suitable to the domain of
the crosscutting concern. The expressiveness of advices is determined by the program
environment used for the advice.

An advice should be as independent as possible from the base programs it will
be added to later. As an example, an advice is free to use modules (or libraries or
services) of the run-time system, independent from the ones used by the base program,
but it should introduce the interfaces of the modules it depends on itself: it should
not be dependent on the base program to provide these. Complete independence from
the base program is usually impossible to achieve. Typically some information from
the base program and the location where it is applied (like the name of a function
or module) is needed in the advice. This interface between an advice and the base
program is formalized in the joinpoint. There are three types of properties a joinpoint
can provide to an advice:

• Generic properties These properties are automatically available to all advice
code in every joinpoint. They are typically provided by the program environment
used by the base program (e.g., every entity has a name, or was declared in a
specific module or file), or by generic conventions (e.g., naming conventions
may link the publicly available names of entities to a module name).

• Pointcut-type specific propertiesThese properties are only available based on
the type of the pointcut. As an example, pointcuts may identify functions (for
which the arguments and return type is available) or identify variables (for which

5Strictly speaking an advice is not only executable code; it can also contain declarative code. However,
with declarative code there are usually other mechanisms for modularization which are just as good or better
to use, so it is questionable if aspects should be used for purely declarative advices.

ASPECT-ORIENTED SOFTWARE DESIGN 13

the type and value is available). An advice may rely on these properties if it spec-
ifies the types of pointcuts it can be applied on. The availability of the property
for all relevant pointcut types is again guaranteed by the program environment
or by generic conventions.

• Domain specific propertiesBoth types of properties so far rely on the program
environment or conventions to ensure that a specific property is available. How-
ever, sometimes an advice needs an interface to a concept that the program en-
vironment does not support, but is domain specific. As an example, if an advice
has the need to re-initialize the base program, it should require an initialization
function in the interface of the joinpoint. This function can not be identified
automatically, but must be identified explicitly by the pointcut6.

We see that we have a number of options in supporting variability in both pointcuts and
advices. The more categories we choose, the more complex the interaction between
pointcuts and advices can become (especially for domain specific properties in ad-
vices, which require a precise way for advices and pointcuts to establish whether they
are compatible), or between the base program and the aspect (especially for meta-data
properties in pointcuts, which requires an extension to the base program environment
to support annotations and the definition of these annotations). For each category we
choose, we can further choose the specific properties supported in that category. Pro-
viding more categories and properties therein gives more expressiveness, at the price
of greater complexity. We can formulate our third research question concerning AOSD
as finding the balance between expressiveness and complexity:

Q-3 What is the required level of variability in crosscutting concerns in practice?
What AOSD techniques for pointcut and advice expressiveness do we need to
support this variability? How can these techniques be used in practice?

1.4.3 Applying AOSD in practice

So far, we have not discussed how the behavior of an aspect is actually added to the
behavior of the base program. There are a number of alternatives for this:

• Weaving We can take the source code of the base program and add extra code
to it that implements the behavior of the aspect. The combined program is then
presented to the compiler to create an executable version of the base program
including the aspect behavior. Thissource levelcombination of base program
and aspect is called weaving, and it has a number of note-worthy characteristics:

6Another interesting example in this context is error handling. In a program environment with exception
support, the means to signal an error is a generic property provided by the program environment. In a
program environment without exception support, the means to signal an error becomes domain specific, for
instance by assigning an error code to a specific variable. Which variable to use must then be captured
by the pointcut and provided to the advice; advices that might want to report errors require a pointcut that
guarantees them an error variable to use for this purpose.

14 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

– It requires that the program language of the advice can be easily translated
to the program language of the base program. Typically the program lan-
guage of the advice would be the same as that of the base program, with a
few extensions.

– It has only a crude support for run-time properties in pointcuts, since weav-
ing is done at compile time. It can support run-time properties by adding
advice code in all possible locations and guarding them with checks that
skip the advice code if the run-time requirements are not met, but this can
incur severe performance penalties.

– It can be easily compared to an idiom-based solution for a crosscutting
concern, since both are visible in the source code. This makes it more
easy to contrast the two approaches in terms of quality, effort, and run-time
impact, and to debug the process.

– It can easily support deployment to multiple target platforms using a single
aspect tool set, by using portable code for the aspect weaving and different
compilers after the weaving process.

• Binary augmentation We can also take the output from the compilation of the
base program (either to native machine code or some type of byte code targeting
a virtual machine) and add extra instructions to it that implement the behavior of
the aspect. Thisexecutable levelcombination is called binary augmentation. In
contrast to weaving, its characteristics are:

– Some concepts from the program environment that are used in e.g., point-
cuts may be difficult to extract reliably from the compiled base program
(e.g., scoping rules, variable names or types and annotations). This is es-
pecially the case for native compiled code (as opposed to code compiled
to target a virtual machine): instruction sets support less abstractions than
high level languages.

– The program language of the advice can be (very) different from the base
program, as long as the advice can be compiled to the target platform.

– It has the same difficulties with run-time properties as weaving.

– It is more difficult to examine the impact of the aspects without using spe-
cial tooling and target platform expertise. This may make debugging more
complex, and the run-time impact more difficult to understand.

– It can support aspects for different source languages using a single aspect
tool set, if all these languages are compiled to the same platform.

• Run-time interception The third option is to perform a standard instrumentation
of the base program (either through weaving or binary augmentation), indepen-
dent of the actual aspect(s) to be applied to the base program. Then, at run-time,
an aspect engine is used to intercept all interesting activities in the base program

ASPECT-ORIENTED SOFTWARE DESIGN 15

and to execute the relevant advices. This option is similar in characteristics to
binary augmentation, with the following exceptions:

– It has no problems with run-time properties.

– It is very flexible to add or change aspects, without changing anything to
the binary of the base program.

– It is very expensive in terms of run-time overhead, due to the extra layer of
the run-time aspect engine.

We consider source level weaving to be the best option for aspect-oriented software de-
velopment in complex embedded systems. This is because low performance overhead
and the possibility to understand and debug the impact of aspects at the programming
language abstraction level, are considered of paramount importance. In a situation
where a virtual machine is used and multiple source languages are used, binary aug-
mentation could be considered, as it reduces the cost of the aspect tool set (at a possibly
acceptable performance penalty).

As a result of the Ideals project, ASML started the design and implementation
of a weaver for the C language that can be used within the ASML software. Although
formally not part of the Ideals project, the project made use of the results of the research
project in the area of Aspect Oriented Software Design (especially into the contribution
and practical usability of AOSD), and was aimed at actually introducing an AOSD
methodology and tool set into a complex embedded system. By organizing this project
as a transfer project from research into the industry, thereby involving the research
partners, the research project could in return learn from the insights and questions
of the introduction project to trigger new research within the Ideals project. We will
therefore include some of the results of this transfer project in this book, to answer the
following research question:

Q-4 What are the important design constraints and quality attributes for an AOSD
tool set for use in complex embedded systems?

1.4.4 Migration to an AOSD solution

Knowing a solution to the problems caused by an idiom-based way of implementing
crosscutting concerns is immediately helpful for new developments that are not based
on existing designs. However, usually complex embedded systems change or grow
through evolution of existing designs (after all, this was the motivation for the Ide-
als project in the first place). It is therefore very important that any solution can be
introduced into legacy designs (and implementations) in a controlled, and preferably
automated, manner. This leads us to formulate the final research question in the area of
AOSD:

Q-5 How can we support the migration of an idiom-based solution for crosscutting
concerns to an AOSD based solution? Can we do this fully automatically?

16 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

System

design

Idiom-based

implementation

AOSD

implementation

CC concern
Auto-combined

implementation

Modular

implementation

core concern

tangled

scattered

(1) (2) (3)

Figure 1.4: Migration path of an existing system to an AOSD based system.

In Figure 1.4 we depict the migration process of a system originally designed using
an idiom-based solution (step 1), to one using an aspect-based solution and tool set
(step 3). The central direction of the research was to find out if the same approach
used to investigate the variability present in the existing system (to answer research
question Q-3 in Subsection 1.4.2) could also be used to support the migration of the
existing system, by splitting the existing code into the future base program and the
aspect definition (step 2). Such a migration has to be performed with minimal risk of
course, since testing complex embedded systems is very hard, especially when making
the many changes related to changing a crosscutting concern’s implementation. Using
source level weaving, we can strive to obtain textual equivalence of original source
code and the output of the weaver code, which would automatically prove the equiv-
alence of the two solutions. Any method with a less than 100% proven equivalence
would increase the (testing) cost of migration.

1.4.5 Research performed

The detailed results of the Ideals research into AOSD are described in the following
chapters:

• Chapter 2 describes a method for studying idiom-based implementations of cross-
cutting concerns. In particular, it analyses a seemingly simple concern, tracing,
and shows that it exhibits significant variability, despite the use of a prescribed
idiom. It further discusses the consequences of this variability in terms of how
AOSD could help prevent it, how it paralyzes (automated) migration efforts, and
which aspect language features are required in order to obtain precise and concise

MODEL-DRIVEN ENGINEERING 17

aspects. Hence, this chapter addresses research questions Q-3 and Q-5 (Pages 13
and 15).

• Chapter 3 addresses research question Q-1 (Page 10) by presenting an analysis of
the use of an idiom-based solution for exception handling. In particular it focuses
on evaluating the fault-proneness of this idiom: it presents a characterization of
the idiom, a fault model accompanied by an analysis tool, and empirical data.
The findings show that the idiom is indeed fault-prone, supporting the analysis
that an idiom-based solution for crosscutting concerns leads to reduced quality.

• Chapter 4 discusses the so-called aspect interference problem, one of the remain-
ing challenges of AOSD: aspects may interfere unexpectedly with the behavior
of the base code or other aspects. Especially interference among aspects is diffi-
cult to prevent, as this may be caused solely by the composition of aspects that
behave correctly in isolation. This chapter explains the problem of behavioral
conflicts among aspects at shared join points, and illustrates it with 2 aspects
found in the actual ASML software system. It presents an approach for the de-
tection of behavioral conflicts that is based on a novel abstraction model for
representing the behavior of an advice. Hence, this chapter addresses research
question Q-2 (Page 10).

• Chapter 5 relates to research questions Q-2, Q-3 and Q-4 (Pages 10, 13 and 15),
since it elaborates on the design of an industrial-strength AOSD system (a lan-
guage and a weaver) for complex embedded software. It gives an analysis on
the requirements of a general purpose AOSD language that can handle crosscut-
ting concerns in embedded software, and a strategy on working with aspects in
a large-scale software development process. It shows where established AOSD
techniques fail to meet some of these requirements, and proposes new techniques
to address them. In conclusion, it presents a short evaluation of the language and
weaver as applied in the software development process of ASML. This chapter is
the result of a joint project by the Ideals team and ASML to transfer knowledge
from the Ideals research project into industry.

• In Chapter 10 it is shown what the impact of the research described in the above
chapters is in practice, and how this impact was achieved. It thus addresses all
the research questions Q-1 through Q-5.

1.5 Model-driven engineering

As explained in the previous section, the focus of AOSD techniques is on (embedded)
software at the implementation level of abstraction. During the course of the Ideals
project we tried to broaden this perspective by considering model-driven engineering
(MDE) techniques. An important reason for this was the growing interest within ASML

18 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

to apply these techniques to improve the efficiency of the engineering process (see also
Subsection 1.3.2).

In the engineering process, communication between engineers about various het-
erogeneous concerns takes place at various abstraction levels. The communication at
the higher levels of abstraction usually manifests itself in the form of documents and
drawings that vaguely relate to each other. At the lowest level, this communication
manifests in the form of well related physical deliveries like boards, computers and
byte code files. In the model-driven engineering vision, models will replace the higher
level communication artifacts, enabling the systematic derivation of the lowest level
artifacts. Hence MDE refers to the systematic use of models as primary engineering
artifacts throughout the engineering life cycle.

MDE is an open approach that embraces various technological domains in a uni-
form way. In this view, other model-oriented initiatives, such as model-driven Architec-
ture (MDA), domain-specific modeling (DSM), model-integrated Computing (MIC),
model-driven software development (MDSD) and model-driven development (MDD),
are concrete instances of MDE. To give an example, the Object Management Group’s
(OMG) MDA initiative [68] is a standardized MDE approach that specifies formaliza-
tion and automation of a pre-defined development process, which is structured based
on the PIM (Platform Independent Model) - PSM (Platform Specific Model) classi-
fication. Moreover, MDA relies on the OMG’s modeling technologies, most notably
the Meta Object Facility (MOF). The term MDE was first proposed and defined by
Kent [63] as a generalization of MDA that includes the notion of development process
and model space. According to Kent, a model space contains a particular set of models
providing chosen perspectives on the system to be constructed, as well as appropri-
ate mappings among these models. The model space and the development process are
closely related: The artifacts or models developed by a particular process are intrinsic
to the definition of that process and vice versa. In MDE, the notion of model space
is extended beyond the abstraction dimension of the PIM-PSM classification. A num-
ber of generic dimensions of this space can be identified in the literature: abstraction,
paradigm and concerns to name a few. The direct consequence of such a rich model
space is heterogeneity of models in MDE.

Model-driven engineering thus implies dealing with a model space, typically con-
sisting of a set of heterogeneous models. An example of how such a model space
could look like7 is shown in Figure 1.5. The squares depict the different models in the
space. Dependent on the engineering discipline, models address different concerns.
For instance, the software discipline focusses on the logic of an application, while
the hardware discipline addresses the execution platform on which this application is
deployed8. But even within one engineering discipline one may consider different con-
cerns. For instance, the application logic typically consists of a part dealing with the

7This is only a preliminary idea of what such a model space might be. Charting the (desired) model space
has only recently started at ASML.

8Model-driven engineering techniques typically make an explicit distinction between application logic
platform and execution platform so that the platform and the application logic can evolve relatively indepen-
dently [73].

MODEL-DRIVEN ENGINEERING 19

shared
space

internal
space

Performance
analysis

Code
generation

GUI
evaluation

Application
logic

Requirements
analysis

Execution
architecture

sub-space

Figure 1.5: An impression of a model space.

flow of data through the system, while another part deals with the reactive control.
Next to the focus on different concerns, models are made for different purposes. For
instance, a model can be meant for design review, functional verification, timing and
performance analysis, design-space exploration, refinement, code generation or testing.

Models are expressed in modeling languages supporting a so-called model of com-
putation. Different models of computation focus on different concerns for different
purposes. For instance, the flow of data through a system is well captured by Kahn
process networks or synchronous data flow networks that allow the trade-offs between
different deployments on the execution platform to be analyzed and that support an
automatic mapping on this platform. On the other hand, (hierarchical) state-machine
models excel in expressing, analyzing and synthesizing reactive event-driven behavior.

20 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

Models in a model space are related to each other. Relations, depicted as lines
between the squares in Figure 1.5, can take many forms. For instance, a model can
be an abstraction of another model by focusing on one specific concern. Vice versa, a
model can be refinement of another model or might be automatically generated from
another model. Also, models may be able to exchange information, for instance by
passing messages.

When applying MDE in a Large Scale Industrial context (such as ASML) it is
attractive to structure the model space in an hierarchical way. As shown in Figure 1.5
models are grouped into sub-spaces depicted as ovals. Sub-spaces have shared spaces
that are visible to other sub-spaces and internal spaces that are only visible within
the sub-space. Within one subspace, modeling languages are used that best suit the
nature of the system modeled in that sub-space. The shared spaces allow relations to
be defined between models in different sub-spaces. To make this feasible, formats and
semantics of such shared models must be standardized in some way. For instance, one
might require such models to conform to a standardized communication interface (an
approach that is adopted by Ptolemy [86] and which is treated more formally in [54]).
Another possibility is to apply only a set of standardized languages in the shared space,
and have language transformations to transform to the specific models as used in the
internal spaces (as described in [27]).

Clearly, model-driven engineering covers a vast research area with many challeng-
ing research questions:

Q-6 What models of computation (modeling languages and tools) are required to
support the design of high-tech systems. What models play a role at what levels
of abstraction? What languages should play in role in a shared space? Should
we target one set of standardized languages or should we target a standardized
communication interface?

Q-7 How to predict or analyze the properties of interest, especially when different
models of computation are involved?

Q-8 How to keep models that involve the same concern consistent? For instance, how
to keep models at different abstraction levels consistent?

Q-9 How to transform a model into a more refined one? How to weave models ad-
dressing different concerns together? How to do this in a predictable (property-
preserving) way?

In the Ideals project we have only started to explore this area. At the start of this explo-
ration, we did not have ‘the big picture’ of this field, nor could we articulate the proper
research questions. Based on a number of case studies, each touching upon differ-
ent concerns and purposes of model-driven engineering, the insight in the field grew.
An important result of this exploration is the overview of the field you are currently
reading. Detailed results are described in the following chapters:

MODEL-DRIVEN ENGINEERING 21

• Chapter 6 focuses on the modeling of a coordination concern in a concise and
formalized way. It is shown how such a model can be transformed automatically
into a model expressed in terms of the execution platform primitives. This latter
model can on its turn be transformed into executable code. Hence this chapter
addresses research topics Q-6 and Q-9 as described above.

• Chapter 7 focuses on the modeling of a light control concern of a wafer scanner.
Key issue is to capture the logic of this application and the underlying archi-
tecture in separate abstract executable models. By combining these models, a
model suitable for analyzing the timing properties of the system is obtained.
This model allows design trade-offs to be made in a systematic way. In addition
such an application model can be transformed automatically into a (prototype)
software implementation that runs on the target. The executable models are ex-
pressed in the POOSL language. To incorporate this language into a possible
future MDE model space, a UML counterpart is being developed together with a
UML to POOSL transformation. This transformation allows one to combine an
application model created in UML with a platform model created in POOSL and
analyze this combined model. Hence this chapter addresses research questions
Q-6, Q-7 and Q-9 described above.

• Chapter 8 deals with a sequencing concern. The chapter introduces a technique
to formally specify constraints on the possible sequences of function calls from
a given program together with tools to check the consistency between multiple
specifications and between a specification and an implementation. The focus of
this chapter is thus on research questions Q-6 and Q-8.

• Chapter 9 focuses on the migration of supervisory machine control architecture
towards an alternative approach based on task-resource models. This is done
by capturing the essential control architecture information in model and by re-
implementing this model based on the alternative approach. This chapter thus
addresses research questions Q-6 and Q-9.

• In Chapter 10 it is shown what the impact of the research described in the above
chapters is in practice, and how this impact was achieved. It thus addresses all
the research questions Q-6 through Q-9.

