

The partition of an information system in several parallel
systems
Citation for published version (APA):
Houben, G. J. P. M., Paredaens, J., & Hee, van, K. M. (1986). The partition of an information system in several
parallel systems. (Computing science notes; Vol. 8604). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b93311c6-03fa-4a32-abb9-1cc6936c8abf

THE PARTITION OF AN
INFORMATION SYSTEM IN

SEVERAL PARALLEL SYSTEMS

GJ.HOUBEN
J. PAREDAENS
K.M. VANHEE

86/04

A concurrent system of a number of transaction handlers is considered. Each transac

tion handler sends actions to different machines and processes their reactions. Several

algorithms for a serializable schedule are proposed.

October 1986

- 2-

1. Introduction

In this paper we consider infonnation systems, to which we give transactions and which partition those
transactions into several actions and then order some machines belonging to the system, to take care of
these actions. A transaction is considered to be a sequence of actions, where each action can be exe
cuted autonomously by a machine belonging to the system.

When we want an information system to execute a transaction, we give one of the transaction handIers
of the system the responsibility for the execution of that transaction. The transaction handIer therefore
sends all the actions of that transaction to machines of the system, asking the machines to execute the
action. We suppose that a transaction handIer handIes at any time at most one transaction. So when a
transaction handIer is handIing a transaction, it can only handIe a second transaction after the execution
of the first one is completed, that is for all actions the transaction handIer has received a reaction (an
answer) from a machine.
We suppose that every transaction handIer always knows which transaction it has to handIe, and for
every action it knows which machines are able to execute that action.

Machines can execute actions, since they are able to make computations and to store and update infor
mation. When executing a functional action a machine makes computations, which do not depend on
the information stored in the machine, and it sends the result of those computations as a reaction to the
transaction handIer (that can use this information in the next actions).
When executing a view action infonnation is gathered from the infonnation stored in the machine and
that information is sent as a reaction to the transaction handIer.
When executing an update action the information stored in the machine will be updated. Mter the exe
cution of an update action a reaction is sent back to the transaction handIer. This reaction will contain
infonnation concerning the validity of the update.

The scheduler of a system is responsible for the interface between the transaction handlers and the
machines. Therefore it executes some schedule, which task is to guarantee a proper information han
dling.

In section 2 we introduce simple and distributed infonnation systems. In distributed information sys
tems the scheduler has to execute a serializable schedule. In section 3 we present a serializable
schedule that is rather obvious and has timestamping as a key issue. Then in section 4 a timestampless
seria1izable schedule is presented. Subsequently the communication involved in the execution of this
schedule is examined more closely in section 5.

- 3 -

2. Information systems

Before introducing the notion of distributed infonnation systems, we first turn our attention to simple
infonnation systems.

A simple infonnation system is a triple (Ih, m, s), where Ih is a transaction handler, m is a machine
and S is a scheduler.

At any moment the transaction handler Ih is in one of three states, depending on what it is doing. If Ih
is not handling a transaction at all, then Ih is in the state asleep, denoted by A. If Ih is gathering
infonnation needed for the transaction, then Ih is in the state information gathering, denoted by VF. If
Ih is updating infonnation, as a consequence of the transaction, then Ih is in the state updating, denoted
by If.. We write Ih is active, if Ih is in VF or in If..
While Ih is in IT it can send view actions and functional actions to the machine m, but it cannot send
update actions to m. While Ih is in If. , it can send update actions to m, but it cannot send functional or
view actions to m. While Ih is in A, it cannot send any action at all.

The machine m executes each action Ih sends to m. It can execute at most one action at a time. Mter
it finishes the execution of a functional or a view action, it sends to th a reaction containing the result
of that action, that is the infonnation resulting from computing and retrieving information stored in m.
Mter finishing the execution of an update action, that is after modifying the infonnation stored in m, it
sends to Ih a reaction containing infonnation about the validity of the update.

The scheduler s is respunsible for the interface between Ih and m. It is therefore executing a schedule
that controls the state transition of th to be A ~ VF ~ If. ~ A and that allows the infonnation flow
between Ih and m to be as described above.

Now we turn to distributed information systems. A distributed infonnation system is a triple (TH, M,
s), where TH is a finite set of transaction handlers, M is a finite set of machines and s is a scheduler.

At any moment each transaction handler Ih of TH is in one of three states, depending on what it is
doing. If th is not handling a transaction at all, then Ih is in the state asleep, denoted by A. If Ih is
gathering infonnation needed for the transaction, then Ih is in the state infonnation gathering, denoted
by VF. If Ih is updating infonnation, as a consequence of the transaction, then Ih is in the state updat
ing, denoted by I.l.. We write Ih is active, if th is in VF or in I.l..
While Ih is in VF, it can send view actions and functional actions to each machine m of M, but it can
not send update actions to any m of M. While Ih is in If. , it can send update actions to each machine
m of M, but it cannot send view nor functional actions to any m of M. While th is in A, it cannot
send any action at all.

Each machine m of M executes each action sent to m by a Ih of TH. It can execute at most one
action at a time. Mter it finishes the execution of a functional or a view action. it sends back to th , a
reaction containing the result of that action, that is the information resulting from computing and
retrieving infonnation stored in m. Mter finishing the execution of an update action, that is after modi
fying the infonnation stored in m, it sends to Ih a reaction containing infonnation about the validity of
the update on m.

The scheduler s is respunsible for the interface between the transaction handlers of TH and the
machines of M. It therefore executes a schedule that controls the state transition of each Ih of TH to
be A ~ VF ~ I.l. ~ A and that allows the information flow between each transaction handler and
each machine to be as described above and that is serializable.

We now present a small exatnple, which should illustrate some of the notions mentioned above.

- 4 -

Suppose our information system consists of two ttansaction handlers, so TH = {Ih l,Ih z}, and five
machines, SO M = {mO,mI,mZ,m3,m4}. In our machine ml we have the addresses and ages of employ
ees. In mz are the medical records of employees, and the salaries are in m3. Machine m4 is very good
in computing the square of a natural number. Machine mo has some special task, which is not impor
tant in this example.

I.n some informal way we now describe three transactions.

Let II be:

get for every employee his age;
get for every employee older than 60 his medical record.

When II is handled by Ihl> then Ihl has to send a view action to ml first. Machine ml will send a
reaction back to Ih l> and a part of the information contained in this reaction will be used by Ih I to ini
tiate a view action at mz. When mz has sent a reaction to Ihl then Ihl has all the information required
by II'

Letlzbe:

get for every employee his address;
add for every employee living in Eindhoven 1000 to his salary.

When Iz is handled by 1hz, then 1hz has to send a view action to ml first. It will get a reaction from
ml and depending on this reaction it will send an update action to m3' Mter m, has sent a reaction to
1hz, 1hz has done everything required by Iz.

Let 13 be:

compute c = 7"2;
add c to every salary.

When 13 is handled by Ihl' first a functional action will be sent by Ihl to m4' The reaction of m. will
be used to initiate an update action at m ,. Wo<k: on I, will be finished after a reaction from m, is
received by th l •

- 5 -

3. A Serializable Scbedule

From the previous section we know that the scbedule we need for a distributed information system must
be serializable.
What are serializable schedules ?
First we define serial schedules. When a serial schedule is executed no two transaction handlers are
active at the same moment. Hence with a serial schedule there is a function Ih : IN --7 TH indicating
the order in which the transaction handlers of TH are active.
Two schedules are equivalent if and only if they both result in the same information transition, which
means that for every possible state of the information stored in the machines of M the final state will
be the same. A serializable schedule is a schedule that is equivalent to a serial schedule. Of course, the
most easy kind of serializable schedules are the serial schedules.

We now specify a schedule TSS, for which we prove that it is equivalent to the serial schedule TSO
where transactions are handled in, the order of their entrance in the system, thus of their timestamp.

Note that we suppose that from a transaction I the sets of machines, which have to execute functional
actions, view actions and update actions respectively in order to execute I, can be computed.

SCHEDULE TSS :

Suppose Jl!. is a transaction handler of TH and L is a transaction that Jl!. has to handle. Let I : IN --7

T, with T the set of all transactions, indicating the order in which the transactions entered the system.

When Jl!. goes, in order to execute 1, from A to VF, the scheduler s gives a timestamp, say j,
which is one higher than the previous one, so Jl!. = Ih U) and L = I U), and s calculates from I U)
Fj , Vj' Uj :
Fj := (machines to which IhU) will send functional actions in order to execute IU))
Vj := (machines to which IhU) will send view actions in order to execute tU))
Uj := (machines to which IhU) will send update actions in order to execute IU))

Before thV) sends, in order to execute IV), a view action to a machine m, IhV) waits until m
does not belong to UUi •

i<j

When thU) goes, while executing tU), from VF to!/., then:
Fj :=0
Vj := 0

Before thU) sends, in order to execute IU), an update action to a machine m, IhU) waits until m
does not belong to U(Vi u Ui)

i<j

When IhU) goes after executing tU), from!/. toA, then:
Uj :=0

END SCHEDULE m
Of course, Fj can be omitted from this schedule.

We will now prove the serializability of TSS in showing the equivalence with the (serial) schedule TSO
in which the transaction handlers execute the transactions in order of their timestamp, that is if i <j ,
then I(i) is executed (by th(i» before IU) is executed (by IhU», so Ih(i) is active (with I(i» before

- 6 -

th{j) is active (with t{j».

Let m be a machine of M, and let i <j and t (i) the transaction to be handled by th (i) and t (j) the
transaction to be handled by rh (j).

When m is in at most one of the sets Vi' Vj , Ui and Uj , then there is no problem, since it is easy
to see that executing first t(i) then t{j) would have the same effect (results in the same state of the
information in m).

Of course, there is no problem either, when m only belongs to both Vi and Ui or only to both Vj
and Uj •

When m only belongs to both Vi and Vj then there is no problem, since th (i) does not change any
thing in m.

When m belongs to both Vj and Ui> but not to Ui , then, since m in Ui and i <j, th (j) will send a
view action to m after Ui := 0, SO when th(i) is not executing t(i) anymore.

When m belongs to both Vi and Ui , but not to Ui , then, since m in Vi and i <j, th (j) will send an
update action to m after Vi := 0, SO when th (i) is not in VF anymore as far as t (i) is concerned.

When m belongs to both Ui and Ui , but not to Vj , then, since m in Ui and i <j , th (j) will send an
update action to m after Ui := 0 (Vi is already empty at that moment or m was not in Vi), SO when
th (i) is not executing t (i) anymore.

When m belongs to both Vi' Ui and Ui , then, since m in Ui and i <j, th (j) will send a view action
to m after Ui := 0 (m is not in Vi (anymore», SO when th (i) is not executing t (i) anymore.

This ends the proof of the serializability.
We therefore have a schedule TSS that fulfi\\s the conditions for the schedule of a distributed informa
tion system and in which the timestamps are the key issue. In the next section we will present another
schedule (that of course fulfills those conditions), that will not make use of timestamps.

- 7 -

4_ A Timestamples. Serializable Schedule

We will now give anolher specification of a serializable schedule. The main advantage of Ihis schedule
will be Ihe absence of timestamps.
What is !his main advantage? Since at each moment we only have to deal wilh Ihe transactions being
handled in Ihe system at Ihat time, we only have to assign to Ihese transactions some unique number.
~n Ihe timestamping approach however, all transactions Ihat ever were handled in Ihe system must have
some unique number. Obviously Ihis implies an infinite set of numbers being used. Also, selecting
numbers satisfying some condition can be done much easier wilh some rather small, finite set Ihan wilh
some infinite set of numbers.
Furlhermore, in Ihe timestamping approach Ihere must be some central system, Ihat assigns Ihe times
tamps, in order to guarantee Ihe global unicity of Ihe timestamps. In Ihe timestampless approach we do
not need such a global clock, so Ihe information system consists only of transaction handlers and
machlnes.

First though, we consider a schedule, called TS, Ihat uses timestamps. Mter proving Ihat Ihis schedule
is a schedule for a distributed information system, we will show !hat in Ihis schedule Ihe timestamps are
not really needed and can Iherefore be omitted, Ihus obtaining a timestampless serializable schedule for
a distributed information system. We will call this timestampless schedule TSL.

We now specify a schedule TS (lhat uses timestamps) for which we prove lhat it is a correct schedule
for a distributed information system. The serializability of TS is proven by showing (indirecdy) Ihe
eqnivalence to the schedule TSO where transactions are serially handled in the order of Iheir timestamp.

Intuitively V, will be Ihe set of machlnes whlch get a view action belonging to I (i), U, will be Ihe set

of machlnes which get an update action belonging to I (i), V (m) will be Ihe number of transaction
handlers lhat need to view machlne m, U (m) will be Ihe number of transaction handlers lhat need to
update machine m, UV, (m) will be the number of transaction handlers lhat need to update m before
Ih (i) can view m, AU, (m) will be Ihe number of transaction handlers !hat need to view or update m
before Ih (i) can update m.

SCHEDULE IS. :

Initialize V, and U, to be '" for all i, and V (m), U (m), UV, (m), AU, (m) to be 0 for all i and all m of
M.

Suppose Ih is a transaction handler of TH and 1 is a transaction Ih has to handle.

When Ih goes, in order to execute 1, from <i to VF, Ihe scheduler s gives a timestamp, say j,
whlch is one higher than Ihe previous one, so Ih = Ih(j) and 1 = l(j), and calculates:
Vj := (machlnes to whlch Ih(j) will send view actions in order to execute l(j))
Uj := (machines to wmch Ih (j) will send update actions in onier to execute I (j))
UVj(m):= U(m) for all m in Vj
AUj(m):= V(m) + U(m) for all m in Uj
V(m) := V(m) + 1 for all m in Vj
U(m):= U(m) + 1 for all m in Uj

Before Ih(j) sends, in order to execute l(j), a view action to a machine m, Ih(j) waits until
UV/m) =0.

- 8 -

When thV) goes, while executing tV), from VF to Il, then:
AU,(m) := AU,(m) - 1 if AU,(m) > 0, for all i*j and all m of Vj
V(m) := V(m) - 1 for all m of Vj
Vj :=0

Before th V) sends, in order to execute tV), an update action to a machine m, th V) waits until
AUj(m) = O.

Before th V) goes, after executing t V), from Il to tL then:
UV,(m):= UV,(m) - 1 if UV,(m) > 0, for all i*j and all m of Uj
AU,(m) := AU,(m) - I if AU,(m) > 0, for all i*j and all m of Uj
U(m) := U(m) - 1 for all m of Uj
Uj := 0

END SCHEDULE I£

It is trivial to prove that at each moment V (m) is the number of transaction handlers th(i) with m in
V" and U (m) is the number of transaction handlers th (i) with m in U,.
UVj (m) is the number of th (i) with i <j and m in both U, and Vj . AU;(m) is the sum of the number
of th(i) with i<j and m in both V, and Uj ' and the number of th(i) with i < j and m in both U, and
U j •

To demonstrate the correctness of this schedule TS, we consider the next schedule TSB, that obviously
controls the state transition of each transaction handler to be d -+ VF -+ Il -+ d and allows the infor
mation flow between each transaction handler and each machine to be as described in section 2.

We win use mV, Uj and mU, Uj ' where mV, Uj is 1, if m belongs to V, and Uj ' and 0 else, and mU, Uj
is 1, if m belongs to U, and Uj ' and 0 else.

SCHEDULE TSB :

Initialize V, and Ui to be empty for all i and mVi Uj and mU, Uj to be 0 for all m, i and j.

Suppose th. is a transaction handler of TH and L is a transaction th. has to handle.

When th. goes, in order to execute L, from A to VF, the scheduler s gives a timestamp, say j,
which is one higher than the previous one, so th. = thV) andL = tV), and s calculates from tV) :
Vj := (machines to which th(j) sends view actions in order to execute tV))
Uj := (machines to which th V) sends update actions in order to execute t(j))
for all m of Vj

mVj U, := 1 for all i with m in Ui and i <j
for all m of Uj

mUj U, := mU, Uj := 1 for all i with m in Ui and i <j
mV, Uj := 1 for all i with m in Vi and i <j

Before thV) sends, in order to execute tV), a view action to a machine m, thV) waits until mVjU,
=0 for all i<j.

- 9 -

When IhU) goes, while executing IU), from VF to!,l, then:
mVj U, := 0 for all i and all m of Vj
Vj :=0

Before IhU) sends, in order to execute IU), an update action to a machine m, IhU) waits until
mV, Uj = mU, Uj = 0 for all i <j .

When IhU) goes after executing IU), from!,l to .1, then:
mUj U, := mV, Uj := mU, Uj := 0 for all i and m of Uj
Uj :=0

END SCHEDULE TSB

We will now prove the serializability of TSB and then by showing the equivalence between TS and
TSB , we will prove the serializability of TS .

We will show that TSB is equivalent to the schedule TSO in which the transaction handlers execute the
transactions in order of their timestamp, that is if i<j, then I(i) is executed before tU), so th(i) is
active before th U).

Let m be a machine of M, and let i<j and t(i) the transaction to be handled by th(i) and tU) the
transaction to be handled by th U).

When m is in at most one of the sets Vi, Vj ' Ui and Uj ' then there is no proble~, since it is easy
to see that executing first t (i) then t U) would have the same effect

Of course, there is no problem either, when m only belongs to both Vi and Ui or only to both Vj
and Uj •

When m only belongs to both Vi and Vj then there is no problem, since th (i) does not change any
thing in m.

When m belongs to both Vj and Ui , but not to Uj ' then, since m in Ui and i <j, th U) will send a
view action to m after mVj Ui := 0 , so when th (i) is not executing t (i) anymore.

When m belongs to both Vi and Uj ' but not to Ui , then, since m in Vi and i <j, th U) will send an
update action to m after mV, Uj := 0 , so when th (i) is not in VF anymore as far as t (i) is con
cerned.

When m belongs to both U, and Uj ' but not to Vj ' then, since m in Ui and i <j , th U) will send an
update action to m after mUi Uj := 0 (mVi Uj is (already) 0 at that moment) , so when th (i) is not
executing t (i) anymore.

When m belongs to both Vj ' Ui and Uj ' then, since m in Ui and i <j, th U) will send a view action
to m after mVjUi := 0 (then mUjUi = 0 and mViUj = 0) , so when th(i) is not executing t(i)
anymore.

So we have proven the serializability of TSB •

- 10 -

It is rather trivial to prove that the following are invariants :
mViUj = 1 iff m in Vi and m in Uj :
mUiUj = 1 iff m in Ui and m in Uj .

We will show the equivalence between both schedules, by proving Q where Q is: UVj(m) = LmVjUi

~d AUj(m) = '}}mViUj + mUiUj).
i<j

It is trivial that Q holds at initialization.

Wben th (j) goes from d to VF, Q holds if Q' holds, where Q' stands for:

i<j

at the moment th (j) goes from d to VF, V (m) is the number of th (i) with i <j and m in Vi, and
U (m) is the number of th (i) with i <j and m in Ui •

It is trivial to prove that Q' holds.

With Q it is clear that the conditions for which th (j) has to wait before sending view or update actions,
are the same in both schedules.

When th (j) goes from VF to!.!. mVj Ui becomes 0 for all i and m of Vj . mVj Ui was 1 only if m in
Vj and m in Ui and i>j. This follows from : mVjUi only became 1 if m in both Vj and Ui , and if
i<j then mVjUi already has become 0, since this was the condition for which th(j) was waiting before
sending a view action.
So mVjUi changed from 1 to 0 if m in Vj and m in Ui and i>j. Therefore for all i and m of Vj'
AUi(m) has to decrease by 1 (if possible), in order to keep Q invariant, since AUi(m) =
:E(mV, Ui + mU, Ui) and in the set of mV, Ui and mU, Ui with I <i, there is only one mV, Ui that
,«
changed from 1 to O.

When th(j) goes from !.!. to d mViUj , mUiUj and mUjUi become 0 for all i and m of Uj . mViUj
was 1 only if m in Vi and m in Uj and i > j. Therefore for all i and m of Uj UVi (m) has to decrease
by 1 (if possible), in order to keep Q invariant, since UVi (m) = LmVi U, and in the set of mVi U, with

,«
I <i there is only one mVi U, that changed from 1 to O.
mUiUj = mUjUi was 1 only if m in Ui and m in Uj and i>j. Therefore for all i and m of Uj
AUi (m) has to decrease by 1 (if possible), in order to keep Q invariant, since
AUi (m) = :E(mV, Ui + mU, U,) and in the set of mV, Ui and mU, Ui with I <i there is only one mU, Ui ,«
that changed from 1 to O.

Therefore Q holds.

The claim was that from the schedule TS, we could derive a schedule TSL, that, in contrast to TS ,
would certainly not make use of timestamps.

Before specifying TSL, we will define the following :

There is some "super transaction handler" that assigns to each transaction that enters the system a tran
saction handler on which the transaction will be handled.
TID is the set of transaction id-numbers. We denote the transaction with id-number i by ti'
THID is the set of transaction handler id-numbers. We denote the transaction handler with id-number i
by thi •

a : TID -> THID assigns to each transaction id-number the id-number of the transaction handler that
will handle the transaction with that id-number.
In this information system TH = {th" .. ,th.J and THID = (I, ..):).

- 11 -

Now we will specify TSL.

SCHEDULE TSL :

Initialize Vi and Ui 10 be 0 for all i of THID, and V (m), U (m), UV, (m) and AU, (m) 10 be 0 for all i
of THID and all m of M .

Suppose Ihj has 10 handle I" so j = 9(1).

When Ihj goes in order to execute I, from d to VF, then s calculates from I, :
Vj := { machines 10 which Ihj sends view actions in order to execute I, (j = 9(/» }
Uj := { machines 10 which Ihj sends update actions in order to execute I, (j = 9(/» }
UVj(m):= U(m) for all m in Vj
AUj(m) := V(m) + U(m) for all m in Uj
V(m) := V(m) + I for all m in Vj
U(m) := U(m) + I for all m in Uj

Before Ihj sends, in order to execute I" a view action to a machine m,lhj waits until UVj(m) = O.

When Ihj goes, while executing I" from VF to!l., then :
AUi (m) := AU, (m) - I if AUi (m) > 0, for all i of THID\{j} and all m of Vj
V(m) := V(m) - I for all m of Vj
Vj :=0

Before Ihj sends, in order to execute I" an update action 10 a machine m, Ihj waits until AUj(m) =
O.

When Ihj goes, after executing I" from !l. 10 d, then :
UVi(m) := UVi(m) - I if UV,(m) > 0, for all i of THID\{j} and all m of Uj
AU,(m) := AU,(m) - I if AU,(m) > 0, for all i of THID\{j) and all m of Uj
U(m):= U(m) - I for all m of Uj
Uj :=0

END SCHEDULE TSl.

We now claim that TS and TSL, as we just specified, are in fact the same schedule, since the ouly
difference between them is the fact that where in TS timestamps are mentioned, in TSL transaction
(handler) id-nwnbers are mentioned. And when we observe TS, we can see that in TS we did not use
any aspect of the timestamps other than the identification of transactions and transaction handlers. So
we can replace the timestamps by id-nwnbers. Therefore TS and TSL are quite the same schedule.
So TSL is a timestampless serializable schedule for a distributed information system.

- 12-

S. The Communication in the Timestampless Serializahle Schedule

We now consider some aspects of the communication involved in the execution of the timestampless
serializable schedule TSL of the previous section.

First of all we consider an obvious problem. When a transaction handler wants to send an action to a
machine, it is possible that that machine is at that moment busy executing some other action (of another
transaction handler).

Therefore we define for every machine m a boolean busy(m), that of course will denote whether m is
busy at that moment or not. Then we want a transaction handler Ih only to send an action to m (what
ever type of action it is) if m is busy with Ih. This means that, Ih found, as it inspected busy (m)
exclusively, busy(m) to be false and then set it to true itself.
Later on we will show how busy (m) should be used in detail.

Now we tum to the communication (and the computations implied) needed when executing the
schedule.

Suppose we have a transaction handler Ihj' that has to handle I" with j = 9(/). When Ihj goes from A
to VF, first Vj and Uj have to be computed. For these computations only I" the transaction that Ihj
has to handle, is needed, since from I, Ih j can learn which machines can get what kind of actions.
Furthermore, U (m) for m in Vj U Uj and V (m) for m in Vj U Uj are needed in order to be able to
compute UVj(m) for all m, AUj(m) for all m, V(m) for all m in Vj and U(m) for all m in Uj .

When Ihj is in VF and it wants to send a functional action to a machine m, it has to know whether m
is busy or not, therefore it needs busy (m). (It may need busy (m) even several times, when it finds
busy (m) to be true for a number of times, since we decide to retry when we find m not to be ready for
Ihj .)

When Ih j is in VF and it wants to send a view action to a machine m, it has first of all to know
whether UV/m) = 0, so UV/m) is needed. When it finds out that UVj(m) = 0 holds, and it therefore
decides that the action can be sent, it has to wait perhaps until m is not busy anymore, so busy (m) is
also needed (perhaps several times).

When Ihj goes from VF to !l., AUi (m) for m in Vj and Nj, and V (m) for m in Vj will get new
values based on the old values. Further, Vj gets a new value, but since that value is a trivial one, we
do not need any value from outside.

When Ihj is in !l. and it wants to send an update action to a machine m, it has first of all to know
whether AUj (m) = 0, so AUj (m) is needed. When it finds out that AU/m) = 0 holds, and it therefore
decides that the action can be sent, it has to wait perhaps until m is not busy anymore, so busy (m) is
also needed (perhaps several times).

When Ihj goes from!l. to A, UVi (m) for m in Uj and i *j , AUi (m) for m in Uj and i *j , and U (m)
for m in Uj will get new values based on the old values. Further, Uj gets a new value, but this is a
trivial value: 0.

So we have:

- 13 -

Input for Ih i Output for Ih i

I, Vi
I, Ui
U(m) (m in V·) UV'(m) (all m)

Y(m) and U(m) (m in U·) AU(m) (all m)
V(m) (m in Vi) V(m) (m in Vi)
U(m) (m in U-) U(m) (m in Ui)
btm(m) busy(m)
UV(m)

AUi(m) (m in V,, i~n AUi(m) (m in V,, i*j)
V(m) (m in Vi) V(m) (m in Vi)

V·
AUi(m)

UVi(m) (m in Ui , i*j) UVi(m) (m in Ui , i~})
AUi(m) (m in U" i*j) AUi(m) (m in U" i*j)
U(m) (m in U·) U(m) (m in U·)

U·

From this we can conclude that I, is only read by Ihj' therefore we can easy store the transaction at the
transaction handler that is handling il So we can see the transaction inside the transaction handler as
some plan as what to do next.

Further Vj and Uj are also only read by Ihj' whereas UVj(m) and AUj(m) can be read and modified
by any transaction handIer Ihp. Therefore it is convenient to store at least UV/m) and AU/m) in a
place where we can give every Ihp easy access, but also where we are able to guarantee mutual
exclusive access. Because we do not want to leave the burden of this for the machine m, we suppose a
central information unit where all UVj (m) and AUj (m) are stored. Therefore we extend our informa
tion system with a machine mo and mo will serve as this central infonnation uniL
As far as Vj and Uj are concerned, for reasons of efficiency, we will also store them at mo. More
about (using) mo Iater.

From the table above, we can also conclude that V (m) and U (m) can be read and modified by any
transaction handler, and for the same reasons as hold for UVj (m) and AU/m) we will store all V (m)
and U(m) at mo-

Of course, busy (m) can also be read and modified by any transaction handler Ihp, but since we want to
give machine m the possibility of mingling with busy(m), we prefer to store busy(m) at the machine
m, that is at a place where m can easy access busy(m). We then have the burden of explicitly taking
care of mutual exclusion (as we will see Iater).

Before we explicitly describe what a transaction handIer has to do, we tum our attention to what a
machine has to do as far as communication is concerned.
For instance, what does a machine m have to do after executing an action ?
Mter executing any action for Ihj' m must send a reaction back to Ihj. Before it can really send the
reaction to Ihj it must be sure that Ihj is able to receive the reaction, since Ihj conld be busy in for
example the sending of another action. Therefore we suppose a boolean busy (Ih;) that, analogous to
busy(m), denotes whether Ihj is busy or nol So m must wait until busy(lhj) is set to true by m itself
before sending the reaction to Ihj •

Furthermore after the reaction has been sent to Ihj' m has to set busy(m) to false again to be able to
accept another action. (Of course, this changing of busy(m) has to happen mutuaIly exclusive.)

- 14 -

As we have just seen we need something like busy (Ih i) at Ih i .
Surely busy(lhi) must be true wbenever Ihi is doing anything for which it has mutually exclusive
access of some resource (a machine or itself). It may be not busy, that is able to receive a reaction if
it is just working "internally" or is perhaps waiting for a machine to become not busy. (When a reac
tion is received while doing "internal" work, the transaction handler has to know what it was doing to
be able to continue that internal work after the reception of the reaction. We will come back to this
later.)

We will now describe what the transaction handlers and the machines have to do in order to guarantee
a proper information flow, as is described. We do this in some program-like notation in which we use
claim and release to guarantee mutual exclusion:

claim(x): of all processes that want exclusive control of x, the one that has waited the longest
gets control when that is possible: "wait until it is your turn".

release(x): give up the control of x you have, and thus give another process the possibility of
completing its clairn(x), that is getting the control of x.

At Ihi the boolean arrived-from(m) will be true if and only if m has sent a reaction to Ihi' which thi
has not yet accepted.

The procedure there-is-a-problem will signal that some update action took place, but something has
gone wrong (the constraints are not satisfied anymore, for instance).

When a reaction r is sent back to Ihi' we suppose that in r.info the information of the reaction is con
tained. The information of the reaction is either the result (answer) of the action if it was a functioual
or view action, or the message saying that the update did or did not take place successfully if the action
was an update action.

The rest of the notations will be rather straightforward.

First we introduce two procedures action-send and reaction-receive, which only use is to simplify the
program texts.

procedure action-send(lh ,m,a);
var ready, sent: boolean;
begin ready:=ralse;

while not ready
do claim(lh);

if not busy (Ih)
then busy (Ih):=true;

release(lh);
sent:=ralse;
while not sent
do claim(m);

if not busy (m)
thenbusy(m):=true;

release(m);
send(m,a);
sent:=true;

else release(m)
Ii

od;
re3dy:=true;
claim(lh);
busy (Ih):=ralse;

od
end

re1ease(th)
else re1ease(t h)
Ii

- 15 -

~o action-send(th ,m ,a) will result in action a being sent to machine m by transaction handler th.

procedure reaction-receive(th ,m,r ,x);
var received: boolean;
begin while not arrived-from(m)

do skip

end

od;
received:=false;
while not received
do cIaim(th);

od· ,

if not busy (th)
thenbusy (th):=true;

release(th);
receive(m,r);
arrived -from (m):=false;
received:=true

else release(th)
Ii

x:=r.info;
claim(th);
busy (th):=false;
release(th)

So reaction-receive(th,m,r,x) will result in th accepting reaction r from m in such a way that x will
contain the information from r.

Now we describe what th j has to do.

When th j goes from d. to VF , then it has to perform :

action-send(th j ,mo'" 0);
reaction-receive(thj,mo.r ,x);
ifx~K

then there-is-a-problem
Ii

where u 0 could be specified as :
compute(Vj);
compute(Uj);

for min Vj
do UV/m):= U (m);

V(m):= V(m) + 1
od;
for m in Uj

do AUj(m):= V(m) + U(m);
U(m) := U(m) + 1

- 16-

od

When th j wants to send a functional action f to a machine m, then it has to perfonn :

action-send(th j ,m J);
reaction-receive(thj,m, ,x)
% x contains the answer %

When th j wants to send a view action v to a machine m, then it has to perfonn :

condition := false;
while not condition
do action-send(thj,m",vo);

reaction-receive(thj ,mo, ,x);
ih

od;

then condition := true
6

action-send(th j ,m ,v);
reaction-receive(thj ,m, ,x)
% x contains the answer %

where Vo could be specified as :
UV/m) = O?

When th j goes from VF to!l., then it has to perfonn :

action-send(thj ,mo,u ,);
reaction-receive(thj ,mo,r,x);
if x ?OK
then there-is-a-problem
6

where u, could be specified as :
for m in Vj and i'li
do if AUi(m) > 0

od;

thenAUi(m) := AUi(m) - 1
6

for m in Vj
do V(m) := V(m) - 1
od

When thj wants to send an update action u to a machine m, then it has to perfonn :

condition := false;
while not condition
do action-send(thj ,m",v,);

reaction-receive(thj ,mo, ,x);
ih

od;

then condition := true
6

action-send(th j ,m ,u);

reaction-receive(thj,m". ,x);
ifx~K

then there-is-a-problem
6

where v 1 could be specified as :
AUj(m) = O?

- 17 -

When thj goes from !.l to A, then it has to perform :

action-send(thj ,mo,u:z};
reaction-receive(th j ,m",r ,x);
ifx~K

then there-is-a-problem
6

where u 2 could be specified as :
for min Uj and i*j
do if AUi(m) > 0

od;

thenAUi(m) := AUi(m) - 1
6;
if UVi(m) > 0
thenUVi(m):= UVi(m) - 1
6

for m in Uj
do U(m):= U(m) - 1
od

What does m have to do as its part of the communication ?
Mter the execution of an action for thj , m has to send the reaction r back to thj , when thj is busy
with m, and it has to set busy (m) to false again afterwards. Of course, m has to notify th j that a reac
tion has arrived in setting arrived -from (m) to true. Therefore it has to perform :

sent := fab;e;
while not sent
do claim(thj);

od· ,

if not busy (th j)

then busy (th j) := true;
release(thj);

send(th j,r);
sent := true;
claim(th j);
busy (thj) := lab;e;
arrived-from(m) := true;
release(thj)

eb;e release(th j)
6

claim(m);
busy(m) := fab;e;
release(m)

Of course, in order to be able to execute such programs as above, all resources have of course to do

- 18 -

some internal work. However that internal work will not affect the communication.
Here we wanted to absttact from internal work and to consider just the communication between transac
tion handlers and machines. We briefly mention one of the aspects of internal work. As we have seen
before, a transaction handler is able to receive a reaction while doing some (less important) work inter
nally. We want to help machines getting free again as soon as possible.
Therefore we propose some buffer IN at thi' wbere thi can store some reaction, when it receives a
(eaction, and we then need to remember what thi was doing just before it decided to receive the reac
tion, in order to be able to resume that work. So we will need some other buffer OUT in which is
stored what to do next.
Here we do not pay farther attention to this internal work.

- 19 -

6. Conclusions on the Commnnication

We can conclude that the communication directly resulting from the schedule is a rather small part of
all the communication involved.
We can see that the main part of the programs described in this section is dealing with the exclusive
access to several resources, that is claiming and releasing. Only a small part is acting on the variables
of the schedule like UVj and AUj • Furthermore of this claiming and releasing the majority is aimed at
waiting until the other, the receiver of the communication, is ready.

Later, in a next paper, we more formally define what transaction handlers and machines are. Then we
see that, because of those definitions, the work involved in the communication between transaction
handlers and machines can be less, mainly because the problem of guaranteeing mutual exclusion is
tackled differently.

Until now we only considered one level of tranSaction handlers and one level of machines. We want to
extend the model in defining systems to consist of transaction machines. A transaction machine will
consist of a transaction handler and a machine. Information systems can then consist of transaction
machines, which each are able to communicate with every other transaction machine. A transaction
machine can, when handling a transaction, send transactions, which will be subtransactions of the tran
sactions it is handling, to other transaction machines.
In that way we are approaching distributed databases, since tranSaction machines are in fact databases
(machines), which have the possibility of handling transactions (transaction handlers) and thus of com
municating with other databases.
Until here we did consider the partition of both information and work on a flat level. When we have
the concept of transaction machines, we have the possibility of partitioning information and work in
various other ways. That implies the usage of this model to describe many other systems.

References

Hansdah, R.C. and L.M. Patnaik, Update SeriaIizability in Locking, to appear in the proceedings of
ICDT, Rome,September 1986.
Houben, GJ. and 1. Paredaens, A Formal Model for Distributed Information Systems, Eindhoven
University of Technology, in preparation.
Schlageter, G., Process Synchronization in Database Systems, ACM TODS,Vol.3,No.3,September
1978,Pages 248-271.

COMPUTING SCIENCE NOTES

In this series appeared :

85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

R.H. Mak

W.M.C.]. van Overveld

W J.M. Lemmens

T. Verhoeff

H.MJ L. Schols

R. Koymans

G.A. Bussing

K.M. van Hee

M. Voorhoeve

Rob Hoogerwoord

G.]. Houben

]. Paredaens

K.M. van Hee

The Fonna! Specification and

Derivation of CMOS-circuits

On arithmetic operations with

M-out-of-N-codes

Use of a Computer for Evaluation

of Flow Films

Delay insensitive Directed Trace

Structures Satisfy the Foam

Rubber Wrapper Postulate

Specifying Message Passing and

Rea!-Time Systems

ELISA, A Language for Fonna!

Specifications of Infonnation

Systems

Some Reflections on the Implementation

of Trace Structures

The Partition of an Infonnation

System in Several Parallel

Systems

	1. Introduction
	2. Information systems
	3. A Serializable Schedule
	4. A Timestampless Serializable Schedule
	5. The Communication in the Timestampless Serializable Schedule
	6. Conslusions on the Communication
	References

