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Abstract-In the near future a significant increase in electric 
power consumption in vehicles is to he expected. To limit the 
associated increase in fuel consumption and exhaust emissions, 
smart strategies for the generation, storagdretrieval, distri- 
bution, and consumption of the electric power can he used. 
This paper presents a case study on controlling the vehicle 
power net using knowledge of the driving pattern to minimize 
fuel use, by generating and storing extra energy only at the 
most suitable moments. For this purpose, both off-line and 
online optimization methods are developed and tested in a 
simulation environment. Results show a reduction in fuel use, 
even without an accurate prediction of the drive cycle. 

I. INTRODUCTION 

The electric power consumption in standard road vehicles 
has increased significantly over the past twenty years (ap- 
proximately four percent every year) and in the near future, 
even higher power demands are expected [7]. Reasons for 
this trend are: . Today’s customers expect more performance, comfort, 

and safety from new vehicles. . Electrical devices replace mechanical or hydraulic 
components in the vehicle (e.g., the drive-by-wire 
concept). 

To keep up with future power demands, the automobile 
industry has suggested new 42V power net topologies which 
should extend (or replace) the traditional 14V power net 
from present vehicles [4], [7]. Although these advanced 
power nets will he able to meet tomorrow’s power require- 
ments, a problem that arises is how to control the power 
net, in order to obtain maximum energy efficiency within 
the vehicle. 

Following the considerations in [9], [3] and [8], this paper 
presents the results from a study on controlling the power 
delivered by the alternator using optimization techniques 
and knowledge of the driving pattern. Eventually, such a 
controller can become part of an overall Energy Manage- 
ment System incorporating several control systems. 

This paper is built up as follows: The vehicle will be 
modelled in Section 11. In Section In,  the energy man- 
agement problem will be formulated. Several strategies for 
solving this problem off-line and online will be presented in 
Section IV, V and VI. Their performance will be compared 
by simulations in Section VII. Conclusions are given in 
Section VID. 
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11. VEHICLE MODEL 

The type of vehicles considered in this paper are vehicles 
with a conventional drive train and a manual transmission. 
In Fig. 1 the structure of such a vehicle is represented as 
a power-based model. The drive train block contains all 
drive train components including clutch, gears, wheels, and 
inertia. The alternator is connected to the engine with a 
fixed gear ratio. 

The power flow in the vehicle starts with fuel that goes 
into the internal combustion engine (ICE). The mechanical 
power that comes out of the engine splits up into two 
directions: one part goes to the mechanical drive train 
for vehicle propulsion, whereas the other part goes to the 
altemator. Next, the alternator provides electric power for 
the electric loads but also takes care of charging the battery. 
Contrary to the other components, the power flow through 
the battery can be positive as well as negative. In the end, 
the power becomes available for vehicle propulsion and for 
electric loads connected to the power net. 

Fig. 1. Black diagram of vehicle’s power Row 

The goal of energy management is to control the alterna- 
tor power such that the fuel consumption is reduced, while 
the drivability remains unaffected, i.e., the driver should not 
experience different vehicle behavior when the controller 
is applied. This requirement greatly reduces the problem 
complexity. It implies that the vehicle speed and thus the 
drive train torque and engine speed remain unaffected and 
therefore it is possible to use them as given information. 

The remaining components of interest are the engine, the 
alternator, and the battery. Using discrete time optimization 
with a sampling interval of 1 second or larger, their dynamic 
behavior is neglected, so their characteristics are represented 
by static models. The only remaining dynamics in the model 
is the integrator of the battery storage. 
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The internal combustion engine can be represented by a 
nonlinear static map which describes the relation between 
fuel consumption, engine speed, and engine power: 

fuelrate = f(P,,w) where P, = Pd + Pg (1) 

Note that the engine torque can be derived from the engine 
power if the engine speed is known. 

A characteristic fuel map of a Spark Ignition (SI) engine 
is displayed in Fig. 2. In this figure, fuel consumption 
curves f (P,, w )  are drawn for different engine speeds w 
as function of mechanical power P,. 

o i n  241 30 40 50 60 70 841 
Engine powerpm [kW] 

Fig. 2. Characteristic fuel map of an SI-engine 

Using a similar approximation, the alternator model re- 
duces to a static nonlinear map: 

Pg = g(Pe ,w)  where P, = pr + Pb (2) 

The battery characteristics can be modelled by: 

pb = Ps + P ~ o a s ( ~ s ~ E s ~ T )  (3) 

Pb represents the power entering or leaving the battery 
terminals, and P, represents the power actually stored in 
the battery. Pi,,, represents the battery losses that depend 
on the storage power, the energy level in the battery E,, 
and the temperature 7'. A typical chargddischarge power 
storage curve is shown in Fig. 3. 

The battery energy level is given by a simple integrator: 

t 
Es( t )  = E,(O) + / P g ( ~ )  d r  (4) 

0 

The state of charge (SOC) is the relative energy level: 

sot=-. E* 100% 
E,,, 

where EcOp is the energy capacity of the battery. 

( 5 )  

Fig. 3. Banery Power Map 

III. PROBLEM DEFINITION 

The idea of controlling the alternator power is initiated 
by the fact that energy losses in the internal combustion 
engine, alternator, and battery change according to their 
operating point. Minimizing these energy losses will result 
in an energy management strategy achieving higher fuel 
economy. 

To explain the basic idea behind this control strategy, 
consider, for convenience, the fuel map given in Fig. 2, 
although the actual strategy also involves the alternator and 
battery characteristics. 

As driver requests have to be fulfilled, one cannot change 
the power to the drive, train Pd nor the engine speed w (as- 
suming manual gearshifts). However, the storage capacity 
of the battery allows, changes in the alternator's setpoint 
while still all electric load requests are fulfilled. It is clear 
that such control actions introduce freedom in shifting the 
operating point of the engine to other regions. Intuitively, 
one can find profitable control actions for the alternator 
by considering the gradient of the fuel map curves, the 
so called incremental fuel rate K.: 

At points where K is small, it is relatively cheap to generate 
electric energy. This energy will be stored in the battery and 
can be used at moments when it is less profitable (i.e., IE 
large) to activate the alternator. To yield a positive effect on 
the total fuel economy, of the vehicle, energy losses in the 
battery must be small with respect to the profits obtained 
in the fuel map. ~ 

Control Objective and Constraints 

The intention of energy management is to improve the 
fuel economy of the vehicle, so the control objective is 
to minimize the fuel consumption while satisfying several 
constraints. This control problem can be described as an 
optimization problem. 

min z J(a) subject to G(g) 5 b (7) - 
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A cost function is chosen that expresses the fuel use over 
the drive cycle as function of the battery storage power. This 
way, the characteristics of all components can be combined 
into a singe cost function over time interval [O, t,] : 

J = fuel(P8) = fuelrate(P,)dt (8) li' 
Although P, represents the design variable, the actual 
controlled input is P,. Because the relation between P. and 
P, is known, P, can be computed easily afterwards. 

The operating range of the components is limited, so 
bounds have to be set on the engine power, electrical power, 
battery power throughput and battery energy level. This can 
be done using the following constraints: 

Pmmin 5 pm 5 p m m m  (9) 
Pemin I pe  5 P e m m  (10) 
pbmin 5 p b  5 p b m m  (11) 

5 E, I E,,,, (12) 

Using (1)-(4), these constraints can be expressed as nonlin- 
ear functions of P,. 

A charge-sustaining vehicle requires some kind of end- 
point penalty to guarantee that the state of charge of the 
battery remains in a neighborhood around a desired value. 
An endpoint constraint will be used here, requiring the state 
of charge at the end of the cycle to be the same as at the 
beginning: 

E.(te) = E.(O) * Its  P,(t)dt  = 0 (13) 

Applied Control Techniques 

The nonlinear optimization problem can be carried out 
using nonlinear problem solvers. For practical data, the 
problem is convex, which makes solution easier. 

Assuming the complete drive cycle, specified by the 
signals w( t ) ,  Pd(t), and f i ( t ) .  to be known fo r t  E [0, t.], it 
is possible to calculate the optimal control sequence for the 
alternator over the trajectory. This provides an indication 
of the potential performance of an energy management 
strategy. 

The problem is defined such that it can be easily in- 
corporated into an optimization technique called Dynamic 
Programming (DP) [2] as wilt be done in Section IV. 

Because computation time is limited in online applica- 
tions, the nonlinear optimization problem will be approxi- 
mated by a Quadratic Programming problem in Section V. 

In reality, only a limited prediction of the future drive 
cycle will be available. A possible control technique that 
is able to use this prediction is Model Predictive Control 
(MPC) [6] ,  which will be the topic of Section VI. 

IV. DYNAMIC PROGRAMMING 
Using discrete time, the optimization problem formulated 

in the previous section can be seen as a multi-step decision 
problem: each time step, one has to decide which alternator 

setpoint will achieve the highest fuel economy over a certain 
trajectory, while respecting the constraints. To find this 
optimal control sequence, Dynamic Programming will be 
applied. 

Implementation DP Algorithm 
Equations (1)-(4) define the fuel consumption of a dy- 

namic system consisting of one control input P, and one 
state variable E,. Both quantities are mapped onto a fixed 
grid with distance APa and AE, respectively, where: 

To keep track of the energy level in the battery, a discrete 
version of (4) is used: 

E,(k + 1) = E,(k)  + P.(k)At (15) 

Due to the bounds (12), only energy levels between E,min 
and E,,,, are used. The sample time A t  is fixed, whereas 
signals are kept constant in between. 

A cost matrix R E Wmxn is created with: 

After selecting a desired end state E,(t , ) ,  the DP algorithm 
will fill matrix R for k = [n,. . . ,1] and e = [l, . , . , m] as 
follows: 

R e , k  = the minimum cumulative fuel consumption 
for driving the remainder of the drive cycle 
starting at t = k a t  with an initial state 
E.(kAt) = E,,in + eAE, 

The alternator setpoints which achieve minimum fuel 
consumption are not stored in R, but are calculated after- 
wards for k = 11, . . . , n], using the information from R and 
a desired s w i n g  point E,(O). 

V. QUADRATIC PROGRAMMING 
Dynamic Programming is very time consuming, so for 

real-time implementation other methods need to be con- 
sidered. In this section, simplifications will be introduced 
to achieve a Quadratic Programming structure (QP), which 
has the advantage that a global minimum is guaranteed and 
short computation times can be achieved. 

A QP problem is given by a quadratic cost criterion 
subject to linear constraints: 

min - J ( a ) =  + a T H g + h T g + h h o  (17) 

subject to A a  5 Q 

Model Approximation 
To obtain a quadratic cost function, the nonlinear com- 

ponent models are approximated as quadratic relations 
between incoming and outgoing power and then combined 
into a single expression, again simplified to be quadratic. 

fuehte(P,, , ,w) ; .u2(w)pA +al(u)Pm+ao(w) (18)  

The fuel map of the engine is approximated by: 
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where the parameters a; depend on the engine speed. 
Similarly, the alternator map is approximated by: 

Pg(Perw) ; . rz (w)P,Z+y1(w)Pe+70(w)  (19) 
The losses in the battery are positive for both charging and 
discharging. This can be obtained by making the losses 
quadratic with the storage power: 

%(s) p a  + Pp: (20) 

For simplicity the influence of E, and T and differences 
between charging and discharging are neglected here. This 
model can be extended using piecewise linear terms for 
charging and discharging to obtain closer approximations 
of a real battery, within a QP framework [3]. 

Cost Function 
Combining the quadratic relations for the engine, the 

altemator, and the battery results in an 8th-order relation 
describing the fuel use as function of P,. Because the cost 
function may only be quadratic, the higher order terms are 
omitted. The expression for the fuel use then becomes: 

fuelrate(P.) ;. vz p." + +PO (21) 
where parameters ~ p ;  depend on w, P d ,  and Pi. 

discretization one may obtain: 
The cost function is the fuel use over the cycle. By 

n 

J = fuel(n)  = fuelrate(P,(k)) At (22) 
k= l  

The sample time At may be omitted, since it is constant. 
Returning to (17). this means that H is diagonal with: 

w, k) = 2VZ(k )  (23) 

The other terms become: 
n 

h(k) = ~ ( k )  and ho = ~ o ( k )  (24) 
k=l  

Constraints 
Using the quadratic relations for the components and the 

drive cycle info, the constraints on P,. P,, and Pb can be 
rewritten as linear constraints on Pa, assuming the solution 
for P, from (19) and P, from (20) can be uniquely selected. 

Combining them leads to one lower and upper bound for 
P. at each time instant: 

(25)  Psm;n(k) i P.(k) 5 Pam&) 
The bounds on E. can also be written as linear constraints 
on Pa, by using the following discretization: 

E,(k) = E s ( 0 ) + ~ P , ( i ) A t  (26) 
i=l 

The equality constraint (13) becomes: 
" 

E.(n) = E.(O) + c P . ( k )  = 0 (27) 
b=l  

From (25-27) it is easy to construct A and b in (17). 

VI. MODEL PREDICTIVE CONTROL 

When the complete drive cycle is known a priori, the 
optimization problem has to be solved only once. However, 
if only a limited prediction horizon is available, both the 
DP and QP problem can be used within an MPC structnre 
using a receding horizon. 

This means that the optimization is canied out at each 
time step over a limited prediction horizon. The first value 
of the optimal control sequence is implemented. The next 
time step a new optimization is done using an updated 
prediction and new measurement data. 

As already shown in [8], for short prediction horizons, 
the variation in P, and thus the performance is limited by 
the endpoint constraint on E,. Therefore, a new approach 
based on QP that does not rely on an accurate prediction 
has been developed. 

Reduction of the QP Problem 

If only the cost function and the equality constraint are 
considered, the QP problem can be solved analytically by 
introducing the Lagrange function, as is also done in [lo]: 

n 

L(E,,X) = t Vz(k)P, (k )2+Vl(k)P. (k )  
k=l  

n 

+ ~ o ( k )  } - A  Ps(k) (28) 
k=1 

The optimal solution can be calculated by solving: 

The solution is given by: 

where: 

This requires that 'pz > 0, so the cost function J must be 
convex. From (30) follows that in the optimal solution, all 
n periods have the same incremental cost, namely A. 

When the upper and lower bounds on Pa are taken into 
account, the problem can still be solved efficiently with a 
routine described in [lo]. If the upper and lower bound on 
E. or other constraints are added, a general QP solver must 
be used. 

Elimination of the Prediction Horizon 

Although for the computation of P:(k) only current 
values ppl(k) and pz(k) are needed, computation of the 
value of X requires knowledge of and 'pz  over the entire 
drive cycle. 
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When a prediction of the complete cycle is not available, 
X can be estimated or adapted online, for instance by using 
the following PI-type controller: 

X ( k +  1) = Xo + Kp(Ever - Es(k)) 
5 

+KI C ( E v e ,  - E,(i))At (32) 
i = l  

where Xa is an initial guess. 
Because P. is proportional with A, and E, is the integral 

of P,, the closed loop becomes a time varying second order 
dynamic system. 

The feedback of E, is meant to avoid draining or 
overcharging the battery in the long run, but short term 
fluctuations of E, should still be possible, so the bandwidth 
of the PI-controller should be chosen rather low. 

For given A, computing P,"(k) using (30) is equivalent 
to solving at each time instant k: 

P,O(k) = ark! E;;, I i p z ( k ) P m 2  +ipl(k)P.(k) 

+ Po(k) - XP&) 1 (33) 

Instead of the quadratic approximation, the original nonlin- 
ear cost function can also be used: 

P,O(k) = arg min { fuelrate(P,(k)) - XP,(k) } (34) 
P.(k) 

The bounds on P, can be respected by saturation: 

Pl(k)  = min(max(P,,i,(k),P,O(k)), psmaz(k)) (35) 

Equation (34) provides a nice physical interpretation of the 
strategy. At each time instant the actual incremental cost 
for storing energy is compared with the average incremental 
cost. Energy is stored when generating now is cheaper than 
average, whereas it is retrieved when it is more expensive. 

VII. SIMULATION 
Simulation Model 

Simulations are done for a conventional vehicle equipped 
with a lOOkW 2.0 liter SI engine and a manual transmission 
with 5 gears. A 42V 5kW altemator and a 36V 30Ah lead- 
acid battery make up the alternator and storage components 
of the 42V power net. 

The battery has an energy capacity of Ecap = 4.106 J and 
is operated around 70% SOC, because the efficiencies for 
both charging and discharging in this range are acceptable. 
The simplified battery model (20) is also used for the DP 
strategy. Parameter 0 has a value of 5 .  10W5 W-', which 
gives an efficiency of 95% at 1000 W and 90% at 2000 W. 

For a given speed profile and selected gears, the corre- 
sponding engine speed and torque needed for propulsion 
can be calculated using the following formulas: 

(36) f v  
w ( t )  = -gg,( t )u(t )  

W T  

(37) 

F,j(t) = mo(t) + & p C d A d u ( t ) ' + m g C ,  (38) 

The parameters and their values are given in Table I. 
When the engine speed drops below a certain value, the 

clutch is opened. Then the drive train torque becomes zero 
and the engine speed drops to an idle speed of 700 rpm. 

When the drive train torque is negative, it is partly 
delivered by the ICE (which has a negative drag torque), 
by the altemator, and by the brakes. Because regenerative 
braking delivers electrical power without extra fuel use, 
it will be used as much as possible. The brakes are only 
used when the desired deceleration torque is larger than 
the maximum negative torque that can he delivered by the 
engine and the altemator. 

Simulations are done for the New European Driving 
Cycle (NEDC) [l], of which the vehicle speed is shown 
in Fig. 4. For the electric power request, constant loads of 
500, 1000, and 2000 W are used. 

TABLE I 
PARAMETERS OF THE SIMULATION MODEL 

Quanriry Symbol Value Unit 

Mass 
Frontal area 
Air drag coefficient 
Rolling resistance 
Air density 
Gravity 
Wheel radius 
Final drive ratio 
Gear ratio 

m 
Ad 

cr 
c d  

D 

97 

1400 
2 
0.3 
0.015 
1.2 
9.8 
0.3 
4.0 
3.4 - 2.1 

kg/m3 

m 
d s 2  

. - 1.4 - 1.0 - 0.77 

Strategies 

level and their results will be compared 
The following strategies are implemented on simulation 

BL Baseline strategy where the altemator power is 
equal to the requested load. 

RGB Regenerative braking strategy that stores free 
energy during braking and uses it directly 
afterwards. 

This strategy calculates the DP problem once for 
the complete drive cycle. 

This strategy calculates the QP problem once for 
the complete drive cycle. 

QP at each time step using (30), ( 3 3 ,  and (32). 

DP at each time step using (34), (35), and (32). 

DP 

QP 

QP1 
DPl 

The DP strategy is used with an input grid of 100 W and 
a state grid of 100 J. The DPl strategy is used with an input 
grid of 10 W and does not need a state grid. 

K p  and KI are tuned such that for average values of 
pl(t) and ipz(t) a bandwidth of 

The QP1 and DPl strategy do not guarantee that the 
endpoint constraint is satisfied. The difference in SOC is 
accounted for in the fuel consumption using the average 
value of A. 

rads is obtained. 
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Fig. 4. Simulation results for Pi = 1000 W 

The power needed for propulsion has an average of 
10 kW for the NEDC with this vehicle. The fuel needed for 
propulsion cannot be influenced, so for a fair comparison 
of the strategies, only the additional fuel use needed for the 
electric power is of interest. 

The fuel savings on the electric power with respect to the 
baseline strategy aTe presented in Table 11. 

TABLE I1 
FUEL SAVINGS ON THE ELECTRIC POWER 

Saving [%I 500 W IWO W 2000 W 

RGB 37.52 20.00 10.49 
DP 42.40 24.24 11.74 
QP 41.93 23.53 11.55 
QPI 42.19 23.03 11.20 
DPI 43.32 24.35 11.72 

Evaluation 
The simulations show that the concept is working. Most 

of the profit comes from regenerative braking, which de- 
livers a certain amount of energy for free. Therefore the 
relative fuel savings are higher at low electric powers. 

Both Dynamic Programming and Quadratic Program- 
ming do not find the global optimal solution of the nonlinear 
optimization problem. The DP algorithm uses the origi- 
nal nonlinear cost criterium, but restricts itself to a grid, 

whereas the QP algorithm finds the global optimum of a 
quadratic approximation of the original problem. The small 
difference between DP and QP indicates that the nonlinear 
problem is approximated accurately by a QP problem. 

The adaptive strategies without future knowledge perform 
equally well. For some loads, the DPI strategy outscores the 
DP strategy, because of its finer grid. 

Apart from regenerative braking, the strategy presented 
here benefits from differences in the incremental fuel rate 
at various operating 'points. For the fuel map used here, 
this variation in dope is rather low, which limits the 
improvement that can be made with an energy management 
strategy on top of regenerative braking. 

The performance is also limited by the losses that occur 
during charging and, discharging of the battery. As an 
alternative, an ultra capacitor can be used, which has a much 
higher efficiency, but also a lower capacity. 

A detailed analysis on how the performance depends on 
the component characteristics is presented in IS]. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 
Several possible energy management strategies for the 

electrical power net are presented, that use either a predic- 
tion of the future or only current information to minimize 
the fuel consumption 'over a drive cycle. 

Simulations show that the concept is working. However, 
for the configuration considered here, only a limited fuel 
reduction can be obtained. 

More h e d o m  in control, and thus more potential im- 
provement is possible when using other drive train config- 
urations, e.g., where variation in both engine torque and 
speed is possible. 
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