

Prisoner's dilemma in software testing

Citation for published version (APA):
Feijs, L. M. G. (2001). Prisoner's dilemma in software testing. In L. M. G. Feijs, N. Goga, S. Mauw, & T. A. C.
Willemse (Eds.), Proceedings 7e Nederlandse Testdag (Eindhoven, The Netherlands, November 8, 2001) (pp.
65-80). (Computer Science Reports; Vol. 01-10). Technische Universiteit Eindhoven.
https://doi.org/10.1016/0167-6423(88)90016-0

DOI:
10.1016/0167-6423(88)90016-0

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/0167-6423(88)90016-0
https://doi.org/10.1016/0167-6423(88)90016-0
https://research.tue.nl/en/publications/ea44da3e-a2e5-4192-ac68-5aecfde520b8

Prisoner's Dilemma in Software Testing

Loe Feijs
Eindhoven University of Technology

Abstract

In this article the problem of software testing is modeled as a formal strategic game.
It is found that for certain values of the productivity and reward parameters the game is
essentially equivalent to the Prisoner's Dilemma. This means that the game has a unique
Nash equilibrium, which is not optimal for both players, however. Two formal games are
described and analyzed in detaiJ, both capturing certain (though not all) aspects of real
software testing procedures. Some of the literature on the Prisoner's Dilemma is reviewed
and the re<>uits are translated to the context of software testing.

Keywords: software testing, software quality, game theory, Nash equilibrium, prisoner's
dilemma.

1 Introduction

Software is playing an increasingly important role in modern society. Not only in office software
and computer games, but also in embedded systems such as in televisions, telephony exchanges,
cars, etc. computer programs of considerable size are essential. Software bugs constitute a
serious problem [1]. Software testing is frequently used to find errors so they can be repaired
and hopefully, the software quality improved. In view of the societal relevance of software
quality, it makes sense to consider software quality as an economic issue and to use rational
methods when studying it. In this article we use concepts from game theory for that purpose.
The problem of software testing is modeled"" a formal strategic game. One of the findings of
this article is that this game is of a special nature, known as Prisoner's Dilemma [2].

The article is structured as follows. Sect. 2 introduces the necessary game theory, which
includes the Prisoner's Dilemma. Sect. 3 describes the role of testing in software engineering.
Sect. 4 describes an idealized testing game and Sect. 5 discusses a subtle variation of the same
game. We have an example of a concrete testing game, providing support for and adding
plausibility to the game of Sect. 4. Its presentation is very technical, however; therefore all the
details are described in App. A. In App. B this concrete testing game is analyzed. In Sect. 6
the effect of multiple performance levels is investigated. In Sect. 7 several known results on the
Prisoner's Dilemma are summarized and translated to the context of software testing. Finally
Sect. 8 contains some concluding remarks.

2 Prisoner's Dilemma

There are two types of games that are st udied in game theory: zero sum games and non-zero
sum games. Zero sum games obey the rule that the sum of the payoffs to all players equals
zero. An example is the game of chess where a player receives one point if he wins, -1 point
if he looses and 0 points in case of a draw. There are two players and three outcomes: white
wins and black looses, white looses and black wins, and a draw (no one wins). The payoffs
are (1,-1), (-1,1) and (0,0), respectively. In each c""e, the sum equals zero, e.g. if white
wins the payoffs are given as the pair (I, -1) so the sum 1 + (-1) = O. Zero sum games were
studied by Zermelo and Von Neumann [3] who established solution concepts and proved their

65

existence using minimax analysis and fixed point theories. Zero sum games model situations
where players have a conflict of interests such that their interests are completely opposite.

Non-zero sum games, by contrast, model situations in which there is a conflict of interest,
but where the opposition is not complete. To a certain extent, the players can have shared
interests, but their interests are not completely aligned either. Throughout this article the class
of non-zero sum games is needed.

Another distinction usually made in game theory is between strategic games and extensive
games. In a strategic game all players choose their actions once in a simultaneous fashion
whereas an extensive game is more general; in an extensive game it is possible to perform
several actions in a sequential fashion (as for example in chess and checkers). Throughout this
paper we focus on strategic games, which are formally introduced next.

A strategic game is a triple (N, (Ai), (Ui)) where N is a finite set of players and for each
player i E N there is a set Ai of so-called actions. For each player i E N there is a function
Ui A ---j. IR that assigns a payoff to each tuple of actions. Here A = IIiEN Ai, or in the
special case that the size of N equals two, A = Al X A2. The payoffs give rise to a preference
ordering <,:, on A, one ordering for each player, defined by a <,:, b iff u,(a) <': u,(b). The absolute
values of the payoffs are considered irrelevant in the sense that only the induced preference
ordering counts. Throughout this article the number of players equals two. Thus N contains
two elements and without loss of generality it can be assumed that N = {1,2}. A pair of
actions (a, b) for a E Al and b E A2 is called an action profile . .

A simple example of a strategic game is BoS, the Battle of the Sexes, in [5] explained as
Bach or Stravinsky. It is here used as an example to introduce a convenient tabular notation
called payoff matrix. The actions of player 1 correspond to the rows of the matrix. The actions
of player 2 correspond to the columns of the matrix. Each entry in the matrix contains a pair:
the payoff of player one, followed by the p~yoff of player 2. The payoff matrix of BoS is:

B S
B 2,1 0,0
S 0,0 1,2

The action sets are Al = A2 = {B, S}, that is, each player has to indicate his choice for
a concert of music, going to either Bach (B) or Stravinsky (S). Their main·concern is to go
together, but one person prefers Bach and the other prefers Stravinsky.

The interesting question is which action profiles are to be chosen by rational players. A
very important concept for studying this question is the Nash equilibrium (the original publi
cation is [4]; we follow the presentation of [5]). A Nash equilibrium (N.E.) of a strategic game
(N, (A,), (Ui)) for N = {1,2} is an action profile (aO,bO) with the property that (a',b') <':1
(a, b') for all a E A, and similarly (aO, bO) <:2 (aO, b) for all b E A2. The intuition is that a Nash
equilibrium is a consistent expectation pair in the sense that player 1, if he is rational, sticks to
his choice a* which is better for him than any other choice (assuming player 2 does not deviate
from his b*) and conversely for player 2. The concept of Na.sh equilibrium is illust"rated by the
game of BoS, which has two Nash equilibria, viz. (B, B) and (8,8). The preferences are shown
in the diagram of Figure 1 which is like the payoff matrix except for the arrows which indicate
how player 1 can improve a certain action profile by another action profile (according to the
vertical arrows) and similarly for player 2 (according to the horizontal arrows).

After these preparations the Prisoner's Dilemma is introduced. The Prisoner's Dilemma is
the two-player strategic game with the following payoff-matrix:

C D
C 1, 1 3,0
D 0, 3 2, 2

The game was proposed by Merril Flood and Melvin Dresher in 1950 in a slightly different set
ting. The name 'Prisoner's Dilemma' was proposed by Albert Tucker, who found the anecdote
of the two prisoners. In [2J the game is explained as follows:

66

Figure 1: Improvements for the BoS game.

Two members of a criminal gang are arrested and emprisoned. Each prisoner is in
solitary confinement with no means of speaking to or exchanging messages with the
other. The police admit they don't have enough evidence to convict the pair on the
principal charge. They plan to sentence both to a year of prison on a lesser charge.
Simultaneously, the police offer each prisoner a Faustian bargain. If he testifies
against his partner, he will go free while his partner will get three years in prison on
the main charge. Oh, yes, there is a catch ... If both prisoners testify against each
other, both will be sentenced to two years in jail.

This explanation motivates the sets Al = A2 = {C, D} where D means 'Defect' and C means
'Cooperate'. Since the absolute values are irrelevant, the Prisoner's Dilemma can equally well
be described by the following payoff matrix (taken from [5]):

C D
C 3,3 0,4
D 4,0 1,1

There is something paradoxical about the Prisoner's Dilemma which is the fact that the only
N.E., the action profile (D, D) with payoff pair (1,1) is inferior to the pair (C, C) with payoff
pair (3,3). It is inferior for both players. The improvements diagram of Figure 2 demonstrates
that (D, D) is the only N.E.:

FfJ
I 1·1 rn

Figure 2: Improvements for the Prisoner's Dilemma.

3 Software testing

Since the invention of stored-program computers in the 1940s the importance of computer
programs has been steadily increasing. Today, many millions of people rely on software such
as Unix, Windows, MS Office for important aspects of their work. Televisions, telephony
exchanges, cars, airplanes, mobile phones, etc. each contain thousands, sometimes millions of
lines of embedded code. Experience shows that it is very hard to guarantee the correctness of
these programs (often referred to as software). Sometimes the problems seem out of control,
as illustrated by the problems reported in [lJ: Software's Chronic Crisis. Gibbs mentions the

67

example of the baggage-handling system of Denver's new international airport that, for nine
months, was held captive by "Lilliputians-errors in the control software". Shaw of Carnegy
Mellon, Bourgonjon of Philips and others note how software is exploding. Gibbs writes about
bugs, small glitches, the density of errors and so on. Software testing is used in serious attempts
to improve the situation by detecting errors as soon as possible. A.B Hall puts it in [1]: "The
benefits of finding errors at that early stage is enormous". Testing plays an important role
in the present industrial practice, particularly when the software systems are very large. A.B
an example we mention the development of Windows 2000, being 29 million lines of code. We
quote from [6] where it is reported that: <I[] at the level of size and complexity of Windows 2000,
writing code was no longer the central activity. Indeed, testing and debugging have accounted
for between 90 and 95 percent of the work". It is generally believed that large-scale software
projects have to spend 50% or more of their effort in testing.

There is a large literature on the art and science of software testing. Formal method spe
cialists stress the fact that testing can reveal errors but can not prove the absence of errors
(Dijkstra EWD340); both research and case studies are done to explore the power of correct
ness proofs and automated analysis tools (model checkers). Despite these research efforts, most
practitioners consider some form of testing indispensible. In the field of protocol conformance
testing, the topic of testing is subject of much research and development. We mention the
language TTCN [7J and Finite State Machine based methods such as those mentioned in [8],
[9J and Labeled Transition System methods, for example [10J.

Most authors in formal testing research adopt the viewpoint that there should be a formal
specification which is used as a starting point for procedures to generate tests, execute them,
and determine their coverage: The main goal seems to be that the efficiency, or error detection
power of the tests-to-be-derived is optimized.

Useful as this may be, little or no attention is given to the fact that there is an opposition
of interests between the tester and the implementor. The goal of the tester is to find errors,
whereas it is easily observed in practice that an implementer likes his program to be shown
correct (as he often believes it is). The practical advise to separate these roles, letting the
tester be another person than the implementer is well-known for this reason.

In this article we do not just seek an optimizing procedure for the tester, but we focus on the
opposition of interests. Since game theory has a vocabulary and analysis methods for situations
of opposite interests, these can be applied to software testing. This is undertaken in the next
section.

4 An idealized testing game

In this section a very simple and yet fairly general model is proposed first. The model is nothing
but a payoff matrix for two players: an implementer (player 1) and a tester (player 2). After
that the model will be refined to bring in the probabilistic aspects that ocur when neither the
implementation nor the test are perfect (so both PASS and FAIL are possible outcomes, each
with its own probability). The model is abstract in the sense that it does not tell what' an
implementation or a test looks like. A more concrete example model, showing that the abstract
model makes sense, is postponed until App. A.

The Idealized Testing Game (ITG) is the two-player strategic game (N, (Ad, (u;)) where
N = {1,2} and Al = A2 = {p,q}, with the intuition that p means (poor' (bad) and q means
'quality' (good). The Ui are given by the payoff matrix:

p q
p 2,2 0,3
q 3,0 1,1

The motivation for this payoff matrix is as follows. The implementer is rewarded if he delivers
an error-free, or almost error-free piece of software. The tester is rewarded if he performs a
thorough testing job. In practice it is hard to tell whether the software is error-free or not;

68

that is precisely what testing is meant for. Therefore in ITG the implementer is rewarded if
no error is found (an outcome denoted as PASS). The tester should be eager to find errors.
Therefore in lTG, the tester is rewarded if at least one error is found (an outcomed denoted
as FAIL). The implementer chooses between doing a poor job, delivering software containing
errors, and doing a quality job, delivering error-free or almost error-free software. The tester
chooses between doing a poor job, performing a test with low error detection capability, and
performing a quality test, which takes more effort: but which is more likely to reveal errors.
The payoffs for the action profile (P,p) are 2 for the implementer and 2 for the tester. Both
do a poor job, so yes, the software contains errors, but at the same time there is a low error
detection capability by the tester's choice. Some of the errors are found, some are not. Both
the implementer and the tester are equally well rewarded; this explains both payoffs that are 2
(recall that the absolute value is irrelevant). Another situation occurs when an almost perfect
implementation is investigated in an almost perfect test. But now the payoffs are 1 since both
players have to make serious investments in effort (time), and perhaps also in costs for more
sophisticated personal education, tools etc. The costs of these efforts, here estimated to have a
value of 1, are to be subtracted from the rewards, both for the implementer and the tester.

Next consider the action profile (q,p), that is, an almost perfect piece of software investigated
by a poor test. Clearly this gives a PASS. The implementer's reward increases from an average
of 2 to a certain value of 4. But the effort is higher too, so the implementer gets 3. The tester
has no costs for the effort, but no rewards either. The effect of reward outperforms the effort
(=1) so the tester's payoff is 2 less than his payoff for (P,p); the tester gets O. Conversely, (p, q)
gives a FAIL with payoffs 0 and 3.

The payoff matrix of ITG is the payoff matrix of a Prisoner's Dilemma. There is one N.E.,
the action profile (q,q). In the N.E. both players choose to do a quality job.

Next this model is to be refined in order to bring in the probabilistic aspects. The refined
model is called ITG'. It is defined by a 4 x 4 payoff matrix. From lTG' the earlier model
ITG can be derived in a formal way: the four choices for the implementer are reduced to two
choices, each of which is a lottery over two alternative implementations of equal quality level
(and similarly for the other player). By this approach, the numbers from the ITG payoff matrix
can be retrieved later (in other words: lTG' will provide a more detailed motivation for ITG).

The refined Idealized Testing Game (ITG') is the two-player strategic game (N, (A~), (ui)
where N = {1,2} as before and where A; = A, = {pl,p2,q1,q2}. The u: are given by the
payoff matrix:

p1 p2 q1 q2
pI 4,0 0,4 0,3 0,3
p2 0,4 4,0 0,3 0,3
q1 3,0 3,0 3,-1 -1,3
q2 3,0 3,0 -1,3 3,-1

The motivation for this payoff matrix is as follows. The implementer has always several alter
native design choices, even after he has made a conscious or unconscious decision to spend the
effort corresponding to a poor job or the effort corresponding to a quality job. In realUfe this
design space is huge but here it is assumed to be a two-element set. It is the set {p1,p2} for
'poor' and the set {q1,q2} for 'quality'. The reward for a programmer doing a good job, as
witnessed by a PASS, equals 4 (think of 4$, 4K$ or 400K$ depending on the size and complexity
of the specification). In the case of a FAIL the programmer receives reward O. The tester gets
4 for a FAIL, 0 otherwise. A poor implementation and a poor test cost O. A quality imple
mentation costs 1 (the effort), which is counted negatively. The same holds for the test cost.
It is assumed that (P1,p1) and (P2,p2) produce a PASS whereas (Pl,p2) and (P2,p1) produce
a FAIL. But if the programmer chooses any of his quality alternatives q1 or q2 he enforces a
PASS whenever the tester chooses one of the poor alternatives. And so on, as conveniently
summarized by the following matrix (call this a verdict matrix):

69

pI p2 qI q2
pI PASS FAIL FAIL FAIL
p2 FAIL PASS FAIL FAIL
qI PASS PASS PASS FAIL
q2 PASS PASS FAIL PASS

This concludes the motivation of lTG',
This game lTG' has no N.E. For example, consider the action profile (pI, pI) having payoffs

4,0. Then the tester can improve by choosing p2 instead of pI. The resulting action profile
(Pl,p2) has payoffs 0,4. Then the implementer can improve by choosing p2. The action profile
(P2,p2) yields 4,0 so the tester improves to (P2,pI). The action profile (P2,pI) yields 0,4 so
the implementer improves to (Pl,pl). The limprovements' go round in circles. Of course the
reason is that the implementer has no reason to distinguish whether pI or p2 is better because
he has no way to know what the tester will do (PI or p2).

Therefore the following two-step strategy is reasonable: first choose between p and q, then
conduct a lottery over the alternative implementations. In reality an implementer does not feel
like throwing dice concerning his implementation decisions; he tries his best with the selected
time frame, but yet he makes mistakes at places where he is unaware of it and that is modeled
as a random device.

In order to calculate the average payoffs, the payoffs are mUltiplied by a·weighting factor.
The sub-matrix where the implementer takes one of the p choices and the tester takes one of
his p choices, contains four entries with equal probabilities. These must be 25%. The weighting
matrix is:

pI p2 qI q2
pI 25% 25% 25% 25%
p2 25% 25% 25% 25%
qI 25% 25% 25% 25%
q2 25% 25% 25% 25%

Performing an element-wise multiplication of the lTG' payoff matrix and the weighting
matrix we get:

pI p2 qI q2
pI 1,0 0,1 0,0.75 0,0.75
p2 0,1 1,0 0,0.75 0,0.75

qI 0.75,0 0.75,0 0.75,-0.25 -0.25,0.75
q2 0.75,0 0.75,0 -0.25,0.75 0.75,-0.25

Taking this latter matrix, the four weighted payoffs can be added for each of the four sub
matrices. For the (P,p) sub-matrix we must (player-wise) add 1,0 and 0,1 and 0,1 and 1,0
which means that the average payoffs for (P,p) are 2,2. The result is:

p q
p 2,2 0,3
q 3,0 1,1

This is easily recognized as ITG. So ITG comes out as an abstraction of ITG'.
Althougb ITG and lTG' are based on reasonable assumptions they are very abstract. The

syntax and semantics of the prograIllE and the details of the testing procedures are not elab
orated and there is not even a difference between an implementer and a tester. We have an
example of a concrete testing game TCTG (Text Copy Testing Game), providing support for
and adding plausibility to ITG and ITG'. In TCTG the task for the implementeds to tran
scribe a given text, perhaps from one character set to another, or perhaps even simpler, to type
precisely the characters of a given string. The length of the specification and the length of the

70

implementation are the same, L say. The task of the tester is to select one or more positions
in the range 1 to L. If the implementation and the specification differ at one or more of the
selected positions then an error is found and the verdict is FAIL. Otherwise the verdict is PASS.
The presentation of the Text Copy Testing Game is very technical, however. Therefore all the
details are described in App. A. In App. B this concrete testing game is analyzed.

Discussion: ITG is based on lTG' which contains reasonable assumptions about the test pro
cess such as the assumption that a poor-poor confrontation and a quality-quality confrontation
yield a 50%/50% ratio of PASS and FAIL. Another assumption is that the reward or success is
4 times the effort needed to perform a quality job. This factor of 4 is a parameter of the game
(call it the reward/effort ratio, symbol R). If the ratio R = 4 then ITG results, essentially
a Prisoner's Dilemma. Taking other values, other games result, some of which have another
nature than the Prisoner's Dilemma. For arbitrary ratio R the adapted payoff matrix of ITG
is:

p q
p ~R,~R O,R-I
q R -1,0 ~R-UR-I

Its is interesting to consider values of R that are below 4; the nature of the game changes at
R = 2. For example, taking R = 14 the payoff matrix turns into:

p q

P 0.75,0.75 0,0.5
q 0.5,0 -0.25,-0.25

This is not a Prisoner's Dilemma. There is one N.E., viz. (P,p) and the corresponding payoffs
0.75,0.75 are better than the payoffs for any other action profile (for both players). If this is
interpreted in the usual way by assuming that both player and tester behave rational and hence
take this N.E., then it is a natural explanation to say that there is not enough incentive for both
players to choose the quality alternative: the expectation of the reward does not outperform
the effort.

5 What if the implementer moves first?

There is an assumption underlying the ITG that can be questioned, viz. that the implementer
and the tester choose their performance level simultaneously. This is motivated by the way
many software engineering projects are organised. As soon as the requirements analysis phase
has been completed and the software specification is available, not only the implementer starts
working, but also the tester. A large part of the tester's work consists of choosing test cases and
carefully describing them. This work should not wait until the implementer is ready because
of the usual requirement to keep the overall project duration as short as possible (another
part of the work is test execution, which has to wait for the implementation anyhow). For,
the main development of the present paper we adopt the viewpoint that testing is a strategic
game which means that both players move simultaneously, as motivated by the parallelism in
the development project. It is also motivated by the fact that even after the implementer has
delivered his implementation, the tester does not know the implementer's performance level
(usually, testing is needed for that).

But, as a short side-line we shall briefly analyse a sequential version of lTG, wich we call
ITG5eq . In ITGseq the payoff matrix is:

p q

P 2,2 0,3
q 3,0 1,1

71

which is the same as for ITG. The difference is that in ITGseq the implementer chooses first.
Then, knowing the implementer's choice, the tester chooses. The motivation for this could be
that in certain specific situations the tester can easily sample the implementer's work in order
to estimate the performance level (for example if the code contains many deeply nested IF
THEN ELSE statements, bugs are likely).

Next ITGseq is analysed according to a max-maximization procedure (this is a two-phase
optimization similar to the well-known min-max procedure for zero-sum games). If the imple
menter chooses p then the tester is left with the upper sub-matrix:

The assumedly rational tester maximizes his own payoff and therefore chooses q. In this case
the implementer receives payoff O. Alternatively, if the implementer chooses q then the tester
is left with the lower sub-matrix:

The tester, maximizing his own payoff, chooses q. In this case the implementer receives payoff
1. The implementer is facing a choice between p with payoff 0 and q with payoff 1. Assuming
the implementer is rational, he must choose q. Then the tester chooses q. So the solution of
the max-maximization analysis is the (sequential) action profile (q, q). As it happens, this is
the same a.s the N.E. of the ITG.

6 Adding an extra performance level

One of the objections one could have against the relevance of the ITG and the TCTG of App. A
as a model of an implementer's behavior and a tester's behavior is the binary choice with respect
to the performance level. Perhaps a real implementer does not want to choose between two
extreme values of 'poor' and 'quality' levels, or between Q = 20% and Q = 50%. A real
implementer sees a whole range of performance levels, so perhaps he chooses between three
levels (or even more). It is not a priori clear what implications this has for the nature of the
game. ITG and TCTG make it difficult to choose between the poor level and the quality level
(because of the paradoxical nature of the Prisoner's Dilemma) but will the dilemma disappear
if there is a third, intermediate level? In order to investigate this, we construct another game
called ITG3 which is a 3 x 3 strategic two-player game.

The game ITG3 is obtained from ITG by introducing an intermediate performance level
halfway between 'poor' and 'quality'. The same notational devices used in App. B are used here.
In order to simplify the calculations we approximate the effort values by linear interpolation
(the rewards are always the same, but the effort part is varying). Therefore the refined payoff
matrix is:

p pq q

P 4,0/0,4 4,-0.5 /0,3.5 4, 1/0,3
pq 3.5,0/-.5,4 3.5,-0.5/-0.5,3.5 3.5,-1/-0.5,3

q 3,0/-1,4 3,-0.5/-1,3.5 3,-1/-1,3

The weighting matrix is also taken to be the result of linear interpolation between the
idealized values of P(FAIL) which are 0%, 50% and 100% in ITG. Therefore the weighting
matrix is:

p pq q

P 0.5 /0.5 0.25 / 0.75 0/1
pq 0.75/0.25 0.5 / 0.5 0.25/0.75

q 1/0 0.75 / 0.25 0.5 /0.5

72

The payoff matrix and the weighting matrix can be multiplied in an element-wise fashion to
get:

p pq q
p 2,0 /0,2 1,-0.125/0,2.625 0,0/0,3

pq 2.625,0/0.125,1 1.75,-0.25/ -0.25,1. 75 0.875,-0.25/ 0.375,2.25
q 3,0/0,0 2.25,-0.375/ -0.25,0.875 15,-0.5/ 0.5,1.5

And by pair-wise adding the payoffs for PASS and FAIL the following payoff matrix is obtained
(call this abstract 3 x 3 game ITG3):

p pq q
p 2,2 1,2.5 0,3

pq 2.5,1 1.5,1.5 0.5,2
q 3,0 2,0.5 1,1

This is again a game with one N.E. at (q, q) but as in the Prisoner's Dilemma the payoffs 1,1
for the N.E. are less than certain other payoffs, such as the 2,2 for <:P,p). The improvements
diagram for ITG3 is shown in Fig. 3. From this analysis we see that introducing an intermediate

Figure 3: Improvements for the ITG3 game.

performance level does not change the essential nature of the game.

7 Testing is a Prisoners Dilemma; so what?

COIlBider a software development laboratory in which there are programmers (=implementers)
and testers. The efforts and rewards are determined according to the principles such as those of
ITG and TCTG. Programmers receive a fixed basis salary, but if they choose to do a !quality'
job, they have to spend more hours (which could have been spent otherwise in a profitable way,
which means that the programmer pays for extra efforts). Moreover the programmer receives a
bonus (the reward) if the subsequent test results in a PASS verdict. A similar payment system
is adopted for the tester. There are other conceivable set-ups as well, for example introducing a
programmer's boss who chooses the programmer's performance level and pays him accordingly;
in this case it is the boss who plays the game, but it does not make much difference.

Now from the viewpoint of the software lab's manager: is it good or bad that there is a
Prisoner's Dilemma going on in his lab? There are several aIlBwers possible, depending on the
type of theoretical results that are employed and depending on the level of belief that these
theoretical results apply to real life. Six different types of theoretical results are discussed:

• The concept of N.E. is a straightforward theoretical concept of !solution' for a two player
strategic game. If it is assumed that rational players choose the N .E. and if both the

73

programmer and the tester are rational, then they must choose the 'quality' performance
levels; for the lab manager this means that they do their best to deliver quality software,
which is the manager's (and the customer's) best outcome. It is best for the manager,
not for the players. Looking at this way, ITG is good.

• Already in the early days of the development of game theory, serious doubt has been
raised whether real people would behave rational in the sense of choosing the N.E., even
in paradoxical situations. The Prisoner's Dilemma was conceived precisely as a tool
for investigating this. In the Flood-Dresher experiment [2] done in 1950 a sequence of
Prisoner's Dilemma games was conducted by the same pair of players; mutual cooperation
was the most common outcome: 60 of the 100 games. Mutual defection, the N .E., occurred
only 14 times. Translating this to the lTG, mutual cooperation means /,p,p) and mutual
defection means (q, q). If the programmer and the tester behave as in this experiment,
their behavior is bad from the lab manager's (and the customer's) point of view.

• If the same game is played repeatedly by the same pair of players, it is not correct from a
game-theoretical view to consider these as independent games (as immediately remarked
by John Nash in his reaction to the Flood-Dresher experiment, see [2)). The sequence is
to be considered as one game in which the two players move pairwise, using the knowledge
about the other player's strategy (as built-up so far) in each successive move. In game
theory this is known as an 'extensive game with perfect information and simultaneous
moves' (see [5] 6.3.2). Now each player has to decide upon a strategy which contains
his initial move and also all the answers to all sequences of moves of the other player.
Special examples of such strategies are finite state machines. In [5] Sect. 8.4 several such
strategy machines are defined. For example one machine Ml for player 1 works as follows:
play C (cooperate) 88 long 88 player 2 plays C; play D (defect) for three periods, and
then revert back to C, if player 2 plays D when he should play C. So the other player
is being "punished" for three periods for playing D and then "forgiven". The machine
M2 of player 2 starts by playing C and continues to do so if the other player chooses D.
If the other player chooses C then it switches to D, which it continues to play until the
other player again chooses D, when it reverts to playing C. If two players play Prisoner's
Dilemma using these finite state machine strategies, the game goes into cycling behavior
with a cycle-length of 5. Both (C, C) and (D, D) occur in the cycle, next to (C, D) and
(D, C). If the programmer and the tester work according to such strategies (and other
strategies such as the 'grim' strategy in [5] or the well-known 'tit-for-tat' strategy) then
the lab manager is likely to observe cycles; it can be expected that the cycles are irregular
because of the random effect of the (p, q) and the (q,p) action profiles (recall that ITG is
b88ed on average payoffs).

• It is possible to consider the higher-level strategic game in which each player has to choose
a multi-move strategy once; for example the programmer could choose to always take move
D and the tester could behave as defined by machine A12 . The interesting question now
is whether there exist some kind of optimal multi-move strategy (some clever machine,
perhaps) that is optimal for player 1 and similar for player 2. In [5} Sect. 8.10.3 the
following result is given: "if the strategic game G has a unique N.E. payoff profile then
for any value of T the action profile chosen after any history in any subgame perfect
equilibrium of the T-period repeated game of G is a N.E. of G." Here 'subgame perfect
equilibrium' refers to a special type of N.E. for extensive games, taking certain credibility
considerations into account (see [5] Sect. 6.2 for the details). If the programmer and
the tester have to play ITG in a finite repetition and if they behave rational then this
result means that they choose (q, q), which is good from the lab manager's viewpoint.
However there is evidence that experimental subjects do not behave in a way that is
consistent with this result (see the discussion in [5] Sect. 8.2, and also see the Flood
Dresher experiment [2]).

• When considering infinitely repeated games there is the complication that it is not a-priori

74

clear how the payoffs of infinite sequences are to be defined Uust adding them leads to
infinite values). There are several alternative definitions: the discounting criterion, the
limit of means criterion and the overtaking criterion. The set of equilibria is huge. In [5]
Sect. 8.2 Osborne remarks: "the fact that it [the behavior of experimental subjects] is
cOIU?istent with some subgame perfect equilibrium of the infinitely repeated game is un
interesting since the range of outcomes that are so-consistent is vast." Moreover software
developments do not run ad infinitum without bringing in new people or changing the
rules .

• It is possible to consider players which choose multi-move strategies (grim, tit-for-tat,
etc.) but not just two fixed players; rather an evolving population of players is con
sidered. In [11 J three different arrangements are discussed. The first arrangement is
a historic sequence of tournaments organized by Axelrod in the later 1970. Colleagues
(game theorists) submitted strategies. The simple strategy tit-for-tat won (start with co
operative response and then always repeat the other player's previous move). The second
arrangement is a computer simulation of large populations of certain basic types of players
equipped with stochastic strategies. Many mutation-selection rounds are performed. As
a result, the average payoff in the population can change suddenly. Most of the time,
either almost all members of the population cooperate, or almost all defect. The longer
the system was allowed to evolve, the greater likelihood "for a cooperative regime to bIos
som." In heterogeneous populations tit-for-tat is not always superior; it is outperformed
by another strategy (,Pavlov', see [12] and [13]). The third arrangement is a population
that lives on a two-dimensional -grid. Players only interact with eight immediate neigh
bors. A lone cooperator will be exploited by the surrounding defectors and succumbs.
But four cooperators in a block can hold their own. Geometric patterns arise that wander
accross the board. In one example popUlation [11] the percentage of cooperators grad
ually takes a stable value of about 32%. Translating these assumptions to the world of
software development we can think of a high-tech area (or perhaps the whole world) with
software companies, providing programming services and testing services to a limited set
of neighboring companies. For details see [ll] and [14].

8 Concluding remarks

The results of our investigations show that if the reward for passing tests for the programmer is
high enough and the reward for finding an error for the tester is high enough, there is essentially
a Prisoner's Dilemma game hidden in the interaction of a programmer and a tester. The main
cause of this seems to be in the assumption that the development laboratory manager cannot
measure the quality of the software directly; he only sees PASS or FAIL and therefore he cannot
distinguish a bad or lazy programmer in combination with a bad or lazy tester from a good
and eager programmer and an a good eager tester (in both cases there is a mixture of PASS
and FAIL verdicts on average). .

The simplest theoretical solution of the game, the N.E. seems to suggest that mutual defec
tion is the expected outcome. The Prisoner's Dilemma is often seen as Han interesting metaphor
for the fundamental biological problem of how cooperative behavior may evolve and be main
tained" [14]. In the context of testing the situation is reversed since a testing process is set-up
with a deliberate, even desirable, conflict of interest built into it. So the N .E. means that both
players choose 'quality' rather that 'poor', which is good from the viewpoint of the software
development laboratory and its customers. Looking at sequences of games, the theory does not
have much predictive power. Experiments and computer simulations tend to show complex,
oscillatory behaviors, mostly showing cooperation. Two-dimensional evolutionary simulations
show complex moving patterns.

The complex, oscillating and moving patterns are quite consistent with the image of a
software crisis and hard-to-eliminate bugs sketched in [1]. In view of our findings it seems wise
for a software development lab manager to make sure that he separates the roles of programmers

75

and testers and that he makes sure there is enough reward for a programmer to achieve PASSes
and for a tester to achieve FAILs. Although our game-theoretical analysis was done using
numerical values for the payoff matrix, it is certainly possible that rewards in real life include
items such as a feeling of professional responsibility and personal pride.

Disclaimers: it is necessary to relativize the findings because there are certain assumptions
behind the models that need not hold in real life situations. First of all, this is the assumption
that there is a precise specification given to both players that guarantees that the verdicts PASS
and FAIL are not subject of dispute. Although a frequent assumption in research on formal
test generation, this need not be true in real development projects. Another assumption is that
testing by a professional tester is the only way of determining the quality of the programmer's
work. This assumption does not hold if there are other mechanisms at work such as code
walkthroughs, beta-testing, or program correctness proving. Yet another assumption is that
neither defect-free software nor full-coverage tests are possible (at or near Q = 100% and
P = 100% the theory turns into a degenerate caBe). Finally the ITG and TCTG do not cover
the intricacies of real software development: writing a program involves subtle tradeoffs between
development time, run-time efficiency, code-size, reusability etc. We constructed another game
where finite state machines were tested by finite sequences (programmer effort being automaton
size, test effort being test sequence length). We found a Prisoner's J!ilemma in this too (details
not included in the present article). But, similarly to the text copy testing game this is still an
enormous simplification. Programming languages such as C++ and Java are very complex and
so are test languages such as TTCN; moreover defining and measuring metrics for programmer's
productivity, software quality and test coverage are rich research subjects by themselves.

Acknowledgements

Some of the ideas behind this work described in this article originated in the context of the Cotes
de Resyste project and during discussions with Nicu Goga, Sjouke Mauw and Jan Tretmans.
The author likes to thank Pieter Cuijpers for his constructive feedback on earlier versions of
the paper.

76

A The text copy testing game

In order to validate the concepts of ITG we develop a more concrete game in which real testing
is going on. This game, called TCTG, for Text Copy Testing Game is still not really about
software testing, but at least it is about testing. It will be formally analyzed to see whether it
is approximated by ITG.

In TeTG The task for the implementer is to transcribe a given text, perhaps from one
character set to another, or perhaps even simpler, to type precisely the characters of a given
string. The length of the specification and the length of the implementation are the same,
L say. The task of the tester is to select one Of more positions in the range 1 to L. If the
implementation and the specification differ at one or more of the selected positions then an
error is found and the verdict is FAIL. Otherwise the verdict is PASS. If the tester chooses
several positions, they all have to be different.

As in ITG the implementer and the tester are rational players who choose a performance level
first and after that perform a job according to the expectations set by the chosen performance
level.

It is convenient to introduce numerical values for the performance levels. In ITG there
are two levels but here many levels could exist. The performance level for the implementer is
modeled as a variable Q (the Quality of the implementation). The performance level for the
tester is modeled as a variable P (the Power of error detection of the test). Both Q and Pare
in the range from 0 to 1 (the values of 0 and 1 are included). Sometimes they are conveniently
expressed as percentages. So instead of choosing a p (poor) performance level the implementer
may choose Q = 25% and instead of a q (quality) performance level the implementer may choose
Q = 50%. In the same way the tester may choose P = 25% or P = 50%, respectively. As in
ITG the idea is that equal performance levels lead to a probability of error detection P(FAIL) of
about 50%. Indeed, it will turn out that Q ~ P ~ 50% '* P(FAIL) ~ 50% but because of some
of the details of the text copying and testing procedures this idea only holds by approximation
for other value pairs for Q and P. The performance level variables are a useful concept but for
each value pair of Q and P, the precise probability P(FAIL) has to be calculated as a function
f(Q, P). It is natural to demand that the efforts of the implementer and the tester increase
monotonically when Q and P increase, respectively. It would be nice for the implementation
effort to be a linear function of Q and for the testing effort to be a linear function of P. In the
text copy testing game this turns out to hold for P indeed but for Q it only holds as a very
rough approximation. This concludes the general introduction of the numerical performance
levels; next they must be defined for the specific situation of text copying and text testing.

It is an error if at a specific position the typed character differs from the specified character.
In a text of L characters any number of errors E between 0 and L is possible (0 and L inclusive).
The implementer's performance level Q is defined by Q = E~l' For example when L = 100, the
range of Q is from 0.99% (100 errors) to 100% (no errors). Other definitions are conceivable,
for example L'LE but we consider it inappropriate to assign a relatively high value of 500/0 to a
text in which half of the characters are wrong (in software code it would be ridiculous to even
look at software in which 50% of the code statements are wrong). The tester's performance
level P is defined by P = f where T is the number of positions tested. The range of P is from
0% (nothing tested) to to 100% (everything tested). The advantage of the current definitioIlE
is that Q = 50% and P = 50% nicely outbalance each other.

Next the relations between the efforts and the performance levels must be defined. These
relations depend on the way of working of the implementer and the tester. For the implementer
it is assumed that there is a mechanism such that spending more effort leads to a reduction in
the number of errors. An example of such a mechanism is a voting text editor: each character
is typed n times for a given number n E {I, 3, 5, 7, ... } etc. and whenever at least ~ of these
typings are the same, that determines a winning character which goes into the implementation.
Otherwise a special error characters is taken. Note that this relation satisfies the monotonicity
condition Although the usage of voting mechanisms is not widespread in software engineering,
the idea of using redundancy in software design has been proposed under the name "distinct

77

programming" by Tom Gilb [15J.
The implementer has a built-in error rate e, for example e = 0.1 which cannot be changed

(except by exploiting the voting mechanism). For the tester it is assumed that his effort is
proportional to the number of positions tested.

Given these assumptions, the numerical values of Q and P can be determined for various
effort values. For L = 100 and e = 0.1 the expected number of errors with a repetition
rate of 1, denoted as f(# errors I Ix) equals e x L = 10. So Q = fr = 9%. For triple
repetition E(# errors I 3x) = (P(2errors) + P(3 errors)) x L = (3.(1 - e).e' + e3

) x L =
(3 x 0.9 x 0.01 +0.001) xL = 0.028 x L = 2.8 whence Q = '."+1 = 26%. For five-fold repetition
E(# errors I 5x) = (';4 x (0.9)' x 0.001 + 5 x 0.9 x 0.0001 + 0.00001) x L = 0.86 whence
Q = 1.1, = 54%. Also e(# errors 17x) = (';~;' x (0.9)3 x 0.0001 + ';' x (0.9)' x 0.00001+
7 x 0.9 x 0.000001+0.0000001) x L = 0.27 whence Q = 1.~' = 79%. Finally e(# errors 19x)
= 0.08 so Q = 1.~8 = 93%. The following table summarizes the above findings (for L = 100
and e = 0.1):

I #repetitions Q
1 9%
3 26%
5 54%
7 79%
9 93%

The relation between the effort (here the number of tested positions) and the power of error
detection P (the tester's performance level) is summarized by the following table (for L = 100):

I #positions I P
10 10%
30 30%
50 50%
70 70%
90 90%

For a game theoretic analysis only the reward/effort ratio is important and therefore the fixation
of the absolute effort values is postponed.

B Analysis of the text copy testing game

The first question is how P(FAIL) depends on Q and P as a function J(Q, P) to'be determined.
First consider a few simple cases for L = 100. Let there be one error (Q = 50%) and let there
be 50 tested positions (P = 50%). Then P(FAIL) = 50% (the probability that this error is
one of these 50 positions out of 100). Let there be 3 errors, E = 3, so Q = E~l = ~ and let
there be 50 tested positions (P = 50% again). P(FAIL) "" 1 - (P(given error not found))3
= 1 - (1 - p)3 = 1 - (0.5)3 = 0.875, that is 87.5%. In general, if E « L then P(FAIL) ""
1- (1 - p)E and since E = ~ -1 the following formula for J(Q,P) is adopted:

J(Q, P) = 1 - (1 _ P)-b-'

For which combinations of Q and P does P(FAIL) = 50% hold? Easy calculations show
J(0.5,0.5) = J(0.25,0.21) = J(0.125,0.094) = 50%. This shows that the iso-P(FAIL) line of
50% does not always run through the points defined by the equation Q = P, but for the points
shown here it is pretty close.

Next it is time for playing the game. The implementer chooses between Q = 20% and
Q = 50%. After that he chooses randomly among ('~O) implementations (if Q = 20%) or 100
implementations (if Q = 50%). The tester chooses between P = 20% and P = 50%. After

78

that he chooses randomly among (',000) tests (if P = 20%) or ('~OO) tests (if P = 50%). The
cost of effort difference between Q = 20% and Q = 50% is put equal to 1 (think of it as 1$,
perhaps). Interpolating between 1 and 3 repetitions, Q = 20% occurs at 2.3 repetitions and
interpolating between 3 and 5 repetitions, Q = 50% occurs at 4.7 repetitions; in other words,
the 4.7 -2.3 = 2.4 extra repetitions (on average), being 2.4 x L = 240 key strokes cost 1$ extra,
or 0.42 $c per key stroke. Similarly the cost of the difference between P = 20% and P = 50%
is put equal to 1. The difference is 30 positions so each position selected and inspected by the
tester costs 3.33$c. It is convenient to assume for Q = 20% and P = 20% the efforts to be equal
to 0 (this is convenient; it is irrelevant for the game-theoretic analysis). Let the reward/effort
ratio (R) be set to 5.

What is P(FAIL)? It depends on Q and P. For Q = P = 20%, P(FAIL) = 0.59. For
Q = 50%, P = 20% it is found that P(FAIL) = 1(50%,20%) = 1- (0.8)",,-1 = 0.2 and as
calculated before, for Q = P = 50%, P(FAIL) = 50%. So there is a difference with the lTG,
where (q, p) turned P(FAIL) into 0, whereas here the analogous (Q = 50%, P = 20%) still
leaves a non-neglectable P(FAIL) = 0.2 and similarly (p, q) gives P(FAIL) = 1 in ITG but
the analogous probability is only = 1 - (0.5)",,-1 = 0.9375 here. It will be interesting to see
whether it still is a Prisoner's Dilemma.

On the basis of the abovementioned assumption the payoff matrix is determined (recall the
effort difference of 1 and the reward/effort ratio of 5). Instead of the e~O) x (12°0°) entries
formally required in the Q = 20%, P = 20% quadrant of the payoff matrix, a more convenient
notation is possible: only one entry is necessary to calculate the average payoffs (and similarly
for the other three quadrants). This entry contains the payoff values for PASS and the payoff
values for FAIL (in the given order), separated by a slash. Using this representation the payoff
matrix is:

P=20% P=50%
Q-20% 5,0/0,5 5,-1/0,4
Q-50% 4,0/-1,5 4,-1/-1,4

The same representation can be used for the weighting matrix containing the probabilities of
PASS and FAIL. The weighting mat~ix is:

P=20% P=50%
Q-20% 0.41/0.59 0.0625/0.9375
Q-50% 0.80/0.20 0.50/0.50

The payoff matrix and the weighting matrix can be multiplied in an element-wise fashion to
get:

P=20% P=50%
Q-20% 2.05,0/0,2.95 0.3125,-0.0625/0,3.75
Q-50% 3.2,0/-0.2,1 2,-0.5/-0.5,2

And by pair-wise adding the payoffs for PASS and FAIL the following payoff matrix is obtained
(after rounding off 0.3125 to 0.31 and 3.6875 to 3.69). Call this abstract 2 x 2 game TCTG:

P=20% P=50%
Q-20% 2.05,2.95 0.31,3.69
Q-50% 3,1 1.5,1.5

Please observe that this TCTG is essentially a Prisoner's Dilemma (as characterized by the
fact that it has one N.E. which is not optimal for both players). It is not as nice and symmetric
as the ITG; the differences come mostly from the fact that P(FAIL) takes irregular values, not
precisely 0%, 50% or 100%.

79

References

11J W.W. Gibbs. Software's chronic crisis. Scientific American, Sept. 1994, pp. 72-81 (1994).

12J W. Poundstone. Prisoner's dilemma, Doubleday ISBN 0385-41567-2 (1992).

[3] J. Von Neumann. Zur Theorie der Gesellschaftsspiele, Mathematische Annalen, 100, pp.
295-320 (1928).

14J J.F. Nash. Equilibrium points in N-person games, Proceedings of NAS (1950).

15J M.J. Osborne, A. Rubinstein. A course in game theory, MIT Press (1994).

[6] E. Freeman. Building Gargantuan Software, Scientific American Presents, Vol. 10, N. 4,
Special issue on extreme engineering, pp. 28-31 (1999).

17J OSI. Conformance testing methodology and framework, Part 3: The Tree and Tabular
Combined Notation (TTCN), ISO/IEC DIS 9646-3 (1990).

18J S. Vuong, W. Chan, M. Ito. The OIUv method for protocol test sequence generation, In:
Second International Workshop on Protocol Test Systems, Berlin, Oct. (1989).

19J J.R Moonen, J.M.T. Romijn,O. Sies, J.G. Springintveld, L.M.G. Feijs, RL.C. Koymans.
A two-level approach to automated conformance testing of VHDL systems, In: M. Kim, S.
Kang, K. Hong (Eds.), IFIP TC6 International Workshop on Testing of Communicating
Systems, Chapman & Hall, pp. 432--447 (1997).

[10] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence, Software -
Concepts and Tools, 117:103-120 (1996).

I11J M.A. Nowak, R.M. May, K. Sigmund. The arithmetics ofmulual help, Scientific American,
June 1995, pp. 50-53 (1995).

[12] M.A. Nowak, K. Sigmund. Tit for tat in heterogeneous populations, Nature, VoL 355, pp.
250-253 (1992).

113J M.A. Nowak, K. Sigmund. A strategy of win-stay lose-shift that outperforms tit-for-tat in
the Prisoner's Dilemma game. Nature, Vol. 364, pp. 56-58 (1993).

114J M.A. Nowak, RM. May. Evolutionary games and spatial chaos. Nature, Vol. 359, pp.
826-829 (1993).

(15) T. Gilb. Distinct software: a redundancy technology for reliable software, in: Infotech State
of the Art Report on Software Reliability, Pergamon Infotech, Maidenhead, UK. (1977).

80

