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Modelling laser induced melting

J�C�J� Verhoeven� J�K�M� Jansen� R�M�M� Mattheij� W�R� Smith

Department of Mathematics and Computing Science� Eindhoven University of Technology� P�O� Box ����

���� MB Eindhoven� The Netherlands

Abstract

In simulating a laser drilling process� melting is one of several physical phenomenae that

have to be modelled� Two di�erent mathematical formulations of this laser induced melting

are derived� For every formulation we give a speci�c numerical recipe� Special attention is paid

to problems where �mushy regions� occur and to extension to �D� Finally� the numerical results

of these di�erent recipes are discussed�

� Introduction

Lasers are often used to machine materials when conventional techniques fail� Laser percussion
drilling is one of these applications� For instance� this drilling technique is used to drill cooling
holes in fans� which are part of a gas turbine� such fans are typically made of super alloys� The
term �percussion� refers to the repeated operation of the laser in short pulses ��	�� s
� which
are separated by longer time periods ��	�� s
� The energy supplied by the laser is bounded and
pulsewise behaviour allows for large bursts of energy� These energy bursts cause local melting
and splashing of material and sometimes �unwanted
 local recasting� The �ner details of the laser
percussion drilling process is not yet fully understood� To get a better understanding of the process�
a mathematical model is needed� Because of the �known
 importance of molten material to the
process a melting model has to be incorporated into this model�
We shall �rst sketch the physical process in order to indicate where this melting model comes

into play� A laser percussion drilling process may in fact be split up into three stages� Initially� a
thin region of molten material is formed by absorption of laser energy at the target surface� After
some time� the surface of this melt pool reaches vaporisation temperature� The sudden expansion of
the vapour evaporating from the surface leads to the �nal stage� the meltpool is being pushed out
by the recoil pressure� On its way out some part of this molten material may resolidify at the walls�
Thus� during these three stages three events occur for which a melting model is needed� These events
are depicted in Figure �� A simple melting model can be used to predict the precise dimensions of
the melt pool� as generated by the incoming radiation� see Fig ��a
� More sophisticated models are
needed to deal with splashing �Fig ��b

 and with solidi�cation �Fig ��c

� In fact� we can show that
a onedimensional melting model applies for the initial stage� This itself is su�ciently interesting
to investigate in detail� and we shall therefore concentrate on �D modelling and only brie�y use
�D computations to validate this� Yet� for splashing and solidi�cation more complicated models
will be needed� We hope to report on these in a subsequent paper�
Melting problems are commonly known as Stefan problems named after J� Stefan� who wrote

his famous article about the building up of ice in polar seas in ����� see ���� Several formulations of
melting problems have been studied in literature so far� extensive overviews can be found in ��� �� ����
In this paper we will focus on the formulation using the original Stefan condition �see e�g� ���
 and
the enthalpy method �see for instance ��	� ��� ���
� Furthermore� we will pay attention to �nding
suitable initial conditions for the formulation using the Stefan condition in applying this method
to the laser percussion drilling process� To be able to deal with superalloys in the splashing and
solidi�cation models� we will assess the problems both for materials having a melting range and for
materials with a discrete melting point�

�



�a� Formation of a melt pool �b� Squirting out of molten
material

�c� Resolidi�ed material� the
so called recast layer

Figure �� The three events in a laser percussion drilling process where a melting model
is needed� �a� melting� �b� splashing and �c� resolidi�cation�

The setup of this article is as follows� In Section � we will show that it is reasonable �at least
for the initial stage of our process
 to employ a onedimensional model� Two formulations of a one
dimensional melting model will then be the subject of Section �� The numerical methods related
to these two di�erent formulations will be studied in Section �� In Section � the extension to two
spatial dimensions will be studied for both formulations� Numerical results of the models will be
presented and discussed in Section �� Finally� the conclusions of this work will be given in Section ��

� Mathematical modelling

The lasers used in pratice to drill holes typically produce a Gaussian intensity distribution� which
is� ideally� axisymmetric� Moreover� further examination shows that radial di�usion is negligable�
which can be seen as follows� take an axisymmetric coordinate system� where z � 	 denotes the
surface of the irradiated material� see Figure �� The density �� the speci�c heat capacity c and the

Incoming laser beam

Material

z

r

Figure �� Geometry of the model�
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Symbol De�nition Value

� density ���� �	� kg m ��

Lf latent heat of fusion ���� �	�J kg��
k thermal conductivity ���� �	� W m��K��

c speci�c heat capacity ��	� �	� J kg��K��
Tm melting temperature ���� �	�K
Tv vaporisation temperature ���� �	� K

Table �� Physical data for drilling aluminium�

Symbol De�nition Value

Iref energy input ���� �	�� W m��

w� waist �� �	�� m

Table �� Physical data for the laser beam�

thermal conductivity k of the material are known and assumed to be constant� The temperature
T in the material is governed by the heat equation in cylindrical coordinates� which� employing the
axisymmetry� is given by

�c
�T

�t
�

k

r

�

�r

�
r
�T

�r

�
� k

��T

�z�
� ����


The intensity distribution of the laser beam is given by I � I�r� t
� The laser energy is supplied at
the surface z � 	� yielding

k
�T

�z
� �I� ����


Before nondimensionalising we introduce some typical numbers� For the temperature we need
the vaporisation temperature Tv and the melting temperature Tm� �In Table � we give typical
parameters for aluminium�
 For the radial coordinate the waist� denoted by w�� of the �Gaussian

laser beam is used as a typical length scale� Furthermore� let Iref be a typical intensity� Some
data for a Nd�YAG laser used in drilling can be found in Table �� From this we can de�ne the
dimensionless variables �indicated by a superbar
 by

z ��
k�Tv � Tm


Iref
�z� ����


r �� w��r� ����


t ��
�ck�Tv � Tm


�

I�ref
�t� ����


T �� Tm � �Tv � Tm
 �T � ����


The dimensionless length scale in zdirection comes from balancing the two terms in the boundary
condition ����
� The dimensionless time scale �t as introduced in ����
 is the corresponding dif
fusive time scale� as follows from ����
� Writing ����
 together with the in�ux of energy ����
 in
dimensionless form we obtain

� �T

��t
� �
�
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��r
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� ����
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Symbol De�nition Value

� k��Tv � Tm

���w�

�I
�
ref 
 ���� �	��

Ta �Ta � Tm
��Tv � Tm
 	��
�f Lf�c�Tv � Tm
 	���

Table �� Dimensionless parameters for typical laser percussion drilling processes in aluminium�

where

� �
k��Tv � Tm


�

w�
�I

�
ref

� ����


and

� �T

��z
� � I

Iref
� �z � 	� ����


For typical laser percussion drilling parameters� � � �� see Table �� Thus� radial di�usion can be
neglected on the typical scales and our model for the initial stage of the laser percussion drilling
process degenerates to a onedimensional model� This onedimensional model will therefore be
studied in the remainder of this paper and we will only use results of �D computations to validate
this�
In order to melt a material an extra amount of energy is needed on top of the amount needed

to raise the temperature� This energy is called the latent heat of fusion Lf � Typical values of this
quantity for aluminium can be found in Table ��

� Mathematical Formulations of Melting

In this section we will outline two di�erent ways to formulate the melting problem� Each formulation
will give rise to a numerical scheme with its own vices and virtues� As shown in the previous section
the importance of radial di�usion in laser induced melting is negligible� Therefore� we will study
the onedimensional model�
We shall consider two models� One is based on use of the Stefan condition� this will therefore

be referred to as the Stefan problem� The other is employing an enthalpy formulation� and will be
referred to as the enthalpy problem�

��� The Stefan Problem

Let �l denote the liquid region 	 � z 	 s�t
 and �s the solid region s�t
 	 z 	 �� Furthermore�
let s�t
 be the position of the solidliquid interface� The geometry is sketched in Figure �� The
temperature in both the liquid and the solid region is governed by the heat equation�which in
dimensionless form reads

�Ti
�t
�

��Ti
�z�

in �i for i � s� l� ����


Here the subscripts s and l refer to solid and liquid� respectively� At the boundary z � 	 the laser
supplies an intensity I � I�r� t
�

�Tl
�z

� � I

Iref
� z � 	� ����


For a material to melt� an extra amount of energy has to be supplied� the latent heat of fusion�
which� in dimensionless form� is de�ned as

�f ��
Lf

c�Tv � Tm

� ����


�
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Figure �� The geometry of the laser induced melting problem�

At the solidliquid interface we need an equation that expresses this absorption of heat needed for
phase change� This equation is commonly known as the Stefan condition and is given by

�Tl
�z

����
z�s

� �Ts
�z

����
z�s

� ��f ds
dt
� z � s�t
� ����


Moreover� the temperature is assumed to be continuous across the interface

Ts � Tl � 	 z � s�t
� ����


At in�nity� the boundary condition

Ts � Ta� z �� ����


holds� where Ta is the dimensionless ambient temperature of the material� We start with a known
temperature distribution

T �z� 	
 � T��z
� ����


��� The Enthalpy Problem

The enthalpyH is de�ned as the sum of the sensible and the latent heat in a substance� If a material
is liquid it contains latent heat of fusion per unit mass Lf � in addition to the sensible heat �cT �
Figure � shows the relation between the temperature and the enthalpy for two di�erent materials�
Figure ��a
 shows this relation for pure substances with a single meltingpoint temperature� whereas
�gure ��b
 illustrates this relation for a material where the phase change takes place over an extended
temperature range from the solidus temperature Tsol to the liquidus temperature Tliq � The region
with temperature between the solidus and the liquidus temperature is referred to as the mushy
region� In order to nondimensionalise the enthalpy we introduce two typical numbers� The �rst is
the enthalpy at vaporisation temperature Hv� which is given by

Hv � �cTv � �Lf � ����


For materials with a discrete melting point the second number is the enthalpy at melting tempera
ture Hm� given by

Hm � �cTm� ����


�



H

Hm � �Lf

Hm

TTm

�a�

H

Hliq

Hsol

TTsol Tliq

�b�

Figure �� Relation of enthalpy and temperature for �a� pure crystalline substances
and �b� glassy substances and alloys�

whereas for glassy substances and alloys this second number is the enthalpy at solidus temperature

Hsol � �cTsol� ����	


Hence� the dimensionless enthalpy �H is for pure materials given by

H � Hm � �Hv �Hm
 �H� �����


and by

H � Hsol � �Hv �Hsol
 �H� �����


for materials with a melting range� For later use we introduce the constants D� and D� by

D� ��
�c�Tv � Tm


Hv �Hm

� �����a


and

D� ��
�c�Tv � Tsol


Hv �Hsol

� �����b


We will drop the bars on the dimensionless variables from now on�
The relationship between the dimensionless temperature and the dimensionless enthalpy for pure

materials� is given by

H�T 
 �

������
�����

D� T T 	 	�

�	� D��f � � T � 	�

D� T �D��f T 
 	�

�����


Likewise� the relationship between the dimensionless enthalpy and temperatures for materials with
a melting range is given by

H�T 
 �

��������
�������

D� T T � 	�

D� T �D��f
T

Tliq
	 � T � Tliq �

D� T �D��f T � Tliq �

�����


�



Note that Tliq denotes the dimensionless liquidus temperature and that �f �
Lf

c�Tv�Tsol�
now�

As has been shown in Section �� the laser induced melting problem degenerates to a one
dimensional problem� Like in the previous subsection we take the material to be in z � 	 with the
surface at z � 	� The enthalpy and temperature of the material in this region are governed by the
energy equation in enthalpy form� which� in dimensionless form� is given by

�H

�t
� D�

��T

�z�
� z 
 	� �����


for materials with a discrete melting point� For materials with a melting range D� takes the role
of D�� The boundary and initial conditions are the same as in the previous subsection� The in�ux
of energy is represented by

�T

�z
� � I

Iref
� z � 	� �����


We assume an ambient temperature in�nity

T � Ta� z ��� �����


and we begin with a known initial temperature �and hence enthalpy
 distribution

T � T�� t � 	� �����


� Numerical Methods

In this section we will consider the numerical techniques used to solve the Stefan problem� These
numerical methods relate to the various formulations of the melting problem we saw in the previous
section� Section ��� deals with a discretisation of the formulation using the Stefan condition� in
Section ��� a discretisation based on the enthalpy method is dealt with� The PDE�s are numerically
solved by the �nite element method� The �nite element method is preferred to other methods
such as the �nite di�erence method because of its versatility in dealing with complex boundaries�
Though we saw that the melting problem degenerates to a onedimensional one� the procedure used
to solve the enthalpy method can easily be generalised to �D and �D� which will be needed for the
splashing and solidi�cation models� This procedure will be outlined in the next section�

��� Discretisation of the Stefan Problem

Finite element methods are a powerful tool in the solution of partial di�erential equations� also
when moving boundaries are involved cf� ��� ��� One way to handle such a moving boundary is to
use subdomains that change with time� Another way to deal with the moving boundary is to use
a transformation� see e�g� ���� The latter method� however� is not applicable to problems where no
liquid is present initially�
The derivation consists of the following steps� �i
 a Galerkin formulation� �ii
 a discretisation

method and �iii
 the solution of the resulting initial value problems with �iv
 suitable initial con
ditions� The last step involves some subtleties in our problem and will be considered separately in
the next subsection�
The problem to begin with is given in Section ���� but we simplify it by cutting o� the domain

�



at z � zb� The problem is then given by���������������������
��������������������

�Tl
�t
�

��Tl
�z�

� 	 	 z 	 s�t


�Ts
�t

�
��Ts
�z�

� s�t
 	 z 	 zb

�Tl
�z

� � I

Iref
� z � 	�

Tl � Ts � 	�
�Tl
�z

����
z�s

� �Ts
�z

����
z�s

� ��f ds
dt
� z � s�t
�

Ts � Ta� z � zb�

����


along with suitable initial conditions for the temperature and the position of the solidliquid interface
s�
If Tl satis�es the PDE in ����
� then it also satis�es

sZ
�

�
�Tl
�t

� ��Tl
�z�

	
v�z� t
dz � 	� ����a


for all suitable weight functions v�z� t
� Likewise Ts satis�es

zbZ
s

�
�Ts
�t

� ��Ts
�z�

	
w�z� t
dz � 	� ����b


for all suitable weight functions w�z� t
� Let the weight functions v�z� t
 and w�z� t
 satisfy v�s� t
 �
w�s� t
 � w�zb� t
 � 	 for all t� Using integration by partsand the �rst boundary condition of ����
�
����
 can be rewritten as

sZ
�

�
�Tl
�t

v�z� t
 �
�Tl
�z

�v

�z

	
dz �

I

Iref
v�	� t
� ����a


and

zbZ
s

�
�Ts
�t

w�z� t
 �
�Ts
�z

�w

�z

	
dz � 	� ����b


To solve the Galerkin form ����
� we compute approximate solutions of the boundary and the
temperature distributions� First we �x the time t and divide the domains 	 � z � s�t
 and
s�t
 � z � zb into N and M equal subintervals� respectively� Next� at each node in the liquid
domain

zl�j � jhl� j � 	� � � � � N � with hl � hl�t
 �
s�t


N
����


we construct the usual hat function �l�j�z� t
� The same is done for each node in the solid part

zs�j � s�t
 � jhs� j � 	� � � � �M � with hs � hs�t
 �
zb � s�t


M
����


�



where the hat functions are denoted by �s�j�z� t
� Note that in contrast with the usual basis
functions used for �nite element methods� these basis functions depend on time� For later use we
note that

dzl�j
dt

� j
dhl
dt
�

j

N

ds

dt
� ����


and

dzs�j
dt

�
ds

dt
� j

dhs
dt
�

M � j

M

ds

dt
� ����


Next we determine approximate solutions of the forms

Thl�z� t
 �
NX
j	�

Tl�j�t
�l�j�z� t
� Ths�z� t
 �
MX
j	�

Ts�j�t
�s�j�z� t
� ����


Letting Tl�N�t
 � 	� Ts���t
 � 	 and Ts�M �t
 � Ta yields approximations Thl�z� t
 and Ths�z� t

that satisfy the Dirichlet boundary conditions at the interface and at z � zb� The computational
problem is to obtain the timedependent coe�cients Tl�j�t
 for j � 	� �� � � � � N � � and Ts�j�t

for j � �� �� � � � �M � �� Substituting these approximations in the Galerkin forms for Tl and Ts�
respectively� and taking the weight functions v�z� t
 and w�z� t
 to be the hat functions �l�j and
�s�j � respectively� yields the two systems of equations in matrix form

Ml

dTl

dt
�NlTl � bl� ����a


Ms

dTs

dt
�NsTs � bs� ����b


whereTl � �Tl�i
�Ml � �Ml�ij
�Nl � �Nl�ij
� bl �


bl 	 	 	 	 	

�T
� Ts � �Ts�i
�Ms � �Ms�ij
�

Ns � �Ns�ij
 and bs � �bs�i
�
The nonzero entries of the matrices and the vectors on the right hand side are the following�

Ml�� � �
�

�
hl�t
� Ml�i i � hl�t
 i � �� � � � � N � �� ����	a


Nl�i�� i � ��
�

�i� �
N

ds

dt
� �

hl�t

� ����	b


Nl�� � �
�

�N

ds

dt
�

�

hl�t

� Nl�i i �

�

�N

ds

dt
�

�

hl�t

� i � �� � � � � N � �� ����	c


Nl�i
� i �
�

�

�i� �

N

ds

dt
� �

hl�t

� ����	d


bl�� �
I

Iref
����	e


Ms�i i � hs�t
� ����	f


Ns�i�� i � ��
�

�M � �i� �
M

ds

dt
� �

hs�t

����	g


�



Ns�i i � � �

�M

ds

dt
�

�

hs�t

� ����	h


Ns�i
� i �
�

�

�M � �i� �
M

ds

dt
� �

hs�t

����	i


bs�M�� � Ta

�
�

�M

ds

dt
�

�

hs�t


�
� ����	j


On the mass matricesMl andMs lumping is performed� Note that lumping is O�h�
 and therefore
does not a�ect the order�
The Stefan condition in ����
 can be approximated by

� �f
ds

dt
�

��
�

N��X
j	�

Tl�j�t

��l�j
�z

����
z�s

�
M��X
j	�

Ts�j�t

��s�j
�z

����
z�s

�
� � �����


Using the properties of the hat functions this simpli�es to

ds

dt
�
�

�f

�
�

hl�t

Tl�N���t
 �

�

hs�t

Ts���t


	
� �����


Thus� the problem ����
 has been changed to the system of initialvalue problems comprising ����

and �����
� with suitable initial conditions� Note that this derivation for twodimensional problem
is not this straightforward because of the Stefan condition�
The discretisation of the time derivatives in ����
 and �����
 will be done by the �method�

We will outline the procedure for Euler forward �EF
 for the boundary and a �method for the
temperature distributions in the following�
Assume the temperature distributions and the position of the solidliquid interface are known

at time level t � tk� We denote these by Tk
l � T

k
s and s

k� respectively� Here tk � k t� where  t is
the time step� Then� we compute sk
� through the EFdiscretized version of �����


sk
� � sk �
 t

�f

�
�

hl�tk

T k
l�N�� �

�

hs�tk

T k
s��

	
� �����


Now the new mesh can be computed using ����
 and ����
� The temperature distributions at time
t � tk
� are now computed via the solution of the discretized versions of the matrix equations ����
��

I� � t


Mk
�

l

���
Nk
�

l

�
Tk
�
l ��

I� ��� �
 t


Mk

l

���
Nk

l

�
Tk
l � t

�
�


Mk
�

l

���
� ��� �




Mk

l

����
bl �����a


and�
I� � t



Mk
�

s

���
Nk
�

s

�
Tk
�
s ��

I� ��� �
 t


Mk

s

���
Nk

s

�
Tk
s � t

�
�


Mk
�

s

���
bk
�s � ��� �




Mk

s

���
bks

�
�����b


where the superscripts in the matrix notations denote the time level at which they are evaluated�
We know that for � � �

� �CrankNicolson
 the time stepping is O� t�
�

��� Finding suitable initial conditions

The major problem that remains is to �nd suitable initial conditions� This problem will be addressed
below by looking at the premelting problem�

�	
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Figure �� The position of the solid�liquid interface where the absorption of latent heat
is neglected for the case of aluminium�

In the heatingup stage� the temperature T in the material is governed by

�T

�t
�

��T

�z�
� z 
 	� �����


The �dimensionless
 energy� which we denote by F � is supplied at the surface�

�T

�z
� �F� z � 	� �����


and we assume an ambient temperature both at in�nity

T � Ta� z ��� �����


as well as initially

T � Ta� t � 	� �����


We can �nd the analytical solution to �����
�����
 using Laplace transformations� This yields

T �z� t
 � F

�
�

�
t



� �

�

exp

�
�z�

�t

�
� z erfc

�
z

�t
�

�

��
� Ta� �����


Therefore� when latent heat is neglected� the position s of the solidliquid interface is found from
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��
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for all t� In Figure � this position is sketched for aluminium� This yields the right initial value of
ds
dt
� From this we compute s� t
 by an EF step� Furthermore� from �����
 it follows that at time

t � tm� with

tm �
I�refT

�
a

�I�
� �����


��



the surface starts to melt�
Now we need initial conditions for the temperature distributions� From the Stefan condition ����


it follows that

�Ts
�z

����
z�s

� �f
ds

dt
� �Tl

�z

����
z�s


 �f
ds

dt
� I

Iref
� �����


for s small� Therefore we let

Ts�j� t
 �

jTaj exp
�
� �zs�j � s
�F �

T �
a

�
� F �zs�j � s
 erfc

�
�zs�j � s
F

jTaj
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�
� Ta� j � �� � � � �M � ��

�����


be the initial temperature distribution in the solid at time level t �  t to our computational
problem as sketched in Section ���� where

F �
I

Iref
� �f

ds

dt
� �����


Because s� t
 is small� we take the temperature distribution in the liquid at time level t �  t to
be linear

Tl�j� t
 �
I

Iref
�s� zl�j
 � j � 	� � � � � N � � �����


satisfying the boundary conditions at z � 	 and z � s�
Note that this approach cannot easily be extended to cover problems with no constant energy
supply�
Now� our numerical method to obtain the depth of the melt pool generated by the laser is

solvable�

��� Discretisation of the Enthalpy Problem

A discretisation of the enthalpy method in one spatial dimension which uses �nite di�erences is
described in Tacke ��	�� However� the extension of this model to two spatial dimensions is very
hard and becomes even harder when moving boundaries �as in the solidi�cation problem
 come up�
The �nite element method as before looks promising to handle these kinds of problems�
Again� the derivation of the �nite element method consists of the following steps� �i
 a Galerkin

formulation� �ii
 a discretizing method and �iii
 the solution of the resulting initial value problems
with suitable initial conditions�
The problem� to begin with� is comprised by �����
�����
 and Eq� �����
 or �����
� The domain

is bounded at z � zb and we let � � �	� zb
� We search for a weak solution by solvingZ
�

�H

�t
vdz � D

I

Iref
v�	
�D

Z
�

�T

�z

�v

�z
dz� �����


together with the relationship between H and T as expressed in Eq� �����
 or �����
�
To solve this Galerkin form� we compute approximate solutions of the temperature and enthalpy�

from which the position of the solidliquid interface then follows a posteriori� First we �x the time
t and divide the domain 	 � z � zb into N subintervals� At each node in this domain we construct
the hat function �i�z
� Next we determine approximate solutions of the forms

!H�z� t
 �

NX
i	�

Hi�t
�i�z
� !T �z� t
 �

NX
i	�

Ti�t
�i�z
� �����


��



Letting HN �t
 � H� �Ta
 and TN �t
 � �Ta takes care of the ambient conditions at z � zb� The com
putational problem is to obtain the timedependent coe�cients Hi�t
 and Ti�t
 for i � 	� � � � � N���
Substituting the approximations into the Galerkin form and taking the weight function v�z
 to be
the hat functions �j�z
 for j � 	� � � � � N � �� we obtain the set of equations in matrix form�

M
dH

dt
� Db�DNT� �����


Here� H � �H��t
� � � � � HN���t


T and T � �T��t
� � � � � TN���t



T � The entries of the matrices and
vector are given by
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�

d�i
dz

d�j
dz

dz� i� j � 	� � � � � N � �� �����c


Thus we have a set of initial value problems which� together with the relationship between enthalpy
and temperature� can be solved numerically�
In order to show how we solve �����
 by the �method� we rewrite �����
 as

M
dH

dt
� F�H� t
 �� D�b�t
�NT�H

� ����	


The enthalpy and temperature distributions in the material at time t � tk
� are then computed by
the �method� We obtain

G�Hk
�
 ��M�Hk
� �Hk
� t 
�F�Hk
�� tk
�
 � ��� �
F�Hk � tk

�
� �� �����


This system can be solved together with the pointwise relationship of enthalpy and temperature as
in �����
 or �����
�
For � � 	 the procedure is simply the following� Compute the enthalpy distribution in the

material at time t � tk
� via

MHk
� �MHk � tF�Hk� tk
� �����


and then update the temperature via the inverse relation of �����
 or �����
 to get

T k
�
i � T �Hk
�

i 
� �����


We note that this discretisation converges to the weak solution for ordinary Stefan problems� see
e�g� Elliot and Ockendon ����
Chosing a � �� 	 will lead to a system of nonlinear algebraic equations which can be solved by

Newton�s method� The iteration to obtain the solution at t � tk
� is as follows��
�

Hk
��l �Hk
��l�� � ��G�Hk
��l��

��G�Hk
��l��
� l � �� �� � � � �

Hk
��� � Hk�
�����


Here� the notation �G�H
 denotes the Jacobian of G�H
 and is given by

�G�H
 �M� t�DN
�T

�H
�H
� �����


The iteration in �����
 is stopped if a given accuracy for the Newton update has been reached�
For the timestepping method �����
 we use �����
 as the initial solution�

��



� Extension to �D

In the various techniques in modelling the melting for the laser percussion drilling process� we
encounter several problems� The main problem is that the solidi�cation model is essentially �D� So
our model has to cope with that�
The extension to two spatial dimensions is necessary for solving the solidifcation model� We

demonstrate this for the axisymmetric version of our melting model� The geometry for this Stefan
problem is sketched in Figure ��
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Figure 	� The geometry for the Stefan formulation�

The dimensionfull form of the problem is as follows��������������������������������
������������������������������
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Here the normal on "� points into the solid and vn is the velocity in normal direction� In this
axisymmetric domain the Stefan condition can be rewritten if we denote the position of "� by
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The geometry for the enthalpy method is sketched in Figure ��
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Figure 
� The geometry for the enthalpy method�

The dimensionfull form of the problem now reads������������������
�����������������
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together with the relationship between enthalpy and temperature as described in Eq� �����
 or �����
�
The numerical procedure of the �D Stefan formulation is not straightforward because of the

di�cult interface condition� whereas the numerics of the �D enthalpy method is a simple extension
of the �D model� This is mainly because of the fact that in the enthalpy method the position of the
solidliquid interface is not needed� Numerical results of the �D enthalpy method will be presented
and discussed in the next section�

� Numerical Results and Discussion

In this Section we will discuss the results from the numerical models based on FEM for the melting
problem as derived in Sections � and �� The results will be assessed�
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Figure �� The temperature distribution in the liquid part at the time at which the surface
reaches vaporisation temperature�

Because Eq� �����
 is already O� t
� we look at the O� t
 time stepping schemes EF and EB�
Note that the results for the �explicit
 EFscheme are obtained using variable time steps to ensure
the stability of the scheme� For the Stefan condition method� the �k � �
th time step  tk
� is
taken to be

 tk
� � 	��min��hl�t
k

�� �hs�t

k

�
� ����


to ensure that the stability condition

 t � 	��h� ����


holds throughout both regions� Because we need to resolve the temperature in the liquid region hl
will be small and this puts a severe restriction on the time steps used� So if we look at stability�
this is in favour of the implicit method� However� for both methods the error is O� t
 � O� x�

so to reach the same accuracy we have to take equally small time steps in both methods� In order
to get a good estimation for the dimensions of the melt pool� as needed in upcoming splashing and
solidi�cation models� we need a high accuracy�
Furthermore� for the explicit method �� � 	
� Eqs �����
 simplify because of the lumped mass

matrices� The matrix in front of Tk
�
l�s is simply I� In other words� for this explicit method we do

not need to solve a system of equations each time step� The amount of �ops to solve a tridiagonal
system of n equations is� when one makes use of the sparsity� asymptotically �n� see e�g� ���� so
here this means an extra amount of calculations of O�N
 �O�M
� From this we see that the total
balance therefore is in favour of using explicit methods after all�
Because the position of the solidliquid interface is not needed explicitely in the enthalpy method�

the restriction on the time step to be used in the enthalpy method is somewhat less severe� The
time step  t �which is constant now
 can taken to be

 t � 	��h�� ����


The results for the EBscheme for  t � 	�	� are shown in Figures � to �	� In Figures � and � the
temperatures in the liquid and the solid are shown� respectively� at the time at which the surface
reaches vaporisation temperature� Figure �	 shows the evolution of the solidliquid boundary� Here�
the analytical solution in case of latent heat is included as a reference to show its in�uence�

��
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Figure �� The temperature distribution in the solid part at the time at which the surface
reaches vaporisation temperature�
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Figure ��� The position of the solid�liquid interface� The numerical �with latent heat�
position is denoted by the solid line� whereas the analytical �without latent heat� position
is denoted by the dashed line�
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Figure ��� The front at the time at which the surface in the origin reaches vaporization
temperature� The one dimensional result is denoted by the solid line� whereas the result
of the full two dimensional model is denoted by the dashed line�

In Figure �� the results for the twodimensional model as derived in the previous section are given
compared to the results of the one dimensional analysis� The intensity pro�le I�r� t
 is assumed to
be a Gaussian TEM��mode� constant in time� It is shown that the results for the onedimensional
model indeed give almost identical estimations of the dimensions of the melt pool�
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Figure ��� Time history plots for temperature in enthalpy problem for �a� 	
 elements
and �b� for ��
�

If no phase change occurs� the numerics derived from the enthalpy problem are satisfactory�
For phase change problems� it is correct on average� since heat balances are ful�lled throughout�
However� calculated positions of the solidliquid interface and temperature and enthalpy oscillate
with a period corresponding to the time the interface needs to travel through a certain element�
This phenomenon can be seen in Figure ��� The plateau generated propagates to adjacent elements
and smoothes out only after the solidliquid interface has travelled a su�cient distance from the
point under consideration�
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This staircaselike behaviour has its cause in comparing average enthalpies per element with
nodal temperatures� In problems in one spatial dimension this can be overcome by an approach as
suggested by Tacke ��	�� This method works fairly good� but can�t be extended to higher dimensional
problems� Another solution is to use a �ner grid near the front� the advantage of this is that it is
easily extended to higher dimensions� This is an important consideration in view of the splashing
and solidi�cation models� see Smith ����

� Conclusions and Recommendations

Dimensional analysis shows that radial di�usion on the typical scales can be neglected� A com
parison with the twodimensional model supports this result� Therefore a onedimensional model
predicts the dimensions of the laser induced melt pool accurately�
In this paper two mathematical formulations of laser induced melting have been derived� One

formulation uses the Stefan condition whereas the other uses the physical quantity enthalpy�
The implementation of the Stefan condition poses some di�culties� One is that because of the

movement of the solidliquid interface� the domains change in time� Therefore� explicit schemes
cause small time steps to ensure that the stability condition holds� In the numerics of the enthalpy
method� on the other hand� the domain does not change in time and there is no need to distinguish
two di�erent regions� Therefore� the restriction on the time steps is not so severe�
The second di�culty is that choosing suitable initial conditions for the Stefan problem is not

straightforward� whereas this is simple for the enthalpy method�
The big advantage of the enthalpy method is that it does not need the position of the solidliquid

interface explicitely in the calculations� This temperature isotherm follows a posteriori� Therefore
the enthalpy method is easily extended to �D� The enthalpy method can thus also be used in the
splashing and solidi�cation models as suggested in ���� In these models some subtleties are involved
to deal with convection terms�
Another advantage of the enthalpy method is that it is applicable to situations where alloys are

irradiated by a laser� Then we encounter the so called mushy region� This is a region where the
material is neither solid nor liquid� This region occurs in alloys or glassy substances which do not
have a distinct melting point� A model that describes the melting of such a material has to use the
enthalpy method� because the Stefan condition needs a distinct melting point� The solidi�cation
model breaks down for these kinds of material because the convection in this �mushy region� is not
fully understood� see ���� Therefore� it is of great importance to see whether �and how
 these mushy
regions can be approximated by a distinct melting point�
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