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ABSTRACT 

An overview of the literature on some nonparametric or distribution-free quality control 
procedures is presented for univariate data. A nonparametric control chart is defined along with 
some general motivations and formulations. Various advantages of these charts are highlighted 
while some disadvantages of the more traditional, distribution-based. control charts are pointed 
out. Specific observations are made in the course of the review of articles and constructive 
criticism is offered. so that opportunities for further research can be identified. Connections to 
some areas of active research are made. such as sequential analysis, that are of relevance to 
process control. It is hoped that this article would lead to a wider acceptance of distribution-free 
control charts among the practitioners and would serve as an impetus to future research and 
development in this area. 

KEY WORDS AND PHRASES: Control charts, Shewhart, CUSUM, EWMA, Sequential, Detection and Change
Point Methods, Signs, Ranks, Distribution1ree. 

1. Introduction ensured. Intuitively. in the event there is a change in the 

One of the primary objectives of statistical process, a control chart should detect it as quickly as 

process control is to distinguish between two possible and give an out-of-control signal. Clearly, the 

sources of variation in a given process, those which quicker the detection and the signal, the more efficient is the 

cannot be economically identified and corrected chart. The number of samples or subgroups that need to be 

(chance causes) and those which can be (assignable collected before the first out-of-control signal is given by a 

causes). When a process operates only under chart is a random variable, called the run length. The 

chance causes, it is said to be in a state of statistical distribution of the run length is often used to characterize the 

control (hereafter in-control). Control charts help efficacy or the performance of a chart. A popular measure 

researchers identify and eliminate assignable causes of performance is the expected value or the first moment 

so that the state of statistical control can be (about 0) of the run length distribution, called the average 

I On leave at the Department of Biostatistics, University of North Carolina, CB#7400, Chapel Hill, NC 27599. Dr. Chakraborti's 
work was supported in part by a 1998 summer research award from the College of Commerce and Business Administration, The 
University of Alabama and by a NATO Collaborative Research Grant CRG 920287. e-mail:schakrab@cba.ua.edu. 
2 Dr. van der Laan's research was supported in part by the NATO Collaborative Research Grant CRG 920287. 
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run length (ARL) , although several authors 

currently suggest examining other characteristics of 

the run length distribution, such as the second 

central moment or the variance. By definition, the 

run length is a positive integer valued random 

variable so that the ARL loses much of its 

attractiveness as a typical summary, if the 

distribution is skewed (as is often the case). As a 

consequence, other measures, such as the median, 

are sometimes considered. It is desirable (often 

stipulated) that the ARL be large when the process 

is in-control, whereas the exact opposite should be 

the case when the process is out-of-control. The 

false alarm rate is the probability that a chart 

signals a process change when in fact there hasn't 

been any, that is, when the process is in-control. 

This is synonymous with the probability of a type-I 

error in a hypothesis testing context. Two control 

charts are often compared, prospectively, such that 

their in-control ARL's are roughly the same. 

Again, this parallels comparing two statistical tests 

on the basis of power, against some alternative 

hypothesis, when they are roughly of the same size. 

In the context of process control, often, the 

pattern of chance causes is assumed to follow some 

parametric distribution. The most common 

assumption in the literature is that the chance 

distribution is normal. The statistical properties of 

the usually employed control charts are exact only 

if this normality assumption is satisfied. However, 

the underlying process is not normal in many 

applications, and as a result the statistical properties 

of the standard charts could be highly affected in 

such situations. On this point see, for example, 

Shewhart (1939; p. 12, 54), Ferrell (1953), Tukey 

(1960; p. 458), Langenberg and Iglewicz (1986), 

Jacobs (1990), Alloway and Raghavachari (1991) 

occur in practice; for more details refer to Noble (1951), 

Tukey (1960; p. 458), Lehmann (1983; p. 365) and Gunter 

(1989). These authors and others, including practitioners, 

provide ample justifications for the application of 

distribution-free or nonparametric techniques in statistical 

process controL For clarification, it should be noted that the 

term nonparametric is not intended to imply that there are no 

parameters involved, in fact quite to the contrary. This is 

not always clear, particularly to the practitioners. In this 

paper both terms, distribution-free (hereafter DF) and 

nonparametric (hereafter NP), will be used to emphasize the 

fact that they are the same. 

In spite of the weight of the evidence, however, 

development and implementation of NP methods have not 

been commonplace in industrial process control. There 

might be a multitude of reasons behind this. Practitioners 

sometimes have felt that the central limit theorem would 

"come to the rescue" and somehow render the charts 

"correct." While this might be true for some control charts 

based on averages of certain statistics from processes that 

are "well-behaved," it is far from being true in general. 

More importantly, in the problem where control charts are to 

be applied to individual observations (see for example, 

Montgomery, 1991) the central limit theorem can not be 

invoked (since the sample size is one), It has been shown 

that in this case the standard charts lack distribution

robustness (Lucas and Croisier (1982), Rocke (1989». 

Other reasons for the apparent lack of interest might have 

included past unavailability of adequate "in the field" 

computing facilities and the perception that one has to 

sacrifice "efficiency" when using these "simple" techniques 

based often on counting and ranking. The former is no 

longer a problem in today's computer age and the latter isn't 

necessarily true as has been well documented in the 

statistical testing and estimation literature. In fact, it has 

been known, for a long time, that for many heavy-tailed 

distributions, common NP methods outperform their 

and Yours tone and Zimmer (1992). In addition, parametric counterparts. Moreover, when the underlying 

normal-like but heavier-tailed distributions also 
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distribution is truly normal, the efficiency of some 

NP methods, relative to the corresponding 4. 

(optimal) normal theory methods can be as high as 5. 

0.955. Finally, to be fair, it should be noted that a 

large part of the developments in nonparametric 

methodology have taken· place in the classical 6. 

confines of statistical estimation and hypothesis 

testing and not much effort has been made to 7. 

understand the problems of "practical statistical 

process control." 

different NP charts can be compared more easily. 

More robust and outlier resistant. 

More efficient in detecting changes, when the true 

distribution is markedly non-normal, particularly 

with heavier tails. 

No need to estimate the variance to set up charts for 

the location parameter. 

Useful in start-up and short-run applications, 

allowing implementation earlier in the product life 

cycle. 

The main advantage of NP procedures is, In this paper we provide a framework for NP 

of course, the flexibility that one doesn't need to statistical process control (hereafter NSPC), so that the 

assume any parametric probability distribution for objectives as well as the problems are more easily 

the underlying process, at least as far as understood. Within this framework, an overview of the 

establishing and implementing the procedures are 

concerned. Obviously, this could be a big plus in 

the field of process control, particularly in start-up 

situations, where not much data might be available 

to use a parametric (for example, normal theory) 

procedure. Also, NP control charts are likely to 

share the robustness properties of NP tests and 

confidence intervals and are, therefore, likely to be 

less impacted by outliers. 

A formal definition of a NP control chart 

is given as follows. 

Definition: Let 1'1 be the class of continuous 
cumulative distribution functions. A control chart 
is NP or DF over the class 1'1, if the in-control run 
length distribution is the same for every member of 
1'1. 

To summarize, advantages of NP control 

charts include: 

1. 

2. 

3. 

Simplicity. 

No need to assume a particular 

distribution for the underlying process to 

set up a chart. 

The in-control run length distribution is 

the same for all members of 1'1. The same 

is true for the false alarm rate. Thus 

literature, mainly on univariate methods, is presented. Not 

all papers on the subject could be included in this review 

since in order for the paper to be of a reasonable length, a 

choice had to be made so that some of the important 

advances can be surveyed. In course of the review, some 

constructive criticism is offered wherever applicable, so that 

opportunities for further research can be identified. It is 

hoped that these observations would generate more 

questions, comments and discussions so that the advantages 

(and the disadvantages) of these simple methods can be 

better understood and more fully appreciated. Note that we 

consider only the so-called "variables control charts" since 

most NP procedures require a continuous population to be 

DF, at least for finite sample sizes. Finally, although 

multivariate process control problems are important in their 

own right, very few multivariate NSPC techniques are 

currently available, and these will be covered elsewhere. 

2. Tenninology and Problems 

An important problem in the quality literature is the 

problem of tracking a process mean. More generally 

however, one can consider tracking the center or a location 

(or a shift) parameter. For example, the location parameter 

could be the mean or the median or some percentile of the 

distribution. The latter are especially attractive when the 
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distribution is skewed. Also, many processes are 

implicitly assumed to follow either a pure location 

(or a shift) model, say of the form F(x - 9) where 9 

is an unknown (location) parameter (corresponding 

to say a normal distribution with unknown mean 

and known variance), or a pure scale model, say of 

the form F(xlt) where 't (>0) is the unknown (scale) 

parameter (corresponding to say a normal 

distribution with unknown variance and known 

mean), and F E it, is some underlying continuous 

cumulative distribution function (cdf). Sometimes 

one might be interested in the location-scale model: 

F{(x - 9)lt} , where both e and 'C are unknown 

parameters (corresponding to say a normal 

distribution with both mean and variance 

unknown). Under these (often implicit) model 

assumptions, the problem is to track e, or 'C (or 

both), based on random samples taken (usually) at 

equally spaced time points. As noted earlier, in the 

usual control charting problems F is assumed to be 

the cdf of the standard normal distribution, in the 

NP setting, for variables data, it is enough to say 

that F is some arbitrary continuous cdf. Although 

the location-scale model seems to be a natural 

model to consider paralleling the normal case with 

mean and variance both unknown, most of what is 

case their distributions are either well known or derivable, in 

general these are not OF (i.e. the end result depends on the 

fact that the original distribution is normal) unless the 

sample size is large. In fact, the lack of distribution

robustness (even for moderate sample sizes) is a concern, 

particularly for the S and the R charts. Thus, unless the 

process is known (say normal) or the sample sizes are quite 

large, the false alarm rates for the standard parametric charts 

can be (unacceptably) high. 

While constructing NP charts, it seems natural, as a 

first step, to consider replacing these parametric control 

statistics with other reasonable statistics that are OF and 

study analogs of the parametric charting methods. This will 

allow computation of control limits etc. that are valid for a 

whole class of distributions. It turns out, however, that in 

the NP (or robust) charting setting. the well-known 

estimators are often not OF for finite sample sizes. 

Accordingly, one then has to resort to NP tests (often there is 

a correspondence between the tests and the estimators) and 

adapt those for the control charting problem. This is what 

has been mostly done so far in the literature and some of the 

contributions based on this idea will be reviewed in the next 

section. 

Recall that the most common quality control 

charting methods include the Shewhart, the cumulative sum 

(CUSUM) and the exponentially weighted moving average 

currently available in the NSPC literature deals (EWMA) with various proposed refinements. When 

only with either the pure location or the pure scale 

model. 

The starting point for designing a control 

chart is usually a "control statistic", which is often 

an estimator of the parameter of interest (see e.g., 

Montgomery, 1991; page 105). Traditional control 

statistic for the mean is the sample mean (X), 

tracking the process mean, the control statistic used in these 

charts is the sample mean (although (robust) variations have 

been considered) whereas for tracking the process variation 

the choice is usually between the sample standard deviation 

or the sample range. The relative advantages and 

disadvantages of these charts are well documented (see, e.g., 

Montgomery, 1991). 

whereas for the process variation one uses the 

sample variance S2 (or the sample standard 3. A Review of Literature 

deviation S) or the sample range R. One problem While Shewhart-type charts are the most widely 

with these statistics is that although in the normal used because of their simplicity, CUSUM procedures are 
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quite natural in view of the sequential nature of the where sign(x) is 1, 0 or -1, according as x is >, = , or < O. 

process control problem. In the normal theory The statistic SRi is linearly related to the more well-known 

(parametric) setting Page (1954) proposed CUSUM 

charts based on the sample mean. In the NP setting 

Reynolds (1975) studied charts based on "signed 

sequential ranks" of observations. McGilchrist and 

Woodyer (1975) considered a CUSUM technique 

that allows for OF tests and applied it to the 

problem of detecting a change in the median of a 

WSR statistic Vg, the sum of the ranks of the positive 

observations, through the relation SRi = 2Vg g(g+I)/2. 

Thus the "in-control" probability distribution (mass 

function) of SRi can be obtained from the "null" distribution 

of V g' Assuming that none of the Xij is equal to 0, (an event 

with probability 0 in t'}), the latter has been tabulated by 

several authors, the table by Wilcoxon, Katti and Wilcox 

rainfall distribution. However, this is a problem in (1972) being one of the most extensive. The typical 

hydrology and not in process control. CUSUM chart for the mean is based on the cumulative sum 

Bakir and Reynolds (1979) (hereafter BR) of the sample means. The BR grouped signed-rank (GSR) 

proposed a CUSUM chart based on the Wilcoxon procedure uses the SR statistics with a CUSUM type 

signed-rank (WSR) statistic to track the shift of e (a stopping rule. Clearly, the procedure is OF since the in

location parameter) from an in-control known value control (e=O) distribution of the Vg and hence the SRi 

90 (assumed equal to 0, without any loss of statistics don't depend on the underlying distribution for all 

generality). We discuss the BR paper in some continuous symmetric distributions. The one-sided 

detail since the same basic ideas can be and has procedure for detecting a positive deviation in e, from the 

been used in the literature with other OF statistics. in-control value eo = 0, signals at the first n for which 

The WSR test is a well known (see for 

example, Gibbons and Chakraborti, 1992) NP test 

n m 
I (SR i - k) - min I (SR i - k) 2! h. 
i=l oSmSn i=1 

(1) 

and a competitor to the classical one-sample t test, The corresponding procedure for detecting a negative shift 

for testing hypotheses or setting-up a confidence in the mean signals at the first n at which 

interval about the location parameter 9 of a 

continuous distribution symmetric about e. 
Typically in control charting, m = 20 to 25 random 

samples (groups) are taken, sequentially from the 

process, each of size g = 4 to 5 observations. Let 

(Xii' ... ,Xig), i = 1,2, ... ,m, denote the ith random 

sample. The BR procedure is based on the idea of 

ranking observations within the ith sample or 

group. The idea of "within group ranking" has 

been employed earlier by Wilcoxon, Rhodes and 

Bradley (1963) and Van der Laan (1966) to 

develop NP sequential two-sample tests. Let Rij be 

the rank of 1 X ij I among (I Xii 1, ... ,1 Xig I), j = 

g -
1,2, ... ,g, i = 1,2, ... and let SRi = ;r. sign(X ij )R ij' , 

J=I 

m n 
max I(S~ +k) - I (S~ + k);?! h. 
oS~ i=1 i=1 

(2) 

A two-sided symmetric procedure signals at the first n for 

which either of the two inequalities is satisfied. 

The two parameters of the CUSUM chart are the 

reference value k and the decision value h. One criterion for 

the optimal choice of (k,h) is that the combination minimizes 

the ARL of the procedure when the process mean has 

shifted, subject to the condition that the in-control ARL be a 

specified value. It can be shown that for varying large 

values of n, the behavior of the cumulative sum process can 

be approximated by a Brownian motion process. Hence, as 

in Reynolds (1975), the optimal value of k is approximately 

equal to leV2, where n9 = n9(.6.) is the mean of the 
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cumulative sum, I. SR. , corresponding to the shift Arnold (1985) presented a NP test procedure. He 

i = 1 1 selected the sign test because its power is easily obtained. It 

/1. The expression for 8(/1) is obtained from the is assumed that the production speed is constant and equal to 

mean of the WSR statistic based on g observations. v items per time unit. The control chart works as follows: 

Tables are given for the optimal values of k Every T time units of production a sample of n items is 

corresponding to different shifts in location, when taken; let Xi denote the value of the i-th item in the sample. 

the parent distribution is uniform, normal, double- Since it is assumed that the characteristic variable X is 

exponential and Cauchy, respectively. These are continuously distributed, we have that Xi:;:' Z for a certain 

normal-like distributions with different tail value z, e.g., 0 for all i with i =1,2, ... ,n (almost surely). If 

properties. It was recommended that the optimal k the number K of the Xi with Xi< z is at most c or at least n-c a 

values obtained for the normal distribution be used search and, if necessary, a repair is undertaken. Otherwise 

in practice unless very heavy tails are indicated. the process is continued. Comparison of control chart is 

Using this value of k, the value of h is then chosen made considering several economic parameters. 

to achieve the desired one-sided in-control ARL 

value. Tables are given for the one-sided ARL 

values for various combinations of h, k and g. For 

example, when observations are collected in groups 

of size 6, using h=lO and k=ll yield an in-control 

ARL = 301.01. Comparisons are made, on the basis 

of the "exact" one-sided ARL, with the Shewhait 

chart and the usual CUSUM chart under various 

positive shifts when the process is normally 

distributed. For non-normal distributions such as 

the uniform, the double exponential and the 

Cauchy, comparisons were made on the basis of 

simulated one-sided ARL values for various 

positive shifts. The overall conclusion is that when 

observations are naturally collected in groups, the 

GSR-CUSUM chart is only slightly less efficient 

Park and Reynolds (1987) developed NP 

procedures for monitoring the location parameter of a 

continuous process when the control value for the parameter 

is not specified. These procedures are based on the so-called 

linear placement statistics, introduced earlier by Orban and 

Wolfe (1982) for comparing current samples with a standard 

sample taken when the process was operating properly. The 

linear placement statistics are used in versions of Shewhart 

and CUSUM charts. Asymptotic approximations to the run 

length distributions are obtained. 

McDonald (1990) considered a CUSUM procedure 

based on what are called "sequential ranks". The sequential 

rank Ri of an observation Xi is defined as 

i-i 
R i = 1 + 2. I(X j < Xi)' where 1(.) is the usual indicator 

j=1 

function, and a CUSUM chart is based on Ui = R/(i+l), 

than the usual CUSUM chart based on the sample i=1,2,.... When the process is in-control, the Ui are 

mean when the process is normally distributed, 

whereas for non-normal distributions the GSR

CUSUM chart can be considerably more efficient. 

A suitable group size (n) for this NP procedure was 

suggested to be between n=5 and 10, depending on 

the shift-size and the desired in-control ARL. This 

recommendation is nearly the same as the group 

size recommended for the normal theory based 

procedures. 

independent random variables, uniformly distributed on 

{lI(i+l), 2/(i+1),. .. ,iI(i+l)}. Thus for a one-sided chart 

constants k (> 0; the reference value) and h (> 0; the signal 

level) are fixed and one computes T j = max{Ti_t + Ui - k, O} 

for i=1,2, ... , where To = O. An out of control signal is given 

at the first i where Ti ~ h. When the process is in-control, 

the ARL of this scheme depends only on h and k and not on 

the underlying cdf F. Note that this procedure is not a direct 
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analog of the usual CUSUM based on the sample 

means. The approach taken here is to determine, 

numerically, for a given reference value k, the 

appropriate signal level h corresponding to a 

desired average run length. It may be noted that 

this procedure tracks the actual sequence of random 

variables Xi> i=1.2 •...• through the cumulative 

sequential ranks. 

Alloway and Raghavachari (1991) 

(hereafter AR) considered a Shewhart-type chart 

for the median of a continuous symmetric 

such that P(Wi(aj ):::;; 0 :::;; W;(M -aj+l» ~ I-a. Using the 

connection with the WSR statistic. tables have been 

constructed for finding the ~ (see for example. Gibbons and 

Chakraborti (1992) and Wilcoxon, Katti and Wilcox 

(1972». The steps for calculating the AR control chart are 

as follows. First find the lOO(1-a)% confidence intervals: 

for the 

median e from each of the m groups. The control lines are 

defined by LCL = median of the m lower confidence limits, 

UCL = median of the m upper confidence limits and CL = 

population, based on a DF confidence interval for average of the m HL estimators. One plots iii versus 

O. calculated using the Hodges-Lehmann (HL) 

estimator. Let m subgroups. each of size n. be 

available. The HL estimator for the point of 

symmetry of a continuous symmetric distribution is 

defined as follows. For the ith random sample. 

define M = n(n+l)/2 "Walsh averages" Wir = (Xij + 

Xih)/2. r=1.2 •...• M; 1 ::; j ::; h =1.2,. .. ,n. Then the 

HL estimator of ei is iii' the median of the Walsh 

- -averages, i.e .• 0; = Wj(M:.!J.) if M is odd and OJ = 
2 

if the underlying distribution is normal. in large 

samples, the efficiency of jj relative to X is 

0.955. This means that although the sample mean 

is the most efficient estimator of the population 

mean when the distribution is normal, the HL 

estimator is almost as efficient for moderate to 

large sample sizes. Of course, the advantage with 

the HL estimator is that the normality assumption is 

not required and it is robust against outliers. 

If Wi(l)'Wim", .,Wi(M) (our notation is 

slightly different from AR) are the M ordered 

Walsh averages for the ith sample, then a lOO(1-

a)% DF confidence interval for e is given by two 

ordered Walsh averages, Wj(aj) and Wi(M -ai+1) 

i=1,2 •... and compares against the control lines. The sample 

size n is recommended to be at least lO so that the type I 

error probability is comparable to a 3-sigma Shewhart 

X chart. Performance of the proposed chart was examined 

in a simulation study. As it might be expected, this approach 

compares favorably with the X chart for the normal 

distribution and is better in case of heavy-tailed symmetric 

distributions. 

In spite of the intuitive appeal, the design of the AR 

charts appears to be flawed from a practical point of view 

since it is not clear what the type I error probability or the 

in-control ARL for this chart is. As noted by Pappanastos 

and Adams (1996). and reviewed later in this section, the 

problem seems to be that the AR control limits don't seem to 

be directly based on the in-control distribution of the control 

statistic iii' It is also not clear whether the AR chart was to 

be used retrospectively or prospectively. More will be said 

about this later including possible modifications. 

Hackl and Ledolter (1991) (hereafter HL) 

considered NP control chart procedures for individual 

observations that use the so-called "standardized ranks" of 

the observations relative to an in-control distribution. The 

standardized rank Ri of an observation Xi is defined as Rj = 

2[Fo(Xj) - Yz], where Fo is the cdf of the in-control 

distribution. In the known Fo case. the Rj's can be computed 
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directly; in the unknown case. the standardized rank Amin and Searcy (1991) considered a NP EWMA 

Rj is redefined as R/1 = 2g-I[Ri* - (g+I)I2], where a chart based on the control statistic ~ = A. Yi + (1-A.) ~-Io 

random sample (a historic or a reference sample) of where Yi = SRi is the Wilcoxon group signed-rank (GSR) 

size g-l, say (YJ,Y2, .... Yg-1), is assumed to be statistic introduced earlier by BR (1979). The starting value 

available when the process is in-control and Rt is Zo is taken to be the process target value. The process is 

the rank of Xi with respect to the reference sample, considered to be out-of-control whenever some ~ either falls 

g-l above the UCL or below the LCL. The control limits are 
so that, R: =1+ L I(X i > V). Taking the 

j=l given by !lo ± L. Properties of the GSR-EWMA were 

reference sample as fixed (that is, conditionally, 

given the reference sample), it can be shown that 

the standardized ranks Rj# are independent and 

identically distributed. The difference is that 

whereas the ranks Rj follow a continuous uniform 

distribution over [-1,1 1. the ranks R/' follow a 

discrete uniform distribution over the g mass-points 

{lIg-1,3/g-1, .. .. , 1-3/g,1-lIg}. The proposed 

control chart is based on an EWMA of the ranks Rj 

(or Ri#): Ti = (l-A.)Ti_l + A. Rio i = 1,2, .... where To 

is usually set to 0 and A. is a smoothing parameter 

(in (O.l]) usually recommended to be between 0.1 

and 0.3. Against a two-sided shift alternative, the 

process is declared out of control if at some· i 

(observation number or time), ITil > h, where h > 0, 

is a suitably chosen control limit. Thus the main 

idea here is to define ranks of the accumulating 

observations in some suitable way and apply the 

usual EWMA method on these ranks. In simulation 

studies it is observed that the proposal is resistant to 

outliers and performs well if one is concerned about 

sudden shifts in the mean. In the same spirit, Hackl 

and Ledolter (1992) considered a chart based on 

the sequential rank of an observation. In contrast 

with BR (1979) however, their sequential rank of 

an observation is defined as its rank among the 

most recent group of g observations. The control 

statistic used is an EWMA of the sequential ranks. 

From simulation results, HL suggest that this chart 

is also outlier resistant and performs well if one is 

concerned about slowly trending process levels. 

evaluated and compared on the basis of ARL by simulation. 

Distributions were taken to be normal, uniform, double

exponential, Gamma and the Cauchy. The controllirnits for 

both the standard X -EWMA and the GSR-EWMA were 

obtained such that the "frequency of points falling outside 

the control limits were approximately equal for both 

procedures when the process is in-control." It is suggested 

that a control chart for variability is used along with the GSR 

procedure. The authors also examined the effect of 

autocorrelation. The performance of the GSR-EWMA 

relative to the X -EWMA was shown to be similar to that of 

the GSR-CUSUM (studied by BR) relative to the X

CUSUM. It is seen that the ARL properties of the proposed 

GSR-EWMA is insensitive to the choice of A. values. 

Enhancements such as addition of warning limits improve 

performance of the chart. Autocorrelation doesn't seem to 

affect the ARL as much it affects the ARL of an X -EWMA 

chart. Overall. the GSR-EWMA methods provides a nice 

alternative NP charting procedure. 

Yaschin (1992) discussed the run length 

distribution of a CUSUM control scheme when the 

underlying distribution is unknown. He suggested a NP 

analysis of the run length and some associated characteristics 

simply replacing the true underlying distribution by the 

empirical distribution of a reference sample. Properties of 

the resulting estimators were considered and simulation 

results were presented. 

Amin, Reynolds and Bakir (1995) (hereafter ARB) 

presented NP charts for the process median (or the mean) 
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and the process variability. These procedures are 

based on what might be called within group sign 

statistics, used instead of the average, in the' usual 

Shewhart and CUSUM charts. The sign test is the 

simplest of NP tests (see for example, Gibbons and 

Chakraborti, 1992) that can be used to test for the 

median (or a specified quantile) of any continuous 

population. This test doesn't require that the 

distribution is symmetric and therefore is applicable 

in a variety of situations. ARB used the statistics 

n 
SNj = I,sign(X ij > 90 ), where Xjj is the jth 

j=! 

observation from the ith group of size n. The SNj 

are linearly related to the usual sign statistics say Kj 

(the total number of positive signs among Xjj - 90), 

through the relation 2Kj= SNj + n, so that the 

probability distribution of SNj can be found from 

that of Kj ; the latter being Binomial (n,1I2) when 

the process is in-control (median = 90), These 

authors also considered Shewhart-type (zone) 

charts with warning limits and runs rules and 

provide formulas for the ARL of the combined 

chart. For example, the ARL of a one-sided 

(positive direction) chart with warning limit at Wz 

(0 ~ Wz < a2) and control limit at a2 is given by 

1 r 
L+(9) = -PI , 

I-P! -po(1-pD 
(3) 

where Po = P(SNi < wzl9), PI = P(Wz ~ SNj <a219) 

and a signal is given if r consecutive points fall in 

[w2,aZ) or any point falls outside a2' A table is 

provided for values of L + for various a2, Wz and r 

process variability by adapting the two-sample interquartile 

range test. Clearly, and as the authors pointed out, there 

needs to be much further work done on this topic. For 

CUSUM charts the authors use the same type of rule as in 

(1) or (2) with SNi used in place of SRi and calculate the 

ARL as before using a Markov chain approach, where the 

transition probabilities are calculated via a binomial 

distribution. Optimal values of k and h are determined 

similarly and tables are given for n=lO and various 

distributions. As in the case of the WSR statistics, it is 

observed that using k values for the normal distribution does 

not lead to large errors. Finally, the Shewhart X chart and 

the Shewhart sign chart (with and without warning limits) 

are compared, on the basis of ARL (both one and two-sided) 

for various shift sizes and underlying distributions like the 

normal, the double-exponential and the Gamma. The in

control ARL (say ARLo) of the charts is kept at some 

constant value. It is seen that generally speaking, when the 

distribution is either asymmetric or symmetric with heavy 

tails, the NP (sign statistic based) charts are more efficient 

while the reverse is true for the normal and the normal-like 

distributions with light tails. These authors also compared 

the proposed NP chart for variability to the chart based on S2 

and suggested that the chart based on S2 is more efficient, 

but of course the chart based on S2 is not NP. Finally, one

sided CUSUM charts using the sample means and the sign 

statistics are compared. It is seen that the CUSUM chart 

using the SNi is more efficient than the Shewhart charts, with 

or without warning limits. The overall conclusion is that the 

NP charts provide a useful alternative to the standard charts 

when normality is in doubt. 

Pappanastos and Adams (1996) (hereafter PA) 

values when n=10. As a practical note, some noted that a problem with the AR charts is their inability to 

observations can be tied with the specified median. 

If the number of ties is small (relative to n) simply 

drop the tied cases and reduce n accordingly. On 

the other hand if the number of ties is large, more 

sophisticated analysis might be possible. The 

authors also considered a NP chart to monitor 

maintain ARLo at any practically reasonable value. For 

example, using simulations with n=10 and m=30 and under 

normality, it was found that the ARLo of the AR chart is 

20,820.89, when the anticipated ARLo is just 500. Also, 

when different distributions such as the uniform or the 
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double-exponential were used, the ARLo values of 

the AR chart varied widely. This contradicts the 

fact that the AR charts are claimed to be DF. PA 

thus conclude "If the Hodges-Lehmann control 

chart were truly NP, one would expect the same 

ARLo's for different distributions." These authors 

go on to say "The discrepancy in the actual and 

anticipated average run lengths is due to the fact 

that the control limits for the Hodges-Lehmann 

control chart are not based on the distribution of the 

plotted statistic (i.e., the Hodges-Lehmann 

estimator)." However, as we have noted earlier, 

using even the "correct" in-control distribution of 

the HL estimator to set the control limits wouldn't 

help in this respect, because the in-control 

distribution of the HL estimator is not DF. 

PA considered two alternative forms of the 

AR charts as "robust" alternatives to the X chart. 

The alternative design schemes allow the user to 

construct a control chart with a specified ARLo 

while maintaining the advantages of the AR control 

chart. But as we have just noted, using the AR 

charts with the HL estimator as the control statistic 

is inherently problematic. Also, it is not clear what 

is exactly meant by a robust alternative. In any 

case, PA explored (i) plotting the HL estimators 

against control limits based on the asymptotic 

variance of the estimator and (ii) plotting a multiple 

of the HL estimator against control limits based on 

the medians of the m smallest and m largest sample 

observations. Using simulations, the authors 

recommend using the limits (J * ± c;..fi2 , when the 

process is normally distributed, where e* = 

median( iii' i=1 ,2, ... ,m), :s2 is the average of the m 

subgroup variances, and C2* is some constant 

chosen to achieve a specific ARLo. A chart is 

provided for finding the constant for various ARLo, 

when m=30 and n=3(1)1O. This, however, seems to 

be pointless since it is not clear if anyone is going to use a 

NP chart (such as the one based on the HL estimator) in 

practice if the underlying distribution is known to be normaL 

The same caveat applies to the authors' second modification. 

The interesting question in all of this, however, is how to 

incorporate or use a confidence interval (or perhaps some 

other interval estimation techniques) into defining a control 

charting scheme. Such a question has ramifications both for 

parametric and NP statistical process control. 

Willemain and Runger (1996) (hereafter WR) 

considered designing control charts for individual 

observations using a so-called "empirical reference 

distribution." They assume that a large reference sample is 

available and argued that "With sufficient historical data, 

regardless of the distribution, control limits can be selected 

as particular order statistics of the observed distribution of 

the variables to be charted." They go on to say, "In general, 

we favor the approach of developing control limits from an 

empirical reference distribution based on process data 

acquired during normal operating conditions instead of strict 

reliance on a normality assumption." The proposed 

Shewhart-type control limits are given by two order statistics 

of a reference sample of size m, the kth smallest and the 

(b+k)th smallest, where 0 ~ k ~ m and 1 ~ b ~ m+ l-k. 

Individual observations are then collected, one at a time, and 

are compared to these limits. It is shown that the conditional 

probability P (given the reference sample order statistics) 

that a future independent observation will fall within the 

control limits, when the process is in-control, is a beta 

random variable with parameters band m-b+ 1. From this, 

the (unconditional) distribution of the in-control run length 

is derived analytically, which is related to a hypergeometric 

distribution, with a right tail longer than that of the 

geometric. This yields, for example, the mean (Le., ARLo = 

m/(m-b» and the variance of the in-control run length 

distribution. However, it is not completely clear how to 

determine the chart parameters k and b. For example, the 

ARLo can be used to choose the constant b as follows. Take 
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m = 1,000, so that to achieve ARLo = 370, one 

would set 1000/(1000-b) =370 and solve for b, 

which yields b = 997. However the constant k still 

needs to be found, which would have to be one of 

1, 2 or 3. WR seem to suggest using a symmetric 

two-sided chart, which would mean k = 2. 

WR also studied the "off-target" ARL of 

their chart and provided a table for comparisons 

with the one-sided normal theory Shewhart chart. 

For two-sided charts simulations are used to 

estimate the E(ARL) and a table is provided for a 

comparison of exact and empirical estimates of off

target ARL using m=lO,OOO observations from a 

standard normal distribution. In conclusion the 

authors state that "the results were good, although 

additional research may be able to improve upon 

the simple estimators ... " 

The idea of using a reference sample to set 

up control limits is also utilized in Janacek and 

Meikle (1997) (hereafter JM). They presented a 

DF control chart for the median of a future sample 

from the same process. Note that the control chart 

here is for a particular order statistic from a future 

sample (and not for the population mean or the 

population median). This extends the work of WR 

cited above. Assume that a reference sample of 

size m, say X"X2, ... ,Xm, is available with when the 

process is in-control with a cdf Fo. Whether or not 

the process is in-control is judged by taking a 

sequence of test samples of size n and comparing 

each test sample with the reference sample. Ideally 

the aim is to detect a change in the distribution, say 

from Fo to Flo but as in practice, detecting a shift in 

the location of Fo is of interest. The procedure is to 

compare the test sample medians Mj with the limits 

given by two order statistics of the reference 

sample, LCL = XU) and UCL = X(m-j+I), where the 

constant j is determined so that the probability 

P(X <M· <X . IFI =Ro» 1 - 0;, for all i = 1,2, .... , (j) 1 (m-J+I) -

where 0; is the specified false alarm rate. JM has tabulated 

this probability for j = 1(1)10, when m = 25(5)80 and n = 

5(2)9 and also when m=55(5)80 and n = 11(2)15. For 

example, for m=70, n=5, P(X(3)< M j < X(68)1 Fo = FI) is 

calculated to be 0.99716 (so that the actual false alarm rate 

is 0.00284). Thus, taking LCL = ~3) and UCL = X(68) is 

roughly comparable to a traditional 3-sigma Shewhart X 

chart in this situation. 

In summary, when a reference sample is available 

from an in-control process, it can be used prospectively, to 

check whether or not the process is in-control. This can be 

done by either (i) estimating (predicting) some attribute of a 

future sample (say the 901h percentile, or the inter-quartile 

range, for ex'ample) or (ii) by estimating some attribute of 

the future distribution (the mean or the median, for 

example). Along the lines of (i), and generalizing the works 

of JM and WR, Chakraborti and Van der Laan (1998) 

considered estimating the jth order statistic (i.e., the 

100*G/n)1h sample percentile) in a future sample, based on a 

class of two-sample NP statistics, called precedence 

statistics. They also examined the performance of their chart 

in terms of the ARL. Computational aspects and 

recommendations for the implementation are also given. 

More work needs to be done in this context, particularly 

using other two-sample NP statistics, which are known to 

possess "optimal" power properties. 

Ledolter and Swersey (1997) discussed pre-control, 

an alternative to statistical control charts for monitoring 

processes. Pre-control and standard control charts are 

compared. They find that pre-control has some value, 

especially in machining operations where the lot sizes are 

small, and in situations where one deals with very capable 

processes. But, in general, their conclusion is that pre

control is not an adequate substitute for control charts. 

Finally, we briefly describe some other problems 

where NP methods have been proposed in the literature. 

Some of these are active areas of research, especially among 
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the more theoretically inclined researchers. necessary, can be applied in process control problems. 

However, the problems are very much relevant in 

the process control setting. We Jist these under 

other methods. 

4. Other Methods 

Since the subgroups are almost always 

collected sequentially over time (at some equally 

spaced time points), it seems natural to consider 

some sequential statistical methods for process 

control problems. In the classical (Wald) 

sequential setup, subgroup size is 1 and the number 

of observations required to reach a decision is a 

random variable. The 'optimal' procedure is 

chosen in such a way that subject to given bounds 

on the type I and the type II errors, the expected 

number of observations to reach a decision is a 

minimum. To this end, adapting from Sen (1991; 

page 235) one possible formulation of the problem 

In the literature on sequential testing and 

estimation, problems have been discussed that are called 

"change-point", or more generally, "detection" problems. 

Bhattacharyya and Frierson (1981) considered the following 

problem. Let XI> X2, ••• , XN be a sequence of independent 

random variables whose distribution changes from F to G 

after the first [N e] observations, where e is an unknown 

parameter. This is one version of a change-point problem. 

The object is to detect the unknown change-point quickly 

without too many false alarms and without making any 

parametric model assumptions on F or G. A NP control 

chart based on the (partially) weighted sums of sequential 

ranks is proposed and the asymptotic behavior of the 

cumulative sums of sequential ranks, under the assumption 

that a small change in distribution takes place after a large 

number of observations, is studied. 

Zacks (1991) presented an overview of detection 

is as follows. Let Tn be a class of (control) and change-point problems and considered some 

statistics. In order to test if the process is in-control applications of the proposed methods. The reader is referred 

(versus that the process is not in-control) based on to this paper for an introduction to the various problems and 

Tn. start with an initial sample of size no and define proposed solutions, along with references to the literature; 

a stopping variable the discussion on applying CUSUM procedures in change-

N = least positive integer n (2:: no) such that Tn gives point problems is particularly interesting in the process 

a signal control setting. In addition, we cite three more references: 
= 00, if no such n exists. 

Thus we continue drawing observations, starting 

with no, then no+1,no+2, and so on, until for the first 

time (for some n = n·= no+K) , Tn> gives a signal 

(that the process is not in-control); then N = n·. If 

no such n exists then process is allowed to continue 

under the assumption that the process is in-control. 

Sequential statistical methods have been 

successfully used in medical experimental settings 

and various procedures have been developed in 

view of the applications. It would be useful to 

examine how these methods, adapted if and as 

Huskova and Sen (1989), Siegmund (1994) and Siegmund 

and Venkatararnan (1995), where more recent works and 

further references can be found. 

S. Concluding remarks 

As noted in section 1, in some applications the 

location-scale model is the more relevant model from a 

practical point of view. For this situation it seems 

worthwhile to consider a "combined" control chart, 

combining, say, a (two-sample) location statistic with a (two

sample) scale statistic. For different NP location and scale 

tests, see for example, Gibbons and Chakraborti, (1992). 

However, one possible drawback of a combined chart is that 

when a signal is given, it is not always easy to isolate the 
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reason, i.e., it is not easy to diagnose if there has 

been a shift only in, the location, or the scale, or 

both. 

Also, as noted before, one could explore 

the issue of "optimal" NP charting by using, for 

example. "optimal" NP tests. Of course, one needs 

to define what is meant by an optimal control ,chart. 

In the same spirit, one also needs to define what 

might be called the "efficiency" of a NP chart over 

a parametric (say classical normal theory) based 

chart and study the advantages of one chart over the 

other. To this end, one could examine "local" 

properties of the ARL of a chart under, for 

example, "contiguous" shift alternatives. Some of 

these analyses would entail asymptotics, where the 

sample size and/or the number of samples might be 

large. Clearly, more research is needed in these 

directions. 

Since the choice of a control chart depends 

on the type of the underlying process distribution, it 

seems useful to explore what might be called 

"adaptive control charts." Here one could use a 

preliminary reference sample to gauge, for 

example, the skewness and the kurtosis of the 

popUlation, and based on such estimates one could 

choose an "optimal" NP control charting method. 

For an introduction to adaptive statistical 

procedures, see Hogg (1974). 
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