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Abstract

The Yee-method is a simple and elegant way of solving the time-dependent Maxwell’s equations. On the other
hand this method has some inherent drawbacks too. The main one is that its stability requires a very strict upper
bound for the possible time-steps. This is why, during the last decade, the main goal was to construct such methods
that are unconditionally stable. This means that the time-step can be chosen based only on accuracy instead of
stability considerations. In this paper we give a uniform treatment of methods that use the same spatial staggered grid
approximation as the classical Yee-method. Three other numerical methods are discussed: the Namiki-Zheng-Chen-
Zhang (NZCZz) ADI method, the Kole-Figge-de Raedt-method (KFR) and a Krylov-space method. All methods are
discussed with non-homogeneous material parameters. We show how the existing finite difference numerical methods
are based on the approximation of a matrix exponential. With this formulation we prove the unconditional stability
of the NZCZ-method without any computer algebraic tool. Moreover, we accelerate the Krylov-space method in the
approximation of the matrix exponential with a skew-symmetric formulation of the semi-discretized equations. Our
main goal is to compare the methods from the point of view of the computational speed. This question is investigated
in 1D numerical tests.

Index Terms

FDTD Method, Stability, Unconditional Stability

I. INTRODUCTION

The 3D Maxwell equations, which describe the behavior of time-dependent electromagnetic fields, in the absence

of free charges and currents, can be written in the form

—V xH +ed,E =0, Q)
VxE+ uoH =0, 2
V(eE) =0, 3)
V(pH) =0, 4)
where

E: (Ez(tm,y,z),Ey(t,x,y,z),EZ(t@,y,z)) (5)

is the electric field strength,
H = (H(t,z,y,2), Hy(t,z,y,2), H:(t, 2,9, 2)) (6)

is the magnetic field strength,is the electric permittivity andgl is the magnetic permeability. It is well-known
that the divergence equations (3) and (4) follow from the curl equations if we suppose that the fields in question
were divergence-free at the initial point of time. This means that we must solve only the curl equations applying
divergence-free initial conditions fd andH.

The first and still extensively applied method to solve the equations (1) and (2) numerically was constructed

by Yee in 1966 ([12]). This method starts with the definition of a generally rectangular mesh (with the choice of
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Fig. 1. Standard Yee cell.

the step-sized\z, Ay and Az) for the electric field and another staggered (by/2, Ay/2 and Az/2) grid for

the magnetic field in the computational domain. The building blocks of this mesh are the so-called Yee-cells (see

Figure 1). Defining the approximations of the field strengths at the points shown in Figure 1, we calculate the first

spatial derivatives in the curl operator using central differences. These approximations of the spatial derivatives

produce second order accuracy, this is why this discretization is so common. The methods investigated in this paper

all use this type of approximation. The only difference between the methods will be only in the time discretization.

In the following we formulate the semi-discretized system.

Let us suppose that the computational space has been dividel iviée cells and let us introduce the notation
T=A(i/2,7/2,k/2) | i,j,k € Z, not all odd and not all even, (7)
(iAz/2,jAy/2,kAz/2)T is in the computational domain}.

We define the function¥; /5 ;21,2 : IR — IR ((i/2,7/2,k/2) € T) as

\/WEw(t, iAx/2,jAy/2,kAz/2), if iisodd and j,k are even,

VEijzjrak2 Byt il /2, jAy/2,kAz/2),  if jis odd and i, k are even,

VEij2i/2k2Ex (1 iAT /2, jAy /2, kA2 /2),  if kis odd and i, j are even,

Virzasznsz(t) = \/WHQE(L iAx/2,jAy/2,kAz/2), if j, k are odd and i is even, ®

V2 /2820y (81872, jAy /2, kAz/2), if i,k are odd and j is even,

V272020 (t 182 /2, jAy /2, kA2 /2), if i,j are odd and k is even,

where €;/5 /2,12 and p;/2 /2,12 denote the electric permittivity and magnetic permeability at the points

(iAx/2,jAy/2,kAz/2) T, respectively. This setting corresponds to the staggered grid spatial discretization. Start-

ing from the rearranged form of the Maxwell's equations

1 (vuH
ou(vem) = v x VI, ©
1 (VEE)
Oy(VH) = ———V x : 10
we can obtain the semi-discretized system
dWia jsak/2(t) 1 Wisa,+n/2mk2t) Vi ovyjon/2(t) (11)
dt Ei2.4/2.k/2 | AYIij2,Gr1)/2k/2  DYyIif2,G-1)/2.k/2
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Wi2,j/2,(kt1)/2(t) Wi2j/2,(k—1)/2(t)

AZ\/Mz’/2,j/2,(k+l)/2 AZ\/Mi/2,j/2,(k71)/2

dWiai/2k/2(8) 1 Vippjs2,002(t)  Wipngpg-n2(t) (12)
dt €if2.5/2.k/2 | A2\/Fijzi/2(t1)2 D2 Tij25/2.(-1)/2

Wit1)/2.5/2.k/2(t) U i_1)/2,5/2.k/2(1)

Aw\/u(i+1)/2,j/2,k/2 Ax«/u(iq)/z,j/zk/z

dVi/o j/2.1/2(1) _ 1 Vi 2g/2020)  Yionei/2m20) (13)
de €i/2,5/2,k/2 _Axx/ﬂ(i+l)/2,j/2,k/2 Az /l(i=1)/2,5/2.k/2

Wi/2.(i4+1)/2,k/2(t) /2. (—1)/2,k/2(1)

Ay /Hijz, G102z AYTi2,G-1)/2,k/2

AWisng/on2(t) 1 Viagzoeen/e®)  Yijpgro0-n/20) (14)
de ti2,5/2k/2 | A2\/Eij2jain/z D2\/Eij252,(k-1)/2

Wi/a.(j+1)/2.6/2(t) n Wi/a.(j—1)/2.k/2(t)

Ay\/si/Q,(j+1)/2,k/2 Ay\/ﬂi/2,(j—1)/2,k/2

d¥; /2.5 /2,k/2(t) _ 1 VU it1)/2,5/2,6/2(t) B U i_1)/2,5/2,k/2(t) _ (15)
de Hif2,5/2,k/2 _A$,/€(73+1)/2,j/2,k/2 Ax\/g(i—l)/Q,j/Q,k/Q

Wisa./2,(k+1)/2(t) L Wi2,j/2,(k—1)/2(t)

Az [Eipa o i)z Dz /Hij25/2,(k—1))2

dWissj/2k/2(t) 1 Wiso,+1)/20/2)  Wipo mnyj2m2(t) (16)
dt Hif2,5/2,k/2 Ay«/gi/Z,(j+1)/2,k/2 Ay €i/2,(j—1)/2,k/2

Wiiv1)/2.5/2,k/2(t) N Wii—1)/2,5/2,0/2(t)

Ax\/g(i+1)/2,j/2,k/2 Aw\/ﬂ(i—l)/Q,j/Q,k/Q

which can be written in a shorter form as

] , if 4 is odd and j, k are even,

1 , if 7 is odd and i, k are even,

1 , if k is odd and i, j are even,

] , if 7, k are odd and 7 is even,

1 , if i, k are odd and j is even,

] , if 7, j are odd and k is even,

dw(t)
5 = Av@). t>0. (17)

The vector-scalar functio : R — IRV, U(¢) = (..., ¥;/2 j/2.4/2(t),...)" can be obtained from an arbitrary
ordering of the functions¥; /5 ; /2 /2 into a vector andA € IR®Y*5N_ From equations (11)-(16) follow some
important properties oA directly.
a sparse matrixA is a skew-symmetric matrix " = —A).

System (17) must be solved applying a divergence-free initial conditio foy. The solution can be written in

the form

U(t) = exp(tA)¥(0), (18)

whereexp(tA) denotes the exponential matrix and it is well-defined with the Taylor-series of the exponential
function. This matrix exponential cannot be computed directly becAuisea very large matrix. According to this

representation, usually, the numerical methods for the Maxwell’s equations are based on some approximation of
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the matrix exponentialxp(tA). With the choice of a time-stefit > 0
U(t + At) = exp(AtA)T(t) (19)
follows from (18). Using this equality the one-step iteration
Ut = U, (AtA)T", UV is given (20)

can be defined, wher&, (AtA) is the approximation of the exponentiatp(AtA) (this approximation may
depend om) and¥™ is the approximation of the functiof at time-levelnAt.

In the next section we give the, (AtA) approximations of the matrix exponentiadp(AtA) for the classi-
cal Yee-method, for the Namiki-Zheng-Chen-Zhang-method (NZCZ, [6], [15]) and for the Kole-Figge-de Raedt-
method (KFR, [5]), which show that the existing methods are based on the approximation of the matrix exponential
exp(AtA) (for these method®/,,(AtA) is independent of:). Moreover, we describe a method that does not
compute the approximation of the matrix exponential itself, but the approximation of the product of the matrix
exponential and the iteration vector (that is h&tg AtA) depends om). This Krylov-space approximation has
very nice properties because of the skew-symmetricity of the matrixrhe stability of the NZCZ-method was
proven with the help of significant use of computer algebra, namely, MAPLE V was applied in showing that the
magnitudes of the eigenvalues of the iteration matrix are equal unity. Using our formulation this proof can be
done on pure mathematical basis. Furthermore, our proof does not suppose that the material patapjedees (
constants (compare with [15]). Our main goal is to compare the methods from the point of view of the numerical

computational time. This will be investigated in the last section in 1D numerical tests.

Il. UNIFORM TREATMENT OF METHODS USING THEY EE SPACE DISCRETIZATION

As we wrote in the previous section the time integration of the Maxwell’s equations, using a staggered grid spatial
approximation, means the approximation of the matrix exponentiglAtA). The better is this approximation the
better is the numerical scheme. The matkixs very large (usual$N > 10°) and although it is sparse the matrix
exp(AtA) is a full matrix, which is due its definition. These facts necessitate the approximation of the matrix
exponential. These approximations are given for the classical Yee-method, for the NZCZ-method and for the KFR-
method in this section. The approximations are based on some splitting of the fatrike formA = A; + As.

Then the exponentialxp(A) can be approximated by the exponentialp(A ;) andexp(A,). Naturally, if Ay

and A, commute, then the relatiaikp(A) = exp(A1) exp(Aaz) is true, but in our settings this is not the case.

A. Classical Yee-method

The classical Yee-method uses a so-called leap-frog time integration scheme, for which the electric field at
and the magnetic field at= At/2 must be given. This is why this method starts with the computation (from
the initial data) of the approximation of the magnetic field at time lével2 using some numerical method in the

form U0 = BUO, where the matriB € IRV *6N corresponds to some appropriate one-step numerical scheme.
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Then we update the values of the electric field at At from the electric field given at time level= 0 and the
magnetic field at = At/2 approximating the time derivatives by forward differences. In the next step we update
the magnetic field at time level= 3At/2 similar manner.

This method can be written in matrix iteration form. To do this, we define two matrikes, and A,y, as
follows. The matrixA 1y is composed from the matriX changing the rows belonging to the electric field variables
(indexed by(i/2,7/2,k/2) € Z, two ofi, j andk are even, one is odd) to zero rowsgy can be derived, in similar
manner, zeroing the rows belonging to the magnetic field variables (indexgdy /2, k/2) € Z, two of i, j and
k are odd, one is even). From equations (11)-(16) follow some important properties of the maiicasd Aoy .

Lemma II.1: MatricesA 1y and A5y do not commute and the equality = A,y + Aoy is fulfilled. Moreover,
the relationA |y, = — Aoy is valid.

Remark 11.2: According to the lemma abova, = A,y + A,y is a splitting ofA. Furthermore, the splitting is
based on the physical background, namely, according to the electric and magnetic components.

Using the matriced\ 1y, Aoy the Yee-method has the form
U" = [(I+ AtA1y)(T+ AtAgy)]" BU? = [(I+ AtA1y)(I+ AtAxy)]" 9° n=1,2,.... (21)

(as a simple example the mati can be chosen in the forilB = I + (At/2)Ay) and in this manner it applies

the explicit exponential approximation
exp(AtA) = exp(At(A1y + Aaoy)) =~ exp(AtAqy)exp(AtAsy ) = (I+ AtA1y)(I+ AtAgy). (22)

This approximation of the exponential is identical with the Taylor-seriesxp{ A¢tA) up to the first order term,

which can be seen from the forln+- AtA — At?Ay A of the iteration matrix. It can be proven applying Von

Neumann analysis, that the Yee-method can be kept to be stable choosing the time-step sufficiently small.
Theorem 11.3: (e.g. [11]) The numerical solution of the Maxwell’s equations using staggered spatial discretiza-

tion and leap-frog time integration (Yee-method) is stable if and only if the condition

1
A S AT T (/AT T (/A7 23)

is fulfilled, wherec is the maximal speed of light in the computational domain.

This means that if we solve a problem withf cells, whereAzx = Ay = Az = 10~%(m) with the Yee-algorithm
(9 operations are needed to update each variable) the upper bound for the time-step whtitd Bex 1071°(s).
This means that we have to execté x 10'° operations to evaluate the field quantities after 1 microsecond. Using
a fast computer with0'2 operations per second this procedure would take 07 seconds, that i8.44 hours. This

huge computational time is unacceptable in real-life problems.

B. Namiki-Zheng-Chen-Zhang-method

A lot of effort has been invested during the last decade to bridge the stability problem of the Yee-method. The

main goal was to construct methods, whérecan be chosen based on accuracy considerations instead of stability
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reason. The first paper which showed an unconditionally stable method, with a detailed proof of the stability, was
appeared in 2000 and was written by the authors Zheng, Chen and Zhang (see paper [15]). This method is also
mentioned by Namiki for more general problems in paper [6], but the stability was showed only on test-problems.
This is why we call this method Namiki-Zheng-Chen-Zhang-method (NZCZ) in this paper. We divide the time-
steps into two equal parts. In the first half time-step we handle the first terms of the curl operator approximation
implicitly (applying the implicit Euler method), the second ones explicitly (applying the explicit Euler method), in
the next half time-step this is done in reverse order. Applying this method suitably we must solve two systems of
linear equations with symmetric tridiagonal matrices in one iteration step. Now we show that the NZCZ-method can
be also derived from the approximation of the matrix exponeatig{ AtA ). Let us define the matrice$; y, Aan
such a way thafA; y comes from the discretization of the first items in the curl operator.Aand comes from the
second ones.

Lemma Il.4: The matricesA |y and A,y are skew-symmetric and do not commute, moreo¥er= Ay +
Asy.

With the matricesA; v, A,y We can define an exponential approximation as follows
exp(AtA) = exp(At(Ayy + Agy)) ~ (24)

~ exp((At/2)Azn) - exp((At/2)A1y) - exp((At/2)A1n) - exp((At/2)Asy) = (25)

= (exp(—(At/2)Aan)) ! - exp((At/2)A1n) - (exp(—(At/2)A1y)) ! - exp((At/2)Azn) = (26)

~ (I— (At/2)Aan) ™ T+ (At/2)AN) - (T— (At/2)A1n) "1 (T + (At/2)Aan). (27)

At the first approximation we used the fact that the Taylor-seriesofAt(A;n + Aoy )) andexp((At/2)Asn) -
exp((At/2)A1n) - exp((At/2)A1n) - exp((At/2)Aqy) are identical up to the term with¢?. At the second
approximation the first two terms were used from the Taylor-series of the exponential function. Thus we can define

the one-step iteration
U = (I — (At/2)Aan) ™ (T4 (At/2)AN) - (T— (At/2)A1n) 1 (T+ (At/2)Aan)T", (28)

(¥ is given) which can also be obtained from the usual form of the NZCZ-method

‘Ifn+1/2 _ypn
T/z Ay UnH2 g AonUm, (29)

\Ijn+1 o \Ijn+1/2
Atj2 NIV GARTEE PIV an (30)

Remark I1.5: The above system shows that the NZCZ-method is similar to the Alternating Direction Implicit
(ADI) methods (see [3] and [4]), but here the alteration is applied in the two terms of the curl operator.

In the eighties, when ADI methods were constructed for the Maxwell's equations, a lot of effort has been devoted
to the verification of their stability. This effort remained without results. As we have mentioned earlier, the first

unconditionally stable method was constructed in 2000 and the stability was proven by computer algebraic tools.
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Employing the iteration form (28) we are able to give the pure mathematical proof of the stability of the NZCZ-
method (with non-homogeneous material parameters). The next lemma will play a key-role in the sequel.

Lemma I1.6: Assume thatC is a skew-symmetric real matrix agds an arbitrary real number. Then

| (I +5C)-(I—sC)™" [o=1. (31)
Proof: Introducing the notatio® := (I + sC) - (I — sC)~! we have

D l=(I-sC) - (I+sC) '=(I+sC")-(I-sC")!=
=(I+sC)"-(I-sC)"T=D". (32)

HenceD is orthogonal and consequentlyD |.= 1. ®

Theorem I1.7:Let h = min{Az, Ay, Az} and letq = cAt/h be an arbitrary fixed number. The numerical
solution of the Maxwell’s equations is unconditionally stable in 2-norm using staggered spatial discretization and
using the Namiki-Zheng-Chen-Zhang time integration method.

Proof: The unconditional stability means that for all step-sizes satisfying the conditionAt/h the relation
| O™ [l2< K || 9° || (33)
is true for alln € IN with a constanf independent on. From (28) follows the relation
Iem 3= (34)
=[| [(T— (At/2)Agn) ™" - (T+ (At/2) A1) - (T = (A/2)Arn) " - (T4 (At/2)Agy))]" 00 [5<

<|| (T = (At/2)Aan) "1 15 - || (T+ (AL/2)Aan)) 15 - | 90|15 -

Here we employed Lemma .4 and Lemma 11.6 for the matrides; and A, . Moreover, because of the skew-
symmetry ofA,, its eigenvalues can be written in the fodm \, (K =1,...,3N, Ay > 0,1 = +/—1). Applying

this we have the estimations

I (X (At/2)Axn) 7 3= o((T+ (At/2)Aon) (I = (At/2)Asn) ") =

1 1

_ _ 242 \-1y _ _ <
o= (A2 Aon) ) = LT = (A2} 15 (Ajae,. = b (35)
[ T+ (At/2)Aan (3= o((T = (At/2) Aan) (T + (At/2)Azy)) =
242 242 At 2
=o(I— (At/2)°A5y) =14 (At/2)°\; .. <1+ - ) = 14 q°. (36)
In the previous expressiong(.) denotes the spectral radius),.. = max{)\;,..., sy} and

Amin = min{Ay,..., A3y }. Furthermore, the Gerschgoren-theorem and the foftfg/en.~A.) of the ele-
ments ofA, y are applied to get an upper bound #gy,.... In the long run we get that ¥" ||3< (1+¢?) || ¥ |3,
that is the choicd( = /1 + ¢2 is satisfactorym
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Remark 11.8: We remark that the constagtmust be chosen according to the inequadity: 1/v/3 (hereh =
Axz = Ay = Az) in 3D problems in the case of the classical Yee-method to guarantee the stability of the method.
According to the previous theorem in the NZCZ-method the parametan be set arbitrarily, which shows the

unconditional stability of the method.

Remark I1.9: We also remark that in 1D problems the splittiAg= A + 0 can be applied. Thatid;y = A
and A,y = 0. This means that/,,(AtA) = (I + (At/2)A)(I — (At/2)A)~!, and because of Lemma 1.6
| Un(AtA) [|l2= 1.

C. Kole-Figge-de Raedt-method

According to the previous two subsections we can generalize the time integration methods as follows. In order
to compute the matrix exponentiatp(AtA) efficiently we split the matribA into the formA = A; +... + A,
(p € IN), where the matriced\,,..., A, are skew-symmetric matrices. Then we write the matrix exponential
exp(AtA) as a product of matrices in the forerp(&;, AtA;), whereg;, is some suitably chosen real constant,
i € {1,...,p}. If the matricesA,,..., A, do not commute then this product is only an approximation of the
original exponential. Then we usually approximate the matricgg¢;, AtA;) again (e.g. by their truncated
Taylor-series).

The third method investigated in this paper was firstly described by Kole, Figge and De Raedt (KFR-method,
[B]). In this work special splittings are found such a way that the exponeertialg;, AtA ;) could be computed

exactly using the fact

0 « cosa  Sino
exp = . ; (37)
—a 0 —sina  cos«

where« is an arbitrary constant. We demonstrate this method on a simple example. Let us consider the skew-

symmetric, block-diagonal matrix

0 ¢ 0 0 0 0 0
—q 0 0 0 0 0
0 —q O q 0 0 O
K=| 0 0 —¢ 0 ¢ 0 0], (38)
0 0 0 —gq 0
0 0 0 0 —q 0 ¢
0 0 0 0 0 —q 0

which can appear in the numerical solution of the 1D Maxwell's equatigns (R). With the splitting of this

November 13, 2002 DRAFT



10

matrix in the form

[ 0 ¢ 0 0 0O 00O ] [ 0O 0 0 0 0 0 O ]
—¢ 0 0 0 0 00 0 0 g 0 0 0 0
0 0 0 g 0 00 0 —¢ 0 0 0 0 0
K=Ki+Ky=| 0 0 —¢ 0 0 0 O0|+]0 0 0 0 ¢ 0 0 (39)
0 0 0 0 0 ¢qoO 0 0 0 —¢g 0 0 0
0 0 0 0 —g 00 0 0 0 0 0 0 gq
i 0 0 0 0 0 00O 0 0 0 0 O q O
the exponentiatxp(K) can be approximated by means of (37) as follows
exp(K) = exp(Ki + Ks) ~ exp(K1) - exp(Kz) =
[ cq s¢ 0 0 0 0 0 171 0o o o o o o]
—sq c¢q O 0 0 0 0 0 ¢ sqg O 0 0 0
0 0 ¢ sq O 0 O 0 —sq cq O 0 0 0
= 0 0 —-s¢g c¢ 0 0 0 0 0 0 e s¢g 0O 0 |, (40)
0 0 0 0 cq sq O 0 0 0 —sq cq 0 0
0 0 0 0 —sq cq O 0 0 0 0 0 c¢q sq
| 00 0 0 0 0 1] [0 0 0 0 0 —sq cg|

wheresq and cq denotecos(q) andsin(g), respectively. BecausK; andK, are block-diagonal matrices, the
product of them can be written using the products of their blocks.

Since matriced\4, ..., A, are skew-symmetrical and only the products of the exponents of these matrices are
used in the approximation, the iteration matrix will be orthogonal. That is its 2-norm is exactly one. Thus this
method is also unconditionally stable.

Theorem 11.10: The numerical solution of the Maxwell’'s equations using staggered spatial discretization and
using products of exactly calculated matrix exponentials of skew-symmetric matrices in the time integration (Kole,

Figge, De Raedt-method) is unconditionally stable.

D. Application of the Krylov-space method using a modified Arnoldi orthogonalisation method

In the previous methods we approximated the matrix exponentiglAtA) and used this approximation to
generate a matrix iteration. Changing the philosophy of the matrix exponential approximation we can proceed as
follows. We do not approximate the matrix exponential itself but the product of the matrix exponential with the
previous state vector. The building blocks of this method are not new (see for example [2], [7], [9], [10], [14]), but
the way is new as we combine the numerical solution of the Maxwell’s equations and the Krylov-space methods

for skew-symmetric matrices to achieve a sufficiently accurate and stable numerical method.
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11
If the initial vector¥° and a natural number are given, then we can construct the Krylov-subspace as follows

K(ALA, B0 m) = span{T° AtAT? ... (AtA)™ 10O} (41)

(span{} denotes the set of all possible linear combinations of the vectors.) We are going to choose the best approx-

imation toexp(AtA)¥° from this subspace. To do this, first we construct an orthonormal basis, . . . for the

spacelC(AtA, U0, m) with the well-known Arnoldi-algorithm 1 (naturally we can leave the constatt

Algorithm 1 Arnoldi-algorithm
Bi=lvl2
vy :=90/3
for j:=1:mdo

p:=Ay;
for i:=1:j do
tij == v;p
p:=p —tv;
end for
tivrg =l p |2

Vit1 =DP/tjt1,

end for
According to the results of the algorithm we can introduce the notatps = [vi,..., Vi), Vi1 =
[V, ) Vin, Vinti), T,, € R(MTHxm j5 gn upper Hessenberg matrix with the elemeptsT,,, = 'i‘(l :m,1:

m) € R™*™ is also an upper Hessenberg matrix, andldbe thejth unit vector. Then the relations

V;Vm =1, (v1,...,Vy is an orthonormal basis) (42)
AV, = Vm+1Tm =V, T, + tm+1,mvm+1eq—;7 (43)
VAV, =T, (44)

are satisfied ([1]). We remark that in casetpf; ; = 0 (j < m) we terminate the algorithm. Then the subspace

K(AtA, WY m) is invariant regarding the multiplication with. This means that the matrix exponential can be

computed exactly. We suppose for a while that this is not the case. Later we will investigate the modifications

arisen by the termination. From the equality (44), applying the skew-symmetriciyweé have
T = (V) AV, )T =V]ATV,, = -T,, (45)

which means thaf',, is a skew-symmetric matrix. Combining this fact with the Hessenberg structutevoé

obtain, thafT',,, is a skew-symmetric tridiagonal matrix with zeros in the main-diagonal. Based on our observation,

the Arnoldi-iteration can be simplified leaving out the inner loop.
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Algorithm 2 Arnoldi-algorithm for skew-symmetric matrices
ﬂl = O,V() = O,Vl = \IIO/ || \:[10 H2

for j;=1:mdo
p:=Av;+ (v
Bi+1:=[p 2
Vit1:=P/Bj+1

end for

In the algorithm the notatiofi; = ¢, ;1 (j = 2,...,m+1) is used. This algorithm is much faster than the original
Arnoldi-algorithm. We have to execute only one matrix-vector multiplication (with a sparse matrix, at most four
nonzero elements per row) and one vector-vector addition in every step.

After the construction of the basis of the Krylov-sp#o@\t A, ¥°, m) the best approximationi(!) to exp(AtA ) ¥

can be obtained by the formula
Ul = BV, ,exp(AtT,,)e; = V exp(AtT,,)V, ©°. (46)

Here the notatio =|| ¥° ||, and the facBV,,,e; = ¥° have been employed. The main advantage of this method

is that we need to compute the matrix exponential only for the small ma#iR,, (m << 6N) and we get the

next approximation as a linear combination of thecolumns ofV,,. This method is encapsulated in the first

expression in (46), while the second expression writes the method in a vector iteration form. Let us introduce the

notationQq = V,,exp(AtT,,)V, . Then we have the first step & = Q¥°. After this we construct the space

K(AtA, ¥t m) getting a new iteration matri®;. Thatis¥? = Q; V!, and so ow"*! = Q,¥" (n =0,1,...).
Theorem 11.11: The numerical solution of the Maxwell’'s equations using staggered spatial discretization and

using the Krylov-method with a modified Arnoldi orthogonalization in the time integration is unconditionally stable.

Proof: The matrice®Q; (: = 0, 1, ...) have the property} Q; ||2= 1. We show this fact fofQ,. We have
| Qo 3= 2(Q) Qo) = o(Vimexp(—AtT,,) V1, Vyexp(AtT,,) V1) = o(Vi V0. (47)

We see thaV,, V| V,, = V,,,, which shows that the spectral radius\f, V' is one. In the long run we obtain
that|| U" ||o=| ¥° ||x foralln =1,2,....m

Remark 11.12: Let us denote the smallest integerfor which A0 € (AtA, U0, m) is fulfilled by mg. This
number exists because the set of integer numbers for which the above statement is valid is notem@y (is
its element). In this cas&! gives the exact value efkp(AtA)¥, which means thatxp(AtA) can be computed
exactly with the formulaxp(AtA) = V,,, exp(AtT,,, )V, . Moreover,Qo = Qi = ... = exp(AtA) and we
haveexp(nAtA) U0 = U™ = V,, exp(nAtTy,, )V, ¥°. The exact solution of (17) can be obtained at arbitrary
time-levelnAt. This shows that the Krylov-space method in special casgs<< 6/N) can be a very efficient

one.
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YEE

Un(AtA) | (T4 AtA1y)(T + AtAsy)
Stability || At < 1/(c\/(1/A2)2 + (1/Ay)2 + (1/A2)2), || U(AtA) |27 1

Remark The splittingA = A1y + Aoy is done according to the rows belonging to electric

and magnetic fields, respectively.

NZCz
Un(AtA) || (I— (At/2)Aan)" - T+ (At/2)A1n) - (T— (AL/2)A1n) "1 - (T+ (At/2)AsN))
Stability unconditionally stablel| U(AtA) |2# 1 (in 1D || U(AtA) ||2= 1)

Remark The splittingA = A1y + Asn is done according to the two space derivative terms

of the curl operator, respectively.

KFR

U,.(AtA) | product of exactly computed matrix exponentiate ((AtA;), i € {1,...,p}
Stability unconditionally stable|| U(AtA) ||2=1

Remark In the splittingA = A; + ... + A, the matrices are skew-symmetric, for which

the matrix exponential can be computed easily.

Krylov

U,(AtA) || V,exp(AtT,,)V,!, this can be different in all iteration steps
Stability unconditionally stable|| U(AtA) |2=1

Remark The matricesV,,, andT,,, come from the construction of an orthonormal basis of

the Krylov-space generated by the modified Arnoldi-method.

TABLE |

Overview of the discussed methods.

Remark 11.13: Considering Theorem 4 in [2] we can give an estimation for the error of this method in the form

2eq

| exp(AtA)T° — BV, exp(AtT,,)e; [lo< 12¢~(20)°/m ( ) , m>4q (g = cAt/h). (48)

m

With this relation we are able to chooseor At to guarantee a certain accuracy level of the computations. For 1D

cases we have the error estimation

| exp(ALA)T — BV, exp(AtT ) [|o< 126~9°/™ (%q)m . m > 2q (q = cAL/h). (49)

Finally, we summarize the basic properties of the discussed methods in Table I.

November 13, 2002 DRAFT



14

e E,
1 2 N
=9 I = llz
Ax
E~ E-0

Perfect conductors
Fig. 2. The grid-points in the 1D example.

I1l. COMPARISON OF THE METHODS

In the previous section we listed four time-integration methods for the Maxwell's equations. We showed that
these methods all are based on the approximation of a matrix exponential and we discussed their stability properties.
Naturally the NZCZ-, KFR- and Krylov-methods need more computational time to advance the values with one
time-step than in the Yee-method. At the same time in these methods arbitrarilpNargn be chosen, so in the
long run these methods compute the approximation at a certain time level faster than the Yee-method. Naturally,
because of the largekt these methods can be less accurate comparing with the Yee-method. In this section we
investigate the methods from the point of view of the accuracy and the speed of the numerical algorithms.

We consider a model example to demonstrate and investigate the properties of the methods. Although, we
study only 1D problems, our considerations regarding the benefits and drawbacks of the methods can be extended
directly for higher dimensional problems, too. Another goal is to investigate the properties of the matrix exponential
approximations.

Let us consider the 1D Maxwell equations

0H,  OE,

ot Oz (50)
0E.  0H,

ot ox’ (51)

on the interval0, 1]. In the sequel, we suppose that this interval is bounded by perfect conductor materials (this
yields the boundary conditioA, = 0 atxz = 0 andz = 1), moreover let = = 1. In this case: = 1. Using the
staggered grid technique we discretize the equations on the grid depicted in Figure 2. The semidiscretized system

has the form
du() 1
dt Az
wherel/Az = N € IN is the number of the Yee-cellsyidiag [—1,0,1] € RGN-DxEN-1) js a tridiagonal

tridiag [—1,0, 1]¥(¢), (52)

matrix and¥ (¢) is the approximation of the vector

= (H,(t, Az/2), E.(t,Ax), ..., E.(t,1 — Az), H,(t,1 — Az/2))". (53)
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Fig. 3. The initial function forE .

In the first example let the initial function for the electric field be
E.(0,z) = -2z —1/2|+1, = €]0,1], (54)

which is not differentiable at = 1/2. (The graph of the function is depicted in Figure 3.) The initial function for
the magnetic field is the constant zero function. We determine the numerical solution at time=edef using
the step-sizé\x = 1/500. The errors of the electric field are measured with the maximum nprnij{) and with

thels norm (| . ||;,). The exact solution can be written in the form of Fourier-series as follows

8§ k+1
72 Qk_l 5 sin((2k — 1)7z) cos((2k — 1)rt), (55)
k=1

1)k
= Z 2k cos((2k: — 1)mx) sin((2k — 1)~t). (56)

First we apply the classical Yee—method. The numerical results are listed in Table Il. Theorem 11.3 gives the
maximal time-step\t,,... = 0.002. Although, Theorem I1.3 ensures the stability only for step-sixés< At a0z
we also applied the valuAt = At,,... With these time-step (which is called magic step-size, [11]) we have got
very accurate numerical solution. In spite of this, we have to be very careful, because the methods with the magic
step-size are not stable. (See Section 10.2 in book [8].) According to Table Il we cannot solve our original problem
with the Yee-method faster than 0.36 seconds, even if we are not interested in very accurate humerical solution.
Moreover, let us observe that the decreasing time-step does not decrease the error, but increases the solution time.
This is why the time-steps are suggested to be chosen close to the stability bound both from the accuracy and from
the solution speed point of view.

Now we solve the problem with the NZCZ method. As we know from the previous section this method is
unconditionally stable, specially, in 1D case the 2-norm of the iteration matrix is one (see Remark 11.9). This means
that the time-step can be chosen arbitrarily. The results are in Table lll. We see that the NZCZ method is slower
with a factor about five than the Yee-method. Moreover, the accuracy of the method is a little bit poorer. Because
this method is implicit we have to invert a tridiagonal matrix in every time-step (the so-called Thomas-algorithm

has been used, a special Gauss elimination method). However, the Yee-method breaks datvh-aft@no2,
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Computational results with the Yee-method.

At Nr. of time-steps| error|| . ||, error|| . |loo CPU time (sec.)
0.002051 390 | 8.1889 x 10° | 2.3142 x 10%° 0.35
0.002005 399 | 1.7273 x 108 3.9252 x 108 0.35
0.002 400 | 5.5153 x 1071° | 1.1435 x 10~ 4 0.36
0.001995 401 | 1.0649 x 10~° | 7.6057 x 10~ 0.36
0.00199 402 | 2.1136 x 107> | 1.5416 x 10~* 0.36
0.001985 403 | 3.1337 x 107° | 2.3357 x 10~* 0.36
0.00198 404 | 4.1534 x 1075 | 3.1354 x 104 0.36
0.001333 600 | 4.3790 x 10~* | 2.9581 x 103 0.54
0.001 800 | 5.1596 x 10~* | 3.0257 x 1073 0.70
0.0005 1600 | 5.7134 x 10~% | 3.3323 x 1073 1.42
0.00005 16000| 5.8973 x 10~* | 3.4268 x 103 13.96
0.000005 160000| 5.8991 x 10~% | 3.4276 x 1073 140.13
TABLE II

while the NZCZ method behaves adequately after this bound too. We can choosteve.08 = 40At,qz
solving the problem almost nine times faster than with the Yee-method. The decrease of the computational time is
at the expense of the accuracy.

In the third place we investigate the KFR-method. Let us introduce the notation

K = At/Ax - tridiag [-1,0, 1]. (57)

This matrix has the same structure like in (38) and we use the same procedure as in (39) to split this matrix into the
form K = K; + K. For the matrice¥; andK, the matrix exponential can be computed exactly. How could we
get an adequate approximation &otp(K) using the matricesxp(K;) andexp(Ks)? From the comparison of the

Taylor-series of these exponentials we get the accuracy of approximations as follows. The approximation

exp(K) =~ exp(K;) exp(Kq) (58)
(so-called sequential splitting) has first,
exp(K) =~ exp(K;/2) exp(Ka2) exp(K;/2) (59)
(so-called Strang-splitting) has second and
exp(K) ~ exp(a1K1) exp(51K2) exp(a2Ky) exp(52Kz) exp(azKy) exp(51Kz) exp(a1 K1), (60)
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At Nr. of time-steps| error|| . ||, error| . |l | CPU time (sec.)
0.08 10 | 2.9216 x 1072 | 5.7967 x 102 0.04
0.016 50 | 6.6669 x 1072 | 1.7493 x 1072 0.21
0.008 100 | 3.3758 x 1073 | 1.1446 x 1072 0.43
0.004 200 | 1.7722 x 1073 | 6.9855 x 1073 0.88
0.002 400 | 1.0242 x 1073 | 4.8251 x 1073 1.83
0.001 800 | 7.2343 x 107% | 3.7563 x 1073 3.67
0.0005 1600 | 6.2641 x 10~* | 3.5141 x 1073 7.34
TABLE Il

Computational results with the NZCZ-method.

At Nr. of time-steps| error|| . ||, error| . || | CPU time (sec.)

0.0005 1600 | 3.0649 x 1072 | 5.7587 x 1072 0.72

0.00005 16000 1.9252 x 1073 | 5.0141 x 1073 7.14

0.00001 80000 | 6.9278 x 10~ | 3.4210 x 1073 36.12
TABLE IV

Computational results with the KFR-method applying sequential splitting.

b
2(2 — 21/3)

Q) = ,ag = (1—2Y3ay, 1 =204, B = —23y

has fourth order accuracy (see [13]). The computational results are listed in Tables IV, V and VI. In the tables we
do not show the time-steps that produce larger error ¢thaain maximum norm. For example, in the case of the
first order method, we could not choose the time-step 0.001 and of course any larger time-step either.

We can notice that in spite of the exact computation of the matrix exponentials with mdricasd K, this
method behaves relatively poorer than the Yee- or NZCZ-methods from the point of view of the accuracy. Moreover,
increasing the accuracy of the method the computational costs also increase. This yields that we cannot solve the
problem faster than 0.54 seconds (to keep the accuracy acceptable), which makes this method not too efficient
(compare with the 0.36 seconds in the case of the Yee-method).

The accuracy is determined by the splitting of the maKiand the initial vector of the iteration, too. The
splitting in the Yee-method is more natural (corresponds to the electric and magnetic fields) than in the KFR-
method (where a tricky splitting is used to compute the exponentials exactly). Let us see an example taking the

matrix K = tridiag [—1,0, 1] € IR?*%? and the vector
v = [cos(7/100), 0, cos(37/100), 0, cos(57/100), 0, cos(77/100), . . . , 0, cos(997/100)] " . (61)
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At Nr. of time-steps| error|| . ||, error| . || | CPU time (sec.)

0.001 800 | 4.2613 x 1072 | 6.5893 x 1072 0.54

0.0005 1600 | 1.0583 x 1072 | 1.7226 x 1072 1.07

0.00005 16000 | 6.0946 x 10~* | 3.4252 x 1073 10.96

0.00001 80000 | 5.9035 x 10~ | 3.4275 x 1073 54.29
TABLE V

Computational results with the KFR-method applying Strang-splitting.

At Nr. of time-steps| error|| . ||, error|| . || | CPU time (sec.)

0.002 400 | 4.0329 x 1072 | 6.2563 x 1072 0.62

0.001 800 | 2.7462 x 1073 | 5.8719 x 1073 1.22

0.0005 1600 | 6.2340 x 10=% | 3.3982 x 1073 2.49

0.00005 16000 5.8991 x 10~* | 3.4276 x 103 25.31

0.00001 80000 | 5.8991 x 10~% | 3.4276 x 1073 126.96
TABLE VI

Computational results with the KFR-method applying fourth order splitting.

Then the Yee-method splitting approximates)(K)v with the 2-norm errof.8718 x 10~3. The KFR-method
does the same with the errt0501 x 101, which is 71 times greater than in the Yee-method. For the second order
KFR- method we have the error2773 x 10—, while for the fourth order on€.3142 x 10~2.

Finally, we apply the Krylov-method. We expect this method to be more accurate than the previous methods,
because new iteration matrix is calculated in every time-step. Moreover, we can notice that the speed of the method
depends strongly on the number, because the Krylov-basis withh elements must be generated also in every
time-step. First we choose the time-st&p = 0.08 and compute the error of the method dependingronThe
results are in Table VII.

We can observe that the error of the method is acceptableisfabout 80 or greater. Generally, we can apply
Remark 11.13 to estimate: to get a sufficiently accurate solution. In this way we obtain the (naturally) greater
m = 110 (¢ = 40) value. Moreover, as we can see, the computational time does not depend linearly on the value of
m. The reason is that the number of operations in one time-step has thdforfr4- d, Nm, where the first term
comes from the computation of the exponential of mafrjx and the second one comes from other computations
(d1,ds € RR). For relatively large values ofi the first term is comparable with the second one. We compute the

errors for several time-steps (see Table VIII). The valwesome from the expressions in Remark 11.13.

For the time-step\t = 0.8 we would haven = 960. In this case the relatiom << 2N — 1 = 999 (where
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m error|| . ||z, error|| . ||loo CPU time (sec.)
30 5.2785 x 101 | 1.8928 x 10° 0.41
60 4.3976 x 1071 | 9.6640 x 107! 1.19
70 2.0309 x 107! | 4.4442 x 107! 1.56
80 3.8035 x 103 | 1.7060 x 10~2 2.00
90 5.8973 x 10~* | 3.4262 x 1073 2.60
120 || 5.8991 x 10~* | 3.4276 x 1073 4.78
150 || 5.8991 x 10~* | 3.4276 x 10~3 8.27
TABLE VI

Computational results with differemt values for the Krylov-method witht = 0.08.

At Nr. of time-steps| m computed| error|| . ||z, error|| . |l | CPU time (sec.)

0.08 10 110 5.8991 x 10~* | 3.4276 x 1073 4.05

0.008 100 20 5.8991 x 10~* | 3.4276 x 1073 2.43

0.0008 1000 7 5.8991 x 10~* | 3.4276 x 1073 9.85

0.00008 10000 5 5.8991 x 10~ | 3.4276 x 1073 77.19
TABLE VIII

Computational results with the Krylov-method.

2N — 1 means the number of unknowns) does not yield, and the Krylov-method is very expensive. The fastest
method in the table is the method witt¥ = 0.008. This method has the same computational speed as the NZCZ-
method withA¢ = 0.002 or the fourth order KFR-method with¢ = 0.0005, but the method is more accurate.

Remark IlI.1: The errors in Table VIII are the same for every time-step. This is why for the givealues we

get a very accurate approximation for the vector
exp((0.8/500)tridiag [—1,0,1])¥", (62)

but we compare this vector with the exact solution of the Maxwell equations. That is the errors in the table come
from the spatial discretization and not from the time one. The error could be decreased by increasing the number
of the grid points. (See the last two rows in Table VI.)

We consider another exact solution of the 1D Maxwell equations in the form

E.(t,x) = sin(nz)sin(nt), (63)

Hy(t,x) = —cos(mz)cos(rt). (64)
The numerical results are in Table IX. We denoted the fourth order KFR-method by KFR4 and the rsigans
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Computational results with the exact solutions in (64).

At Yee NzCz KFR4 Krylov, m = 8
2.3650 x 106
0.8 - - - 3.3446 x 10~¢
0.01
7.4635 x 1073 2.3751 x 107¢
0.08 - 1.0555 x 10~2 - 3.3446 x 1076
0.04 0.11
7.8034 x 107° 2.3702 x 106
0.008 - 1.1036 x 10~* - 3.6623 x 106
0.43 1.14
2.1285 x 10~° 2.3650 x 1076
0.004 - 3.0100 x 10~° - 3.3446 x 106
0.88 2.27
2.0510 x 10~ | 7.0949 x 1075 | 5.4022 x 102 | 2.3650 x 10~°
0.002 2.9006 x 10715 | 1.0034 x 107> | 7.6333 x 1072 | 3.3446 x 10~°
0.36 1.83 0.62 4.53
2.2865 x 1076 | 3.5475 x 1076 | 3.7922 x 1073 | 2.3650 x 10~©
0.001 3.2336 x 107¢ | 5.0169 x 1076 | 5.3431 x 1072 | 3.3446 x 10~°
0.70 3.67 1.22 9.01
2.3454 x 1076 | 2.6606 x 1076 | 2.4440 x 10~* | 2.3650 x 10~°
0.0005 3.3169 x 1076 | 3.7627 x 1076 | 3.4578 x 10~* | 3.3446 x 10~°
1.42 7.34 2.49 18.30
2.3648 x 1076 | 2.3680 x 1076 | 2.3893 x 10¢ | 2.3650 x 10~°
0.00005 || 3.3443 x 1076 | 3.3488 x 1076 | 3.3788 x 1076 | 3.3446 x 10~¢
14.14 72.15 25.31 181.12
2.3648 x 107% | 2.3652 x 1076 | 2.3415 x 1076 | 2.3650 x 1076
0.000005 || 3.3446 x 107% | 3.3450 x 1076 | 3.3111 x 107° | 3.3446 x 106
148.48 735.51 247.87 1794.86
TABLE IX
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that the error of the method is very large (.1). In the heads the error ik-norm, in maximum norm and the
CPU-time is listed, respectively. As in the previous example, when the Yee-method is stable then it is more accurate
comparing with the other methods. Furthermore, this method is also the fastest one, because this is a cheap explicit
method. In the case of the KFR4-method the time-step cannot increased above the maximal time-step of the Yee-
method (At = 0.002) because the accuracy of it is unacceptably small. We have experienced that theichoite

is suitable in the Krylov-method. This method solves the equations in a quickest way, nafieseconds is

enough. This shows that the Krylov-method in special cases can be very efficient.

IV. CONCLUSIONS

We described and investigated three methods, the NZCZ, KFR and Krylov-method. The methods passes the nice
properties of the Yee-method: easy understandability, solution of a wide frequency range with one simulation (time
domain methods), animation displays, specification of the material properties at all points within the computational
domain and the computation of the electric and magnetic fields directly. The most important reason why these
methods have been constructed is to speed up the numerical computations. Naturally, the increase in the time-step
necessitates decrease in the accuracy, that is we have to find the balance between the accuracy and the computational
speed.

We observed that the NZCZ-method is slower with a factor about five than the Yee-method, but the method is
unconditionally stable and in the long run it computes the solution faster. The accuracy of the method is acceptable.
In the KFR-method we experienced that the method is relatively inaccurate, and to make it much more accurate
costs a lot computational time. The Krylov-space method is generally slow, but in special cases behaves much
better than the NZCZ-method, and the accuracy of the method is considerable.

We see that the behavior of the methods are determined by the properties of the matrix splitting. The investigation

of other matrix splitting methods could show the way to a more efficient Maxwell-solver.
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