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Abstract

The Yee-method is a simple and elegant way of solving the time-dependent Maxwell’s equations. On the other

hand this method has some inherent drawbacks too. The main one is that its stability requires a very strict upper

bound for the possible time-steps. This is why, during the last decade, the main goal was to construct such methods

that are unconditionally stable. This means that the time-step can be chosen based only on accuracy instead of

stability considerations. In this paper we give a uniform treatment of methods that use the same spatial staggered grid

approximation as the classical Yee-method. Three other numerical methods are discussed: the Namiki-Zheng-Chen-

Zhang (NZCZ) ADI method, the Kole-Figge-de Raedt-method (KFR) and a Krylov-space method. All methods are

discussed with non-homogeneous material parameters. We show how the existing finite difference numerical methods

are based on the approximation of a matrix exponential. With this formulation we prove the unconditional stability

of the NZCZ-method without any computer algebraic tool. Moreover, we accelerate the Krylov-space method in the

approximation of the matrix exponential with a skew-symmetric formulation of the semi-discretized equations. Our

main goal is to compare the methods from the point of view of the computational speed. This question is investigated

in 1D numerical tests.

Index Terms

FDTD Method, Stability, Unconditional Stability

I. I NTRODUCTION

The 3D Maxwell equations, which describe the behavior of time-dependent electromagnetic fields, in the absence

of free charges and currents, can be written in the form

−∇×H + ε∂tE = 0, (1)

∇×E + µ∂tH = 0, (2)

∇(εE) = 0, (3)

∇(µH) = 0, (4)

where

E = (Ex(t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z)) (5)

is the electric field strength,

H = (Hx(t, x, y, z),Hy(t, x, y, z),Hz(t, x, y, z)) (6)

is the magnetic field strength,ε is the electric permittivity andµ is the magnetic permeability. It is well-known

that the divergence equations (3) and (4) follow from the curl equations if we suppose that the fields in question

were divergence-free at the initial point of time. This means that we must solve only the curl equations applying

divergence-free initial conditions forE andH.

The first and still extensively applied method to solve the equations (1) and (2) numerically was constructed

by Yee in 1966 ([12]). This method starts with the definition of a generally rectangular mesh (with the choice of
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Fig. 1. Standard Yee cell.

the step-sizes∆x,∆y and∆z) for the electric field and another staggered (by∆x/2, ∆y/2 and∆z/2) grid for

the magnetic field in the computational domain. The building blocks of this mesh are the so-called Yee-cells (see

Figure 1). Defining the approximations of the field strengths at the points shown in Figure 1, we calculate the first

spatial derivatives in the curl operator using central differences. These approximations of the spatial derivatives

produce second order accuracy, this is why this discretization is so common. The methods investigated in this paper

all use this type of approximation. The only difference between the methods will be only in the time discretization.

In the following we formulate the semi-discretized system.

Let us suppose that the computational space has been divided intoN Yee cells and let us introduce the notation

I = {(i/2, j/2, k/2) | i, j, k ∈ ZZ, not all odd and not all even, (7)

(i∆x/2, j∆y/2, k∆z/2)> is in the computational domain}.

We define the functionsΨi/2,j/2,k/2 : IR → IR ((i/2, j/2, k/2) ∈ I) as

Ψi/2,j/2,k/2(t) =





√
εi/2,j/2,k/2Ex(t, i∆x/2, j∆y/2, k∆z/2), if i is odd and j, k are even,

√
εi/2,j/2,k/2Ey(t, i∆x/2, j∆y/2, k∆z/2), if j is odd and i, k are even,

√
εi/2,j/2,k/2Ez(t, i∆x/2, j∆y/2, k∆z/2), if k is odd and i, j are even,

√
µi/2,j/2,k/2Hx(t, i∆x/2, j∆y/2, k∆z/2), if j, k are odd and i is even,

√
µi/2,j/2,k/2Hy(t, i∆x/2, j∆y/2, k∆z/2), if i, k are odd and j is even,

√
µi/2,j/2,k/2Hz(t, i∆x/2, j∆y/2, k∆z/2), if i, j are odd and k is even,

(8)

where εi/2,j/2,k/2 and µi/2,j/2,k/2 denote the electric permittivity and magnetic permeability at the points

(i∆x/2, j∆y/2, k∆z/2)>, respectively. This setting corresponds to the staggered grid spatial discretization. Start-

ing from the rearranged form of the Maxwell’s equations

∂t(
√

εE) =
1√
ε
∇× (

√
µH)√
µ

, (9)

∂t(
√

µH) = − 1√
µ
∇× (

√
εE)√
ε

, (10)

we can obtain the semi-discretized system

dΨi/2,j/2,k/2(t)
dt

=
1

εi/2,j/2,k/2

[
Ψi/2,(j+1)/2,k/2(t)

∆y
√

µi/2,(j+1)/2,k/2
− Ψi/2,(j−1)/2,k/2(t)

∆y
√

µi/2,(j−1)/2,k/2
− (11)
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Ψi/2,j/2,(k+1)/2(t)
∆z
√

µi/2,j/2,(k+1)/2
+

Ψi/2,j/2,(k−1)/2(t)
∆z
√

µi/2,j/2,(k−1)/2

]
, if i is odd and j, k are even,

dΨi/2,j/2,k/2(t)
dt

=
1

εi/2,j/2,k/2

[
Ψi/2,j/2,(k+1)/2(t)

∆z
√

µi/2,j/2,(k+1)/2
− Ψi/2,j/2,(k−1)/2(t)

∆z
√

µi/2,j/2,(k−1)/2
− (12)

Ψ(i+1)/2,j/2,k/2(t)
∆x

√
µ(i+1)/2,j/2,k/2

+
Ψ(i−1)/2,j/2,k/2(t)

∆x
√

µ(i−1)/2,j/2,k/2

]
, if j is odd and i, k are even,

dΨi/2,j/2,k/2(t)
dt

=
1

εi/2,j/2,k/2

[
Ψ(i+1)/2,j/2,k/2(t)

∆x
√

µ(i+1)/2,j/2,k/2
− Ψ(i−1)/2,j/2,k/2(t)

∆x
√

µ(i−1)/2,j/2,k/2
− (13)

Ψi/2,(j+1)/2,k/2(t)
∆y
√

µi/2,(j+1)/2,k/2
+

Ψi/2,(j−1)/2,k/2(t)
∆y
√

µi/2,(j−1)/2,k/2

]
, if k is odd and i, j are even,

dΨi/2,j/2,k/2(t)
dt

=
1

µi/2,j/2,k/2

[
Ψi/2,j/2,(k+1)/2(t)

∆z
√

εi/2,j/2,(k+1)/2
− Ψi/2,j/2,(k−1)/2(t)

∆z
√

εi/2,j/2,(k−1)/2
− (14)

Ψi/2,(j+1)/2,k/2(t)
∆y
√

εi/2,(j+1)/2,k/2
+

Ψi/2,(j−1)/2,k/2(t)
∆y
√

µi/2,(j−1)/2,k/2

]
, if j, k are odd and i is even,

dΨi/2,j/2,k/2(t)
dt

=
1

µi/2,j/2,k/2

[
Ψ(i+1)/2,j/2,k/2(t)

∆x
√

ε(i+1)/2,j/2,k/2
− Ψ(i−1)/2,j/2,k/2(t)

∆x
√

ε(i−1)/2,j/2,k/2
− (15)

Ψi/2,j/2,(k+1)/2(t)
∆z
√

εi/2,j/2,(k+1)/2
+

Ψi/2,j/2,(k−1)/2(t)
∆z
√

µi/2,j/2,(k−1)/2

]
, if i, k are odd and j is even,

dΨi/2,j/2,k/2(t)
dt

=
1

µi/2,j/2,k/2

[
Ψi/2,(j+1)/2,k/2(t)

∆y
√

εi/2,(j+1)/2,k/2
− Ψi/2,(j−1)/2,k/2(t)

∆y
√

εi/2,(j−1)/2,k/2
− (16)

Ψ(i+1)/2,j/2,k/2(t)
∆x

√
ε(i+1)/2,j/2,k/2

+
Ψ(i−1)/2,j/2,k/2(t)

∆x
√

µ(i−1)/2,j/2,k/2

]
, if i, j are odd and k is even,

which can be written in a shorter form as

dΨ(t)
dt

= AΨ(t), t > 0. (17)

The vector-scalar functionΨ : IR → IR6N , Ψ(t) = (. . . , Ψi/2,j/2,k/2(t), . . .)> can be obtained from an arbitrary

ordering of the functionsΨi/2,j/2,k/2 into a vector andA ∈ IR6N×6N . From equations (11)-(16) follow some

important properties ofA directly.

Lemma I.1:Every row ofA consists at most four nonzero elements in the forms1/(√ε.,.,.µ.,.,.∆.), that isA is

a sparse matrix.A is a skew-symmetric matrix (A> = −A).

System (17) must be solved applying a divergence-free initial condition forΨ(0). The solution can be written in

the form

Ψ(t) = exp(tA)Ψ(0), (18)

whereexp(tA) denotes the exponential matrix and it is well-defined with the Taylor-series of the exponential

function. This matrix exponential cannot be computed directly becauseA is a very large matrix. According to this

representation, usually, the numerical methods for the Maxwell’s equations are based on some approximation of
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the matrix exponentialexp(tA). With the choice of a time-step∆t > 0

Ψ(t + ∆t) = exp(∆tA)Ψ(t) (19)

follows from (18). Using this equality the one-step iteration

Ψn+1 = Un(∆tA)Ψn, Ψ0 is given (20)

can be defined, whereUn(∆tA) is the approximation of the exponentialexp(∆tA) (this approximation may

depend onn) andΨn is the approximation of the functionΨ at time-leveln∆t.

In the next section we give theUn(∆tA) approximations of the matrix exponentialexp(∆tA) for the classi-

cal Yee-method, for the Namiki-Zheng-Chen-Zhang-method (NZCZ, [6], [15]) and for the Kole-Figge-de Raedt-

method (KFR, [5]), which show that the existing methods are based on the approximation of the matrix exponential

exp(∆tA) (for these methodsUn(∆tA) is independent ofn). Moreover, we describe a method that does not

compute the approximation of the matrix exponential itself, but the approximation of the product of the matrix

exponential and the iteration vector (that is hereUn(∆tA) depends onn). This Krylov-space approximation has

very nice properties because of the skew-symmetricity of the matrixA. The stability of the NZCZ-method was

proven with the help of significant use of computer algebra, namely, MAPLE V was applied in showing that the

magnitudes of the eigenvalues of the iteration matrix are equal unity. Using our formulation this proof can be

done on pure mathematical basis. Furthermore, our proof does not suppose that the material parameters (ε, µ) are

constants (compare with [15]). Our main goal is to compare the methods from the point of view of the numerical

computational time. This will be investigated in the last section in 1D numerical tests.

II. U NIFORM TREATMENT OF METHODS USING THEYEE SPACE DISCRETIZATION

As we wrote in the previous section the time integration of the Maxwell’s equations, using a staggered grid spatial

approximation, means the approximation of the matrix exponentialexp(∆tA). The better is this approximation the

better is the numerical scheme. The matrixA is very large (usualy6N ≥ 106) and although it is sparse the matrix

exp(∆tA) is a full matrix, which is due its definition. These facts necessitate the approximation of the matrix

exponential. These approximations are given for the classical Yee-method, for the NZCZ-method and for the KFR-

method in this section. The approximations are based on some splitting of the matrixA in the formA = A1 +A2.

Then the exponentialexp(A) can be approximated by the exponentialsexp(A1) andexp(A2). Naturally, if A1

andA2 commute, then the relationexp(A) = exp(A1) exp(A2) is true, but in our settings this is not the case.

A. Classical Yee-method

The classical Yee-method uses a so-called leap-frog time integration scheme, for which the electric field att = 0

and the magnetic field att = ∆t/2 must be given. This is why this method starts with the computation (from

the initial data) of the approximation of the magnetic field at time level∆t/2 using some numerical method in the

form Ψ̂0 = BΨ0, where the matrixB ∈ IR6N×6N corresponds to some appropriate one-step numerical scheme.

November 13, 2002 DRAFT
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Then we update the values of the electric field att = ∆t from the electric field given at time levelt = 0 and the

magnetic field att = ∆t/2 approximating the time derivatives by forward differences. In the next step we update

the magnetic field at time levelt = 3∆t/2 similar manner.

This method can be written in matrix iteration form. To do this, we define two matrices,A1Y andA2Y , as

follows. The matrixA1Y is composed from the matrixA changing the rows belonging to the electric field variables

(indexed by(i/2, j/2, k/2) ∈ I, two of i, j andk are even, one is odd) to zero rows.A2Y can be derived, in similar

manner, zeroing the rows belonging to the magnetic field variables (indexed by(i/2, j/2, k/2) ∈ I, two of i, j and

k are odd, one is even). From equations (11)-(16) follow some important properties of the matricesA1Y andA2Y .

Lemma II.1: MatricesA1Y andA2Y do not commute and the equalityA = A1Y +A2Y is fulfilled. Moreover,

the relationA>
1Y = −A2Y is valid.

Remark II.2: According to the lemma above,A = A1Y + A2Y is a splitting ofA. Furthermore, the splitting is

based on the physical background, namely, according to the electric and magnetic components.

Using the matricesA1Y ,A2Y the Yee-method has the form

Ψn = [(I + ∆tA1Y )(I + ∆tA2Y )]n BΨ0 = [(I + ∆tA1Y )(I + ∆tA2Y )]n Ψ̂0, n = 1, 2, . . . . (21)

(as a simple example the matrixB can be chosen in the formB = I + (∆t/2)A1Y ) and in this manner it applies

the explicit exponential approximation

exp(∆tA) = exp(∆t(A1Y + A2Y )) ≈ exp(∆tA1Y )exp(∆tA2Y ) ≈ (I + ∆tA1Y )(I + ∆tA2Y ). (22)

This approximation of the exponential is identical with the Taylor-series ofexp(∆tA) up to the first order term,

which can be seen from the formI + ∆tA−∆t2A1Y A>
1Y of the iteration matrix. It can be proven applying Von

Neumann analysis, that the Yee-method can be kept to be stable choosing the time-step sufficiently small.

Theorem II.3: (e.g. [11]) The numerical solution of the Maxwell’s equations using staggered spatial discretiza-

tion and leap-frog time integration (Yee-method) is stable if and only if the condition

∆t <
1

c
√

(1/∆x)2 + (1/∆y)2 + (1/∆z)2
(23)

is fulfilled, wherec is the maximal speed of light in the computational domain.

This means that if we solve a problem with106 cells, where∆x = ∆y = ∆z = 10−6(m) with the Yee-algorithm

(9 operations are needed to update each variable) the upper bound for the time-step would be∆t = 2× 10−15(s).

This means that we have to execute2.7×1019 operations to evaluate the field quantities after 1 microsecond. Using

a fast computer with1012 operations per second this procedure would take6×107 seconds, that is7.44 hours. This

huge computational time is unacceptable in real-life problems.

B. Namiki-Zheng-Chen-Zhang-method

A lot of effort has been invested during the last decade to bridge the stability problem of the Yee-method. The

main goal was to construct methods, where∆t can be chosen based on accuracy considerations instead of stability

DRAFT November 13, 2002



7

reason. The first paper which showed an unconditionally stable method, with a detailed proof of the stability, was

appeared in 2000 and was written by the authors Zheng, Chen and Zhang (see paper [15]). This method is also

mentioned by Namiki for more general problems in paper [6], but the stability was showed only on test-problems.

This is why we call this method Namiki-Zheng-Chen-Zhang-method (NZCZ) in this paper. We divide the time-

steps into two equal parts. In the first half time-step we handle the first terms of the curl operator approximation

implicitly (applying the implicit Euler method), the second ones explicitly (applying the explicit Euler method), in

the next half time-step this is done in reverse order. Applying this method suitably we must solve two systems of

linear equations with symmetric tridiagonal matrices in one iteration step. Now we show that the NZCZ-method can

be also derived from the approximation of the matrix exponentialexp(∆tA). Let us define the matricesA1N ,A2N

such a way thatA1N comes from the discretization of the first items in the curl operator, andA2N comes from the

second ones.

Lemma II.4: The matricesA1N andA2N are skew-symmetric and do not commute, moreover,A = A1N +

A2N .

With the matricesA1N , A2N we can define an exponential approximation as follows

exp(∆tA) = exp(∆t(A1N + A2N )) ≈ (24)

≈ exp((∆t/2)A2N ) · exp((∆t/2)A1N ) · exp((∆t/2)A1N ) · exp((∆t/2)A2N ) = (25)

= (exp(−(∆t/2)A2N ))−1 · exp((∆t/2)A1N ) · (exp(−(∆t/2)A1N ))−1 · exp((∆t/2)A2N ) ≈ (26)

≈ (I− (∆t/2)A2N )−1 · (I + (∆t/2)A1N ) · (I− (∆t/2)A1N )−1 · (I + (∆t/2)A2N ). (27)

At the first approximation we used the fact that the Taylor-series ofexp(∆t(A1N +A2N )) andexp((∆t/2)A2N ) ·
exp((∆t/2)A1N ) · exp((∆t/2)A1N ) · exp((∆t/2)A2N ) are identical up to the term with∆t2. At the second

approximation the first two terms were used from the Taylor-series of the exponential function. Thus we can define

the one-step iteration

Ψn+1 = (I− (∆t/2)A2N )−1 · (I + (∆t/2)A1N ) · (I− (∆t/2)A1N )−1 · (I + (∆t/2)A2N )Ψn, (28)

(Ψ0 is given) which can also be obtained from the usual form of the NZCZ-method

Ψn+1/2 −Ψn

∆t/2
= A1NΨn+1/2 + A2NΨn, (29)

Ψn+1 −Ψn+1/2

∆t/2
= A1NΨn+1/2 + A2NΨn+1. (30)

Remark II.5: The above system shows that the NZCZ-method is similar to the Alternating Direction Implicit

(ADI) methods (see [3] and [4]), but here the alteration is applied in the two terms of the curl operator.

In the eighties, when ADI methods were constructed for the Maxwell’s equations, a lot of effort has been devoted

to the verification of their stability. This effort remained without results. As we have mentioned earlier, the first

unconditionally stable method was constructed in 2000 and the stability was proven by computer algebraic tools.
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Employing the iteration form (28) we are able to give the pure mathematical proof of the stability of the NZCZ-

method (with non-homogeneous material parameters). The next lemma will play a key-role in the sequel.

Lemma II.6: Assume thatC is a skew-symmetric real matrix ands is an arbitrary real number. Then

‖ (I + sC) · (I − sC)−1 ‖2= 1. (31)

Proof: Introducing the notationD := (I + sC) · (I − sC)−1 we have

D−1 = (I − sC) · (I + sC)−1 = (I + sC>) · (I − sC>)−1 =

= (I + sC)> · (I − sC)−> = D>. (32)

HenceD is orthogonal and consequently,‖ D ‖2= 1.

Theorem II.7:Let h = min{∆x, ∆y, ∆z} and letq = c∆t/h be an arbitrary fixed number. The numerical

solution of the Maxwell’s equations is unconditionally stable in 2-norm using staggered spatial discretization and

using the Namiki-Zheng-Chen-Zhang time integration method.

Proof: The unconditional stability means that for all step-sizes satisfying the conditionq = c∆t/h the relation

‖ Ψn ‖2≤ K ‖ Ψ0 ‖2 (33)

is true for alln ∈ IN with a constantK independent onn. From (28) follows the relation

‖ Ψn ‖22= (34)

=‖ [(I− (∆t/2)A2N )−1 · (I + (∆t/2)A1N ) · (I− (∆t/2)A1N )−1 · (I + (∆t/2)A2N ))]nΨ0 ‖22≤

≤‖ (I− (∆t/2)A2N )−1 ‖22 · ‖ (I + (∆t/2)A2N )) ‖22 · ‖ Ψ0 ‖22 .

Here we employed Lemma II.4 and Lemma II.6 for the matricesA1N andA2N . Moreover, because of the skew-

symmetry ofA2N , its eigenvalues can be written in the form±iλk (k = 1, . . . , 3N , λk ≥ 0, i =
√−1). Applying

this we have the estimations

‖ (I− (∆t/2)A2N )−1 ‖22= %((I + (∆t/2)A2N )−1(I− (∆t/2)A2N )−1) =

= %((I− (∆t/2)2A2
2N )−1) =

1
mink{|1− (∆t/2)2(±iλk)2|} =

1
1 + (∆t/2)2λ2

min

≤ 1, (35)

‖ I + (∆t/2)A2N ‖22= %((I− (∆t/2)A2N )(I + (∆t/2)A2N )) =

= %(I− (∆t/2)2A2
2N ) = 1 + (∆t/2)2λ2

max ≤ 1 +
(

c∆t

h

)2

= 1 + q2. (36)

In the previous expressions%(.) denotes the spectral radius,λmax = max{λ1, . . . , λ3N} and

λmin = min{λ1, . . . , λ3N}. Furthermore, the Gerschgoren-theorem and the form1/(√ε.,.,.µ.,.,.∆.) of the ele-

ments ofA2N are applied to get an upper bound forλmax. In the long run we get that‖ Ψn ‖22≤ (1+ q2) ‖ Ψ0 ‖22,

that is the choiceK =
√

1 + q2 is satisfactory.
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Remark II.8: We remark that the constantq must be chosen according to the inequalityq < 1/
√

3 (hereh =

∆x = ∆y = ∆z) in 3D problems in the case of the classical Yee-method to guarantee the stability of the method.

According to the previous theorem in the NZCZ-method the parameterq can be set arbitrarily, which shows the

unconditional stability of the method.

Remark II.9: We also remark that in 1D problems the splittingA = A + 0 can be applied. That isA1N = A

andA2N = 0. This means thatUn(∆tA) = (I + (∆t/2)A)(I − (∆t/2)A)−1, and because of Lemma II.6

‖ Un(∆tA) ‖2= 1.

C. Kole-Figge-de Raedt-method

According to the previous two subsections we can generalize the time integration methods as follows. In order

to compute the matrix exponentialexp(∆tA) efficiently we split the matrixA into the formA = A1 + . . . + Ap

(p ∈ IN), where the matricesA1, . . . ,Ap are skew-symmetric matrices. Then we write the matrix exponential

exp(∆tA) as a product of matrices in the formexp(ξil
∆tAi), whereξil

is some suitably chosen real constant,

i ∈ {1, . . . , p}. If the matricesA1, . . . ,Ap do not commute then this product is only an approximation of the

original exponential. Then we usually approximate the matricesexp(ξil
∆tAi) again (e.g. by their truncated

Taylor-series).

The third method investigated in this paper was firstly described by Kole, Figge and De Raedt (KFR-method,

[5]). In this work special splittings are found such a way that the exponentialsexp(ξil
∆tAi) could be computed

exactly using the fact

exp





 0 α

−α 0





 =


 cos α sin α

− sin α cosα


 , (37)

whereα is an arbitrary constant. We demonstrate this method on a simple example. Let us consider the skew-

symmetric, block-diagonal matrix

K =




0 q 0 0 0 0 0

−q 0 q 0 0 0 0

0 −q 0 q 0 0 0

0 0 −q 0 q 0 0

0 0 0 −q 0 q 0

0 0 0 0 −q 0 q

0 0 0 0 0 −q 0




, (38)

which can appear in the numerical solution of the 1D Maxwell’s equations (q ∈ IR). With the splitting of this
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matrix in the form

K = K1 + K2 =




0 q 0 0 0 0 0

−q 0 0 0 0 0 0

0 0 0 q 0 0 0

0 0 −q 0 0 0 0

0 0 0 0 0 q 0

0 0 0 0 −q 0 0

0 0 0 0 0 0 0




+




0 0 0 0 0 0 0

0 0 q 0 0 0 0

0 −q 0 0 0 0 0

0 0 0 0 q 0 0

0 0 0 −q 0 0 0

0 0 0 0 0 0 q

0 0 0 0 0 −q 0




(39)

the exponentialexp(K) can be approximated by means of (37) as follows

exp(K) = exp(K1 + K2) ≈ exp(K1) · exp(K2) =

=




cq sq 0 0 0 0 0

−sq cq 0 0 0 0 0

0 0 cq sq 0 0 0

0 0 −sq cq 0 0 0

0 0 0 0 cq sq 0

0 0 0 0 −sq cq 0

0 0 0 0 0 0 1




·




1 0 0 0 0 0 0

0 cq sq 0 0 0 0

0 −sq cq 0 0 0 0

0 0 0 cq sq 0 0

0 0 0 −sq cq 0 0

0 0 0 0 0 cq sq

0 0 0 0 0 −sq cq




, (40)

wheresq and cq denotecos(q) and sin(q), respectively. BecauseK1 andK2 are block-diagonal matrices, the

product of them can be written using the products of their blocks.

Since matricesA1, . . . ,Ap are skew-symmetrical and only the products of the exponents of these matrices are

used in the approximation, the iteration matrix will be orthogonal. That is its 2-norm is exactly one. Thus this

method is also unconditionally stable.

Theorem II.10:The numerical solution of the Maxwell’s equations using staggered spatial discretization and

using products of exactly calculated matrix exponentials of skew-symmetric matrices in the time integration (Kole,

Figge, De Raedt-method) is unconditionally stable.

D. Application of the Krylov-space method using a modified Arnoldi orthogonalisation method

In the previous methods we approximated the matrix exponentialexp(∆tA) and used this approximation to

generate a matrix iteration. Changing the philosophy of the matrix exponential approximation we can proceed as

follows. We do not approximate the matrix exponential itself but the product of the matrix exponential with the

previous state vector. The building blocks of this method are not new (see for example [2], [7], [9], [10], [14]), but

the way is new as we combine the numerical solution of the Maxwell’s equations and the Krylov-space methods

for skew-symmetric matrices to achieve a sufficiently accurate and stable numerical method.
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If the initial vectorΨ0 and a natural numberm are given, then we can construct the Krylov-subspace as follows

K(∆tA, Ψ0,m) = span{Ψ0,∆tAΨ0, . . . , (∆tA)m−1Ψ0}. (41)

(span{} denotes the set of all possible linear combinations of the vectors.) We are going to choose the best approx-

imation toexp(∆tA)Ψ0 from this subspace. To do this, first we construct an orthonormal basisv1,v2, . . . for the

spaceK(∆tA, Ψ0, m) with the well-known Arnoldi-algorithm 1 (naturally we can leave the constant∆t).

Algorithm 1 Arnoldi-algorithm

β :=‖ v ‖2
v1 := Ψ0/β

for j:=1:m do

p := Avj

for i:=1:j do

tij := v>i p

p := p− tijvi

end for

tj+1,j :=‖ p ‖2
vj+1 := p/tj+1,j

end for

According to the results of the algorithm we can introduce the notationsVm = [v1, . . . ,vm], Vm+1 =

[v1, . . . ,vm,vm+1], T̃m ∈ IR(m+1)×m is an upper Hessenberg matrix with the elementstij , Tm = T̃(1 : m, 1 :

m) ∈ IRm×m is also an upper Hessenberg matrix, and letej be thejth unit vector. Then the relations

V>
mVm = I, (v1, . . . ,vm is an orthonormal basis) (42)

AVm = Vm+1T̃m = VmTm + tm+1,mvm+1e>m, (43)

V>
mAVm = Tm (44)

are satisfied ([1]). We remark that in case oftj+1,j = 0 (j ≤ m) we terminate the algorithm. Then the subspace

K(∆tA, Ψ0, m) is invariant regarding the multiplication withA. This means that the matrix exponential can be

computed exactly. We suppose for a while that this is not the case. Later we will investigate the modifications

arisen by the termination. From the equality (44), applying the skew-symmetricity ofA we have

T>m = (V>
mAVm)> = V>

mA>Vm = −Tm, (45)

which means thatTm is a skew-symmetric matrix. Combining this fact with the Hessenberg structure ofA we

obtain, thatTm is a skew-symmetric tridiagonal matrix with zeros in the main-diagonal. Based on our observation,

the Arnoldi-iteration can be simplified leaving out the inner loop.
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Algorithm 2 Arnoldi-algorithm for skew-symmetric matrices

β1 := 0,v0 = 0,v1 = Ψ0/ ‖ Ψ0 ‖2
for j:=1:m do

p := Avj + βjvj−1

βj+1 :=‖ p ‖2
vj+1 := p/βj+1

end for

In the algorithm the notationβj = tj,j−1 (j = 2, . . . , m+1) is used. This algorithm is much faster than the original

Arnoldi-algorithm. We have to execute only one matrix-vector multiplication (with a sparse matrix, at most four

nonzero elements per row) and one vector-vector addition in every step.

After the construction of the basis of the Krylov-spaceK(∆tA, Ψ0,m) the best approximation (Ψ1) to exp(∆tA)Ψ0

can be obtained by the formula

Ψ1 = βVmexp(∆tTm)e1 = Vmexp(∆tTm)V>
mΨ0. (46)

Here the notationβ =‖ Ψ0 ‖2 and the factβVme1 = Ψ0 have been employed. The main advantage of this method

is that we need to compute the matrix exponential only for the small matrix∆tTm (m << 6N ) and we get the

next approximation as a linear combination of them columns ofVm. This method is encapsulated in the first

expression in (46), while the second expression writes the method in a vector iteration form. Let us introduce the

notationQ0 = Vmexp(∆tTm)V>
m. Then we have the first step asΨ1 = Q0Ψ0. After this we construct the space

K(∆tA, Ψ1, m) getting a new iteration matrixQ1. That isΨ2 = Q1Ψ1, and so onΨn+1 = QnΨn (n = 0, 1, . . .).

Theorem II.11:The numerical solution of the Maxwell’s equations using staggered spatial discretization and

using the Krylov-method with a modified Arnoldi orthogonalization in the time integration is unconditionally stable.

Proof: The matricesQi (i = 0, 1, . . .) have the property‖ Qi ‖2= 1. We show this fact forQ0. We have

‖ Q0 ‖22= %(Q>
0 Q0) = %(Vmexp(−∆tTm)V>

mVmexp(∆tTm)V>
m) = %(VmV>

m). (47)

We see thatVmV>
mVm = Vm, which shows that the spectral radius ofVmV>

m is one. In the long run we obtain

that‖ Ψn ‖2=‖ Ψ0 ‖2 for all n = 1, 2, . . ..

Remark II.12:Let us denote the smallest integerm for whichAmΨ0 ∈ K(∆tA,Ψ0,m) is fulfilled by m0. This

number exists because the set of integer numbers for which the above statement is valid is not empty (m = 6N is

its element). In this caseΨ1 gives the exact value ofexp(∆tA)Ψ0, which means thatexp(∆tA) can be computed

exactly with the formulaexp(∆tA) = Vm0exp(∆tTm0)V
>
m0

. Moreover,Q0 = Q1 = . . . = exp(∆tA) and we

haveexp(n∆tA)Ψ0 = Ψn = Vm0exp(n∆tTm0)V
>
m0

Ψ0. The exact solution of (17) can be obtained at arbitrary

time-leveln∆t. This shows that the Krylov-space method in special cases (m0 << 6N ) can be a very efficient

one.
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YEE

Un(∆tA) (I + ∆tA1Y )(I + ∆tA2Y )

Stability ∆t < 1/(c
√

(1/∆x)2 + (1/∆y)2 + (1/∆z)2), ‖ U(∆tA) ‖2 6= 1

Remark The splittingA = A1Y + A2Y is done according to the rows belonging to electric

and magnetic fields, respectively.

NZCZ

Un(∆tA) (I− (∆t/2)A2N )−1 · (I + (∆t/2)A1N ) · (I− (∆t/2)A1N )−1 · (I + (∆t/2)A2N ))

Stability unconditionally stable,‖ U(∆tA) ‖2 6= 1 (in 1D ‖ U(∆tA) ‖2= 1)

Remark The splittingA = A1N + A2N is done according to the two space derivative terms

of the curl operator, respectively.

KFR

Un(∆tA) product of exactly computed matrix exponentialsexp(ξ∆tAi), i ∈ {1, . . . , p}
Stability unconditionally stable,‖ U(∆tA) ‖2= 1

Remark In the splittingA = A1 + . . . + Ap the matrices are skew-symmetric, for which

the matrix exponential can be computed easily.

Krylov

Un(∆tA) Vmexp(∆tTm)V>
m, this can be different in all iteration steps

Stability unconditionally stable,‖ U(∆tA) ‖2= 1

Remark The matricesVm andTm come from the construction of an orthonormal basis of

the Krylov-space generated by the modified Arnoldi-method.

TABLE I

Overview of the discussed methods.

Remark II.13:Considering Theorem 4 in [2] we can give an estimation for the error of this method in the form

‖ exp(∆tA)Ψ0 − βVmexp(∆tTm)e1 ‖2≤ 12e−(2q)2/m

(
2eq

m

)m

, m ≥ 4q (q = c∆t/h). (48)

With this relation we are able to choosem or ∆t to guarantee a certain accuracy level of the computations. For 1D

cases we have the error estimation

‖ exp(∆tA)Ψ0 − βVmexp(∆tTm)e1 ‖2≤ 12e−q2/m
(eq

m

)m

, m ≥ 2q (q = c∆t/h). (49)

Finally, we summarize the basic properties of the discussed methods in Table I.
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Fig. 2. The grid-points in the 1D example.

III. C OMPARISON OF THE METHODS

In the previous section we listed four time-integration methods for the Maxwell’s equations. We showed that

these methods all are based on the approximation of a matrix exponential and we discussed their stability properties.

Naturally the NZCZ-, KFR- and Krylov-methods need more computational time to advance the values with one

time-step than in the Yee-method. At the same time in these methods arbitrarily large∆t can be chosen, so in the

long run these methods compute the approximation at a certain time level faster than the Yee-method. Naturally,

because of the larger∆t these methods can be less accurate comparing with the Yee-method. In this section we

investigate the methods from the point of view of the accuracy and the speed of the numerical algorithms.

We consider a model example to demonstrate and investigate the properties of the methods. Although, we

study only 1D problems, our considerations regarding the benefits and drawbacks of the methods can be extended

directly for higher dimensional problems, too. Another goal is to investigate the properties of the matrix exponential

approximations.

Let us consider the 1D Maxwell equations

∂Hy

∂t
=

∂Ez

∂x
(50)

∂Ez

∂t
=

∂Hy

∂x
, (51)

on the interval[0, 1]. In the sequel, we suppose that this interval is bounded by perfect conductor materials (this

yields the boundary conditionEz = 0 atx = 0 andx = 1), moreover letε = µ = 1. In this casec = 1. Using the

staggered grid technique we discretize the equations on the grid depicted in Figure 2. The semidiscretized system

has the form
dΨ(t)

dt
=

1
∆x

tridiag [−1, 0, 1]Ψ(t), (52)

where1/∆x = N ∈ IN is the number of the Yee-cells,tridiag [−1, 0, 1] ∈ IR(2N−1)×(2N−1) is a tridiagonal

matrix andΨ(t) is the approximation of the vector

= (Hy(t,∆x/2), Ez(t,∆x), . . . , Ez(t, 1−∆x),Hy(t, 1−∆x/2))>. (53)
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Fig. 3. The initial function forEz .

In the first example let the initial function for the electric field be

Ez(0, x) = −2|x− 1/2|+ 1, x ∈ [0, 1], (54)

which is not differentiable atx = 1/2. (The graph of the function is depicted in Figure 3.) The initial function for

the magnetic field is the constant zero function. We determine the numerical solution at time-levelt = 0.8 using

the step-size∆x = 1/500. The errors of the electric field are measured with the maximum norm (‖ . ‖∞) and with

thel2 norm (‖ . ‖l2 ). The exact solution can be written in the form of Fourier-series as follows

Ez(t, x) =
8
π2

∞∑

k=1

(−1)k+1

(2k − 1)2
sin((2k − 1)πx) cos((2k − 1)πt), (55)

Hy(t, x) =
8
π2

∞∑

k=1

(−1)k+1

(2k − 1)2
cos((2k − 1)πx) sin((2k − 1)πt). (56)

First we apply the classical Yee-method. The numerical results are listed in Table II. Theorem II.3 gives the

maximal time-step∆tmax = 0.002. Although, Theorem II.3 ensures the stability only for step-sizes∆t < ∆tmax

we also applied the value∆t = ∆tmax. With these time-step (which is called magic step-size, [11]) we have got

very accurate numerical solution. In spite of this, we have to be very careful, because the methods with the magic

step-size are not stable. (See Section 10.2 in book [8].) According to Table II we cannot solve our original problem

with the Yee-method faster than 0.36 seconds, even if we are not interested in very accurate numerical solution.

Moreover, let us observe that the decreasing time-step does not decrease the error, but increases the solution time.

This is why the time-steps are suggested to be chosen close to the stability bound both from the accuracy and from

the solution speed point of view.

Now we solve the problem with the NZCZ method. As we know from the previous section this method is

unconditionally stable, specially, in 1D case the 2-norm of the iteration matrix is one (see Remark II.9). This means

that the time-step can be chosen arbitrarily. The results are in Table III. We see that the NZCZ method is slower

with a factor about five than the Yee-method. Moreover, the accuracy of the method is a little bit poorer. Because

this method is implicit we have to invert a tridiagonal matrix in every time-step (the so-called Thomas-algorithm

has been used, a special Gauss elimination method). However, the Yee-method breaks down after∆t = 0.002,
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∆t Nr. of time-steps error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

0.002051 390 8.1889× 1059 2.3142× 1060 0.35

0.002005 399 1.7273× 108 3.9252× 108 0.35

0.002 400 5.5153× 10−15 1.1435× 10−14 0.36

0.001995 401 1.0649× 10−5 7.6057× 10−5 0.36

0.00199 402 2.1136× 10−5 1.5416× 10−4 0.36

0.001985 403 3.1337× 10−5 2.3357× 10−4 0.36

0.00198 404 4.1534× 10−5 3.1354× 10−4 0.36

0.001333 600 4.3790× 10−4 2.9581× 10−3 0.54

0.001 800 5.1596× 10−4 3.0257× 10−3 0.70

0.0005 1600 5.7134× 10−4 3.3323× 10−3 1.42

0.00005 16000 5.8973× 10−4 3.4268× 10−3 13.96

0.000005 160000 5.8991× 10−4 3.4276× 10−3 140.13

TABLE II

Computational results with the Yee-method.

while the NZCZ method behaves adequately after this bound too. We can choose even∆t = 0.08 = 40∆tmax

solving the problem almost nine times faster than with the Yee-method. The decrease of the computational time is

at the expense of the accuracy.

In the third place we investigate the KFR-method. Let us introduce the notation

K = ∆t/∆x · tridiag [−1, 0, 1]. (57)

This matrix has the same structure like in (38) and we use the same procedure as in (39) to split this matrix into the

form K = K1 + K2. For the matricesK1 andK2 the matrix exponential can be computed exactly. How could we

get an adequate approximation forexp(K) using the matricesexp(K1) andexp(K2)? From the comparison of the

Taylor-series of these exponentials we get the accuracy of approximations as follows. The approximation

exp(K) ≈ exp(K1) exp(K2) (58)

(so-called sequential splitting) has first,

exp(K) ≈ exp(K1/2) exp(K2) exp(K1/2) (59)

(so-called Strang-splitting) has second and

exp(K) ≈ exp(α1K1) exp(β1K2) exp(α2K1) exp(β2K2) exp(α2K1) exp(β1K2) exp(α1K1), (60)

DRAFT November 13, 2002



17

∆t Nr. of time-steps error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

0.08 10 2.9216× 10−2 5.7967× 10−2 0.04

0.016 50 6.6669× 10−2 1.7493× 10−2 0.21

0.008 100 3.3758× 10−3 1.1446× 10−2 0.43

0.004 200 1.7722× 10−3 6.9855× 10−3 0.88

0.002 400 1.0242× 10−3 4.8251× 10−3 1.83

0.001 800 7.2343× 10−4 3.7563× 10−3 3.67

0.0005 1600 6.2641× 10−4 3.5141× 10−3 7.34

TABLE III

Computational results with the NZCZ-method.

∆t Nr. of time-steps error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

0.0005 1600 3.0649× 10−2 5.7587× 10−2 0.72

0.00005 16000 1.9252× 10−3 5.0141× 10−3 7.14

0.00001 80000 6.9278× 10−4 3.4210× 10−3 36.12

TABLE IV

Computational results with the KFR-method applying sequential splitting.

α1 =
1

2(2− 21/3)
, α2 = (1− 21/3)α1, β1 = 2α1, β2 = −24/3α1

has fourth order accuracy (see [13]). The computational results are listed in Tables IV, V and VI. In the tables we

do not show the time-steps that produce larger error than0.1 in maximum norm. For example, in the case of the

first order method, we could not choose the time-step 0.001 and of course any larger time-step either.

We can notice that in spite of the exact computation of the matrix exponentials with matricesK1 andK2 this

method behaves relatively poorer than the Yee- or NZCZ-methods from the point of view of the accuracy. Moreover,

increasing the accuracy of the method the computational costs also increase. This yields that we cannot solve the

problem faster than 0.54 seconds (to keep the accuracy acceptable), which makes this method not too efficient

(compare with the 0.36 seconds in the case of the Yee-method).

The accuracy is determined by the splitting of the matrixK and the initial vector of the iteration, too. The

splitting in the Yee-method is more natural (corresponds to the electric and magnetic fields) than in the KFR-

method (where a tricky splitting is used to compute the exponentials exactly). Let us see an example taking the

matrixK = tridiag [−1, 0, 1] ∈ IR99×99 and the vector

v = [cos(π/100), 0, cos(3π/100), 0, cos(5π/100), 0, cos(7π/100), . . . , 0, cos(99π/100)]>. (61)
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∆t Nr. of time-steps error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

0.001 800 4.2613× 10−2 6.5893× 10−2 0.54

0.0005 1600 1.0583× 10−2 1.7226× 10−2 1.07

0.00005 16000 6.0946× 10−4 3.4252× 10−3 10.96

0.00001 80000 5.9035× 10−4 3.4275× 10−3 54.29

TABLE V

Computational results with the KFR-method applying Strang-splitting.

∆t Nr. of time-steps error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

0.002 400 4.0329× 10−2 6.2563× 10−2 0.62

0.001 800 2.7462× 10−3 5.8719× 10−3 1.22

0.0005 1600 6.2340× 10−4 3.3982× 10−3 2.49

0.00005 16000 5.8991× 10−4 3.4276× 10−3 25.31

0.00001 80000 5.8991× 10−4 3.4276× 10−3 126.96

TABLE VI

Computational results with the KFR-method applying fourth order splitting.

Then the Yee-method splitting approximatesexp(K)v with the 2-norm error9.8718 × 10−3. The KFR-method

does the same with the error7.0501×10−1, which is 71 times greater than in the Yee-method. For the second order

KFR- method we have the error1.2773× 10−1, while for the fourth order one6.3142× 10−2.

Finally, we apply the Krylov-method. We expect this method to be more accurate than the previous methods,

because new iteration matrix is calculated in every time-step. Moreover, we can notice that the speed of the method

depends strongly on the numberm, because the Krylov-basis withm elements must be generated also in every

time-step. First we choose the time-step∆t = 0.08 and compute the error of the method depending onm. The

results are in Table VII.

We can observe that the error of the method is acceptable ifm is about 80 or greater. Generally, we can apply

Remark II.13 to estimatem to get a sufficiently accurate solution. In this way we obtain the (naturally) greater

m ≈ 110 (q = 40) value. Moreover, as we can see, the computational time does not depend linearly on the value of

m. The reason is that the number of operations in one time-step has the formd1m
2 + d2Nm, where the first term

comes from the computation of the exponential of matrixTm and the second one comes from other computations

(d1, d2 ∈ IR). For relatively large values ofm the first term is comparable with the second one. We compute the

errors for several time-steps (see Table VIII). The valuesm come from the expressions in Remark II.13.

For the time-step∆t = 0.8 we would havem = 960. In this case the relationm << 2N − 1 = 999 (where
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m error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

30 5.2785× 10−1 1.8928× 100 0.41

60 4.3976× 10−1 9.6640× 10−1 1.19

70 2.0309× 10−1 4.4442× 10−1 1.56

80 3.8035× 10−3 1.7060× 10−2 2.00

90 5.8973× 10−4 3.4262× 10−3 2.60

120 5.8991× 10−4 3.4276× 10−3 4.78

150 5.8991× 10−4 3.4276× 10−3 8.27

TABLE VII

Computational results with differentm values for the Krylov-method with∆t = 0.08.

∆t Nr. of time-steps m computed error‖ . ‖l2 error‖ . ‖∞ CPU time (sec.)

0.08 10 110 5.8991× 10−4 3.4276× 10−3 4.05

0.008 100 20 5.8991× 10−4 3.4276× 10−3 2.43

0.0008 1000 7 5.8991× 10−4 3.4276× 10−3 9.85

0.00008 10000 5 5.8991× 10−4 3.4276× 10−3 77.19

TABLE VIII

Computational results with the Krylov-method.

2N − 1 means the number of unknowns) does not yield, and the Krylov-method is very expensive. The fastest

method in the table is the method with∆t = 0.008. This method has the same computational speed as the NZCZ-

method with∆t = 0.002 or the fourth order KFR-method with∆t = 0.0005, but the method is more accurate.

Remark III.1: The errors in Table VIII are the same for every time-step. This is why for the givenm values we

get a very accurate approximation for the vector

exp((0.8/500)tridiag [−1, 0, 1])Ψ0, (62)

but we compare this vector with the exact solution of the Maxwell equations. That is the errors in the table come

from the spatial discretization and not from the time one. The error could be decreased by increasing the number

of the grid points. (See the last two rows in Table VI.)

We consider another exact solution of the 1D Maxwell equations in the form

Ez(t, x) = sin(πx) sin(πt), (63)

Hy(t, x) = − cos(πx) cos(πt). (64)

The numerical results are in Table IX. We denoted the fourth order KFR-method by KFR4 and the sign− means
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∆t Yee NZCZ KFR4 Krylov, m = 8

2.3650× 10−6

0.8 - - - 3.3446× 10−6

0.01

7.4635× 10−3 2.3751× 10−6

0.08 - 1.0555× 10−2 - 3.3446× 10−6

0.04 0.11

7.8034× 10−5 2.3702× 10−6

0.008 - 1.1036× 10−4 - 3.6623× 10−6

0.43 1.14

2.1285× 10−5 2.3650× 10−6

0.004 - 3.0100× 10−5 - 3.3446× 10−6

0.88 2.27

2.0510× 10−15 7.0949× 10−6 5.4022× 10−2 2.3650× 10−6

0.002 2.9006× 10−15 1.0034× 10−5 7.6333× 10−2 3.3446× 10−6

0.36 1.83 0.62 4.53

2.2865× 10−6 3.5475× 10−6 3.7922× 10−3 2.3650× 10−6

0.001 3.2336× 10−6 5.0169× 10−6 5.3431× 10−3 3.3446× 10−6

0.70 3.67 1.22 9.01

2.3454× 10−6 2.6606× 10−6 2.4440× 10−4 2.3650× 10−6

0.0005 3.3169× 10−6 3.7627× 10−6 3.4578× 10−4 3.3446× 10−6

1.42 7.34 2.49 18.30

2.3648× 10−6 2.3680× 10−6 2.3893× 10−6 2.3650× 10−6

0.00005 3.3443× 10−6 3.3488× 10−6 3.3788× 10−6 3.3446× 10−6

14.14 72.15 25.31 181.12

2.3648× 10−6 2.3652× 10−6 2.3415× 10−6 2.3650× 10−6

0.000005 3.3446× 10−6 3.3450× 10−6 3.3111× 10−6 3.3446× 10−6

148.48 735.51 247.87 1794.86

TABLE IX

Computational results with the exact solutions in (64).
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that the error of the method is very large (≥ 0.1). In the heads the error inl2-norm, in maximum norm and the

CPU-time is listed, respectively. As in the previous example, when the Yee-method is stable then it is more accurate

comparing with the other methods. Furthermore, this method is also the fastest one, because this is a cheap explicit

method. In the case of the KFR4-method the time-step cannot increased above the maximal time-step of the Yee-

method (∆t = 0.002) because the accuracy of it is unacceptably small. We have experienced that the choicem = 8

is suitable in the Krylov-method. This method solves the equations in a quickest way, namely0.01 seconds is

enough. This shows that the Krylov-method in special cases can be very efficient.

IV. CONCLUSIONS

We described and investigated three methods, the NZCZ, KFR and Krylov-method. The methods passes the nice

properties of the Yee-method: easy understandability, solution of a wide frequency range with one simulation (time

domain methods), animation displays, specification of the material properties at all points within the computational

domain and the computation of the electric and magnetic fields directly. The most important reason why these

methods have been constructed is to speed up the numerical computations. Naturally, the increase in the time-step

necessitates decrease in the accuracy, that is we have to find the balance between the accuracy and the computational

speed.

We observed that the NZCZ-method is slower with a factor about five than the Yee-method, but the method is

unconditionally stable and in the long run it computes the solution faster. The accuracy of the method is acceptable.

In the KFR-method we experienced that the method is relatively inaccurate, and to make it much more accurate

costs a lot computational time. The Krylov-space method is generally slow, but in special cases behaves much

better than the NZCZ-method, and the accuracy of the method is considerable.

We see that the behavior of the methods are determined by the properties of the matrix splitting. The investigation

of other matrix splitting methods could show the way to a more efficient Maxwell-solver.
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